- Table of Contents
Modern Cryptography: Theory and Practice

ByWenbo Mao Hewlett-Packard Company

Publisher: Prentice Hall PTR

Pub Date: July 25, 2003
ISBN: 0-13-066943-1
Pages: 648

Many cryptographic schemes and protocols, especially those based on public-keycryptography,
have basic or so-called "textbook crypto"” versions, as these versionsare usually the subjects for
many textbooks on cryptography. This book takes adifferent approach to introducing
cryptography: it pays much more attention tofit-for-application aspects of cryptography. It
explains why "textbook crypto" isonly good in an ideal world where data are random and bad
guys behave nicely.It reveals the general unfitness of "textbook crypto" for the real world by
demonstratingnumerous attacks on such schemes, protocols and systems under variousreal-
world application scenarios. This book chooses to introduce a set of practicalcryptographic
schemes, protocols and systems, many of them standards or de factoones, studies them closely,
explains their working principles, discusses their practicalusages, and examines their strong
(i.e., fit-for-application) security properties, oftenwith security evidence formally established.
The book also includes self-containedtheoretical background material that is the foundation for
modern cryptography.

- Table of Contents
Modern Cryptography: Theory and Practice

ByWenbo Mao Hewlett-Packard Company

Publisher: Prentice Hall PTR

Pub Date: July 25, 2003
ISBN: 0-13-066943-1
Pages: 648

Copyright
Hewlett-Packard® Professional Books

A Short Description of the Book

Preface

Scope
Acknowledgements

List of Figures
List of Algorithms, Protocols and Attacks

Part I: Introduction

Chapter 1. Beginning with a Simple Communication Game

Section 1.1. A Communication Game

Section 1.2. Criteria for Desirable Cryptographic Systems and Protocols

Section 1.3. Chapter Summary

Exercises

Chapter 2. Wrestling Between Safeguard and Attack

Section 2.1. Introduction

Section 2.2. Encryption

Section 2.3. Vulnerable Environment (the Dolev-Yao Threat Model)

Section 2.4. Authentication Servers

Section 2.5. Security Properties for Authenticated Key Establishment

Section 2.6. Protocols for Authenticated Key Establishment Using Encryption

Section 2.7. Chapter Summary

Exercises

Part IlI: Mathematical Foundations: Standard Notation

Chapter 3. Probability and Information Theory

Section 3.1. Introduction

Section 3.2. Basic Concept of Probability

Section 3.3. Properties

Section 3.4. Basic Calculation

Section 3.5. Random Variables and their Probability Distributions

Section 3.6. Birthday Paradox

Section 3.7. Information Theory

Section 3.8. Redundancy in Natural Languages
Section 3.9. Chapter Summary
Exercises

Chapter 4. Computational Complexity

Section 4.1. Introduction

Section 4.2. Turing Machines

Section 4.3. Deterministic Polynomial Time

Section 4.4. Probabilistic Polynomial Time

Section 4.5. Non-deterministic Polynomial Time

Section 4.6. Non-Polynomial Bounds

Section 4.7. Polynomial-time Indistinguishability

Section 4.8. Theory of Computational Complexity and Modern Cryptography
Section 4.9. Chapter Summary

Exercises

Chapter 5. Algebraic Foundations

Section 5.1. Introduction

Section 5.2. Groups

Section 5.3. Rings and Fields

Section 5.4. The Structure of Finite Fields

Section 5.5. Group Constructed Using Points on an Elliptic Curve
Section 5.6. Chapter Summary

Exercises

Chapter 6. Number Theory

Section 6.1. Introduction
Section 6.2. Congruences and Residue Classes
Section 6.3. Euler's Phi Function
Section 6.4. The Theorems of Fermat, Euler and Lagrange
Section 6.5. Quadratic Residues
Section 6.6. Square Roots Modulo Integer
Section 6.7. Blum Integers
Section 6.8. Chapter Summary
Exercises
Part Il1: Basic Cryptographic Techniques

Chapter 7. Encryption — Symmetric Techniques

Section 7.1. Introduction

Section 7.2. Definition

Section 7.3. Substitution Ciphers

Section 7.4. Transposition Ciphers

Section 7.5. Classical Ciphers: Usefulness and Security

Section 7.6. The Data Encryption Standard (DES)

Section 7.7. The Advanced Encryption Standard (AES)

Section 7.8. Confidentiality Modes of Operation

Section 7.9. Key Channel Establishment for Symmetric Cryptosystems

Section 7.10. Chapter Summary

Exercises

Chapter 8. Encryption — Asymmetric Techniques

Section 8.1. Introduction

Section 8.2. Insecurity of "Textbook Encryption Algorithms"

Section 8.3. The Diffie-Hellman Key Exchange Protocol

Section 8.4. The Diffie-Hellman Problem and the Discrete Logarithm Problem

Section 8.5. The RSA Cryptosystem (Textbook Version)

Section 8.6. Cryptanalysis Against Public-key Cryptosystems
Section 8.7. The RSA Problem

Section 8.8. The Integer Factorization Problem

Section 8.9. Insecurity of the Textbook RSA Encryption

Section 8.10. The Rabin Cryptosystem (Textbook Version)

Section 8.11. Insecurity of the Textbook Rabin Encryption

Section 8.12. The ElGamal Cryptosystem (Textbook Version)

Section 8.13. Insecurity of the Textbook EIGamal Encryption

Section 8.14. Need for Stronger Security Notions for Public-key Cryptosystems

Section 8.15. Combination of Asymmetric and Symmetric Cryptography

Section 8.16. Key Channel Establishment for Public-key Cryptosystems

Section 8.17. Chapter Summary

Exercises

Chapter 9. In An Ideal World: Bit Security of The Basic Public-Key Cryptographic Functions

Section 9.1. Introduction

Section 9.2. The RSA Bit

Section 9.3. The Rabin Bit

Section 9.4. The ElGamal Bit

Section 9.5. The Discrete Logarithm Bit

Section 9.6. Chapter Summary

Exercises

Chapter 10. Data Integrity Techniques

Section 10.1. Introduction

Section 10.2. Definition

Section 10.3. Symmetric Techniques

Section 10.4. Asymmetric Techniques I: Digital Signatures

Section 10.5. Asymmetric Techniques Il: Data Integrity Without Source Identification

Section 10.6. Chapter Summary

Exercises

Part 1V: Authentication

Chapter 11. Authentication Protocols — Principles

Section 11.1. Introduction

Section 11.2. Authentication and Refined Notions

Section 11.3. Convention

Section 11.4. Basic Authentication Techniques

Section 11.5. Password-based Authentication

Section 11.6. Authenticated Key Exchange Based on Asymmetric Cryptography

Section 11.7. Typical Attacks on Authentication Protocols
Section 11.8. A Brief Literature Note

Section 11.9. Chapter Summary

Exercises
Chapter 12. Authentication Protocols — The Real World

Section 12.1. Introduction

Section 12.2. Authentication Protocols for Internet Security

Section 12.3. The Secure Shell (SSH) Remote Login Protocol

Section 12.4. The Kerberos Protocol and its Realization in Windows 2000
Section 12.5. SSL and TLS
Section 12.6. Chapter Summary

Exercises

Chapter 13. Authentication Framework for Public-Key Cryptography

Section 13.1. Introduction

Section 13.2. Directory-Based Authentication Framework

Section 13.3. Non-Directory Based Public-key Authentication Framework

Section 13.4. Chapter Summary

Exercises

Part V: Formal Approaches to Security Establishment

Chapter 14. Formal and Strong Security Definitions for Public-Key Cryptosystems

Section 14.1. Introduction

Section 14.2. A Formal Treatment for Security

Section 14.3. Semantic Security — the Debut of Provable Security

Section 14.4. Inadequacy of Semantic Security

Section 14.5. Beyond Semantic Security

Section 14.6. Chapter Summary

Exercises

Chapter 15. Provably Secure and Efficient Public-Key Cryptosystems

Section 15.1. Introduction

Section 15.2. The Optimal Asymmetric Encryption Padding

Section 15.3. The Cramer-Shoup Public-key Cryptosystem

Section 15.4. An Overview of Provably Secure Hybrid Cryptosystems

Section 15.5. Literature Notes on Practical and Provably Secure Public-key Cryptosystems

Section 15.6. Chapter Summary

Section 15.7. Exercises

Chapter 16. Strong and Provable Security for Digital Signatures

Section 16.1. Introduction

Section 16.2. Strong Security Notion for Digital Signatures

Section 16.3. Strong and Provable Security for EIGamal-family Signatures

Section 16.4. Fit-for-application Ways for Signing in RSA and Rabin

Section 16.5. Signcryption

Section 16.6. Chapter Summary

Section 16.7. Exercises

Chapter 17. Formal Methods for Authentication Protocols Analysis

Section 17.1. Introduction

Section 17.2. Toward Formal Specification of Authentication Protocols

Section 17.3. A Computational View of Correct Protocols — the Bellare-Rogaway Model

Section 17.4. A Symbolic Manipulation View of Correct Protocols

Section 17.5. Formal Analysis Techniques: State System Exploration

Section 17.6. Reconciling Two Views of Formal Techniques for Security

Section 17.7. Chapter Summary

Exercises

Part VI: Cryptographic Protocols

Chapter 18. Zero-Knowledge Protocols

Section 18.1. Introduction

Section 18.2. Basic Definitions

Section 18.3. Zero-knowledge Properties

Section 18.4. Proof or Argument?

Section 18.5. Protocols with Two-sided-error

Section 18.6. Round Efficiency

Section 18.7. Non-interactive Zero-knowledge

Section 18.8. Chapter Summary

Exercises

Chapter 19. Returning to "Coin Flipping Over Telephone"

Section 19.1. Blum's "Coin-Flipping-By-Telephone" Protocol
Section 19.2. Security Analysis
Section 19.3. Efficiency

Section 19.4. Chapter Summary
Chapter 20. Afterremark

Bibliography

Copyright

Library of Congress Cataloging-in-Publication Data
A CIP catalog record for this book can be obtained from the Library of Congress.
Editorial/production supervision: Mary Sudul
Cover design director: Jerry Votta
Cover design: Talar Boorujy
Manufacturing manager: Maura Zaldivar
Acquisitions editor: Jill Harry
Marketing manager: Dan DePasquale

Publisher, Hewlett-Packard Books: Walter Bruce

© 2004 by Hewlett-Packard Company
Published by Prentice Hall PTR
Prentice-Hall, Inc.

Upper Saddle River, New Jersey 07458

Prentice Hall books are widely used by corporations and government agencies for training,
marketing, and resale.

The publisher offers discounts on this book when ordered in bulk quantities. For more
information, contact Corporate Sales Department, Phone: 800-382-3419; FAX: 201-236-7141;
E-mail:corpsales@prenhall.com

Or write: Prentice Hall PTR, Corporate Sales Dept., One Lake Street, Upper Saddle River, NJ
07458.

Other product or company names mentioned herein are the trademarks or registered trademarks
of their respective owners.

All rights reserved. No part of this book may be reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

1st Printing

Pearson Education LTD.

Pearson Education Australia PTY, Limited
Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Ltd.

Pearson Education Canada, Ltd.

Pearson Educacién de Mexico, S.A. de C.V.
Pearson Education — Japan

Pearson Education Malaysia, Pte. Ltd.

Dedication

To

Ronghui || Yiwei || Yifan

= (B | X A% 4R PR,) @ 101101110 --

Hew lett-Packard® Professional Books

HP-UX
Fernandez
Madell
Olker
Poniatowski

Poniatowski

Poniatowski

Poniatowski
Poniatowski
Poniatowski
Poniatowski
Rehman
Sauers/Weygant
Weygant

Wong

Configuring CDE

Disk and File Management Tasks on HP-UX
Optimizing NFS Performance

HP-UX 11i Virtual Partitions

HP-UX 11i System Administration Handbook and
Toolkit, Second Edition

The HP-UX 11.x System Administration Handbook
and Toolkit

HP-UX 11.x System Administration "How To" Book
HP-UX 10.x System Administration "How To" Book
HP-UX System Administration Handbook and Toolkit
Learning the HP-UX Operating System

HP Certified: HP-UX System Administration

HP-UX Tuning and Performance

Clusters for High Availability, Second Edition

HP-UX 11i Security

UNIX, Linux, WINDOWS, AND MPE 1/X

Mosberger/Eranian
Poniatowski
Stone/Symons
COMPUTER ARCHITECTURE
Evans/Trimper

Kane

Markstein

1A-64 Linux Kernel
UNIX User's Handbook, Second Edition

UNIX Fault Management

Itanium Architecture for Programmers
PA-RISC 2.0 Architecture

IA-64 and Elementary Functions

NETWORKING/Z COMMUNICATIONS

Blommers

Blommers
Blommers
Brans

Cook

Architecting Enterprise Solutions with UNIX
Networking

OpenView Network Node Manager
Practical Planning for Network Growth
Mobilize Your Enterprise

Building Enterprise Information Architecture

Lucke

Lund

SECURITY
Bruce

Mao

Pearson et al.
Pipkin

Pipkin

Designing and Implementing Computer Workgroups

Integrating UNIX and PC Network Operating
Systems

Security in Distributed Computing

Modern Cryptography:Theory and Practice
Trusted Computing Platforms

Halting the Hacker, Second Edition

Information Security

WEB/ INTERNET CONCEPTS AND PROGRAMMING

Amor

Apte/Mehta
Mowbrey/Werry
Tapadiya

OTHER PROGRAMMING
Blinn

Caruso

Chaudhri

Chew

Grady

Grady
Grady
Lewis
Lichtenbelt
Mellquist
Mikkelsen
Norton
Tapadiya
Yuan
STORAGE
Thornburgh
Thornburgh/Schoenborn
Todman

IT/1S

E-business (R)evolution, Second Edition
uDDI
Online Communities

.NET Programming

Portable Shell Programming

Power Programming in HP Open View
Object Databases in Practice

The Java/C++ Cross Reference Handbook

Practical Software Metrics for Project Management
and Process Improvement

Software Metrics

Successful Software Process Improvement
The Art and Science of Smalltalk

Introduction to Volume Rendering

SNMP++

Practical Software Configuration Management
Thread Time

COM+ Programming

Windows 2000 GDI Programming

Fibre Channel for Mass Storage
Storage Area Networks

Designing Data Warehouses

Missbach/Hoffman SAP Hardware Solutions

IMAGE PROCESSING

Crane A Simplified Approach to Image Processing

Gann Desktop Scanners

A Short Description of the Book

Many cryptographic schemes and protocols, especially those based on public-key cryptography,
have basic or so-called "textbook crypto” versions, as these versions are usually the subjects for
many textbooks on cryptography. This book takes a different approach to introducing
cryptography: it pays much more attention to fit-for-application aspects of cryptography. It
explains why "textbook crypto” is only good in an ideal world where data are random and bad
guys behave nicely. It reveals the general unfitness of "textbook crypto” for the real world by
demonstrating numerous attacks on such schemes, protocols and systems under various real-
world application scenarios. This book chooses to introduce a set of practical cryptographic
schemes, protocols and systems, many of them standards or de facto ones, studies them closely,
explains their working principles, discusses their practical usages, and examines their strong
(i.e., fit-for-application) security properties, often with security evidence formally established.
The book also includes self-contained theoretical background material that is the foundation for
modern cryptography.

Preface

Our society has entered an era where commerce activities, business transactions and
government services have been, and more and more of them will be, conducted and offered over
open computer and communications networks such as the Internet, in particular, via
WorldWideWeb-based tools. Doing things online has a great advantage of an always-on
availability to people in any corner of the world. Here are a few examples of things that have
been, can or will be done online:

Banking, bill payment, home shopping, stock trading, auctions, taxation, gambling, micro-
payment (e.g., pay-per-downloading), electronic identity, online access to medical records,
virtual private networking, secure data archival and retrieval, certified delivery of
documents, fair exchange of sensitive documents, fair signing of contracts, time-stamping,
notarization, voting, advertising, licensing, ticket booking, interactive games, digital
libraries, digital rights management, pirate tracing, ...

And more can be imagined.

Fascinating commerce activities, transactions and services like these are only possible if
communications over open networks can be conducted in a secure manner. An effective solution
to securing communications over open networks is to apply cryptography. Encryption, digital
signatures, password-based user authentication, are some of the most basic cryptographic
techniques for securing communications. However, as we shall witness many times in this book,
there are surprising subtleties and serious security consequences in the applications of even the
most basic cryptographic techniques. Moreover, for many "fancier" applications, such as many
listed in the preceding paragraph, the basic cryptographic techniques are no longer adequate.

With an increasingly large demand for safeguarding communications over open networks for
more and more sophisticated forms of electronic commerce, business and servicesl@l, an
increasingly large number of information security professionals will be needed for designing,
developing, analyzing and maintaining information security systems and cryptographic
protocols. These professionals may range from IT systems administrators, information security
engineers and software/hardware systems developers whose products have security
requirements, to cryptographers.

[al Gartner Group forecasts that total electronic business revenues for business to business (B2B) and
business to consumer (B2C) in the European Union will reach a projected US $2.6 trillion in 2004 (with
probability 0.7) which is a 28-fold increase from the level of 2000 [5]. Also, eMarketer [104] (page 41) reports
that the cost to financial institutions (in USA) due to electronic identity theft was US $1.4 billion in 2002, and
forecasts to grow by a compound annual growth rate of 29%.

In the past few years, the author, a technical consultant on information security and
cryptographic systems at Hewlett-Packard Laboratories in Bristol, has witnessed the
phenomenon of a progressively increased demand for information security professionals
unmatched by an evident shortage of them. As a result, many engineers, who are oriented to
application problems and may have little proper training in cryptography and information
security have become "roll-up-sleeves"” designers and developers for information security
systems or cryptographic protocols. This is in spite of the fact that designing cryptographic
systems and protocols is a difficult job even for an expert cryptographer.

The author's job has granted him privileged opportunities to review many information security
systems and cryptographic protocols, some of them proposed and designed by "roll-up-sleeves"
engineers and are for uses in serious applications. In several occasions, the author observed so-
called "textbook crypto" features in such systems, which are the result of applications of
cryptographic algorithms and schemes in ways they are usually introduced in many

cryptographic textbooks. Direct encryption of a password (a secret number of a small
magnitude) under a basic public-key encryption algorithm (e.g., "RSA") is a typical example of
textbook crypto. The appearances of textbook crypto in serious applications with a "non-
negligible probability"” have caused a concern for the author to realize that the general danger of
textbook crypto is not widely known to many people who design and develop information
security systems for serious real-world applications.

Motivated by an increasing demand for information security professionals and a belief that their
knowledge in cryptography should not be limited to textbook crypto, the author has written this
book as a textbook on non-textbook cryptography. This book endeavors to:

e Introduce a wide range of cryptographic algorithms, schemes and protocols with a
particular emphasis on their non-textbook versions.

e Reveal general insecurity of textbook crypto by demonstrating a large number of attacks on
and summarizing typical attacking techniques for such systems.

e Provide principles and guidelines for the design, analysis and implementation of
cryptographic systems and protocols with a focus on standards.

e Study formalism techniques and methodologies for a rigorous establishment of strong and
fit-for-application security notions for cryptographic systems and protocols.

e Include self-contained and elaborated material as theoretical foundations of modern
cryptography for readers who desire a systematic understanding of the subject.

Scope

Modern cryptography is a vast area of study as a result of fast advances made in the past thirty
years. This book focuses on one aspect: introducing fit-for-application cryptographic schemes
and protocols with their strong security properties evidently established.

The book is organized into the following six parts:

Part 1 This part contains two chapters (1—2) and serves an elementary-level introduction
for the book and the areas of cryptography and information security. Chapter 1 begins with
a demonstration on the effectiveness of cryptography in solving a subtle communication
problem. A simple cryptographic protocol (first protocol of the book) for achieving "fair coin
tossing over telephone” will be presented and discussed. This chapter then carries on to
conduct a cultural and "trade" introduction to the areas of study. Chapter 2 uses a series of
simple authentication protocols to manifest an unfortunate fact in the areas: pitfalls are
everywhere.

As an elementary-level introduction, this part is intended for newcomers to the areas.

Part 11 This part contains four chapters (3—6) as a set of mathematical background
knowledge, facts and basis to serve as a self-contained mathematical reference guide for
the book. Readers who only intend to "knowhow," i.e., know how to use the fit-for-
application crypto schemes and protocols, may skip this part yet still be able to follow most
contents of the rest of the book. Readers who also want to "know-why," i.e., know why
these schemes and protocols have strong security properties, may find that this self-
contained mathematical part is a sufficient reference material. When we present working
principles of cryptographic schemes and protocols, reveal insecurity for some of them and
reason about security for the rest, it will always be possible for us to refer to a precise point
in this part of the book for supporting mathematical foundations.

This part can also be used to conduct a systematic background study of the theoretical
foundations for modern cryptography.

Part 111 This part contains four chapters (7—210) introducing the most basic cryptographic
algorithms and techniques for providing privacy and data integrity protections. Chapter 7 is
for symmetric encryption schemes, Chapter 8, asymmetric techniques. Chapter 9 considers
an important security quality possessed by the basic and popular asymmetric cryptographic
functions when they are used in an ideal world in which data are random. Finally, Chapter
10 covers data integrity techniques.

Since the schemes and techniques introduced here are the most basic ones, many of them
are in fact in the textbook crypto category and are consequently insecure. While the
schemes are introduced, abundant attacks on many schemes will be demonstrated with
warning remarks explicitly stated. For practitioners who do not plan to proceed with an in-
depth study of fit-for-application crypto and their strong security notions, this textbook
crypto part will still provide these readers with explicit early warning signals on the general
insecurity of textbook crypto.

Part 1V This part contains three chapters (11—13) introducing an important notion in
applied cryptography and information security: authentication. These chapters provide a
wide coverage of the topic. Chapter 11 includes technical background, principles, a series of
basic protocols and standards, common attacking tricks and prevention measures. Chapter
12 is a case study for four well-known authentication protocol systems for real world
applications.Chapter 13 introduces techniques which are particularly suitable for open

systems which cover up-to-date and novel techniques.

Practitioners, such as information security systems administration staff in an enterprise and
software/hardware developers whose products have security consequences may find this
part helpful.

Part V This part contains four chapters (14—217) which provide formalism and rigorous
treatments for strong (i.e., fit-for-application) security notions for public-key cryptographic
techniques (encryption, signature and signcryption) and formal methodologies for the
analysis of authentication protocols. Chapter 14 introduces formal definitions of strong
security notions. The next two chapters are fit-for-application counterparts to textbook
crypto schemes introduced in Part 111, with strong security properties formally established
(i.e., evidently reasoned). Finally, Chapter 17 introduces formal analysis methodologies
and techniques for the analysis of authentication protocols, which we have not been able to
deal with in Part 1V.

Part VI This is the final part of the book. It contains two technical chapters (18—19) and a
short final remark (Chapter 20). The main technical content of this part, Chapter 18,
introduces a class of cryptographic protocols called zero-knowledge protocols. These
protocols provide an important security service which is needed in various "fancy"
electronic commerce and business applications: verification of a claimed property of secret
data (e.g., in conforming with a business requirement) while preserving a strict privacy
quality for the claimant. Zero-knowledge protocols to be introduced in this part exemplify
the diversity of special security needs in various real world applications, which are beyond
confidentiality, integrity, authentication and non-repudiation. In the final technical chapter
of the book (Chapter 19) we will complete our job which has been left over from the first
protocol of the book: to realize "fair coin tossing over telephone.” That final realization will
achieve a protocol which has evidently-established strong security properties yet with an
efficiency suitable for practical applications.

Needless to say, a description for each fit-for-application crypto scheme or protocol has to begin
with a reason why the textbook crypto counterpart is unfit for application. Invariably, these
reasons are demonstrated by attacks on these schemes or protocols, which, by the nature of
attacks, often contain a certain degree of subtleties. In addition, a description of a fit-for-
application scheme or protocol must also end at an analysis that the strong (i.e., fit-for-
application) security properties do hold as claimed. Consequently, some parts of this book
inevitably contain mathematical and logical reasonings, deductions and transformations in order
to manifest attacks and fixes.

While admittedly fit-for-application cryptography is not a topic for quick mastery or that can be
mastered via light reading, this book, nonetheless, is not one for in-depth research topics which
will only be of interest to specialist cryptographers. The things reported and explained in it are
well-known and quite elementary to cryptographers. The author believes that they can also be
comprehended by non-specialists if the introduction to the subject is provided with plenty of
explanations and examples and is supported by self-contained mathematical background and
reference material.

The book is aimed at the following readers.

e Students who have completed, or are near to completion of, first degree courses in
computer, information science or applied mathematics, and plan to pursue a career in
information security. For them, this book may serve as an advanced course in applied

cryptography.

e Security engineers in high-tech companies who are responsible for the design and
development of information security systems. If we say that the consequence of textbook

crypto appearing in an academic research proposal may not be too harmful since the worst
case of the consequence would be an embarrassment, then the use of textbook crypto in an
information security product may lead to a serious loss. Therefore, knowing the unfitness of
textbook crypto for real world applications is necessary for these readers. Moreover, these
readers should have a good understanding of the security principles behind the fit-for-
application schemes and protocols and so they can apply the schemes and the principles
correctly. The self-contained mathematical foundations material in Part Il makes the book a
suitable self-teaching text for these readers.

Information security systems administration staff in an enterprise and software/hardware
systems developers whose products have security consequences. For these readers, Part |
is a simple and essential course for cultural and "trade" training; Parts Ill and 1V form a
suitable cut-down set of knowledge in cryptography and information security. These three
parts contain many basic crypto schemes and protocols accompanied with plenty of
attacking tricks and prevention measures which should be known to and can be grasped by
this population of readers without demanding them to be burdened by theoretical
foundations.

New Ph.D. candidates beginning their research in cryptography or computer security. These
readers will appreciate a single-point reference book which covers formal treatment of
strong security notions and elaborates these notions adequately. Such a book can help
them to quickly enter into the vast area of study. For them, Parts I1,1V,V, and VI

constitute a suitable level of literature survey material which can lead them to find further
literatures, and can help them to shape and specialize their own research topics.

A cut-down subset of the book (e.g., Part I,11,111 and VI) also form a suitable course in
applied cryptography for undergraduate students in computer science, information science
and applied mathematics courses.

Acknowledgements

I am deeply grateful to Feng Bao, Colin Boyd, Richard DeMillo, Steven Galbraith, Dieter
Gollmann, Keith Harrison, Marcus Leech, Helger Lipmaa, Hoi-Kwong Lo, Javier Lopez, John
Malone-Lee, Cary Meltzer, Christian Paquin, Kenny Paterson, David Pointcheval, Vincent Rijmen,
Nigel Smart, David Soldera, Paul van Oorschot, Serge Vaudenay and Stefek Zaba. These people
gave generously of their time to review chapters or the whole book and provide invaluable
comments, criticisms and suggestions which make the book better.

The book also benefits from the following people answering my questions: Mihir Bellare, Jan
Camenisch, Neil Dunbar, Yair Frankel, Shai Halevi, Antoine Joux, Marc Joye, Chalie Kaufman,
Adrian Kent, Hugo Krawczyk, Catherine Meadows, Bill Munro, Phong Nguyen, Radia Perlman,
Marco Ricca, Ronald Rivest, Steve Schneider, Victor Shoup, Igor Shparlinski and Moti Yung.

I would also like to thank Jill Harry at Prentice-Hall PTR and Susan Wright at HP Professional
Books for introducing me to book writing and for the encouragement and professional support
they provided during the lengthy period of manuscript writing. Thanks also to Jennifer Blackwell,
Robin Carroll, Brenda Mulligan, Justin Somma and Mary Sudul at Prentice-Hall PTR and to
Walter Bruce and Pat Pekary at HP Professional Books.

I am also grateful to my colleagues at Hewlett-Packard Laboratories Bristol, including David Ball,
Richard Cardwell, Liqun Chen, lan Cole, Gareth Jones, Stephen Pearson and Martin Sadler for
technical and literature services and management support.

Bristol, England

May 2003

List of Figures

N
=

w
=

G R
w N -

o |»
SN

\'
=

~
N

N
[S2 B FE [PV)

=
o
=

=
N
=

=
N
N

=
N
w

'_\
N
IN

=
I
=

H
N
N

16.2

A Simplified Pictorial Description of a Cryptographic System
Binomial Distribution

A Turing Machine

The operation of machine Div3

Bitwise Time Complexities of the Basic Modular Arithmetic
Operations

All Possible Moves of a Non-deterministic Turing Machine
Elliptic Curve Group Operation

Cryptographic Systems

Feistel Cipher (One Round)

The Cipher Block Chaining Mode of Operation

The Cipher Feedback Mode of Operation

The Output Feedback Mode of Operation

Data Integrity Systems

An Unprotected IP Packet

The Structure of an Authentication Header and its Position
in an IP Packet

The Structure of an Encapsulating Security Payload
Kerberos Exchanges

Summary of the Indistinguishable Attack Games
Reduction from an NM-attack to an IND-attack
Reduction from IND-CCA2 to NM-CCA2

Relations Among Security Notions for Public-key
Cryptosystems

Optimal Asymmetric Encryption Padding (OAEP)
OAEP as a Two-round Feistel Cipher

Reduction from Inversion of a One-way Trapdoor Function f
to an Attack on the f-OAEP Scheme

Reduction from the DDH Problem to an Attack on the
Cramer-Shoup Cryptosystem

Reduction from a Signature Forgery to Solving a Hard
Problem

Successful Forking Answers to Random Oracle Queries

25
70
87
90
103

124
168
208
220
233
238
239
299
390
392

393
412
489
495
497
498

503
504
511

532

551

553

=
(&)
w

'_\
o
IN

=
~
=

=
~
N

The PSS Padding
The PSS-R Padding
The CSP Language

The CSP Entailment Axioms

560
563
609
613

List of Algorithms, Protocols and Attacks

Protocol 1.1: Coin Flipping Over Telephone 5
Protocol 2.1: From Alice To Bob 32
Protocol 2.2: Session Key From Trent 34
Attack 2.1: An Attack on Protocol "Session Key From 35
Trent"

Protocol 2.3: Message Authentication 39
Protocol 2.4: Challenge Response (the Needham- 43
Schroeder Protocol)

Attack 2.2: An Attack on the Needham-Schroeder Protocol 44
Protocol 2.5: Needham-Schroeder Public-key 47
Authentication Protocol

Attack 2.3: An Attack on the Needham-Schroeder Public- 50
key Protocol

Algorithm 4.1: Euclid Algorithm for Greatest Common 93
Divisor

Algorithm 4.2: Extended Euclid Algorithm 96
Algorithm 4.3: Modular Exponentiation 101
Algorithm 4.4: Searching Through Phone Book (a ZPP 108
Algorithm)

Algorithm 4.5: Probabilistic Primality Test (a Monte Carlo 110
Algorithm)

Algorithm 4.6: Proof of Primality (a Las Vegas Algorithm) 113
Protocol 4.1: Quantum Key Distribution (an Atlantic City 117
Algorithm)

Algorithm 4.7: Random k-bit Probabilistic Prime 121
Generation

Algorithm 4.8: Square-Freeness Integer 123
Algorithm 5.1: Random Primitive Root Modulo Prime 166
Algorithm 5.2: Point Multiplication for Elliptic Curve 171
Element

Algorithm 6.1: Chinese Remainder 182
Algorithm 6.2: Legendre/Jacobi Symbol 191
Algorithm 6.3: Square Root Modulo Prime (Special Cases) 194

Algorithm 6.4: Square Root Modulo Prime (General Case) 196

Algorithm 6.5: Square Root Modulo Composite

Protocol 7.1: A Zero-knowledge Protocol Using Shift
Cipher

Protocol 8.1: The Diffie-Hellman Key Exchange Protocol

Attack 8.1: Man-in-the-Middle Attack on the Diffie-
Hellman Key Exchange Protocol

Algorithm 8.1: The RSA Cryptosystem

Algorithm 8.2: The Rabin Cryptosystem

Algorithm 8.3: The EIGamal Cryptosystem

Algorithm 9.1: Binary Searching RSA Plaintext Using a
Parity Oracle

Algorithm 9.2: Extracting Discrete Logarithm Using a
Parity Oracle

Algorithm 9.3: Extracting Discrete Logarithm Using a
"Half-order Oracle”

Algorithm 10.1: The RSA Signature Scheme

Algorithm 10.2: The Rabin Signature Scheme

Algorithm 10.3: The ElIGamal Signature Scheme

Algorithm 10.4: The Schnorr Signature Scheme

Algorithm 10.5: The Digital Signature Standard

Algorithm 10.6: Optimal Asymmetric Encryption Padding
for RSA (RSA-OAEP)

Protocol 11.1: ISO Public Key Three-Pass Mutual
Authentication Protocol

Attack 11.1: Wiener's Attack on ISO Public Key Three-Pass
Mutual Authentication Protocol

Protocol 11.2: The Woo-Lam Protocol

Protocol 11.3: Needham's Password Authentication
Protocol

Protocol 11.4: The S/KEY Protocol

Protocol 11.5: Encrypted Key Exchange (EKE)

Protocol 11.6: The Station-to-Station (STS) Protocol

Protocol 11.7: Flawed "Authentication-only™ STS Protocol

Attack 11.2: An Attack on the "Authentication-only" STS
Protocol

Attack 11.3: Lowe's Attack on the STS Protocol (a Minor
Flaw)

Attack 11.4: An Attack on the S/KEY Protocol

197
216

249
251

258
269
274
289

293

294

309
312
314
319
320
324

346

347

350
352

355
357
361
363
364

366

371

Attack 11.5: A Parallel-Session Attack on the Woo-Lam
Protocol

Attack 11.6: A Reflection Attack on a "Fixed" Version of
the Woo-Lam Protocol

Protocol 11.8: A Minor Variation of the Otway-Rees
Protocol

Attack 11.7: An Attack on the Minor Variation of the
Otway-Rees Protocol

Protocol 12.1: Signature-based IKE Phase 1 Main Mode

Attack 12.1: Authentication Failure in Signature-based IKE

Phase 1 Main Mode

Protocol 12.2: A Typical Run of the TLS Handshake
Protocol

Algorithm 13.1: Shamir's Identity-based Signature
Scheme

Algorithm 13.2: The Identity-Based Cryptosystem of
Boneh and Franklin

Protocol 14.1: Indistinguishable Chosen-plaintext Attack

Protocol 14.2: A Fair Deal Protocol for the SRA Mental
Poker Game

Algorithm 14.1: The Probabilistic Cryptosystem of
Goldwasser and Micali

Algorithm 14.2: A Semantically Secure Version of the
ElGamal Cryptosystem

Protocol 14.3: "Lunchtime Attack” (Non-adaptive
Indistinguishable Chosen-ciphertext Attack)

Protocol 14.4: "Small-hours Attack” (Indistinguishable
Adaptive Chosen-ciphertext Attack)

Protocol 14.5: Malleability Attack in Chosen-plaintext
Mode

Algorithm 15.1: The Cramer-Shoup Public-key
Cryptosystem

Algorithm 15.2: Product of Exponentiations

Algorithm 16.1: The Probabilistic Signature Scheme (PSS)

Algorithm 16.2: The Universal RSA-Padding Scheme for
Signature and Encryption

Algorithm 16.3: Zheng's Signcryption Scheme SCSI

Algorithm 16.4: Two Birds One Stone: RSA-TBOS
Signcryption Scheme

Protocol 17.1: The Needham-Schroeder Symmetric-key
Authentication Protocol in Refined Specification

483

372

374

379

381

397
399

421

437

451

465
469

473

476

488

491

526

529
561
564

568
573

585

Protocol 17.2: The Woo-Lam Protocol in Refined
Specification

Protocol 17.3: The Needham-Schroeder Public-key
Authentication Protocol

Protocol 17.4: The Needham-Schroeder Public-key
Authentication Protocol in Refined Specification

Protocol 17.5: Another Refined Specification of the
Needham-Schroeder Public-key Authentication Protocol

Protocol 17.6:MAP1

Protocol 18.1: An Interactive Proof Protocol for Subgroup
Membership

Protocol 18.2: Schnorr's Identification Protocol

Protocol 18.3: A Perfect Zero-knowledge Proof Protocol for
Quadratic Residuosity

Protocol 18.4: ZK Proof that N Has Two Distinct Prime
Factors

Protocol 18.5: "Not To Be Used"

Protocol 18.6: Chaum's ZK Proof of Dis-Log-EQ Protocol

Protocol 19.1: Blum's Coin-Flipping-by-Telephone Protocol

586

588

588

589

595
623

630
642

645

651
654
667

Part |: Introduction

The first part of this book consists of two introductory chapters. They introduce us to some
of the most basic concepts in cryptography and information security, to the environment in
which we communicate and handle sensitive information, to several well known figures who
act in that environment and the standard modus operandi of some of them who play role of
bad guys, to the culture of the communities for research and development of cryptographic
and information security systems, and to the fact of extreme error proneness of these
systems.

As an elementary-level introduction, this part is intended for newcomers to the areas.

Chapter 1. Beginning with a Simple
Communication Game

We begin this book with a simple example of applying cryptography to solve a simple problem.
This example of cryptographic application serves three purposes from which we will unfold the
topics of this book:

e To provide an initial demonstration on the effectiveness and practicality of using
cryptography for solving subtle problems in applications

e To suggest an initial hint on the foundation of cryptography

e To begin our process of establishing a required mindset for conducting the development of
cryptographic systems for information security

To begin with, we shall pose a trivially simple problem and then solve it with an equally simple
solution. The solution is a two-party game which is very familiar to all of us. However, we will
realize that our simple game soon becomes troublesome when our game-playing parties are
physically remote from each other. The physical separation of the game-playing parties
eliminates the basis for the game to be played fairly. The trouble then is, the game-playing
parties cannot trust the other side to play the game fairly.

The need for a fair playing of the game for remote players will "inspire" us to strengthen our
simple game by protecting it with a shield of armor. Our strengthening method follows the long
established idea for protecting communications over open networks: hiding information using

cryptography.

After having applied cryptography and reached a quality solution to our first security problem,
we shall conduct a series of discussions on the quality criteria for cryptographic systems (81.2).
The discussions will serve as a background and cultural introduction to the areas in which we
research and develop technologies for protecting sensitive information.

1.1 A Communication Game

Here is a simple problem. Two friends, Alice and Bobl2l, want to spend an evening out together,
but they cannot decide whether to go to the cinema or the opera. Nevertheless, they reach an
agreement to let a coin decide: playing a coin tossing game which is very familiar to all of us.

[al They are the most well-known figures in the area of cryptography, cryptographic protocols and information
security; they will appear in most of the cryptographic protocols in this book.

Alice holds a coin and says to Bob, "You pick a side then | will toss the coin.” Bob does so and
then Alice tosses the coin in the air. Then they both look to see which side of the coin landed on
top. If Bob's choice is on top, Bob may decide where they go; if the other side of the coin lands
on top, Alice makes the decision.

In the study of communication procedures, a multi-party-played game like this one can be given
a "scientific sounding" name: protocol. A protocol is a well-defined procedure running among a
plural number of participating entities. We should note the importance of the plurality of the
game participants; if a procedure is executed entirely by one entity only then it is a procedure
and cannot be called a protocol.

1.1.1 Our First Application of Cryptography

Now imagine that the two friends are trying to run this protocol over the telephone. Alice offers
Bob, "You pick a side. Then | will toss the coin and tell you whether or not you have won." Of
course Bob will not agree, because he cannot verify the outcome of the coin toss.

However we can add a little bit of cryptography to this protocol and turn it into a version
workable over the phone. The result will become a cryptographic protocol, our first cryptographic
protocol in this book! For the time being, let us just consider our "cryptography” as a
mathematical function f(x) which maps over the integers and has the following magic properties:

Property 1.1: Magic Function f

I. For every integer X, it is easy to compute f(x) from x, while given any value f(x) itis
impossible to find any information about a pre-image x, e.g., whether x is an odd or even
number.

Protocol 1.1: Coin Flipping Over Telephone

PREMISE

Alice and Bob have agreed:

i. a"magic function" f with properties specified in Property 1.1

ii. an even number x in f(X) represents HEADS and the other case represents
TAILS

(* Caution: due to (ii), this protocol has a weakness, see Exercise 1.2 *)

1. Alice picks a large random integer x and computes f(x); she reads f(x) to
Bob over the phone;

2. Bob tells Alice his guess of x as even or odd;
3. Alice reads x to Bob;

4. Bob verifies f(x) and sees the correctness/incorrectness of his guess.

Il. It impossible to find a pair of integers (X, y)satisfying x # y and f(x) = f(y).

InProperty 1.1, the adjectives "easy" and "impossible” have meanings which need further
explanations. Also because these words are related to a degree of difficulty, we should be clear
about their quantifications. However, since for now we view the function f as a magic one, it is
safe for us to use these words in the way they are used in the common language. In Chapter 4
we will provide mathematical formulations for various uses of "easy" and "impossible" in this
book. One important task for this book is to establish various quantitative meanings for "easy,"
"difficult” or even "impossible.” In fact, as we will eventually see in the final technical chapter of
this book (Chapter 19) that in our final realization of the coin-flipping protocol, the two uses of
"impossible” for the "magic function” in Property 1.1 will have very different quantitative
measures.

Suppose that the two friends have agreed on the magic function f. Suppose also that they have
agreed that, e.g., an even number represents HEADS and an odd number represents TAILS. Now
they are ready to run our first cryptographic protocol, Prot 1.1, over the phone.

It is not difficult to argue that Protocol "Coin Flipping Over Telephone" works quite well over the
telephone. The following is a rudimentary "security analysis." (Warning: the reason for us to
quote "security analysis" is because our analysis provided here is far from adequate.)

1.1.1.1 A Rudimentary " Security Analysis"

First, from "Property 11" of f, Alice is unable to find two different numbers x and y, one is odd

and the other even (this can be expressed as x #y (mod 2)) such that f(x) = f(y). Thus, once
having read the value f(x) to Bob over the phone (Step 1), Alice has committed to her choice of

x and cannot change her mind. That's when Alice has completed her coin flipping.

Secondly, due to "Property 1" of f, given the value f(x), Bob cannot determine whether the pre-
image used by Alice is odd or even and so has to place his guess (in Step 2) as a real guess (i.e.,
an uneducated guess). At this point, Alice can convince Bob whether he has guessed right or
wrong by revealing her pre-image x (Step 3). Indeed, Bob should be convinced if his own
evaluation of f(x) (in Step 4) matches the value told by Alice in Step 1 and if he believes that the
properties of the agreed function hold. Also, the coin-flipping is fair if x is taken from an
adequately large space so Bob could not have a guessing advantage, that is, some strategy that
gives him a greater than 50-50 chance of winning.

We should notice that in our "security analysis" for Prot 1.1 we have made a number of
simplifications and omissions. As a result, the current version of the protocol is far from a
concrete realization. Some of these simplifications and omissions will be discussed in this
chapter. However, necessary techniques for a proper and concrete realization of this protocol
and methodologies for analyzing its security will be the main topics for the remainder of the
whole book. We shall defer the proper and concrete realization of Prot 1.1 (more precisely, the
"magic function" f) to the final technical chapter of this book (Chapter 19). There, we will be
technically ready to provide a formal security analysis on the concrete realization.

1.1.2 An Initial Hint on Foundations of Cryptography

Although our first protocol is very simple, it indeed qualifies as a cryptographic protocol because
the "magic function” the protocol uses is a fundamental ingredient for modern cryptography:
one-way function. The two magic properties listed in Property 1.1 pose two computationally
intractable problems, one for Alice, and the other for Bob.

From our rudimentary security analysis for Prot 1.1 we can claim that the existence of one-way
function implies a possibility for secure selection of recreation venue. The following is a
reasonable generalization of this claim:

The existence of a one-way function implies the existence of a secure cryptographic system.
It is now well understood that the converse of this claim is also true:
The existence of a secure cryptographic system implies the existence of a one-way function.

It is widely believed that one-way function does exist. Therefore we are optimistic on securing
our information. Our optimism is often confirmed by our everyday experience: many processes
in our world, mathematical or otherwise, have a one-way property. Consider the following
phenomenon in physics (though not an extremely precise analogy for mathematics): it is an easy
process for a glass to fall on the floor and break into pieces while dispersing a certain amount of
energy (e.g., heat, sound or even some dim light) into the surrounding environment. The
reverse process, recollecting the dispersed energy and using it to reintegrate the broken pieces
back into a whole glass, must be a very hard problem if not impossible. (If possible, the fully
recollected energy could actually bounce the reintegrated glass back to the height where it
started to fall!)

InChapter 4 we shall see a class of mathematical functions which provide the needed one-way
properties for modern cryptography.

1.1.3 Basis of Information Security: More than Computational
Intractability

We have just claimed that information security requires certain mathematical properties.
Moreover, we have further made an optimistic assertion in the converse direction: mathematical
properties imply (i.e., guarantee) information security.

However, in reality, the latter statement is not unconditionally true! Security in real world
applications depends on many real world issues. Let us explain this by continuing using our first
protocol example.

We should point out that many important issues have not been considered in our rudimentary
security analysis for Prot 1.1. In fact, Prot 1.1 itself is a much simplified specification. It has
omitted some details which are important to the security services that the protocol is designed to
offer. The omission has prevented us from asking several questions.

For instance, we may ask: has Alice really been forced to stick to her choice of x? Likewise, has
Bob really been forced to stick to his even-odd guess of x? By "forced,"” we mean whether voice
over telephone is sufficient for guaranteeing the strong mathematical property to take effect. We
may also ask whether Alice has a good random number generator for her to acquire the random
numberx. This quality can be crucially important in a more serious application which requires
making a fair decision.

All these details have been omitted from this simplified protocol specification and therefore they
become hidden assumptions (more on this later). In fact, if this protocol is used for making a
more serious decision, it should include some explicit instructions. For example, both
participants may consider recording the other party's voice when the value f(x) and the
even/odd guess are pronounced over the phone, and replay the record in case of dispute.

Often cryptographic systems and protocols, in particular, those introduced by a textbook on
cryptography, are specified with simplifications similar to the case in Protocol "Coin Flipping
Over Telephone." Simplifications can help to achieve presentation clarity, especially when some
agreement may be thought of as obvious. But sometimes a hidden agreement or assumption
may be subtle and can be exploited to result in a surprising consequence. This is somewhat
ironic to the "presentation clarity"” which is originally intended by omitting some details. A
violation of an assumption of a security system may allow an attack to be exploited and the
consequence can be the nullification of an intended service. It is particularly difficult to notice a
violation of a hidden assumption. In 81.2.5 we shall provide a discussion on the importance of
explicit design and specification of cryptographic systems.

A main theme of this book is to explain that security for real world applications has many
application related subtleties which must be considered seriously.

1.1.4 Modern Role of Cryptography: Ensuring Fair Play of Games

Cryptography was once a preserve of governments. Military and diplomatic organizations used it
to keep messages secret. Nowadays, however, cryptography has a modernized role in addition
to keeping secrecy of information: ensuring fair play of "games" by a much enlarged population
of "game players." That is part of the reasons why we have chosen to begin this book on
cryptography with a communication game.

Deciding on a recreation venue may not be seen as a serious business, and so doing it via
flipping a coin over the phone can be considered as just playing a small communication game for
fun. However, there are many communications "games" which must be taken much more
seriously. With more and more business and e-commerce activities being and to be conducted
electronically over open communications networks, many cases of our communications involve
various kinds of "game playing." (In the Preface of this book we have listed various business and
services examples which can be conducted or offered electronically over open networks; all of

them involve some interactive actions of the participants by following a set of rules, which can
be viewed as "playing communication games".) These "games" can be very important!

In general, the "players" of such "games" are physically distant from each other and they
communicate over open networks which are notorious for lack of security. The physical distance
combined with the lack of security may help and/or encourage some of the "game players"
(some of whom can even be uninvited) to try to defeat the rule of game in some clever way. The
intention for defeating the rule of game is to try to gain some unentitled advantage, such as
causing disclosure of confidential information, modification of data without detection, forgery of
false evidence, repudiation of an obligation, damage of accountability or trust, reduction of
availability or nullification of services, and so on. The importance of our modern communications
in business, in the conduct of commerce and in providing services (and many more others, such
as securing missions of companies, personal information, military actions and state affairs)
mean that no unentitled advantage should be gained to a player who does not conform the rule
of game.

In our development of the simple "Coin-Flipping-Over-Telephone" cryptographic protocol, we
have witnessed the process whereby an easy-to-sabotage communication game evolves to a
cryptographic protocol and thereby offers desired security services. Our example demonstrates
the effectiveness of cryptography in maintaining the order of "game playing." Indeed, the use of
cryptography is an effective and the only practical way to ensure secure communications over
open computers and communications networks. Cryptographic protocols are just communication
procedures armored with the use of cryptography and thereby have protective functions
designed to keep communications in good order. The endless need for securing communications
for electronic commerce, business and services coupled with another need for anticipating the
ceaseless temptation of "breaking the rules of the game" have resulted in the existence of many
cryptographic systems and protocols, which form the subject matter of this book.

1.2 Criteria for Desirable Cryptographic Systems and
Protocols

We should start by asking a fundamental question:
What is a good cryptographic system/protocol?

Undoubtedly this question is not easy to answer! One reason is that there are many answers to it
depending on various meanings the word good may have. It is a main task for this book to
provide comprehensive answers to this fundamental question. However, here in this first chapter
we should provide a few initial answers.

1.2.1 Stringency of Protection Tuned to Application Needs

Let us begin with considering our first cryptographic protocol we designed in 81.1.1.

We can say that Protocol "Coin Flipping Over Telephone" is good in the sense that it is
conceptually very simple. Some readers who may already be familiar with many practical one-
way hash functions, such as SHA-1 (see §10.3.1), might further consider that the function f(x) is
also easy to implement even in a pocket calculator. For example, an output from SHA-1 is a bit
string of length of 160 bits, or 20 bytes (1 byte = 8 bits); using the hexadecimal encoding
scheme (see Example 5.17) such an output can be encoded into 40 hexadecimal characterslb]
and so it is just not too tedious for Alice (Bob) to read (and jot down) over the phone. Such an
implementation should also be considered sufficiently secure for Alice and Bob to decide their

recreation venue: if Alice wants to cheat, she faces a non-trivial difficulty in order to find x ¢y
(mod 2) with f(x) = f(y); likewise, Bob will also have to face a non-trivial difficulty, that is, given
f(x), to determine whether x is even or odd.

[Pl Hexadecimal characters are those in the set {0, 1, 2, ..., 9, A, B, ..., F} representing the 16 cases of 4-bit
numbers.

However, our judgement on the quality of Protocol "Coin Flipping Over Telephone" realized using
SHA-1 is based on a level of non-seriousness that the game players expect on the consequence
of the game. In many more serious applications (e.g., one which we shall discuss in §81.2.4), a
fair coin-flipping primitive for cryptographic use will in general require much stronger one-way
and commitment-binding properties than a practical one-way hash function, such as SHA-1, can
offer. We should notice that a function with the properties specified in Property 1.1, if we take
the word "impossible” literally, is a completely secure one-way function. Such a function is not
easily implementable. Worse, even its very existence remains an open question (even though we
are optimistic about the existence, see our optimistic view in 81.1.2, we shall further discuss the
condition for the existence of a one-way function in Chapter 4). Therefore, for more serious
applications of fair coin-flipping, practical hash functions won't be considered good; much more
stringent cryptographic techniques are necessary. On the other hand, for deciding a recreation
venue, use of heavyweight cryptography is clearly unnecessary or overkill.

We should point out that there are applications where a too-strong protection will even prevent
an intended security service from functioning properly. For example, Rivest and Shamir propose
a micropayment scheme, called MicroMint [242], which works by making use of a known
deficiency in an encryption algorithm to their advantage. That payment system exploits a
reasonable assumption that only a resourceful service provider (e.g., a large bank or financial
institute) is able to prepare a large number of "collisions" under a practical one-way function,
and do so economically. This is to say that the service provider can compute k distinct numbers

(X1,X 2, ..., Xk) satisfying

flx) = flz2) = -+ = flax).

The numbers x1,X 2, ..., Xk, are called collision under the one-way function f. A pair of collisions
can be checked efficiently since the one-way function can be evaluated efficiently, they can be
considered to have been issued by the resourceful service provider and hence can represent a
certified value. The Data Encryption Standard (DES, see 87.6) is suggested as a suitable
algorithm for implementing such a one-way function ([242]) and so to achieve a relatively small
output space (64 binary bits). Thus, unlike in the normal cryptographic use of one-way functions
where a collision almost certainly constitutes a successful attack on the system (for example, in
the case of Protocol "Coin Flipping Over Telephone"), in MicroMint, collisions are used in order to
enable a fancy micropayment service! Clearly, a strong one-way function with a significantly
larger output space (i.e., 2 64 bits, such as SHA-1 with 160 bits) will nullify this service even
for a resourceful service provider (in 83.6 we will study the computational complexity for finding
collisions under a hash function).

Although it is understandable that using heavyweight cryptographic technologies in the design of
security systems (for example, wrapping with layers of encryption, arbitrarily using digital
signatures, calling for online services from a trusted third party or even from a large number of
them) may provide a better feeling that a stronger security may have been achieved (it may also
ease the design job), often this feeling only provides a false sense of assurance. Reaching the
point of overkill with unnecessary armor is undesirable because in so doing itis more likely to
require stronger security assumptions and to result in a more complex system. A complex
system can also mean an increased difficulty for security analysis (hence more likelihood to be
error-prone) and secure implementation, a poorer performance, and a higher overhead cost for
running and maintenance.

It is more interesting and a more challenging job to design cryptographic or security systems
which use only necessary techniques while achieving adequate security protection. This is an
important element for cryptographic and security systems to qualify as good.

1.2.2 Confidence in Security Based on Established "Pedigree"

How can we be confident that a cryptographic algorithm or a protocol is secure? Is it valid to say
that an algorithm is secure because nobody has broken it? The answer is, unfortunately, no. In
general, what we can say about an unbroken algorithm is merely that we do not know how to
break it yet. Because in cryptography, the meaning of a broken algorithm sometimes has
quantitative measures; if such a measure is missing from an unbroken algorithm, then we
cannot even assert whether or not an unbroken algorithm is more secure than a known broken
one.

Nevertheless, there are a few exceptions. In most cases, the task of breaking a cryptographic
algorithm or a scheme boils down to solving some mathematical problems, such as to find a
solution to an equation or to invert a function. These mathematical problems are considered
"hard" or "intractable.” A formal definition for "hard" or "intractable™ will be given in Chapter 4.
Here we can informally, yet safely, say that a mathematical problem is intractable if it cannot be
solved by any known methods within a reasonable length of time.

There are a number of well-known intractable problems that have been frequently used as
standard ingredients in modern cryptography, in particular, in public-key or asymmetric
cryptography (see 88.3—88.14). For example, in public-key cryptography, intractable problems

include the integer factorization problem, the discrete logarithm problem, the Diffie-Hellman
problem, and a few associated problems (we will define and discuss these problems in Chapter
8). These problems can be referred to as established "pedigree” ones because they have
sustained a long history of study by generations of mathematicians and as a result, they are now
trusted as really hard with a high degree of confidence.

Today, a standard technique for establishing a high degree of confidence in security of a
cryptographic algorithm is to conduct a formal proof which demonstrates that an attack on the
algorithm can lead to a solution to one of the accepted "pedigree” hard problems. Such a proof is
an efficient mathematical transformation, or a sequence of such transformations, leading from
an attack on an algorithm to a solution to a hard problem. Such an efficient transformation is
called a reduction which "reduces" an attack to a solution to a hard problem. Since we are highly
confident that the resultant solution to the hard problem is unlikely to exist (especially under the
time cost measured by the attack and the reduction transformation), we will be able to derive a
measurable confidence that the alleged attack should not exist. This way of security proof is
therefore named "reduction to contradiction:" an easy solution to a hard problem.

Formally provable security, in particular under various powerful attacking model called adaptive
attacks, forms an important criterion for cryptographic algorithms and protocols to be regarded
asgood. We shall use fit-for-application security to name security qualities which are established
through formal and reduction-to-contradiction approach under powerful attacking models.

As an important topic of this book, we shall study fit-for-application security for many
cryptographic algorithms and protocols.

1.2.3 Practical Efficiency

When we say that a mathematical problem is efficient or is efficiently solvable, we basically
assert that the problem is solvable in time which can be measured by a polynomial in the size of
the problem. A formal definition for efficiency, which will let us provide precise measures of this
assertion, will be provided in Chapter 4.

Without looking into quantitative details of this assertion for the time being, we can roughly say
that this assertion divides all the problems into two classes: tractable and intractable. This
division plays a fundamental role in the foundations for modern cryptography: a complexity-
theoretically based one. Clearly, a cryptographic algorithm must be designed such that it is
tractable on the one hand and so is usable by a legitimate user, but is intractable on the other
hand and so constitutes a difficult problem for a non-user or an attacker to solve.

We should however note that this assertion for solubility covers a vast span of quantitative
measures. If a problem's computing time for a legitimate user is measured by a huge
polynomial, then the "efficiency" is in general impractical, i.e., can have no value for a practical
use. Thus, an important criterion for a cryptographic algorithm being good is that it should be
practically efficient for a legitimate user. In specific, the polynomial that measures the resource
cost for the user should be small (i.e., have a small degree, the degree of a polynomial will be
introduced in Chapter 4).

InChapter 14 we will discuss several pioneering works on provably strong public-key
cryptosystems. These works propose public-key encryption algorithms under a common
motivation that many basic versions of public-key encryption algorithms are insecure (we name
those insecure schemes "textbook crypto"” because most textbooks in cryptography introduce
them up to their basic and primitive versions; they will be introduced in Part 111 of this book).
However, most pioneering works on provably strong public-key cryptosystems resort to a bit-by-
bit encryption method, [125,210,241], some even take extraordinary steps of adding proofs of
knowledge on the correct encryption of each individual bit [210] plus using public-key

authentication framework [241]. While these early pioneering works are important in providing
insights to achieve strong security, the systems they propose are in general too inefficient for
applications. After Chapter 14, we will further study a series of subsequent works following the
pioneering ones on probably strongly secure public-key cryptosystems and digital signature
schemes. The cryptographic schemes proposed by these latter works propose have not only
strong security, but also practical efficiency. They are indeed very good cryptographic schemes.

A cryptographic protocol is not only an algorithm, it is also a communication procedure which
involves transmitting of messages over computer networks between different protocol
participants under a set of agreed rules. So a protocol has a further dimension for efficiency
measure: the number of communication interactions which are often called communication
rounds. Usually a step of communication is regarded to be more costly than a step of local
computation (typically an execution of a set of computer instructions, e.g. a multiplication of two
numbers on a computing device). Therefore it is desirable that a cryptographic protocol should
have few communication rounds. The standard efficiency criterion for declaring an algorithm as
being efficient is if its running time is bounded by a small polynomial in the size of the problem.
If we apply this efficiency criterion to a protocol, then an efficient protocol should have its
number of communication rounds bounded by a polynomial of an extremely small degree: a
constant (degree 0) or at most a linear (degree 1) function. A protocol with communication
rounds exceeding a linear function should not be regarded as practically efficient, that is, no
good for any practical use.

In 818.2.3 we will discuss some zero-knowledge proof protocols which have communication
rounds measured by non-linear polynomials. We should note that those protocols were not
proposed for real applications; instead, they have importance in the theory of cryptography and
computational complexity. In Chapter 18 we will witness much research effort for designing
practically efficient zero-knowledge protocols.

1.2.4 Use of Practical and Available Primitives and Services

A level of security which is good for one application needn't be good enough for another. Again,
let us use our coin-flipping protocol as an example. In §1.2.1 we have agreed that, if
implemented with the use of a practical one-way hash function, Protocol "Coin Flipping Over
Telephone” is good enough for Alice and Bob to decide their recreation venue over the phone.
However, in many cryptographic applications of a fair coin-flipping primitive, security services
against cheating and/or for fairness are at much more stringent levels; in some applications the
stringency must be in an absolute sense.

For example, in Chapter 18 we will discuss a zero-knowledge proof protocol which needs random
bit string input and such random input must be mutually trusted by both proving/verification
parties, or else serious damages will occur to one or both parties. In such zero-knowledge proof
protocols, if the two communication parties do not have access to, or do not trust, a third-party-
based service for supplying random numbers (such a service is usually nicknamed "random
numbers from the sky" to imply its impracticality) then they have to generate their mutually
trusted random numbers, bit-by-bit via a fair coin-flipping protocol. Notice that here the need for
the randomness to be generated in a bit-by-bit (i.e., via fair coin-flipping) manner is in order to
satisfy certain requirements, such as the correctness and zero-knowledge-ness of the protocol.
In such a situation, a level of practically good (e.g., in the sense of using a practical hash
function in Protocol "Coin Flipping Over Telephone") is most likely to be inadequate.

A challenging task in applied research on cryptography and cryptographic protocols is to build
high quality security services from practical and available cryptographic primitives. Once more,
let us use a coin-flipping protocol to make this point clear. The protocol is a remote coin-flipping
protocol proposed by Blum [43]. Blum's protocol employs a practically secure and easily
implementable "one-way" function but achieves a high-quality security in a very strong fashion

which can be expressed as:

e First, it achieves a quantitative measure on the difficulty against the coin flipping party
(e.g., Alice) for cheating, i.e., for preparing a pair of collision x ;&y satisfying f(x) = f(y).
Here, the difficulty is quantified by that for factoring a large composite integer, i.e., that for
solving a "pedigree™ hard problem.

e Second, there is absolutely no way for the guessing party to have a guessing strategy
biased away from the 50-50 chance. This is in terms of a complete security.

Thus, Blum's coin-flipping protocol is particularly good in the sense of having achieved a strong
security while using only practical cryptographic primitives. As a strengthening and concrete
realization for our first cryptographic protocol, we will describe Blum's coin-flipping protocol as
the final cryptographic protocol of this book.

Several years after the discovery of public-key cryptography [97,98,246], it became gradually
apparent that several basic and best-known public-key encryption algorithms (we will refer to
them as "textbook crypto™) generally have two kinds of weakness: (i) they leak partial
information about the message encrypted; (ii) they are extremely vulnerable to active attacks
(seeChapter 14). These weaknesses mean that "textbook crypto™ are not fit for applications.
Early approaches to a general fix for the weaknesses in "textbook crypto” invariantly apply bit-
by-bit style of encryption and even apply zero-knowledge proof technique at bit-by-bit level as a
means to prevent active attacks, plus authentication framework. These results, while valuable in
the development of provably secure public-key encryption algorithms, are not suitable for most
encryption applications since the need for zero-knowledge proof or for authentication framework
is not practical for the case of encryption algorithms.

Since the successful initial work of using a randomized padding scheme in the strengthening of a
public key encryption algorithm [24], a general approach emerges which strengthens popular
textbook public-key encryption algorithms into ones with provable security by using popular
primitives such as hash functions and pseudorandom number generators. These strengthened
encryption schemes are practical since they use practical primitives such as hash functions, and
consequently their efficiency is similar to the underlying "textbook crypto™ counterparts. Due to
this important quality element, some of these algorithms enhanced from using practical and
popular primitives become public-key encryption and digital signature standards. We shall study
several such schemes in Chapters 15 and 16.

Designing cryptographic schemes, protocols and security systems using available and popular
techniques and primitives is also desirable in the sense that such results are more likely to be
secure as they attract a wider interest for public scrutiny.

1.2.5 Explicitness

In the late 1960's, software systems grew very large and complex. Computer programmers
began to experience a crisis, the so-called "software crisis.” Large and complex software systems
were getting more and more error prone, and the cost of debugging a program became far in
excess of the cost of the program design and development. Soon computer scientists discovered
a few perpetrators who helped to set-up the crisis which resulted from bad programming
practice. Bad programming practice includes:

e Arbitrary use of the GOTO statement (jumping up and down seems very convenient)

e Abundant use of global variables (causing uncontrolled change of their values, e.g., in an

unexpected execution of a subroutine)

e The use of variables without declaration of their types (implicit types can be used in
Fortran, so, for example, a real value may be truncated to an integer one without being
noticed by the programmer)

e Unstructured and unorganized large chunk of codes for many tasks (can be thousands of
lines a piece)

e Few commentary lines (since they don't execute!)

These were a few "convenient” things for a programmer to do, but had proved to be capable of
causing great difficulties in program debugging, maintenance and further development. Software
codes designed with these "convenient” features can be just too obscure to be comprehensible
and maintained. Back then it was not uncommon that a programmer would not be able to to
understand a piece of code s/he had written merely a couple of months or even weeks ago.

Once the disastrous consequences resulting from the bad programming practice were being
gradually understood, Program Design Methodology became a subject of study in which being
explicit became an important principle for programming. Being explicit includes limiting the use
of GOTO and global variables (better not to use them at all), explicit (via mandatory) type
declaration for any variables, which permits a compiler to check type flaws systematically and
automatically, modularizing programming (dividing a large program into many smaller parts,
each for one task), and using abundant (as clear as possible) commentary material which are
texts inside a program and documentation outside.

A security system (cryptographic algorithm or protocol) includes program parts implemented in
software and/or hardware, and in the case of protocol, the program parts run on a number of
separate hosts (or a number of programs concurrently and interactively running on these hosts).
The explicitness principle for software engineering applies to a security system's design by
default (this is true in particular for protocols). However, because a security system is assumed
to run in a hostile environment in which even a legitimate user may be malicious, a designer of
such systems must also be explicit about many additional things. Here we list three important
aspects to serve as general guidelines for security system designers and implementors. (In the
rest of the book we will see many attacks on algorithms and protocols due to being implicit in
design or specification of these systems.)

1. Be explicit about all assumptions needed.

A security system operates by interacting with an environment and therefore it has a set of
requirements which must be satisfied by that environment. These requirements are called
assumptions (or premises) for a system to run. A violation of an assumption of a protocol
may allow the possibility of exploiting an attack on the system and the consequence can be
the nullification of some intended services. It is particularly difficult to notice a violation of
an assumption which has not been clearly specified (a hidden assumption). Therefore all
assumptions of a security system should be made explicit.

For example, it is quite common that a protocol has an implicit assumption or expectation
that a computer host upon which the protocol runs can supply good random numbers, but
in reality few desktop machines or hand-held devices are capable of satisfying this
assumption. A so-called low-entropy attack is applicable to protocols using a poor random
source. A widely publicized attack on an early implementation of the Secure Sockets Layer
(SSL) Protocol (an authentication protocol for World Wide Web browser and server, see
812.5) is a well-known example of the low-entropy attack [123].

Explicit identification and specification of assumptions can also help the analysis of complex

systems. DeMillo et al. (Chapter 4 of [91]), DeMillo and Merritt [92] suggest a two-step
approach to cryptographic protocol design and analysis, which are listed below (after a
modification by Moore [204,205]):

i. ldentifyall assumptions made in the protocol.

ii. For each assumption in step (i), determine the effect on the security of the protocol if
that assumption were violated.

Be explicit about exact security services to be offered.

A cryptographic algorithm/protocol provides certain security services. Examples of some
important security services include: confidentiality (a message cannot be comprehended by
a non-recipient), authentication (a message can be recognized to confirm its integrity or its
origin), non-repudiation (impossibility for one to deny a connection to a message), proof of
knowledge (demonstration of evidence without disclosing it), and commitment (e.g., a
service offered to our first cryptographic protocol "Coin Flipping Over Telephone" in which
Alice is forced to stick to a string without being able to change).

When designing a cryptographic protocol, the designer should be very clear regarding
exactly what services the protocol intends to serve and should explicitly specify them as
well. The explicit identification and specification will not only help the designer to choose
correct cryptographic primitives or algorithms, but also help an implementor to correctly
implement the protocol. Often, an identification of services to the refinement level of the
general services given in these examples is not adequate, and further refinement of them is
necessary. Here are a few possible ways to further refine some of them:

Confidentiality = privacy, anonymity, invisibility, indistinguishability
Authentication = data-origin, data-integrity, peer-entity
Non-repudiation = message-issuance, message-receipt

Proof of = knowledge possession, knowledge structure
knowledge

A misidentification of services in a protocol design can cause misuse of cryptographic
primitives, and the consequence can be a security flaw in the protocol. In Chapter 2 and
Chapter 11 we will see disastrous examples of security flaws in authentication protocols
due to misidentification of security services between confidentiality and authentication.

There can be many more kinds of security services with more ad hoc names (e.g., message
freshness, non-malleability, forward secrecy, perfect zero-knowledge, fairness, binding,
deniability, receipt freeness, and so on). These may be considered as derivatives or further
refinement from the general services that we have listed earlier (a derivative can be in
terms of negation, e.g., deniability is a negative derivative from non-repudiation).
Nevertheless, explicit identification of them is often necessary in order to avoid design
flaws.

Be explicit about special cases in mathematics.
As we have discussed in 81.2.2, some hard problems in computational complexity theory

can provide a high confidence in the security of a cryptographic algorithm or protocol.
However, often a hard problem has some special cases which are not hard at all. For

example, we know that the problem of factorization of a large composite integer is in
general very hard. However the factorization of a large composite integer N = PQ where Q
is the next prime number of a large prime number P is not a hard problem at all! One can

do so efficiently by computing L" ‘n""J (LJ is called the floor function and denotes the
integer part of -) and followed by a few trial divisions around that number to pinpoint P and

Q.

Usual algebraic structures upon which cryptographic algorithms work (such as groups,
rings and fields, to be studied in Chapter 5) contain special cases which produce
exceptionally easy problems. Elements of small multiplicative orders (also defined in
Chapter 5) in a multiplicative group or a finite field provide such an example; an extreme
case of this is when the base for the Diffie-Hellman key exchange protocol (see §8.3) is the
unity element in these algebraic structures. Weak cases of elliptic curves, e.g.,
"supersingular curves” and "anomalous curves,” form another example. The discrete
logarithm problem on "supersingular curves" can be reduced to the discrete logarithm
problem on a finite field, known as the Menezes-Okamoto-Vanstone attack [197] (see
8§13.3.4.1). An "anomalous curve" is one with the number of points on it being equal to the
size of the underlying field, which allows a polynomial time solution to the discrete
logarithm problem on the curve, known as the attack of Satoh-Araki [252], Semaev [258]
and Smart [278].

An easy special case, if not understood by an algorithm/protocol designer and/or not
clearly specified in an algorithm/protocol specification, may easily go into an
implementation and can thus be exploited by an attacker. So an algorithm/protocol
designer must be aware of the special cases in mathematics, and should explicitly specify
the procedures for the implementor to eliminate such cases.

It is not difficult to list many more items for explicitness (for example, a key-management
protocol should stipulate explicitly the key-management rules, such as separation of keys for
different usages, and the procedures for proper key disposal, etc.). Due to the specific nature of
these items we cannot list all of them here. However, explicitness as a general principle for
cryptographic algorithm/protocol design and specification will be frequently raised in the rest of
the book. In general, the more explicitly an algorithm/protocol is designed and specified, the
easier it is for the algorithm/protocol to be analyzed; therefore the more likely it is for the
algorithm/protocol to be correctly implemented, and the less likely it is for the
algorithm/protocol to suffer an unexpected attack.

1.2.6 Openness

Cryptography was once a preserve of governments. Military and diplomatic organizations used it
to keep messages secret. In those days, most cryptographic research was conducted behind
closed doors; algorithms and protocols were secrets. Indeed, governments did, and they still do,
have a valid point in keeping their cryptographic research activities secret. Let us imagine that a
government agency publishes a cipher. We should only consider the case that the cipher
published is provably secure; otherwise the publication can be too dangerous and may actually
end up causing embarrassment to the government. Then other governments may use the
provably secure cipher and consequently undermine the effectiveness of the code-breakers of the
government which published the cipher.

Nowadays, however, cryptographic mechanisms have been incorporated in a wide range of
civilian systems (we have provided a non-exhaustive list of applications in the very beginning of
this chapter). Cryptographic research for civilian use should take an open approach.
Cryptographic algorithms do use secrets, but these secrets should be confined to the
cryptographic keys or keying material (such as passwords or PINs); the algorithms themselves

should be made public. Let's explore the reasons for this stipulation.

In any area of study, quality research depends on the open exchange of ideas via conference
presentations and publications in scholarly journals. However, in the areas of cryptographic
algorithms, protocols and security systems, open research is more than just a common means to
acquire and advance knowledge. An important function of open research is public expert
examination. Cryptographic algorithms, protocols and security systems have been notoriously
error prone. Once a cryptographic research result is made public it can be examined by a large
number of experts. Then the opportunity for finding errors (in design or maybe in security
analysis) which may have been overlooked by the designers will be greatly increased. In
contrast, if an algorithm is designed and developed in secret, then in order to keep the secret,
only few, if any, experts can have access to and examine the details. As a result the chance for
finding errors is decreased. A worse scenario can be that a designer may know an error and may
exploit it secretly.

It is now an established principle that cryptographic algorithms, protocols, and security systems
for civilian use must be made public, and must go through a lengthy public examination process.
Peer review of a security system should be conducted by a hostile expert.

1.3 Chapter Summary

In this chapter we began with an easy example of applied cryptography. The three purposes
served by the example are:

i. Showing the effectiveness of cryptography in problem solving
ii. Aiming for a fundamental understanding of cryptography
iili. Emphasizing the importance of non-textbook aspects of security
They form the main topics to be developed in the rest of this book.

We then conducted a series of discussions which served the purpose for an initial background
and cultural introduction to the areas of study. Our discussions in these directions are by no
means of complete. Several other authors have also conducted extensive study on principles,
guidelines and culture for the areas of cryptography and information security. The following
books form good further reading material: Schneier [254], Gollmann [129] and Anderson [14].
Schneier's monthly distributed "Crypto-Gram Newsletters" are also good reading material. To
subscribe for receiving the newsletters, send an email to schneier@counterpane.com.

Exercises

1.1

1.2

1.3

1.4

1.5

What is the difference between a protocol and an algorithm?

InProt 1.1 Alice can decide HEADS or TAILS. This may be an unfair advantage for
some applications. Modify the protocol so that Alice can no longer have this
advantage.

Hint: let a correct guess decide the side.

Let function f map from the space of 200-bit integers to that of 100-bit ones with the
following mapping rule:

f(x) e (the most significant 100 bits of x) &
(the least significant 100 bits of)

here $ denotes bit-by-bit XOR operation, i.e.,

ﬂ.'ilﬁlh:{ i) il

1 otherwise

i. Isf efficient?
ii. Doesf have the "Magic Property 1"?
iili. Doesf have the "Magic Property 11"?

iv. Can this function be used in Prot 1.1?

Is an unbroken cryptographic algorithm more secure than a known broken one? If
not, why?

Complex systems are error-prone. Give an additional reason for a complex security
system to be even more error-prone.

Chapter 2. Wrestling Between Safeguard
and Attack

Section 2.1. Introduction

Section 2.2. Encryption

Section 2.3. Vulnerable Environment (the Dolev-Yao Threat Model)

Section 2.4. Authentication Servers

Section 2.5. Security Properties for Authenticated Key Establishment

Section 2.6. Protocols for Authenticated Key Establishment Using Encryption

Section 2.7. Chapter Summary

Exercises

2.1 Introduction

One reason for the existence of many cryptographic protocols is the consequence of a fact: it is
very difficult to make cryptographic protocols correct. Endless endeavors have been made to
design correct protocols. Many new protocols were proposed as a result of fixing existing ones in
which security flaws were discovered. A security flaw in a cryptographic protocol can always be
described by an attack scenario in which some security services that the protocol purports to
provide can be sabotaged by an attacker or by a number of them via their collusion. In the area
of cryptographic protocols it is as if there is a permanent wrestling between protocol designers
and attackers: A protocol is proposed, an attack is discovered, a fix follows, then another attack,
and another fix ...

In this chapter we shall demonstrate a series of examples of a wrestling battle between attack
and fix. We shall start from an artificial protocol which is made flawed deliberately. From that
protocol we will go through a "fix, attack, fix again and attack again" process. Eventually we will
reach two protocols which have been proposed for solving information security problems in the
real world (all of the flawed and "fixed" then broken protocols prior to these two final results are
artificial protocols). The two real protocol results from our "attack, fix, attack, fix, ..." process are
not only real protocols, but also well-known ones for two reasons. They have played seminal
roles both in applications and in underlying an important study on formal analysis of
cryptographic protocols.

Unfortunately, these two real protocols from our fixing attempts still contain security flaws which
were only discovered long after their publication. One flaw in one of them was found three years
after the publication, and another flaw in the other protocol was exposed after another fourteen
years passed! Having revealed these flaws, we will make a final attempt for fixing, although we
will delay the revelation of some further security problems in the result from our final fixation to
a later chapter when we become technically better prepared to deal with the problems. Leaving
security problems unsolved in this chapter, we intend this chapter to serve an "early-warning"
message: cryptographic algorithms, protocols and systems readily contain security flaws.

This chapter also serves a technical introduction to material and ideas that will enable us (in
particular, readers who are new to the areas of cryptography, cryptographic protocols and
information security) to establish some common and important concepts, definitions and
agreements in the areas of study. These include some basic terminologies and the meanings
behind them (a term appearing for the first time will be in bold form), and the naming
convention for the protocol participants whom we will frequently be meeting throughout the
book. Also, the attacks on these flawed protocols will let us become familiar with some typical
behavior of a special role in our game play: the enemy, against whom we design cryptographic
protocols.

2.1.1 Chapter Outline

In 82.2 we introduce a simplified notion of encryption which will be used for this chapter only. In
82.3—82.5 we introduce the standard threat model, environment and goal for cryptographic, in
particular authentication, protocols. Finally, in §2.6 we develop a series of authentication
protocols.

2.2 Encryption

All protocols to be designed in this chapter will use encryption. We should provide an early
warning on this "one-thing-for-all-purpose™” style of using encryption: in many cases such uses
are incorrect and some other cryptographic primitives should be used instead. In this book we
will gradually develop the sense of precisely using cryptographic primitives for obtaining precise
security services. However, to ease our introduction, let us rely on encryption solely in this
chapter.

Encryption (sometimes called encipherment) is a process to transform a piece of information
into an incomprehensible form. The input to the transformation is called plaintext (or
cleartext) and the output from it is called ciphertext (or cryptogram). The reverse process of
transforming ciphertext into plaintext is called decryption (or decipherment). Notice that
plaintext and ciphertext are a pair of respective notions: the former refers to messages input to,
and the latter, output from, an encryption algorithm. Plaintext needn't be in a comprehensible
form; for example, in the case of double encryption, a ciphertext can be in the position of a
plaintext for re-encryption; we will also see many times in this chapter that encryption of
random number is very common in cryptographic protocols. Usually, cleartext means messages
in a small subset of all possible messages which have certain recognizable distributions. In §3.7
we will study the distribution of a message.

The encryption and decryption algorithms are collectively called cryptographic algorithms
(cryptographic systems or cryptosystems). Both encryption and decryption processes are
controlled by a cryptographic key, or keys. In a symmetric (or shared-key) cryptosystem,
encryption and decryption use the same (or essentially the same) key; in an asymmetric (or
public-key) cryptosystem, encryption and decryption use two different keys: an encryption
key and a (matching)decryption key, and the encryption key can be made public (and hence
is also called public key) without causing the matching decryption key being discovered (and
thus a decryption key in a public-key cryptosystem is also called a private key).Fig 2.1
illustrates a simplified pictorial description of a cryptographic system. A more complete view of a
cryptosystem will be given in Chapter 7 (Fig 7.1).

Figure 2.1. A Simplified Pictorial Description of a Cryptographic System

Encryption

|

Encryption Key

Plaingex Ciphertext
Decryprion Key

|

Decryplion

We should point out that, within the scope of this chapter, the terms "plaintext,” "ciphertext,"
"encryption,” "decryption,” "encryption key" and "decryption key" are pairs of relative notions.
For a message M (whether it is plaintext or ciphertext), a crypto algorithm A (whether it
represents encryption or decryption) and a cryptographic key K (whether an encryption key or a
decryption key), we may denote by

M' = A(K, M),

acryptographic transformation which is represented by the functionality of either the upper
box or the lower box in Fig 2.1. Thus, we can use A' and K' to denote

M= A'(K', M),

namely,

M = A'(K', A(K, M))

completes the circle in Fig 2.1. In the case of symmetric cryptosystem, we may view K' = K, and
in the case of asymmetric cryptosystem, K’ represents the matching public or private component
ofK. In this chapter ciphertext in a protocol message will be conventionally specified as

{(M}k.

Later when we have learned probability distributions of messages (to be introduced in
83.7-83.8), we will know that plaintext (more precisely, cleartext or comprehensible) messages
are in a small subset of the entire message space, while ciphertext messages are much more
widely distributed in that space. This is the essential difference between plaintext and ciphertext.

We should notice that, in this chapter, our notation for ciphertext always means a result of using
a "perfect" cryptographic algorithm in the following two senses:

Property 2.1: Perfect Encryption with Notation {M}x

i. Without the key K (in the case of a symmetric cryptosystem), or the matching private key of
K (in the case of an asymmetric cryptosystem), the ciphertext {M}kdoes not provide any
cryptanalytic means for finding the plaintext message M.

ii. The ciphertext {M}kand maybe together with some known information about the plaintext
message M do not provide any cryptanalytic means for finding the key K (in the case of a
symmetric cryptosystem), or the matching private key of K (in the case of an asymmetric
cryptosystem).

Perfect encryption with these two properties (there will be an additional property which we shall

discuss in §2.6.3) is an idealization from the encryption algorithms that exist in the real world.
The idealization is a convenient treatment which allows a segregation of responsibilities of the
protocol design and analysis from those of the underlying cryptographic algorithm design and
analysis. The segregation eases the job of protocol design and analysis. We shall see in a
moment that perfect encryption does not prevent a protocol from containing a security flaw. In
fact, for every attack on each protocol to be demonstrated in this chapter, none of them depends
on any deficiency in the underlying cryptosystems.

We will introduce the formal notion of encryption and number of encryption algorithms in several
later chapters (Chapters 7,8,13 and 15). Nevertheless the abstract-level description on the
functionality of encryption/decryption given here shall suffice for our use in this chapter. Itis
harmless now for us to think of an encryption algorithm as a keyed padlock and a piece of
ciphertext as a box of texts with the box being padlocked.

The reader is also referred to [266] for a useful glossary in information security.

2.3 Vulnerable Environment (the Dolev-Yao Threat
Model)

A large network of computers, devices and resources (for example, the Internet) is typically
open, which means that a principal (or entity, agent, user), which can be a computer, a
device, a resource, a service provider, a person or an organization of these things, can join such
a network and start sending and receiving messages to and from other principals across it,
without a need of being authorized by a "super" principal. In such an open environment we must
anticipate that there are bad guys (or attacker, adversary, enemy, intruder,
eavesdropper, impostor, etc.) out there who will do all sorts of bad things, not just passively
eavesdropping, but also actively altering (maybe using some unknown calculations or methods),
forging, duplicating, rerouting, deleting or injecting messages. The injected messages can be
malicious and cause a destructive effect to the principals on the receiving end. In the literature
of cryptography such a bad guy is called an active attacker. In this book we shall name an
attackerMalice (someone who does harm or mischief, and often does so under the masquerade
of a different identity). Malice can be an individual, a coalition of a group of attackers, and, as a
special case, a legitimate principal in a protocol (an insider).

In general, it is assumed that Malice is very clever in manipulating communications over the
open network. His manipulation techniques are unpredictable because they are unspecified. Also
because Malice can represent a coalition of bad guys, he may simultaneously control a number
of network nodes which are geographically far apart. The real reason why Malice can do these
things will be discussed in §12.2.

In anticipation of such a powerful adversary over such a vulnerable environment, Dolev and Yao
propose a threat model which has been widely accepted as the standard threat model for
cryptographic protocols [101]. In that model, Malice has the following characteristics:

¢ He can obtain any message passing through the network.

e He is a legitimate user of the network, and thus in particular can initiate a conversation
with any other user.

e He will have the opportunity to become a receiver to any principal.
e He can send messages to any principal by impersonating any other principal.

Thus, in the Dolev-Yao threat model, any message sent to the network is considered to be
sent to Malice for his disposal (according to whatever he is able to compute). Consequently, any
message received from the network is treated to have been received from Malice after his
disposal. In other words, Malice is considered to have the complete control of the entire network.
In fact, it is harmless to just think of the open network as Malice.

However, unless explicitly stated, we do not consider Malice to be all powerful. This means that
there are certain things that Malice cannot do, even in the case that he represents a coalition of
bad guys and thereby may use a large number of computers across the open network in parallel.
We list below a few things Malice cannot do without quantifying the meaning of “cannot do;"
precise quantification will be made in Chapter 4:

e Malice cannot guess a random number which is chosen from a sufficiently large space.

e Without the correct secret (or private) key, Malice cannot retrieve plaintext from given

ciphertext, and cannot create valid ciphertext from given plaintext, with respect to the
perfect encryption algorithm.

e Malice cannot find the private component, i.e., the private key, matching a given public
key.

e While Malice may have control of a large public part of our computing and communication
environment, in general, he is not in control of many private areas of the computing
environment, such as accessing the memory of a principal's offline computing device.

The Dolev-Yao threat model will apply to all our protocols.

2.4 Authentication Servers

Suppose that two principals Alice and Bob (whom we have already met in our first
cryptographicprotocol "Coin Flipping Over Telephone”,Prot 1.1) wish to communicate with each
other in a secure manner. Suppose also that Alice and Bob have never met before, and therefore
they do not already share a secret key between them and do not already know for sure the other
party's public key. Then how can they communicate securely over completely insecure networks?

It is straightforward to see that at least Alice and Bob can make an arrangement to meet each
other physically and thereby establish a shared secret key between them, or exchange sure
knowledge on the other party's public key. However, in a system with N users who wish to hold
private conversations, how many trips do these users need to make in order to securely establish
these keys? The answer is N(N — 1)/2. Unfortunately, this means a prohibitive cost for a large
system. So this straightforward way for secure key establishment is not practical for use in
modern communication systems.

It is nevertheless feasible for each principal who chooses to communicate securely to obtain an
authentication (and a directory) service. Needham and Schroeder suggest that such a service
can be provided by an authentication server [213]. Such a server is like a name registration
authority; it maintains a database indexed by names of the principals it serves, and can deliver
identifying information computed from a requested principal's cryptographic key that is already
shared between the server and the principal.

An authentication server is a special principal who has to be trusted by its users (client
principals) to always behave honestly. Namely, upon a client principal's request it will respond
exactly according to the protocol's specification, and will not engage in any other activity which
will deliberately compromise the security of its clients (so, for instance, it will never disclose any
secret key it shares with its clients to any third party). Such a principal is called a trusted third
party or TTP for short. In this book we shall use Trent to name a trusted third party.

We suppose that both Alice and Bob use authentication services offered by their respective
authentication servers. In an extended network it is inexpedient to have a single central
authentication server. Needham and Schroeder proposed to use multiple authentication servers
who know each other. Thus, principals served by an authentication server have names of the
form "AuthenticationAuthority.SimpleName." The idea of using multiple authentication servers
has also been proposed by Diffie and Hellman [97].

However, in order to describe our protocols in this chapter with simplicity and clarity we suppose
that Alice and Bob use the same authentication server Trent. In Chapter 12 we will introduce the
network authentication basis for Windows 2000 operating system, the Kerberos authentication
protocol [90], where a general architecture of multiple authentication servers serving in different
network realms will be considered.

Being served by the same Trent, we assume that Alice (Bob) shares a cryptographic key with
Trent; let the key be denoted by Kat (KgT). Later we shall see that such a key is called key-
encryption key because its use is mainly for encryption of other cryptographic keys. Also due to
the high cost in the establishment of such a key, it should be used for a prolonged period of
time, and hence is also called a long-term key.

2.5 Security Properties for Authenticated Key
Establishment

All protocols to be described in this chapter are of a kind: they achieve authenticated key-
establishment. The precise meaning of this security service can be elaborated by the
following three properties.

LetK denote a shared secret key to be established between Alice and Bob, the protocols to be
designed in this chapter should achieve a security service with the following three properties:

At the end of the protocol run:

1. Only Alice and Bob (or perhaps a principal who is trusted by them) should know K.
2. Alice and Bob should know that the other principal knows K.
3. Alice and Bob should know that K is newly generated.

The first property follows the most basic meaning of authentication: identifying the principal who
is the intended object of communication. Alice (respectively, Bob) should be assured that the
other end of the communication, if "padlocked” by the key K, can only be Bob (respectively,
Alice). If the key establishment service is achieved with the help of Trent, then Trent is trusted
that he will not impersonate these two principals.

The second property extends authentication service to an additional dimension, that is, entity
authentication, or the liveness of an identified principal who is the intended object of the
communication. Alice (respectively, Bob) should be assured that Bob (respectively, Alice) is alive
and responsive to the communications in the current protocol run. We shall see later that this
property is necessary in order to thwart an attacking scenario based on replaying of old
messages.

The need for the third property follows a long established key management principle in
cryptography. That principle stipulates that a secret cryptographic key should have a short
lifetime if it is a shared key and is used for bulk data encryption. Such a key usage is rather
different from that of a "key-encryption key" or a long-term key which we have described at the
end of 82.4. There are two reasons behind this key management principle. First, if a key for data
encryption is a shared one, then even if one of the sharing party, say, Alice, is very careful in her
key management and disposal, compromise of the shared key by the other sharing party, say,
Bob, due to Bob's carelessness which is totally out of Alice's control, will still result in Alice's
security being compromised. Secondly, most data in confidential communications usually contain
(possibly a large volume of) known or predictable information or structure. For example, a piece
of computer program contains a large quantity of known texts such as "begin," "end," "class,"
"int," "if," "then," "else," "++," etc. Such data are said to contain a large quantity of
redundancy (definition see §3.8). Encryption of such data makes the key a target for
cryptanalysis which aims for finding the key or the plaintext. Prolonged such use of a key for
encryption of such data may ease the difficulty of cryptanalysis. We should also consider that
Malice has unlimited time to spend on finding an old data-encryption key and then reusing it as
though it were new. The well established and widely accepted principle for key management thus
stipulates that a shared data-encryption key should be used for one communication session only.
Hence, such a key is also referred to as a session key and a short-term key. The third
property of authenticated key establishment service assures Alice and Bob that the session key K
established is one that has been newly generated.

2.6 Protocols for Authenticated Key Establishment
Using Encryption

Now we are ready to design protocols for authenticated key establishment. The first protocol to
be designed merely intends to realize straightforwardly the following simple idea: Alice and Bob,
though they do not know each other, both know Trent and share respective long-term keys with
Trent; so it is possible for Trent to securely pass messages between them.

2.6.1 Protocols Serving Message Confidentiality

Since the environment for our protocols to run is a vulnerable one, our protocols will use
encryption to safeguard against any threat. At this initial stage of our step-by-step discussions to
follow, we shall restrict our attention to a threat which aims for undermining message
confidentiality.

2.6.1.1 Protocol "From Aliceto Bob"

Let Alice initiate a run of such a protocol. She starts by generating a session key at random,
encrypts it under the key she already shares with Trent, and sends to Trent the resultant
ciphertext together with the identities of herself and Bob. Upon receipt of Alice's request for
session key delivery, Trent shall first find from his database the shared long-term keys of the
two principals mentioned in Alice's request. He shall then decrypt the ciphertext using Alice's
key, re-encrypt the result using Bob's key, and then send to Bob the resultant ciphertext. Finally,
upon receipt and decryption of the delivered session key material, Bob shall acknowledge the
receipt by sending an encrypted message to Alice using the newly received session key. Prot 2.1
illustrates a protocol description which realizes delivery of a session key from Alice to Bob. In
this protocol, Alice is an initiator, and Bob, a responder.

In this chapter we shall introduce most of our protocols (and attacks on them) in two parts, a
pictorial part which illustrates message flows among principals, and a specification part which
provides the details of the actions performed by principals regarding the messages sent or
received. Although the specification part alone should be sufficient for us to describe a protocol
with needed precision (the specification part alone will be the protocol description method in the
rest of the book beyond this chapter), by adding pictorial presentation of message flows we
intend to allow those readers who are new to the area of cryptographic protocols an easy start.
This is a purpose that this chapter should serve.

Protocol 2.1: From Alice To Bob

PREMISE Alice and Trent share key KaT; Bob and Trent share
keyK gr.
GOAL Alice and Bob want to establish a new and shared

secret key K.

Alice Trent Bob

b

1. Alice generates K at random, creates {K}kar, and sends to Trent: Alice, Bob,

{K}kar;

2. Trent finds keys Kat, KpT, decrypts {K}kar to reveal K, creates {K}ksr and sends
to Bob: Alice, Bob, {K}ker;

3. Bob decrypts {K}ksr to reveal K, forms and sends to Alice: {Hello Alice, I'm
Bob!}k.

Before investigating whether Protocol "From Alice To Bob" contains any security flaw we should
comment on a design feature of it. The protocol lets Alice generate a session key to be shared
with Bob. Will Bob be happy about this? If it turns out that the session key generated by Alice is
not sufficiently random (a cryptographic key should be random to make it difficult to be
determined by guessing), then Bob's security can be compromised since the key is a shared one.
Maybe Alice does not care whether the session key is strong, or maybe she just wants the key to
be easily memorable. So long as Bob does not trust Alice (may not even know her prior to a
protocol run), he should not feel comfortable accepting a session key generated by her and
sharing with her. We shall modify this protocol by removing this design feature and discuss
security issues of the modified protocol.

2.6.1.2 Protocol "Session Key from Trent"

Since Trent is trusted by both client principals, he should be trusted to be able to properly
generate the session key. Prot 2.1 is thus modified to Prot 2.2. It starts with Alice sending to
Trent the identities of herself and Bob, the two principals who intend to share a session key for
secure communications between them. Upon receipt of Alice's request, Trent shall find from his
database the respective keys of the two principals, shall generate a new session key to be shared
between the two principals and shall encrypt the session key under each of the principals' keys.
Trent should then send the encrypted session key material back to Alice. Alice shall process her
own part and shall relay to Bob the part intended for him. Finally, Bob shall process his share of
the protocol which ends by sending out an acknowledgement for the receipt of the session key.
We shall name the modified Protocol "Session Key From Trent.

With the session key K being encrypted under the perfect encryption scheme, a passive
eavesdropper, upon seeing the communications in a run of Protocol "Session Key From Trent and
without the encryption keys Kat and KgT, will not gain anything about the session key K since it
may only be read by the legitimate recipients via decryption using the respective keys they have.

2.6.2 Attack, Fix, Attack, Fix ...

We now illustrate a standard scene of this book, that is, attack, fix, attack, fix ...

2.6.2.1 An Attack

However ,Protocol "Session Key From Trent is flawed. The problem with the protocol is that the
information about who should get the session key is not protected. An attack is shown in Attack
2.1. In the attack, Malice intercepts some messages transmitted over the network, modifies
them and sends them to some principals by impersonating some other principals. In the attack
shown in Attack 2.1 we write

Alice sends to Malice("Trent"): ...
to denote Malice's action of intercepting Alice's message intended for Trent, and we use
Malice("Alice") sends to Trent: ...

to denote Malice's action of sending message to Trent by impersonating Alice. We should note
that according to the Dolev-Yao threat model for our protocol environment that we have agreed
to in §2.3, Malice is assumed to have the entire control of the vulnerable network. So Malice is
capable of performing the above malicious actions. We can imagine that the symbol
("principal_name") is a mask worn by Malice when he is manipulating protocol messages
passing along the network. In 812.2 we shall see technically how Malice could manipulate
messages transmitted over the network this way.

Protocol 2.2: Session Key From Trent

PREMISE Alice and Trent share key KaT; Bob and Trent share
keyK gr.
GOAL Alice and Bob want to establish a new and shared

secret key K.

Alice Trent Bob

T

1. Alice sends to Trent: Alice, Bob;

2. Trent finds keys Kat, KpT, generates K at random and sends to Alice: {K}kar,

{K}ker;
3. Alice decrypts {K}kar, and sends to Bob: Trent, Alice, {K}xgr;

4. Bob decrypts {K}kgr to reveal K, forms and sends to Alice: {Hello Alice, I'm
Bob!}k.

Attack 2.1: An Attack on Protocol "Session Key From Trent"

PREMISE In addition to that in Protocol "Session Key
From Trent,"” Malice and Trent share key Kyr.

RESULT OF ATTACK

Alice thinks she is sharing a key with Bob
while actually sharing it with Malice.

Alice Malice Trent Bob

o]

1. Alice sends to Malice("Trent™): Alice, Bob;
2. Malice("Alice™) sends to Trent: Alice, Malice;

3. Trent finds keys KaT,K m1, generates Kay at random and sends to Alice:
{Kam¥kar, {KamFkurs

4. Alice decrypts {Kav}kar, and sends to Malice(Bob™): Trent, Alice, {Kam}kv;

5. Malice("Bob™) sends to Alice: {Hello Alice, I'm Bob!}ka-

Malice begins with intercepting the initial message from Alice to Trent. That message is meant
for instructing Trent to generate a session key to share with Alice and Bob. Malice alters it by
replacing Bob's identity with his own and then sends the altered message to Trent. Trent will
think that Alice wants to talk to Malice. So he generates a new session key Kay to share between
Alice and Malice, and encrypts it with the respective keys that he shares with these two
principals. Since Alice cannot distinguish between encrypted messages meant for other principals
she will not detect the alteration. Malice then intercepts the message from Alice intended for Bob
so that Bob will not know that he is requested to run the protocol. The result of the attack is that
Alice will believe that the protocol has been successfully completed with Bob whereas in fact

Malice knows Kay and so can masquerade as Bob as well as learn all the information that Alice
intends to send to Bob. Notice that this attack will only succeed if Malice is a legitimate user
known to Trent. This, again, is a realistic assumption — an insider attacker is often more of a
threat than outsiders.

We have seen that the above attack works as a result of Malice's alteration of Bob's identity. We
should notice the fact that the alteration is possible because Bob's identity is sent in cleartext.
This suggests to us to repair the protocol by hiding Bob's identity.

2.6.2.2 A Fix

Having seen the attack in which Malice alters Bob's identity, it seems straightforward to repair
Protocol "Session Key From Trent." For example, we can modify the protocol into one with Bob's
identity in the first message line being treated as a secret and encrypted under the key shared
between Alice and Trent. Namely, the first message line in Protocol "Session Key From Trent
should be correctly modified into

1. Alice sends to Trent: Alice, {Bob}ar;

Notice that it is necessary for Alice's identity to remain in cleartext so Trent will be able to know
which key he should use to decrypt the ciphertext part.

2.6.2.3 Another Attack

However, the above way of "repair” does not provide a sound fix for Protocol "Session Key From
Trent." For example, it is easy to see that Malice can do the following:

1. Malice("Alice") sends to Trent: Alice, {Malice}kar;

while the rest of the attack runs exactly the same as that in Attack 2.1. If initially Malice did not
know to whom Alice was intending to run the protocol, he would know that piece of information
when he intercepts Alice's message to Bob since that message has to contain Bob's address in
order for the network to correctly deliver the message. So Malice can in the end still successfully
masquerade as Bob. Notice that in this attack we assume that Malice has the ciphertext
{Malice}kar; this is possible as it can be the case that Malice has recorded it from a previous
protocol run (a correct run) between Alice and Malice.

2.6.2.4 Yet Another Attack

In fact, another way to attack Protocol "Session Key From Trent (or its "fix" shown above) does
not rely on change of any principal's identity. Instead, Malice can alter the message from Trent
to Alice (message line 2 in Protocol "Session Key From Trent) into the following:

Malice("Trent") sends to Alice: {K'}kar, ..-;

HereK' is a session key transported in a previous protocol run (a correct run) between Alice and
Malice such that Malice has recorded the ciphertext part {K'}kar- The rest of the attack run is
similar to that in the attack in Attack 2.1: Malice should intercept the subsequent message from
Alice to Bob, and finally acknowledges Alice by masquerading as Bob:

Malice("Bob™) sends to Alice: {Hello Alice, I'm Bob!}k:.

The fact that the "fixed" versions of Protocol "Session Key From Trent can be attacked with or
without altering Bob's identity clearly shows that to have Bob's identity in the first line of
Protocol "Session Key From Trent protected in terms of confidentiality cannot be a correct
security service. The attacks demonstrated so far have shown possibilities for Malice to alter
some protocol messages without detection. This suggests that the protocol needs a security
service which can guard against tampering of messages.

This brings us to the following security service.

2.6.3 Protocol with Message Authentication

We have seen in the attacks shown so far that Malice has always been able to alter some
protocol messages without detection. Indeed, none of the protocols designed so far has provided
any cryptographic protection against message alteration. Thus, one way to fix these protocols is
to provide such protection. The protection should enable legitimate principals who have the right
cryptographic keys to detect any unauthorized alteration of any protected protocol messages.
Such protection or security service is called message authentication (in some texts this notion
is also called data integrity, but we shall differentiate these two notions in Chapter 11).

2.6.3.1 Protocol "Message Authentication”

We observe that Malice's alteration of the protocol messages has caused the following two
effects. Either a session key is shared between wrong principals, or a wrong session key gets
established. Therefore we propose that the message authentication protection should provide a
cryptographic binding between the session key to be established and its intended users. This
leads to a new protocol: Prot 2.3, where the identities of Alice and Bob are included in the
encrypted message parts sent by Trent. We should name the new protocol "Message
Authentication."

We should pay a particular attention to the specification part of Protocol "Message
Authentication" where it instructs

3. Alice (decrypts {Bob, K}kaT),checks Bob's identity, ...
4. Bob (decrypts {Alice, K}kgT),checks Alice's identity, ...

Here in Protocol "Message Authentication,” steps for checking the intended principals’ identities
make a crucial distinction between this protocol and its predecessors (i.e., Protocol "Session Key
From Trent and its "fixes"). These checking steps are possible only after correct decryption of the
respective ciphertext blocks using the correct cryptographic keys. Thus, the cryptographic
operation "decryption-and-checking" performed by the recipient attempts to achieve a message
authentication service which enables the recipient to verify the cryptographic bindings between
the session key to be established and its intended users. A correct decryption result should imply
that the ciphertext message blocks in question have not been altered in transition. That is how
Protocol "Message Authentication” should thwart the attacks shown so far.

We should point out that to achieve message authentication, the operation of "decryption-and-
checking" (performed by a recipient) is not a correct "mode of operation”. In Chapter 17 we shall
see that the correct mode of operation should be "re-encryption-and-checking" (again performed
by a recipient). The reason that we use an incorrect or imprecise mode of operation in this
chapter is merely because "encryption-by-sender" and "decryption-by-recipient" are the only

available cryptographic operations for us to use at this stage.

Since we will use an incorrect mode of operation to realize the message authentication service, it
is necessary for us to explicitly state an additional property requirement that our encryption
algorithm must satisfy. The property is given below (its enumeration (iii) follows the
enumeration of the other two properties for "The Perfect Encryption with Notation {M}k" that we
have listed in §2.2).

Protocol 2.3: Message Authentication

PREMISE Alice and Trent share key KaTt; Bob and Trent share
keyK BT-
GOAL Alice and Bob want to establish a new and shared

secret key K.

Alice Trent Eob

1. Alice sends to Trent: Alice, Bob;

2. Trent finds keys KaT,K BT, generates K at random and sends to Alice: {Bob,
K}kar, {Alice,K} kpr;

3. Alice decrypts {Bob,K} kar, checks Bob's identity, and sends to Bob: Trent,
{Alice,K} gr;

4. Bob decrypts {Alice,K} kgr, checks Alice's identity, and sends to Alice: {Hello
Alice, I'm Bob!}k.

Property 2.2: Perfect Encryption with Notation {M}k (for message authentication service)

ili)Without the key K, even with the knowledge of the plaintext M, it should be impossible
for someone to alter {M}k without being detected by the recipient during the time of

decryption.

In order to show the importance of this property, below we demonstrate an attack on Protocol
"Message Authentication" supposing that our perfect encryption algorithm does not possess the
above message authentication property (namely, we assume that the encryption algorithm only
possesses the perfect confidentiality properties listed in §2.2). For ease of exposition, we modify
the presentation of the ciphertext blocks

{B'Ob! ‘r{}f‘fﬂ'."! {A'HE:E:- "F(}H:w'!

in the protocol into the following presentation

{Bobtg vy {K}trars {Alicet ks, {K} i

With this presentation of ciphertext blocks, we imply that the cryptographic binding between
principals' identities and the session key has been destroyed while the encryption retains the
perfect confidentiality service for any plaintext message being encrypted. Protocol "Message
Authentication" using this "perfect” encryption scheme should have its message lines 2, 3 and 4
look like the following:

2. Trent ..., sends to Alice: {Bob}kar, {K}kar, {Alice}ker,{K} ker;
3. Alice decrypts {Bob}kar and {K}kar, checks Bob's identity, ...
4. Bob decrypts {Alice}ksr and {K}kegr, checks Alice's identity, ...

Obviously, the confidentiality protection provided on the principals identities does not make a
point; by simply observing the protocol messages flowing over the network (from senders and to
recipients) Malice should be able to determine exactly the plaintext content inside the ciphertext
blocks {Bob}kar and {Alice}xsr. Thus, the modified protocol is essentially the same as Protocol
"Session Key From Trent," and thus can be attacked by essentially the same attacks
demonstrated in 82.6.2. The reader can apply these attacks as an exercise.

2.6.3.2 Attack on Protocol "Message Authentication”

Even considering that the encryption algorithm used possesses the message authentication
property,Protocol "Message Authentication” can still be attacked. The problem stems from the
difference in quality between the long-term key-encrypting keys shared initially between Trent
and its clients, and the session keys generated for each protocol run.

First, we note that the relationship between Trent and each of his clients is a long-term based
one. This means that a shared key between him and his client is a long-term key. In general, to
establish a key between an authentication server and a client is more difficult and more costly
than to establish a session key between two client principals (it should require thorough security
checking routines, even maybe based on a face-to-face contact). Fortunately, such a key is
mainly used in authentication protocols, with infrequent use for encrypting few messages with
little redundancy, and hence such use of a key provides little information available for
cryptanalysis. Therefore, secret keys shared between an authentication server and its clients can
be used for a long period of time. Often they are called long-term keys.

On the other hand, we should recall a key management principle we have discussed in 82.5,
which stipulates that a session key should be used for one session only. Consequently, no run of
a session-key establishment protocol should establish a session key which is identical to one
which was established in a previous run of the protocol. However, this is not the case for Protocol
"Message Authentication.” An attack run of the protocol will breach the session key management
principle. In this attack, all Malice needs to do is first to intercept Alice's request (see Prot 2.3):

1. Alice sends to Malice("Trent"): ...

and then inject a message line 2 as follows:

2. Malice("Trent™) sends to Alice: {Bob,K"} kar,fAlice,K'} ker

Here, the two ciphertext blocks containing K' are a replay of old messages which Malice has
recorded from a previous run of the protocol (a normal run between Alice and Bob), and
therefore this attack will cause Alice and Bob to reuse the old session key K* which they should
not use. Notice that, since K" is old, it may be possible for Malice to have discovered its value
(maybe because it has been discarded by a careless principal, or maybe due to other
vulnerabilities of a session key that we have discussed in §2.5). Then he can either eavesdrop
the confidential session communications between Alice and Bob, or impersonate Bob to talk to
Alice.

An attack in the above fashion is called a message replay attack.

2.6.4 Protocol With Challenge-Response

There are several mechanisms that may be employed to allow users to check that a message in a
protocol is not a replay of an old message. These mechanisms will be considered in detail in
Chapter 11. However for now we will improve our protocol using a well known method called
challenge-response (also called handshake). Using this method Alice will generate a new
random number Na at the start of the protocol and send this to Trent with the request for a new
session key. If this same value (Np) is returned with a session key such that the two pieces are
bound together cryptographically and the cryptographic binding provides a message
authentication service (i.e., Alice can verify the message integrity regarding the ciphertext
containingN »), then Alice can deduce that the cryptographic binding has been created by Trent
after having received her random number Na. Moreover, recall our stipulation on the
trustworthiness of Trent (see 82.4); Alice knows that Trent will always follow the protocol
honestly. So Trent has indeed created a new session key after receiving Alice's random
challenge. Consequently, the session key should be new (or fresh, current), namely, is not a
replay of an old key. The random number Na created by Alice for enabling the challenge-
response mechanism is called a nonce which stands for a number used once [61].

2.6.4.1 Protocol "Challenge Response" (Needham-Schroeder)

Prot 2.4 specifies a new protocol which utilizes the challenge-response mechanism for Alice to
check the freshness of the session key. We shall temporarily name it "Challenge Response” (we
will soon change its name).

InProtocol "Challenge Response,” Bob also creates a nonce (N g), but this nonce is not sent to
Trent since in this protocol Bob does not directly contact Trent. Instead, Bob's nonce is sent to

Alice and then is replied from her after her slight modification (subtracting 1). So if Alice is
satisfied that the session key K is fresh and uses it in her response to Bob's freshly created
nonce, then Bob should deduce the freshness of the session key. Thus, the mutual confidence in
the session key is established.

Protocol "Challenge Response,” which we have reached by a series of steps, is probably the most
celebrated in the subject of authentication and key establishment protocols. It is exactly the
protocol of Needham and Schroeder which they published in 1978 [213]. Below we rename the
protocol the Needham-Schroeder Symmetric-key Authentication Protocol. This protocol has also
been the basis for a whole class of related protocols.

2.6.4.2 Attack on the Needham-Schroeder Symmetric-key Authentication Protocol

Unfortunately the Needham-Schroeder Protocol is vulnerable to an attack discovered by Denning
and Sacco in 1981 [94]. In the attack of Denning and Sacco, Malice intercepts the messages sent
by and to Alice in the message lines 3, 4 and 5, and replaces them with his own version. The
attack is given in Attack 2.2.

In the attack, Malice becomes active in message line 3 and intercepts Alice's message sent to
Bob. He then completely blockades Alice's communication channel and replays old session key
material {K', Alice}ksr which he recorded from a previous run of the protocol between Alice and
Bob. By our assumption on the vulnerability on an old session key, Malice may know the value K'
and therefore he can launch this attack to talk to Bob by masquerading as Alice.

We should point out that the vulnerability of an old session key is only one aspect of the danger
of this attack. Another danger of this attack is Malice's successful defeat of an important goal of
authentication. We shall specify that goal in 811.2.2 and see how the goal is easily defeated by
Malice in §11.7.1.

Protocol 2.4: Challenge Response

PREMISE Alice and Trent share key Kat; Bob and Trent
share key KgT.

GOAL Alice and Bob want to establish a new and
shared secret key K.

Alice

Trent

Bob

1. Alice creates Na at random and sends to Trent: Alice,Bob,N a;
2. Trent generates K at random and sends to Alice:{Na,K,Bob, {K,Alice} kar}kar;

3. Alice decrypts, checks her nonce Na, checks Bob's ID and sends to Bob: Trent,
{K,Alice} gr;

4. Bob decrypts, checks Alice's ID, creates random Ng and sends to Alice: {I'm
Bob!N B}K;

5. Alice sends to Bob: {I'm Alice!N g — 1}k.

Attack 2.2: An Attack on the Needham-Schroeder Symmetric-

key Authentication Protocol

RESULT OF ATTACK

Bob thinks he is sharing a new session key with Alice while actually the key is an old

one and may be known to Malice.

Alice Trent Bob

— ™ Malice |-

1 and 2. (same as in a normal run)
3. Alice sends to Malice(Bob"): ...
3'. Malice("Alice™) sends to Bob: {K',Alice} kegr;

4. Bob decrypts, checks Alice's ID and sends to Malice("Alice™): {I'm Bob!IN g}k';

5. Malice("Alice™) sends to Bob: {I'm Alice!N g — 1}«

2.6.5 Protocol With Entity Authentication

The challenge-response mechanism used in the Needham-Schroeder Protocol (the interaction
part between Alice and Trent) provides a security service called entity authentication. Like
message authentication, the service of entity authentication is also obtained via verifying a
cryptographic operation (by a verification principal). The difference between the two services is
that in the latter case, an evidence of liveness of a principal (proving principal) is shown. The
liveness evidence is shown if the proving principal has performed a cryptographic operation after
an event which is known as recent to the verification principal. In the case of the Needham-
Schroeder Protocol, when Alice receives the message line 2, her decryption operation revealing
her nonce Na shows her that Trent has only operated the encryption after the event of her
sending out the nonce Np (since the key used is shared between she and Trent). So Alice knows
that Trent is alive after that event. This accomplishes an entity authentication from Trent to
Alice.

However, in Bob's position in the Needham-Schroeder Protocol, he has no evidence of entity
authentication regarding Trent's liveness.

As usual, once a problem has been spotted, it becomes relatively easy to suggest ways of fixing
it: Trent should have himself authenticated in entity authentication to both of the client
principals. This can be done by, for instance, Bob sending a nonce to Trent too, which will be
included by Trent in the session key message returned from Trent. This way of fixing will add
more message flows to the protocol (an additional handshake between Bob and Trent). Denning
and Sacco suggest using timestamps to avoid adding message flows [94].

2.6.5.1 Timestamps

LetT denote a timestamp. The following fix was suggested by Denning and Sacco:

1. Alice sends to Trent: Alice, Bob;
2. Trent sends to Alice: {Bob,K,T, {Alice,K,T} ker}kar:
3. Alice sends to Bob: {Alice,K,T} «kar;

4.

r } Same as in the Needham-Schroeder Protocol.
53

When Alice and Bob receive their protocol messages from Trent, they can verify that their
messages are not replays by checking that

| Clock — T'| < Aty + Ats

whereClock gives the recipient's local time, Dt ; is an interval representing the normal
discrepancy between Trent's clock and the local clock, and Dty is an interval representing the
expected network delay time. If each client principal sets its clock manually by reference to a
standard source, a value of about one or two minutes for Dt; would suffice. As long as Dt; + Dty
is less than the interval since the last use of the protocol, this method will protect against the
replay attack in Attack 2.2. Since timestamp T is encrypted under the secret keys Kat and Kgr,
impersonation of Trent is impossible given the perfectness of the encryption scheme.

Needham and Schroeder have considered the use of timestamps, but they reject it on the
grounds that it requires a good-quality time value to be universally available [212].

2.6.6 A Protocol Using Public-key Cryptosystems

The final protocol to be introduced in this chapter is called the Needham-Schroeder Public-key
Authentication Protocol [213]. We introduce this protocol here with two reasons, both of which
fall within the agenda of this chapter. First, the protocol lets us obtain an initial familiarity with
the use of public-key cryptosystems. Secondly, we shall show a subtle attack on this protocol.
Even though the protocol looks simple, the attack was found seventeen years after the
publication of the protocol.

2.6.6.1 Public-key Cryptosystems

—1
We use key labels such as Ka for Alice's public key and h.zi for the matching private key

(Alice's private key). It is supposed that Alice is the only person who is in possession of her
private key. The ciphertext block

F—1
K,

denotes the perfect encryption of the plaintext M using Alice's public key Ka. It is supposed that

r—1

to decrypt the above ciphertext one must use the matching private key ‘hﬂ . Since it is
supposed that Alice is the only person to possess the private key, only she is able to perform
decryption to retrieve the plaintext M. Analogously, the ciphertext block

‘{ ﬂ'.lr}K-Il

r—1
denotes the perfect encryption of the plaintext M using Alice's private key K A | and decryption
is only possible with the use of Alice's public key Ka. With the knowledge of Ka being Alice's
public key, an action of decryption using Ka provides one with further knowledge that the
Jq.lr =1
{ }‘I'“.-t is created by Alice since the creation requires the use of a key that only she
ﬂ.lr r—1
has in possession. For this reason, the ciphertext { }h.-'l is also called Alice's (digital)

signature of message M, and an action of decryption using Ka is called verification of Alice's
signature of message M.

ciphertext

Protocol 2.5: Needham-Schroeder Public-key Authentication
Protocol

PREMISE Alice's public key is Ka,
Bob's public key is Kg,
Trent's public key is K.

GOAL Alice and Bob establish a new and shared secret.

1. Alice sends to Trent: Alice, Bob;
2. Trent sends to Alice: {Kg,Bob} ;

3. Alice verifies Trent's signature on "Kg,Bob," creates her nonce N 5 at random,
and sends to Bob: {Na,Alice} kg;

4. Bob decrypts, checks Alice's ID and sends to Trent: Bob, Alice;
5. Trent sends to Bob: {Ka,Alice} ;

6. Bob verifies Trent's signature on "Ka,Alice,"” creates his nonce N g at random,
and sends to Alice: {Na,N B}ka;

7. Alice decrypts, and sends to Bob: {Ng}ks.

2.6.6.2 Needham-Schroeder Public-key Authentication Protocol

Suppose that Trent has in his possession the public keys of all the client principals he serves.
Also, every client principal has an authenticated copy of Trent's public key. Prot 2.5 specifies the
Needham-Schroeder Public-key Authentication Protocol.

Here Alice is an initiator who seeks to establish a session with responder Bob, with the help of
Trent. In step 1, Alice sends a message to Trent, requesting Bob's public key. Trent responds in
step 2 by returning the key Kg, along with Bob's identity (to prevent the sort of attacks in

8§2.6.2), encrypted using Trent's private key Ky l. This forms Trent's digital signature on the
protocol message which assures Alice that the message in step 2 is originated from Trent (Alice
should verify the signature using Trent's public key). Alice then seeks to establish a connection
with Bob by selecting a nonce Np at random, and sending it along with her identity to Bob (step
3), encrypted using Bob's public key. When Bob receives this message, he decrypts the message
to obtain the nonce Na. He requests (step 4) and receives (step 5) the authentic copy of Alice's
public key. He then returns the nonce Na, along with his own new nonce Ng, to Alice, encrypted
with Alice's public key (step 6). When Alice receives this message she should be assured that she
is talking to Bob, since only Bob should be able to decrypt message 3 to obtain Na and this must
have been done after her action of sending the nonce out (a recent action). Alice then returns
the nonce N to Bob, encrypted with Bob's public key. When Bob receives this message he
should, too, be assured that he is talking to Alice, since only Alice should be able to decrypt
message 6 to obtain Ng (also a recent action). Thus, a successful run of this protocol does
achieve the establishment of the shared nonces Na and Ng and they are shared secrets
exclusively between Alice and Bob. Further notice that since both principals contribute to these
shared secrets recently, they have the freshness property. Also, each principal should trust the
randomness of the secrets as long as her/his part of the contribution is sufficiently random.

Needham and Schroeder suggest that Ny and Ng, which are from a large space, can be used to
initialize a shared secret key ("as the base for seriation of encryption blocks™) [213] for
subsequent secure communications between Alice and Bob.

Denning and Sacco have pointed out that this protocol provides no guarantee that the public
keys obtained by the client principals are current, rather than replays of old, possibly
compromised keys [94]. This problem can be overcome in various ways, for example by
including timestamps in the key deliveriesl@l. Below we assume that the clients' public keys that
are obtained from Trent are current and good.

[al Denning and Sacco propose such a fix [94]. However, their fix is flawed for a different reason. We will see
their fix and study the reason of the flaw in §11.7.7.

2.6.6.3 Attack on the Needham-Schroeder Public-key Authentication Protocol

Lowe discovers an attack on the Needham-Schroeder Public-key Authentication Protocol [180].

Lowe observes that this protocol can be considered as the interleaving of two logically disjoint
protocols; steps 1, 2, 4 and 5 are concerned with obtaining public keys, whereas steps 3, 6 and
7 are concerned with the authentication of Alice and Bob. Therefore, we can assume that each
principal initially has the authentic copies of each other's public key, and restrict our attention to
just the following steps (we only list message flows; the reader may refer to Prot 2.5 for
details):

3. Alice sends to Bob: {Na,Alice} ks;
6. Bob sends to Alice: {Na,N g}ka;
7. Alice sends to Bob: {Ng}ks-

We shall consider how Malice can interact with this protocol. We assume that Malice is a

legitimate principal in the system, and so other principals may try to set up standard sessions
with Malice. Indeed, the attack below starts with Alice trying to establish a session with Malice.
Attack 2.3 describes the attack.

The attack involves two simultaneous runs of the protocol; in the first run (steps 1-3, 1-6 and 1-
7), Alice establishes a valid session with Malice; in the second run (steps 2-3, 2-6 and 2-7),
Malice impersonates Alice to establish a bogus session with Bob. In step 1-3, Alice starts to
establish a normal session with Malice, sending him a nonce Na. In step 2-3, Malice
impersonates Alice to try to establish a bogus session with Bob, sending to Bob the nonce Na
from Alice. Bob responds in step 2-6 by selecting a new nonce Ng, and trying to return it, along
withN », to Alice. Malice intercepts this message, but cannot decrypt it because it is encrypted
with Alice's public key. Malice therefore seeks to use Alice to use Alice to do the decryption for
him, by forwarding the message to Alice in step 1-6; note that this message is of the form
expected by Alice in the first run of the protocol. Alice decrypts the message to obtain Ng, and
returns this to Malice in step 1-7 (encrypted with Malice's public key). Malice can then decrypt
this message to obtain Ng, and returns this to Bob in step 2.7, thus completing the second run of
the protocol. Hence Bob believes that Alice has correctly established a session with him and they
share exclusively the secret nonces Na and Ng.

A crucial step for Malice to succeed in the attack is Alice's decryption of Bob's nonce Ng for Malice
unwittingly. We say that a principal is used as an oracle or providing an oracle service when
the principal performs a cryptographic operation inadvertently for an attacker. We will see many
cases of oracle services in this book and will gradually develop a general methodology that
cryptographic algorithms and protocols should be designed such that they are secure even if
their users provide oracle services to attackers.

We can imagine the following consequences of this attack. Malice may include the shared nonces
within a subsequent message suggesting a session key, and Bob will believe that this message
originated from Alice. Similarly, if Bob is a bank, then Malice could impersonate Alice to send a
message such as:

Malice("Alice™) sends to Bob:

{Na,N g, Transfer £1,000,000 from my account to Malice's"}kg.

2.6.6.4 A Fix

It is fairly easy to change the protocol so as to prevent the attack. If we include the responder's
identity in message 6 of the protocol

6. Bob sends to Alice: {Bob,N a,N g}ka;

Attack 2.3: Lowe's Attack on the Needham-Schroeder Public-
key Authentication Protocol
PREMISE Alice's public key is Ka, Bob's public key is
Kg, Malice's public key is Ky.
RESULT OF ATTACK
Bob thinks he is sharing secrets Na, Ng with
Alice while actually sharing them with
Malice.
First run Second run
between between
Alice and Malice Malice("Alice") and Bob
Alice Malice Bob
1-3 2-3
{NA.AHC&}[{M {Nmﬁlicﬂ}](ﬂ
2-6
1-6 Na.N
(NaNy b, e Mo TRy
’ Ka
1-7
{ Ng }[(M 24
N { Np }x,

then step 2-6 of the attack would become
2-6. Bob sends to Malice("Alice™): {Bob,N a,N g}ka.

Now because Alice is expecting a message with Malice's identity, Malice cannot successfully
replay this message in step 1-6 with an intention to use Alice as a decryption oracle.

This fix represents an instance of a principle for cryptographic protocols design suggested by
Abadi and Needham [1]:

If the identity of a principal is essential to the meaning of a message, it is prudent to
mention the principal's name explicitly in the message.

However, we should refrain from claiming that this way of "fixing" should result in a secure
protocol. In 817.2.1 we will reveal several additional problems in this protocol due to an
undesirable design feature which can be referred to as "message authentication via decryption-
and-checking" (we have labeled it a wrong mode of operation, see 82.6.3.1). That design feature
appears generally in authentication protocols using secret-key or public-key cryptographic
techniques and has appeared in all protocols in this chapter (the design feature has been
retained in our "fix" of the Needham-Schroeder Public-key Authentication Protocol, and hence
our "fix" is still not a correct one). Methodical fixes for the Needham-Schroeder Authentication
Protocols (both symmetric-key and public-key) will be given in 817.2.3.

The error-prone nature of authentication protocols has inspired the consideration of systematic
approaches to the development of correct protocols. That topic will be introduced in Chapter 17.

2.7 Chapter Summary

Some design protection mechanisms, others want to crack them. This is a fact of life and there is
nothing special about it. However, in this chapter we have witnessed a rather sad part of this
fact of life in authentication protocols: they, as protection mechanisms, are very easily
compromised.

Actually, all complex systems easily contain design errors. However, unlike in the case of
systems which provide security services, users and the environment of other complex system are
generally non-hostile or even friendly. For example, a careful user of a buggy software may
learn to avoid certain usages in order to avoid a system crash. However, for an information
security system, its environment and some of its users are always hostile: the whole reason for
their existence is to attack the system. Exploiting design errors is of course an irresistible source
of tricks for them.

We have used authentication protocols as a means to manifest the error-prone nature of security
systems. Although it seems that protocols are more notoriously error-prone due to their
communication nature, the real reason for us to use authentication protocols is that they require
relatively simpler cryptographic techniques and therefore are more suitable for serving our
introductory purpose at this early stage of the book. We should remember that it is the hostility
of the environment for all security systems that should always alert us to be careful when we
develop security systems.

We will return to studying authentication protocols in several later chapters. The further study
will include a study on the principles and structures of authentication protocols and a taxonomy
of attacks on authentication protocols (Chapter 11), case studies of several protocols for real
world applications (Chapter 12), and formalism approaches to the development of correct
authentication protocols (Chapter 17).

Exercises

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

What sort of things can an active attacker do?

Under the Dolev-Yao Threat Model, Malice is very powerful because he is in control
of the entire open communications network. Can he decrypt or create a ciphertext
message without using the correct key? Can he find the key encryption key from a
ciphertext message? Can he predict a nonce value?

What is the role of Trent in authenticated key establishment protocols?
What is a long-term key, a key-encryption key, a short-term key and a session key?

Why with the perfect encryption and the perfect message authentication services,
can authentication protocols still be broken?

What is a nonce? What is a timestamp? What are their roles in authentication or
authenticated key establishment protocols?

Why must some messages transmitted in authentication or authenticated key
establishment protocols be fresh?

How can a principal decide the freshness of a protocol message?

For the perfect encryption notation {M}k, differentiate the following three
properties: (i) message confidentiality, (ii) key secrecy, and (iii) message
authentication.

Provide another attack on Protocol "Session Key From Trent (Prot 2.2), which allows
Malice to masquerade not only as Bob toward Alice as in Attack 2.1, but at the
same time also as Alice toward Bob, and hence Malice can relay "confidential
communications between Alice and Bob.

Hint: run another instance of Attack 2.1 between Malice("Alice") and Bob.
What is the difference between message authentication and entity authentication?

Provide another attack on the Needham-Schroeder Authentication Protocol in which
Alice (and Trent) stays offline completely.

Does digital signature play an important role in the Needham-Schroeder Public-key
Authentication Protocol?

Hint: consider that that protocol can be simplified to the version which only contains
message lines 2, 6 and 7.

Part II: Mathematical Foundations:
Standard Notation

This part is a collection of mathematical material which provides the basic notations,
methods, basis of algebraic operations, building blocks of algorithmic procedures and
references for modeling, specifying, analyzing, transforming and solving various problems
to appear in the rest of this book.

This part has four chapters: probability and information theory (Chapter 3), computational
complexity (Chapter 4), algebraic foundations (Chapter 5) and number theory (Chapter 6).
This part serves as a self-contained mathematical reference guide. In the rest of the book
whenever we meet non-trivial mathematical problems we will be able to refer to precise
places in these four chapters to obtain supporting facts and/or foundations. Therefore our
way of including the mathematical material in this book will help the reader to conduct an
active and interactive way of learning the mathematical foundations for modern

cryptography.

We will pay in-depth attention to, and provide sufficiently detailed elaborations for, the
algorithms and theorems which are important to the theoretical foundations and practical
applications of modern cryptography. We will provide a proof for a theorem if we believe
that the proof will help the reader to develop skills which are relevant to the study of the
cryptographic topics in this book. Sometimes, our development of mathematical topics has
to make use of facts from other branches of mathematics (e.g., linear algebra) which do
not have a direct relevance to the cryptographic skills to be developed here; in such cases
we will simply use the needed facts without proof.

The following standard notation is used throughout the rest of the book. Some notation will
be defined locally near its first use, other notation will be used without further definition.

f empty set

sUr union of sets Sand T

S nT intersection of sets Sand T

S\T difference of sets Sand T

sCr Sis asubsetof T

#S number of elements in set S (e.g., #& = 0)

x €S.x &s elementx in (not in) set S

x EyS sampling element x uniformly random in set
S

X E (a, b),x €[a, b], xinopen interval (a, b) (xin closed interval
[a, b])

MZ QR,C sets of natural numbers, integers, rationals,

reals and complex numbers

Zn integers modulo n

E*

(rs

desc(A)

X =D

ged(x, y)
lem(x, y)

logpx

L
[x]

Ix]

f(n)
I(n)
ord(x)
ordnp(x)

(g

(5)

In(1)

QRn

QNRp

deg(P)

multiplicative group of integers modulo n

finite field of q elements

description of algebraic structure A

value assignment according to the
distributionD

value assignment according to the uniform
distribution in S

modulo operation: remainder of a divided by
b

integery is divisible (not divisible) by
integerx

defined to be

for all

there exists

greatest common divisor of x and y
least common multiple of x and y

logarithm to base b of x; natural log if b is
omitted

the maximum integer less than or equal to x

the least integer greater than or equal to x

length of integer x (=1 + Llogsz for x = 1),
also absolute value of x

Euler's function of n
Carmichael's function of n
order of a group element
order of x (mod n)

cyclic group generated by g

Legendre-Jacobi symbol of integer x modulo
integery

(5)
xIx €l \Y/ =1y

the set of quadratic residues modulo integer
n;

the set of quadratic non-residues modulo
integern;

degree of a polynomial P

Uiy Uy
i=1 e s
n
I I i, t
=1 =S

Prop [E]
Prob [E | F]

n!

O(f(n))

Os(Q)

x My

sum of values vjfori= 1, 2, ..., n, or fori €S

product of values v fori =1, 2, ..., n, or fori
€S
complement of event E

sum of events E, F, i.e., either E or F occurs

product of events E, F, i.e., both Eand F
occur

eventF contains event E, i.e., occurrence of
E implies occurrence of F

difference of events E, F{=ENF)

sum of events Ejfori=1, 2, ..., n, or fori €
S

product of events E;fori =1, 2, ..., n, or fori
€S

probability of event E occurring

conditional probability of event E occurring
given that event F has occurred

factorial of n (= n(n—-1)(n—2) ... 1 with O!

(n!)
~ kln— k)
ways of picking k out of El(n — k)l

binomial distribution of k successes in n
Bernoulli trials with the success probability

being P

functiong(n) such that |g(n)| Eclf(n)| for
some constant ¢ > 0 and all sufficiently large
n

O() in the bitwise computation mode

logical operation NOT (x is a Boolean
variable), also bit operation: bit-wise
negation (X is a bit string)

logical operation AND (X, y are Boolean
variables), also bit operation: bit-wise and
(X, y are bit strings)

x Vy

x$y

(Gl

*)

logical operation OR (X, y are Boolean
variables), also bit operation: bit-wise or (X,
y are bit strings)

logical operation XOR (X, y are Boolean
variables), also bit operation: bit-wise xor
(X, y are bit strings)

non-executable comment parts in algorithms
or protocols

end of proof, remark or example

Chapter 3. Probability and Information
Theory

Section 3.1. Introduction

Section 3.2. Basic Concept of Probability

Section 3.3. Properties

Section 3.4. Basic Calculation

Section 3.5. Random Variables and their Probability Distributions

Section 3.6. Birthday Paradox

Section 3.7. Information Theory

Section 3.8. Redundancy in Natural Languages

Section 3.9. Chapter Summary

Exercises

3.1 Introduction

Probability and information theory are essential tools for the development of modern
cryptographic techniques.

Probability is a basic tool for the analysis of security. We often need to estimate how probable it
is that an insecure event may occur under certain conditions. For example, considering Protocol
"Coin Flipping Over Telephone" in Chapter 1, we need to estimate the probability for Alice to

succeed in finding a collision for a given one-way function f (which should desirably be bounded

by a very small quantity), and that for Bob to succeed in finding the parity of x when given f(x)
1

(which should desirably be very close to 2).

Information theory is closely related to probability. An important aspect of security for an
encryption algorithm can be referred to as "uncertainty of ciphers:" an encryption algorithm
should desirably output ciphertext which has a random distribution in the entire space of its
ciphertext message space. Shannon quantifies the uncertainty of information by a notion which
he names entropy. Historically, the desire for achieving a high entropy in ciphers comes from the
need for thwarting a cryptanalysis technique which makes use of the fact that natural languages
contain redundancy, which is related to frequent appearance of some known patterns in natural
languages.

Recently, the need for modern cryptographic systems, in particular public-key cryptosystems, to
have probabilistic behavior has reached a rather stringent degree: semantic security. This can be
described as the following property: if Alice encrypts either O or 1 with equal probability under a
semantically secure encryption algorithm, sends the resultant ciphertext ¢ to Bob and asks him
to answer which is the case, then Bob, without the correct decryption key, should not have an
algorithmic strategy to enable him to discern between the two cases with any "advantage™" better
than a random guessing. We notice that many "textbook™ versions of encryption algorithms do
not have this desirable property.

3.1.1 Chapter Outline

The basic notions of probability which are sufficient for our use in this book will be introduced in
8§3.2—83.6. Information theory will be introduced in 83.7—83.8.

3.2 Basic Concept of Probability

Let 3 be an arbitrary, but fixed, set of points called probability space (or sample space). Any

elementx €3 is called a sample point (also called outcome, simple event or
indecomposable event; we shall just use point for short). An event (also called compound

event or decomposable event) is a subset of S and is usually denoted by a capital letter (e.qg.,
E). An experiment or observation is an action of yielding (taking) a point from 5. An
occurrence of an event E is when an experiment yields x €E for some point x € S,

Example 3.1.

Consider an experiment of drawing one playing card from a fair deck (here "fair" means drawing
a card at random). Here are some examples of probability spaces, points, events and
occurrences of events.

1. Slz The space consists of 52 points, 1 for each card in the deck. Let event E; be "aces"
(i,e,E 1= {A‘,A @,A Q,A *}). It occurs if the card drawn is an ace of any suit.

2. Sz = {red, black}. Let event E; = {red}. It occurs if the card drawn is of red color.

3. Sg: This space consists of 13 points, namely, 2, 3, 4, .., 10, J, Q, K, A. Let event E3 be
"numbers." It occurs if the card drawn is 2, or 3, or ..., or lO.E|

Definition 3.1: Classical Definition of ProbabilitySuppose that an experiment can yield one
of n= #Sequally probable points and that every experiment must yield a point. Let m be the
i

number of points which form event E. Then value ™ is called the probability of the event E
occuring and is denoted by

Prob [E] = —.
n
Example 3.2.
InExample 3.1:
4 1
. Prob[E;] = 5 = 15"
1
Prob[Es] = 5"

2.

Prob|[E3] = E
3. 1.

O

Definition 3.2: Statistical Definition of ProbabilitySuppose that n experiments are carried
L

out under the same condition, in which event E has occurred mtimes. If value "tbecomes and

remains stable for all sufficiently large n, then the event E is said to have probability which is

denoted by

Prob [E] = E

T

In §3.5.3 we will see that Definition 3.2 can be derived as a theorem (a corollary of the law of
large numbers) from a few other intuitive notions. We however provide it in the form of a
definition because we consider that itself is sufficiently intuitive.

3.3 Properties

1. A probability space itself is an event called sure event. For example, S = {HEADS,
TAILS}. We have

Prob [S] = 1.

2. Denoting by @ the event that contains no point (i.e., the event that never occurs). For
example, black O e @, 1tis called an impossible event. We have

Prob [(] = 0.
3. Any event E satisfies
0 = Prob [E] S 1.
4. IfE QF, we say that event E implies event F, and
Prob [E] = Prob [F].
E=8\E

5. Denote by the complementary event of E. Then

Prob [E] + Prob [E] = 1.

3.4 Basic Calculation

Denote by E UF the sum of events E, F to represent an occurrence of at least one of the two

events, and by E nF the product of events E, F to represent the occurrence of both of the two
events.

3.4.1 Addition Rules

1. prob [E UF] = Prob [E] + Prob [F] — Prob [E [F].

¢ Prob[EUF] = Prob|E|+ Prob[F].

exclusive or disjoint, and

Prob[EUF| =Prob|E|+ Prob|F].

, we say that the two events are mutually

mn
L E:=s

3. Ifi=1 with EiNE; =0 (i #) then

i Prob [E;

i=1

=];

Example 3.3. Show

Equation 3.4.1
Prob[E U F] = Prob[E] + Prob[FNE].

BecauseE Ur=¢ U (F n E) where E and F n E are mutually exclusive, (3.4.1) holds as a
result of Addition Rule 2.1

Definition 3.3: Conditional ProbabilitylLet E, F be two events with E having non-zero
probability. The probability of occurring F given that E has occurred is called the conditional
probability of F given E and is denoted by

B = Prob [E N F']
~ Prob | E|

Prob [F

Example 3.4.

Consider families with two children. Let g and b stand for girl and boy, respectively, and the first

letter for the older child. We have four possibilities gg, gb, bg, bb and these are the four points
1
in 3. We associate probability 4 with each point. Let event E be that a family has a girl. Let

eventF be that both children in the family are girls. What is the probability of F given E (i.e.,
Prob [F | ED?

1
The event E nF means gg, and so Prob [E nF] = 4. Since the event E means gg, or gb, or bg,

(E] = 2 - |F|E]=1 . _

and hence Prob 4. Therefore by Definition 3.3, Prob 4. Indeed, in one-third
of the families with the characteristic E we can expect that F will occur.H
Definition 3.4: Independent EventsEvents E, F are said to be independent if and only if

Prob [F | E] = Prob[F]

3.4.2 Multiplication Rules

1. Prob [E nF] = Prob [F | E] - Prob [E] = Prob [E | F] - Prob [F].
2. If events E, F are independent, then

prob [E NF] = Prob [E] - Prob [F].

Example 3.5.

ConsiderExample 3.1. We expect that the events E 1 and E; are independent. Their probabilities
1 1

are 13 and 2, respectively (Example 3.2). Since these two events are independent, applying

"Multiplication Rule 2," the probability of their simultaneous realization (a red ace is drawn) is
1
215.5

3.4.3 The Law of Total Probability

Thelaw of total probability is a useful theorem.

. Theorem 3.1

n
| JE:=s |
Eiﬁﬁj—@ﬁ

If i=1 and 7£ -”ll, then for any event A

Prob[A] =) Prob[A | E;] - Prob|E;].

i=1

Proof Since

T
A=AnS=|J(ANE)

i=1

whereA nE iand A nE ja ;tj) are mutually exclusive, the probabilities of the right-hand-side
sum of events can be added up using Addition Rule 2, in which each term follows from an

application of "Multiplication Rule 1.0

The law of total probability is very useful. We will frequently use it when we evaluate (or
estimate a bound of) the probability of an event A which is conditional given some other

mutually exclusive events (e.g. and typically, E and E). The usefulness of this formula is
because often an evaluation of conditional probabilities Prob [A | E;] is easier than a direct
calculation of Prob [A].

Example 3.6.

(This example uses some elementary facts of number theory. The reader who finds this example
difficult may return to review it after having studied Chapter 6.)

Let p = 24 + 1 such that both p and g are prime numbers. Consider choosing two numbers g and
h at random from the set S = {1, 2, ..., p— 1} (with replacement). Let event A be "h is generated
by g," that is, h =g * (mod p)for some x < p(equivalently, this means "log gh (mod p — 1)
exists"). What is the probability of A for random g and h?

It is not very straightforward to evaluate Prob [A] directly. However, the evaluation can be made
easy by first evaluating a few conditional probabilities followed by applying the theorem of total
probability.

Denote by ordp(g) the (multiplicative) order of g (mod p), which is the least natural number i
such that g = 1 (mod p). The value Prob [A] depends on the following four mutually exclusive
events.

[Ey] = ¢i2q) _ g—1
i. E1:ordp(g) =p—1=2qand we know Prob p—1 P—1 (here p is Euler's phi
function; in S there are exactly f (2q) = q — 1 elements of order 2q). In this case, any h < p
must be generated by g (g is a generator of the set S), and so we have Prob [A | E1] = 1.

) - | [Bp] = =2
ii. Ez: ordp(g) = g and similar to case (i) we know Prob P=—1_ In this case, h can be
generated by g if and only if ordp(h) | 4. Since in the set S there are exactly q elements of

[A| Bp) =4 =1
orders dividing g, we have Prob r-1 2,

Esz : ordp(g) = 2. Because there is only one element, p — 1, of order 2, so Prob

] = Lo
['1] P=1_0Only 1 and p — 1 can be generated by p — 1, so we have Prob
[A]| B3] = 225
o s p_ 1)
. [E4l = 1
E4 : ordp(g) = 1. Only element 1 is of order 1, and so Prob P—1 Alsoonly 1can

[A] Bs]= ;5
be generated by 1, and we have Prob e
The above four events not only are mutually exclusive, but also form all possible cases for

the orders of g. Therefore we can apply the theorem of total probability to obtain Prob [A]:

qg—1 q—1 2 1
Prob[A] = 1=— 4 + + -
o = e i T T 1

3.5 Random Variables and their Probability Distributions

In cryptography, we mainly consider functions defined on discrete spaces (such as an interval of
integers used as a cryptographic key-space, or a finite algebraic structure such as finite group or
field). Let discrete space S have a finite or countable number of isolated points X1,X 2, ..., Xn, ...y
X#s. We consider the general case that S may contain a countable number of points, and in that
case, #S = #o. This will allow us to conduct computational complexity analysis of our algorithms
and protocols in an asymptotic manner (see §84.6).

Definition 3.5:Discrete Random Variables and their Distribution Function

1. A (discrete) random variable is a numerical result of an experiment. It is a function defined
on a (discrete) sample space.

2. Let S be a (discrete) probability space andxbe a random variable. A (discrete) distribution
function ofxis a function of type 5 — Rprovided by a list of probability values

Prob[é =x;|=p; (i=1,2,...,#S)

such that the following conditions are satisfied:

i. p=o0;

#5
E Pi = 1.
ij. =1

Now let us look at two discrete probability distributions which are frequently used in
cryptography. From now on we shall always drop the word "discrete” from "discrete probability
space,” "discrete probability distribution,™ etc. All situations in our considerations will always be
discrete.

3.5.1 Uniform Distribution

The most frequently used random variables in cryptography follows uniform distribution:

Prob £ =3 = % =12 ey H5R)

Example 3.7.

LetS be the set of non-negative numbers up to k bits (binary digits). Sample a point in S at
random by following the uniform distribution. Show that the probability that the sampled point is

ak-bit number is 2.

s = {0,1,2, ..., 2k— 13} can be partitioned into two disjoint subsets S; = {0,1,2, ..., 2x1-1} and

#5
_ _ #5851 = #82 = ——
So = {2k1 2k-1 4+ 1, ..., 2Kk—1} where S, contains all k-bit numbers, 2 .
Applying "Addition 2," we have
2%-1
Prob [sampled point € S2] = Prob U sampled point = ¢

j=2k=1

ak_1

= Z Prob [sampled point = i]

j=2k—1

&

!
|
et

i
#S

i=2k-1

|

In this example, the instruction "sample (a point) p in (a set) S at random by following the
uniform distribution" is quite long while it is also a frequent instruction in cryptography. For this
reason, we shall shorten this long instruction into "picking p in S at uniformly random," or into
an even shorter notation: p €y S.

3.5.2 Binomial Distribution

Suppose an experiment has two results, titled "success" and "failure" (e.g., tossing a coin results
in HEADS or TAILS). Repeated independent such experiments are called Bernoulli trials if there
are only two possible points for each experiment and their probabilities remain the same
throughout the experiments. Suppose that in any one trial.

Prob [“success” | = p, Prob[“failure” | =1—p

then

Equation 3.5.1

Prob [k “successes” in n trials] = E (1 —p)*

v

(”)
where k is the number of ways for "picking k out of n."

Here is why (3.5.1) holds. First, event "n trials result in k "successes" and n—k "failures" can

v

(k)

happen in the number of ways for "picking k out of n,"” that is, the event has k points.
Secondly, each point consists of k "successes" and n — k "failures,"” we have the probability pk(1
—p) "X for this point.

If random variable x, takes values 0,1,..., n, and for value pwithO <p < 1

Prob[&, = k] = (E) pk[l —p)* % (k=0,1,...,n)

then we say that x, follows binomial distribution. Comparing with (3.5.1), we know that
Bernoulli trial follows the binomial distribution. We denote by b(k;n,p) a binomial term where k
=0,1,.,nandO0O<p< 1.

Example 3.8.

i. Let a fair coin be tossed 10 times. What is the probability for all possible numbers of
"HEADS appearance” (i.e., appears 0, or 1, or, ..., or 10 times)?

ii. The probability for "HEADS appears 5 times?"
iili. What is that for "HEADS appears less than or equal to 5 times?"

For (i), since this event always occurs, it should have probability 1. Indeed, applying "Addition
Rule 2," we have

11 10
Prob U HEADS appears i Linu’:s] = Z Prob [HEADS appears ¢ times|

i={0 i=0

SHIOION
- (3)

=3,

For (ii), we have

0 o
Prob [5 HEADS in 10 tosses| == (I,U) (]—) o == (0.246.

For (iii), we must sum the probabilities for all cases of 5 or less "HEADS appearances:"

5 1 i

, e gl - R DY s

Prob L!‘"FIADEJ appears i times in 10 t{:m:—n-.] = (}) E . (;) = (1.623.
= =

|

Fig 3.1 plots the binomial distribution for p = 0.5 and n = 10, i.e., that used in Example 3.8.

Figure 3.1. Binomial Distribution

y =025

Y="hi{x:10,0.5)

0 I

2
-t
-
A
=y
=1
b=

The reader should pay particular attention to the difference between Example 3.8.(ii) and
Example 3.8.(iii). The former is the area of the central rectangular in Fig 3.1 while the latter is
the sum of the left six of them.

In applications of binomial distributions (e.g., in 84.4.1, §4.4.5.1 and 818.5.1), the probability
of having exactly r "successes" (as in Example 3.8.(ii), a single term) is less interesting than the
probability of r or less (or more) "successes" (as in Example 3.8.(iii), the sum of many terms).
Moreover, the sum of some terms will be much more significant than that of some others. Let us
now investigate "the significant sum" and "the negligible sum" in binomial distributions.

3.5.2.1 The Central Term and the Tails

Stacking consecutive binomial terms, we have

Equation 3.5.2

blk;n,p) (n—k+1)p y (n+1p—£F&

b(k —1;n,p) k(1—p) k(1 —p)

The second term in the right-hand side is positive when k < (n + 1)p and then becomes negative
afterk > (n + 1)p. So, the ratio in (3.5.2) is greater than 1 when k < (n + 1)p and is less than 1
afterk > (n + 1)p. Consequently, b(k;n,p) increases as k does before k reaches (n + 1)p and
then decreases after k > (n + 1)p. Therefore, the binomial term b(k;n,p) reaches the maximum

value at the point k = |.(n + 1)pJ. The binomial term

Equation 3.5.3

b(|(n + 1)p] ;n,p)

is called the central term. Since the central term reaches the maximum value, the point I.(n +

1)pJ is one with "the most probable number of successes." Notice that when (n + 1)p is an
integer, the ratio in (3.5.2) is 1, and therefore in this case we have two central terms b((n + 1)p
—1; n, p) and b((n + 1)p;n, p).

Letr > (n + 1)p, i.e., ris a point somewhere right to the point of "the most probable number of

successes." We know that terms b(k;n, p) decrease for all k 2. We can estimate the speed of
the decreasing by replacing k with r in the right-hand side of (3.5.2) and obtain

Equation 3.5.4

(n+1—r7)p

1.
r(l —p)

b(k;n,p) < bk —1;n,p)s where s =

In particular, we have

b(k:n,p) < b(r;n,p)s.

Notice that (3.5.4) holds forallk =r + 1, r + 2, ..., n. Therefore we have

Equation 3.5.5

bir +i;n,p) < b(r; n,.,p)si fori=12...

Now for r > np, let us see an upper bound of the probability of having r or more "successes,"
which is

Equation 3.5.6

Prob[&, = r] = Z.’}[ﬁ:; n,p) = Z b(r + i;n,p).
k=7 i=0

By (3.5.5), we have

fi=r

Prob[&, > r] < b(r;n, p) Z st < b(rin,p) z s' = b(rin,p)
i=0

i=0

|
1—s

(n+1—rip
Replacings back to r(1-p] , we have

r(l —p)
r—(n+1)p

PI‘Db [En E ?‘] < b(?‘; n, :D}

Now we notice that there are only r — (n + 1)p binomial terms between the central term and b(r;
n, p), each is greater than b(r;n, p), and their sum is still less than 1. Therefore it turns out that
b(r;n, p) < (r — (n + 1)p) ~1. We therefore finally reach

Equation 3.5.7

Prob[&;, = 1] < forr>(n+1)p.

The bound in (3.5.7) is called a right tail of the binomial distribution function. We can see that
ifr is slightly away from the central point (n + 1)p, then the denominator in the fraction of
(3.5.7) is not zero and hence the whole "right tail" is bounded by a quantity which is at the
magnitude of (np)~1. Hence, a right tail is a small quantity and diminishes to O when n gets
large.

We can analogously derive the bound for a left tail:

Equation 3.5.8

Prob ¢, < 7] < (n+1—r)p

S ntlp—1)2 forr<(n+1)p.

The derivation is left for the reader as an exercise (Exercise 3.7).

At first sight of (3.5.7) and (3.5.8) it seems that the two tails are bounded by quantities which
1

are at the magnitude of n . We should however notice that the estimates derived in (3.5.7) and
(3.5.8) are only two upper bounds. The real speed that a tail diminishes to 0 is much faster than
1

n does. The following numerical example reveals this fact (also see the soundness and
completeness properties of Prot 18.4 in §18.5.1.1).

Example 3.9.

Letp = 0.5. For various cases of n, let us compute left tails of binomial distribution functions
bounded to the point r = n(p — 0.01).

i. Forn = 1,000, the corresponding left tail is:

Prob[¢ < 490] ~ 0.25333.

ii. Forn = 10,000, the corresponding left tail becomes:

Prob [¢ < 4,900] = 0.02221.

iii. Ifnis increased to 100,000, then the corresponding tail is trivialized to:

Prob[£ < 49,000] ~ 1.24241 -10~1°

1
Comparing these results, it is evident that a tail diminishes to O much faster than 1 does.

Sincep = 0.5, the distribution density function is symmetric (see Fig 3.1). For a symmetric
distribution, a right tail equals a left one if they have the equal number of terms. Thus, for case
(iii), the sum of the two tails of 98,000 terms (i.e., 98% of the total terms) is practically O, while
the sum of the terms of the most probable number of successes (i.e., 2% of the total terms

around the center, there are 2,001 such terms) is practically 1 U

3.5.3 The Law of Large Numbers

RecallDefinition 3.2: it states that if in n identical trials E occurs stably mtimes and if n is
Fi4
sufficiently large, then 1 is the probability of E.

Consider that in Bernoulli trials with probability p for "success," the random variable x, is the
number of "successes" in n trials. Then ™ is the average number of "successes" in n trials. By

Definition 3.2, ™ should be close to p.

Now we consider, for example, the probability that " exceeds p + a forany a > 0 (i.e., a is
arbitrarily small but fixed). Clearly, this probability is

e

Prob[&, > n(p+a)] = z b(i;n, p).

i=n{pta)+l

By (3.5.7), we have

Equation 3.5.9

1
Prob[&, > n(p + o)) < —.
no

Thus,

Equation 3.5.10

Prob[&, > n(p+ «)] — 0 (n — o).

Analogously we can also see

Prob [, < n(p—a)] = 0 (n — o).

Therefore we have (the law of large numbers):

lim Prob Sn —pl<al =1
n—oo 1

This form of the law of large numbers is also called Bernoulli's theorem. It is now clear that
Definition 3.2 can be derived as a corollary of the law of large numbers. However, we have
provided it in the form of a definition because we consider that itself is sufficiently intuitive.

3.6 Birthday Paradox

For any function f : X =Y where Y is a set of n elements, let us solve the following problem:

For a probability bound € (i.e., 0 <€ < 1), find a value k such that for k pairwise distinct
valuesx 1,X 2, ..., Xk €yX, the k evaluations f(x 1),f(x 2), ..., f(xk) satisfy

Prob | f(x;) = f(x;)] = € for some i # 7.

That is, in k evaluations of the function, a collision has occurred with the probability no less
than €.

This problem asks for a value k to satisfy the given probability bound from below for any
function. We only need to consider functions which have a so-called random property: such a
function maps uniform input values in X to uniform output values in Y. Clearly, only a function
with such a random property can enlarge the value k for the given probability bound, which can
then be able to satisfy other functions for the same probability bound. Consequently, itis
necessary that #X > #Y; otherwise it is possible that for some functions there will be no collision
occurring at all.

Thus, we can assume that the function evaluation in our problem has n distinct and equally
possible points. We can model such a function evaluation as drawing a ball from a bag of n
differently colored balls, recording the color and then replacing the ball. Then the problem is to
find the value k such that at least one matching color is met with probability €.

There is no color restriction on the first ball. Let y; be the color for the ith instance of ball
drawing. The second ball should not have the same color as the first one, and so the probability

fory 2 ;ty 1is 1 — 1/n; the probability for y3 ;ty 1 and ys ;ty 2is 1—2/n, and so on. Upon
drawing the kth ball, the probability for no collision so far is

R0

For sufficiently large n and relatively small x, we know

T s
(+2) ~e
T

or

So

(- 0-2) (-5) et

=1

The equation in the most right-hand side is due to Gauss summation on the exponent value.

This is the probability for drawing k balls without collision. Therefore the probability for at least
one collision should be

kik—1)
l—e " 2n

Equalizing this value to €, we have

_ k{k—1)
£ m] —¢

or

1
k? — k =~ 2nlog ——,
1—¢€

that is,

Equation 3.6.1
1
k= \/2?1 log A
1—¢€

Thus, for a random function mapping onto Y, we only need to perform this amount of evaluations
in order to meet a collision with the given probability €. From (3.6.1) we can see that even if € is

a significant value (i.e., very close to 1), the value log £ will remain trivially small, and hence

in general k is proportional to 1

If we consider € = 1%, then

Equation 3.6.2
ko~ 1.1774/n.

The square-root relationship between k and n shown in (3.6.1) and in (3.6.2) suggests that for a
random function with the cardinality of the output space being n, we need only to make roughly

" evaluations of the function and find a collision with a non-negligible probability.

This fact has a profound impact on the design of cryptosystems and cryptographic protocols. For
example, for a piece of data (e.g., a cryptographic key or a message) hidden as a pre-image of a
cryptographic function (which is typically a random function), if the square root of this data is
not a sufficiently large quantity, then the data may be discovered by random evaluation of the
function. Such an attack is often called square-root attack or birthday attack. The latter
name is due to the following seemingly "paradoxical phenomenon:" taking n = 365 in (3.6.2),

we find k =~ 22.49; thatis, in order for two people in a room of random people to have the
same birthday with more than 50% chance, we only need 23 people in the room. This seems to
be a little bit of counter-intuition at first glance.

3.6.1 Application of Birthday Paradox: Pollard's Kangaroo Algorithm for
Index Computation

Letp be a prime number. Under certain conditions (which will become apparent in Chapter 5)
themodulo exponentiation function f(x) = g X (mod p) is essentially a random function. That
is, for x =1, 2, ..., p— 1, the value f(x) jumps wildly in the range interval [1, p — 1]. This
function has wide applications in cryptography because it has a one-way property: computing y
=f(x) is very easy (using Alg 4.3) while inverting the function, i.e., extracting x = f ~1(y), is
extremely difficult for almost all y € [1, p — 1].

Sometimes for y = f(x) we know X £ [a, b] for some a and b. Clearly, evaluations of f(a),f(a +
1), ..., can reveal x before exhausting b — a steps. If b — a is too large, then this exhaustive
search method cannot be practical. However, if ¥ b—a is a tractable value (for example, b — a
= 2100 gpnd so V b—a= 250 a gaspingly handleable quantity), then birthday paradox can

play a role in inverting f(x) in ¥ b—a steps. Pollard discovers such a method [238]; he names
the algorithm | -method and kangaroo method for index computation. The meanings of these
names will become clear in a moment.

Pollard describes his algorithm using two kangaroos. One is a tame kangaroo T and the other is
a wild one W. The task of extracting the unknown index value x from y = g* (mod p) is modeled
by catching W using T. This is done by letting the two kangaroos jump around in the following

ways. Let S be an integer set of J elements (J = I.Iogz(b — a)J, hence small):

S = {5(0),5(1),5(2),...,8(J — 1)} = {2°,2},22,...,271}.

Each jump made by a kangaroo uses a distance which is randomly picked from S. Each kangaroo
carries a mileageometer to accumulate the distance it has travelled.

T starts its journey from the known point tg = gP (mod p). The known point is b which can be
considered as the home-base since T is tame. Its path is

Equation 3.6.3

£+ 1) = t(3) - g*H¥ (mod J)) (mod @) for+=10,1,2,...

LetT jump n steps then it stops. We will decide how large n should be in a moment. After n-th
jump, the mileageometer carried by T records the distance so far as

n

d(n) = Z s(t(7) (mod J)).

i=(

Using the distance recorded on T's mileageometer, we can re-express (3.6.3) into

btd(n—1) {

t(n)=g mod p).

W starts its journey from an unknown point hidden in wg = g* (mod p). The unknown point is X
and that is why this kangaroo is a wild one. Its path is

Equation 3.6.4

w(j+1) =w(y) *g'"":“"':-” (mod) (mod p) for g =0;1,2;.::

The mileageometer carried by W also records the distance so far:
J
D(j) =) s(wi (mod J)).
0

=

Similar to the expression for T's footprints, using the distance recorded on W's mileageometer
we can also re-express (3.6.4) into

x+D(i—1) [

w(i) =g mod p).

It is clear that footprints of the two kangaroos, t(i) and w(j), are two random functions. The
former ranges over a set of i points and the latter, j points. Due to birthday paradox, within
roughly

n=vb—a

jumps made by T and by W, respectively, a collision t(x) = w(h) should occur for some x <n and

h En. This is when T and W landed on the same point. One may imagine this as W landing on a
trap set by T. Now W is caught. The probability of occurring a collision tends to 1 quickly if the

number of random jumps the two kangaroo make exceed ¥ b— a,

When the collision t(x) = w(h) occurs, observing (3.6.3) and (3.6.4), we will have t(x + 1) = w(h
+ 1), tx + 2) =w(h + 2), .., etc., thatis, eventually w(m) = t(n) will show up for some integers

m =~n. One may imaging that the collision equation t(x) = w(h) represents the point where the
two legs of the Greek letter | meet, and after that meeting point, the two kangaroos jumps on
the same path which will eventually lead to the detection of w(m) = t(n) (recall that T jumps a
fixedn steps). This is explains | as the other name for the algorithm.

When the collision is detected, we have

T b+d{n—1)—D{m—1) I:

gt =g mod p).

Namely, we have extracted

z=b+dn—-1)—D(m—1).

Since we have kept the two mileageometers d(m — 1) and D(n — 1), we can compute X using the
"miles" accumulated in them. It is possible that the two kangaroos over run a long distance after
they have landed on the same point, and so the extracted index value can be x + o for some o
satisfyingg © (mod p) = 1. If this is the case, it's harmless to just consider x + o as the targeted
index value.

This is a probabilistic algorithm, which means that it may fail without finding a collision (i.e.,
fail to output the targeted index value). Nevertheless, due to the significant collision probability
we have seen in 83.6, the probability of failure can be controlled to adequately small. Repeating
the algorithm by offsetting W's starting point with a known offset value d, the algorithm will
terminated within several repetitions.

The value V¥ b—a being feasibly small is the condition for the | -algorithm to be practical.
Therefore, setting 1 — V b—a (the number of jumps made by T), the algorithm runs in time
proportional to computing ¥ b—a modulo exponentiations. The space requirement is trivial:

there are only J = |.Iog(b — a)J elements to be stored. The time constraint ¥ b—a means that
the algorithm cannot be practical for extracting a large index value. Pollard considers this
limitation as that kangaroos cannot jump across continents.

3.7 Information Theory

Shannon's definition for entropy [262,263] of a message source is a measure of the amount of
information the source has. The measure is in the form of a function of the probability
distribution over the set of all possible messages the source may output.

LetL = {a 1,a 2, ..., an} be a language of n different symbols. Suppose a source S may output
these symbols with independent probabilities

Prob[a,],Probla2],...,Prob[a,],

respectively, and these probabilities satisfy

Equation 3.7.1

Z Prob|a;] = 1.
i=1

The entropy of the source S is

Equation 3.7.2

1 n | 1
J'..l’l:..c)) = ZPIGb [ﬂ'...,] 1{}g2 m) .

i=1

The entropy function H(S) defined in (3.7.2) captures a quantity which we can name "number of
bits per source output.”

Let us explain the entropy function by assigning ourselves a simple job: considering that the
sourceS is memoryless, we must record the output from S. A straightforward way to do the job
is to record whatever S outputs. However, from (3.7.1) we know that each output from S will be
one of the n symbols aj,a 2, ..., ah which are already known to us. It can be quite uninteresting
and inefficient to record known things. Thus, the question for us is, how can we efficiently record
somethinginteresting in the output from S?

LetS output these symbols in a k consecutive sequence, i.e., S outputs a word of k symbols
for 1 <idp <%

g, Qi, - - - A4,

LetL x denote the minimum expected number of bits we have to use in order to record a k-

symbol word output from S. We have the following theorem for measuring the quantity L.

. Theorem 3.2 Shannon

[262,263]

L
lim =% = H(S).

k—oo K

Proof The following "sandwich" style relation holds for all integers k > O:

kH(S) < Ly < kH(S) +1.

The statement is in its limit form.E|

In other words, the minimum average number of bits needed for recording per output from S is
H(S).

3.7.1 Properties of Entropy

The function H(S) has the minimum value 0 if S outputs some symbol, say aj;, with probability 1,
since then

1

H{S} = Prob [{1]_] IDEQ(W

)= log,1 =0.

This case captures the fact that when we are sure that S will only and definitely output a;, then
why should we waste any bit to record it?

The function H(S) reaches the maximum value of logzn if S outputs each of these n symbols with

equal probability 1/n, i.e., S is a random source of the uniform distribution. This is because
under this situation

1 Ti
H(S) =~ Y "logy n = logy n.

=1

This case captures the following fact: since S can output any one of these n symbols with equal
probability, we have to prepare log2n bits in order to mark any possible one of the n numbers.

To this end we can think of H(S) as the amount of uncertainty, or information, contained in each
output from S.

Example 3.10.

ConsiderProt 1.1 ("Coin Flipping Over Telephone™). Whether running over telephones or on
connected computers, that protocol is for Alice and Bob to agree on a random bit. In the

protocol, Alice picks a large random integer T ey N, then sends f(x) to Bob under the one-way
functionf, and finally reveals x to Bob after his random guess. Viewed by Bob, x as a whole
number should not be regarded as a piece of new information since he knows already that x is
one element in N before even receiving f(x). Bob only uses an interesting part of Alice's output:
the parity of x is used to compute a random bit agreed with Alice. Thus, we have

]

Prob [z is D{ld]} T
1

Prob [is even]|

H(Alice) = Prob [z is odd]logy(

Prob [z is even] log,(

| |

That is, Alice is a source of 1 bit per output, even though her outputis a large integer.E|

If Alice and Bob repeat running Prot 1.1n times, they can agree on a string of n bits: a correct
guess by Bob outputs 1, while an incorrect guess outputs 0. In this usage of the protocol, both
Alice and Bob are 1-bit-per-protocol-run random sources. The agreed bit string is mutually trust
by both parties as random because each party has her/his own random input and knows that the
other party cannot control the output.

3.8 Redundancyin Natural Languages

Consider a source S(L) outputs words in a natural language L. Suppose that, on average, each
word in L has k characters. Since by Shannon's Theorem (Theorem 3.2),H(S(L)) is the minimum
average number of bits per output from S(L) (remember that per output from S(L) is a word of k
characters), the value

H(S(L))

r(L) = E

should be the minimum average number of bits per character in language L. The value r(L) is
called the rate of languagel. Let L be English. Shannon calculated that r(English) is in the
range of 1.0 to 1.5 bits/letter [265].

Let E = {a, b, ..., z}. Then we know r(z) = logz 26 = 4.7 bits/letter. r(z) is called absolute

rate of language with alphabet set E Comparing r(English) with r(E), we see that the actual
rate of English is considerably less than its absolute rate.

Theredundancy of languagel with alphabet set E is

r(E) —r(L) (bits per character).

Thus for a conservative consideration of r(English) = 1.5, redundancy of Englishis 4.7 — 1.5 =

3.2 bhits per letter. In terms of percentage, the redundancy ratio is 3.2/4.7 = 68%. In other
words, about 68% of the letters in an English word are redundant. This means a possibility to
compress an English article down to 32% of its original volume without loss of information.

Redundancy in a natural language arises from some known and frequently appearing patterns in
the language. For example, in English, letter g is almost always followed by u; "the,"” "ing" and
"ed" are a few other known examples of patterns. Redundancy in natural languages provides an
important means for cryptanalysis which aims for recovering plaintext messages or a
cryptographic key from a ciphertext.

Example 3.11.

We have mentioned in Chapter 1 that in this book we will study many kinds of attacks on
cryptographic algorithms and protocols. In a later chapter (Chapter 14) we will introduce and
discuss four kinds of attacks on encryption algorithms which have rather long names. They are:

Passive plaintext indistinguishable attack

Active plaintext indistinguishable attack in the chosen-plaintext mode

Active plaintext indistinguishable attack in the non-adaptive chosen-ciphertext mode

Active plaintext indistinguishable attack in the adaptive chosen-ciphertext mode

Full meanings of these attacks will be explained in that chapter. Here we only need to point out

the following two facts about these attacks:

1. The use of long names is very appropriate because behind each of these long-named
attacks there is a non-trivial amount of information to convey.

2. InChapter 14 we will only deal with these four attacks.

Since in Chapter 14 we will only deal with these four attacks, the actual entropy of these names
can be as low as 2 bits per name. However, because numbers 0, 1, 2, and 3 and a few other
single characters (e.g., letter "a", index "i", "|", security parameter "k", etc.) will appear in
Chapter 14, in order to uniquely identify these attacks, we actually have to use more than two
bits of information to name these attacks.

Notice that we will not use strings a0, al, a2, a3 in any part of Chapter 14; we can actually
shorten the four long attacking names to these four strings, respectively, without causing any
ambiguity. Consequently, within Chapter 14, the entropy for naming these four attacks can
reasonably be as low as 4.7 + 2 = 6.7 (bits per name). Here 4.7 bits are for representing the
letter "a", and 2 bits are for representing the numbers O, 1, 2, 3.

On the other hand, by simple counting the reader can find that the average length of the four
long names is 62.75 (letters). Therefore, the average number of bits per letter in these long
names is 6.7/62.75 < 0.107. From this result, we can further calculate the redundancy of these
long names as (within the scope of Chapter 14):

6.7 —0.107

= ORY.
6.7 %

|

So these long attacking names are very, very redundant!

However, the area of study for cryptographic systems with provable strong security is an
environment much larger than Chapter 14. Therefore the extremely shortened names a0, al, a2,
a3 used in Example 3.11 are in fact too short for naming these attacks (using so short names
may cause ambiguity in understanding and uncomfortableness). As a matter of fact, the latter
three attacking names listed in Example 3.11 are shortened into IND-CPA, IND-CCA and IND-
CCAZ2, respectively. We will adopt these names in Chapter 14 too.

Finally we point out that the reason why only the latter three long names are shortened is
because in the area of study the latter three attacks are discussed more frequently. For "passive
(plaintext indistinguishable) attack," we are comfortable enough to use the long name since the
attack is a less frequently discussed topic due to its ease of prevention.

3.9 Chapter Summary

In this chapter we have conducted a very rudimentary study of probability and information
theory. However, the material is sufficient for the use in this book.

In probability, itis very important to understand and be familiar with the basic notions, the
properties and the rules for the basic calculations. We should emphasize that a good
understanding of the very basics, which is not a difficult task at all, will help the most. We have
witnessed that useful theorems and tools, e.g., the law of total probability, the law of large
numbers and birthday paradox, can be derived solely from a few basic and intuitive properties
and rules.

In the rest of this book we will frequently meet applications of conditional probability, the law of
total probability, binomial distributions, and birthday paradox (we have already seen Pollard's | -
algorithm as a good application of birthday paradox). In these applications we will become more
and more familiar with these useful tools.

We have also conducted a basic study of information theory. We now understand that entropy of
a message source is a measure on the amount of information contained in messages from the
source, or on the degree of randomness (unpredictability) of these messages.

Exercises

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

Throw two dice one after the other. Find the probability of the following events:

i. sumis 7,1, and less than or equal to 12;
ii. second die < first die;
ili. at least one die is 6;

iv. given that the first die is 6, the second die is 6.

In the preceding problem, find the probability that the first die is 3 given that the
sum is greater or equal to 8.

Given that 4.5% of the population and 0.6% of females are color blind, what is the
percentage of color blindness in males who consists of 49.9% of the population?

Hint: apply the law of total probability.

Supposeq is uniformly distributed in [—p/2,p/2]. Find the probability that sin g <
15, and that |sin q] < .

A quarter numbers in a set of numbers are square numbers. Randomly picking 5
numbers from the set, find the probability for majority of them being square
numbers.

Hint: analogous to Example 3.8.(iii), sum up the majority cases of number of
squares = 3.

What are (left, right) tails of a binomial distribution function?
Derive (3.5.8), an upper bound for a "left tail" of the binomial distribution function.

Why can Definition 3.2 be viewed as a theorem which can be derived from the law
of large numbers?

Letn = pq with p and g being distinct large primes of roughly equal size. We know
that for any a < n and gcd(a, n) = 1, it holds aP*9 = a"*1 (mod n). Prove that n can
be factored in n”* steps of searching.

Hint: search index p+qg from aP*4 (mod n) by applying Pollard's | -algorithm, with
noticingp+q =n “2: then factor n using p+q and pq.

InProtocol "Coin Flipping Over Telephone," Alice picks a large and uniformly
random integer. What is the entropy of Alice's source measured at Alice's end, and
what is that measured by Bob?

3.11 InExample 3.11 we have measured the redundancy for four very long attacking
names to be introduced Chapter 14 with respect to four extremely shortened
names: a0, al, a2, a3. Now, in the scope of that chapter measure the redundancy
for the following four reasonably shortened attacking names:

e Passive IND-Attack,
e IND-CPA,
¢ IND-CCA,

e IND-CCAZ2.

Chapter 4. Computational Complexity

Section 4.1. Introduction

Section 4.2. Turing Machines

Section 4.3. Deterministic Polynomial Time

Section 4.4. Probabilistic Polynomial Time

Section 4.5. Non-deterministic Polynomial Time

Section 4.6. Non-Polynomial Bounds

Section 4.7. Polynomial-time Indistinguishability

Section 4.8. Theory of Computational Complexity and Modern Cryptography

Section 4.9. Chapter Summary

Exercises

4.1 Introduction

If a random variable follows the uniform distribution and is independent from any given
information, then there is no way to relate a uniformly random variable to any other information
by any means of "computation.” This is exactly the security basis behind the only unconditionally
(orinformation-theoretically) secure encryption scheme: one-time pad, that is, mixing a
uniformly random string (called key string) with a message string in a bit by bit fashion (see
87.3.3). The need for independence between the key string and the message string requires the
two strings to have the same length. Unfortunately, this poses an almost unpassable limitation
for a practical use of the one-time-pad encryption scheme.

Nevertheless (and somewhat ironical), we are still in a "fortunate™ position. At the time of
writing, the computational devices and methods which are widely available to us (hence to code
breakers) are based on a notion of computation which is not very powerful. To date we have not
been very successful in relating, via computation, between two pieces of information if one of
them merely "looks random" while in fact they are completely dependent one another (for
example, plaintext, ciphertext messages in many cryptosystems). As a result, modern
cryptography has its security based on a so-called complexity-theoretic model. Security of such
cryptosystems is conditional on various assumptions that certain problems are intractable. Here,
"intractable” means that the widely available computational methods cannot effectively handle
these problems.

We should point out that our "fortunate" position may only be temporary. A new and much more
powerful model of computation, quantum information processing (QIP), has emerged. Under this
new model of computation, exponentially many computation steps can be parallelized by
manipulating so-called "super-position" of quantum states. The consequence: many useful hard
problems underlying the security bases for complexity-theoretic based cryptography will
collapse, that is, will become useless. For example, using a quantum computer, factorization and
multiplication of integers will take similar time if the integers processed have similar sizes, and
hence, e.g., the famous public-key cryptosystems of Rivest, Shamir and Adleman (RSA) [246]
(see 88.5) will be thrown out of stage. However, at the time of writing, the QIP technique is still
quite distant from practical applications. The current record for factoring a composite number:
15 (see e.g., [300]), which is the least size, odd and non-square composite integer.

Therefore, let us not worry too much about the QIP for the time being. The rest of this chapter
provides an introduction to our "less-powerful” conventional computational model and to the
complexity-theoretic based approach to modern cryptography.

4.1.1 Chapter Outline

84.2 introduces the Turing computation model. 84.3 introduces the class of deterministic
polynomial-time, several useful deterministic polynomial-time algorithms and expressions for
complexity measurement. 84.4 and 84.5 introduce two subclasses of non-deterministic
polynomial-time (NP) problems. The first subclass (84.4) is probabilistic polynomial-time which
is further broken down to four subclasses of efficiently solvable problems (84.4.2-84.4.5). The
second subclass (84.5) is the problems which are efficiently solvable only with an internal
knowledge and play an important role in the complexity-theoretic-based modern cryptography.
84.6 introduces the notion of complexities which are not bound by any polynomial. 84.7
instantiates the non-polynomial bounded problems to a decisional case: polynomial-time
indistinguishability. Finally, 84.8 discusses the relationship between the theory of computational
complexity and modern cryptography.

4.2 Turing Machines

In order to make precise the notion of an effective procedure (i.e., an algorithm), Turing
proposed an imaginary computing device, called a Turing machine, to provide a primitive yet
sufficiently general model of computation. The computational complexity material to be
introduced here follows the computation model of Turing machines. Below we introduce a variant
version of Turing machines which are sufficient for our purpose of computational complexity
study. A general description of Turing machines can be studied in, e.g., 81.6 of [9].

In our variant, a Turing machine (see picture in Fig 4.1) consists of a finite-state control unit,

some number k (:3 1) of tapes and the same number of tapeheads. The finite-state control unit
controls the operations of the tapeheads which read or write some information from or to the
tapes; each tapehead does so by accessing one tape, called its tape, and by moving along its
tape either to left or to right. Each of these tapes is partitioned into an infinite number of cells.
The machine solves a problem by having a tapehead scanning a string of a finite number of
symbols which are placed sequentially in the leftmost cells of one tape; each symbol occupies
one cell and the remaining cells to the right on that tape are blank. This string is called an input
of a problem. The scanning starts from the leftmost cell of the tape that contains the input while
the machine is in a designated initial state. At any time only one tapehead of the machine is
accessing its tape. A step of access made by a tapehead on its tape is called a (legal)move. If
the machine starts from the initial state, makes legal moves one after another, completes
scanning the input string, eventually causes the satisfaction of a terminating condition and
thereby terminates, then the machine is said to recognize the input. Otherwise, the machine will
at some point have no legal move to make; then it will halt without recognizing the input. An
input which is recognized by a Turing machine is called an instance in a recognizable language.

Figure 4.1. A Turing Machine

Finite—state control unit

A tapehead

Tape |

Tape 2

Tape k

— Acell

For a given problem, a Turing machine can be fully specified by a function of its finite-state
control unit. Such a function can be given in the form of a table which lists the machine's next-
step move for each state. We shall provide a problem example and a specification of a Turing
machine in a moment (see Example 4.1 below).

Upon termination, the number of moves that a Turing machine M has taken to recognize an input
is said to be the running time or the time complexity of M and is denoted by Ty. Clearly, Ty can
be expressed as a function Ty(n) : N +— N where n is the length or size of the input instance,
i.e., the number of symbols that consists of the input string when M is in the initial state.
Obviously,T u(n) =n. In addition to the time requirement, M has also a space requirement S y
which is the number of tape cells that the tapeheads of M have visited in writing access. The
quantityS y can also be expressed as a function Sy(n) : [+— N and is said to be the space
complexity of M.

We will see a concrete Turing machine in the next section.

4.3 Deterministic Polynomial Time

We begin with considering the class of languages that are recognizable by deterministic Turing
machines in polynomial time. A function p(n) is a polynomial in n over the integers if it is of the
form

Equation 4.3.1

k—1

pln) = cxn® + ex_1n + -4+ en+eg

wherek and c; (i =0, 1, 2, ..., k) are constant integers with o = 0. When k > 0, the former is
called the degree, denoted by deg(p(n)), and the latter, the coefficients, of the polynomial

p(n).

Definition 4.1: Class P We write P to denote the class of languages with the following
characteristics. A language L is in P if there exists a Turing machine M and a polynomial p(n)

such that M recognizes any instance | €L in time T y(n)with T y(n) Ep(n)for all non-negative
integers n, where nis an integer parameter representing the size of the instance I. We say that L
is recognizable in polynomial time.

Roughly speaking, languages which are recognizable in polynomial time are considered as
always "easy." In other words, polynomial-time Turing machines are considered as always
"efficient” (we will define the notion of "easy" or "efficient” in 84.4.6). Here let us explain the

meaning for always. Turing machines which recognize languages in P are all deterministic. A
deterministic Turing machine outputs an effect which is entirely determined by the input to, and
the initial state of, the machine. In other words, running a deterministic Turing machine twice
with the same input and the same initial state, the two output effects will be identical.

We should notice that in Definition 4.1, the universal-style restrictions "any instance | €L" and
"for all non-negative integers n" are very important. In the study of computational complexity, a
problem is considered solved only if any instance of the problem can be solved by the same
Turing machine (i.e., the same method). Only so, the method is sufficiently general and thereby
can indeed be considered as a method. Let us look at the following example for an illustration.

Example 4.1. Language DIV3

Let DIV3 be the set of non-negative integers divisible by 3. Show DIV3 € P.
We do so by constructing a single-tape Turing machine to recognize DIV3 in polynomial time.

We first notice that if we write the input as integers in the base-3 (i.e., ternary) representation,
that is, an input is a string of symbols in {0, 1, 2}, then the recognition problem becomes
trivially easy: an input x is in DIV3 if and only if the last digit of x is 0. Consequently, the
machine to be constructed should simply make consecutive moves to right until reaching a blank
symbol, and then it stops with a YES answer if and only if the final non-blank symbol is O.
Clearly, this machine can recognize any instance in number of moves which is the size of the

instance. Hence DIV3 € F.

However, we want to show that the fact DIV3 € P should be independent from the base
representation of the input. It suffices for us to show the case when the input is written in the
base-2 (i.e., binary) representation. Let this machine be named Div3. The finite-state control of
Div3 follows a "next move" function specified in Fig 4.2.

Figure 4.2. The operation of machine Div3

Current. state | Symbol on tape Next move New state
i 1y right o
(initial state) 1 right 71

blank “Ding” & Stop

i1 () right iz
1 right o
g2 0 right q1
1 right i

We now argue that the machine Div3 defined by the function in Fig 4.2 is sufficiently general for
recognizing all instances in DIV3.

First, we notice that for recognizing whether or not a binary string x € DIV3, it is sufficient for
Div3 to have three states, corresponding to the cases when it (its tapehead) completes scanning

strings 3k, 3k+1 and 3k+2 (for k = 0), respectively. The least input instance O stipulates that
Div3 must be in an initial state (without loss of generality, let the initial state be qg) upon its
completion of scanning input string 0. Without loss of generality, we can assign Div3 to state q;
upon its completion of scanning input string 1, and to state g2 upon its completion of scanning
input string 2 (= (10)7)[al.

[al we use (aia »...an)p, With aj < b and i = 1, 2, ..., n, to denote a number written in the base-b
representation; the cases of b = 10 and b = 2 are often omitted if no confusion arises.

For any non-negative integer a in the binary representation, postfixing a with symbol O
(respectively, symbol 1) yields value 2a (respectively, value 2a + 1). Thus, after completion of
scanninga = 3k (when Div3 is in state q o), Div3 must remain in go upon further scanning
symbol O, since at that point it completes scanning 2a = 6k = 3k’, and must evolve to g1 upon
further scanning symbol 1, since at that point it completes scanning 2a + 1 =6k + 1 = 3k"' + 1.
Similarly, after completion of scanning a = 3k + 1 (when Div3 is in state q1), Div3 must evolve
tog 2> upon completion of scanning 2a = 6k + 2 = 3k' + 2, and must evolve to qo upon
completion of scanning 2a + 1 = 6k + 3 = 3k'. The remaining two cases for a = 3k + 2 are: 2a =
6k + 4 = 3k"' + 1 (Div3 evolves from g2 to 1), and 2a + 1 = 6k + 5 = 3k' + 2 (Div3 stays in q>).

So, the three states qo,q 1 and g2 correspond to Div3's completion of scanning strings 3k, 3k + 1

and 3k + 2, respectively, for any k = 0. Now upon the head meeting the special symbol "blank,"
only in state qg Div3 is configured to ring the bell and stop (meaning to terminate with YES
answer) and hence to recognize the input 3k; in the other two states, Div3 will have no legal
move to make and therefore halt with no recognition.

Finally, it is easy to see Tpjya(n) = n. Thus, Div3 does recognize language DIV3 in polynomial
; O
time.

Example 4.2.

i. The bitstring 10101(=(21)10) is recognizable; Div3 recognizes the string in Tpjyz(]10101])
=]10101] = 5 moves;

ii. The bit string 11100001(=(225)10) is another recognizable instance; Div3 recognizes itin
Toiva(]11100001]) = |11100001] = 8 moves;

iii. The bit string 10(= (2)10) is not recognizable; Div3 decides that it is unrecognizable in two
moves.

4.3.1 Polynomial-Time Computational Problems

By definition, P is the class of polynomial-time language recognition problems. A language
recognition problem is a decisional problem. For every possible input, a decisional problem

requires YES or NO as output. However, class Pis sufficiently general to enclose polynomial-
timecomputational problems. For every possible input, a computational problem requires an
output to be more general than a YES/NO answer. Since a Turing machine can write symbols to
a tape, it can of course output information more general than a YES/NO answer.

For instance, we can design another Turing machine which will not only recognize any instance x
£

€ DIV3, but will also output # upon recognition of x. Let this new machine be named Div3-
Comp. A very simple way to realize Div3-Comp is to have its input written in the base-3
representation. Then the input is an instance in DIV3 if and only if its final digit is O, and the
output from the machine, upon recognition of the input, should be the content on the input-tape
after having erased the last O unless 0 is the only symbol on the tape. If one insists that Div3-
Comp must only input and output binary numbers, then Div3-Comp can be realized as follows. It
first translates an input x from the base-2 representation into the base-3 representation, and

£

upon obtaining 3 in the base-3 representation it translates the number back to the base-2
representation as the final output. It is evident that these translations can be done digit-by-digit
mechanically in ¢ - |xX] moves where c is a constant. To this end we know

Tl'}ivf?'r-f}mnp(]x” {_: C- |"E|

whereC is a constant. From this example we see evidently that the class P must include the
problem which can be solved by Div3-Comp.

A general argument for P to enclose polynomial-time computational problems can be given as
follows. A computing device in the so-called von Neumann architecture (that is, the modern

computer architecture we are familiar with, [227]) has a counter, a memory, and a central
processor unit (CPU) which can perform one of the following basic instructions, called micro-
instructions, at a time:

Load: Loading the content in a memory location to
a register (in CPU)

Store: Storing the content of a register to a
memory location

Add: Adding contents of two registers

Comp: Complementing the content of a register (for
subtraction via "Add")

Jump: Setting the counter to a new value

JumpZ: "Jump" upon zero content of a register (for
conditional branching)

Stop: Terminating.

It is well known (see e.g., 81.4 of [9]) that the above small set of micro-instructions is sufficient
for constructing algorithms for solving arbitrary arithmetic problems on a von Neumann
computer (however notice that by "arbitrary arithmetic problems"” we do not mean to consider
instances of arbitrary sizes; we will further discuss this in a moment). It can be shown (e.g.,
Theorem 1.3 in [9]) that each micro-instruction in the above set can be simulated by a Turing
machine in polynomial time. Consequently, a problem that can be solved in polynomial time on a
von Neumann computer (which implies that the number of micro-instructions used in the
algorithm must be a polynomial in the size of the input to the algorithm) can also be solved by a
Turing machine in polynomial time. This is because for any polynomials p(n) and q(n), any ways
of arithmetic combining p(n),q(n),p(q(n)) and q(p(n)) will result in a polynomial in n. Notice
that we have deliberately excluded multiplication and division from our (simplified) set of micro-
instructions. A multiplication between numbers of size n can be done via n additions and hence
has its total cost should be measured by n x cost (Add). Division has the same cost as
multiplication since it is repeated subtraction which is addition of a complementary number.

We should mention an unimportant difference between the computation model based on Turing
machines and that based on von Neumann computers. By Definition 4.1, we regard a problem
solvable on a Turing machine only if any instance is solvable on the same machine (*one
machine to solve them all!"). The cost for solving a problem on a Turing machine is measured by
the size of the problem in a uniform manner across the whole spectrum of the size of the
problem. There is no need to have a pre-determined bound for the size of a problem. Machine
Div3 in Example 4.1 shows this evidently. Due to this property in cost measurement we say that
the Turing-machine-based computation model uses the uniform cost measure to measure
complexities. In contrast, registers and logical circuits which are the basic building blocks of a
von Neumann computer have fixed sizes. As a result, problems solvable on a von Neumann
computer must also have a pre-determined size: for the same problem, the bigger an instance
is, the bigger a machine is needed for solving it. In general, machines of different sizes do not
agree on a uniform measurement on the cost for solving the same problem. We therefore say
that a circuit-based computation model (upon which a von Neumann computer is based) has a
non-uniform cost measure. However, so far, the difference between the uniform and non-
uniform cost measures has not created any new complexity class, or caused any known classes
to collapse. That is why we say that this difference is not important.

In the rest of this chapter we shall often neglect the difference between a decisional problem and

a computational problem, and the difference among a Turing machine, a modern computer, a
procedure, or an algorithm. Decisional or computational problems will be generally called
problems, while machines, computers, procedures or algorithms will be generally referred to as
methods or algorithms. Occasionally, we will return to describing a language recognition
problem, and only then we will return to using Turing machines as our basic instrument of
computation.

4.3.2 Algorithms and Computational Complexity Expressions

Let us now study three very useful polynomial-time algorithms. Through the study of these
algorithms, we shall (i) get familiar with a programming language which we shall use to write
algorithms and protocols in this book, (ii) agree on some notation and convention for expressing
computational complexity for algorithms and protocols, and (iii) establish the time complexities
for a number of arithmetic operations which will be most frequently used in cryptography.

Above we have explained that Turing machines provide us with a general model of computation
and with a precise notion for measuring the computational complexity for procedures. However,
we do not generally wish to describe algorithms in terms of such a primitive machine, not even
in terms of the micro-instructions of a modern computer (i.e., the set of instructions we
described in 8 4.3.1). In order to describe algorithms and mathematical statements effectively
and clearly, we shall use a high-level programming language called "Pseudo Programming
Language™ which is very close to a number of popular high-level programming languages such
as Pascal or C and can be understood without any difficulty due to its plainly self-explanatory
feature.

4.3.2.1 Greatest Common Divisor

The first algorithm we shall study is the famous algorithm of Euclid for computing greatest
common divisor (Alg 4.1). Denoted by gcd(a, b) the greatest common divisor of integers a and
b, gcd(a, b) is defined to be the largest integer that divides both a and b.

Algorithm 4.1: Euclid Algorithm for Greatest Common Divisor

INPUT Integersa > b 2 0;
OUTPUT gcd(a, b).

1. ifo=0return(a);

2. return(gcd(b, a mod b)).

InAlg 4.1, "a mod b" denotes the remainder of a divided by b. (In 84.3.2.5 we will formally
define the modular operation and provide some useful facts on modular arithmetic.) The

conditiona>b = 0 is merely for the purpose of ease of exposition. In the implementation, this

condition can be satisfied by replacing a, b with their absolute values, and by invoking gcd(|b],
|a]) in case |a| < |b].

Now let us examine how Alg 4.1 works. For positive integers a :_"'b, we can always write

Equation 4.3.2

a=bg+r

for some integer q ;t 0 (the quotient of a divided by b) and O i:r < b (the remainder of a

divided by b). Since by definition, gcd(a, b) divides both a and b, equation (4.3.2) shows that it
must also divide r too. Consequently, gcd(a, b) equals gcd(b, r). Since the remainder r (of a
divided by b) is denoted by a mod b, we have derived

gcd(a, b) = gcd(b, a mod b).

This is the fact we have used in Alg 4.1, namely, gcd(a, b) is defined by gcd(b, a mod b)
recursively. The series of recursive calls of gcd compute the following series of equations, each is
in the form of (4.3.2) and is formed by a division between the two input values:

Equation 4.3.3

a = bqy + 1
b = rigz + 12

Ty = T2q3 + T3

Th—3 = Tk—2Qk—1 T+ Tk—1
Fk—2 = Tk—1qk + Tk

wherer x = 0 (which causes the terminating condition in step 1 being met) and q1,q9 2, ..., qk.r 1,
ra, ..., rk—1 are non-zero integers. With rg = 0, the last equation in (4.3.3) means rk_1 divides
rk—2, and in the last-but-one equation, it must also divide rx_3, ..., eventually, as shown in the
first equation in (4.3.3),r k-1 must divide both a and b. None of other remainders in other
equations has this property (that's why they are called remainders, not a divisor; only rk_; is a
divisor in the last equation in (4.3.3)). Therefore, rk—1 is indeed the greatest common divisor of a
andb, i.e., r k-1 = gcd(a, b).

For example, gcd (108, 42) will invoke the following sequence of recursive calls:

gcd(108, 42) = gcd(42, 24) = gcd(24, 18) = gcd(18, 6) = gcd(6, 0) = 6.

4.3.2.2 Extended Euclid Algorithm

Alg 4.1 has thrown away all the intermediate quotients. If we accumulate them during the
computation of gcd(a, b), we can obtain something more than just gcd(a, b).

Let us see what we can obtain.

The first equation in (4.3.3) can be written as

a—+b(—q) =rmr.

Multiplying both sides of this equation with g2, we can obtain

agqa + b(—qiq2) = r1qa.

Using this equation and the second equation in (4.3.3), we can derive

Equation 4.3.4

a(—q2) + (1 + qiq2) = ra.

The same way of calculation can be carried out. In general, fori =1, 2, ..., k, we can derive

Equation 4.3.5

aXj + b =7

wherel j,m;are some integers which are, as indicated in (4.3.4), certain form of accumulations
of the intermediate quotients. We have seen in 84.3.2.1 that following this way of calculation we
will eventually reach rix = O, and then we have

Equation 4.3.6

aX_1 + !I}‘[qu:_l =TE. = g(‘.d{({., !‘}]I

An algorithm that inputs a, b and outputs the integers |i_;,mg_1 satisfying (4.3.6) is called
extended Euclid algorithm. Extended Euclid algorithm will have an extensive use in the rest of
the book for computing division modulo integers. Let us now specify this algorithm, that s, find
a general method for accumulating the intermediate quotients.

Observe the equations in (4.3.3) and denoter—; = a,ro=b, -1 =1, m1=0,l90=0, np= 1.

Then fori=1, 2, ..., k=1, the ith equation in (4.3.3) relates ri_1,r j and rij+1 by
Equation 4.3.7

Tig1l = Ti=1 — Tifi41-

Replacingr j—1 and r; in the right-hand side of (4.3.7) using equation (4.3.5), we derive

Equation 4.3.8

rie1 = a{Aic1 — giv1 i) + b(pic1 — i1 i)

Comparing between (4.3.8) and (4.3.5), we obtain (fori=0, 1, ..., k—1)

Equation 4.3.9

}"'i-l-l = }k;i__l - 'f}-i-l—l}‘f.
Hi+l = MHi—1 — i1}

These two equations provide us with a general method for accumulating the intermediate
quotients while computing greatest common divisor (see Alg 4.2).

Algorithm 4.2: Extended Euclid Algorithm

INPUT a, b: integerswitha> b = 0;

OUTPUT integersl ,msatisfying al + bm= gcd(a, b).

1. i+#=0; r_q +a;r g+b;
| 1#&=1;m ¢=0;lo%=0; np+1; (* initialize *)

2. while (ri = al j + bm ¥ 0) do (* it always holds al | + bm = r; *)

a. g #=r i1 = ri; (* + denotes division in integers *)

b. ljr1 =l -1 —gli;mj+r1 #=mj_1 — gm; (* sum up quotients *)

C. i+i+ 1;

3. return((I'j—1,mi-1)).

.Remark 4.1

In order to expose the working principle of Alg 4.1 and Alg 4.2 in an easily understandable way,
we have chosen to sacrifice efficiency. In the next two sections (84.3.2.3—84.3.2.4) we will
analyze their time complexities and contrast our result with the best known time complexity

result for computing greatest common divisor.H

4.3.2.3 Time Complexity of Euclid Algorithms

Let us now measure the time complexities for the two Euclid algorithms. It is clear that the
number of recursive calls in Alg 4.1 is equal to the number of loops in Alg 4.2 which is in turn
equal to k in (4.3.3).

Consider the case a > b and observe (4.3.7) fori =0, 1, ..., k= 1. We have either of the
following two cases:

Equation 4.3.10

|?"-g| < |?"g_ i |

or

Equation 4.3.11

Iriv1]| < |rical-

Further noticing rj+1 < rj, so case (4.3.10) also implies case (4.3.11), that s, case (4.3.11) holds
invariantly. This means that the maximum value for k is bounded by 2-]a]. If we consider the
modulo operation as a basic operation which takes one unit of time, then the time complexity of
gcd realized in Alg 4.1 is bounded by 2-]a]. This is a linear function in the size of a.

. Theorem 4.1

Greatest common divisor gcd(a, b)can be computed by performing no more than 2max(]al|, |b])
modulo operations. Therefore, Alg 4.1 and Alg 4.2 terminate within 2max(]a|, |b])loops.

G. Lamé (1795-1870) was the first person who proved the first sentence in the statements of
Theorem 4.1. It is considered to be the first theorem ever proved about the theory of
computational complexity (page 35 of [176]).

The series of equations in (4.3.3) which are formed by a series of divisions suggest an inherent

sequentiality characteristic in the computation of greatest common divisor. Since Euclid
discovered his algorithm (i.e., Alg 4.1), no significant improvement has been found to cut short
this seemingly necessary sequential process.

4.3.2.4 Two Expressions for Computational Complexity

When we measure the computational complexity for an algorithm, it is often difficult or
unnecessary to pinpoint exactly the constant coefficient in an expression that bounds the
complexity measure. Order notation allows us to ease the task of complexity measurement.

Definition 4.2: Order NotationWe write O(f(n))to denote a function g(n)such that there
exists a constant ¢ > 0 and a natural number N with |g(n)| Ec|f(n)|for alln =N.

Using the notation O() we can express the time complexities of Alg 4.1 and Alg 4.2 as O(loga).
Notice that in this expression we have replaced |a] with log a without explicitly giving the base
of the logarithm (though we conventionally agree that the omitted base is natural base €). The
reader may confirm that any base b > 1 will provide a correct measurement expression under

the order notation (Exercise 4.10).

So far we have considered that computing one modulo operation costs one unit of time, that is,
it has the time complexity O(1). As a matter of fact, modulo operation "a (mod b)" in the general
case involves division a =+ b, which is actually done in Alg 4.2 in order to keep the quotient.
Therefore the time complexity of modulo operation, the same as that of division, should depend
on the sizes of the two operands. In practical terms (for the meaning of "practical," see the end
of 84.4.6), using O(1) to represent the time for a division is too coarse for a sensible resource
management.

A simple modification of the order notation is to measure an arithmetic in terms of bitwise
computation. In bitwise computation, all variables have the values O or 1, and the operations

used are logical rather than arithmetic: they are A (for AND), vV (for OR), ea' (for XOR, i.e.,
"exclusive or"), and — (for NOT).

Definition 4.3: Bitwise Order NotationWe write O g()to denote O()under the bitwise
computation model.

Under the bitwise model, addition and subtraction between two integers i and j take max(|i|, lj])
bitwise operations, i.e., Og(max(]i|, |j])) time. Intuitively, multiplication and division between i
andj take |i] - |j| bitwise operations, i.e., O g(logi. log j) time. We should point out that for
multiplication (and division) a lower time complexity of Og(log(i + j) log log(i + j)) can be
obtained if the fast Fourier Transformation (FFT) method is used. However, this lower complexity
is an asymptotic one which is associated with a much larger constant coefficient (related to the
cost of FFT) and may actually cause a higher complexity for operands having relatively small
sizes (e.qg., sizes for modern cryptographic use). Therefore in this book we shall not consider the
FFT implemented multiplication and division. Consequently we shall only use the intuitive
complexity measurement for multiplication and division.

Let us now express the time complexities of Alg 4.1 and Alg 4.2 using the more precise bitwise
order notation Og(). In Theorem 4.1 we have obtained that for a > b, gcd(a, b) can be computed
inO(loga) time. Given that both input values are bounded by a, and that modulo operation or
division cost Og((loga) 2), the time complexities of Alg 4.1 and Alg 4.2 are both Og((loga) 3).

Now we should recall Remark 4.1: we have chosen to present these algorithms with easily
understandable working principles by sacrificing the efficiency. As a matter of fact, our sacrifice
on efficiency is rather large!

Careful realizations of these two algorithms should make use of the following two facts:

i. Modulo operation or division for creating a = bqg + r cost Og((loga)(logq)).

ii. Quotientsq 1,q 2, ..., gk in (4.3.3) satisfy

Equation 4.3.12

k k

Z log q; = log]:[qi < log a.

Hence the total time for computing greatest common divisor, via a careful realization, can be
bounded by

k
Z Og((loga)(logq;)) < Op((loga)?).

i=l

Careful realizations of the counterparts for Alg 4.1 and Alg 4.2 can be found in Chapter 1 of

[79].

In the rest of this book, we shall use the best known result Og((loga) 2) for expressing the time
complexity for computing greatest common divisor, either using Euclid algorithm or the
extended Euclid algorithm.

4.3.2.5 Modular Arithmetic

An important polynomial-time deterministic algorithm we shall study is one for computing
modular exponentiation. Modular exponentiation is widely used in public-key cryptography. Let
us first take a short course on modular arithmetic (readers who are familiar with modular
arithmetic can skip this section).

Definition 4.4: Modular OperationGiven integers x and n > 1, the operation "x (mod n)"is
the remainder of x divided by n, that is, a non-negative integer r € [0, n — 1] satisfying

r=kn+r
for some integer k.

. Theorem 4.2 Properties of Modular Operation

Let x, ¥, n ?’-‘ 0 be integers with gcd(y, n) = 1. The modular operation has the following

properties.

1. (x+y) (mod n) = [(x (mod n)) + (y (mod n))] (mod n);
2. (—xX) (mod n) = (n —x) (mod n) =n— (x (mod n));
3. (x-y) (modn) = [(x (mod n)) - (y (mod n))] (mod n);

4. Denote by y~1 (mod n)themultiplicative inverseof y modulo n. It is a unique integer in
[1,n — 1] satisfying

(v -y™1) (mod n) = 1.
Proof We shall only show 1 and 4 while leaving 2 and 3 as an exercise (Exercise 4.4).

We can write x = kn +r,y =In + sfor 0 i:r,s En—l.

For 1, we have

(x+y) (mod n) = [(kn+ 1)+ (n + 5)] (mod n)
= [(k+£€)n+ (r+ s)] (mod n)
= (r+s) (mod n)
= [(z (mod n)) + (y (mod n))] (mod n)

For 4, because gcd(y, n) = 1, applying extended Euclid algorithm (Alg 4.2) on input y, n, we
obtain integers | and msatisfying

Equation 4.3.13

YA+ np = 1.

Without loss of generality, we have | < n because otherwise we can replace | with | (mod n) and
replacemwith yk + mfor some k while keeping equation (4.3.13).

ByDefinition 4.4,yl (mod n) = 1. Therefore we have foundy —1 =1 < n as the multiplicative
inverse of y modulo n. Below we show the uniqueness of y—1 in [1, n — 1]. Suppose there exists

another multiplicative inverse of y mod n; denote itby | '€ [1,n— 1], " #l . We have

y(A—A') mod n =0,

Equation 4.3.14

y(A — A') = an,

for some integer a. We know y = In + 1 for some integer f Therefore equation (4.3.14) is

(fn+1)(A = X) =an,

or
!

A— AN =bn,

for some integer b. This contradicts our assumption | ,I" € [1, n— 1], | F-. U

Same as in the case of division in rationals @ division by a number modulo n is defined to be
multiplication with the inverse of the divisor, of course, this requires the existence of the inverse,

just as in the case in @ Thus, for any y with gcd(y, n) = 1, we write x/y mod n for xy=1 mod n.

Since computing y~1 involves applying extended Euclid algorithm, it needs time Og((logn) 2).
Therefore the time complexity for division modulo n is Og((logn) 2).

Theorem 4.2 shows that modular arithmetic is very similar to the integer arithmetic. It is easy to
see that addition and multiplication obey the following laws of commutativity and associativity
(where "0" denotes either addition or multiplication):

a°bmodn=b°a (Commutativity)
modn
a®((°c)modn=(a (Associativity)

°h) ©c mod n

Finally we should point out that, in the definition for the modular operation x mod n (see
Definition 4.4), the value of k (the quotient of x divided by n) is not an important element.
Therefore in equation

Equation 4.3.15

rmod n =y mod n

we should not care whether x and y may differ by a multiple of n. In the sequel, the above
equation will always be written as either

T =y (mod n),

or

x (mod n) = y.

We shall call this way of denoting equation (4.3.15) a congruence modulo n, or we say: X is
congruent to y modulo n.

4.3.2.6 Modular Exponentiation

Forx, y < n,modular exponentiationx Y (mod n) follows the usual definition of exponentiation
in integers as repeated multiplications of x to itself y times, but in terms of modulo n:

oV L or.. g (mod n).

]

Lety =+ 2 denote y divided by 2 with truncation to integers, that is,

o | U2 if y is even
yTE_{ (y—1)/2 ifyis odd

Then applying the "Associativity Law" of modular multiplication, we have

o (rE)”_E if y is even
e (z?)v*2x if y is odd

The above computation provides the well-known algorithm for realizing modular exponentiation
called "repeated square-and-multiply.” The algorithm repeats the following process: dividing the
exponent into 2, performing a squaring, and performing an extra multiplication if the exponent is
odd.Alg 4.3 specifies a recursive version of the method.

Algorithm 4.3: Modular Exponentiation

INPUT X, Y, n: integers with x > 0, y :_:' O,n>1;
OUTPUT x¥ (mod n).

mod_exp(Xx, y, n)

1. ify = 0 return(1);

2. ify (mod 2) = 0 return(mod_exp(x 2 (mod n),y = 2, n));

3. return(x - mod_exp(x2 (mod n),y = 2, n) (mod n)).

We should notice a property in Alg 4.3 that is resulted from the recursive definition: the
execution of a "return" statement implies that the subsequent step(s) following the "return”
statement will never be executed. This is because the statement return(*value") causes the
program to go back, with "value," to the point where the current call of mod_exp was made. So
inAlg 4.3, if step 2 is executed, then step 3 will not be executed.

For example, starting from mod_exp(2, 21, 23), Alg 4.3 will invoke the following five recursive
calls:

mod_exp(2, 21, 23)

=2 - mod_exp(4(= 22 (mod 23)), 10, 23) (in step 3)
=2 - mod_exp(16(= 42 (mod 23)), 5, 23) (in step 2)
=2 .16 - mod_exp(3(= 162 (mod 23)), 2, 23) (in step 3)
=2 .16 - mod_exp(9(= 32 (mod 23)), 1, 23) (in step 2)
=2-16 -9 - mod_exp(12(= 92 (mod 23)), 0, 23) (in step 3)
=2-16-9-1 (in step 1)

Notice that the above six lines contain five recursive calls of mod_exp. The final line
"mod_exp(12, 0, 23)" merely represents "return value 1" and is not a recursive call. The final
value returned to mod_exp(2, 21, 23) is 12 which is constructed from several multiplications
made in step 3:

12=12.18.9=2" (2% {((2*)*)*)" (ricd 23).

Let us now examine the time complexity of mod_exp realized in Alg 4.3. Since fory > 0, the

operation "dividing into 2" can be performed exactly [logoy] + 1 times to reach O as the
quotient, a run of mod_exp(x, y, n) will invoke exactly [logay] + 1 recursive calls of the function
itself to reach the terminating condition in step 1 (zero exponent). Each recursive call consists of
a squaring or a squaring plus a multiplication which costs Og((logx) 2). Thus, considering X, y as
numbers less than n, the time complexity for mod_exp realized in Alg 4.3 is bounded by Og((log
n)3).

Similar to a seemingly unavoidable sequentiality in the computation of gcd, there is also an
inherent sequentiality in the computation of mod_exp. This is seen as a simple fact in the
repeated squaring: x4 can only be computed after x2 has been computed, and so on. Over the
years, no significant progress has been made to improve the complexity from Og((logn) 3)
(without considering using FFT, review our discussion in 4.3.2.4).

Fig 4.3 summarizes our examination on the time complexities for the basic modular arithmetic
operations. We should notice that in the case of addition and subtraction, the modulo operation

should not be considered to involve division; this is because for O Ea, b <n,we have —n < a +

b < 2n, and therefore

atb if0<atb<n
atbhb(modn)=¢ atb—n ifatb>n
n+{atd ifatb<0

Figure 4.3. Bitwise Time Complexities of the Basic Modular Arithmetic
Operations

Operation Complexity
for a, b g [1.n)

a=£b (mod n) Og(logn)

a-b (mod n) Op((logn)?)
b1 (mod n) Og((logn)?)
a/b(mod n) | Op((logn)?)

a” (mod n) Op((logn)®)

4.4 Probabilistic Polynomial Time

It is generally accepted that if a language is not in P then there is no Turing machine that
recognizes it and is always efficienfPl. However, there is a class of languages with the following

property: their membership in P has not been proven, but they can always be recognized
efficiently by a kind of Turing machine which may sometimes make mistakes.

[b] The precise meaning for an "efficient machine” will be defined in 84.4.6; here we can roughly say that an
efficient machine is a fast one.

The reason why such a machine may sometimes make a mistake is that in some step of its
operation the machine will make a random move. While some random moves lead to a correct
result, others lead to an incorrect one. Such a Turing machine is called a non-deterministic
Turing machine. A subclass of decisional problems we are now introducing share the following
bounded error property:

The probability for a non-deterministic Turing machine to make a mistake when answering
a decisional problem is bounded by a constant (the probability space is the machine's
random tape).

We conventionally call a non-deterministic Turing machine with a bounded error a probabilistic
Turing machine. For this reason, the name "non-deterministic Turing machine" is actually
reserved for a different class of decisional problems which we will introduce in 84.5.

A probabilistic Turing machine also has a plural number of tapes. One of these tapes is called a
random tape which contains some uniformly distributed random symbols. During the scanning
of an input instance I, the machine will also interact with the random tape, pick up a random
symbol and then proceed like a deterministic Turing machine. The random string is called the
random input to a probabilistic Turing machine. With the involvement of the random input, the
recognition of an input instance | by a probabilistic Turing machine is no longer a deterministic
function of I, but is associated with a random variable, that is, a function of the machine’s
random input. This random variable assigns certain error probability to the event of
recognizingl.

The class of languages that are recognizable by probabilistic Turing machines is called
probabilistic polynomial-time (PPT) languages, which we denote by PP.

Definition 4.5: Class F P we write P P to denote the class of languages with the following

characteristics. A language L is in PP if there exists a probabilistic Turing machine PM and a
polynomial p(n), such that PM recognizes any instance | € L with certain error probability which

is a random variable of PM's random move, in time Tpy(n) with Tpy(Nn) < p(n) for all nonnegative
integers n, where n is an integer parameter representing the size of the instance 1.

InDefinition 4.5 we have left one element to have a particularly vague meaning, which is: "PM
recognizesl €L, with certain error probability.” The "certain error probability" should be
formulated into the following two expressions of conditional probability bounds:

Equation 4.4.1

and

Equation 4.4.2

Prob | PM recognizes [€ L

I¢L

<9,

where € and d are constants satisfying

Equation 4.4.3

ee(%,l]. d€[0,=).

The probability space is the random tape of PM.

The expression (4.4.1) is the probability bound for a correct recognition of an instance. Itis
called the completeness probability (bound). Here "completeness” means eventually
recognition of an instance in the language. The need for bounding this probability from below is
in order to limit the possibility for a mistaken rejection of an instance. A more meaningful
manifestation for (4.4.1) is the following equivalent re-expression:

Equation 4.4 .4

Prob[PM decides [L| I € L] <1 -

In this expression the value 1 — € is the probability bound for a false rejection. We say that the
completeness of PM is a bounded probability for false rejection.

The expression (4.4.2) is the probability bound for a mistaken recognition of a non-instance. It
is called the soundness probability (bound), Here "soundness" means no recognition of a

non-instance. The need for bounding the probability from above is obvious. We say that the
soundness of PM is a bounded probability for false recognition.

4.4.1 Error Probability Characterizations

We have expressed error probability bounds for a PM with two constants €,d in two intervals
(4.4.3) with no any precision. Now let us explain that the imprecision will not cause any
problem.

4.4.1.1 Polynomial-time Characterizations

For a probabilistic Turing machine PM with error probabilities bounded by any fixed value

1 y 1
€ € (‘2 1 1] (for completeness) and and any fixed value 0 € l“* 2] (for soundness), if we
repeatedly run PM n times on an input I, the repetition, denoted by PM'(l, n), is also a
probabilistic Turing machine. We can use "majority election" as the criterion for PM'(l, n) to

Tl
decide whether to recognize or reject I. That is, if [EJ +1 or more runs of PM(1) output
recognition (rejection), then PM'(l, n) recognizes (rejects). It is clear that the completeness and
soundness probabilities of PM'(l, n) are functions of n. We now show that PM'(l, n) remains
being polynomial time in the size of I.

Since the random moves of the n runs of PM(l) are independent, each run of PM(l) can be
viewed as a Bernoulli Trial of ¢ (or d for soundness) probability for "success" and 1 — € (or 1 —d
for soundness) probability for "failure." Applying binomial distribution (see 83.5.2), the majority
election criterion made by PM'(l, n) provides the error probability bound for PM'(l, n) as the sum

Tl
of all probabilities for n Bernoulli Trials with [EJ +1 or more "successes." For completeness, the
sum is

Equation 4.4.5

e(n) = Prob [5,,, = _?—QIJ + 1] = b(i;n,e€).

For soundness, we have

Equation 4.4.6

hrs

3(n) = Prob [nn > EJ £ 1] = Y b(jin,4).

These two expressions are accumulative sums of the respective binomial distributions. Because

1 1
£>3 and ¢ < 2, the central term (defined in §3.5.2.1) of the first distribution is at the point

(n+1)e> |2]| +1

(where the binomial term reaches the maximum value) and that for

; v n
latter is at the point{n { l}é < L.ZJ } l.

In 83.5.2.1 we have investigated the behavior of these sums. The sum in (4.4.6) is a "right tail"
n

of the binomial distribution function since [?J +1>(n+1)d

r=|2fl

2 land P = d, we obtain

. Applying (3.5.7) using

_ 21 —48) 1
o) < {352 mrl

Withd being constant, we have

o(n) = 0 (n— o).

The reader may analogously derive the following result

€(n) >1— =
n

for some constant c. The derivation is left as an exercise (Exercise 4.7, a hint is given there).

1
Since the "tails" diminish to zero faster than n doeslcl, we can let n = ||, and hence the
machinePM'(l, n) runs in time |I]|-poly(]I]) where poly(]I]) is the running time of the machine
PM on the input |I. Therefore, PM' remains being polynomial time.

[c] Our estimates derived in (3.5.7) and (3.5.8) are only two upper bounds. The real speed that a tail
1

diminishes to 0 is much faster than that of H. See Example 3.9 for numerical cases. This will further be
confirmed by the soundness and completeness properties of Prot 18.4 in §18.5.1.1.

1
4.4.1.2 Why Bounded Away from 2?

__ ot n
Taa 0 2, then both distributions (4.4.5) and (4.4.6) have central terms at the point [2 J It
is easy to check that for odd n

e(n) = d(n) = lf

3

and for even n

e(n) = d(n) =

e

1
That is, £(n) can never be enlarged and d(n) can never be reduced; they will remain at the 2
level regardless of how many times PM(I) is repeated. So machine PM'(l, n), as n independent
runs of PM(1), can reach no decision because for both completeness and soundness cases, half of
then runs of PM(I) reach acceptances and the other half of the n runs reach rejections. With n
unbounded and PM(I) remaining in the indecision state, machine PM'(l, n) will never terminate
and hence cannot be a polynomial-time algorithm.

Therefore, for PP being the class of languages with membership recognizable in probabilistic

polynomial time, we must require both error probabilities expressed in (4.4.1) and (4.4.2) be
1

bounded away from 2.

However, we should notice that the requirement for error probabilities being "bounded-away-

1
from-2" is only necessary for the most general case of language recognition problems in the
class PP which must include the subclass of the "two-sided error" problems (see §4.4.5). If a

problem has one-sided error (i.e., either € = 1 or d = 0, see 84.4.3 and 84.4.4), then bounded
1
away from 2 is unnecessary. This is because, in the case of one-sided error algorithms, we do

not have to use the majority election criterion. A "minority election criterion” can be used
instead. For example, a "unanimous election criterion" can be used with which PM'(l, n)
recognizes (rejects) | only if all n runs of PM(l) reaches the same decision. In such a election
criterion, €(n) =* 1 or d(n) = 0 in a exponential speed for any quantities e,d € (0, 1).

1 W |
In applications, it is possible that some useful problems have € = 2or R 2 (but, as we have

reasoned, must not holding of both). For such problems, changing election criterion (e.g., to a
minority election one) can provide us with room to enlarge or reduce the error probability. In

8§18.5.1, we will see a protocol example which has the recognition probability €= 2, but we can
still enlarge the completeness probability by repeating the protocol using a minority election
criterion.

Several Subclasses in PP

The class P P has several subclasses which are defined by different ways to characterize the
error-probability bound expressions in (4.4.1) and in (4.4.2), using different values of € and d,
respectively. Let us now introduce these subclasses. We will exemplify each subclass with an
algorithm. Similar to the case where a deterministic Turing machine simulates a polynomial-time
algorithm, a probabilistic Turing machine simulates a randomized (polynomial-time)
algorithm. Therefore, the algorithm examples shown in our introduction will not be limited to
those for language recognition.

4.4.2 Subclass "Always Fast and Always Correct”

A subclass of F P is named ZPP (which stands for Zero-sided-error Probabilistic
Polynomial time) if the error probability bounds in (4.4.1) and (4.4.2) have the following

characterization: for any L € PP there exists a randomized algorithm A such that for any
instancel

Prob [A recognizes I |1 € L] =1

and

Prob [A recognizes I | [¢ L] = 0.

This error-probability characterization means that a random operation in a randomized

algorithm makes no error at all. So, at a first glance, ZPP should have no difference from P .
However, there are a class of problems which can be solved by deterministic algorithms as well
as by randomized algorithms, both in polynomial time; while the randomized algorithms can
yield no error whatsoever, they are much quicker than their deterministic counterparts. We will
provide an example for contrasting the time complexity in a moment.

4.4.2.1 An Example of "Zero-sided-error" Algorithms

Some randomized algorithms are so natural that we have been using them instead of their
deterministic counterparts for a long history. For example, to weigh an object using a
steelyard[d], the user should move around the counterbalance on the scaled arm in a
randomized way which will allow one to find the weight much quicker than to do the job in a
deterministic way. One such algorithm we all are familiar with is a randomized process for
looking up someone's phone number from a phone book. This algorithm is specified in Alg 4.4.

[d] The weighing instrument is called "Gancheng" in Chinese and has been used for more than two thousand
years.

Algorithm 4.4: Searching Through Phone Book (a £2PP
Algorithm)

INPUT Name: a person's name;

Book: a phone book;

OUTPUT The person's phone number.

1. Repeat the following until Book has one page
{
(a) Open Book at a random page;
(b) If Name occurs before the page, Book += Earlier_pages(Book);
(c) Else Book + Later_pages(Book);

}

2. Return(Phone number beside Name);

Clearly, the random operation in Alg 4.4 will not introduce any error to the output result.
Therefore this is indeed a "zero-sided-error” randomized algorithm. For a phone book of N
pages,Alg 4.4 will only need to execute O(logN) steps and find the page containing the name
and the number. We should notice that a deterministic algorithm for "searching through phone
book" will execute average O(N) steps.

The reason why Alg 4.4 works so fast is that names in a phone book have been sorted
alphabetically. We should notice that sorting is itself a ZPP problem: "quick-sort" (see, e.g.,
pages 92-97 of [9]) is a randomized sorting algorithm, can sort N elements in (N log N) steps,
and its random operations will not introduce any error to the outcome result. In contrast,
"bubble-sort" is a deterministic sorting algorithm; it sorts N elements in (N2) steps (see e.g.,
pages 77 of [9]).

We can say that ZPFP is a subclass of languages which can be recognized by randomized
algorithms in an "always fast and always correct" fashion.

4.4.3 Subclass "Always Fast and Probably Correct”

A subclass of P P which we name P p(Monte Carlo) (where P P(Monte Carlo)" stands for
"Monte Carlo" which is typically used as a generic term for "randomized") if the error probability
bounds in (4.4.1) and (4.4.2) have the following characterization: for any L € P P(Monte Carlo)
there exists a randomized algorithm A such that for any instance |

Prob[A recognizes I | I € L] =1,

and

Prob [A recognizes [| I & L] < 4,

1
hered is any constant in the interval (O, 2). However, as we have pointed out in §4.4.1.2, since
for one-sided-error algorithms we do not have to use the majority election criterion in the
process of reducing a soundness error probability bound, d can actually be any constant in (O,
1).

Notice that now d % 0; otherwise the subclass degenerates to the special case ZPP.
Randomized algorithms with this error-probability characterization have one-sided error in the
soundness side. In other words, such an algorithm may make a mistake in terms of a false
recognition of a non-instance. However, if an input is indeed an instance then it will always be
recognized. This subclass of algorithms are called Monte Carlo algorithms.

From our study in 84.4.1 we know that the error probability of a Monte Carlo algorithm can be
reduced to arbitrarily closing to O by independent iterating the algorithm and the iterated
algorithm remains in polynomial time. We therefore say that a Monte Carlo algorithm is always
fast and is probably correct.

We now show that PRIMES (the set of all prime numbers) is in the subclass P P(Monte Carlo).

4.4.3.1 An Example of Monte Carlo Algorithms

Since Fermat, it has been known that if p is a prime number and x is relatively prime to p, then
xP —1 =1 (mod p). This forms a basis for the following Monte Carlo method for primality test
([282]), that is, picking x €y (1, p — 1] with gcd(X, p) = 1 and checking

Equation 4.4.7

pa T
P~1/2 = 41 (mod p).

The test is repeated k = logop times with the —1 case occurring at least once. Alg 4.5 specifies
this test algorithm.

Algorithm 4.5: Probabilistic Primality Test (a Monte Carlo
Algorithm)

INPUT p: a positive integer;
OUTPUT YES if p is prime, NO otherwise.

Prime_Test(p)

1. repeat logop times:

a. X€y(1,p—-11;

b. if gcd(x, p) > 1 or x(P—1)/2 o (mod p) return(NO);

end_of_repeat;

2. if (testin 1.(b) never shows —1) return(NO);

3. return(YES).

First of all, we know from Fermat's Little Theorem (Theorem 6.10 in 86.4) that if p is prime
then for all x < p:

Equation 4.4.8

2?71 =1 (mod p).

So if p is prime then Prime_Test(p) will always return YES, that is, we always have (including the
case of p being the even prime)

Prob [J.:[p_'l}fg = +1 (mod p) | p is prime] =],

On the other hand, if p is a composite number then congruence (4.4.7) will not hold in general.
In fact (a fact in Group Theory, see Example 5.2.3 and Theorem 5.1 (in 85.2.1) if the inequality
against congruence (4.4.7) shows for one x < p with gcd(x, p) = 1 then the inequality must
show for at least half the numbers of this kind. Thus we conclude that for x €y (1, p — 1] with
gcd(x, p) = 1:

Equation 4.4.9

Prob [®~1/2 = 41 (mod p) | p is composite] = 1/2;

Therefore, if the test passes k times for x chosen at uniformly random (remember that the — 1
case is seen to hold at least once), then the probability that p is not prime is less than 27K, Here
we have used the "unanimous election criterion”: p will be rejected if there is a single failure in
logop tests. Notice that this election criterion is different from the majority election one which we
have studied in 84.4.1 (for the general case of two-sided error problems) where failures will be
tolerated as long as the number of failures does not exceed half the number of tests. In this
"unanimous election" the soundness probability tends to O much faster than the majority election
case.

We have set k = logzp, and so any input instance p:

Prob [Prime_Test(p) = YES | p is not prime] < 270827,

In 84.3 we have seen that computing modulo exponentiation and computing the greatest
common divisor with logzp -bit long input value have their time complexities bounded by
0g((logzp)3). Therefore the time complexity of Prime_Test(p) is bounded by Og((logp)4).

To this end we know that PRIMES — the language of all prime numbers — is in P P(Monte
Carlo).

Nevertheless without invalidating this statement, in August 2002, three Indian computer
scientists, Agrawal, Kayal and Saena, find a deterministic polynomial-time primality test

algorithm [8]; consequently, PRIMES is in fact in P,

4.4.4 Subclass "Probably Fast and Always Correct”

A subclass of PP which we name PP(Las Vegas) (stands for "Las Vegas") if the error

probability bounds in (4.4.1) and (4.4.2) have the following characterization: for any L € PP
(Las Vegas) there exists a randomized algorithm A such that for any instance |

Prob[A recognizes I | I € L] > e,

and

Prob | A recognizes I | I € L| =0,

1
here € is any constant in the interval (2,1) Again, as in the case of one-sided-error in the
soundness side (84.4.3), because there is no need to use the majority election criterion in the
process of enlarging the completeness probability bound, € can actually be any constant in (O,
1).

Also again we should notice € - = 1; otherwise the subclass degenerates to the special case

ZPP. Randomized algorithms with this error-probability characterization have one-sided error
in the completeness side. In other words, such an algorithm may make a mistake in terms of a
false non-recognition of an instance. However, if an instance is recognized then no mistake is
possible: the instance must be a genuine one. This subclass of algorithms are called Las Vegas
algorithms. The term Las Vegas, first introduced in [16], refers to randomized algorithms which
either give the correct answer or no answer at all.

From our analysis in 84.4.1.1, we know that the probability for a Las Vegas algorithm to give
YES answer to an instance can be enlarged to arbitrarily closing to 1 by independent iterating
the algorithm and the iterated algorithm remains in polynomial time. If we say that Monte Carlo
algorithms are always fast and probably correct, then Las Vegas algorithms are always correct
and probably fast.

Observing the error probability characterizations of ZP'P, P P(Monte Carlo) and P P(Las
Vegas), the following equation is obvious

ZPP = PP(Monte Carlo) N PP(Las Vegas).

4.4.4.1 An Example of Las Vegas Algorithms

Letp be an odd positive integer and let p — 1 = gql1g2 ... gk as the complete prime factorization of
p — 1 (some of the prime factors may repeat). In Chapter 5 we will establish a fact (5.4.4):p is
prime if and only if there exists a positive integer g € [2, p — 1] such that

Equation 4.4.10

g? 1 = 1 (mod p)
gP=W/a 2 1 (modp) for i=1,2,...,k

This fact provides us with an algorithm for proving primality. Inputting an odd number p and the
complete prime factorization of p — 1, the algorithm tries to find a number g satisfying (4.4.10).

If such a number is found, the algorithm outputs YES and terminates successfully, and p must be
prime. Otherwise, the algorithm will be in an undecided state; this means, it does not know if p
is prime or not. The algorithm is specified in Alg 4.6.

First we notice k < log2(p — 1), therefore Alg 4.6 terminates in time polynomial in the size of p.

From the fact to be established in Theorem 5.12 (in 85.4.4), we will see that if Alg 4.6 outputs
YES, then the input integer p must be prime; no error is possible. Also, if the algorithm outputs
NO, the answer is also correct since otherwise Fermat's Little Theorem (4.4.8) will be violated.
These two cases reflect the algorithm's "always correct” nature. The error-free property of the
algorithm entitles it to be named "Proof of Primality."

Algorithm 4.6: Proof of Primality (a Las Vegas Algorithm)

INPUT p: an odd positive number;
ql,92, ..., gk: all prime factors of p — 1;
OUTPUT YES if p is prime, NO otherwise;

NO_DECISION with certain probability of
error.

1. pickg €y[2,p—1];

2. for (i=1, i++,k) do

3. ifg -1/, = 1 (mod p) output NO_DECISION and terminate;
4. ifg p-1 1 (mod p) output NO and terminate;

5. output YES and terminate.

However, when Alg 4.6 outputs NO_DECISION, it does not know whether or not the input
integerp is prime. It is possible that p is not prime, but it is also possible that an error has
occurred. In the latter case p is indeed prime, but the testing number g which the algorithm
picks at random is a wrong one. After we have studied Theorem 5.12 in 85.4.4, we will know
that the wrong number g is not a "primitive root.”

To this end we know that Alg 4.6 is a one-sided-error algorithm in the completeness side, i.e., a
Las Vegas algorithm. We may revise the algorithm into one which does not terminate at a
NO_DECISION answer, but carries on the testing step by picking another random tester g. The
modified algorithm is still a Las Vegas algorithm, and becomes "probably fast" since it's possible
that it always picks a non-primitive root as a tester. Fortunately, for any odd prime p, the
multiplicative group modulo p (to be defined in Chapter 5) contains plenty of primitive roots and
so such an element can be picked up with a non-trivial probability by random sampling the
group modulo p (in Chapter 5 we will establish the proportion of primitive roots in a
multiplicative group modulo a prime).

Las Vegas algorithms and Monte Carlo algorithms collectively are referred to as "randomized
algorithms with one-sided error." Algorithms in this union (recall that the union includes

ZP'P) are really efficient ones; even they are non-deterministic algorithms, their time-
complexity behaviors are similar to those of the algorithms in P.

4.4.4.2 Another Example of Las Vegas Algorithms: Quantum Factorization

A quantum computer can factor an integer in time polynomial in the size of the integer (i.e.,

FACTORIZATION £Q F—")_ Shor devises such an algorithm ([267], also see, e.g., pages 108-115
of [300]). We now explain that Shor's quantum factorization procedure is also a Las Vegas
algorithm.

To factor an integer N, a random integer a is picked; a quantum algorithm, which uses Simon's
idea of finding period in quantum state by sampling from the Fourier transform [276], can find
the period of the function f(x) = aX (mod N), i.e., the least positive integer r satisfying f(r) = 1.
InChapter 6 we shall see that for a composite N, a non-trivial proportion of integers a satisfying
gcd(a, N) = 1 has an even period (called the multiplicative order of the element a), i.e., ris
even.

Once an even period r is found, if a'/2 F 1 (mod N), then a2 (mod N) is a non-trivial square-
root of 1 modulo N. In §6.6.2 (Theorem 6.17) we shall show that gcd(a”2 + 1, N) must be a
non-trivial factor of N, i.e., the algorithm has successfully factored N.

Ifr is odd or if a /2 = =1 (mod N), then gcd(a2 + 1, N) is a trivial factor of N, i.e., 1 or N; so
the algorithm fails with no answer. However, for randomly chosen integer a < N, the probability

for encountering a2 F 1 (mod N) is bounded from below by a constant € > 1/2, and therefore
the procedure can be repeated using another random element a. By our analysis in §4.4.1.1,
Shor's algorithm remains in polynomial time.

4.4.5 Subclass "Probably Fast and Probably Correct”

A subclass of P P is named B PP (which stands for "Bounded error probability Probabilistic
Polynomial time") if the error probability bounds in (4.4.1) and (4.4.2) both hold for the
following cases:

Equation 4.4.11

- 3,

S

€E [% +a,1) and 4 € (0,

herea > 0 and b > 0. We should pay attention to two things in this error probability
characterization:

1. €#1 andd # 0. Otherwise, the subclass BPP degenerates to one of the three simpler
cases: ZPP, or PP(Monte Carlo), or PP(Las Vegas). Now with € Flandd & o,
algorithms in BPP have two-sided errors, both false no-recognition (a completeness

error) and false recognition (a soundness error) are possible.

2. a > 0 and/or b > 0. This means that algorithms in BP'P have their error probabilities

: (€ TE#D)
clearly bounded away from 2. In 84.4.1 we have reasoned that if - 2 2/ then
repeating the algorithm with the majority election criterion can lead to the enlargement of

-1 s5s_-1

the completeness (reduction of the soundness) error probability. If & 2 or 0 2, then
the majority election technique won't work, since the former (the latter) case means that
there is no majority fraction of the random moves to lead to a recognition (rejection).

However, a "minority election criterion” may still be used (we will see such an example in

_ 1 o
8§18.5.1). Finally, if & 2 and 0 2, then no election criterion can work and the
problem is notin PP (i.e., cannot be recognized by a non-deterministic Turing machine

regardless of how long a machine runs).

Since besides Monte Carlo and Las Vegas, Atlantic City is another famous gambling place to lure
people to increase their winning probabilities by increasing the number of games they play,
randomized algorithms with two-sided-errors are also called Atlantic City algorithms. Now let
us look at an example of Atlantic City algorithms.

4.4.5.1 An Example of Atlantic City Algorithms

There is a famous protocol in quantum cryptography named the quantum key distribution
protocol (the QKD protocol, see e.g. [31]). The QKD protocol allows a bit string to be agreed
between two communication entities without having the two parties to meet face to face, and yet
that the two parties can be sure with a high confidence that the agreed bit string is exclusively
shared between them. The QKD protocol is a two-sided-error randomized algorithm. Let us
describe this algorithm and examine its two-sided-error property.

Let us first provide a brief description on the physical principle for the QKD protocol. The
distribution of a secret bit string in the QKD protocol is achieved by a sender (let Alice be the
sender) transmitting a string of four-way-polarized photons. Each of these photons is in a state
(called a photon state or a state) denoted by one of the four following symbols:

=5 | 5 5 N

The first two photon states are emitted by a polarizer which is set with a rectilinear orientation;
the latter two states are emitted by a polarizer which is set with a diagonal orientation. Let us
denote by + and x these two differently oriented polarizers, respectively. We can encode
information into these four photon states. The following is a bit-to-photon-state encoding
scheme:

Equation 4.4.12

+0)= —, +(1)= | , X(O) =/, X(1)=\.

This encoding scheme is the public knowledge. If Alice wants to transmit the conventional bit O
(respectively, 1), she may choose to use + and consequently send out over a quantum channel

— (respectively, |), or choose to use x and consequently send out / (respectively, \). For each
conventional bit to be transmitted in the QKD protocol Alice will set differently oriented
polarizers + or x uniformly random.

To receive a photon state, a receiver (who may be Bob, the intended receiver, or Eve, an

eavesdropper) must use a device called a photon observer which is also set with rectilinear or

diagonal orientation}s. We shall also denote by + and x these two differently oriented observers,
e

respectively. Let 7 and > denote the two differently oriented observers receiving and

interpreting photon states transmitted from left to right. The observation of the photon states

obeys the following rules:

Correct observations (states are maintained)

R N = R - -

Incorrect observations (states are destroyed)

N :+> — probability

| probability

/ +: — probability

| probability

Tl it 3 i
b= 3=

x

| = /" probability
1 =

» bability
o : / probability
S probability

probability

B B
b= b=

These observation rules say the following things. Rectilinearly oriented states can be correctly
observed by rectilinearly set observers correctly; likewise, diagonally oriented states can be
correctly observed by diagonally set observers correctly. However, if a rectilinearly (diagonally)
oriented state is observed by a diagonally (rectilinearly) oriented observer, then a +£45°
"rectification™” of the orientation will occur, with 0.5 probability in either directions. These are
wrong observations and are an inevitable result of "Heisenberg Uncertainty Principle.” which
underlies the working principle for the QKD Protocol.

So if the orientation setting of the receiver's observer agrees with (i.e., is the same as) the
setting of Alice's polarizer then a photon state will be correctly received. The public bit-to-photon
encoding scheme in (4.4.12) is a 1-1 mapping between the conventional bits and the phone
states. So in such a case, the conventional bit sent by Alice can be correctly decoded. On the
other hand, if the orientation settings of the photon devices in the two ends disagree, a wrong
observation must occur and it also necessarily destroys the photon state transmitted, although
the receiver can have no idea which photon state has actually been sent and destroyed.

We are now ready to specify the QKD Protocol. The protocol is specified in Prot 4.1.

Let us explain how this protocol works and measure the probabilities for the two-sided errors to
occur.

Protocol 4.1: Quantum Key Distribution (an Atlantic City
Algorithm)

High-level Description of the Protocol

Quantum channel Alice sends to Bob m photon states, each of them is randomly

SRIVAN

oriented in

. m
Conventional channel, open discussions They choose * 1 "sifted bits" which
are transmitted as the result of Alice's settings of her polarizers agree with Bob's

settings of his observers. They further compare random & (<k) "testing bits” in the k
sifted bits to detect eavesdropping, and in absence of an eavesdropper, they agree

on the remaining k — & secrete bits.

1. Alice generates m random conventional bits aj,a 2, ..., am €y {0, 1}; she sets m
randomly oriented polarizers p1,p 2, ..., pm €u {+, X}; she sends to Bob m
photon states pi1(ai),p 2(a2), ..., pm(am) according to the bit-to-photon-state
encoding scheme in (4.4.12);

2. Bob sets m randomly oriented photon observers 03,0 2, ..., om £y {+, x} and
uses them to receive the m photon states; using the bit-to-photon-state
encoding scheme in (4.4.12) Bob decodes and obtains conventional bits bq,b 2,
...,b m; he tells Alice: "All received!";

3. They openly comg?re their settings (p1,0 1), (P2,0 2), ..., (Pm,0 m); if there are
more than "* 10 pairs of the settings agree as follows: (* without loss of

generality we have relabeled the subscripts *)

py=1up; Tor 1 <t<k,

then they proceed to execute the following steps; otherwise the run fails (* the
failure is an error in the completeness side *);

ERNT.
4. (* now the set {(u’“ bi‘-}}i—l contains k pairs of sifted bits distributed via the
agreed settings of polarizers and observers *) Alice and Bob openly compare

. BYlk
random f pairs in {m“ bi’-}}i_l; the compared bits are called testing bits; if
any pair of the testing bits do not match, they announce "Eavesdropper
detected!" and abort the run;

5. They output the remaining k — f bits as the distributed secret key; the run
terminates successfully (* but an error in the soundness side may have
occurred *).

Steps 1 and 2 are quite straightforward: Alice sends to Bob m random photon states using m

random settings p1,p 2, ..., Pm €Eu {+, X} (Step 1) and Bob has to observe them in a random
process using m random settings 01,0 2, ..., om €y {+, X} (Step 2). The m conventional bits Alice
encoded and transmitted are aj,a 2, ..., an and those Bob received and decoded are bs,b 5, ...,
bm.

In Step 3, Alice and Bob discuss over a conventional communication channel to see whether or
[- YR

not in their random m pairs {{;U-x; Of-]};:lil of the devices settings there are =~ 1 pairs of
settings being the same. If there are k agreed settings they will proceed further. Otherwise, the
run has failed and this is an error in the completeness side. We shall provide a probability
measure for the completeness-side error in a moment.

Suppose that a completeness-side error has not occurred and the two parties are now in Step 4.
They now have a set of k sifted bits which are distributed by the k agreed devices settings.
Without loss of generality we can relabel the subscripts of these bits; so Alice's sifted bits are aj,
ar, ..., ax and those of Bob are bj,b 2, ..., bx. They now conduct an open discussion again over the

conventional channel: comparing a random £ pairs of the sifted bits. Any mismatch will be
considered as being caused by an eavesdropper Eve. If they do not find the existence of Eve in

Step 4, the protocol reaches the happy end in Step 5. Alice and Bob now share k — f bits which
they consider as not having been eavesdropped. However, it is possible that the reason of non-
detection is the occurrence of a soundness-side error. Let us now investigate the probability for
this error.

Probability of the Soundness-side Error

Suppose Eve has listened the quantum channel. The only way for Eve to observe the photon
states sent from Alice is to use the same technique that Bob uses. So Eve has to set m random
orientations for her observers and she also has to send m states to Bob. Due to "Heisenberg
Uncertainty Principle” her wrong observations will destroy Alice's states. Since Eve can have no
idea on the correctness of her observations, she will have no idea on what should be passed to
Bob. One strategy for Eve is to send to Bob a completely new set of m states which she invents
randomly (just as Alice does), hoping that whatever she sends and whatever Alice sends will be
observed by Bob without difference; another strategy is to just pass over to Bob whatever she
has observed, hoping that she has not destroyed Alice's states. Actually, there will be no
difference between these two strategies in terms of effecting the soundness-side error probability
which we now derive.

Let us consider the second strategy (the first strategy will lead to the same soundness-side error
probability result, Exercise 4.9). For state pi(a;j), if Eve has set her observer ej correctly, i.e., ej =
pi, then she will receive the state pj(aj) and hence the bit a; correctly, and consequently Bob will
receive the state and the bit correctly too. So in this case there is no way for Alice and Bob to
detect Eve's existence. Since the probability for Eve to have correctly set her i-th observer is %2,
we have ¥z as part of the probability value for non-detection (in the i-th position).

If Eve has set her i-th observer incorrectly then the i-th state she observes is incorrect and
hence she will send an incorrect state to Bob. Nevertheless, Bob's observer will "rectify” that
wrong state by +£45°, 50:50 chance either way. Thus, Bob may receive that state correctly or
incorrectly with probability for either case being 1/2. A correct receipt will again leave Eve
undetected. Notice that this sub-case of non-detection is after Eve's wrong setting of her device

which also has the probability 1/2. Since Eve's and Bob's devices settings are independent, the
1 1 _ 1

probability of this sub-case of non-detection is 2 2 4,

Summing the probability values obtained in the above two paragraphs, we have derived

1,1 _ 3
2 T 4~ 4 as the probability for non-detection of Eve in her listening of the i-th state. Since Eve

must listen to all the sifted states in order for her to obtain the distributed key, and Alice and

Bob compare random f testing bits and any single mismatch will signal a detection (this is a
"unanimous election criterion”, not even a single failure is tolerated, see 84.4.1.2), the
4

¢
probability for non-detection of Eve in all positions is {lj . This is the probability for the
soundness-side error. This quantity diminishes to O very fast.

Probability of the Completeness-side Error

Finally let us look at the probability for a completeness-side error to occur. Consider Alice's m
settings of her devices being a random binary vector V = (v1,V 2, ..., Vi) and those of Bob's, W =
(W1,W 2, ..., Wy). A completeness-side error occurs when

VeW= (v ®w,vs Bwa, ...,V B wWn)

it
has less than 11} zeros. Since the settings of Alice and those of Bob are independent and uniform,

\% $W should also be a uniformly random binary vector of m binary bits. The probability of

number of zero's i appearing in this vector follows the binomial distribution of m trials with i

successes where the probability for success is 0.5. Clearly, the "most probable number of zeros"
Tr

in vector V ®W is 2. Thatis, the "central term" (see §3.5.2.1) of this binomial distribution is
[m+lJ . lm+lJ

at point 2 1. So point 1t} is far away (far left) from point 2 where the central term is.
Thus, the probability of a completeness-side error

Prob [zems_in{l’ eW) < %]

is a "left tail" of this binomial distribution function. By the probability bound for a left tail which
we have established in (3.5.8), we derive the following bound for the probability of occurring a
completeness-side error:

m (m+1-— 205 3
— | < 1 - i i)
“‘] (m+1)05-2)2 " m (for m = 2)

Prob {zems_in(l-’ &W) <

Therefore, the probability for Alice and Bob to run the protocol beyond Step 3 is greater than
L

T

Summary of the Two-sided-error Probabilities

We summarize the probabilities of two-sided errors for Prot 4.1 as follows. For completeness
side we have:
3

- ok . I s
Prob | Number of sifted bits = o | In m photon states {llﬁl.l']]II]‘l{"ti] =1 - —,
m

and for soundness side we have:

i
Prob [Non-detection of Eve | Alice and Bob test ¢ testing bits]| < (—J ;

o
We should notice that the "left tail" bound ", obtained from (3.5.8), for the completeness-side
)
error probability is a loose upper bound. The left tail diminishes to zero much faster than m does
(see the numerical example in Example 3.9).

These error probability results show that the QKD protocol can be practically used for key
distribution. In the real application, the conventional communication channel over which Alice
and Bob conduct open discussions should have the authentication property. That is necessary in
order for them to be sure that they share the secret key with the right communication partner.
Authentication will be the topic of Part IV.

Commercial QKD systems are expected to be in practical use in year 2004 or so [268].

4.4.6 Efficient Algorithms

To this end of our introduction to the polynomial-time class and to the probabilistic polynomial-
time (PPT) subclasses, we have established the following class inclusion relation:

PP(Monte Carlo)

PCZPPC PP(Las Vegas)

C BPP C PP.

Algorithms which can solve problems in any of these classes are called efficient algorithms.

Definition 4.6: Efficient AlgorithmsAn algorithm is said to be efficient if it is deterministic or
randomized with execution time expressed by a polynomial in the size of the input.

This definition characterizes a notion of tractability: whether deterministic or randomized, a
polynomial-time problem is solvable, i.e., such a problem requires resources which are
manageable even if the size of the problem can be very large. Problems outside the tractable
class are intractable.

However, since polynomials can have vastly different degrees, within PorP P, problems have
vastly different time complexities. Therefore an efficient algorithm for solving a tractable
problem need not be efficient in a practical sense. We will see a few protocol examples in a later
chapter, which have their time complexities bounded by polynomials in their input sizes. Thus,
these protocols are efficient by Definition 4.6), however, they have little value for practical use
because the polynomials that bound their time complexities are simply too large (i.e., their
degrees are too large). This is in contrast to the situations in applications where some algorithms
with non-polynomial (to be defined in §4.6) time complexities are still useful for solving small
instances of intractable problems effectively (e.g., Pollard's Kangaroo Method for Index
Computation §83.6.1).

We shall use the term practically efficient to refer to polynomial-time algorithms where the
polynomials have very small degrees. For example, Turing machine Div3, algorithms gcd,
mod_exp and Prime_Test, and the QKD protocol are all practically efficient. Now let us see
another example of a practically efficient algorithm which is widely used in modern

cryptography.

4.4.6.1 Efficient Algorithms: An Example

The idea of probabilistic primality test can be translated straightforwardly to an algorithm for
generating a random probabilistic prime number of a given size. We say that nis a
probabilistic prime number if Prime_Test(n) returns the YES answer. Alg 4.7 specifies how to
generate such a number of a given size.

Algorithm 4.7: Random k-bit Probabilistic Prime Generation

INPUT k: a positive integer;
(* the input is written to have the size of the
input *)

OUTPUT ak-bit random prime.

Prime_Gen(k)

1. p €u (2k1,2k—1] with p odd;

2. if Prime_Test(p) = NO return(Prime_Gen(k));

3. return(p).

First, let us suppose that Prime_Gen(k) terminates. This means that the algorithm eventually
finds a number p which satisfies Prime_Test(p) = YES (in step 2). From our estimate on the error
probability bound for Prime_Test, the probability for the output p not being prime is bounded
from above by 2-X where k = logap.

An obvious question arises: Will Prime_Gen(k) terminate at all?

The well-known prime number theorem (see e.g., page 28 of [170]) states that the number of
X

primes less than X is bounded below by log X | So the number of primes of exactly k binary bits
is about

23: 2.1;—1 2!;

k. k-1 2%

Thus, we can expect that Prime_Gen(k) may recursively call itself 2k times in step 2 until a
probabilistic prime is found, and then it terminates.

With the time complexity for Prime_Test(p) being bounded by Og((logp)4) = Og(k%), after 2k
calls of Prime_Test, the time complexity of Prime_Gen(k) is bounded by Og(k>).

Another question arises: while Og(k®) is indeed a polynomial in k, can this quantity be a
polynomial in the size of the input to Algorithm Prime_Gen(k), i.e., a polynomial of the size of k?

When we write a number n in the base-b representation for any b > 1, the size of the number n
is logp n and is always less than n. In order to make Prime_Gen(k) a polynomial-time algorithm
in the size of its input, we have explicitly required in the specification of Prime_Gen(k) that its
input should be written to have the size of the input. Using the unary, or base-1, representation,
k can indeed be written to have the size k.

Definition 4.7: Unary Representation of a NumberThe unary representation of a positive
natural number n is

P I] sev],
R —

T

From now on we shall use Prime_Gen(1X) to denote an invocation instance of the algorithm
Prime_Gen. In the rest of this book, the unary representation of a number always provides an
explicit emphasis that the size of that number is the number itself.

4.5 Non-deterministic Polynomial Time

Consider the following decisional problem:

Proplem SQUARE-FREENESS

INPUT N: a positive and odd composite integer;
QUESTION IsN square free?

Answer YES if there exists no prime p such
thatp 2|N.

Problem SQUARE-FREENESS is very difficult. To date there exists no known algorithm (whether
deterministic or probabilistic) which can answer it in time polynomial in the size of the input. Of
course, there exists algorithms to answer this question. For example, the following is one: on

N.J
inputN, perform trial division exhaustively using the square of all odd primes up to [, and
answer YES when all divisions fail. However, for N being a general instance input, this method

O(| VN|) = O(e"%")

runs in time , i.e., in time exponential in (half) size of N.

Nevertheless, Problem SQUARE-FREENESS should not be regarded as too difficult. If we know
some "internal information" of the problem, called a witness (or a certificate or an auxiliary
input), then an answer can be verified in time polynomial in the size of the input. For example,
for input N, the integer p(N), which is named Euler’'s phi function of N and is the number of all
positive numbers less than N and co-prime to N (see Definition 5.11 in 85.2.3), can be used as a
witness for an efficient verification algorithm to verify an answer to whether N is square free. Alg
4.8 is an efficient verification algorithm.

Algorithm 4.8: Square-Free(N,p(N))

1. d +=gcd(N,f(N));

2 N
2. ifd=1or d ff‘ answer YES else answer NO.

The reader who is already familiar with the meaning of f (N) may confirm the correctness of Alg
4.8 (Exercise 4.13). This verification algorithm is due to a basic number theoretic fact which will
become apparent to us in Chapter 6 (86.3). From our study of the time complexity of the great
common divisor algorithm (84.3.2.3), it is clear that this algorithm runs in time polynomial in
the size of N.

Now let us describe a computation device: it models a method to solve the class of problems
which share the same property with Problem SQUARE-FREENESS. The computation of the device

can be described by a tree in Fig 4.4.

Figure 4.4. All Possible Moves of a Non-deterministic Turing Machine
(with a recognition sequence)

Time Complexaty

The device is called a non-deterministic Turing machine. This is a variant Turing machine
(review our description of Turing machines in 84.2). At each step the machine will have a finite
number of choices as to its next-step move. An input string is said to be recognized if there
exists at least one sequence of legal moves which starts from the machine’'s initial state when
the machine scans the first input symbol, and leads to a state after the machine has completed
scanning the input string where a terminating condition is satisfied. We shall name such a
sequence of moves a recognition sequence.

We can imagine that a non-deterministic Turing machine finds a solution to a recognizable input
instance by a series of guesses; a sequence of moves that consist of correct guesses forms a
recognition sequence. Thus, all possible moves that the machine can make form a tree (called
computational tree of a non-deterministic Turing machine, see picture in Fig 4.4). The size
(the number of nodes) of the tree is obviously an exponential function in the size of the input.
However, since the number of moves in a recognition sequence for a recognizable input instance
is the depth d of the tree, we have d = O(log(number of nodes in the tree)) and therefore the
number of moves in a recognition sequence must be bounded by a polynomial in the size of the
input instance. Thus, the time complexity for recognizing a recognizable input, via a series of
correct guesses, is a polynomial in the size of the input.

Definition 4.8: Class -""-l"‘PWe write J"..."“Pto denote the class of languages recognizable by non-
deterministic Turing machines in polynomial time.

It is straightforward to see

P C NP

namely, every language (decisional problem) in Pis trivially recognizable by a non-
deterministic Turing machine. It is also trivial to see

ZPP,PP(Monte Carlo), PP(Las Vegas) C N'P.

In fact, EPP, PP(Monte Carlo) and P :D(Las Vegas) are all genuine NP problems since they
are indeed non-deterministic polynomial-time problemsl€l. The only reason for these subclasses
of NP problems to be efficiently solvable is because these NP problems have abundant witnesses
which can be easily found via random guessing. Itis only a customary convention that we
usually confine NP to be the class of non-deterministic polynomial-time (decisional) problems
which have sparse witnesses. Here is the meaning of "sparse witnesses:" in a computational
tree of an NP problem, the fraction

[e] Recall the reason given in the beginning of §4.4 for renaming a subclass of non-deterministic polynomial-
time Turing machines into "probabilistic Turing machines.”

number of recognition sequences

number of all sequences

is a negligible quantity (Definition 4.13).

In 818.2.3 we shall further establish the following result

Equation 4.5.1
NP C PP.

If an NP problem has sparse witnesses, then with the involvement of random guessing steps, a
non-deterministic Turing machine does not really offer any useful (i.e., efficient) algorithmic
method for recognizing it. This is different from the cases of non-deterministic Turing machines
being efficient devices for NP problems with abundant witnesses. For NP problems with sparse
witnesses, non-deterministic Turing machines merely model a class of decisional problems which
share the following property:

Given a witness, an answer to a decisional problem can be verified in polynomial time.

A witness for an NP problem is modelled by a recognition sequence in the computational tree for
a non-deterministic Turing machine (see the dashed branches in the computational tree in Fig
4.4).

Now we ask: without using a witness, what is the exact time complexity for any given problem in

."'U"‘P? The answer is not known. All known algorithms for solving any problem in NP without
using a witness show polynomially-unbounded time complexities. Yet to date no one has been

able to prove if this is necessary, i.e., to prove P ?é N P_ Also, no one has so far been able to
demonstrate the opposite case, i.e., to prove P = -N‘P. The question

P=NP?

is a well-known open question in theoretic computer science.

Definition 4.9: Lower and Upper Complexity BoundsA quantity B is said to be the lower
(complexity) bound for a problem P if any algorithm A solving P has a complexity cost C (A) 2B.

A quantity U is said to be an upper bound for a problem P if there exists an algorithm A solving P
and A has a complexity cost C(A) <u.

It is usually possible (and easy) to identify the lower bound for any problem in :D, namely, to
pinpoint precisely the polynomial bound that declares the necessary number of steps needed for
solving the problem. Machine Div3 (Example 4.1) provides such an example: it recognizes an n-
bit string in precisely n steps, i.e., using the least possible number of steps permitted by the way
of writing the input instance.

However, for problems in ﬁvr?:’, it is always difficult to identify the lower complexity bound or
even finding a new (i.e., lowered) upper bound. Known complexity bounds for NP problems are

‘uJ

all upper bounds. For example, we have "demonstrated" that is an upper bound for
answering Problem SQUARE-FREENESS with input N (via trial division). An upper bound
essentially says: "only this number of steps are needed for solving this problem" without adding
an important untold part: "but fewer steps may be possible." In fact, for Problem SQUARE-
FREENESS, the Number Field Sieve method for factoring N has complexity given by (4.6.1)

"uJ
which has much fewer steps than { but is still an upper bound.

One should not be confused by "the lower bound" and "a lower bound." The latter often appears
in the literature (e.g., used by Cook in his famous article [80] that discovered "Satisfiability
Problem" being "NP-complete") to mean a newly identified complexity cost which is lower than
all known ones (hence a lower bound). Even the identification of a (not the) lower bound usually
requires a proof for the lowest cost. Identification of the lower bound for an NP problem qualifies
a major breakthrough in the theory of computational complexity.

The difficulty for identifying the lower non-polynomial bound for NP problems has a serious
consequence in modern cryptography which has a complexity-theoretic basis for its security. We
shall discuss this in 84.8.

4.5.1 Non-deterministic Polynomial-time Complete

Even though we do not know whether or not P = _,""u"‘?:’, we do know that certain problems in
NP are as difficult as any in -""‘-'rp, in the sense that if we had an efficient algorithm to solve

one of these problems, then we could find an efficient algorithm to solve any problem in .N.P.
These problems are called non-deterministic polynomial-time complete (NP-complete or
NPC for short).

Definition 4.10: Polynomial ReducibleWe say that a language L is polynomially reducible to

another language Lg if there exists a deterministic polynomial-time-bounded Turing machine M
which will convert each instance | € L into an instance Ig £ Lo, such that I €L if and only if IgE€ L.

Definition 4.11: NP-CompleteA language L o € NP is non-deterministic polynomial time
complete (NP-complete) if any L € NP can be polynomially reducible to Lg.

A well-known NP-complete problem is so-called SATISFIABILITY problem (identified by Cook
[801), which is the first problem found as NP-complete (page 344 of [227]). Let E(X1,X 2, ..., Xn)
denote a Boolean expression constructed from n Boolean variables x1,X 2, ..., X, using Boolean

operators, such as J""\ V and —.

Problem SATISFIABILITY

INPUT X = (X1, =X1,X 2, =1X2, ..., Xn, =Xp);
E(X1,X 2, ..., Xn)-
A truth assignment for E(X1,X 2, ..., Xp) is a sublist X' of X such that for 1 Ei En,X' contains

eitherx j or =x; but not both, and that E(X") = True.

QUESTION ISE(X 1,X 2, ..., Xp) is satisfiable?

That is, does a truth assignment for it exist?

Answer YES if E(X1,X 2, ..., Xp) is satisfiable.

If a satisfiable truth assignment is given, then obviously the YES answer can be verified in time

bounded by a polynomial in n. Therefore by Definition 4.8 we know SATISFIABILITY € -""Urp.
Notice that there are 2" possible truth assignments, and so far we know of no deterministic
polynomial-time algorithm to determine whether there exists a satisfiable one.

A proof for SATISFIABILITY being NP-complete (due to Cook [80]) can be seen in Chapter 10 of
[9] (the proof is constructive, which transforms an arbitrary non-deterministic polynomial-time
Turing machine to one that solves SATISFIABILITY).

A large list of NP-complete problems has been provided in [118].

For an NP-complete problem, any newly identified lowered upper bound can be polynomially
"reduced” (transformed) to a new result for a whole class of NP problems. Therefore it is
desirable, as suggested by [98], that cryptographic algorithms are designed to have security
based on an NP-complete problem. A successful attack to such a cryptosystem should hopefully
lead to solution to the whole class of difficult problems, which should be unlikely. However, such
a reasonable desire has so far not led to fruitful results, either in terms of realizing a secure and
practical cryptosystem, or in terms of solving the whole class NP problems using an attack to
such a cryptosystem. We shall discuss this seemingly strange phenomenon in 84.8.2.

4.6 Non-Polynomial Bounds

There are plenty of functions larger than any polynomial.
Definition 4.12: Non-Polynomially-Bounded QuantityA function f(n) : N — Rjs said to be

unbounded by any polynomial in n if for any polynomial p (n)there exists a natural number n g
such that for all n > ng, f(n) > p(n).

A function f(n) is said to be polynomially bounded if it is not a non-polynomially-bounded
quantity.

Example 4.3.

Show that for any a > 1, 0 < € < 1, functions

fi(n) = @™ 0E™' ™" fy(n) = plosloglogny

are not bounded by any polynomial in n.

IA

Letp(n) be any polynomial. Denoting by d its degree and by c its largest coefficient then p(n)

d+1+2
Uluga} J then f1(n) > p(n) for all n > ng. Secondly, let n® = max(c,
1
lexp(exp(exp((d + 1)]']'}J then fo(n) > p(n) for all n > no.”

cnd. First, let n® = max(c,

In contrast to polynomial-time problems (deterministic or randomized), a problem with time
complexity which is non-polynomially bounded is considered to be computationally intractable or
infeasible. This is because the resource requirement for solving such a problem grows too fast
when the size of the problem instances grows, so fast that it quickly becomes impractically large.
For instance, let N be a composite integer of size n (i.e., n = log N); then function f1(logN) in

_ 1

Example 4.3 with a = exp(1.9229994 ..+ 0(1)) (where 0(1) = 19Ny and € ~ 3 provides a
time-complexity expression for factoring N by the Number Field Sieve method (see, e.g., [70]):

Equation 4.6.1

W=

exp((1.9229994 - - + o(1)) (log N)* (loglog N)%).

1
Expression (4.6.1) is a sub-exponential expression in N. If 3is replaced with 1, then the
expression becomes an exponential one. A subexponential function grows much slower than an
exponential one, but much faster than a polynomial. For N being a 1024-bit number, expression
(4.6.1) provides a quantity larger than 286, This quantity is currently not manageable even with
the use of a vast number of computers running in parallel. The sub-exponential time complexity
formula also applies to the best algorithm for solving a "discrete logarithm problem™ in a finite
field of magnitude N (see Definition 8.2 in §8.4).

We should, however, notice the asymptotic fashion in the comparison of functions used in
Definition 4.12 (f(n) in Definition 4.12 is also said to be asymptotically larger than any
polynomial, or larger than any polynomial in n for sufficiently large n). Even if f(n) is unbounded

by any polynomial in n, often it is the case that for a quite large number ng,f(n) is less than

some polynomial p(n) for n <nh o- For instance, function fa(n) in Example 4.3 with € = 0.5

remains being a smaller quantity than the quadratic function n2 for all n <

2742762245454927736743541 eyen though fa(n) is asymptotically larger than nd for any d 2 1. That
is why in practice, some algorithms with non-polynomially-bounded time complexities can still
be effective for solving problems of small input size. Pollard's | -method for extracting small
discrete logarithm, which we have introduced in 83.6.1, is just such an algorithm.

While using the order notation (see Definition 4.2 in 84.3.2.4) we deliberately neglect any
constant coefficient in complexity expressions. However, we should notice the significance of a
constant coefficient which appears in the exponent position of a non-polynomial-bounded
quantity (e.g., 1.9229994...+ 0(1) in the expression (4.6.1)). For example, if a new factoring
algorithm advances from the current NFS method by reducing the constant exponent 1.9229994
in the expressionin (4.6.1) to 1, then the time complexity for factoring a 1024-bit composite
integer using that algorithm will be reduced from about 285 to about 245. The latter is no longer
regarded a too huge quantity for today's computing technology. In specific for the NFS method,
one current research effort for speeding up the method is to reduce the exponent constant, e.g.,
via time-memory trade-off (and it is actually possible to achieve such a reduction to some
extent, though a reduction in time cost may be penalized by an increment in memory cost).

We have defined the notion of non-polynomial bound for large quantities. We can also define a
notion for small quantities.

Definition 4.13: Negligible QuantityA function €(n) : M +— Ris said to be a negligible
1

guantity (or £(n)is negligible) in n if its reciprocal, i.e., €n) jsa non-polynomially-bounded
quantity in n.

pir)
For example, for any polynomial p, 2™ is a negligible quantity. For this reason, we sometimes
also say that a subset of p(n) points in the set {1, 2, 3, ..., 2"} has a negligible-fraction number

of points (with respect to the latter set), or that any p(n) points in {1, 2, 3, ..., 2"} are sparse in
the set.

If € is a negligible quantity, then 1 — € is said to be an overwhelming quantity. Thus, for
example we also say that any non-sparse (i.e., dense) subset of {1, 2, ..., 2"} has an
overwhelming-fraction number of points (with respect to the latter set).

A negligible function diminishes to O faster than the reciprocal of any polynomial does. If we
regard a non-polynomially-bounded quantity as an unmanageable one (for example, in resource
allocation), then it should be harmless for us to neglect any quantity at the level of the reciprocal
of a non-polynomially-bounded quantity.

More examples:

Prob ["‘Primc.Gcn(l"'] is not primc”]

is negligible in k and

1 — Prob [“Prime_Gen(1¥) is not prime” | = Prob [“Prime_Gen(1¥) is prime” |

is overwhelming in k.

_ p—1
ReviewExample 3.6; for p being a k bit prime number (9= being also a prime), we can

neglect quantities at the level of ¥] or smaller and thereby obtain Prob I L”

Finally, if a quantity is not negligible, then we often say it is a non-negligible quantity, or a
significant quantity. For example, we have seen through a series of examples that for a
decisional problem in PP whose membership is efficiently decidable, there is a significant
probability, via random sampling the space of the computational tree (Fig 4.4), for finding a
witness for confirming the membership.

4.7 Polynomial-time Indistinguishability

We have just considered that neglecting a negligible quantity is harmless. However, sometimes
when we neglect a quantity, we feel hopeless because we are forced to abandon an attempt not
to neglect it. Let us now describe such a situation through an example.

Consider two experiments over the space of large odd composite integers of a fixed length. Let
one of them be called E;_prime, and the other, E3 prime. These two experiments yield large and
random integers of the same size: every integer yielded from Ex prime is the product of two large
distinct prime factors; every integer yielded from E3 prime is the produce of three or more distinct
prime factors. Now let someone supply you an integer N by following one of these two
experiments. Can you tell with confidence from which of these two experiments N is yielded?
(Recall that Ex_prime and E3_prime Yield integers of the same length.)

ByDefinition 3.5 (in 83.5), such an experiment result is a random variable of the internal
random moves of these experiments. We know that random variables yielded from E» prime and
those yielded from Ez prime have drastically different probability distributions: E> prime yields a
two-prime product with probability 1 while E3z prime Never does so. However, it is in fact a very
hard problem to distinguish random variables from these two experiments.

Let us now define precisely what we mean by indistinguishable ensembles (also called
indistinguishable experiments).

Definition 4.14: Distinguisher for ensemblesLet E = {e 1,e 2, ...}, E' = {e1",e 2, ...} be two
sets of ensembles in which ej, ej'are random variables in a finite sample space S .Denotek =
logz #5 leta= (a1,a 2, ..., a)be random variables such that all of them are yielded from either
E or E',where ¢ is bounded by a polynomial in k.

A distinguisher D for (E, E")is a probabilistic algorithm which halts in time polynomial in k with
output in {0, 1} and satisfies (i) D(a, E) = 1 iff ais from E; (ii) D(a, E") = 1 iff ais from E".

We say that D distinguishes (E, E')with advantage Adv > O if

Adv(D) = |Prob|D(a, E) = 1] — Prob[D(a,E") = 1]|.

Itis important to notice the use of probability distributions in the formulation of an advantage
for a distinguisher D: a distinguisher is probabilistic algorithm; also it is a polynomial-time
algorithm: its input has a polynomially bounded size.

Many random variables can be easily distinguished. Here is an example.

Example 4.4.

LetE = {k-bit Primes} and E' = {k-bit Composites}. Define D(a, E) = 1 iff Prime_Test(a) =
YES, and D(a,E') =1 = Prime_Test(a) =* NO (Prime_Test is specified in Alg 4.5). Then D is a
distinguisher for E and E'. When a €E, we have Prob [D(a, E) = 1] = 1 and Prob [D(a, E') = 1] =
0; when a €E', we have Prob [D(a, E) = 1] = 2 K and Prob [D(a, E') = 1] = 1 — 2%, Hence,
Adv(D) = 1 — 2~ -1).

Definition 4.15: Polynomial-time IndistinguishabilityLet ensembles E, E'and security

parameter k be those defined in Definition 4.14. E, E'are said to be polynomially
indistinguishable if there exists no distinguisher for (E, E")with advantage Adv > 0 non-negligible
in k for all sufficiently large k.

The following assumption is widely accepted as plausible in computational complexity theory.

Assumption 4.1: General Indistinguishability AssumptionThere exist polynomially
indistinguishable ensembles.

EnsemblesE 2 prime and Ez_prime are assumed to be polynomially indistinguishable. In other
words, if someone supplies us with a set of polynomially many integers which are either all from
E2 prime, Or all from E3 prime, and if we use the best known algorithm as our distinguisher, we will
soon feel hopeless and have to abandon our distinguishing attempt.

Notice that since we can factor N and then be able to answer the question correctly, our
advantage Adv must be no less than the reciprocal of the function in (4.6.1). However, that
value is too small not to be neglected. We say that we are hopeless in distinguishing these two
ensembles because the best distinguisher we can have will have a negligible advantage in the
size of the integer yielded from the ensembles. Such an advantage is a slow-growing function of
our computational resources. Here "slow-growing" means that even if we add our computational
resources in a tremendous manner, the advantage will only grow in a marginal manner so that
we will soon become hopeless.

Polynomial indistinguishability is an important security criterion for many cryptographic
algorithms and protocols. There are many practical ways to construct polynomially
indistinguishable ensembles for being useful in modern cryptography. For example, a pseudo-
random number generator is an important ingredient in cryptography; such a generator
generates pseudo-random numbers which have a distribution totally determined (i.e., in a
deterministic fashion) by a seed. Yet, a good pseudo-random number generator yields pseudo-
random numbers which are polynomially indistinguishable from truly random numbers, that is,
the distribution of the random variables output from such a generator is indistinguishable from
the uniform distribution of strings which are of the same length as those of the pseudo-random
variables. In fact, the following assumption is an instantiation of Assumption 4.1:

Assumption 4.2: (Indistinguishability between Pseudo-randomness and True
Randomness)There exist pseudo-random functions which are polynomially indistinguishable
from truly random functions.

InChapter 8 we shall see a pseudo-random function (a pseudo-random number generator)
which is polynomially indistinguishable from a uniformly random distribution. In Chapter 14 we
shall further study a well-known public-key cryptosystem named the Goldwasser-Micali
cryptosystem; that cryptosystem has its security based on polynomially indistinguishable
ensembles which are related to E_prime and Ez_prime (We shall discuss the relationship in 86.5.1).
For a further example, a Diffie-Hellman tuple (Definition 13.1 in 813.3.4.3) of four elements in
someabelian group and a random quadruple in the same group form indistinguishable
ensembles which provide security basis for the EIGamal cryptosystem and many zero-
knowledge proof protocols. We will frequently use the notion of polynomial
indistinguishability in several later chapters.

4.8 Theory of Computational Complexity and Modern
Cryptography

In the end of our short course in computational complexity, we shall provide a discussion on the
relationship between the computational complexity and modern cryptography.

4.8.1 A Necessary Condition

On the one hand, we are able to say that the complexity-theoretic-based modern cryptography
uses P ?é -MFP as a necessary condition. Let us call it the P _T'L -’M-P conjecturelfl

[A recent survey shows that most theoretic computer scientists believe .

An encryption algorithm should, on the one hand, provide a user who is in possession of correct
encryption/decryption keys with efficient algorithms for encryption and/or decryption, and on the
other hand, pose an intractable problem for one (an attacker or a cryptanalyst) who tries to
extract plaintext from ciphertext, or to construct a valid ciphertext without using correct keys.
Thus, a cryptographic key plays the role of a witness, or an auxiliary input (a more suitable
name) to an NP-problem-based cryptosystem.

One might want to argue against our assertion on the necessary condition for complexity-
theoretic-based cryptography by thinking that there might exist a cryptosystem which would be

based on an asymmetric problem in P encryption would be an O(n)-algorithm and the best
cracking algorithm would be of order 0(n199). Indeed, even for the tiny case of n = 10, O(n199)
is a 2332-|evel quantity which is way, way, way beyond the grasp of the world-wide combination
of the most advanced computation technologies. Therefore, if such a polynomial-time

cryptosystem exists, we should be in a good shape even if it turns out P = -MP. However, the
trouble is, while P does enclose 0(nk) problems for any integer k, it does not contain any
problem with an asymmetric complexity behavior. For any given problem in P, if an instance of

sizen is solvable in time n K, then time nk*2 for any a > 0 is unnecessary due to the deterministic
behavior of the algorithm.

The conjecture also forms a necessary condition for the existence of one-way function. In the
beginning of this book (81.1.1) we have assumed that a one-way function f(x) should have a
"magic property" (Property 1.1): for all integer X, it is easy to compute f(x) from x while given
most values f(x) it is extremely difficult to find x, except for a negligible fraction of the instances

in the problem. Now we know that the class NP provides us with candidates for realizing a
one-way function with such a "magic property.” For example, problem Satisfiability defines a
one-way function from an n-tuple Boolean space to {True, False}.

In turn, the existence of one-way functions forms a necessary condition for the existence of
digital signatures. A digital signature should have such properties: easy to verify and difficult
forge.

Moreover, the notion of polynomial-time indistinguishability which we have studied in 84.7 is

also based on the P '_r‘é _,."-\r'P conjecture. This is the decisional case of hard problems in J"U"‘P.
InChapters 14,15 and 17 we shall see the important role of polynomial-time indistinguishability
plays in modern cryptography: the correctness of cryptographic algorithms and protocols.

In particular, we should mention the fundamentally important role that the 2 ?é NP
conjecture plays in a fascinating subject of public-key cryptography: zero-knowledge proof
protocols [126] and interactive proof system.

A zero-knowledge protocol is an interactive procedure running between two principals called a
prover and a verifier with the latter having a polynomially-bounded computational power. The
protocol allows the former to prove to the latter that the former knows a YES answer to an NP-
problem (e.g., a YES answer to Problem SQUARE-FREENESS, or to question: "Is N from E2 prime?
"), because the former has in possession of an auxiliary input, without letting the latter learn
how to conduct such a proof (i.e., without disclosing the auxiliary input to the latter). Hence the
verifier gets "zero-knowledge" about the prover's auxiliary input. Such a proof can be modelled
by a non-deterministic Turing machine with an added random tape. The prover can make use of
auxiliary input and so the machine can always be instructed (by the prover) to move along a
recognition sequence (i.e., to demonstrate the YES answer) regarding the input problem.
Consequently, the time complexity for a proofis a polynomial in the size of the input instance.
The verifier should challenge the prover to instruct the machine to move either along a
recognition sequence, or along a different sequence, and the challenge should be uniformly
random. Thus, from the verifier's observation, the proof system behaves precisely in the fashion
of a randomized Turing machine (review 84.4). As a matter of fact, it is the property that the
error probability of such a randomized Turing machine can be reduced to a negligible quantity
by repeated independent executions (as analyzed in 84.4.1.1) that forms the basis for
convincing the verifier that the prover does know the YES answer to the input problem.

The 2 ?{_ NP conjecture plays the following two roles in zero-knowledge protocols: (i) an
auxiliary input of an NP problem permits the prover to conduct an efficient proof, and (ii) the
difficulty of the problem means that the verifier alone cannot verify the prover's claim. In
Chapter 18 we will study zero-knowledge proof protocols.

4.8.2 Not a Sufficient Condition

On the other hand, the P ?é NP conjecture does not provide a sufficient condition for a
secure cryptosystem even if such a cryptosystem is based on an NP-complete problem. The well-
known broken NP-complete knapsack problem provides a counterexample [200].

After our course in computational complexity, we are now able to provide two brief but clear
explanations on why cryptosystems based on NP (or even NP-complete) problems are often
broken.

First, as we have pointed out in an early stage of our course (e.g., review Definition 4.1), the
complexity-theoretic approach to computational complexity restricts a language L (a problem) in
a complexity class with a universal-style quantifier: "any instance | €L." This restriction results

in the worst-case complexity analysis: a problem is regarded difficult even if there only exists
negligibly few difficult instances. In contrast, a cryptanalysis can be considered successful as
long as it can break a non-trivial fraction of the instances. That is exactly why breaking of an NP-
complete-based cryptosystem does not lead to a solution to the underlying NP-complete
problem. It is clear that the worst-case complexity criterion is hopeless and useless for
measuring security for the practical cryptosystems.

The second explanation lies in the inherent difficulty of identifying new lower upper bounds for
NP problems (notice, phrase "new lower upper bounds” makes sense for NP problems, review
our discussion on lower and upper bounds in 84.5). Security basis for an NP-problem-based
cryptosystem, even if the basis has been proven to be the intractability of an underlying NP-
problem, is at best an open problem since we only know an upper bound complexity for the
problem. More often, the underlying intractability for such an NP-based cryptosystem is not even

clearly identified.

A further dimension of insufficiency for basing security of modern cryptographic systems on the
complexity intractability is the main topic of this book: non-textbook aspects of security for
applied cryptography (review 81.1.3). Cryptographic systems for real world applications can be
compromised in many practical ways which may have little to do with mathematical intractability
properties underlying the security of an algorithm. We will provide abundant explanations and
evidence to manifest this dimension in the rest of this book.

A positive attitude toward the design and analysis of secure cryptosystems, which is getting wide
acceptance recently, is to formally prove that a cryptosystem is secure (provable security)
using polynomial reduction techniques (see Definition 4.10): to "reduce" via an efficient
transformationany efficient attack on the cryptosystem to a solution to an instance of a known
NP problem. Usually the NP problem is in a small set of widely accepted "pedigree class." Such a
reduction is usually called a reduction to contradiction because it is widely believed that the
widely accepted "pedigree problem" does not have an efficient solution. Such a proof provides a
high confidence of the security of the cryptosystem in question. We shall study this methodology
inChapters 14 and 15.

4.9 Chapter Summary

Computational complexity is one of the foundations (indeed, the most important foundation) for
modern cryptography. Due to this importance, this chapter provides a self-contained and
systematic introduction to this foundation.

We started with the notion of Turing computability as the class of computable problems. Some
problems in the class are tractable (efficiently solvable in polynomial time) which are either

deterministic (in :D) or non-deterministic (several subclasses in PP which are called
probabilistic polynomial time). Others are intractable (the class _N'P which is still a subclass in

P ’P, this will become clear in §18.2.3). Problems in NP do not appear to be solvable by
efficient algorithms, deterministic or otherwise, while with their membership in the class being
efficiently verifiable given a witness.

In our course, we also introduced various important notions in computational complexity and in
its application in modern cryptography. These include efficient algorithms (several important
algorithms are constructed with precise time complexity analysis), order notation, polynomial
reducibility, negligible quantity, lower, upper and non-polynomial bounds, and
indistinguishability. These notions will be frequently used in the rest part of the book.

Finally, we conduct a discussion on the fundamental roles of NP problems and the complexity-
theoretic basis playing in modern cryptography.

Exercises

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Construct a Turing machine to recognize even integers. Then construct a machine to
recognize integers which are divisible by 6.

Hint: the second machine can use an operation table which conjuncts that of the
first and that of Div3 in Fig 4.2.

In the measurement of computational complexity of an algorithm, why is the bit-
complexity, i.e., based on counting the number of bit operations, more preferable
than a measure based on counting, e.g., the number of integer multiplications?

Hint: consider a problem can have instances of variant sizes.

Our cost measure for gcd(x, y) (for x > y) given by Theorem 4.1 is log x modulo
operations. With a modulo operation having the cost same as a division Og((log
x)2), our measure for gcd(x, y) turns out to be Og((logx) 3). However, in standard
textbooks the cost for gcd (X, y) is Og((logx) 2). What we have missed in our
measurement?

Hint: observe inequality (4.3.12).

Prove statements 2 and 3 in Theorem 4.2.

Show that P 'P(Monte Carlo) and P P(Las Vegas) are complement to each other
(this is denoted by 'p'p(Monte Carlo) = co'p'p(Las Vegas)). That is, a Monte Carlo
algorithm for recognizing | €L is a Las Vegas algorithm for recognizing I € L, and
vise versa. Using the same method to show B PP = coBPP.

In the computational complexity literature, we often see that the class BPP s

2 i 1

defined by E=3 (4.4.1) and g = 3 for (4.4.2). We have used any constants
. 1 i

e€|z+a,1) §€ (0,57

formulation make any difference?

fora > 0, b > 0. Do these two different ways of

Show that for €(k) in (4.4.5), €(k) = 1 when k = oo.

Hint: consider 1 — €(k) == 0.

Explain why in the error probability characterization for BP P, error probabilities
1

must be clearly bounded away from 2,i.e.,aand bin (4.4.11) must be some non-
zero constant.

Hint: consider a "biased" coin: one side is more likely than the other by a negligible
quantity. Are you able to find the more likely side by flipping the coin and using the
majority election criterion?

4.9 In our measure of the soundness error probability for the QKD protocol (Prot4.1),
we have mentioned two strategies for Eve: sending to Bob completely new m
photon states or forwarding to him whatever she observes. We have only measured
the soundness error probability by considering Eve taking the latter strategy. Use
the the former strategy to derive the same result for the soundness error
probability.

4.10 For a positive natural number n we use |n| = logzn as the measure of the size of n
(which is the number of bits in n's binary representation). However in most cases
the size of n can be written as log n without giving an explicit base (the omitting
case is the natural base e). Show that for any base b > 1, logpn provides a correct
size measure for n, i.e., the statement "a polynomial in the size of n" remains
invariant for any base b > 1.

4.11 Exceptional to the cases in the preceding problem, we sometimes write a positive
number in the unary representation, i.e., write 1" for n. Why is this necessary?

4.12 What is an efficient algorithm? What is a practically efficient algorithm?

4.13 If you are already familiar with the properties of the Euler's phi function f (N) (to be
introduced in 86.3), then confirm the correctness of Alg 4.8.

4.14 Provide two examples of indistinguishable ensembles.

4.15 Why does a cryptosystem with security based on an NP-Complete problem need not
be secure?

4.16 Differentiate and relate the following problems:

i. Turing computable.

ii. Intractable.

iii. Tractable.

iv. Deterministic polynomial time.

v. Practically efficient.

Chapter 5. Algebraic Foundations

Section 5.1. Introduction

Section 5.2. Groups

Section 5.3. Rings and Fields

Section 5.4. The Structure of Finite Fields

Section 5.5. Group Constructed Using Points on an Elliptic Curve

Section 5.6. Chapter Summary

Exercises

5.1 Introduction

Cryptographic algorithms and protocols process messages as numbers or elements in a finite
space. Encoding (encryption) and the necessary decoding (decryption) operations must
transform messages to messages so that the transformation obeys a closure property inside a
finite space of the messages. However, the usual arithmetic over numbers such as addition,
subtraction, multiplication and division which are familiar to us do not have a closure property
within a finite space (integers or numbers in an interval). Therefore, cryptographic algorithms
which operate in a finite space of messages are in general not constructed only using the familiar
arithmetic over numbers. Instead, they in general operate in spaces with certain algebraic
structures to maintain the closure property.

In this chapter we introduce three algebraic structures which not only are central concepts of
abstract algebra, but also provide the basic elements and operations for modern cryptography
and cryptographic protocols. These three structures are: group, ring and field.

5.1.1 Chapter Outline

We study groups in 85.2, rings and fields in 85.3 and the structure of finite fields in 85.4. Finally
in 85.5, we provide a realization of a finite group using points on an elliptic curve.

5.2 Groups

Roughly speaking, a group is a set of objects with an operation defined between any two objects
in the set. The need for an operation over a set of objects is very natural. For example, upon
every sunset, an ancient shepherd would have counted his herd of sheep. Maybe the shepherd
did not even know numbers; but this would not prevent him from performing his operation
properly. He could keep with him a sack of pebbles and match each sheep against each pebble.
Then, as long as he always ended up his matching operation when no more pebble were left to
match, he knew that his herd of sheep were fine. In this way, the shepherd had actually
generated a group using the "add 1" operation. Sheep or pebbles or some other objects, the
important point here is to perform an operation over a set of objects and obtain a result which
remains in the set.

Definition 5.1: GroupA group (G, o) is a set G together with an operation © satisfying the
following conditions:

1. Va,b €G:aob €EG (Closure Axiom)
2. Va, b, c€G : ao (boc) = (aob)oc (Associativity Axiom)

3. Hunique elemente €G: Va €6:a0e=eoa (ldentity Axiom)
=a

The element e is called theidentityelement.

4. Vaec: Jarec:a0a 1=aloa=e (Inverse Axiom)

In the denotation of a group (G,0), we often omit the operation o and use G to denote a group.

Definition 5.2: Finite and Infinite GroupsA group G is said to be finite if the number of
elements in the set G is finite, otherwise, the group is infinite.

Definition 5.3: Abelian GroupA group G is abelian if for all a, b €G, aob = boa.

In other words, an abelian group is a commutative group. In this book we shall have no
occasion to deal with non-abelian group. So all groups to appear in the rest of this book are
abelian, and we shall often omit the prefix "abelian.”

Example 5.1. Groups

1. The set of integers 7 is a group under addition +, i.e., (E, +) is a group, with e = 0 and
al = —a. This is an additive group and is an infinite group (and is abelian). Likewise, the

set of rational numbers @ the set of real numbers R, and the set of complex numbers C
are additive and infinite groups with the same definitions for identity and inverse.

2. Non-zero elements of @ E and © under multiplication - are groups with e = 1 and a1
being the multiplicative inverse (defined in the usual way). We denote by Q , R*, C* these

groups, respectively. Thus, the full denotations for these groups are: (Q D), ()) and (
E*,). They are called multiplicative groups. They are infinite.

For any n= 1, the set of integers modulo n forms a finite additive group of n elements;
here addition is in terms of modulo n, the identity element is O, and for all element a in the

Z

™ is a short-

group,a —1 = n — a (property 2 of Theorem 4.2, in 84.3.2.5). We denote by ““7 this group.

Thus, the full denotation of this group is (Eﬂ-, + (mod n)). (Notice that ¢/

hand notation for a formal and standard notation Z/nz. We shall see the reason in
Example 5.5.)

The numbers for hours over a clock form Z12 under addition modulo 12. Let us name (El'}.’
, + (mod 12)) "clock group."

The subset of Zﬁ- containing elements relatively prime to n (i.e., gcd(a, n) = 1) forms a

finite multiplicative group; here multiplication is in terms of modulo n, e = 1, and for any

elementa in the group, a —1 can be computed using extended Euclid algorithm (Alg 4.2).
§e "

We denote by “n this group. For example, “'15, . (mod 15)) = ({1, 2, 4, 7, 8, 11, 13, 14},
- (mod 15)).

ForsetB = {F, T}, leto = @ be (logical XOR): F @F =F,F @T =T @F =T,T @T = F.
ThenB under is a finite group withe = Fand T1 = T.

The roots of x3— 1 = 0 is a finite group under multiplication with e = 1 (obviously 1 is a
root). Denote by Roots(x3 — 1) this group. Let us find the other group elements in Roots(x3
— 1) and their inverses. As a degree-3 polynomial, x3 — 1 has three roots only. Let a,b be
the other two roots. From x3 — 1 = (x — 1) (X2 + x + 1), a and b must be the two roots of
x2 + x + 1 = 0. By the relation between the roots and the coefficient of a quadratic
equation, we have ab = 1. Thus, a1 = b and b-1 = a. The reader may check that Closure
Axiom is satisfied (i.e., a2 and b2 are roots of x3 — 1 = 0).

Definition 5.4: Shorthand Representation of Repeated Group OperationsLet G be a group

with operation o. For any element a £G, and for any non-negative integer 3-E N,We denote by
a' €EG the following element

Q.GG.U'--UG}.

-

i

We should pay attention to two points in the following remark.

.Remark 5.1

aoqgo--oq,

o

We write al €G only for a shorthand presentation of i Notice that the
"operation” between the integer i and the element a is not a group operation.

Some groups are conventionally written additively, e.g., (Eﬂ-, + (mod n)).For these
groups, the reader may view a' as i - a. However, in this shorthand view, one must notice
that "-" here is not a group operation and the integer i is usually not a group element

(considering the case (Eﬂ-, + (mod n))with i > n). Ll

Definition 5.5: SubgroupA subgroup of a group G is a non-empty subset H of G which is itself
a group under the same operation as that of G. We write H g G to denote that H is a subgroup
of G, and H C G to denote that H is a proper subgroup of G (i.e., H # G).

Example 5.2.

7.

8.

Under addition, Z C Q CRC C;

Under addition, the set of even integers plus O is a subgroup of the groups in (1); so is the
set of odd numbers plus O.

The "clock group™ (El'}.’, + (mod 12)) has the following subgroups: ({0}, +), ({0, 6}, +),
o, 4, 8}, +), ({0, 3,6, 9}, +), {0, 2, 4, 6, 8, 10}, +), (El'z, +).

Under multiplication, @* C R* - 'C*.

Letn be an odd positive integer and let Fermat(n) denote the subset of ““r such that any a

a%zj:l

€ Fermat(n) satisfies (mod n). Then

Fermat(n) C Z,.

Moreover, if n is a prime number, then by Fermat's Little Theorem (Theorem 6.10 in 86.4),

Fermat(n) = Zj, . &y,

otherwise, Fermat(n) is a proper subgroup of

{F} is a proper subgroup of the group B in Example 5.1(6). However, {T} is not a
subgroup of B since it does not contain an identity (i.e., breach of Identity Axiom).

(ReviewExample 4.1) Polynomial-time language DIV3 is a subgroup of Z;

Set {e} is a subgroup of any group.E|

Definition 5.6: Order of a GroupThe number of elements in a finite group G is called the order
of G and is denoted by #G.

Example 5.3.

1. #Zn= n;

2. InExample 5.1(6), #B = 2;

3. InExample 5.1(7), #Roots(x 3 — 1) = 3.0

5.2.1 Lagrange's Theorem

Let us now introduce a beautiful and important theorem in group theory.

Definition 5.7: CosetlLet G be a (abelian) group and H g G.Fora€gG,seta
lef :
oH = {aoh|heH}

is called a (left) coset of H.

. Theorem 5.1 Lagrange's Theorem
If H is a subgroup of G then #H | #G, that is, #H divides #G.

Proof For H = G, #H | #G holds trivially. Let us consider H ..

For any a € G \ H, by Closure Axiom, coset ao H is a subset of G. We can show the following two
facts:

i. Foranya ¢a', if a €a'oH then (aoH) N (a'oH) = =
ii. #(aoH) = #H.

For (i), suppose Hb € (aoH) N (a'oH). So ac, c'€H:aoc = b = a'oc'. Applying Inverse
Axiom, ldentity Axiom, Closure Axiom and Associative Axiom on elements in H, we have

a=aoe=ao(coc 1) =boc 1= (a'ochoc ~L=a'o(coc 1)€aoH.

This contradicts our assumption: a & a' o H. As a special case, for a EH= e 0 H, we have H n

(a0 H) = 7

For (ii), #(ao H) < #H holds trivially by coset's definition. Suppose that the inequality is
rigorous. This is only possible because for some b # c,b,cEH,ao b = aoc. Applying Inverse
Axiom in G, we reach b = ¢, contradicting to b =

Thus,G is partitioned by H and the family of its mutually disjoint cosets, each has the size #H.
Hence #H | #G. (In general, partitioning a set means splitting it into disjoint subsets.)E|

Example 5.4.

1. CheckExample 5.2(3): #H | # Z12 holds for every H as a subgroup of the "clock group"”
Zy2

2. InstantiateExample 5.2(5) using n = 21; we have Fermat(21) = {1, 8, 13, 20} satisfying

#Fermat(21) = 4|12 = #Z3, O

Lagrange's Theorem is not only very beautiful in group theory, but also very important in
applications. Review our probabilistic primality test algorithm Prime_Test in 84.4.3.1. That
algorithm tests whether an odd integer n is prime by testing congruence

2"=1/2 = 41 (mod n)

*
Zﬂ-

defined by this congruence, and is a proper subgroup of =t if and only if n is not prime. Thus,
*

using random x EU“1. In Example 5.2(5) we have seen that Fermat(n) is the subgroup of

by Lagrange's Theorem, #Fermat (n) | n. Hence, if n is not prime, #Fermat(n) can be at
*
most half the quantity n. This provides us with the error probability bound %2 for each step

of test, i.e., the working principle of Prime_Test (the probability space being).

In 85.2.2 we will discuss another important application of Lagrange's Theorem in public-key
cryptography.

Definition 5.8: Quotient GrouplLet G be a (abelian) group and H QG. The quotient group of G
modulo H, denoted by G/H, is the set of all cosets aoH with a ranging over G, with the group

operation * defined by (aoH) * (boH) = (aob)oH, and with the identity element being eo
H.

Example 5.5.

Letn > O be an integer. Set n& = {0, £n, x2n, ..., } is clearly a subgroup of Z under the
integer addition. Quotient group

ZinZ ={x+nZ|z e}

n+nZ=04+nZ n+l14+nf=14+nZ and

can only have n elements. This is because
so on, and consequently

Z{(nZ)={04+nZ, 1+nZ, 2+ nZ, ..., n—1+nZ}.

Consider that TZ only contains zero modulo n, we can equate

Z/nZ = T,

In fact, /"% js the formal and standard notation for ““™. However, for presentation

convenience, in this book we will always use the short-hand notation ““™ in place of /&

. Corollary 5.1

Let G be a finite (abelian) group and H QG. Then

#HG

#(G/H) = yTh

Example 5.6.

Letm, n be positive integers satisfying m|n. Following Example 5.5, we have

midia =0, 95208 vov s L”’__IJ -m Dy +)

1. i } is a subgroup of{ with n/m elements;

2. EH}JTH‘Z‘H = E‘m; and

(] #Ert
. #(Zn[MZn) = #Lm = m = n/m #(mZy)

For instance, consider the "clock group™ L2 (i.e., n = 12) and its subgroup

32y = {U, 3, 6, ﬂ} (i.e., m = 3). The reader may follow Example 5.5 and confirm

‘ ‘ 4 — _#Eya
Zr2[3Z12 = L3 pence #212/3212) = #13 = 3 = 12/4 = #(3212) The reader

may also check all other cases of m|12.|:|

5.2.2 Order of Group Element

If we say that in a group, the identity element is special in a unique way, then other elements
also have some special properties. One of such properties can be thought of as the "distance"
from the identity element.

Definition 5.9: Order of Group ElementLet G be a group and a €G. The order of the element
a is the least positive integer ¥ e satisfying al = e, and is denoted by ord(a).If such an

integer i does not exist, then a is called an element of infinite order.

We should remind the reader the shorthand meaning of al where i is an integer and a is a group
element. The shorthand meaning of the notation has been defined in Definition 5.4 and further
explained in Remark 5.1.

Example 5.7.

1. In the "clock group” El'z, ord(1l) = 12, since 12 is the least positive humber satisfying 12 -
1 = 0 (mod 12); the reader may verify the following: ord(2) = 6, ord(3) = 4, ord(4) = 3,
ord(5) = 12. Try to find the orders for the rest of the elements.

2. InB in Example 5.1(6), ord(F) = 1 and ord(T) = 2.

3. In Roots(x3 — 1) in Example 5.1(7), ord(a) = ord(b) = 3, and ord(1) = 1.

4. In Z,ord(1) = oo

. Corollary 5.2 Lagrange
Let G be a finite group and a €G be any element. Then ord(a) | #G.

Proof For any a €G, if a = e then ord(a) = 1 and so ord(a) | #G is a trivial case. Let a Fe.
SinceG is finite, we have 1 < ord(a) < e=e. Elements

Equation 5.2.1

2 1k
a, a”, ..., a" d(a) — ¢

are necessarily distinct. Suppose they were not, then a" = as for some non-negative integers r

ands satisfying 1 Sr<s S ord(a). Applying "Inverse Axiom" of (a")~1 to both sides, we will

have,a "= e where O < s — r < ord(a). This contradicts the definition of ord(a) being the least
positive integer satisfying a°™d(@ = e,

It is easy to check that the ord(a) elements in (5.2.1) form a subgroup of G. By Lagrange's
Theorem, ord(a)l#G.E|

Corollary 5.2, which we have shown as a direct application of Lagrange's Theorem, provides a
relationship between the order of a group and the orders of elements in the group. This
relationship has an important application in public-key cryptography: the famous cryptosystems
of Rivest, Shamir and Adleman (RSA) [246] work in a group of a secret order which is known
exclusively to the key owner. A ciphertext can be considered as a random element in the group.
With the knowledge of the group order the key owner can use the relationship between the order
of the element and the order of the group to transform the ciphertext back to plaintext (i.e., to
decrypt). We will study the RSA cryptosystems in 88.5.

5.2.3 Cyclic Groups

Example 5.1(4) indicates that we can conveniently view ™ as n points dividing a circle. This
circle is (or these n points are) formed by n repeated operations al,a 2, ..., a" for some element

a e En. This is a cyclic view of E”’. For addition modulo n as the group operation,a=1

provides a cyclic view of L . The reader may check that for the case of n = 12 as in Example
5.1(4), 5, 7, 11 are the other three elements which can also provide cyclic views for El?.

Informally speaking, if a group has a cyclic view, then we say that the group is a cyclic group.
Cyclic groups are groups with nice properties. They have wide applications in cryptography.

Definition 5.10: Cyclic Group, Group GeneratorA group G is said to be cyclic if there exists

an element a €G such that for any b €G, there exists an integer i 2 0 such that b = ai. Element
a is called a generator of G. G is also called the group generated by a.

When a group is generated by a, we can write G = {a}.

A generator of a cyclic group is also called a primitive root of the group's identity element. The
meaning of this name will become clear in 85.4.3 (Theorem 5.11).

Example 5.8.

1. Forn = 1, the additive E” is cyclic because, obviously, 1 is a generator.
2. Bin Example 5.1(6) is cyclic and is generated by T.

3. Roots(x3— 1) in Example 5.1(7) is cyclic and is generated by a or b.

£ #
4. Letp be a prime number. Then the multiplicative group " ¥ is cyclic. This is because ¥

p—1=HZ

group. In Alg 4.6 we have seen informally an evidence for ~ ¥ containing a generator. We
L

contains element of order and hence such an element generates the whole
£

will provide a formal proof of "~ ¥ being cyclic in Theorem 5.12.

* *
5. In group *7, 3 is a generator. This element provides a cyclic view for “*7 as follows
(remember the group operation being multiplication modulo 7):

6

Definition 5.11: Euler's FunctionFor 1 € Mwith n = 1, Euler’'s functionf (n)is the number of

integers k with O <k < n and gcd(k, n) = 1.

A number of useful results can be derived for cyclic groups.

. Theorem 5.2

1. Every subgroup of a cyclic group is cyclic.

2. For every positive divisor d of # {a}, {a}contains precisely one subgroup of order d.
3. 1 # la) = m, then # (ak) = ord(ak) = m/gcd(k, m).

4. For every positive divisor d of # {a}, {a}containsf (d)elements of order d.

5. Let# {a} = m. Then {a}containsf (m)generators. They are elements a " such that gcd(r, m)
=1.

Proof

1. LetH Q {a}. IfH= {e} or H= {a} then H is obviously cyclic. So we only consider other
cases of H. Let d > 1 be the least integer such that ad €H, and let a S €H for some s > d.

Dividings by d:s = dq + r for some O <r < d. Since a 99 €H we have a ' = as-d9€H. The

minimality of d and H = {a} imply r = 0. So s is a multiple of d. So H only contains the
powers of ad, and hence is cyclic.

Ll
o

2. Letd>1anddlm = # {a}. Then <r:r, } is an order-d subgroup of {a} since d is the least

1
J } €. Let us assume that there exists another order-d su bgroup
T

1d

integer satisfying [{1

>. By 1, such a subgroup must be cyclic and hence be {ak
e

} for some k > 1. From ak? = e with minimality of m we have m|kd, or equivalently, @

wa

1d

of {a} which is different from <

L

Soi KE < ,,,}’ i.e., <ﬂ’k> = {&% } The same orderLOf these two groups means
<G’) o {HT } This contradicts our assumption <ﬂ' > _f (”’T }

3. Letd = gcd(k, m). Then by 2 there exists a unique order-d subgroup of {a}. Let this
subgroup be {a'} for some least &‘ >1,i.e., f is the least integer satisfying ad' = e. By the
m|p
minimality of m, we have m|dl, or equivalently, |£
gcd(l, m), i.e., | = k.

. The least case for f is when d =

4. Letdlm = # {a} and let ak be any element in {a} for 0 Sk < m. By 3, element akis of
m m A, m
order « if and only if € = gcd(k, m). Write K Cd with 0 Sc < d. Then ged(k, m) =

is equivalent to gcd(c, d) = 1. By Definition 5.11, there are f (d) such c.

5. Form = # {a}, by 4, {a} contains f (m) elements of order m, and they are of order m and
hence are generators of {a}. Further by 3, these generators are a" with gcd(r, m) = 1.0

. Corollary 5.3

A prime-order group is cyclic, and any non-identity element in the group is a generator.

Proof Let G be a group of prime order p. Let a €G be any non-identity element. From Corollary
5.2, ord(a)|#G = p. Since a ¢e, ord(a) F1. Then it has to be the case ord(a) = p. Therefore (
a} = G, i.e., ais a generator of G.

|

Example 5.9.

Consider the "clock group” L2 which is cyclic:

e for 1|12, it contains an order-1 subgroup {0}; because f (1) = 1, the only element of order
1is0;

o for 2|12, it contains an order-2 subgroup {0, 6}; because f (2) = 1, the only element of
order 2 is 6;

e for 3|12, it contains an order-3 subgroup {0, 4, 8}; 4 and 8 are the 2 = (3) elements of
order 3;

o for 4|12, it contains an order-4 subgroup {0, 3, 6, 9}; 3 and 9 are the 2 =f(4) elements of
order 4;

o for 6|12, it contains an order-6 subgroup {0, 2, 4, 6, 8, 10}; 2 and 10 are the 2 =f(6)
elements of order 6;

e for 12|12, it contains an order-12 subgroup Z;2; init, 1, 5, 7 and 11 are the 4 = (12)
elements of order 12.

*
The reader may analyze the multiplicative group “7 analogously.E|

5.2.4 The Multiplicative Group 2=

Y

Letn = pqg for p and g being distinct odd prime numbers. The multiplicative group “7t is very
important in modern cryptography. Let us now have a look at its structure. We stipulate that all
n in this subsection is such a composite.

£

Since elements in ““7 are positive integers less than n and co-prime to n. By Definition 5.11, this
group contains f(n) = (p — 1)(g — 1) elements (see Lemma 6.1 to confirm f(n) = (p — 1)(q — 1)).

. Theorem 5.3

Any element in =" has an order dividing lem(p — 1, q — 1).

: 0 € Zy,

Proof Le 7. By Fermat's Little Theorem (Theorem 6.10 in 86.4) we know

a¥ =1 (mod p).

Denotingl = lem(p — 1, g — 1), trivially we have

a® =1 (mod p).

Symmetrically we can also derive

a* =1 (mod q).

These two congruences actually say that a! — 1 is a multiple of p and also a multiple of q. Since p
andq are distinct prime numbers, a' — 1 must be a multiple of n = pq. This means

a* =1 (mod n).

Therefore,l is a multiple of the order of a modulo n. =

Notice that both p — 1 and g — 1 are even, therefore| = lem(p—-1,q—-1) < (p-1)(g-1) =

f(n). Theorem 5.3 says that there is no element in “n is of order f (n). Thatis, 7 contains no

generator. So by Definition 5.10, “* is non-cyclic. Value | (n) is called Carmichael number of
n.

Example 5.10.

a € &ir,

Forn =5 x 7 = 35, let be such an element: (i)“'1 (5 has the maximum

order 4 and hence it provides a cyclic view for the cyclic group “*5 (the left circle below, of
£
period 4); (i) (mod 7) € ik

mod 5) € 7?
*

has the maximum order 6 and hence it provides a cyclic view for

the cyclic group ““7 (the right circle below, of period 6).

-
Then the order of @ € Ei 5 can be viewed as the period decided by two engaged toothed wheels.
One has four teeth and the other has six teeth. We initially chalk-mark a large dot (see the
picture below) at the engaged point of the two wheels. Now let the engaged gear revolve, and
the large chalk mark becomes two separate marks on the two wheels. These two separate marks
will meet again after the mark on the four-toothed wheel has travelled 3 revolutions, and that on

-
the six-toothed wheel, 2 revolutions. Therefore, the order (period) of a € Zi % is exactly the
distance between the separation and the reunion of the large chalk mark, andis3 x4 =2 x 6 =
12 = lem((5 — 1), (7 — 1)).

|

Let ordyx(a) denote the order of an element modulo a positive number n. In general, any element

W+
a € Eﬂs has the order ordn(a) defined by ordp(a) and ordg(a) in the following relation:

Equation 5.2.2

ord,(a) = lem(ord,(a), ord,(a)).

* +
Since ~ ¥ and *“7 are both cyclic, they have elements of maximum orders p—1 and g — 1,

respectively. Consequently, =7 contains elements of the maximum order Icm(p—1,g—1). On

£
a € Eﬂ: can satisfy the cases of ordp(a) <p-—-1

the other hand, some maximum-order element
and/or ordg(a) < g — 1. For example, because Icm(4, 3) = lcm(4, 6) and because 7 contains an
=

element of order 3, group ““35 contains an element of the maximum period 12 which is
represented by two engaged toothed wheels of four teeth and three teeth.

In the next chapter we will provide a 1-1 onto mapping between the elements in Z‘ﬂ and the
& *
pairs of elements in EP % Efi. The mapping is computable and hence it provides a method to

Z-t Z*

construct elements in ““1 out of those in the cyclic groups ~ ¥ and “4. The latter job is usually

easier because it can make use of the nice properties of the later two groups (cyclic groups). For
" +

example, because computing square roots in © ¥ and ““7 is easy, we can use the mapping to
#

+
construct square roots in “'t using the square roots computed in = * and Er:r.

5.3 Rings and Fields

One day our ancient shepherd settled down and became a farmer. He needed to figure out with
his neighbors the areas of their lands. The shepherds-turned-farmers began to realize that it was
no longer possible for them to use one basic operation for everything: they needed not only sum,
but also product. The need for two operations over a set of objects started then.

Definition 5.12: RingA ring R is a set together with two operations: (addition) + and
(multiplication) -, and has the following properties:

1. Under addition +, R is an abelian group; denote byOthe additive identity (called thezero-
element);

2. Under multiplication -, R satisfies Closure Axiom, Associativity Axiom and ldentity Axiom;
denote bylthe multiplicative identity (called theunity-element);1 ?’-‘o;

3. Va, bER:a:-b=b-a(Commutative Axiom)

4. Va, b,cER:a-(b+c)=a-b+ a- c(Distribution Axiom)

In this definition, the bold form O and 1 are used to highlight that these two elements are
abstract elements and are not necessarily their integer counterparts (see, e.g., Example 5.11(3)
in a moment).

Similar to our confinement of ourselves to the commutative groups, in Definition 5.12 we have
stipulated multiplication to satisfy the Commutative Axiom. So Definition 5.12 defines a
commutative ring and that is the ring to be considered in this book. We should also stress that
+ and - are abstract operations: that is, they are not necessarily the ordinary addition and
multiplication between integers. Whenever possible, we shall shorten a - b into ab; explicit
presentation of the operation "-" will only be needed where the operation is written without
operands.

Example 5.11. Rings

1. Z @ E and T are all rings under usual addition and multiplication with O = 0 and 1 =
1.

2. Forany n=> 0, Z,is aring under addition and multiplication modulo nwith O =0 and 1 =
1.

3. LetB be the additive group defined in Example 5.1(6) with the zero-element F. Let the
multiplication operation be A (logical And): F hF =F,F f\T =T ﬁF =F T f\T =T.
ThenB is a ring with the unity-element T. 0

At first glance, Definition 5.12 has only defined multiplication for non-zero elements. In fact,
multiplication between the zero-element and other elements has been defined by Distribution
Axiom. For example, Oa = (b + (—b))a = ba + (—b)a = ba — ba = 0. Moreover, a ring can have

zero-divisors, that is, elements a, b satisfying ab = O with a ?’-‘O and b #O. For example, for

Lin

n = kl being a nontrivial factorization of n, both k and f are non-zero elements in the ring ,
and the product kl = n = 0 (mod n) is the zero-element.

Definition 5.13: Fieldlf the non-zero elements of a ring forms a group under multiplication,
then the ring is called a field.

The Closure Axiom for the multiplicative group (i.e., the non-zero elements) of a field implies
that a field F cannot contain a zero-divisor, that is, for any a, b €F,ab = O implies either a = 0
orb = O.

Example 5.12. Fields

1. @ £ and T are all fields under usual addition and multiplication with O = 0 and 1 = 1.

2. The two-element ring B in Example 5.11(3) is a field.

3. Forp being a prime number, Zﬁ” is a field under addition and multiplication modulo p with
o=0and1=1U

We shall see more examples of fields in a moment.

Note that Z under integer addition and multiplication is not a field because any non-zero
element does not have a multiplicative inverse in Zi (a violation of the Inverse Axiom). Also, for

. . &y i . Z . -
n being a composite, ~ ™ is not a field too since we have seen that ' contains zero-divisors (a
violation of the Closure Axiom).

Sometimes there will be no need for us to care about the difference among a group, a ring or a
field. In such a situation we shall use an algebraic structure to refer to either of these
structures.

The notions of finite group, subgroup, quotient group and the order of group can be extended
straightforwardly to rings and fields.

Definition 5.14:An algebraic structure is said to be finite if it contains a finite number of
elements. The number of elements is called the order of the structure.

A substructure of an algebraic structure A is a non-empty subset S of A which is itself an

algebraic structure under the operation(s) of A. If S FA then S is called a proper substructure of
A.

Let A be an algebraic structure and B QA be a substructure of A. The quotient structure of A
modulo B, denoted by A/B, is the set of all cosets aoB with aranging over A, with the operation

* defined by (aoB) * (boB) = (aob)oB, and with the identity elements beingOoB andlo
B.

FromDefinition 5.14, a ring (respectively, a field) not only can have a subring (respectively, a
subfield), but also can have a subgroup (respectively, a subring and a subgroup). We shall see
such examples in 85.4.

5.4 The Structure of Finite Fields

Finite fields find wide applications in cryptography and cryptographic protocols. The pioneer
work of Diffie and Hellman in public-key cryptography, the Diffie-Hellman key exchange protocol
[98] (88.3), is originally proposed to work in finite fields of a particular form. Since the work of
Diffie and Hellman, numerous finite-fields-based cryptosystems and protocols have been
proposed: the ElGamal cryptosystems [102], the Schnorr identification protocol and sighature
scheme [257], the zero-knowledge undeniable signatures of Chaum, and the zero-knowledge
proof protocols of Chaum and Pedersen [73], are well-known examples. Some new
cryptosystems, such as the Advanced Encryption Standard [219] (87.7) and the XTR
cryptosystems [175], work in finite fields of a more general form. Finite fields also underlie
elliptic curves which in turn form the basis of a class of cryptosystems (e.g., [166]).

Let us now conduct a self-contained course in the structure of finite fields.

5.4.1 Finite Fields of Prime Numbers of Elements

Finite fields with the simplest structure are those of orders (i.e., the number of elements) as
prime numbers. Yet, such fields have been the most widely used ones in cryptography.

Definition 5.15: Prime FieldA field that contains no proper subfield is called a prime field .

For example, @ is a prime field whereas K is not, since @ is a proper subfield of [E. But @ is
an infinite field. In finite fields, we shall soon see that a prime field must contain a prime number
of elements, that is, must have a prime order.

Definition 5.16: Homomorphism and IsomorphismLet A, B be two algebraic structures. A
mapping f : A =+ B is called a homomorphism of A into B if f preserves operations of A. That is, if

ois an operation of Aand *, an operation of B, then Vx, y €A, we have f(x)oy) = f(x) * f(y).
If fis a one-to-one homomorphism of A onto B, then f is called an isomorphism and we say that
A and B are isomorphic.

Iff : A =B is a homomorphism and e is an identity element in A (either additive or
multiplicative), then

fle)* f(e) = fleoe) = fle),

so that f(e) is the identity element in B. Also, for any a €A

fla)* f(a™) = flaoa™) = f(e),

so that f(a—1) = f(a)~ for all a €A. Moreover, if the mapping is one-one onto (i.e., A and B are
isomorphic), then A and B have the same number of elements. Two isomorphic algebraic
structures will be viewed to have the same structure.

Example 5.13. Isomorphic Algebraic Structures

i. Denote by F, the set {0, 1} with operations + and - being integer addition modulo 2 and

integer multiplication, respectively. Then Iy must be a field because it is isomorphic to
fieldB in Example 5.12(2). Itis routine to check that mapping f(0) = F,f(1) =T is an
isomorphism.

#
ii. For any prime number p, additive group E‘P—l is isomorphic to multiplicative group ~ P. It
is routine to check that function f(x) = g* (mod p) is an isomorphism between these two

sets. 0

Clearly, all fields of two elements are isomorphic to each other and hence to FE. A field of two
elements is the simplest field: it contains the two necessary elements, namely, the zero-element
and the unity-element, and nothing else. Since under isomorphisms, there is no need to

differentiate these fields, we can treat Fy as the unique field of order 2.

Example 5.14. Finite Field of Prime Order

Letp be any prime number. Then P | the integers modulo p, is a finite field of order p (i.e., of
p elements) with addition and multiplication modulo p as the field operations. Indeed, we have

already shown, in Example 5.11(2) that Zﬁ is an additive ring, and in Example 5.1(5) that the
#
non-zero elements of ~ ¥, denoted by “F, forms a multiplicative group.E|

F

Definition 5.17:Field ™ FLet p be a prime number. We denote by]Fii'the finite field ZF.

LetF be any finite field of a prime-order p. Since we can construct a one-one mapping from F

onto IFTJ (i.e., the mapping is an isomorphism), any finite field of order p is isomorphic to ™ ¥. As
there is no need for us to differentiate fields which are isomorphic to each other, we can

harmlessly call]FPthe finite field of order p.

LetA be a finite algebraic structure with additive operation "+," and let a be any non-zero
element in A. Observe the following sequence:

Equation 5.4.1

a,2a=a+a,da=a+a+a,

SinceA is finite, the element a has a finite order and therefore in this sequence there must exist
a pair (ia, ja) with i < j being integers and ja —ia = (j—i)a = 0.

We should remind the reader to notice Definition 5.4 and Remark 5.1 for the shorthand meaning
of writing multiplication ia where i is an integer and a is an algebraic element.

Definition 5.18: Characteristic of an Algebraic StructureThe characteristic of an algebraic
structure A, denoted by char(A), is the least positive integer n such that na = O for every a €A. If

no such positive integer n exists, then A is said to have the characteristic O.

. Theorem 5.4

Every finite field has a prime characteristic.

Proof Let F be a finite field and a €F be any non-zero element. With (j—i)a=0and j > i
derived from the sequence in (5.4.1) we know F must have a positive characteristic. Let it be n.

SinceF has at least two elements (i.e., the zero-element and the unity-element), n 22 1fn>2

k,te€Z, 1<k, l<n 1

were not prime, we could write n = kl with

0 =nl = (kf)1 = (k)11 = (k1)(£1).

This implies either k1 = 0 or fl = 0 since non-zero elements of F form a multiplicative group
(which does not contain 0). It follows either kal = (k1)a = O for all a€F or fal = (fl)a = 0 for
alla €F, in contradiction to the definition of the characteristic n.

5.4.2 Finite Fields Modulo Irreducible Polynomials

The order of a finite prime field is equal to the characteristic of the field. However, this is not the
general case for finite fields. A more general form of finite fields can be constructed using
polynomials.

5.4.2.1 Polynomials Over an Algebraic Structure

InChapter 4 we have already used polynomials over integers. Now let us be familiar with
polynomials over an abstract algebraic structure.

Definition 5.19: Polynomials Over an Algebraic StructurelLet A be an algebraic structure
with addition and multiplication. A polynomial over A is an expression of the form

T

flz) = Z a;x’

i=0

where n is a non-negative integer, the coefficients a;j, O <i Sn are elements in A, and x is a

symbol not belonging to A. The coefficient a, is called the leading coefficient and is not the zero-

elementin A for n % 0. The integer n is called the degree of f(x) and is denoted by n = deg (f(x))
= deg(f).If the leading coefficient is a g,then f is called a constant polynomial. If the leading
coefficient is ag = 0, then f is called the zero-polynomial and is denoted by f = 0. We denote by
A[x]the set of all polynomials over algebraic structure A.

Forf, g EA[x] with

mn

Hz) = Zai‘”i and g(x) = Zbi;ﬂiv
i=0

i=()

we have

Equation 5.4.2

max(n,m) ;b i=0,1,...,min(n, m)

flx) + glz) = Z c;x' where ¢; = { @ i=m+1,...,n
i=0 b, i=n+1l,..., I
and
Equation 5.4.3
Tt
flx)g(x) = Z cpx® where ¢ = Z a;b;.
k=0 i+i=k
O=<i<n
D= <

Itis easy to see that if A is a ring, then A[X] is a ring with A being a subring of A[x]. Addition
and multiplication between polynomials over a ring will result in the following relationship on the
polynomial degrees:

deg(f + g) < max(deg(f),deg(g)),
deg(fg) < deg(f) + deg(g).

Now if A is a field, then because a field has no zero-divisors, we will have ch+m = anbm ;ﬁ 0 for
an 7 0 and by, & 0. So if A is a field, then

deg(fg) = deg(f) + deg(g).

Letf, g €A[x] such thatg Zo. Analogous to the case of division between integers (see
84.3.2.1), we can always write

Equation 5.4 .4

f=gq+r forqre Alz] with deg(r) < deg(g).

Example 5.15.

Consider flz) = P +attadtattatl € Fg[ﬂ?], glr) = z?+a+1 € FE[I]', We can

computeq, r € F, [x] by long division

2 4+ =z
e+l [2° + ¥ + 2 + ¥ + ¥ + 1
o + # + z
r + z + 1
g + 2 + T
< + 1

Thereforeq = x 2+ xand r = X2 + 1.0

Definition 5.20: Irreducible PolynomialLet A be an algebraic structure. A polynomial f €A[x]
is said to be irreducible over A (or irreducible in A[x],or prime in A[x]if f has a positive degree
and f = gh with g, h EA[x]implies that either g or h is a constant polynomial. A polynomial is
said to be reducible over A if it is not irreducible over A.

Notice that the reducibility of a polynomial depends on the algebraic structure over which the

polynomial is defined. A polynomial can be reducible over one structure, but is irreducible over
another.

Example 5.16.

For quadratic polynomial f(x) = x2 — 2x + 2: (i) Discuss its reducibility over the usual infinite

algebraic structures; (ii) Investigate its reducibility over finite fields]FF' for any odd prime

numberp; (iii) Factor f(x) over]FTJ for p < 10.

Using the rooting formula in elementary algebra, we can compute the two roots of f(x) = 0 as

a=1++v-1, fB=1-v-1.

i. SinceV =1 is notin R,f(x) is irreducible over K (and hence is irreducible over Z or I@).
But because V¥ G {L*, therefore f(x) is reducible over C:

flz)=(x—-1—-3)(z—141i).

I

P, or equivalently, —1 is a square number modulo p.

ii. Clearly,f(x) is reducible over ™ P, for any odd prime p if and only if ¥ —1 is an element in

2 —
A number x is a square modulo p if and only if there exists y (mod p) satisfying ¥~ = 4
(modp). By Fermat's Little Theorem (Theorem 6.10 in 86.4), we know that all x (mod p)

satisfies & =1 (mod p). For p being an odd prime, Fermat's Little Theorem is
equivalent to

Equation 5.4.5

2=

2T =41 (mod p),

for all x with O < x < p (where —1 denotes p — 1). If X is a square modulo p, then (5.4.5)
becomes

t:—]_ !>—1

rz = [yE} m =y ! =1 (mod P).

Therefore, we know that (5.4.5) provides a criterion for testing whether x is a square
modulo an odd prime p:x is a square (respectively, non-square) modulo p if the test yields
1 (respectively, —1).

To this end we know that for any odd prime p, f(x) is reducible over IFI‘J

-'—J. .l—]_
{_lJL"}_ =1 (mod p), and is irreducible if and only if {_1:]"—-2— =1
is reducible (or irreducible) over]FP if p =1 (mod 4) (or p = 3 (mod 4)).

if and only if

. In other words, f(x)

iii. Forp=2,f(x) =x2-2x+ 2=x2—-0x+ 0 = x2and is reducible over Fs.

The only odd prime less than 10 and congruent to 1 modulo 4 is 5. Since —1 = 4 = 22

(mod 5), i.e., ¥ =, 22 (mod 5), we can completely factor f(x) over]FG:

flx)=(z=1=-vV=Dz-14+v=-1D=(x=-1=-2)x-14+2)=(x+ 2z + 1).

The other square root of —1 in Fy is 3. The reader may check that the root 3 will provide
the same factorization of f(x) over Fs as does the root Z.D

5.4.2.2 Field Construction Using Irreducible Polynomial

Let us construct finite field using an irreducible polynomial.

Definition 5.21: Set A[Xx] Modulo a PolynomiallLet A be an algebraic structure and let f, g, q,

r EA[x]with g #o satisfy the division expression (5.4.4), we say r is the remainder of f divided
by g and denote r =f (mod g).

The set of the remainders of all polynomials in A[x]Jmodulo g is called the polynomials in A[Xx]
modulo g, and is denoted by A[X]g.

Analogous to the integers modulo a positive integer, A[x]sis the set of all polynomials of degrees
less than deg(f).

. Theorem 5.5

Let F be a field and f be a non-zero polynomial in F[x].Then F[x] ¢is a ring, and is a field if and
only if f is irreducible over F.

Proof First, F[x]sis obviously a ring under addition and multiplication modulo f defined by
(5.4.2), (5.4.3) and (5.4.4) with the zero-element and the unity-element the same as those of F.

Secondly, let F[x]; be a field. Suppose f = gh for g, h being non-constant polynomials in F[X].
Then because 0 < deg(g) < deg(f) and O < deg(h) < deg(f),g and h are non-zero polynomials in
F[xJ}s whereas f is the zero polynomial in F[x]¢. This violates the Closure Axiom for the
multiplicative group of F[x];. So F[x]s cannot be a field. This contradicts the assumption that
F[xJsis a field.

Finally, let f be irreducible over F. Since F[x]sis a ring, it suffices for us to show that any non-
zero element in F[x]f has a multiplicative inverse in F[x];. Let r be a non-zero polynomial in F[x]s
with gcd(f,r) = c. Because deg(r) < deg(f) and f is irreducible, c must be a constant polynomial.
Writingr = cs, we have ¢ €F and s €F[x] ¢ with gcd(f,s) = 1. Analogous to the integer case, we
can use the extended Euclid algorithm for polynomials to compute s~ (mod f) €F[x] 1. Also since

Cc €F, there exists ¢ ~1 — F. Thus we obtain r-1 = ¢c-1s1 €F[x] f.D

For finite field F[x]+, let us call the irreducible polynomial fdefinition polynomial of the field
FIxIs

. Theorem 5.6

Let F be a field of p elements, and f be a degree-n irreducible polynomial over F. Then the
number of elements in the field F[x]sis p ".

Proof From Definition 5.21 we know F[Xx]sis the set of all polynomials in F[x] of degrees less
than deg(f) = n with the coefficients ranging through F of p elements. There are exactly p" such

polynomials in F[x]j.E|

. Corollary 5.4

For every prime p and for every positive integer n there exists a finite field of p" elements.l:|

IF

very clear: itis merely the set of all polynomials of degree less than n with coefficients in

P, the structure of the field]FP[I]-'E is

]Fp .

As indicated by Corollary 5.4, for F being a prime field

Under isomorphism, we can even say that IFP 11 is the finite field of order p".

Example 5.17. Integer Representation of Finite Field Element

Polynomialf(x) = x 8 + x* + x3 + x + 1 is irreducible over]F?. The set of all polynomials modulo
f(x) over Iy forms a field of 28 elements; they are all polynomials over F, of degree less than 8.

So any element in field Fy ['TJJF is

bre” + bgx® + bsax® + byt + bsx® + baz® + by + bg

whereb 7,b g,b 5,b 4,b 3,b 2,b 1,b o, E]FE. Thus, any element in this field can be represented as ar
integer of 8 binary bits b7bgbbsbsbsbsb1bg, or a byte. In the hexadecimal encoding, we can use a
letter to encode an integer value represented by 4 bits:

‘0’ = 0000(= 0),...,'0" = 1001(=9),*A’ = 1010(= 10),...,'F’ = 1111(= 15).

Since a byte has eight bits, the hexadecimal encoding of a byte can use two quoted characters

IF2 [.TJ

'XY* such that '0' S 'X' S 'F and '0' £ 'v* S 'F". That is, any element in field f can be

viewed as a byte in the interval ['00', 'FF'].

Conversely, any byte in the interval ['00', 'FF'] can be viewed as an element in field Fa ['TJJF For
example, the byte 01010111 (or the hexadecimal value '57") corresponds to the element

(polynomial)

D+t +1.

|

FromCorollary 5.4 and Example 5.17, we can view field]F2 [‘T]f as the field of all non-negative
integers up to deg(f) binary bits. Clearly, this field has 29¢9() elements. Therefore, for any
natural number n > 0O, the set {0, 1}" forms a field of 2" elements. Let us use "n-bit binary field"
to name this field. Operations in this field follows the operations between polynomials of degrees

less than n over]FE. Addition is very simple as shown in Example 5.18.

Example 5.18.

Letf be a degree-8 irreducible polynomial over]FE. In the 8-bit binary field, addition follows
polynomial addition by adding coefficients modulo 2 (so 1 + 1 = 0). For example (in
hexadecimal) '57' + '83' = 'D4":

(2®+ 2+ 2 +z+ D)+ (" +z+1) =27 + 2% +2* + 2%

So, addition in this field is independent from the definition polynomial .0

Fg [.T]

Multiplication in field ¥ depends on the definition polynomial f: it is multiplication between

two polynomials modulo f. The modulo operation can be done by applying the extended Euclid
algorithm for polynomials. Later (in Example 5.19) we shall show another method for achieving
field multiplication which is based on a different way for the field representation.

Then-bit binary field is a useful field because of its natural interpretation of integers. It has
many applications in coding and cryptography. A new encryption standard, the Advanced
Encryption Standard (AES), works in the 8-bit binary field. We will introduce the AES in Chapter
7.

Finally we notice that in Theorem 5.6 we have never assumed p as prime. In fact, in Theorem
5.5,F can be any field, and F[x] fis called an extended field from the underlying subfieldF
viafield extension. Since F can be any field, it can of course be an extended field from another
underlying subfield. In many applications of finite fields, we need to know more information
about the relation between extended fields and underlying subfields (for example, we will need
to know this relation when we study the AES later). Also, a different way for finite fields
representation may also ease computation (e.g., the multiplication in Example 5.18 can be
eased without using the Euclid algorithm if we use a different field representation). The next
section serves the purpose for a better understanding of the structure of finite fields.

5.4.3 Finite Fields Constructed Using Polynomial Basis

This section is intended to provide the knowledge for helping a better understanding of some
cryptosystems based on a general form of finite fields. We present it by assuming that the reader
is familiar with the knowledge of vector space in linear algebra. However, this section may be
skipped without causing difficulty for reading most parts of the rest of this book.

In 85.4.2 we have shown that under isomorphism, field]FP[‘EI-'E is the finite field of order pde9(r).
However, often it may not be very convenient for us to use fields modulo an irreducible
polynomial. In this final part of our course in algebraic foundations, let us construct finite fields
using the roots of an irreducible polynomial over a finite field F. Fields constructed this way are
more frequently used in applications.

LetF be a finite field and n be any positive integer. Let f(x) be an irreducible polynomial over F

of degree n. We know that f(x) has exactly n roots in somewhere since f(x) can be factored into n
linear polynomials there. We shall see in a moment that "somewhere" or "there" is exactly the
space we are constructing.

Denote these n roots of f(x) = 0 by

Equation 5.4.6
‘qﬂ? 91_1 | HT?,—].

Sincef(x) is irreducible over F, none of these roots can be in F.
. Theorem 5.7

Let F be any finite field and let f(x) €EF[x]be an irreducible polynomial of degree n over F. Then
forq being any root of f(x) = 0, elements

1,8, 6% ...,6"!

are linearly independent over F, that is, for ri €F withi =0, 1, 2, ..., n —1:

Equation 5.4.7

ro+ 110 +120% + -+ 10" =0 implies vo =11 = =11 =0,

Proof Let g be any root of f(x) = 0. We know g 1 since f(x) is irreducible over field F which
contains 1. Suppose that the elements 1, q,q 2, ..., g"1 were not linearly independent over F.
That is, the linear combination (5.4.7) is possible for some r; €F which are not all zero (i = 0, 1,
2, .., n=1). This is equivalent to q being a root of

rix)=ro+mzc+ T'r_;;rz e~ B N

Withr ; €F (i = 0, 1, ..., n—1), by Definition 5.21,r(x) is an element in the field F[x] fand
thereforer(x) = 0 means r(x) = = 0 (mod f(x)). Let a, be the leading coefficient of f(x). Then a,

€F,a | # 0 and an H(x)|r(x). But this is impossible since a ,~1f(x) is of degree n while r(x) is of
degree less than n, unless r(x) is the zero polynomial. This contradicts the supposed condition

thatr ; EF are not all zero (i= 0, 1, ..., n—1). 0

Definition 5.22: Polynomial BasislLet F be a finite field and f(x) be a degree-n irreducible
polynomial over F. Then for any root q of f(x) = 0, elements 1, q,q2, ..., q"1 are called a
(polynomial) basis (of a finite vector space) over F.

We know from a fact in linear algebra that a basis of n elements spans an n-dimension vector
space. The spanning uses the scalars in F, that is, the space so spanned has the following
structure

Equation 5.4.8

=1

E ?‘gﬂj | PO P sy P, Bl 3.
i=0

. Theorem 5.8

Let F be a finite field and f(x) be a degree-n irreducible polynomial over F. Then for any root g of
f(x) = 0, the vector space in (5.4.8) is a finite field of (#F)" elements.

Proof First, we show that the space in (5.4.8) is a ring. The only non-trivial partis to show that
Closure Axiom holds for multiplication. To do so, we note that from

Equation 5.4.9

]f[:ﬁ:] — lilnﬁl"n —|—{},n_lﬁ"_l + e+ ag = 0

witha , €F and a 75 0, we have

" =a (—an_18"" — s —ap)

and so q" is a linear combination of the basis 1, q,q 2, ..., g"1. Multiplying q to (5.4.9), we can

further derive that for any positive integer m :_"n,q M can be expressed as a linear combination
of the same basis. Therefore, for any u, vin the space in (5.4.8),uv, as a linear combination of

1,9, ..,9gMform < 2(n—1), must be a linear combination of the basis 1, q, ..., g™, and hence is

in the space in (5.4.8). So we have shown Closure Axiom.

Secondly, to show that the space in (5.4.8) is a field, we only need to show that the space does
not contain zero-divisors. To do so, we can use the linear independence relation in (5.4.7) and
check that for uv = 0, either the scalars of u, or those of v, must all be zero, and hence either u
=0orv=0.

Finally, notice that since the spanning process uses #F elements of F as scalars and the basis of
n elements, the space spanned has exactly (#F)" elements.™

Definition 5.23: Finite Field F

field spanned by a basis of n elements over F is denoted by

" Let q be the number of elements in a finite field F. The finite

Fyr

. Theorem 5.9

Ir

Let F be a finite field of g elements and let ~ 4" be a finite field spanned over F. Then

F

i. the characteristic of ~ 4"is that of F;

Fyn.

ii. Fis asubfield of

cF

9" satisfying ad if and only if a € F.

F

iii. any element &

ProofLet 1, q,q9 2, ..q"1 be a basis of ~ 4" over F.

F

i. Let char(F) denote the characteristic of F. Then adding any element in — 4" to itself char(F)

times we obtain

n—1 n—1

z::ha,rl[Fyr,6* = ZUH'

=0

Thus char(IF

™) = char(F).
ii. Since the basis contain 1, using scalars in F, any elementin F is a linear combination of 1
and hence is a linear combination of the basis.

iii. (¥) Consider the subfield F = {0} UF* where F* is a multiplicative group of the non-
zero elements. So for any a €F, either a = 0 or a €F*. The former case satisfiesa 9= a
trivially. For the latter case, by Lagrange's Theorem (Corollary 5.2), ord(a)|#F* = g—1 and
thereforea 41 = 1. So a9 = a is also satisfied.

(=) Any ¢ €]F'fx"" satisfying a9 = a must be root of polynomial x4 — x = 0. This polynomial

rI

has degree q and therefore has at most q roots in including O. By (ii), F is a subfield of]F

which already contains all the roots of x4 — x = 0. No other elements of]F , can be a root of x4

—X.I:|

In our course of spanning the field]Ffsr" over a field F of g elements, we have never assumed or
required that g be a prime number, that is, we have not assumed or required that F be a prime

F

field. The following theorem provides the relationship between F and field ~ 4" spanned over F

and stipulates the nature of g.

. Theorem 5.10 Subfield Criterion

F

Let p be a prime number. Then F is a subfield of P"if and only if F has p M elements for m being
a positive divisor of n.

Proof (=) Let F be a subfield of [F?-"‘"'. F =TFp or F = Fpe
F

be a proper subfield of P"™ other than Fp. By Theorem 5.9(i),]Fl”"' has characteristic p.
ConsequentlyF must also have characteristic p. So F contains F as a subfield and is spanned

are the two trivial cases. Let F

over Fp by a basis of m elements for some m with 1 { {n We only need to show m|n. The
two multiplicative groups IF " and F* have p"—1 and p™ —1 elements, respectively. Since the
latter is a subgroup of the former, by Lagrange's Theorem (Theorem 5.1),p M —1|p"-1. This is

only possible if m|n.

(%) Let m be a positive proper divisor of n and let F be a field of p™ elements. Since n/m is a
positive integer, using a degree-(n/m) irreducible polynomial over F we can span a field of (p™)

=p " elements. Denote by P" the spanned field, by Theorem 5.9(ii), F is a subfield of]Fp"'. [l

F

Letf(x) be any degree-n irreducible polynomial over ™ ¥. Reviewing Theorem 5.6, we now know

P" s isomorphic to]F?? [r]f Even though two isomorphic fields should be viewed without
essential difference, one can be much easier to work with than the other. Indeed, the ease of

F

proving the Subfield Criterion Theorem for p" provides such a clear evidence. The following

example provides another evidence.

Example 5.19. Field

[Fﬂ'-" We have seen that Fy [XIx8+x4+x3+x+1 (in Example 5.18) is the set of all polynomials
modulo the irreducible polynomial x8 + x* + x3 + x + 1 over Fy and has 28 elements. Now we

know that IF?'-" is also a field of 28 elements and can be represented by the following space

{b?HT + l,}ﬁeﬁ + 1,)5195 + b4§4 pe bdﬁq = hgﬁz - 519 + bu}

whereq is a root of (e.g.) the equation x 8 + x4 + x3 + x + 1 = 0, and the scalars
br, bg, b, ba, by, b2, by, by € FE. Clearly, these two fields are isomorphic; in particular, we can

also use a byte to represent an element in the latter representation of F?'—".

InExample 5.18 we mentioned that multiplication in Iy lmjrg+m4—;¢"’ +x+1 is a bit complicated
and needs modulo polynomial which requires the Euclid algorithm for polynomial division.

Multiplication in FE“ spanned from polynomial basis can be easier: straightforward multiplying
two elements and representing any resultant terms with ¢ for i > 7 using a linear combination of
the basis 1, q, ..., q°.

For example, let us compute '57' . '83', or

{{jb 3 o + i + & + 1) - [ﬂ'- iy 1) = gl oM L% L oS P 05 0+ 65 + 1.

Since

0+ +6°+0+1=0,

we have the following linear combinations (notice —1 = 1 in]FE):
=0 +6+0+1,
6 =6°+06"+6%+0,

ﬁll :HT+F}E+94+HH,

0% =6 +6° +6°+6°.

Thus,

0% + 0" +0°+0%+0° +0°+0" + 0 +1=0" +6° + 1.

That is, we have '57' . '83"' = 'Cl'.E|

We now provide a remark as a summary on our study of finite fields.

.Remark 5.2

We have studied two methods for constructing finite fields: field modulo an irreducible polynomial
(85.4.2) and field spanned from a polynomial basis (§85.4.3). In our study of finite fields we have

used [Fﬁ‘to denote a field of the latter construction. However, under isomorphism, two fields of
the same number of elements can be viewed without difference. Therefore from now on, we will

F |

denote by ~ %any finite field of q elements where q is a prime power.

5.4.4 Primitive Roots

We asserted in 84.5 that the complete factorization of n — 1 provides a piece of "internal

-
information” (i.e., auxiliary input for verifying a problem in N ,P) for answering whether n is
prime with an efficient deterministic algorithm. Now with the knowledge of finite fields, that
assertion can be easily proved.

. Theorem 5.11

* Te
The multiplicative group {IFP"] of field [F?-’* is cyclic.

*
Proof By Theorem 5.9(iii), the entire roots of polynomial xP~1 — 1 = 0 forms {IFP”] . However,
the entire roots of this polynomial are the p" — 1 distinct (nontrivial) roots of 1, spread over the

%
unity circle. So there exists a (p" — 1)-th root of 1, which generates the group {IFP”] . Hence
*
{IFP" j is cycIic.E|

£ d
Definition 5.24: Primitive RootA multiplicative generator of the group {IFP" j is called a

[E‘-p"- .

primitive root of field

. Theorem 5.12

Let n be a positive integer with n — 1 = rira...rkas the complete prime factorization of n—1 (some
of the prime factors may repeat). Then n is prime if and only if there exists a positive integer a <

n such that a1 = 1 (mod n)anda -1/, &£, (mod n)fori=1, 2, .., k.

Proof (=) If nis prime, then by Theorem 5.11, the group (Flt)* is cyclic and has a generator
which is an (n — 1)-th root of 1. Denoting by a this root, then a satisfies the conditions in the
theorem statement.

(¥=) Let integer a < n satisfy the conditions in the theorem statement. Then a, a2, ..., a"—1 are

solutions of x"-1 — 1 = 0 (mod n). Forany 1 Si<j Sn—1, it is necessary a | Fai (mod n).

Suppose otherwise al—i &= 1 (mod n) for some i, jwith 0 < j— i< n—1; then by Definition 5.9
ord(a)]j — ijn — 1, contradicting to the conditions in the theorem statement. Now we know that a
is a multiplicative group of n — 1 elements (multiplication modulo n). This group can contain at
mostf (n) elements. So f(n) = n— 1. Hence n is prime by definition of Euler's function (Definition

5.11).5
Theorem 5.12 suggests an efficient algorithm for finding a primitive root modulo a prime p, i.e.,
*

a generator of the group ZP. The algorithm is specified in Alg 5.1.

#
ByTheorem 5.2(4), we know that in the group ~F there are exactly f (p — 1) elements of order p
— 1, and these elements are generators of the group. Therefore Alg 5.1 is expected to terminate
in

p—1

—— < Gloglogp — 1
op—1) #

(see e.g., page 65 of [198]) steps of recursive calls. Since the number of prime factors ofp— 1 is
bounded by logp, the time complexity of the algorithm is bounded by Og((logp) #log logp).

Algorithm 5.1: Random Primitive Root Modulo Prime

INPUT p: a prime; ql1,92, ..., gk: all prime factors
ofp—1;
OUTPUT g: a random primitive root modulo p.

PrimitiveRoot(p, ql1,92, ..., gk)

1. pickg €u[2,p—1);

2. for (i=1,i++,k) doif (g ®PD/qi = 1 (mod p)) return(PrimitiveRoot(p, q1,
a2, .., k));

3. return(g).

5.5 Group Constructed Using Points on an Elliptic
Curve

A class of groups which are very important to modern cryptography is those constructed by
points on elliptic curves. Miller [203] and Koblitz [166] originally suggest to use elliptic curve
groups for realizing public-key cryptography.

Elliptic curves for cryptography are defined over finite algebraic structures such as finite fields.

For ease of exposition, let us confine ourselves to the easy case of prime fields]FP of
characteristic greater than 3. Such a curve is the set of geometric solutions P = (X, y) to an
equation of the following form

Equation 5.5.1

E:y® =2® +ar+b(mod p).

Ayt 2
wherea and b are constants in]FIJ (p > 3) satisfying 4a” + 27b ;é 0 (mod p)al. To have the
points on E to form a group, an extra point denoted by O is included. This extra point is called
thepoint at infinity and can be formulated as

[a] Reason to be given after Definition 5.25.

O = (z,00).

So for the group format, we write

Equation 5.5.2
E={P=(z,y) | z,y € F, solved from (5.5.1) } U {O}.

This set of points form a group under a group operation which is conventionally written
additively using the notation "+" . We will define the operation in a moment.

Denote by f(x) the cubic polynomial in the right-hand side of (5.5.1). If f(X) is reducible over]FP

F _

then for el being a zero of f(x) (i.e. f(§) = 0 (mod p)), point (x, 0) €EE. We will see in a
moment that these points have order 2 under the group operation "+" . Since f(x) is a cubic
polynomial, there are at most three such points (either 1 or 3 depending on the reducibility of

f(x) over FP; answer why by doing Exercise 5.13).

nelf
All other points apart form O are made from fels such that f (h)?_é 0 (mod p) is a quadratic

IF

h, there are two distinct solutions for y (every quadratic residue element in

residue elementin © P (i.e., a square number modulo p, see 86.5). In such cases, for each such

F

P has two square
roots modulo p, see Corollary 6.2). Since f(h) is a constant, the two square roots will be -’r{??}

and — ¥ -”n}. Thus, we can denote by h, f{f;;} and — -”TI} such two points of solutions.

To this end we know that the points on the curve EUFP} are O, (x, 0), (h, V -’r{??}) and (h, —
\ .HTI}) for all x,h in Fﬁ‘ satisfying f(8) = 0 (mod p) and f(h) being a quadratic residue in [F'*i‘.

5.5.1 The Group Operation

The set E defined in (5.5.2) forms an abelian group under the operation "+" defined as follows.

Definition 5.25: Elliptic Curve Group Operation ("'tangent and chord method")Let P, Q €
E, | be the line containing P and Q (tangent line to E if P = Q), and R, the third point of
intersection of | with E. Let |I' be the line connecting R and O. Then P "+" Q is the point such that I’
intersects E at R, O and P "+" Q.

For the moment let us suppose that under Definition 5.25, (E, "+") does form a group. We
should first explain why we have required the coefficients of the cubic polynomial in (5.5.1) to

satisfy 4a3 + 27b? # 0 (mod p). Notice that

da® + 27b*

" b
— (Y3 Yye _
&_{)Hz] 4 x 27

is the discriminant of the cubic polynomial f(x) = x3 + ax + b. If d = 0 then f(x) = 0 has at least
a double zero X (root which makes f(X) = 0) and clearly (X, 0) is on E. For F(X, y) = y2 — x3 — ax
—b = 0, this point satisfies

¥ aoF

Ay

y=>0 Ox r=X

That is, (X, 0) is a singular point at which there is no definition for a real tangent value. With the
tangent-and-chord operation failing at the singular point (X, 0), E cannot be a group.

Fig 5.1 illustrates the tangent-and-chord operation. The top curve is the case of D < 0 (the cubic
polynomial has only one real root) and the lower, D> 0. We have intentionally plotted the
curves as dotted lines to indicate (p}) being a discrete set. The discrete points are called]FP
-rational points. Their number is finite (see (5.5.6) to be given in a moment).

Figure 5.1. Elliptic Curve Group Operation

T
A
!
. L";, P+ Q
P"+"Q"+"R =0
[=
E
A
._1' 'I'
P | ——
st : ' -
Pr+"P
5"+"5=0 "-,‘ *

Now let us show that (E, "+") does form a group under the tangent-and-chord operation.

First, for any P = (X, Y) €E, let us apply Definition 5.25 to a special case of Q being O (since we
have included O in E). Line & intersecting P and O is

£rp=X,

SinceP €E means f(X) = X 3 + aX + b (mod p) being a quadratic residue in Fp, therefore —Y is
the other solution to y2 = f(X) (i.e., the other square root of f(X) modulo p). That is, 6‘ also
intersects point R = (X, —Y) €E. Clearly, because f = &, it intersects the same three points on E
as &‘ does. By Definition 5.25, we obtain

P=P“0

for any P €E. Moreover, for all (x,y) €EE, we have also derived

() “+* (3, ~9)=0.

By denoting (X, —y) =" —" (X,Y), we see that point O behaves exactly as the identity element
under the operation "+" . Therefore we have obtained Identity Axiom and Inverse Axiom for (E,
gy

A special case of this special case is y1 = —y> = 0. This is the case of P = "-" P (point S on the
lower curve in Fig 5.1). At this doubly special point we have P "+" P = O. That s, P is an order-2
element. We have mentioned this special element earlier: it is a solution of y2 = f(x) = 0 (mod

F

p). Such special points only exist when f(x) has zeros in ™ P, i.e., when f(x) is reducible over ™ F.

Now let us consider the general case of f being a non-vertical line. The formula for f is

Equation 5.5.3

£y -y =Mz —21)

where

Equation 5.5.4

f ¥1—U2 .
— ifx .
£y — Lo . ?é .
=
32 +a
=1 = ifxy =z and i1 =1y2 # 0
\ le .

Since fwill meet R = (x3,Yy 3) on the curve, we can use formulae (5.5.1) and (5.5.3) to find the
pointR. The x part of the point R is a solution of

CNE: [Mz—z1)+y]* — (2® +az+b) =0

Notice that f nE is a cubic polynomial which has solutions x 1,X 2,X 3, we can also write it as

bNE:clx—z)(z—22)(x—23) =0

wherec is some constant. Comparing the coefficients in these two ways of writing f nE (the

coefficients of x3 and x2) we obtain ¢ = —1 and

T3 = A — 11 — xo.

Finally, by Definition 5.25, and the fact that P "+" Q = "—" R, we obtain the coordinates of the
pointP "+" Q as

Equation 5.5.5

r3 = A — 11 — 29
y3 = Az —x3) — 1

wherel is defined in (5.5.4). We notice that because line f intersects P, Q and R,R must be on
the curve, and consequently, P "+" Q = " — " R must also be on the curve. Thus, we have
obtained Closure Axiom for (E, "+").

Associativity Axiom can be verified step by step applying the formulae (5.5.5). Because of the
tedious nature, we shall not conduct the demonstration here and leave it as exercise for the
reader.

To this end, we know that (E, "+") is indeed a group. Moreover, it is clearly an abelian group.

Example 5.20.

The equation E : y2 = x3 + 6x+4over F7defines an elliptic curve group since 4 x 6 3 + 27 x 42 =
E(Fr) .

0 (mod 7). The following points are on

E(F7) = {0, (0,2),(0,5),(1,2),(1,5),(3,0), (4,1), (4,6), (6,2),(6,5) }.

Some applications of the addition law are (3, 0) "+" (3,0) =0, (3,0) "+" (4, 1) = (1, 2) and (1,
2) "+" (1, 2) = (0, 2). The reader may check, e.g., (1, 2), is a generator of the group. Therefore

EEIFT] is cyclic. 0

]Fp

with , > 3. In general, E can be defined over [F'*il‘ where q is a prime power. The cases for p = 2
and 3 are a little more complex, however, the working principle remains the same. We
recommend [272] to more interested readers for further study.

We have introduced elliptic curve groups for the simplest case of E defined over a prime field

5.5.2 Point Multiplication

From now on, we shall drop the quotation mark from the operation "+" and .

Form being an integer and P €E, we denote

P+P+---+P form>0

[m]f-’ - O form=20

|—m|—P for m < 0

The computation of [m]P (or a multiple humber of the group operation in any additive group) is
analogous to exponentiation in a multiplicative group and is given in Alg 5.2.

Algorithm 5.2: Point Multiplication for Elliptic Curve Element

INPUT pointP E£E; integer m > 0;
OUTPUT [m]P.

EC_Multiple(P, m)

1. ifm=0return(0O);
2. ifm (mod 2) = O return(EC_Multiply(P + P, m = 2));

(* = denotes division in integers, i.e., m +~ 2 = |.m/2J *)

3. return(P + EC_Multiply(P + P, m = 2,)).

For example, executing EC_Multiply(P, 14), Alg 5.2 will invoke the following four recursive calls:

EC_Multiply(P, 14)

=EC_exp(P+ P, 7) (in step 2)
= [2]P + EC_Multiply([2]P + [2]P, 3) (in step 3)
= [2]P + [4]P + EC_Multiply([4]P + [4]P, 1) (in step 3)
= [2]P + [4]P + [8]P + EC_Multiply([8]P + (in step 3)
[8]P, 0)

=[2]P + [4]P + [8]P + O (in step 1)

The result is [14]P.

Considering that m = p and that the computations in (5.5.4) and (5.5.5) involve squaring
numbers of p's magnitude, the time complexity of Alg 5.2 is Og((logp) 3). We should notice that
Alg 5.2 does not make use of any properties of the underlying field, and hence it is not an
efficient realization, rather, it is only for the purpose of providing a succinct exposition for how to
compute a point multiplication. Several point multiplication methods with implementation
considerations for an improved efficiency, such as precomputations and making use of special
field properties, can be found in, e.g., [35].

5.5.3 Elliptic Curve Discrete Logarithm Problem

To reverse the effect of a multiplication, that is, given a pair of points (P, [m]P), find the integer
m, is a problem with a very different nature from that of point multiplication. The problem is
calledelliptic-curve discrete logarithm problem,, or ECDLP for short. It is widely believed
that the ECDLP is difficult to solve (computationally infeasible) when the point P has a large
prime order.

Hasse's theorem states

Equation 5.5.6
#E(]Fq) =qg+1—1t with —QV”E';_i { 112./&.

Fy)

Heret is called the "trace of Frobenious" at q. From this we see that #E(is at the

magnitude of q. For a curve defined over]Fq (general case), it is very easy to devise a large

primep of size slightly less than g such that E(IE1*1’) contains a subgroup of order p. The best

known algorithm for solving the ECDLP has a time complexity expression U{ \/E) (because p =
). This is more-or-less a result of a bruteforce search method helped with the birthday paradox.
Such a result applies to discrete logarithm problems in any abelian group with size at the
magnitudeq. Indeed, Pollard’'s | -method (see 83.6.1) can easily be modified to the case for the

ECDLP. Therefore, we can say that a solution with complexity U{ \/ﬁ) for the ECDLP is not a
solution at all due to its irrelevance to the group structure in question.

In the case of the discrete logarithm problem in a finite field (to be formally defined in Definition
8.2), there exist algorithmic methods called index calculus for solving the problem. The time

complexity of an index calculus method for discrete logarithm in a finite field]F"T has a
subexponential expression sub-exp(q) given in (8.4.2).

The complexity expression (']{ \/E) is exponential in the size of q. For the same input, U{ \/E::I as
a function of large quantity grows much quicker than the subexponential function sub-exp(q)
does. This means that the underlying field for the ECDLP can use a size much smaller than that
of a finite field on which an ordinary discrete logarithm problem is based, while achieving the

same level of time for solving the problems. For the ECDLP, the common sense is to set g =
2160, This allows a 280-level difficulty of countering bruteforce search methods. To obtain a
similar difficulty of the discrete logarithm problem in a finite field, the subexponential expression
(8.4.2) will require g to have a magnitude at the level of 21000 We should further notice that the
progress of the hardware computing technology mean that g should grow accordingly. With the

drastically different asymptotic behaviors of ﬁ and sub_exp(q),q for the elliptic curve case can
grow much slower than that for the finite field case.

The computational infeasibility maintained by the ECDLP over a relatively small field means that
elliptic curve groups have a good application in the realization of more efficient public-key
cryptographic systems. Since public-key cryptography is also called asymmetric cryptography,
meaning encryption with a public key is easy and decryption without the correct private key is
hard. Thus we may say that public-key cryptography based on elliptic curve group is more
asymmetric than that based on finite fields.

However, we should provide an early warning that there are weak cases in elliptic curves. For
weak cases an underlying field of magnitude 2160 will be too small. We will see such a weak
case, and surprizingly, its positive applications in Chapter 13.

5.6 Chapter Summary

After our study of abstract algebraic structure in this chapter we now know that algebraic
structures such as group, ring, and field have finite versions of arithmetic operations. For
example, we have seen that for any positive integer n, all non-negative integers up to n binary
bits form a finite field of 2" elements, i.e., the structure is closed in addition and multiplication
(hence also closed in subtraction, division, and all other algebraic operations such as
exponentiation, rooting, etc., since they are all derived from the most basic addition and
multiplication operations). Algebraic structures with the closure property in finite spaces provide
the basic building blocks for constructing cryptographic algorithms and protocols.

Our course is not only self-contained for reference purpose for most readers, but also
accompanied by plenty of digestion and explanation material so that an in-depth understanding
of these subjects can be achieved by more mathematically inclined readers. A more
comprehensive study of abstract algebraic topics can be found in [177] and for elliptic curves
can be found in e.g., [272].

Exercises

51

5.2

5.3

54

55

5.6

5.7

5.8

5.9

5.10

511

5.12

5.13

Z

InExample 5.2(5) we have shown that Fermat(n) is a subgroup of ““t. Show that

forn being an odd composite integer, #Fermat(n) < #Eﬁ;‘i_ Argue that this
inequality is the basis for the working principle of the probabilistic primality test Alg
4.5.

Show that DIV3 = {0} Usn (set DIV3 is defined in 84.3,Example 4.1).

*
In group E“11: (i) how many generators in it? (ii) Find all the generators of it. (iii)
Find all subgroups of it.

Letn be an odd composite and is not a power of a prime. Does the group “ " have
a generator?

Use "chalk-marking-on-toothed-wheels™ method given in Example 5.10 to confirm
i

that the largest order elements in group ““4% is 12, and the order of any elements

must divide 12.

Letn = pq with p, g being odd distinct primes. Prove the generalization case for the

preceding problem, that is: (i) the largest order of elements in =t is | (n) = lem(p —

1,9 — 1); (ii) the order of every element in “n divides | (n).
Why must the characteristic of a finite ring or field be prime?

Using long division for polynomials as a subroutine, construct the extended Euclid
algorithm for polynomials.

Letn be any natural number. Construct a finite field of n-bit integers {0, 1} ".

Hint: map between Iy ['T]f and {0, 1}" using the mapping method given in
Example 5.17, her fis a degreen-n polynomial over]FE.
]Firi.'m'

How many isomorphic subfields does have? Is IF?'—" one of them?

Why is a group generator also called a primitive root?

For an odd integer p, knowing the complete factorization of p— 1, construct an
efficient algorithm to answer the question "Is p prime?" with the correctness
probability 1 (not using Prime_Test(p) since it cannot achieve the correctness
probability 1, also not using trial division since it is not efficient).

I

order-2 point if f(x) = x3 + ax + b is irreducible over
otherwise.

P with p > 3, show that E has no

F

For an elliptic curve E : y2 = x3 + ax + b over

P and has 1 or 3 such points

5.14 Confirm Associativity Axiom for group (E, "+") defined in 85.5.1.

5.15 Confirm that the point (1, 2) in Example 5.20 is a group generator.

Chapter 6. Number Theory

Section 6.1.

Introduction

Section 6.2.

Congruences and Residue Classes

Section 6.3.

Euler's Phi Function

Section 6.4.

The Theorems of Fermat, Euler and Lagrange

Section 6.5.

Quadratic Residues

Section 6.6.

Square Roots Modulo Integer

Section 6.7.

Blum Integers

Section 6.8.

Chapter Summary

Exercises

6.1 Introduction

Problems such as factorization or primality of large integers, root extraction, solution to
simultaneous equations modulo different moduli, etc., are among the frequently used ingredients
in modern cryptography. They are also fascinating topics in the theory of numbers. In this
chapter we study some basic facts and algorithms in number theory, which have important
relevance to modern cryptography.

6.1.1 Chapter Outline

86.2 introduces the basic notions and operations of congruences and residue classes. 86.3
introduces Euler's phi function. §6.4 shows a unified view of the theorems of Fermat, Euler and
Lagrange. 86.5 introduces the notion of quadratic residues. 86.6 introduces algorithms for
computing square roots modulo an integer. Finally, 86.7 introduces the Blum integers.

6.2 Congruences and Residue Classes

In 84.3.2.5 we have defined congruence system modulo a positive integer n > 1 and studied a
few properties of such systems. Here we shall study a few more facts of the congruence systems.

. Theorem 6.1

For integer n > 1, the relation of congruence (mod n)is reflexive, symmetric and transitive. That
is, for every a, b, c € Z

i. a=a (mod n);
ii. If a =b (mod n),then b =a (mod n);
iii. Ifa =b (mod n)and b =c (mod n),then a =c (mod n). .

A relation having the three properties in Theorem 6.1 is called an equivalence relation. It is
well known that an equivalence relation over a set partitions the set into equivalence classes.

Let us denote by "=n" the equivalence relation of congruence modulo n. This relation is defined

over the set Z and therefore it partitions / into exactly n equivalence classes, each class
contains integers which are congruent to an integer modulo n. Let us denote these n classes by

1, n—1,

where

Equation 6.2.1

d={zeZ|z(modn)=a}l.

We call each of them a residue class modulo n. Clearly, we can view

Equation 6.2.2
Zn=10,1, ..., n—1}

On the other hand, if we consider Z as a (trivial) subset of Z then coset N (Definition 5.7 in
85.2.1) is the set all integers which are multiples of n, i.e.,

Equation 6.2.3

fidh = {0 ovby- 000)

Now consider quotient group (Definition 5.8 in 85.2.1) with addition as the group operation:

Equation 6.2.4
ZnE={z+nL|xel}.

If we unfold (6.2.4) using n in (6.2.3), we have

Equation 6.2.5

ZinZ = { z+nZ|zeZ}
= { 0+40, £n, £330, ... };
1+{0, £n, £2n, ...},
2+{0, £n, £2n, ...}

(n—1)+{0, £n, £2n, ...} }
= § Dbk

{1, +n+1,£2n+1, ...},

{2,4n+2,+2n+2, ...},

{{I-r;— 1), +fn+(n—1), £2n+(n—-1), ...} }.

There are only n distinct elements in the structure (6.2.5). No more case is possible. For
example

n+ {0, xn, £2n, ...} ={0, £n, £2n, ... },

and

4+ 1) +40, 2020, ...} ={1, En+ 1, 2n+1, ... }

and so on. Comparing (6.2.2) and (6.2.5) with noticing the definition of ain (6.2.1), we now
know exactly that for n > 1:

Zn = Z/nk.

Z/nZ

is the standard notation (in fact, the definition) for the residue classes modulo n,

Z’“ in

although for presentation convenience, in this book we will always use the short notation

ZinZ

place of

. Theorem 6.2

Forany a, b € E,define addition and multiplication between the residue classes d and b by

i+b=a+b @-b=ab

Then for any n > 1, the mapping f: Z Er-!defined by "(mod n)"is a homomorphism from Zi

Zn O

onto

6.2.1 Congruent Properties for Arithmetic in Lo,

Z Zﬂ- (arithmetic modulo n)
inheres the properties of arithmetic in E as shown in the following theorem.

The homomorphism from Z onto ““M means that arithmetic in

. Theorem 6.3

For integer n > 1, ifa = b (mod n)and ¢ =d (mod n),thena*c =b = d (mod n)and ac = bd
(modn).

Although the statements in this theorem hold trivially as an immediate result of the

Z

homomorphic relationship between Zr and

T

T we provide a proof which is based purely on

using the properties of arithmetic in

Proof If nl]a — b and n|jc —d then n|(a = c) — (b %= d).

Alson|(a—b)(c—d) = (ac — bd) —b(c - d)(c—d) —d(a—b). So n|(ac — bd). 0

The properties of the arithmetic in Zﬂ- shown in Theorem 6.3 are called congruent
properties, meaning performing the same calculation on both sides of an equation derives a

new equation. However, Theorem 6.3 has left out division. Division in Z has the congruent
property as follows:

Equation 6.2.6
Fd £ 0 ad = bd implies a =5

The counterpart congruent property for division in Zﬂ- will take a formula which is slightly
different from (6.2.6). Before we find out what this formula is, let us provide an explanation on

(6.2.6) in Z We may imagine that Zi is the case of Z"ﬁ for n = =2, and that =2 is divisible by
any integer and the resultant quotient is still ==. Thus, we may further imagine that the first
equation in (6.2.6) holds in terms of modulo == while the second equation holds in terms of
modulo e=/d. Since ==/d = o2, the two equations in (6.2.6) take the same formula. This

Z

congruent property for division in E is inhered into “=7 in the following formula.

. Theorem 6.4

T

For integer n > 1 and d & 0, ifab = bd (mod n)then a = b (mod &cdid.n)y.

Proof Denote k = gcd(d, n). Then n|(ad — bd) implies (n/k)|(d/k)(a — b). Since gcd(d/k, n/k) =
1, we know (n/k)|(k/k)(a — b) implies (n/k)|(a — b).E|

To this end we know that the arithmetic in Z
arithmetic in Z Consequently, we have

™ fully preserves the congruent properties of the

. Corollary 6.1

If f(x) is a polynomial over Z,and a = b (mod n)for n > 1, then f(a) = f(b) (mod n).E|

6.2.2 Solving Linear Congruence in L,

InTheorem 4.2 (in 84.3.2.5) we have defined the multiplicative inverse modulo n and shown
that for an integer a to have the multiplicative inverse modulo n, i.e., a unique number x < n
satisfyingax = 1 (mod n), it is necessary and sufficient for a to satisfy gcd(a, n) = 1. The
following theorem provides the condition for general case of solving linear congruence equation.

. Theorem 6.5

For integer n > 1, a necessary and sufficient condition that the congruence

Equation 6.2.7

ax = b (mod n),

be solvable is that gcd(a, n)|b.

Proof ByDefinition 4.4 (in 84.3.2.5), the congruence (6.2.7) is the linear equation

Equation 6.2.8

ar + kn==a.

for some integer k.

(=?) Let (6.2.8) hold. Since gcd(a, n) divides the left-hand side, it must divide the right-hand
side.

(%) For a and n, using Extended Euclid Algorithm (Alg 4.2) we can compute

aA + pn = ged(a, n).

Sinceb/ gcd(a, n) is an integer, multiplying this integer to both sides, we obtain (6.2.8) or

m = ——
(6.2.7), where ged(a,n) (mod n) is one solution.H]
It is easy to check that given solution x for (6.2.7),

x4+ - (mod n) fori=0,1,2,.... eed(a.n) — 1
god(a, n)

are gcd(a, n) different solutions less than n. Clearly, gcd(a, n) = 1 is the condition for the
congruence (6.2.8) to have a unique solution less than n.

Example 6.1. Congruence

2r =5 (mod 10)

is unsolvable since gcd(2, 10) = 2 5. 1n fact, the left-hand side, 2x, must be an even
number, while the right-hand side, 10k + 5, can only be an odd number, and so trying to solve
this congruence is an attempt to equalize an even number to an odd number, which is of course
impossible.

On the other hand, congruence

Gz = 18 (mod 36)

is solvable because gcd(6, 36)|18. The six solutions are 3, 9, 15, 21, 27, and 33.|:|

. Theorem 6.6

For integer n > 1, ifgcd(a, n) = 1, thenai + b = aj + b (mod n)for all b, i, j such that O <i< j

<n.

Proof Suppose on the contrary ai + b = aj + b (mod n). Then by Theorem 6.4 we have i = j
(modn), a contradiction to O <Si< j<n. Ll

This property implies that for a, n satisfying gcd(a, n) =1,ai+ b (modn) (i=0,1, ...,n=-1)isa
complete residue system modulo n, that is, the expression ai + b (mod n) ranges through

Z A

T for i ranging through

6.2.3 The Chinese Remainder Theorem

We have studied the condition for solving a single linear congruence in the form of (6.2.7). Often

we will meet the problem of solving a system of simultaneous linear congruences with different
moduli:

Equation 6.2.9

a1x = by (mod nq)

aar = by (mod ns)

a,r = by (mod n,)

wherea i, bj € Z with a;j ¢O fori=1,2,..,r.

For this system of congruences to be solvable it is clearly necessary for each congruence to be
solvable. So for i = 1, 2, ..., r and denoting

d; = ged{ag, ng).

byTheorem 6.5, it is necessary d j\b;. With this being the case, the congruent properties for
multiplication (Theorem 6.3) and for division (Theorem 6.4) allow us to transform the system

(6.2.9) into the following linear congruence system which is equivalent to but simpler than the
system (6.2.9):

Equation 6.2.10

r = ¢ (mod my)

x = ez (mod ma)

x = ¢r (mod m,)

wherefori=1, 2, ..., r:

m; = ng/d;

and

e = (bi/di)a; /)Y (mod my).

Notice that (aj/dj)~1 (mod m;) exists since gcd(aij/dj, mj) = 1 (review Theorem 4.2 in §4.3.2.5).

In linear algebra, the system (6.2.10) can be represented by the following vectorspace version:
Equation 6.2.11

AX =C

where

Equation 6.2.12

]T."H

—i|

TrEe

ll.l]..

Equation 6.2.13

T
&I

Pl
I

Equation 6.2.14

Notice that because the i-th equation (fori =1, 2, .., r) in the congruence system (6.2.10) holds

modulom j, in the diagonal part of the the matrix A, Len; denotes the residue class 1 modulo mj,
that is,

Equation 6.2.15

T'H*.- = k'lifi'l.; +1

for some integer ki (i =1, 2, ..., r). The blank part of the matrix A represents 0 modulo
respective modulus (i.e., zeros in the i row are means zeros modulo m;).

Thus, given any r-dimension vector C' the problem of solving the system (6.2.10), or its vector-
space version (6.2.11), boils down to that of identifying the diagonal matrix A, or in other words,
finding the residue class 1 modulo m;j as required in (6.2.15) fori= 1, 2, ..., r. We know from a
fact in linear algebra that if the matrix A exists, then because none of the elements in its
diagonal line is zero, the matrix has the full rank r and consequently, there exists a unique
solution.

When the moduli in (6.2.10) are pairwise relatively prime to each other, it is not difficult to find
a system of residue classes 1. This is according to the useful Chinese Remainder Theorem
(CRT).

. Theorem 6.7 Chinese Remainder Theorem

For the linear congruence system (6.2.10), if gcd(m;j, mj) =1 for 1 Si< j Er,then there exists

1

nii satisfying

Equation 6.2.16

L, =0 (mod my).

Consequently, there exists x € Zmas the unique solution to the system (6.2.10)where M
=MmMiMma...My.

Proof We prove first the existence and then the uniqueness of the solution.

Existence For eachi= 1, 2, ..., r, gcd(m;, M/m;) = 1. By Theorem 4.2 (84.3.2.5), there exists y;
a i = Enu

satisfying

Equation 6.2.17
(M /i)y = 1 (mod m;).

Moreover, for j #‘i, because m j|(M/m;), we have

Equation 6.2.18
(M/m;)y; = 0 (mod m;).

So (M/my)y;j is exactly the number that we are looking for to play the role of l“ri. Let

Equation 6.2.19

»
T — ZTmlcf- (mod M.

i=1

Thenx is a solution to the system (6.2.10) and is a residue class modulo M.

Unigueness View the linear system defined by (6.2.11), (6.2.12), (6.2.13) and (6.2.14) such
that the elements of the matrix A and those of the vector C' are all in E (i.e., they are all
integers). Notice that in Z

Equation 6.2.20

det(A) =gy Toigr+Lap L0

¥

This means that the r columns (vectors) of the matrix A form a basis for the r-dimension vector

Exlx-xd
Mg w -
space r (this basis is similar to a so-called "natural basis" in linear algebra
where the only non-zero element in any basis-vector is 1). Therefore, for any vector
CeZxZx--xE, XELXTLx---xZ.
g — L. -
r , the system (6.2.11) has a unique solution ¥ . We

have seen in the existence part of the proof that the unique elements of X are given by
(6.2.19).H

The proof of Theorem 6.7 is constructive, that is, we have constructed an algorithm for finding
the solution to the system (6.2.10). This algorithm is now specified in Alg 6.1.

Algorithm 6.1: Chinese Remainder

INPUT integer tuple (m1,m 2, ..., my), pairwise
relatively prime;

integer tuple (c1 (mod mj),c 2 (mod my), ...,
cr (mod my)).

OUTPUT integerx < M = m 1m»...m; satisfying the
system (6.2.10).

1. M&=m 1m2..Mmy;

2. for (ifrom1ltor) do

a. yi+— (M/mj-1 (mod mj); (* by Extended Euclid Algorithm *)

b. lr”i —y M/m;j;

.
return(ZT,,“{?, (mod M)).

3. i=1

InAlg 6.1, the only time-consuming partis in step 2(a) where a multiplicative inversion of a
large number is computed. This can be done by applying the Extended Euclid Algorithm (Alg
4.2). Considering mj < M fori =1, 2, ..., r, the time complexity of Alg 6.1 is Og(r(logM) 2).

It is also easy to see the following results from Theorem 6.7:

i. everyx € &m yields a vector C € Ly X &my X+ X Ly, : from (6.2.19) we can see

that the elements in C' are computed by (fori= 1,2, .., r)

ci — x (mod m;);

ii. in particular, Oand 1in Lon yield 0 and 1 in Eml * Eﬂtz XKonnn X Eﬂlr', respectively;

] 5
Ca C

P ™ =

b

iii. forx, x'yielding , respectively, x - X" yields

¢y - ¢y (mod my)
¢z - 5 (mod mg)

e - €. (mod m,.)

Thus, we have also proven the following theorem (following Definition 5.16):

. Theorem 6.8

If gcd(mj, m;) =1 for 1 <i< j Er,then forM=m 1msy..m;, Lnis isomorphic to

En’u X Emz LR Emr-,and the isomorphism

.||r : dipg Eml b E‘rr:tg Ko Em,.

is

f{z) = (& (mod m1), = (mod ma), ..., = (mod ms)).

Theorem 6.8 is very useful in the study of cryptographic systems or protocols which use groups
modulo composite integers. In many places in the rest of this book we will need to make use of

+ - -
the isomorphism between =t and F 4 where n = pq with p, q prime numbers. For

example, we will make use of a property that the non-cyclic group 1t is generated by two
H

#
generators of the cyclic groups ZP and 9, respectively.

Let us now look at an application of the Chinese Remainder Theorem: a calculation is made easy

by applying the isomorphic relationship.

Example 6.2.

At this stage we do not yet know how to compute square root modulo an integer (we will study

the techniques in 86.6). However in some cases a square number in some space (such as in Z)
is evident and so square rooting in that space is easy without need of using modulo arithmetic.

Let us apply Theorem 6.8 to compute one of the square roots of 29 in E:ﬁﬁ.

Limited to our knowledge for the moment, it is not evident to us that 29 is a square number in
L35 and so for the time being we do not know how to root it directly. However, if we apply
Theorem 6.8 and map 29 to the isomorphic space Zs X ZT, we have

29 (mod 5) — 4, 29 (mod 7) — 1,

that is, the image is (4, 1). Both 4 and 1 are evident square numbers with 2 being a square root
of 4 and 1 being a square root of 1. By isomorphism, we know one of the square roots of 29 in

Lz corresponds to (2, 1) in Zs X E*r'. Applying the Chinese Remainder Algorithm (Alg 6.1), we
obtain

1 =21, 1;=15,

and

V29=21-2+415.1=22 (mod 35).

Indeed, 222 = 484 = 29 (mod 35).1

*®

As a matter of fact, 29 has four distinct square roots in “*:33. For an exercise, the reader may
find the other three square roots of 29 (Exercise 6.4).

6.3 Euler's Phi Function

In 85.2.3 we have defined Euler's phi function in Definition 5.11. Now let us study some useful
properties of it.

.Lemma 6.1

Letf (n)be Euler's phi function defined in Definition 5.11. Then

i. (1) =1.
ii. If pisprime thenf(p) =p— 1.

iii. Euler's phi function is multiplicative. That is, if gcd(m, n) = 1, thenf (mn) = f (m)f (n).

— gpyCla.E2 Bk
iv. Ifn= 1Py Piis the prime factorization of n, then

ow=s(o-) (-) (- 2)

Proof (i) and (ii) are trivial from Definition 5.11.

iii) Since f (1) = 1, the equation f (mn) = f (m)f (n) holds when either m = 1 or n = 1. So suppose
m > 1 and n > 1. For gcd(m, n) = 1, consider the array

Equation 6.3.1

0 1 2 m—1
m m+1 m+2 m+(m-—1)
n—1ym n-1ym4+1 (n-1m+2 .- (—1)m+(m-—1)

On the one hand, (6.3.1) consists of mn consecutive integers, so itis all the numbers modulo mn
and therefore contains f (mn) elements prime to mn.

On the other hand, observe (6.3.1). The first row is all the numbers modulo m, and all the

elements in any column are congruent modulo m. So there are f (m) columns consisting entirely
of integers prime to m. Let

bm+b.2m+0b,.... (n—1)m+b

be any such column of n elements. With gcd(m, n) = 1, by Theorem 6.6, such a column is a

complete residue system modulo n. So in each such column there are f(n) elements prime to n.
To this end we know that in (6.3.1) there are f (m)f (n) elements prime to both m and n. Further
notice that any element prime to both m and to n if and only if it is prime to mn.

Combining the results of the above two paragraphs, we have derived f (mn) = f (m)f(n).

iv) For any prime p, in 1, 2, ..., p% the elements which are not prime to p® are the multiples of p,
i.e.,p, 2p, ..., p € 1p. Clearly, there are exactly pe1 such numbers. So

£ € e—1 IS 1
pp*)=p"—p" =p l—; :

This holds for each prime power p€|n with pe+1l ?rn. Noticing that different such prime powers of
n are relatively prime to each other, the targeted result follows from (iii).E|

In 84.5 we considered a problem named SQUARE-FREENESS: answering whether a given odd
composite integer n is square free. Three we used f (n) to serve an auxiliary input to show that

-
SQUARE-FREENESS is in N 'P_ Now from Property (iv) of Lemma 6.1 we know that for any
primep > 1, if p 2|n then p|f (n). This is why we used gcd(n,f(n)) = 1 as a witness for n being
square free. The reader may consider the case gcd(n,f(n)) > 1 (be careful of the case, e.g., n =
pq with p|f(q), see Exercise 6.5).

Euler's phi function has the following elegant property.

. Theorem 6.9

For integer n > 0, z G(d) = n.

I'.II: T

ProofLetSg={ x| 1 ':—:x i:n, gcd(x, n) =d}. Itisclear that set S = {1, 2, ..., n} is
partitioned into disjoint subsets Sy for each d|n. Hence

| JSi=8

d|n

Notice that for each d|n #Sq = f (n/d), therefore

z p(n/d) = n.

|

However, for any d|n, we have (n/d)|n, therefore

Y on/d)= Y ¢(n/d) = é(d).

| (S| d|n

Example 6.3.

Forn = 12, the possible values of d|12 are 1, 2, 3, 4, 6, and 12. We have f (1) + f(2) +{(3) +
f(4) +f(6) +f(12)=1+1+2+2+2+4=12U1

6.4 The Theorems of Fermat, Euler and Lagrange

We have introduced Fermat's Little Theorem in Chapter 4 (congruence (4.4.8)) and have since
used it for a few times but without having proved it. Now we prove Fermat's Little Theorem by
showing that it is a special case of another famous theorem in number theory: Euler's Theorem.

. Theorem 6.10 Fermat's Little Theorem

x

If p is prime and p a, then a1 = 1 (mod p).

Sincef (p) = p — 1 for p being prime, Fermat's Little Theorem is a special case of the following
theorem.

. Theorem 6.11 Euler's Theorem
If gcd(a, n) = 1 then a (M = 1 (mod n).

+ *
Proof For gcd(a, n) = 1, we know a (mod n) € Z‘ﬂ. Also #En. By Corollary 5.2, we have
*

ordn(@) |7 Zn which implies a ™ = 1 (mod n).0

SinceCorollary 5.2 used in the proof of Theorem 6.11 is a direct application of Lagrange's
Theorem (Theorem 5.1), we therefore say that Fermat's Little Theorem and Euler's Theorem are
special cases of the beautiful Theorem of Lagrange.

InChapter 4 we have seen the important role of Fermat's Little Theorem in probabilistic
primality test, which is useful for the generation of key material for many public-key
cryptographic systems and protocols. Euler's Theorem will have an important application for the
RSA cryptosystem which will be introduced in 88.5

6.5 Quadratic Residues

Quadratic residues play important roles in number theory. For example, integer factorization
algorithms invariantly involve using quadratic residues. They also have frequent uses in
encryption and interesting cryptographic protocols.

Definition 6.1: Quadratic Residuelet integer n > 1. For a €1, a is called a quadratic residue

modulo n if x2 =a (mod n)for some x € Zﬂ-; otherwise, a iscalled a quadratic non-residue
modulo n. The set of quadratic residues modulo n is denoted by QRp,and the set of quadratic
non-residues modulo n is denoted by QNRy.

Example 6.4.

Let us compute QR11, the set of all quadratic residues modulo 11. QR;1 = { 12, 22, 32, 42 52 62,
72,82,92,102} (mod 11) = { 1, 3, 4, 5, 9 }.1

&
In this example, we have computed QR1; by exhaustively squaring elements in ““11. However,
this is not necessary. In fact, the reader may check

QRyi=4% 19, g gqe. 48 52} (mod 11}).

i.e., exhaustively squaring elements up to half the magnitude of the modulus suffices. The
following theorem claims so for any prime modulus.

. Theorem 6.12

Let p be a prime number. Then

i. QRy={x2(modp) |0 <x = (p—1)/2};
ii. There are precisely (p — 1)/2 quadratic residues and (p — 1)/2 quadratic non-residues
&
modulo p, that is, Eﬁis partitioned into two equal-size subsets QR pand QNR p.

Proof (i) Clearly, set S = { x2 (mod p) | 0 < X < (p—1)/2%} Q QRp. To show QRp = S we only
need to prove QRp x=S.

Let any a € QRp. Then x2 =a (mod p) for some x < p. If x < (p—1)/2 then a £S. Suppose x >
(p—1)/2. Then y = p—x < (p—1)/2 and y? = (p—x)? =p 2 — 2px + x2 =x 2 =a (mod p). So QR p C
S.

ii) To show #QR, = (p —1)/2 it suffices to show that for 0 <x <y < (p—1)/2,x 2 ﬁy 2 (mod p).
Suppose on the contrary, x2 —y2= (x + y) (X —y) = 0 (mod p). Then p|x + y or p|x —y. Only
the latter case is possible since X + y < p. Hence x = y, a contradiction.

Then #QNRp = (p—1)/2 since QNR, =2, \ QR, and #Ly =P — lo

In the proof of Theorem 6.12(i) we have actually shown the following:

. Corollary 6.2

Let p be a prime number. Then for any a € QRp,there are exactly two square roots of a modulo
p. Denoting by x one to them, then the other is —x (= p — x).E|

6.5.1 Quadratic Residuosity

Often we need to decide if a number is a quadratic residue element modulo a given modulus.
This is the so-called quadratic residuosity problem.

. Theorem 6.13 Euler's Criterion

r €L

r L
Let p be a prime number. Then for any P x € QRpif and only if

Equation 6.5.1
P~ 1/2 =1 (mod p).
£

Proof (—) For x € QRp, there exists y < P such that y2 =x (mod p). So x P12 =y p-1 =
1 (mod p) follows from Fermat's Theorem (Theorem 6.10).

(%) Let x(P-1)2 = 1 (mod p). Then x is a root of polynomial y(P-1¥2 _ 1 = 0 (mod p). Notice

that “ P is a field, by Theorem 5.9(iii) (in §5.4.3) every element in the field is a root of the
polynomialy P —y = 0 (mod p). In other words, every non-zero element of the field, i.e., every
*

element in the group " ¥ is a root of

Wl 1= (yijn—lj:;’? _ 1j[y{p—l};'2 +1) =0 (mod p).

These roots are all distinct since this degree-(p — 1) polynomial can have at most p — 1 roots.
Consequently, the (p — 1)/2 roots of polynomial y(P-1)/2 _ 1 = 0 (mod p) must all be distinct. We
have shown in Theorem 6.12 that QRp contains exactly (p — 1)/2 elements, and they all satisfy

L

y(P-1)/2_1 = 0 (mod p). Any other element in = ¥ must satisfy y(P-1)/2 + 1 = 0 (mod p).
Thereforex € QRp.E|

In the proof of Theorem 6.13 we have shown that if the criterion is not met for x € Zﬁ” , then

Equation 6.5.2

2P~ 1/2 = _1 (mod p).

#*
Euler's Criterion provides a criterion to test whether or not an element in " ¥ is a quadratic
residue: if congruence (6.5.1) is satisfied, then x € QRp; otherwise (6.5.2) is satisfied and x €
ONRp.

Letn be a composite natural number with its prime factorization as
Equation 6.5.3

— F1 .52 Ek
n=p; Py Py -

E Ep"'l XZP‘H‘ X"":{EP'F;
Then by Theorem 6.8, ““ is isomorphic to ! 4 k
preserves arithmetic, we have:

. Since isomorphism

. Theorem 6.14

Let n be a composite integer with complete factorization in (6.5.3). Then x € QRyif and only if
z (mod p;*) € QRe
(p‘ } Q f:tand hence if and only if x (mod p) € QRpjfor prime p j with i = 1,
O
2, ., k.

E *
Therefore, if the factorization of n is known, given T € Zﬂ-' the quadratic residuosity of x

modulon can be decided by deciding the residuosity of x (mod p) for each prime p|n. The latter
task can be done by testing Euler's criterion.

However, if the factorization of n is unknown, deciding quardratic residuosity modulo n is a non-
trivial task.

Definition 6.2:Quadratic Residuosity (QR) Problem

INPUT n: a composite number;
E L
re ;.

OUTPUT YESif x £ QRp.

The QRP is a well-known hard problem in number theory and is one of the main four algorithmic
problems discussed by Gauss in his "Disquisitiones Arithmeticae" [119]. An efficient solution for
it would imply an efficient solution to some other open problems in number theory. In Chapter
14 we will study a well-known public-key cryptosystem named the Goldwasser-Micali
cryptosystem; that cryptosystem has its security based on the difficult for deciding the QRP.

CombiningTheorem 6.12 and Theorem 6.14 we can obtain:

. Theorem 6.15

1
Let n be a composite integer with k > 1 distinct prime factors. Then exactly 2% fraction of
&=

elements in “'n are quadratic residues modulo n.0

Thus, for a composite number n, an efficient algorithm for deciding quadratic residuosity modulo
&

n will provide an efficient statistic test on the proportion of quadratic residues in ““n, and hence
byTheorem 6.15, provide an efficient algorithm for answering the question whether n has two or
three distinct prime factors. This is because, by Theorem 6.15, in the former case (n has two

&

distinct prime factors), exactly a quarter of elements in “'n are quadratic residues, and in the
latter case, exactly one-eighth of them are. Consequently, ensembles Eo_prime and E3z_prime (S€€
84.7) can be distinguished.

To date, for a composite n of unknown factorization, no algorithm is known to be able to decide
quadratic residuosity modulo n in time polynomial in the size of n.

6.5.2 Legendre-Jacobi Symbols

Testing quadratic residuosity modulo a prime using Euler's criterion (6.5.1) involves evaluating
modulo exponentiation which is quite computation intensive. However, quadratic residuosity can
be tested by a much faster algorithm. Such an algorithm is based on the notion of Legendre-
Jacobi symbol.

re i
Definition 6.3: Legendre-Jacobi SymbolFor each prime number p and for any € P let
r) def { 1 if x € QR,

» -1 ifz € QNR,.

xr

P is called Legendre symbol of x modulo p.

Let n = p1p2...pk be the prime factorization of n (some of these prime factors may repeat). Then
(.?:) def (r) i (r)
n 4| P2 P

is called Jacobi symbol of x modulo n.

l‘l)
In the rest of this book (b will always be referred to as Jacobi symbol whether or not b is
prime.

Forp being prime, comparing (6.5.1), (6.5.2) with Definition 6.3, we know

Equation 6.5.4

(%) = zP~D/2 (mod p).

Moreover, Jacobi symbol has the following properties.

. Theorem 6.16

Jacobi symbol has the following properties:

&)= GG,
() = &),

4

iii.
5 =1%)
iv. ifx =y (mod n)then 1 714 ; (below m, n are odd numbers)

coff
A e S (n—1)/2
() (~1ye-t2

2 2_1y/g
2 _r_qyinT—1)/8
: (w) =(=1)
VI. :
2 (£) = (-1)tm-bn—bys

vii. ifgcd(m, n) =1 and m, n > 2 then (n m

InTheorem 6.16, (i—iv) are immediate from the definition of Jacobi symbol. A proof for (v—vii)
uses no special technique either. However, due to the lengthiness and lack of immediate
relevance to the topic of this book, we shall not include a proof but refer the reader to the
standard textbooks for number theory (e.g., [170,176]).

Theorem 6.16(vii) is known as the Gauss' Law of Quadratic Reciprocity. Thanks to this law, it is
T

not hard to see that the evaluation of (”) for gcd (X, n) = 1 has a fashion and hence the same

computational complexity of computing the greatest common divisor.

.Remark 6.1

When we evaluate Jacobi symbol by applying Theorem 6.16, the evaluation of the right-hand
sides of (v—vii) must not be done via exponentiations. Since ord(—1) = 2 (in multiplication), all
we need is the parity of these exponents. In Alg 6.2 we realize the evaluation by testing whether

2divides these exponents.

Alg 6.2 provides a recursive specification of the properties of Jacobi symbol listed in Theorem
6.2.

Algorithm 6.2: Legendre/Jacobi Symbol

INPUT : *
v odd integer n > 2, integer TS Zn.
OUTPUT (i)
s,
Jacobi(x, n)

1. if(x==1)return (1);

2. if (2]x)

a. if (2](n2=1)/8 return (Jacobi(x/2,n));

b. return(—Jacobi(x/2,n));

(* now Xx is odd *)

3. if(2] x=21)(n—1)/4) return(Jacobi(n mod x, X));

4. return(—Jacobi(n mod X, X)).

InAlg 6.2, each recursive call of the function Jacobi(,) will cause either the first input value
being divided by 2, or the second input value being reduced modulo the first. Therefore there
can be at most logzn calls and the first input value is reduced to 1, reaching the terminating
condition. So rigorously expressed, because each modulo operation costs Og((logn) 2) time, Alg

6.2 computes (ﬂ can be computed in Og((logn) 3) time.

However we should notice that, in order to present the algorithm with ease of understanding, we
have again chosen to sacrifice efficiency!

Instead of bounding each modulo operation with Og((logn) 2), via a careful realization, total
modulo operations in steps 3, 4 can be bounded by Og((logn) 2). This situation is exactly the

same as that for computing greatest common divisor with a carefully designed algorithm: to
x

) *
exploit the fact expressed in (4.3.12). Consequently, for LS Zn, (H) can be computed in
Og((logn) 2) time. A careful realization of the counterpart for Alg 6.2 can be found in Chapter 1

of [79].

Compared with the complexity of evaluating Euler's criterion (5.4.5), which is Og((logp) 3) due
to modulo exponentiation, testing quadratic residuosity modulo prime p using Alg 6.2 is log p
times faster.

Example 6.5.

Let us show that 384 € QNR443.

Going through Alg 6.2 step by step, we have

Jacobi(384,443) = —Jacobi(192, 443)
= Jacobi(96, 443)
= —Jacohi(48, 443)
= Jacobi(24, 443)
= —Jacohi(12, 443)

Jacobi(6, 443)

= —Jacobi(3, 443)

Jacobi(2, 3)

= —Jacobi(l, 3)

= —1.

Therefore 384 £ QNR443.|:|

() vamo e

Finally, we should notice that evaluation of Jacobi symbol * ¥t using Alg 6.2 does not need to
know the factorization of n. This is a very important property which has a wide application in
public-key cryptography, e.g., in Goldwasser-Micali cryptosystem (814.3.3) and in Blum's coin-

flipping protocol (Chapter 19).

6.6 Square Roots Modulo Integer

InExample 6.2 we have had an experience of "computing a square root modulo an integer."
However the "algorithm" used there should not qualify as an algorithm because we were lucky to
have managed to map, using the isomorphism in Theorem 6.8, a seemingly difficult task to two

trivially easy ones: computing square roots of 1 and 4, which happen to be square numbers in Z
and the "rooting algorithm" is known even to primary school pupils. In general, the isomorphism
inTheorem 6.8 will not be so kind to us: for overwhelming cases the image should not be a

square number in Z

Now we introduce algorithmic methods for computing square roots of a quadratic residue
element modulo a positive integer. We start by considering prime modulus. By Corollary 6.2, the
two roots of a quadratic residue complements to one another modulo the prime modulus; so it
suffices for us to consider computing one square root of a quadratic residue element.

For most of the odd prime numbers, the task is very easy. These cases include primes p such
thatp = 3, 5, 7 (mod 8).

6.6.1 Computing Square Roots Modulo Prime

Casep = 3, 7 (mod 8)

In this case, p + 1 is divisible by 4. For a € QRy, let

def (p+13/4 (

T =a mod p).

Then because aP-1Y2 = 1 (mod p), we have

2

2 - >
g = gl gle—1)3

a = a (mod p)

So indeed, x is a square root of a modulo p.
Casep =5 (mod 8)

In this case, p + 3 is divisible by 8; also because (p — 1)/2 is even, —1 meets Euler's criterion as
a quadratic residue. For a € QRy, let

Equation 6.6.1

def 3) /8
= aPT3)/8 (mod p).

#
Froma (P-1)2 = 1 (mod p) we know a(P-1)4 = +1 (mod p); this is because in field ~ ¥ 1 has only
two square roots: 1 and —1. Consequently

z? = Pt = P~/ g = 44 (mod p).

That is, we have found that x computed in (6.6.1) is a square root of either a or —a. If the sign is
+ we are done. If the sign is —, then we have

—z* = (vV—-1z)* = a (mod p).

Therefore

Equation 6.6.2

z % /T a®3)/8 (1nod p)

will be the solution. So the task boils down to computing ¥ -1 (mod p). Let b be any quadratic
non-residue mod p. Then by Euler's criterion

(b'P 1}/4y2 = p(r-1)/2 = _| (mod p),

sob (P-1)/4 (mod p) can be used in place of ¥ ~1 . By the way, since

p?—=1=(p+1)(p—1)=(8k 4+ 6)(8k + 4) = 8(4k" + 3)(2k" + 1),

and the right-hand side is 8 times an odd number; so by Theorem 6.16(vi) 2 € QNRy. That is, for

this case of p we can use 2(P-1)4 in place of ¥ -1 . Then, one may check that (6.6.2) becomes

Equation 6.6.3

olp—1)/4 ,(p+3)/8 — (43,){1””3”3/2 (mod p).

We can save one modulo exponentiation by using the right-hand-side of (6.6.3).

Algorithm 6.3: Square Root Modulo p= 3,5, 7 (mod 8)

INPUT primep satisfying p = 3,5, 7 (mod 8);
integera € QRp.

OUTPUT a square root of a modulo p.

1. if (p =3, 7 (mod 8)) return(a(P*V’4 (mod p));
(* below p =5 (mod 8) *)

2. if (a(P14 = 1 (mod p)) return(a(P*3/8 (mod p));

3. return((4a)((P*+3)78/2).

The time complexity of Alg 6.3 is Og((logp) 3).

Computing Square Roots Modulo Prime in General Case

The method described here is due to Shanks (see §1.5.1 of [79]).

For general case of prime p, we can write

p—1=2%

#
withq odd and e =1, By Theorem 5.2 (in 85.2.3), cyclic group ZP has a unique cyclic subgroup
G of order 2¢. Clearly, quadratic residues in G have orders as powers of 2 since they divide 281,
Fora € QRp, since

alP—1)/2 = {ﬁﬂ]?' = (mod p),

soa 9 (mod p) is in G and is of course a quadratic residue. So there exists an even integer k with
0 2k > 2 ¢ such that

Equation 6.6.4

alg® =1 (mod p),

whereg is a generator of G. Suppose that we have found the generator g and the even integer K.

Then setting

def

x & glat1)/2k/2

g

it is easy to check that x2 =a (mod p).

Thus, the task boils down to two sub-tasks: (i) finding a generator g of group G, and (ii) finding
the least non-negative even integer k, such that (6.6.4) is satisfied.

Sub-task (i) is rather easy. For any f € QNRp, because q is odd, f4 € QNRp and ord,(f9) = 2¢;

Z*

hencef 9 is a generator of G. Finding f is rather easy: picking a random element J e ¥ and
(L) =~ -

testing % 7 (using Alg 6.2). Since half the elements in " ¥ are quadratic non-residues,

the probability of finding a correct fin one go is one-half.

Sub-task (ii) is not too difficult either. The search of k from (6.6.4) is fast by utilizing the fact
that non-unity quadratic-residue elements in G have orders as powers of 2. Thus, letting initially

Equation 6.6.5

b gt = alg® (mod p),

thenb €G. We can search the least integer m for O Sm< e such that

Equation 6.6.6

i

b= =1 (mod p)

and then modify b into

Equation 6.6.7

|}l' — Tra

b — bg*©

=—T

= alg? (mod p).

Notice that b, after the modification in (6.6.7), has its order been reduced from that in (6.6.5)
while remaining a quadratic residue in G and so the reduced order should remain being a power
of 2. Therefore, the reduction must be in terms of a power of 2, and consequently, repeating
(6.6.6) and (6.6.7),m in (6.6.6) will strictly decrease. Upon m = 0, (6.6.6) shows b = 1, and
thereby (6.6.7) becomes (6.6.4) and so k can be found by accumulating 2™ in each loop of
repetition. The search will terminate in at most e loops.

It is now straightforward to put our descriptions into Alg 6.4.

Sincee < log »p, the time complexity of Alg 6.4 is Og((logp)%).

. Remark 6.2

For the purpose of better exposition, we have presented Alg 6.4 by following our explanation on
the working principle of Shanks' algorithm; in particular, we have followed precisely the
explanation on Sub-task (ii) for searching the even exponent k. In so doing, our presentation of
Shanks' algorithm sacrifices a little bit of efficiency: explicitly finding k, while is unnecessary since
gk/2 can be obtained as a byproduct in step 3, costs an additional modulo exponentiation in step

4. For the optimized version of Shanks' algorithm, see Algorithm 1.5.1in [M.D

Finally we should point out that Alg 6.4 contains Alg 6.3 as three special cases.

Algorithm 6.4: Square Root Modulo Prime

INPUT primep; integer a € QRp.

OUTPUT a square root of a modulo p.

1. (Finitialize™)
setp — 1 = 2 ¢q with g odd; b +=a 9 (mod p);r #e;k +=0;
2. (* sub-task (i), using Alg 6.2 *)
findf € QNRp;g ¢=f 9 (mod p);
3. (* sub-task (ii), searching even exponent k *)
while (b ¥ 1) do
3.1 find the least non-negative integer m such that b2m = 1 (mod p);
3.2b #=bg 2r-m (mod p);k =k + 2 =M;r 4—m;

4. return(a @+1/2g K2 (mod p)).

6.6.2 Computing Square Roots Modulo Composite
- 2 K2

Thanks to Theorem 6.8, we know that, for n = pg with p, g primes ““n is isomorphic to ~ F
. Since isomorphism preserves the arithmetic, relation

z? = y (mod n)

holds if and only if it holds modulo both p and q. Therefore, if the factorization of n is given,
square rooting modulo n can computed using Alg 6.5.

Clearly, the time complexity of Alg 6.5 is Og ((log n)#4).

ByCorollary 6.2,y (mod p) has two distinct square roots, which we denote by X p and p — Xp,
respectively. So does y (mod), which we denote by Xq and q — Xq, respectively. By the

% - w *
isomorphic relationship between “'n and EP Z‘? (Theorem 6.8), we know that y € QRj has
E*

exactly four square roots in ““n. By Alg 6.5, these four roots are

Equation 6.6.8

1= 13 + 1y x,

Lo = l?’ Ty + lq (g — zq) (mod n)
3= lp(p—mxp) + Ly

Ty =]_p (?J ;Ep} T 1.31 ((}' — -'I-'r;}

Thus, if we apply (6.6.8) in Step 2 of Alg 6.5, we can compute all four square roots of the
element input to the algorithm.

Algorithm 6.5: Square Root Modulo Composite

INPUT primesp, g with n = pq; integery € QRy.

OUTPUT a square root of y modulo n.

;. Tp+ +/y (mod p)

dp Y (I]]Dd p}; (* applying Algorithms 6.3 or 6.4 *)
2. return(]‘P‘Irf-’ + 1?1:51 (mod n)). (* applying Alg 6.1 *)

For an exercise, we ask: if n = pqr with p, g, r distinct prime numbers, how many square roots
for each y € QRp?

We now know that if the factorization of n is known, then computing square roots of any given
element in QR can be done efficiently. Now, what can we say about square rooting modulo n
without knowing the factorization of n? The third part of the following theorem answers this
question.

. Theorem 6.17

Let n = pq with p, q being distinct odd primes and lety € QR,.Then the four square roots of y
constructed in (6.6.8) have the following properties:

i. they are distinct from one another;
iil. X1+ X4=Xp+ X3=n;
iii. gcd(x1 + x2,n) = gcd(X 3 + X4,n) =, gcd(X 1 + X3,n) = gcd(X 2 + X4,n) =p.

Proof

i. Noticing the meaning of IF'p and 1‘?q defined by (6.2.15) and (6.2.16), we have, e.g., X1
(modq) = x g and xz (mod q) = g — Xq. Remember, xq and q — Xq are two distinct square

roots of y (mod q). So X1 ?-éx 2 (mod q) implies x1 ﬁx 2 (mod n), i.e., X1 and xp are
distinct. Other cases can be shown analogously.

ii. From (6.6.8) we have

T1+Ta=T2+x3=1,p+ 1,0¢.

The right-hand side value is congruent to O modulo p and modulo q. From these roots'
k3

membership in ““n we have 0 < X1 + X4 = X2 + X3 < 2n. Clearly, n is the only value in the
interval (O, 2n) and is congruent to O modulo p and . So X1 = n — X4 and X2 = N — X3.

iili. We only study the case x; + X2; other cases are analogous. Observing (6.6.8) we have

1+ 22 =21 2, + 1,4q.

Thereforex 1 + x2 (mod p) = 2x, ;t 0 and X; + X2 = 0 (mod g). Namely, x1 + X2 is a non-zero

multiple of g, but not a multiple of p. This implies gcd(x1 + X2,n) = (. 0

Suppose there exists an efficient algorithm A, which, on input (y, n) for y € QR,, outputs x such
thatx 2 =y (mod n). Then we can run A(x 2,n) to obtain a square root of x 2 which we denote by
X'. By Theorem 6.17(iii), the probability for 1 < gcd(x + x',n) < n is exactly one half (the
probability space being the four square roots of y). That is, the algorithm A is an efficient
algorithm for factoring n.

CombiningAlg 6.5 and Theorem 6.5(iii), we have

. Corollary 6.3

Let n = pg with p and q being distinct odd primes. Then factoring n is computationally equivalent
to computing square root modulo n.0

Also from Theorem 6.17(ii) and the fact that n is odd, we have

. Corollary 6.4

Let n = pq with p and q being distinct odd primes. Then for any y € QR,,two square roots of y
are less than n/2, and the other two roots are larger than n/2.H

6.7 Blum Integers

Blum integers have wide applications in public-key cryptography.

Definition 6.4: Blum IntegerA composite integer n is called a Blum integer if n = pg where p
and g are distinct prime numbers satisfying p = q = 3 (mod 4).

A Blum integer has many interesting properties. The following are some of them which are very
useful in public-key cryptography and cryptographic protocols.

. Theorem 6.18

Let n be a Blum integer. Then the following properties hold for n:

(5)= ()= e () =0

j‘,r) -
i. For ¥ € Eﬂ,if (”'- then eithery € QRpor—y=n—-y € QRp;

iii. Anyy £ QRphas four square roots u, —u, v, —v and they satisfy (w.l.o.g.)

(E) =1, (E) =1, i.e., u € QR,
a. \P q ;
)23
b. L q s
(1) ey (1) =
c. \P 4
)-+()--
d. i q ;

iv. Function f(x) = x2 (mod n)is a permutation over QR p;

v. For any y € QRp,exactly one square root of y with Jacobi symbol 1 is less than n/2;

&
Vi. n is partitioned into four equivalence classes: one multiplicative group QRp,and three

cosets (—1)QRp,XQR n, (—x)QRp;herex is a square root of 1 with Jacobi symbol —1.

Proof

p=Ll _ 9L
Notice that p = 3 (mod 4) implies 2 2k +1

have

() = (- = (capert = -,

Y

—1
-
Analogously, q .
(g) B (E) = (E) e (’E) = (E) & =]
n implies either r q or \ P q . For the first

case,y £ QRj due to the definition of Legendre symbol (Definition 6.3) and Theorem 6.14.

(—_y) e (—_y) =1
For the second case, (i) implies b q . Hence — y € QRy.

First of all, by Theorem 6.17(ii), we can indeed denote the four distinct square roots of x by
u, —u(=n-u),v and —v.

. Then by Euler's Criterion (6.5.1), we

Next, from u2 =v 2 (mod n), we have (u + v) (u — v) =0 (mod p), thatis, u = %+ v (mod

p). Similarly, u = = v (mod q). However, by Theorem 6.17(i),u & =+ v (mod n), so only
the following two cases are possible:

uw=v (mod p) and u = —v (mod gq),

or

u = —v (mod p) and u = v (mod gq).

(u) (v)
These two cases plus (i) imply Tt T

(1 ' () (&
Thus, if ~ T then “ 71 and if ~ 71 then %7t . Without loss of

generality, the four distinct Legendre-symbol characterizations in (a)-(d) follow the
multiplicative property of Legendre-Jacobi symbol and (i).

iv. For anyy € QRj, by (iii) there exists a unique x € QR satisfying f(x) = y. Thus, f(x) is
a 1-1 and onto mapping, i.e., a permutation, over QRp.

v. By (iii), the square root with Jacobi symbol 1 is either u or n — u. Only one of them

Vi.

can be less than n/2 since n is odd. (So, exactly one square root with Jacobi symbol
—1 is less than n/2; the other two roots are larger than n/2 and have the opposite
Jacobi symbols.)

Itis trivial to check that QR,, forms a group under multiplication modulo n with 1 as
the identity. Now by (iii), the four distinct square roots of 1 have the four distinct
Legendre-symbol characterizations in (a), (b), (c), and (d), respectively. Therefore
the four sets QRp, (—1)QRn,XQR 1, (—X)QR, are pair wise disjoint. These four sets make
: o
" #QR,, = I

up “'n because by Theorem 6.15,

6.8 Chapter Summary

In this chapter we have conducted a study in the following topics of elementary number theory:

Linear congruences

Chinese Remainder Theorem (with algorithm)

Lagrange's, Euler's and Fermat's theorems

Quadratic residues and Legendre-Jacobi symbols (with algorithm)

Square roots modulo integers and the relation to factorization (with algorithm for root
extraction)

Blum integers and their properties

In addition to introducing the basic knowledge and facts, we have also studied several important
algorithms (Chinese Remainder, Jacobi symbol, square-rooting), with their working principles
explained and their time complexity behaviors analyzed. In so doing, we considered that these
algorithms not only have theoretic importance, but also have practical importance: these
algorithms are frequently used in cryptography and cryptographic protocols.

In the rest of this book we will frequently apply the knowledge, facts, skills and algorithms which
we have learned in this chapter.

Exercises

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

Letm, n be positive integers satisfying m|n. Show that operation " (mod m)"

Z

" into n/m equivalence classes, each has m elements.

Z'n/'n?'zﬂ. e Zm_

partitions

Under the same condition of the preceding problem, show

Use the Chinese Remainder Algorithm (Alg 6.1) to construct an element in ZLss

which maps to (2, 3) € Zy X L7 under the isomorphism in Theorem 6.1. Prove
that this element has the maximum order.

E
Use the method in Example 6.2 to find the other three square roots of 29 in “*35.
E
Find analogously the four square roots of 1 in “#33.
Hint: 29 (mod 5) = 4 which has square roots 2 and 3 (= —2 (mod 5)), and 29 (mod
7) = 1 which has square roots 1 and 6 (= —1 (mod 7)); the four square roots of 29
modulo 35 are isomorphic to (2, 1), (2, 6), (3, 1) and (3, 6) in L L

Construct an odd composite number n such that n is square free, i.e., there exists
no prime p such that p2|N, however gcd(n,f (n)) > 1.

xr e it

Letm|n. Prove that for any 1t ordm(x)|ordn(X).

Letn = pq with p, q being distinct primes. Since p — 1|f (n), there exists elements in

E*

n of order dividing p — 1. (Similarly, there are elements of order dividing q — 1.)
ES
Prove that for any g€ z’rt, if ord, (g9)|p — 1 and Ordrtiﬂ})rf} == , then ged(g —
B

L
1,n) = g. (Similarly, any h € ZH of ordp(h)]g — 1 and ordn(h) | p—1, gcd(h— 1,
n) =p.)

*
Letn = pq with p, g being distinct primes. Show that for any g€ Zn, it holds gP*a
=g "*1 (mod n). For |p]| = lgl, show that an upper bound for factoring n is n1/4,

Hint: find p + g from g"*1 (mod n) using Pollard's | -algorithm; then factor n using p
+qg and pq.

#
Letp be a prime. Show that a generator of the group " ¥ must be a quadratic non-
&

residue. Analogously, let n be an odd composite; show that elements in “n of the
maximum order must be quadratic non-residues.

Testing quadratic residuosity modulo p using Euler's criterion is logp times slower
than doing so via evaluation of Legendre symbol. Why?

Factor 35 using the square roots computed in Exercise 6.4

6.12

6.13

6.14

6.15

k3
Show that QR; is a subgroup of J,(1) and the latter is a subgroup of E‘n.

Letn = pq with p and q being distinct primes. Under what condition —1 € QRp?

(__1) = 17
Under what condition n

Letn be a Blum integer. Construct the inversion of the function f(x) = x 2 (mod n)
over QRy.

Hint: apply the Chinese Remainder Theorem (Alg 6.1) to Case 1 of Alg 6.3.

Letn = pq be a Blum integer satisfying gcd(p — 1, q — 1) = 2. Show that group J n(1)
is cyclic.

Hint: apply Chinese Remainder Theorem to construct an element using a generator

#* E*
of ZP and one of = 4", Prove that this element is in Jy(1) and is of order #J,(1).

Part Ill: Basic Cryptographic Techniques

This part contains four chapters which introduce the most basic cryptographic techniques
for confidentiality and data integrity. Chapter 7 introduces symmetric encryption
techniques,Chapter 8 introduces asymmetric encryption techniques, Chapter 9 considers

an important security quality possessed by the basic and popular asymmetric cryptographic
functions when they are used in an ideal world (where data are random), and finally,
Chapter 10 introduces basic techniques for data integrity.

The basic cryptographic algorithms and schemes to be introduced in this part can be
considered as "textbook crypto” since they can be found in many textbooks on
cryptography. In this part we shall expose various weaknesses of these "textbook crypto”
algorithms and schemes by demonstrating abundant attacks, even though we will not, in
fact cannot for the moment, fix these weaknesses for the time being. However, this book
will not stop at "textbook crypto” level of introduction to cryptography. Fit-for-application,
i.e., non-textbook, versions of encryption algorithms and data-integrity mechanisms will be
introduced in later chapters, and most of them are results of enhancement to their
"textbook crypto" counterparts.

For readers who do not plan to proceed an in-depth study of fit-for-application crypto and
their strong security notions, this "textbook crypto"” part will still provide them with explicit
early warning signals on general insecurity of "textbook crypto."”

Chapter 7. Encryption — Symmetric
Techniques

Section 7.1. Introduction

Section 7.2. Definition

Section 7.3. Substitution Ciphers

Section 7.4. Transposition Ciphers

Section 7.5. Classical Ciphers: Usefulness and Security

Section 7.6. The Data Encryption Standard (DES)

Section 7.7. The Advanced Encryption Standard (AES)

Section 7.8. Confidentiality Modes of Operation

Section 7.9. Key Channel Establishment for Symmetric Cryptosystems

Section 7.10. Chapter Summary

Exercises

7.1 Introduction

Secrecy is at the heart of cryptography. Encryption is a practical means to achieve information
secrecy. Modern encryption techniques are mathematical transformations (algorithms) which
treat messages as numbers or algebraic elements in a space and transform them between a
region of "meaningful messages” and a region of "unintelligible messages”. A messages in the
meaningful region and input to an encryption algorithm is called cleartext and the unintelligible
output from the encryption algorithm is called ciphertext. If we disregard the intelligibility of a
message, then a message input to an encryption algorithm is conventionally called plaintext
which may or may not be intelligible. For example, a plaintext message can be a random nonce
or a ciphertext message; we have seen such cases in some protocols studied Chapter 2.
Therefore, plaintext and ciphertext are a pair of respective notions: the former refers to
messages input to, and the latter, output from, an encryption algorithm.

In order to restore information, an encryption transformation must be reversible and the
reversing transformation is called decryption. Conventionally, encryption and decryption
algorithms are parameterized by cryptographic keys. An encryption algorithm and a decryption
algorithm plus the description on the format of messages and keys form a cryptographic system
or a cryptosystem.

Semantically, Shannon characterizes a desired property for a cryptosystem as follows: the
ciphertext message space is the space of all possible messages while the cleartext (notice: not
plaintext according to our convention given the first paragraph above) message space is a
sparse region inside the message space, in which messages have a certain fairly simple
statistical structure, i.e., they are meaningful; a (good) encryption algorithm is a mixing-
transformation which distributes the meaningful messages from the sparse and meaningful
region fairly uniformly over the entire message space (pages 711-712 of [264]). Shannon
characterizes this mixing property as follows:

Equation 7.1.1

lim U F'R =0,

n—0C

Here,F denotes a mapping (an encryption algorithm) of a space W (message space) into itself, R
denotes an initial and small region (the cleartext region) in W. Shannon's semantic
characterization for encryption expresses that a good encryption algorithm should have such a
mix-transformation behavior: it can map a small initial region of a space into the entire space.

Although nowadays, in particular after the invention of public-key cryptography, it needn't be
the case an encryption algorithm is a mapping from a space into the space itself, (this is still true
for most cryptosystems, secret-key or public-key), Shannon's semantic characterization for
encryption as a mixing-transformation remains very meaningful. The contemporary definition for
semantic security of an encryption algorithm, which will be given in 814.3, essentially means
that a ciphertext has a distribution in the message space which is indistinguishable from the
uniform distribution in the same space.

7.1.1 Chapter Outline

In this chapter we will introduce the notion of cryptosystems, several well-known symmetric
cryptosystems and the standard modes of operations. We begin by providing a formal syntactic
definition for cryptosystems to be used in the rest of this book (87.2). We then introduce several
important classical ciphers (87.3—87.4). We will make explicit the importance of the classical
cipher techniques by showing their widespread roles in modern ciphers and in cryptographic
protocols (87.5). After classical ciphers, two important modern block ciphers will be described:
the Data Encryption Standard (DES, §87.6) and the Advanced Encryption Standard (AES, 87.7),
and their design strategies will be explained. We will also provide a brief discussion on the AES's
positive impact on applied cryptography (87.7.5). The part on symmetric techniques will also
include various standard modes of operations for using block ciphers which achieve probabilistic
encryption (7.8). We end our introduction to symmetric encryption techniques by posing the
classical problem of key channel establishment (87.9).

7.2 Definition

Syntactically, a cryptosystem can be defined as follows.

Definition 7.1: Cryptographic SystemA cryptographic system consists of the following:

a plaintext message space M: a set of strings over some alphabet
e a ciphertext message space C: a set of possible ciphertext messages

e an encryption key space K: a set of possible encryption keys, and a decryption key space
K1: a set of possible decryption keys

e an efficient key generation algorithm G:N—=Kx K
e an effici?nt encryption algorithm EtMxK—C
e an efficient decryption algorithm D:Cx K — M.
For integer 1 ,G(1)outputs a key pair (ke, kd) €K x K' of length f

For ke €K and m €M, we denote by

= gﬁ:t‘: [: Tﬂ}

the encryption transformation and read it as "c is an encryption of m under key ke," and we
denote by

m = Dyq(c)

the decryption transformation and read it as "m is the decryption of c under key kd." It is
necessary that for all m €M and all ke €K, there exists kd E€K':

Equation 7.2.1
Dra(Ere(m)) = m.

In the rest of the book we will use this set of syntactic notation to denote abstract
cryptosystems, except in the some places where different notations have been conventionally
used in the literature. Fig 7.1 provides an illustration of cryptosystems.

Figure 7.1. Cryptographic Systems

Plaintext , Ciphertext) Plaintext
—= Encryption f w= Decryption |—=

| Message Channel
kd

ke Key Channel

% Key

Generation

Secret—key Cryplosystem: ke=kd Key Channel: e.g., Courier

Public-key Cryptosystem: ke =\=kd Key Channel: e.g.. Directory

Definition 7.1 applies to cryptosystems which use secret keys as well as public keys (public-key
cryptosystems will be introduced in the next chapter). In a secret-key cryptosystems
encryption and decryption use the same key. The principal who encrypts a message must share
the encryption key with the principal who will be receiving and decrypting the encrypted
message. The fact kd = ke provides secretkey cryptosystem another name: symmetric
cryptosystems. In a public-key cryptosystem, encryption and decryption use different keys;
for every key ke €K, there exists kd €K', the two keys are different and match each other; the
encryption key ke needn't be kept secret, and the principal who is the owner of ke can decrypt a

ciphertext encrypted under ke using the matching private key kd. The fact kd ¢ke provides
public-key cryptosystems another name: asymmetric cryptosystems.

By requiring encryption algorithms efficient, we consider that such algorithms include
probabilistic polynomial-time ones. Hence, although the abstract notation € looks a
deterministic, it can have a internal random move, and so an output ciphertext can be a random
variable of this internal random move. Also notice that the integer input to the key generation
algorithmG provides the size of the output encryption/decryption keys. Since the key generation
algorithm is efficient with running time polynomial in the size of its input, the input integer value
should use the unary representation (reason explained in 84.4.6.1).

In 1883, Kerchoffs wrote a list of requirements for the design cryptosystems (see page 14 of
[198]). One of the items in Kerchoffs' list has evolved into a widely accepted convention known
asKerchoffs' principle:

Knowledge of the algorithm and key size as well as the availability of known plaintext, are
standard assumptions in modern cryptanalysis. Since an adversary may obtain this
information eventually, it is preferable not to rely on its secrecy when assessing
cryptographic strength.

Combining Shannon's semantic characterization for cryptosystem and Kerchoffs' principle, we
can provide a summary for a good cryptosystem as follows:
e Algorithms € and D contain no component or design part which is secret;

e € distributes meaningful messages fairly uniformly over the entire ciphertext message
space; it may even be possible that the random distribution is due to some internal random

operation of €;
e With the correct cryptographic key, € and D are practically efficient;

e Without the correct key, the task for recovering from a ciphertext the correspondent
plaintext is a problem of a difficulty determined solely by the size of the key parameter,
which usually takes a size s such that solving the problem requires computational resource
of a quantitative measure beyond p(s) for p being any polynomial.

We should notice that this list of desirable properties for a cryptosystem have become
inadequate for cryptosystems for modern day applications. More stringent requirements will be
developed through our study of cryptosystems.

7.3 Substitution Ciphers

In a substitution cipher, the encryption algorithm €x(m) is a substitution function which
replaces each m £M with a corresponding ¢ £C. The substitution function is parameterized by a
secret key k. The decryption algorithm Dg(c) is merely the reverse substitution. In general, the

substitution can be given by a mapping T : M — C, and the reverse substitution is just the
corresponding inverse mapping T LG M.

7.3.1 Simple Substitution Ciphers

Example 7.1. A Simple Substitution Cipher

Let M = C = Zag gng interpret A= 0, B =1, ..., Z 25. Define encryption algorithm €,(m) as
the following permutation over Lo

0 1 2 3 4 5 6 7 8 9 10 11 12
21 12 25 17 24 23 19 15 22 13 18 3 9

13 14 15 16 17 18 19 20 21 22 23 24 25
5 10 2 8 16 11 14 7 1 4 20 0 6

Then the corresponding decryption algorithm Dk(C) is given by

g 1 2 3 4 5 6 7 8 9 10 11 12
24 21 15 11 22 13 25 20 16 12 14 18 1

13 14 15 16 17 18 19 20 21 22 23 24 25
9 19 7 17 3 10 6 23 0 8 &5 4 2)

Plaintext messages

proceed neeting as agreed

will be encrypted into the following ciphertext messages (spaces are not transformed)

cgkzyyr jyyowft vl vtqyyr

In this simple substitution cipher example, the message spaces M and C coincide with the
alphabet ZE[L In other words, a plaintext or ciphertext message is a single character in the
alphabet. For this reason, the plaintext message string pr oceedneet i ngasagr eed is not a single
message, but comprises 22 messages; likewise, the ciphertext message string
cgkzyyrjyyowftvl vt qyyr comprises 22 messages. The key space of this cipher has the size 26!
> 4 x 1026, which is huge in comparison with the size of the message space. However, this
cipher is in fact very weak: each plaintext character is encrypted to a unique ciphertext
character. This weakness renders this cipher extremely vulnerable to a cryptanalysis technique
calledfrequency analysis which exploits the fact that natural languages contain a high volume
of redundancy (see §3.8). We will further discuss the security of simple substitution cipher in
87.5.

Several special cases of simple substitution ciphers appear in history. The simplest and the most
well-known case is called shift ciphers. In shift ciphers, K= M = C; let N = #M, the encryption
and decryption mappings are defined by

Equation 7.3.1
Ep(m) «— m+ k (mod N)

Di(c) +— ¢ — k (mod N)

withm, c, ke Zx"\-’. For the case of M being the capital letters of the Latin alphabet, i.e.,

M = Z‘?“, the shift cipher is also known as Caesar cipher, because Julius Caesar used it with
the case of k = 3 (82.2 of [93]).

ByTheorem 6.6 (in 86.2.2) we know that if gcd(k, N) = 1, then for every m < N:

km (mod N)

ranges over the entire message space EN. Therefore for such k and for m, c < N

Equation 7.3.2
gk{“'.i_) — k'ﬂ'i (]Tlf_)d JN'T)

Di(c) +— k~1e (mod N)

provide a simple substitution cipher. Similarly,

kim + kz (mod N)

can also define a simple substitution cipher called affine cipher:

Equation 7.3.3

Er(m) — kim + ka2 (mod N)

Di(c) + k7' (¢ — k2) (mod N)

It is not difficult to see that using various arithmetic operations between keys in K and messages
inM, various cases of simple substitution ciphers can be designed. These ciphers are called
monoalphabetic ciphers: for a given encryption, key, each element in the plaintext message
space will be substituted into a unique element in the ciphertext message space. Therefore,
monoalphabetic ciphers are extremely vulnerable to frequency analysis attacks.

However, due to their simplicity, simple substitution ciphers have been widely used in modern
secret-key encryption algorithms. We will see the kernel role that simple substitution ciphers
play in the Data Encryption Standard (DES) (87.6) and in the Advanced Encryption Standard
(AES) (87.7). It has been agreed that a combination of several simple cipher algorithms can
result in a strong cipher algorithm. That is why simple ciphers are still in wide use. Simple
substitution ciphers are also widely used in cryptographic protocols; we will illustrate a protocol's
application of a simple substitution cipher in 87.5 and see many further such examples in the
rest of the book.

7.3.2 Polyalphabetic Ciphers

A substitution cipher is called a polyalphabetic cipher if a plaintext message elementin P may

be substituted into many, possibly any, ciphertext message elementin C.

We shall use the Vigeneére cipher to exemplify a polyalphabetic cipher since the Vigenére cipher
is the best known among polyalphabetic ciphers.

The Vigenere cipher is a string-based substitution cipher: a key is a string comprising a plural
number of characters. Let m be the key length. Then a plaintext string is divided into sections of
m characters, that is, each section is a string of m characters with possibly an exception that the
final section of string may have fewer characters. The encryption algorithm operates that of the
shift cipher between the key string and a plaintext string, one plaintext string at a time with the
key string being repeated. The decryption follows the same manner, using the decryption
operation of the shift cipher.

Example 7.2. Vigenéere Cipher

Let the key string be gol d. Using the encoding rule A=0,B =1, ..., Z = 25, the numerical
representation of this key string is (6, 14, 11, 3). The Vigenére encryption of the plaintext string

proceed neeting as agreed

has the following operation which is character-wise addition modulo 26:

15 17 14 2 4 4 3 12 4 4 19
6 14 11 3 6 14 11 3 6 14 11
21 5 25 5 10 18 14 15 10 18 4

8 13 6 0 18 0 6 17 4 4 3
3 6 14 11 3 6 14 11 3 6 14
11 19 20 11 21 & 20 2 ¥ 10 17

Thus, the ciphertext string is

vfzfkso pkseltu Iv guchkr

Other well-known polyalphabetic ciphers include the book cipher (also called the Beale cipher)
where the key string is an agreed text in a book, and the Hill cipher. See, e.g., 82.2 of [93] or
81.1 of [284], for detailed description of these substitution ciphers.

7.3.3 The Vernam Cipher and the One-Time Pad

TheVernam cipher is one of the simplest cryptosystems. If we assume that the message is a
string of n binary bits

m = b‘]bz is .bﬂ_ - {U., 1}1".'.

then the key is also a string of n binary bits

k= kiks... kn v {0,1}7,

(notice here the symbol "€y:" is chosen at uniformly random). Encryption takes place one bit at
a time and the ciphertext string ¢ = ciC2...cpy is found by the bit operation XOR (exclusive or)
each message bit with the corresponding key bit

C; = b; &k

for 1 Si i:n, where the operation @ is defined by
&0 1
0110 1
L 'L @

Decryption is the same as encryption, since q'.:' is addition modulo 2, and thereby subtraction is
identical to addition.

ConsideringM = C = K = {0, 1}*, the Vernam cipher is a special case of substitution ciphers. If

the key string is used for one time only, then the Vernam ciphers. If the key string is used for
one time only, then the Vernam cipher satisfies two strong security conditions for substitution
ciphers which we will be summarizing in 87.5. There we shall argue that confidentiality offered
by the one-time-key Vernam cipher is in the information-theoretically secure sense, or is,
unconditional. A simple way to see this security quality is the following: a ciphertext message
stringc provides (an eavesdropper) no information whatsoever about the plaintext message

stringm since any m could have yield c if the key k is equal to c $m (bit by bit).

The one-time-key Vernam cipher is also called the one-time pad cipher. In principle, as long
as the usage of encryption key satisfies the two conditions for secure substitution ciphers which
we will list in 87.5, then any substitution cipher is a one-time pad cipher. Conventionally
however, only the cipher using the bit-wise XOR operation is called the one-time pad cipher.

In comparison with other substitution ciphers (e.g., the shift cipher using addition modulo 26),
the bit-wise XOR operation (which is addition modulo 2) can be easily realized by an electronic
circuit. Because of this reason, the bit-wise XOR operation is a widely used ingredient in the
design of modern secret-key encryption algorithms. It will be used in two important modern
ciphers the DES (87.6) and the AES (87.7).

The one-time pad style of encryption is also widely used in cryptographic protocols. We will see
such a protocol in 87.5.1.

7.4 Transposition Ciphers

Atransposition cipher (also called permutation cipher) transforms a message by
rearranging the positions of the elements of the message without changing the identities of the
elements. Transposition ciphers are an important family of classical ciphers, in additional
substitution ciphers, which are widely used in the constructions of modern block ciphers.

Consider that the elements of a plaintext message are letters in EI‘2[5; let b be a fixed positive

. . : P=C=(Zx)".
integer representing the size of a message block; let 26) : finally, let K be all
permutations, i.e., rearrangements, of (1, 2, ..., b).

Then a permutation p = (p(1),p(2), ..., p(b)) is a key since p E€K. For a plaintext block (x 1,X 2, ...,
xp) EP, the encryption algorithm of this transposition cipher is

ex(T1,22,...,28) = (Ta(1)s Tr(2)s -+ 1 Tr(b))-

Letp 1 denote the inverse of p, i.e., p~ (p(i)) =ifori= 1, 2, ..., b. Then the corresponding
decryption algorithm of this transposition cipher is

dr = I:yl,y’j; e '?ybj = (y?r_ll[l}:yﬂ_l{i]r' ; --.yﬂ—J-{b])-

For a message of length larger than the block size b, the message is divided into multiple blocks
and the same procedures are repeated block by block.

Since for message block size b there are b! different number of keys, a plaintext message block
can be transposition-enciphered to b! possible ciphertexts. However, since the identities of the
letters do not change, transposition cipher is also extremely vulnerable to the frequency analysis
techniques.

Example 7.3. Transposition Cipher

Letb = 4 and

= (m(1),7(2), w(3),m(4d)) = (2,4,1,3).

Then the plaintext message

proceed neeting as agreed

is first divided into 6 blocks of four letters each:

proc eedm eeti ngas agre ed

which can then be transposition-enciphered to the following ciphertext

r cpoenedei et gsnagear de

Notice that the final short block of plaintext ed is actually padded as edL.".J and then enciphered
intod L.|e|..|, followed by deleting the padded spaces from the ciphertext block.

The decryption key is

7l = (x(1) L@ L x@3) L4y) = (271,471 370,

The fact that the final shortened ciphertext block de containing only two letters means that in the
corresponding plaintext block there is no letter to match the positions for 3-1 and 4-1. Therefore
spaces should be re-inserted into the shortened ciphertext block at these positions to restore the

block into the padded form dL.leL.l, before the decryption procedure can be applied properly. [l

Notice that in the case of the final plaintext block is a short one (as in the case of Example 7.3),

leaving the padded letters, such as L.| in the ciphertext message, should be avoided because the
padded letters expose information about the key used.

7.5 Classical Ciphers: Usefulness and Security

First of all we should point out that the two basic working principles of the classical ciphers:
substitution and transposition, are still the most important kernel techniques in the construction
of modern symmetric encryption algorithms. We will clearly see combinations of substitution and
transposition ciphers in two important modern symmetric encryption algorithms: DES and AES,
which we shall introduce in 87.6 and 87.7.

Consider character-based substitution ciphers. Because the plaintext message space coincides
with the alphabet, each message is a character in the alphabet and encryption is to substitute
character-by-character each plaintext character with a ciphertext character and the substitution
is according to a secret key. If a key is fixed for encrypting a long string of characters, then the
same character in the plaintext messages will be encrypted to a fixed character in the ciphertext
messages.

It is well known that letters in a natural language have stable frequencies (review 83.8). The
knowledge of the frequency distribution of letters in a natural language provides clue for
cryptanalysis, a technique aiming at finding information about the plaintext or the encryption
key from given ciphertext messages. This phenomenon is shown in Example 7.1, where the
ciphertext message show a high frequent appearance of the letter y, and suggest that a fixed
letter must appear in the corresponding plaintext message with the same frequency (in fact the
letter is e which appears in English with a high frequency). Simple substitution ciphers are not
secure for hiding natural-language-based information. For details of the cryptanalysis technique
based on studying the frequencies of letters, see any standard texts in cryptography, e.g., 82.2
of [93], or §7.3.5 of [198].)

Polyalphabetic ciphers and transposition ciphers are stronger than simple substitution ciphers.
However, if the key is short and the message is long, then various cryptanalysis techniques can
be applied to break such ciphers.

However, classical ciphers, even simple substitution ciphers can be secure in a very strong sense
if the use of cryptographic keys follows certain conditions. In fact, with the proper key usages,
simple substitution ciphers are widely used in cryptographic systems and protocols.

7.5.1 Usefulness of Classical Ciphers

Let us now look at an example of the shift cipher (i.e., the simplest substitution cipher) being
securely used in a cryptographic protocol. After showing the example, we will summarize two
important conditions for secure use of classical ciphers.

Z

Suppose we have a function f(x) over “=™ with the following two properties:

T € Ly

One-way: given any , evaluation of f(x) can be done efficiently (review 84.4.6

for the meaning of efficient computation) while for almost all ¥y € Z‘H and for any efficient
algorithmsA, Prob [x #=A(y)Lf(x) = y] is a negligible quantity in size of y (review 4.6 for
the meaning of negligible quantity);

Homomorphic: for all x1, +2 & ZIr:',,f(x 1+ x2) = f(X1) . f(x2).

There are many functions which apparently satisfy these two properties; we shall see many such
functions later in this book.

Using this function, we can construct a so-called "zero-knowledge proof"” protocol, which allows a
prover (let it be Alice) to show a verifier (let it be Bob) that she knows the pre-image of f(z)
(which is z < n) without disclosing to the latter the pre-image. This can be achieved by a simple
protocol which uses the shift cipher. The protocol is specified in Prot 7.1.

Prot 7.1 is a very useful one. In applications, the value X = f(z) can be Alice's cryptographic
credential for proving her identity or entitlement to a service. Only Alice can use the credential
because only she knows how to use it as a result of the fact that only she knows the pre-image
z. This protocol shows how Alice should use her credential without the verifier Bob know any
information about the pre-image z.

Protocol 7.1: A Zero-knowledge Protocol Using Shift Cipher

COMMON INPUT)) 7
)f(): a one-way and homomorphic function over m;

i)X = f(z) for some ZE€ E“H—.
Alice's INPUT Z < n. (* prover;s private input *)

OUTPUT t0 Bob Ajice knows Z € Zn such that X = f(2).

Repeat the following steps m times:

key Z

1. Alice picks " computers Commit +=f(k) and sends it to Bob;

2. Bob picks Challenge £y {0, 1} and sends it to Alice;

k if Challenge = 0

Response + { k+ z (mod n) if Challenge = 1

3. Alice computes
She sends Respons to Bob;

(* when Challenge = 1, Response is a ciphertext output from shift cipher
encryption of z under the one-time key k, see (7.3.1) *)

f(Response) 2 | Commit if Challenge = 0
Y | Commit- X if Challenge =1
4. Bob checks

he rejects and aborts the run if any checking step shows an error;

Bob accepts.

InChapter 18 we will make an extensive use of this protocol and its several variations when we

study the subject of zero-knowledge proof protocols. For this moment, all we should concern is
the quality of confidentiality service that this protocol provides for hiding Alice's private
informationz.

7.5.2 Security of Classical Ciphers

Let us now see the quality of confidentiality service that the shift-cipher encryption offers in Prot
7.1. We claim that the quality is perfect. That is, after running this protocol Bob gets absolutely

no new information about ~ € Zn beyond what he may have already obtained from the
common input f(z) (the common input only provides apriori information).

We should notice that the shift cipher encryption

Response = z + k (mod n)

forms a permutation over Eﬁ. With kcvZn=K= -M, the permutation renders Response
€y Zy since a permutation maps the uniform distribution to the uniform distribution. This

means that for a given ciphertext Response,any key in Eﬂ' could have been used with the
same probability in the creation of Response (the probability space being the key space and the

message space). This is equivalent to say that any T e EH is equally likely to have been
encrypted inside Response. So the plaintext z is independent from the ciphertext Response, or
the ciphertext leaks no information whatsoever about the plaintext.

If a cipher achieves independence between the distributions of its plaintext and ciphertext, then
we say that the cipher is secure in an information-theoretically secure sense. In contrast to a
security in the complexity-theoretic sense which we have established in Chapter 4, the security
in the information-theoretic sense is unconditional and is immune to any method of
cryptanalysis. In Prot 7.1, this sense of security means that runs of the protocol will not provide
Bob with any knowledge regarding Alice's private input z, except the conviction that Alice has
the correct private input.

The notion of information-theoretic-based cryptographic security is developed by Shannon
[264]. According to Shannon's theory, we can summarize two conditions for secure use of
classical ciphers:

Conditions for Secure Use of Classical Ciphers

i #K 2=#M:
ii. k€yK and is used once in each encryption only.

So if a classical cipher (whether it is a simple substitution cipher in character-based or string-
based, a polyalphabetic cipher, or the Vernam cipher) encrypts a message string of length f

then in order for the encryption to be secure, the length of a key string should be at least ¢, and
the key string should be used once only. While this requirement may not be very practical for
applications which involve encryption of bulk volumes of messages, it is certainly practical for
encrypting small data, such as a nonce (see §2.6.4) or a session key (see §2.5).Prot 7.1 is just
such an example.

In the rest of this book we will meet numerous cryptographic systems and protocols which apply
various forms of substitution ciphers such as shift ciphers (as in Prot 7.1), multiplication ciphers
(defined in (7.3.2)), affine ciphers (defined in (7.3.3)), and substitution ciphers under the
general form of permutations (as in Example 7.1). Most of such applications follow the two
conditions for secure use of classical ciphers.

7.6 The Data Encryption Standard (DES)

Without doubt the first and the most significant modern symmetric encryption algorithm is that
contained in the Data Encryption Standard (DES) [211]. The DES was published by the United
States' National Bureau of Standards in January 1977 as an algorithm to be used for unclassified
data (information not concerned with national security). The algorithm has been in wide
international use, a primary example being its employment by banks for funds transfer security.
Originally approved for a five-year period, the standard stood the test of time and was
subsequently approved for three further five-year periods.

7.6.1 A Description of the DES

The DES is a block cipher in which messages are divided into data blocks of a fixed length and
each block is treated as one message either in M or in C. In the DES, we have M = C = {0, 1}6%4
andK = {0, 1} 56; namely, the DES encryption and decryption algorithms take as input a 64-bit
plaintext or ciphertext message and a 56-bit key, and output a 64-bit ciphertext or plaintext
message.

The operation of the DES can be described in the following three steps:

1. Apply a fixed "initial permutation” IP to the input block. We can write this initial
permutation as

Equation 7.6.1

(Lo, Ro) < IP(Input Block).

HerelL o and Rg are called "(left, right)-half blocks," each is a 32-bit block. Notice that IP is
a fixed function (i.e., is not parameterized by the input key) and is publicly known;
therefore this initial permutation has no apparent cryptographic significance.

2. lIterate the following 16 rounds of operations (fori =1, 2, ..., 16)

Equation 7.6.2

L'.r: — R't'— 1

Equation 7.6.3

Ri «— Li 1® f(Ri_1,k:).

Herek j is called "round key" which is a 48-bit substring of the 56-bit input key; fis called

"S-box Function” ("S" for substitution, we will provide a brief description on this function in
87.6.2) and is a substitution cipher (87.3). This operation features swapping two half
blocks, that is, the left half block input to a round is the right half block output from the
previous round. The swapping operation is a simple transposition cipher (87.4) which aims
to achieve a big degree of "message diffusion,” essentially the mixing property modeled by
Shannon in (7.1.1). From our discussion we can see that this step of DES is a combination
of a substitution cipher and a transposition cipher.

3. The result from round 16, (L1s,R 16), is input to the inverse of IP to cancel the effect of the
initial permutation. The output from this step is the output of the DES algorithm. We can
write this final step as

Equation 7.6.4

Output Block — IP™'(Ryg, Lig).

Please pay a particular attention to the input to IP~1: the two half blocks output from round
16 take an additional swap before being input to IP~1,

These three steps are shared by the encryption and the decryption algorithms, with the only
difference in that, if the round keys used by one algorithm are ki,k 2, ..., k16, then those used by

the other algorithm should be kjg,kK 15, ..., K1. This way of arranging round keys is called "key
schedule," and can be denoted by

Equation 7.6.5
[A:E:k;}? Ry kiﬁ} = {klﬁfklﬁ.: et 'I'-:l)

Example 7.4.
Let a plaintext message m be encrypted to a ciphertext message ¢ under an encryption key K.

Let us go through the DES algorithm to confirm the proper working of the decryption function,
i.e., decryption of ¢ under k will output m.

The decryption algorithm starts by inputing the ciphertext c as "Input Block." By (7.6.1) we have

(L, Ry) « IP(c).

But since c is actually "Output Block" from the final step of the encryption algorithm, by (7.6.4)
we have

Equation 7.6.6
[ihRI]] - (lehLlii)-

In round 1, from (7.6.2), (7.6.3) and (7.6.6), we have

L] «— Ry = Lyg,

Rl « Ly f(Ry, k1) = Ris ® f(Lis, k7).

In the right-hand sides of these two assignments, L1 should be replaced with R15 due to (7.6.2),

. A
R1e should be replaced with L5 G'.:'f(R 15,K 16) due to (7.6.3), and II“1 _ ""1'[1 due to the key
schedule (7.6.5). Thus, the above two assignments are in fact the following two:

L;l — R15,

R} « [L15® f(R1s, k16)] @ f(Ris, k1) = Ls.

So, after round 1 of decryption, we obtain

(L3, R1) = (Ris, Ls)-

Therefore, at the beginning of round 2, the two half blocks are (R1s,L 15).

It is routine to check that, in the subsequent 15 rounds, we will obtain

U"f?va?) = (R, L), ’15 iﬁ) = (Ro, Lo).

; 16y Big (R, Lig) = (Lo, Ro)
The two final half blocks from round 16, (" 1fi* “"1fi) are swapped to *~ "1t 16 ?
and are input to 1P~1 (notice (7.6.4) for the additional swapping) to cancel the effect of the IP in

(7.6.1). Indeed, the output from the decryption function is the original plaintext block m. Ll

We have shown that the DES encryption and decryption algorithms do keep equation (7.2.1) to
hold for all m €M and all k €K. It is clear that these algorithms work with no regard of the
internal details of the "S-box Function" and the key schedule function.

The DES iterations which use (7.6.2) and (7.6.3) to process two half blocks in a swapping
fashion is called the Feistel cipher.Fig 7.2 illustrates the swapping structure of one round
Feistel cipher. Feistel proposed this cipher originally [107]. As we have mentioned earlier, the
swapping feature aims to achieve a big degree of data diffusion. Feistel cipher also has an
important application in public-key cryptography: a structure named Optimal Asymmetric
Encryption Padding (OAEP) is essentially a two-round Feistel cipher. We will study OAEP in
815.2.

Figure 7.2. Feistel Cipher (One Round)

7.6.2 The Kernel Functionality of the DES: Random and Non-linear
Distribution of Message

The kernel part of the DES is inside the "S-box Function" f. This is where the DES realizes a
random and non-linear distribution of plaintext messages over the ciphertext message space.

In the i-th round, f(Rj_1,k ;) does the following two sub-operations:

i. add the round key k;j, via bit-wise XOR, to the half block Rj_1; this provides the randomness
needed in message distribution;

ii. substitute the result of (i) under a fixed permutation which consists of eight "substitution
boxes" (S-boxes), each S-box is a non-linear permutation function; this provides the non-
linearity needed in message distribution.

The non-linearity of the S-boxes is very important to the security of the DES. We notice that the
general case of the substitution cipher (e.g., Example 7.1 with random key) is non-linear while
the shift cipher and the affine cipher are linear subcases. These linear sub-cases not only
drastically reduce the size of the key space from that of the general case, but also render the
resultant ciphertext vulnerable to a differential cryptanalysis (DC) technique [33]. DC attacks
a cipher by exploiting the linear difference between two plaintext messages and that between
two ciphertext messages. Let us look at such an attack using the affine cipher (7.3.3) for
example. Suppose Malice (the attacker) somehow knows the difference m — m' but he does not
knowm nor m'. Given the corresponding ciphertexts c = k 1m + ko (mod N),c' = k 1m"' + ko (mod
N), Malice can calculate

k1= (c—c')/(m—m') (mod N).

Withk 1, it becomes much easier for Malice to further find ky, e.g., ko can be found if Malice has a
known plaintext-ciphertext pair. Subsequent to its discovery in 1990, DC has been shown as
very powerful against many known block ciphers. However, it is not very successful against the
DES. It turned out that the designer of the DES had anticipated DC 15 years earlier [81] through

the non-linear design of the S-boxes.

An interesting feature of the DES (in fact, the Feistel cipher) is that the S-boxes in function
f(Ri—1,k i) need not be invertible. This is shown in Example 7.4 as encryption and decryption
working for arbitrary f(Rj—1,k i). This feature saves space for the hardware realization of the DES.

We shall omit the description of the internal details of the S-boxes, of the key-schedule function
and of the initial-permutation function. These details are out of the scope of the book. The
interested reader is referred to §2.6.2 of [93] for these details.

7.6.3 The Security of the DES

Debates on the security of the DES started soon after the DES was proposed as the encryption
standard. Detailed discussions and historical accounts can be found in various cryptographic
texts, e.g., 87.2 of [279], §3.3 of [284], and §7.4.3 of [198]. Later, it became more and more
clear that these debates reached a single main critique: the DES has a relatively short key
length. This is regarded as the only most serious weakness of the DES. Attacks related to this
weakness involve exhaustively testing keys, using a known pair of plaintext and ciphertext
messages, until the correct key is found. This is the so-called brute-force or exhaustive key
search attack.

However, we should not regard a brute-force key search attack as a real attack. This is because
the cipher designers not only have anticipated it, but also have hoped this to be the only means
for an adversary. Therefore, given the computation technology of the 1970s, the DES is a very
successful cipher.

One solution to overcome the short-key limitation is to run the DES algorithm a multiple number
of times using different keys. One such proposal is called encryption-decryption-encryption-
triple DES scheme [290]. Encryption under this scheme can be denoted by

¢ Ek; (Dr, (Ex, (M),

and decryption by

m — Dy, (Ex, (Dr, (€))).

In addition to achieving an effect of enlarging the key space, this scheme also achieves an easy
compatibility with the single-key DES, if k1 = ko is used. The triple DES can also use three
different keys, but then is not compatible with the single-key DES.

The short-key weakness of the DES became evident in the 1990s. In 1993, Wiener argued that a
special-purpose VLSI DES key search machine can be built at the cost of US$1,000,000. Given a
pair of plaintext-ciphertext messages, this machine can be expected to find the key in 3.5 hours
[299]. On July 15, 1998, a coalition of Cryptography Research, Advanced Wireless Technologies
and Electronic Frontier Foundation announced a record-breaking DES key search attack: they
built a key search machine, called the DES Cracker (also know as Deep Crack), with a cost under
US$250,000, and successfully found the key of the RSA's DES Challenge after searching for 56
hours [110]. This result demonstrates that a 56-bit key is too short for a secure secret-key
cipher for the late 1990s computation technology.

7.7 The Advanced Encryption Standard (AES)

On January 2, 1997, the United States' National Institute of Standards and Technology (NIST)
announced the initiation of a new symmetric-key block cipher algorithm as the new encryption
standard to replace the DES. The new algorithm would be named the Advanced Encryption
Standard (AES). Unlike the closed design process for the DES, an open call for the AES
algorithms was formally made on September 12, 1997. The call stipulated that the AES would
specify an unclassified, publicly disclosed symmetric-key encryption algorithm(s); the
algorithm(s) must support (at a minimum) block sizes of 128-bits, key sizes of 128-, 192-, and
256-bits, and should have a strength at the level of the triple DES, but should be more efficient
then the triple DES. In addition, the algorithm(s), if selected, must be available royalty-free,
worldwide.

On August 20, 1998, NIST announced a group of fifteen AES candidate algorithms. These
algorithms had been submitted by members of the cryptographic community from around the
world. Public comments on the fifteen candidates were solicited as the initial review of these
algorithms (the period for the initial public comments was also called the Round 1). The Round 1
closed on April 15, 1999. Using the analyses and comments received, NIST selected five
algorithms from the fifteen. The five AES finalist candidate algorithms were MARS [62], RC6
[247], Rijndael [86], Serpent [15], and Twofish [255]. These finalist algorithms received further
analysis during a second, more in-depth review period (the Round 2). In the Round 2, comments
and analysis were sought on any aspect of the candidate algorithms, including, but not limited
to, the following topics: cryptanalysis, intellectual property, cross-cutting analyses of all of the
AES finalists, overall recommendations and implementation issues. After the close of the Round
2 public analysis period on May 15, 2000, NIST studied all available information in order to
make a selection for the AES. On October 2, 2000, NIST announced that it has selected Rijndael
to propose for the AES.

Rijndael is designed by two Belgium cryptographers: Daemen and Rijmen.

7.7.1 An Overview of the Rijndael Cipher

Rijndael is a block cipher with a variable block size and variable key size. The key size and the
block size can be independently specified to 128, 192 or 256 bits. For simplicity we will only
describe the minimum case of the 128-bit key size and the same block size. Our confined
description will not cause any loss of generality to the working principle of the Rijndael cipher.

In this case, a 128-bit message (plaintext, ciphertext) block is segmented into 16 bytes (a byte
is a unit of 8 binary bits, so 128 = 16 x 8):

InputBlock = mg,my,...,m1s.

So is a key block:

InputKey = kg, k1,..., kis.

The data structure for their internal representation is a 4 x 4 matrix:

o Mg mg mia
Ty s mg Trg

InputBlock = X
e Mg manp MMy
ms MMy MMy Mg
ﬂ:g kg ﬁfg k12
- 1 ks ko Ry
InputKey = | |~ 7 i
o ke ko kg

.Iif.'J, LTT kl 1 kl.r,

Like the DES (and most modern symmetric-key block ciphers), the Rijndael algorithm comprises
a plural number of iterations of a basic unit of transformation: "round." In the minimum case of
128-bit message-block and key-block size, the number of rounds is 10. For larger message sizes
and key sizes, the number of rounds should be increased accordingly and is given in Figure 5 of

[219].

A round transformation in Rijndael is denoted by

Round(State, RoundKey).

HereState is a round-message matrix and is treated as both input and output; RoundKey is a
round-key matrix and is derived from the input key via key schedule. The execution of a round
will cause the elements of State to change value (i.e., to change its state). For encryption
(respectively, decryption), State input to the first round is Input Block which is the plaintext
(respectively, ciphertext) message matrix, and State output from the final round is the
ciphertext (respectively, plaintext) message matrix.

The round (other than the final round) transformation is composed of four different
transformations which are internal functions to be described in a moment:

Round(State, RoundKey) {
SubBytes(State);
ShiftRows(State);
MixColumns(State);
AddRoundKey(State, RoundKey);

}

The final round, denoted by

FinalRound(State, RoundKey),

is slightly different: it is equal to Round(State, RoundKey) with the MixColumns function
removed. This is analogous to the situation of the final round in the DES where an additional
swap between the output half data blocks is applied.

The round transformations are invertible for the purpose of decryption. The respective reverse
round transformations should be denoted by

Round—1(State, RoundKey), and
FinalRound—1(State, RoundKey),

respectively. We shall see below that the four internal functions are all invertible.

7.7.2 The Internal Functions of the Rijndael Cipher

Let us now describe the four internal functions of the Rijndael cipher. We shall only describe the
functions for the encryption direction. Because each of the four internal functions is invertible,
decryption in Rijndael merely applies their respective inversions in the reverse direction.

The internal functions of the Rijndael cipher work in a finite field. The field is realized as all
polynomials modulo the irreducible polynomial

f@)=z+z*+234+2+1

over]FQ. That is, specifically, the field used by the Rijndael cipher is Fy [X]x8+x*+x3+x+1. Any

element in this field is a polynomial over Fy of degree less than 8 and the operations are done
modulof(x). Let us name this field the "Rijndael field." Due to isomorphism, we will often use

2" to denote this field which has 28 = 256 elements.

We have actually studied the Rijndael field in Chapter 5,Examples 5.17,5.18 and 5.19, where
we demonstrated the following operations:

e Mapping between an integer byte and a field element (Example 5.17)

e Addition between two field elements (Example 5.18)

e Multiplication between two field elements (Example 5.19)

Our study there can now help us to describe the Rijndael internal functions.

First of all, as we have already described, a block of message (a state) and a block of key in the
Rijndael cipher are segmented into bytes. From the simple 1-1 mapping scheme described in
Example 5.17, these bytes will be viewed as field elements and will be processed by several
Rijndael internal functions which we now describe.

7.7.2.1 Internal Function SubBytes(State)

This function provides a non-linear substitution on each byte (i.e., x) of State. Any non-zero byte

T e {]Fge-c)*

is substituted by the following transformation:

Equation 7.7.1

y=Az"! +b.

where
(1000 1 1 1 1Y) [1)
1 10001 11 1
1 1 1 0 0 0 1 1 0
1 1 1 1 0 0 0 1 0

A=l 1111100 0 and b= 1 ,
01 1 1 1 1 00 1
Q5 O e GO O O A 1
\0 00 1 1 1 1 1/ \ 0 /

Ifx is the zero byte, then y = b is the SubBytes transformation result.

We should notice that the non-linearity of the transformation in (7.7.1) comes from the inversion
x~1 only. Should the transformation be applied on x directly, the affine equation in (7.7.1) would
then be absolutely linear!

Since the 8 x 8 constant matrix A is an invertible one (i.e., its rows are linearly independent in
IF:Z“), the transformation in (7.7.1) is invertible. Hence, function SubBytes(State) is invertible.

7.7.2.2 Internal Function ShiftRows(State)

This function operates on each row of State. For the case of 128-bit block size, it is the following
transformation:

Equation 7.7.2

50,0 S0.1 S0,2 50,3 50,0 So0,1 S0,2 50,3
51,0 S1,1 S1,2 51,3 s 1,1 S12 S1.3 81,0
S20 821 S22 S23 22 823 820 52,1
53,0 83,1 S32 533 533 830 531 532

This operation is actually a transposition cipher (87.4). It only rearranges the positions of the
elements without changing their identities: for elements in the ith row (i = O, 1, 2, 3), the
position rearrangement is "cyclic shifting to right" by 4 —i positions.

Since the transposition cipher only rearranges positions of the row elements, the transformation
is of course mechanically invertible.

7.7.2.3 Internal Function MixColumns(State)

This function operates on each column of State. So for State of four columns of the right-hand-
side matrix in (7.7.2),MixColumns(State) repeats four iterations. The following description is for
one column only. The output of an iteration is still a column.

First, let

S0
S

S
LR

be a column in the right-hand-side matrix in (7.7.2). Notice that we have omitted the column
number for clarity in exposition.

This column is interpreted into a degree-3 polynomial:

s(x) = 837" + s22® + 517 + 0.

Notice that because the coefficients of s(x) are bytes, i.e., are elements in IFE'-", this polynomial

]:Fjlﬁ

isover , and hence is not an element in the Rijndael field.

The operation on the column s(x) is defined by multiplying this polynomial with a fixed degree-3

polynomialc(x), modulo x4 + 1:

Equation 7.7.3

e(x) - s(w) (mod «! + 1),

where the fixed polynomial c(x) is

elz) = c3x® + cox® + ey + ¢g = ‘03’2 + ‘01'z? + 01’z + ‘02"

The coefficients of c(x) are also elements in FE'-" (denoted by the hexadecimal representations of
the respective bytes, or field elements).

We should notice that the multiplication in (7.7.3) is not an operation in the Rijndael field: c(x)

ands(x) are not even Rijndael field elements. Also because x4 + 1 is reducible over F, (x*+1
= (x + 1)%), the multiplication in (7.7.3) is not even an operation in any field (review Theorem
5.5in 85.4.2.2). The only reason for this multiplication being performed modulo a degree-4

polynomial is in order for the operation to output a degree-3 polynomial, that is, to achieve a
transformation from a column (a degree-3 polynomial) to a column (a degree-3 polynomial).
This transformation can be viewed as a polyalphabetic substitution (multiplication) cipher using
a known key.

The reader may apply the long division method in Example 5.15 to confirm the following
equation computed over Fy (noticing that subtraction in this ring is identical to addition):

x* (mod z* + 1) = & (mod 4)

Therefore, in the product (7.7.3), the coefficient for xi (fori = 0, 1, 2, 3) must be the sum of CjSk
satisfyingj + k = i (mod 4) (where j, k=0, 1, 2, 3). For example, the coefficient for x 2 in the
product is

C25p + €181 + ¢cpS2 + €383.

The multiplication and addition are in]FZ*’-". For this reason, it is now easy to check that the
polynomial multiplication in (7.7.3) can be achieved by taking the following linear algebraic one:

Equation 7.7 .4

d[‘j (ff‘ﬂ Cz €72 O S0
dy B ¢ €y €3 €2 51
dg B Cy 1 Op C3 8a
ds \ €3 c2 € ¢ S3

/027 ‘03 ‘017 ‘01 S0

B ‘017 ‘02" ‘03" 01 81

n ‘017 01" 027 03 52

\ ‘03" ‘01" ‘01" ‘02 53

We further notice that because c(x) is relatively prime to x* + 1 over]FE, the inversion c(x)™1

(modx 4 + 1) exists in Iy [X]. This is equivalent to saying that the matrix, and hence the
transformation, in (7.7.4) are invertible.

7.7.2.4 Internal Function AddRoundKey(State, RoundKey)

This function merely adds, byte by byte and bit by bit, the elements of RoundKey to those of

State. Here "add" is addition in <+ 2 (i.e., bit-wise XOR) and is trivially invertible; the inversion is
"add" itself.

TheRoundKey bits have been "scheduled," i.e., the key bits for different rounds are different,
and are derived from the key using a fixed (non-secret) "key schedule™ scheme. For details for

"key schedule"” see Figure 12 of [219].

To this end we have completed the description of the Rijndael internal functions and hence the
encryption operation.

7.7.2.5 Decryption Operation

As we have seen that each of the four internal functions are invertible, the decryption is merely
to invert the encryption in the reverse direction, i.e., applying

AddRoundKey (State, RoundKey)1;
MixColumns (State);

ShiftRows (State)!;

SubBytes (State)™1.

We should notice that, unlike in the case of a Feistel cipher where encryption and decryption use
the same circuit (hardware) or code (software), the Rijndael cipher must implement different
circuits and codes for encryption and decryption, respectively.

7.7.3 Summary of the Roles of the Rijndael Internal Functions

At the end of our description of the Rijndael cipher let us provide a summary on the roles of the
four internal functions.

e SubBytes is intended to achieve a non-linear substitution cipher. As we have discussed in
87.6.2, non-linearity is an important property for a block cipher to prevent differential
cryptanalysis.

e ShiftRows and MixColumns are intended to achieve a mixture of the bytes positioned in
different places of a plaintext message block. Typically, plaintext messages have a low-
entropy distribution in the message space due to the high redundancy contained in natural
languages and business data (that is, typical plaintexts concentrate in a small subspace of
the whole message space). A mixture of the bytes in different positions of a message block
causes a wider distribution of messages in the whole message space. This is essentially the
mixing property modeled by Shannon in 7.1.1.

¢ AddRoundKey provides the necessary secret randomness to the message distribution.

These functions repeat a plural number of times (minimum 10 for the case of 128-bit key and
data size), and the result is the Rijndael cipher.

7.7.4 Fast and Secure Implementation

We have seen that the Rijndael internal functions are very simple and operate in trivially small
algebraic spaces. As a result, implementations of these internal functions can be done with
extremely good efficiency. From our descriptions of the Rijndael internal functions, we see that
onlySubBytes and MixColumns have non-trivial algebraic operations and hence are worthy of
fast implementation considerations.

First, in SubBytes, the calculation of x~1 can be efficiently done using a "table lookup" method: a
small table of 28 = 256 pairs of bytes can be built once and used forever (i.e., the table can be
"hardwired" into hardware or software implementations). In this table of pairs, the zero byte is
paired with the zero byte; the rest of the 255 entries in the table are the 255 cases of the pair

(x, x1) where inversion is performed in the field IFE'-". The "table lookup™ method not only is
efficient, but also prevents a timing analysis attack which is based on observing the operation
time difference for different data which may suggest whether an operation is performed on bit O
or bit 1 (see §12.5.4).

Because the matrix A and the vector b in (7.7.1) are constants, the "table lookup" method can
actually include the whole transformation (7.7.1) altogether, that is, the table of 256 entries are

,y € Fys with (0, b) being a special case of (x, y).

the pairs (X, y) with
Clearly, inversion is merely to use the inversion table. Therefore, SubBytes can be implemented
by two small tables, each of the size 256 bytes.

Next, in MixColumns, multiplication between elements in FE“, i.e., that between coefficients
ofc(x) and s(x), or more precisely, that between an element of the fixed matrix and that in a
column vector in (7.7.4), can also be realized via a "table lookup™ method: z = x . y (field

multiplication) where x € {'01°,'02, ‘03'} and Y e FE“. Further notice that the byte '01' is
simply the multiplicative identity in the field, i.e., '01'. y = y. Thus, implementation (either in
software or hardware) of this multiplication table only needs 2 x 256 = 512 entries. This small
table is not much larger than one which every primary school pupil has to recite. This realization
not only is fast, but also decreases the risk of the timing analysis attack.

The linear algebraic operation in (7.7.4) and its inversion also have a fast "hardwired"
implementation method. The reader with a more investigative appetite is referred to [87].

7.7.5 Positive Impact of the AES on Applied Cryptography

The introduction of the AES will in turn introduce a few positive changes in applied cryptography.

First, multiple encryption, such as triple-DES, will become unnecessary with the AES: the
enlarged and variable key and data-block sizes of 128, 192 and 256 can accommodate a wide
spectrum of security strengths for various application needs. Since multiple encryption uses a
plural number of keys, the avoidance of using multiple encryption will mean a reduction on the
number of cryptographic keys that an application has to manage, and hence will simplify the
design of security protocols and systems.

Secondly, wide use of the AES will lead to the emergence of new hash functions of compatible
security strengths. In several ways, block cipher encryption algorithms are closely related to
hash functions (see 810.3.1). It has been a standard practice that block cipher encryption
algorithms are often used to play the role of one-way hash functions. The logging-in
authentication protocol of the UNIX[8l operating system [206] is a well-known example; we shall
see in 811.5.1 a typical "one-way transformation” usage of the DES function in the realization of
the UNIX password scheme. Another example of using block cipher encryption algorithms to
realize (keyed) one-way hash functions can be seen in 810.3.3. In practice, hash functions are
also commonly used as pseudo-random number functions for generating keys for block cipher
algorithms. With the AES's variable and enlarged key and datablock sizes, hash functions of
compatible sizes will be needed. However, due to the square-root attack (the birthday attack,
see 83.6 and 810.3.1), a hash function should have a size which doubles the size of a block
cipher's key or data-block size. Thus, matching the AES's sizes of 128, 192 and 256, new hash
functions of output sizes of 256, 384 and 512 are needed. The ISO/IEC are currently in the

process of standardizing hash functions SHA-256, SHA-384 and SHA-512 [151].
[al UNIX is a trademark of Bell Laboratories.

Finally, as in the case that the DES's standard position had attracted much cryptanalysis
attention trying to break the algorithm, and that these efforts have contributed to the advance of
knowledge in block cipher cryptanalysis, the AES as the new block cipher standard will also give
rise to a new resurgence of high research interest in block cipher cryptanalysis which will
certainly further advance the knowledge in the area.

7.8 Confidentiality Modes of Operation

A block cipher processes (encrypts or decrypts) messages as data blocks. Usually, the size of a
bulk message (i.e., a message string) is larger than the size of the message block of a block
cipher, the long message is divided into a series of sequentially listed message blocks, and the
cipher processes these blocks one at a time.

A number of different modes of operation have been devised on top of an underlying block cipher
algorithm. These modes of operation (except a trivial case of them) provide several desirable
properties to the ciphertext blocks, such as adding nondeterminism (randomness) to a block
cipher algorithm, padding plaintext messages to an arbitrary length (so that the length of a
ciphertext needn't be related to that of the corresponding plaintext), control of error
propagation, generation of key stream for a stream cipher, etc.

However, we should not consider that the use of these modes of operations can turn a "textbook
crypto” block cipher into a fit-for-application one. This point will be made clear in the study (in
particular, in 87.8.2.1 where we will see an active attack which is applicable to several protocols
in wide use in the real world).

We describe here five usual modes of operation. They are electronic codebook (ECB) mode,
cipher block chaining (CBC) mode, output feedback (OFB) mode, cipher feedback (CFB)
mode, and counter (CTR) mode. Our description follow the most recent NIST recommendation

[218].

In our description, we will use the following notation:

e £(): the encryption algorithm of the underlying block cipher;

e D(): the decryption algorithm of the underlying block cipher;

e n: the binary size of the message block of the underlying block cipher algorithm (in all
block ciphers we consider, the plaintext and ciphertext message spaces coincide, and so n
is the block size of both input and output of the block cipher algorithm);

e P1,P 2, ..., Pmim successive segments of plaintext messages input to a mode of operation;

— the m-th segment may have a smaller size than the other segments and in that case a
padding is applied to make the m-th segment the same size as the other segments;

— the size of a message segment is equal to n (the block size) in some modes of operation,
and is any positive number less than or equal to n in other modes of operation;
e C1,C 2, ..., Cm:m successive segments of ciphertext messages output from a mode of

operation;

e LSBy(B), MSBy(B): the least u, and the most v, significant bits of the block B, respectively;
for example

LSB5(1010011) = 11, MSBs(1010011) = 10100;

A || B: concatenation of the data blocks A and B; for example,

LSB»(1010011) || MSB5(1010011) = 11 || 10100 = 1110100.

7.8.1 The Electronic Codebook Mode (ECB)

The most straightforward way of encrypting (or decrypting) a series of sequentially listed
message segments is just to encrypt (or decrypt) them one another separately. In this case, a
message segment is just a message block. Analogous to the assignment of code words in a
codebook, this natural and simple method gets an official name: electronic codebook mode of
operation (ECB). The ECB mode is defined as follows:

ECB EncryptionC j+—€ (P),i=1, 2, ..., m;
ECB DecryptionP j+—€(C),i=1,2, .., m.

The ECB mode is deterministic, that is, if P1,P 2, ..., Pm are encrypted twice under the same key,
the output ciphertext blocks will be the same. In applications, data usually have partial
information which can be guessed. For example, a salary figure has a guessable range. A
ciphertext from a deterministic encryption scheme can allow an attacker to guess the plaintext
by trial-and-error if the plaintext message is guessable. For example, if a ciphertext from the
ECB mode is known to encrypt a salary figure, then a small number of trials will allow an
attacker to recover the figure. In general, we do not wish to use a deterministic cipher, and
hence the ECB mode should not be used in most applications.

7.8.2 The Cipher Block Chaining Mode (CBC)

The cipher block chaining (CBC) mode of operation is a common block-cipher algorithm for
encryption of general data. Working with the CBC mode, the output is a sequence of n-bit cipher
blocks which are chained together so that each cipher block is dependent, not just on the
plaintext block from which it immediately came, but on all the previous data blocks. The CBC
mode has the following operations:

CBC Encryption INPUT: IV, P4, ..., Pm; OUTPUT: IV, Cq, ..., Cm;

f:‘q} & .!r'l-‘(r,

O — BB ST, =1 m

CBC Decryption INPUT: IV, Cq, ..., Cy; OUTPUT: Pq, ..., Pm;
Cy— IV,

Ppa— D) @052y A= LBy

The computation of the first ciphertext block C; needs a special input block Co which is
conventionally called the "initial vector™ (IV). An 1V is a random n-bit block. In each session of
encryption a new and random IV should be used. Since an IV is treated as a ciphertext block, it
need not be secret, but it must be unpredictable. From the encryption procedure we know that
the first ciphertext block C; is randomized by the IV; and in the same way and in turn, a
subsequent output ciphertext block is randomized by the immediate preceding ciphertext block.
Hence, the CBC mode outputs randomized ciphertext blocks. The ciphertext messages sent to
the receiver should include the 1V. Thus, for m blocks of plaintext, the CBC mode outputs m + 1
ciphertext blocks.

LetQ 1,Q 2, ..., Qm be the data blocks output from decryption of the ciphertext blocks Co,C 1,C 2,
...,Cm- Then since

Qi =D(C;) B8 Ci—1 = (P Cim)®Cic1 = F;,

indeed, the decryption works properly. Fig 7.3 provides an illustration of the CBC mode.

Figure 7.3. The Cipher Block Chaining Mode of Operation

Initially loaded with IV Initially loaded with IV
Ci- Cial
- n=bit store n=bil store '
P G Qi
A b E - D P o
2 Ciphertext W
Plaintext : ¢ : ainte
e Encryption Decryption Plaintext

7.8.2.1 ACommon Misconception

It seems that, because in CBC the data blocks are chained together, the mode may provide a
protection against unauthorized data modification such as deletion and insertion (such a
protection is data integrity which we will study in Chapter 10). Some block cipher algorithms
therefore specify algorithmic methods using the CBC mode as a means for serving data integrity.
For example, the RC5-CBC-PAD mode [17] specifies the following CBC plaintext padding
scheme for processing plaintext message blocks before applying encryption in the CBC mode:

1. The plaintext message string is divided into a sequence of bytes (a byte is 8 bits); every
eight message bytes form a (plaintext) message block (so the block size is 64).

2. The final plaintext message block of eight bytes must be a "padded block™. It starts with

the final a plaintext message bytes where 0 <a S 7, followed by 8 — a "padding bytes."
Each of the "padding bytes" has the fixed hexadecimal value 8 — a. For example, if the final

message block has seven plaintext message bytes, then these message bytes are trailed by
one "padding byte" which is '01"; therefore the padded block is

»011

message byte, || message byte, || ... || message byte- |

whereas if the final message block has only one plaintext message byte, then the padded
block is

‘07’ ‘07

‘o7

‘07

07" |

message byte | 07 07

If the number of message bytes is divisible by 8, then the message bytes are trailed by the
following padded block of all "padding bytes":

‘08" || ‘08 || ‘08" || 08" || ‘08" || ‘08" || ‘08" || ‘08"

Other CBC encryption schemes use similar padding schemes. For example, in "IP Encapsulating
Security Payload (ESP)" used for IPSec [162] (to be introduced in Chapter 12),X "padding

bytes" (for 1 Sx S 255) are

;Ol! | 502! || P || Lx}r?

Here 'O’ S SE and 'O’ < 'y < 'F', symbol 'xy" is the hexadecimal presentation for the
integerX. In the decryption time, the revealed "padding bytes" will be deleted from the retrieved
plaintext message (of course, after checking of the "data integrity" consistency).

Several authentication protocols in two early draft documents from the International
Organization for Standards (ISO) [144,145] also suggested to "data-integrity protection™
serviced by the CBC encryption mode (general guideline for these protocols to use CBC is
documented in [146,142]).

However, it is in fact utterly wrong to believe that CBC can provide dataintegrity protection in
any sense.

For a CBC "padding byte" scheme, if the use of the scheme intends to provide data-integrity
protection, Vaudenay demonstrates an attack [294] which betrays the absence of the protection.
In Vaudenay's attack, Malice (the attacker) sends to a principal (a key holder, who is named a
decryption oraclelPl and provides oracle service) two adaptively manipulated ciphertext
blocks

[P1 The term "oracle" appears frequently in the literature of cryptography, usually for naming any unknown
algorithm or method which is alleged to be able to solve a difficult problem. An oracle service means a user
providing (often inadvertently) an attacker with cryptographic operations using a key which is not available to
the attacker.

-y
T, C i

wherer is a random data block and C ; = E(PEB'ci_l) is a ciphertext block for which Malice is

interested in knowing the information about the corresponding plaintext message P (e.g., P is a
password). From "CBC Decryption” we know that the corresponding decryption will be

PaCi1BT.

The "data-integrity” checking method will instruct how the decryption oracle should behave.
From the behavior of the decryption oracle Malice may have a good chance to figure out certain
information about the plaintext message P. For example, if the "data-integrity protection
mechanism” instructs the decryption oracle to answer YES upon seeing a "valid padding,” then
most likely the "valid padding"” is the case of the final "padding byte" being '01'. The probability
of this event is close to 28 since the probability space is a byte which has eight bits. This is
under the condition that, because of the randomness of r, other cases of "correct padding" will
have much lower probability (due to a much larger probability space of two or more bytes) for
the decryption oracle to answer YES and can be neglected. Then Malice discovers

LSBs(P) = LSBs(r) & ‘01",

i.e., Malice has successfully retrieved the final byte of P, a significant amount of information
aboutP!

If the decryption procedure detects that a padding error has occurred (with probability close to 1
— 28 as reasoned above), the oracle may give an explicit NO answer, or may give no answer at
all (the procedure terminates as if the oracle explodes, and hence Vaudenay names this oracle a
bomb oracle). However, "no answer" is in fact an answer, which is NO in this case. In the case
of the answer being NO (explicit or implicit), Malice fails to extract the last byte. But he can
changer and retry. This is an active attack which mainly targets a principal which provides an
oracle service. We will formally define an active attack in 88.6. More scenarios on principals
playing the role of an oracle service provider will be seen in many places in the rest of this book.

Vaudenay applies his attacking technique on several cryptographic protocols which are in
widespread use in many real-world applications, such as IPSec, SSH and SSL (these protocols
will be introduced in Chapter 12). In these real-world applications, a YES/NO answer is easily
available to Malice even if answers are not given in an explicit way (e.g., answers are
encrypted).

In the basic form of this attack the decryption oracle only answers the last byte with a rather

small probability =~ 2-8 if the oracle "does not explode”. Nevertheless, under fairly standard
settings in many applications there are ways to maintain an oracle to be a non-explosive one,
and so it can answer further questions to allow Malice to extract further plaintext bytes. Suppose
that after giving a YES answer with respect to the final plaintext byte, the oracle is still in one
piece. Then Malice can modify r into r* such that

LSBg(r') — LSBs(r) @ ‘01’ @ 02

Then sending r', C to the oracle, Malice can aim to extract the last but one byte of the plaintext
with the same probability 2-8. If the oracle can be maintained to be non-explosive, the attack
can carry on, and allow Malice to extract the whole plaintext block in 8 x 28 = 2048 oracle calls.

In 812.5.4 we will see Vaudenay's attack applied to a CBC-plaintext-padding implementation of
an e-mail application which uses the SSL/TLS Protocol. In that attack, the decryption oracle is an

e-mail server which never explodes and hence allows Malice to extract the whole block of
plaintext message which is a user's password for accessing e-mails. The attack utilizes side
channel information which is available via timing analysis. The attack is therefore called a
side channel attack.

The 1SO protocols which use CBC for data-integrity protection are also fatally flawed [184,185].
We shall demonstrate the flaw in §17.2.1.2 by analyzing an authentication protocol in which the
use of encryption follows the standard CBC implementation; the protocol is designed to expect
that the use of CBC should provide data-integrity protection on the ciphers, however, the
protocol is flawed precisely due to the missing of this service.

To randomize output ciphertext appears to be the only security service that the CBC mode offers.
Data integrity of ciphertexts output from CBC will have to be served by additional cryptographic
techniques which we shall study in Chapter 10.

7.8.2.2 A Warning

Knudsen observes a confidentiality limitation in CBC [165] which can be described as follows.
When two ciphertext blocks C;,C j* are equal, then from CBC Encryption we have

Ci—]ec;_lzpf$3;+

Since plaintext usually contains redundancy, this equation helps to recover the plaintexts from
the ciphertexts which are available to an eavesdropper. To make an attack using this equation
infeasible, we must always use random IVs for each encryption session and so the probability for
two ciphertexts to be equal is negligibly small (a random 1V provides a very large probability
space).

7.8.3 The Cipher Feedback Mode (CFB)

The cipher feedback (CFB) mode of operation features feeding the successive cipher segments
which are output from the mode back as input to the underlying block cipher algorithm. A

message (plaintext or ciphertext) segment has a size s such that 1 <s =n. The CFB mode
requires an IV as the initial random n-bit input block. The IV need not be secret since in the
system it is in the position of a ciphertext. The CFB mode has the following operations:

CFB Encryption INPUT: IV, Pq, ..., Pm; OUTPUT: IV, Cq, ... Cy;

L 1V,

I,: o]—JSBH—S(I:'—I) ” 'fj\;_]_ 3= 2.. S 11
(Jii—E(I!} F:12. i,
O — P& T'sISPjS ((),:] § =1 X . J L.

CFB Decryption INPUT: IV, Cy, ..., Cm; OUTPUT: Pq, ..., Pm;

Iy TV
1',' L LSBH_E{I,:_]) || {'.?i_]_ B N T
P, — C; ® MSB,(0;) l

=,

Observe that, in the CFB mode, the encryption function of the underlying block cipher is used in
both ends of the encryption and the decryption. As a result, the underlying cipher function E can
be any (keyed) one-way transformation, such as a one-way hash function. The CFB mode can be
considered as a key stream generator for a stream cipher with the encryption being the Vernam
cipher between the key stream and the message segments. Similar to the CBC mode, a
ciphertext segment is a function of all preceding plaintext segment and the 1V. Fig 7.4 provides
an illustration of the CFB mode.

Figure 7.4. The Cipher Feedback Mode of Operation

Shift wo len Shift o len ¥ g
- — == P
LITTI T T0T = | I3 LT 1 RI] ceed
An n
| |
E & 5 E
4n n
1 1
Select MSB_s (left s) bits Select MSB_s (left s) bits
Plaintext 1 qs I_J!:linlt:m_
seEments r’1‘-. 5 H\) segments
5 e 4 ciphertext s e %
Encryption segments Decryption

7.8.4 The Output Feedback Mode (OFB)

The output feedback (OFB) mode of operation features feeding the successive output blocks from
the underlying block cipher back to it. These feedback blocks form a string of bits which is used
as the key stream of the Vernam cipher, that is, the key stream is XOR-ed with the plaintext
blocks. The OFB mode requires an 1V as the initial random n-bit input block. The IV need not be
secret since in the system it is in the position of a ciphertext. The OFB mode has the following
operations:

OFB Encryption INPUT: IV, P4, ..., Pm; OUTPUT: IV, Cq, ..., Cm;

11_ 4—;”—”..

I; — O;_4 b= B T
O; — &(I;) I O R
G a—- BBt =18 et

OFB Decryption INPUT: IV, Cq, ..., Cyy; OUTPUT: Py, ..., Pm;

I]_ — IV;

I — O; 1=2,. 1
(.)";f 4—5{1?} =1, 2, LTS
P, — C; & O i:l~2‘..1.1?1

In the OFB mode, the encryption and the decryption are identical: XORing the input message
blocks with the key stream which is generated by the feedback circuit. The feedback circuit
actually forms a finite state machine with the state solely determined by the encryption key for
the underlying block cipher algorithm and the IV. Thus, if a transmission error occurred to a
cipher block, then only the plaintext block in the corresponding position can be garbled.
Therefore, the OFB mode is suitable for encryption messages for which retransmission is not
possible, like radio signals. Similar to the CFB mode, the underlying block cipher algorithm can
be replaced with a keyed one-way hash function. Fig 7.5 provides an illustration of the CFB
mode.

Figure 7.5. The Output Feedback Mode of Operation (for both
encryption and decryption)

Shift to left (initially loaded with IV)
—f—

An

1

E A n

.
n
Input : Output
hugﬂ-—luntﬂ > =r-.,‘1 P Hliﬂ'll."ﬂl}
n \"--"; n

7.8.5 The Counter Mode (CTR)

The counter (CTR) mode features feeding the underlying block cipher algorithm with a counter
value which counts up from an initial value. With the counter counting up, the underlying block
cipher algorithm outputs successive blocks to form a string of bits. This string of bits is used as
the key stream of the Vernam cipher, that is, the key stream is XOR-ed with the plaintext blocks.
The CTR mode has the following operations (where Ctrj is an initial non-secret value of the
counter):

CTR Encryption INPUT: Ctrq,P 1, ..., Pm; OUTPUT: Ctr1,C 1, ..., Cm;

i — P, E(Clry) i=1,2,...,m.

CTR Decryption INPUT: Ctr4,C 1, ..., Cyy; OUTPUT: Py, ..., Pm;

Pr— G E(Ctry) 1=1,2;:.m:

Without feedback, the CTR mode encryption and decryption can be performed in parallel. This is
the advantage that the CTR mode has over the CFB and OFB modes. Due to its simplicity, we
omit the illustration for the CTR mode.

7.9 Key Channel Establishment for Symmetric
Cryptosystems

Before two principals can start confidential communications by using symmetric cryptosystems,
they must first establish correct cryptographic keys shared between them. Here, "correct” not
only means that a key established is bit-by-bit correct, i.e., not corrupted, but also means that
both parties must be assured that the key is exclusively shared with the intended communication
partner.

A communication channel over which a key is correctly established is called a key channel (see
Fig 7.1). A key channel is a separate channel from a message channel. The difference between
them is that a key channel is a protected one, while a communication channel is an unprotected
one. In symmetric cryptosystems, since the encryption key is equal to the decryption key, the
key channel must preserve both the confidentiality and the authenticity of the key.

A key channel for a symmetric cryptosystem can be established by three means: conventional
techniques, public-key techniques, and the Quantum Key Distribution (QKD) technique.

Conventional Techniques In the system setting-up time, a physically secure means, e.g.,
a courier delivery service, can be employed to make two users exclusively share an initial
key. Usually, one of these two users is a trusted third party (TTP) who will be providing
authentication service (see §2.4 for the meaning of this trust). Once an initial key is shared
between an end-user principal and a TTP, which a long-term key channel, any two end-
users can run an authentication protocol to maintain establish a secure key channel
between them. The use of TTP reduces the burden of key management for end-users: an
end-user does not have to manage many keys as she/he would have to should long-term
key channels be between any two pair of end-user principals. In Chapter 2 we have seen a
few examples of authentication and key establishment protocols which serve for setting up
session keys between any two end-user principals using long-term key channels between
end-user principals and an authentication server. We will see more such protocols in
Chapters 11,12 and 17 when we study authentication protocols, systems and formal
methodologies for their security analysis.

A serious drawback of the conventional key channel establishment technique is the
necessary relying on an on-line authentication service. This disadvantage limits the
scalability of the technique for any open systems applications. In reality, this technique so
far only finds good applications in an enterprise environment; we shall conduct a detailed
study of that application in 812.4.

Public-key Techniques An important advantage of public-key cryptography is the ease of
establishing a key channel between any two remote end-user principals without having
them to meet each other or using an on-line authentication service. This overcomes
precisely the drawback of the conventional techniques. Therefore, public-key based
techniques can easily scale up for a large open systems. There are a number of public-key
techniques for key channel establishment. We shall introduce public-key cryptography in
the next chapter, and study public-key based techniques for authentication framework in

Chapter 13.

However, with public-key cryptography, there is still a need for establishing a secure key
channel from a user toward the system. Here, "secure" means authentication: a given
public key can be identified as really owned by a claimed principal. Nevertheless, key
channel establishment using public-key techniques does not involve handling of any secret.
Indeed, the setting up of a key channel regarding a public key is purely an authentication

problem. In Fig 7.1 we have illustrated that a public key channel can be based on a
directory service. We will study some practical authentication techniques for establishing a
public-key authentication channel in Chapter 12 (812.3) and the general techniques for
setting up public-key authentication framework in Chapter 13.

The Quantum Key Distribution Technique In 84.4.5.1 we have seen a technique for
achieving Quantum Key Distribution (QKD, Prot 4.1). The QKD Protocol allows two
principals to agree on a secret key although they may have never physically met. Similar to
the case of public-key techniques, there is still a need to initially establish an authentication
channel from a user toward the system. This authentication channel can be based on some
one-way functions such that an end-user has in possession of a secret pre-image of a one-
way function allowing its communication partner to verify without the former disclosing the
secret to the latter. Using the authentication channel, participants of the QKD Protocol can
be sure that the protocol is run with the intended communication partner. Commercial QKD
systems are expected to be in practical use in year 2004 or so [268].

We must emphasize the future importance of the QKD technique for key channel
establishment. Most practical complexity-theoretic based public-key techniques (based on
difficulties for finding the period of a periodical function) would fall upon the availability of
practical quantum computing technologies. The QKD technique, nevertheless, is quantum-
technology immune (and there seems to exist non-periodical one-way functions which are
quantum-technology immune and can serve the authentication purpose). Therefore, even
when quantum computing technologies become practically available, the QKD technique
will stand for serving key channel establishment without a need for the key sharing parties
to meet physically or rely on on-line authentication service from a trusted third party.

Finally, we should notice that the public-key based techniques and the QKD technique manifest
that a confidentiality communication channel can be established though pure public discussions.
This is a well-known principle (see e.g., [188,189]).

7.10 Chapter Summary

In this chapter we have studied the principle of symmetric encryption algorithms and introduced
several symmetric encryption schemes.

We started with introducing classical ciphers and considering their conditional security under
Shannon's information theory. We point out that the working principle of the classical ciphers:
substitution, is still the most important kernel technique in the construction of modern
symmetric encryption algorithms.

Two modern block encryption algorithms, the DES and the AES, are introduced. The DES is
introduced for the reasons of its historical position and the still-alive usefulness of its Feistel
cipher design structure. The AES, as the newly established encryption standard, is described with
detailed explanations on its working principle. We also consider methods for fast and secure
realization of the AES, and discuss the positive impact the AES may have on applied

cryptography.

We then introduced various standard modes of operation for using block ciphers. A common
mode of operation, CBC, is studied with a common misconception exposed. The misconception is
that CBC provides data-integrity service, which we have demonstrated being false. More clear
evidence of this misconception will be given in Chapter 17 when we study authentication
protocols which apply CBC encryption.

Finally we listed three techniques for the establishment of secure key channels between
communication partners who wish to communicate confidential information. Among the three,
the QKD technique, although in its initial and primitive shape, is vitally important for the future
owing to its immunization from the quantum computation technology.

Exercises

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

Why should not an encryption algorithm contain secret design parts?

Uneven frequencies of certain letters in English is an example of plaintext being in a
small region of the entire message space. Give two other examples which also
contribute to the fact that English plaintext messages have a small region
distribution.

LetS p, Sc denote a plaintext message source and the corresponding ciphertext
message source, respectively. Use the entropy formulation given in 83.7 to explain
that ciphertext messages output from the simple substitution or transposition
ciphers do not change the distribution of the corresponding plaintext messages, that
is, the ciphertexts remain in a small region of the entire message space.

Hint:H(S p) = H(S¢).

Is the Vernam cipher a substitution cipher? Is it monoalphabetic or polyalphabetic?
What is the difference between the Vernam cipher and one-time pad?

Why is the one-time pad encryption unconditionally secure against eavesdropping?

The shift cipher in Prot 7.1 is a perfectly secure encryption scheme since a one-time
key is used and the key has the same size as that of the message. If the shift cipher
is computed as addition without modulo reduction, can it still be a perfectly secure
encryption scheme?

Why are simple substitution ciphers and transposition ciphers, even though
extremely vulnerable to the frequency analysis attack, still in wide use in modern
day encryption algorithms and cryptographic protocols?

A modern cipher is usually constructed as a combination of several classical cipher
techniques. Identify parts in the DES and the AES where (i) substitution cipher
techniques are used, (ii) transposition cipher techniques are used, and (iii) the
Vernam cipher is used.

(i) Why is the AES regarded very efficient? (ii) How should multiplication in the
finite field [FE'-" be realized in the implementation of the AES?
In the cipher block chaining (CBC) mode of operation for block cipher, if the

decryption of a received ciphertext "has the right padding,” will you consider that
the transmitted plaintext has a valid data integrity?

Chapter 8. Encryption — Asymmetric
Techniques

Section 8.1. Introduction

Section 8.2. Insecurity of "Textbook Encryption Algorithms"

Section 8.3. The Diffie-Hellman Key Exchange Protocol

Section 8.4. The Diffie-Hellman Problem and the Discrete Logarithm Problem

Section 8.5. The RSA Cryptosystem (Textbook Version)

Section 8.6. Cryptanalysis Against Public-key Cryptosystems

Section 8.7. The RSA Problem

Section 8.8. The Integer Factorization Problem

Section 8.9. Insecurity of the Textbook RSA Encryption

Section 8.10. The Rabin Cryptosystem (Textbook Version)

Section 8.11. Insecurity of the Textbook Rabin Encryption

Section 8.12. The ElGamal Cryptosystem (Textbook Version)

Section 8.13. Insecurity of the Textbook ElGamal Encryption

Section 8.14. Need for Stronger Security Notions for Public-key Cryptosystems

Section 8.15. Combination of Asymmetric and Symmetric Cryptography

Section 8.16. Key Channel Establishment for Public-key Cryptosystems

Section 8.17. Chapter Summary

Exercises

8.1 Introduction

Early ciphers (such as the Caesar cipher) depended on keeping the entire encryption process
secret. Modern ciphers such as the DES and the AES follow Kerchoffs' principle (see §7.1): the
algorithmic details of these ciphers are made public for open scrutiny. In so doing, the designers
of these ciphers wish to demonstrate that the security of their cryptosystems reside solely in the
choice of the secret encryption keys.

There is further room to practice Kerchoffs' principle of reducing the secret component in an
encryption algorithm. Consider Shannon's semantic property of encryption: a mixing-

transformation which distributes meaningful messages from the plaintext region M fairly
uniformly over the entire message space C (pages 711-712 of [264]). We now know that such a
random distribution can be achieved without using any secret. Diffie and Hellman first realized
this in 1975 [97] (the publication date of this paper was 1976, but the paper was first
distributed in December 1975 as a preprint, see [96]). They named their discovery public-key
cryptography. At that time it was a totally new understanding of cryptography.

In a public-key cryptosystem, encryption uses no secret key; secret key is only needed in
decryption time. In [97], Diffie and Hellman sketched several mathematical transformations,
which they termed one-way trapdoor functions, as possible candidates for realizing public-key
cryptography. Informally speaking, a one-way trapdoor function has the following property:

Property 8.1: One-way Trapdoor FunctionA one-way trapdoor function, which we denote

byfi(x) : D R,is a one-way function, i.e., it is easy to evaluate forall x € D and difficult to
invert for almost all values in R. However, if the trapdoor information t is used, then for all values
y ER itis easy to compute x € D satisfying y = fi(x).

The notion of one-way trapdoor function forms the enabler for public-key cryptography.
Opposing to the notion of secret-key or symmetric cryptosystems, a public-key cryptosystem
based on a one-way trapdoor function is also referred to as asymmetric cryptosystems due to
the asymmetric property of one-way trapdoor functions. Although the several one-way trapdoor
functions considered in the first paper of Diffie and Hellman on public-key cryptography (i.e.,
[97]) were not very plausible due to their poor asymmetry, Diffie and Hellman soon proposed a
successful function: modulo exponentiation, and used it to demonstrate the famous
cryptographic protocol: the Diffie-Hellman key exchange protocol [98] (see 88.3). To this
day, this first successful realization of public-key crypto-algorithm is still in wide use and under
endless further development.

In 1974, Merkle discovered a mechanism to realize cryptographic key agreement via an
apparent asymmetric computation, which is now known as Merkle's puzzle [199]. The
asymmetric computation in Merkle's puzzle means that the computational complexity for
legitimate participants of a key agreement protocol and that for an eavesdropper are drastically
different: the former is feasible and the latter is not. Merkle's puzzle was the first effective
realization of a one-way trapdoor function. Although Merkle's puzzle may not be considered
suitable for modern cryptographic applications (as the asymmetry is between n and n2), the
insight it revealed was monumental to the discovery of public-key cryptography.

It is now known that Cocks, a British cryptographer, invented the first public-key cryptosystem
in 1973 (see e.qg., [277]). Cocks' encryption algorithm, named "non-secret key encryption," is
based on the difficulty of integer factorization and is essentially the same as the RSA
cryptosystem (see 88.5). Unfortunately, Cocks' algorithm was classified. In December 1997, the
British government's Communications Services Electronics Security Group (CESG), released
Cocks' algorithm.

Although it happened that the discovery of public-key cryptography by the open research
community took place after the notion was known in a closed circle, we must point out that it
was the open research community that identified the two most important applications of public-
key cryptography: (i) digital signatures (see §10.4), and (ii) secret key establishment over
public communications channels (see 88.3). These two applications have enabled today's
proliferation of secure electronic commerce over the Internet.

8.1.1 Chapter Outline

We begin the technical part of this chapter with an introduction to a "textbook crypto" security
notion and providing an early warning that all public key cryptographic algorithms to be
introduced in this chapter are actually insecure for standard application scenarios in the real
world (88.2). We then introduce several well-known public-key cryptographic primitives. These
are: the Diffie-Hellman key exchange protocol (88.3), the textbook versions of the RSA (§8.5),
Rabin (88.10) and ElGamal (88.12) cryptosystems. These basic public-key cryptographic
primitives are introduced together with formal and complexity-theoretic based statements on the
respective underlying intractability assumptions. These are: the Diffie-Hellman problem and the
discrete logarithm problem (88.4), the RSA problem (88.7) and the integer factorization problem
(8.8). We will also begin in this chapter to develop formal notions for describing various
attacking models against public-key cryptosystems (88.6). Insecurity of the textbook versions of
the cryptographic algorithms will be demonstrated in §8.9 (RSA), 88.11 (Rabin) and 88.13
(ElIGamal). We will consider the need for a stronger security notion for public-key encryption
(88.14). Having introduced both symmetric and asymmetric cryptosystems, we will introduce
their combination: hybrid encryption schemes (§8.15).

8.2 Insecurity of " Textbook Encryption Algorithms"

We should notice that the encryption algorithms to be introduced in this chapter should be
labeled textbook crypto. They are so labeled because these algorithms can be found in most
textbooks on cryptography. However, these basic encryption algorithms are actually not suitable
for use in real-world applications. Within the scope of public-key cryptosystems, a textbook
encryption algorithm in general has a confidentiality property stated in Property 8.2.

Property 8.2: Insecurity Property of Textbook Encryption AlgorithmsWithin the scope of
this chapter, security (confidentiality) for a cryptosystem is considered in the following two
senses:

i. All-or-nothing secrecyFor a given ciphertext output from a given encryption algorithm,
the attacker's task is to retrieve the whole plaintext block which in general has a size
stipulated by a security parameter of the cryptosystem; or for a given pair of plaintext and
ciphertext under a given encryption algorithm, the attacker's task is to uncover the whole
block of the underlying secret key. The attacker either succeeds with obtaining the whole
block of the targeted secret, or fails with nothing. We should pay particular attention to the
meaning of "nothing:" it means that the attacker does not have any knowledge about the
targeted secret before or after its attacking attempt.

ii. Passive attackerThe attacker does not manipulate or modify ciphertexts using data
she/he has in possession, and does not ask a key owner for providing encryption or
decryption services.

This notion of security (confidentiality) is extremely weak, in fact, is uselessly weak and
therefore should be better named "a notion of insecurity."

Let us first explain why Property 8.2(i) is an insecurity property. In applications, plaintext data
are likely to have some non-secret "partial information™ which can be known to an attacker. For
example, some data are always in a small range: a usual salary figure should be less than one
million which is, though a large salary, a small number in cryptographic sense. For another
example, a usual password is a bit string up to eight characters. Often, the known partial
information will permit an attacker to succeed and obtain the whole plaintext message, rather
than "fail with nothing."

Now let us explain further why Property 8.2(ii) is also an insecurity property. We should never
expect an attacker to be so nice and remain in passive. The typical behavior of an attacker is
that it will try all means available to it. This particularly includes the attacker engaging in
interactions with a targeted user, sending a ciphertext to the latter for being decrypted with the
plaintext returned to the former. This way of interaction is known as a user (a public key owner)
to provide an oracle decryption service for an attacker. We will see in this chapter and a few
later chapters that it is hard to avoid providing oracle services.

The nice algebraic properties that are generally held by textbook cryptographic algorithms can
often enable an attacker who is served with oracle services to break a textbook cryptographic
algorithm. We will see a few such examples in this chapter and will further see the general
applicability of such attacking techniques in a few later chapters.

While in this chapter we will sometimes provide warnings that a user should not be used as an
oracle service provider, we should notice that ordinary users of a public-key algorithm are too
naive to be educated not to provide an oracle service to an attacker. Also, avoiding being used
as an oracle is a very hard problem (we will see this pointin §12.5.4). The correct strategy is to

design fit-for-application cryptosystems to be securely used by naive users.

By stating Property 8.2, we make it explicit that within the scope of this chapter, we will not
consider a stronger notion of security for public-key encryption algorithms, and consequently, for
the textbook encryption algorithms to be introduced here, we will not hope that they are secure
in any strong sense. On the contrary, we will demonstrate, but not try to fix, a number of
confidentiality flaws with the textbook encryption algorithms in both insecurity properties, i.e.,
partial information leakage and/or results of active attacks.

Definitions for a number of more stringent security notions against stronger (i.e., more real)
attacking scenarios will be introduced in Chapter 14. Fit-for-application counterparts to the
textbook encryption algorithms will be followed up in Chapter 15.

8.3 The Diffie-Hellman Key Exchange Protocol

With a symmetric cryptosystem it is necessary to transfer a secret key to both communicating
parties before secure communication can begin. Prior to the birth of public-key cryptography, the
establishment of a shared secret key between communication parties had always been a difficult
problem because the task needed a secure confidential channel, and often such a channel meant
physical delivery of keys by a special courier. An important advantage that public key
cryptography provides over symmetric cryptography is the achievement of exchanging a secret
key between remote communication parties with no need of a secure confidential channel. The
first practical scheme to achieve this was proposed by Diffie and Hellman, known as the Diffie-
Hellman exponential key exchange protocol [98].

F

To begin with, users Alice and Bob are assumed to have agreed on a finite field = 4 and an

=
element ge Ffi which generates a group of a large order. For simplicity, we consider the case

of field]FIJ where p is a large prime, i.e.,]FP is a prime number. The two parties may test the
primality of p using Alg 4.5 where they have constructed p such that they know the complete
%

factorization of p — 1; and then they may find a generator g (e.g., of =) using Alg 5.1. By
Theorem 5.11, each number in [1, p) can be expressed as g* (mod p) for some x. Now p and ¢
are the common input to the participants in a basic version of a so-called Diffie-Hellman Key
Exchange protocol which is specified in Prot 8.1.

Protocol 8.1: The Diffie-Hellman Key Exchange Protocol

COMMON INPUT (p, 9):p is alarge prime, g is a generator
&
element in ~ P.
OUTPUT F*)
An elementin P shared between Alice and
Bob.

1. Alice picks a €U [1, p — 1); computes ga+—g 2 (mod p); sends g, to Bob;
2. Bob picks b €U [1, p — 1); computes gp*=g P (mod p); sends gy, to Alice;

ke

i
3. Alice computes = Oy (modp);

: b
4. Bob computes k— i;‘Im(modp).

It is easy to see from Protocol 8.1 that for Alice

k= ¢" (mod p),

and for Bob

k= ¢ (mod p).

We note that since ab =ba (mod p — 1), the two parties have computed the same value. This is
how the Diffie-Hellman key exchange protocol achieves a shared key between two
communication parties.

A system-wide users may share the common public parameters p and g.

Example 8.1.

Letp = 43. Applying Alg 5.1 we find that 3 is a primitive root modulo 43. Let Alice and Bob
share the public material elements (p, g) = (43, 3).

For Alice and Bob to agree a secret key, Alice picks her random secret exponent 8, and sends to
Bob 38 = 25 (mod 43). Bob picks his random secret 37, and sends to Alice 337 = 20 (mod 43).
The secret key agreed between them is

9 = 20% = 2537 (mod 43).

|

We should add a few cautionary details to the implementation and the use of the Diffie-Hellman
key exchange protocol.

e The common input p should be such a prime (or a prime power) that p — 1 has a sufficiently
large prime factor p'; here "sufficiently large" means p' > 2160, The need for p to have this
property will be discussed in 88.4.

*
e The common input g needn't be a generator of F itself; but itis necessary to be a
%

generator of a large-order subgroup of = F, e.g., a subgroup of order p'. In this case, Alice
k)

and Bob should check g # 1 and QP =1 (mod p). For this purpose, p' should be part of
the common input to the protocol.

¢ Alice (respectively, Bob) should check gy 1 (respectively, ga - 1). Then for their
respective exponents chosen from (1, p"), these checking steps will guarantee that the

shared key g2P will be one in the order-p' subgroup of FP, that is, in a sufficiently large
subgroup.

e Alice (respectively, Bob) should erase her exponent a (respectively, his exponent b) upon
termination of the protocol. In so doing, they will have a forward secrecy property on the
exchanged key g2 if they also properly dispose the exchanged key after their session
communication ends. We will further discuss the "forward secrecy" property in 88.15 and
8§11.6.1.

8.3.1 The Man-in-the-Middle Attack

It should be noted that the Diffie-Hellman key exchange protocol does not support the
authenticity of the key agreed. An active adversary in the middle of the communications between
Alice and Bob can manipulate the protocol messages to succeed an attack called man-in-the-
middle attack.Attack 8.1 illustrates such an attack.

Attack 8.1: Man-in-the-Middle Attack on the Diffie-Hellman Key
Exchange Protocol

COMMON INPUT: Same as Prot 8.1.

Alice Malice Bob

¥

1 Alice picks a €y [1, p — 1), computes ga#g & (mod p); she sends g, to
Malice(Bob™);

1' Malice("Alice™) computes gm*—g ™ (mod p) for some m € [1, p — 1); he sends
Om to Bob;

2 Bob picks b €y [1, p — 1), computes gp+—g ? (mod p); he sends to gy
Malice("Alice™");

2' Malice("Bob™) sends to Alice: gm;
- i
3 Alice computes Ky — Hm (modp);
(* this key is shared between Alice and Malice since Malice can compute

k1 = 94" (modp).*)

b
4 Bob computes k2 — gm (modp).

(* this key is shared between Bob and Malice since Malice can compute
b
k2 = 9m (modp).*)

In an attack to a run of the protocol, Malice (the bad guy) intercepts and blocks Alice’s first
message to Bob, g, and he masquerades as Alice and sends to Bob

def m
Malice("Alice™) sends to Bob: g”’-{ = }(modp);

(The reader may recall our convention agreed in §2.6.2 for denoting Malice's action of
masquerading as other principals.) Bob will follow the protocol instructions by replying gp to
Malice(Alice™). This means that the value transmitted is again intercepted and blocked by
Malice. Now Malice and Bob have agreed a key gP™ (mod p) which Bob thinks to share with Alice.

Analogously, Malice can masquerade as Bob and agree another key with Alice (e.g., g2 (mod
p)). After this, Malice can use these two keys to read and relay "confidential* communications
between Alice and Bob, or to impersonate one of them to the other.

The man-in-the-middle attack on the Diffie-Hellman key exchange protocol is possible because
the protocol does not provide an authentication service on the source of the protocol messages.
In order to agree on a key which is exclusively shared between Alice and Bob, these principals
must make sure that the messages they receive in a protocol run are indeed from the intended
principals. In Chapter 11 we will study authentication techniques; there (811.6) we will
introduce methods for securely applying the Diffie-Hellman key exchange protocol.

8.4 The Diffie-Hellman Problem and the Discrete
Logarithm Problem

The secrecy of the agreed shared key from the Diffie-Hellman key exchange protocol is exactly
the problem of computing g2 (mod p) given g, and gy. This problem is called computational
Diffie-Hellman problem (CDH problem).

Definition 8.1: Computational Diffie-Hellman Problem (CDH Problem) (in finite field)

INPUT desc(IF

F,.

1) :the description of finite field

#* B
ge]Ffi:a generator element of]F'i"

b F*

ifor some integers 0 < a, b < q.

94, g

OUTPUT gab.

We have formulated the problem in a general form working in a finite field [F'*i‘. The Diffie-
Hellman key exchange protocol in 88.3 uses a special case. For formalism purpose, in definition
of a general problem, an assumption, etc., we will try to be as general as possible, while in
explanations outside formal definitions we will often use special cases which help to expose ideas
with clarity.

If the CDH problem is easy, then g2° (mod p) can be computed from the values p, ¢, ga,0b, Which
are transmitted as part of the protocol messages. According to our assumptions on the ability of
our adversary (see 82.3), these values are available to an adversary.

The CDH problem lies, in turn, on the difficulty of the discrete logarithm problem (DL
problem).

Definition 8.2: Discrete Logarithm Problem (DL Problem) (in finite field)

INPUT desc(]FfI):the description of finite field IF"I;
#* B
ge]Ffi:a generator element of]F'i‘;
= &
h €]Fq,.
OUTPUT the unique integer a < q such that h = g2.

We denote the integer a by loggh.

The DL problem looks similar to taking ordinary logarithms in the reals. But unlike logarithms in
the reals where we only need approximated "solutions,"” the DL problem is defined in a discrete
domain where a solution must be exact.

We have discussed in Chapter 4 that the security theory of modern public-key cryptography is

established on a complexity-theoretic foundation. Upon this foundation, the security of a public-
key cryptosystem is conditional on some assumptions that certain problems are intractable. The
CDH problem and the DL problem are two assumed intractable problems. Intuitively we can
immediately see that the difficulties of these problems depend on the size of the problems (here,

it is the size of the field [F'ﬁ‘), as well as on the choice of the parameters (here, it is the choice of
the public parameter g and the private data a, b). Clearly, these problems need not be difficult
for small instances. In a moment we will further see that these problems need not be difficult for
poorly chosen instances. Thus, a precise description of the difficulty must formulate properly
both the problem size and the choice of the instances. With the complexity-theoretic foundations
that we have established in Chapter 4, we can now describe precisely the assumptions on the
intractabilities of these two problems. The reader may review Chapter 4 to refresh several
notions to be used in the following formulations (such as "1K," "probabilistic polynomial time,"
and "negligible quantity in k™).

Assumption 8.1: Computational Diffie-Hellman Assumption (CDH Assumption)A CDH
problem solver is a PPT algorithm Asuch that with an advantage € > O:

€ = Prob [_r;”b — A{(]E-‘ﬂ‘-(Fq)y i, ﬂb)]

where the input to Ais defined in Definition 8.1.

Let g be an instance generator that on input 1K,runs in time polynomial in k, and outputs (i)

t
desc(F‘I) with |q] = k, (ii) a generator element g€ JF'I.

We say that Ig satisfies the computational Diffie-Hellman (CDH) assumption if there exists no

CDH problem solver for Ig(lk)with advantage € > 0 non-negligible in k for all sufficiently large
k.

Assumption 8.2: Discrete Logarithm Assumption (DL Assumption)A DL problem solver is
a PPT algorithm Asuch that with an advantage € > 0O:

¢ = Prob [lugrif h — A(desc(F,), g, h)]

where the input to Ais defined in Definition 8.2.

Let Ig be an instance generator that on input 1X,runs in time polynomial in k, and outputs (i)
F,. . . gelF: = hel*

desc(™ 9)with |q| =k, (ii) a generator element * 4, (iii) q,

We say that Ig satisfies the discrete logarithm (DL) assumption if there exists no DL problem

solver for Ig(lk)with advantagee > O non-negligible in k for all sufficiently large k.

In a nutshell, these two assumptions state that in finite fields for all sufficiently large instances,
there exists no efficient algorithm to solve the CDH problem or the DL problem for almost all
instances. A negligible fraction of exceptions are due to the existence of weak instances.

However, much more decent elaborations are needed for these two assumptions. Let us first
make a few important remarks, in which we will keep the "formal tone".

.Remark 8.1

|

1.

InAssumptions 8.1 and 8.2, the respective probability space should consider (i) the
instance space, i.e., arbitary finite fields and arbitrary elements are sampled (the
importance of this will be discussed in §8.4.1), and (ii) the space of the random operations
in an efficient algorithm. The need for considering (ii) is because by "polynomial-time" or
"efficient" algorithm we include randomized algorithms (see Definition 4.6 in 84.4.6).

The number k in the both formulations is called asecurity parameter. Ig(lk)is a
random instance of the field and the element(s). From our study of the probabilistic prime

generation in 84.4.6.1 and the field construction in 85.4 we know that Ig(lk)indeed
terminates in polynomial time in k. It is now widely accepted that k = 1024 is the lower
bound setting of security parameter for the DLP in finite fields. This lower bound is a result
of a subexponential time algorithm (index calculus) for solving the DLP in finite fields. The
subexponential complexity expressionisin (8.4.2). For |q| = 1024, the expression yields a
qguantity greater than 289.This is why the setting of k = 1024 becomes the widely agreed
lower bound. Thus, as stipulated by the phrase "for all sufficiently large k" in both
assumptions, we should only consider k greater than this lower bound .

Holding of the DL assumption means that the function

Equation 8.4.1
I, *
9" 1 Zy— T,

is one-way. Therefore, holding of the DL assumption implies the existence of one-way
function. It is widely believed that the DL assumption should actually hold (a case under the

belief P ?é N P, see 84.5), or the function in (8.4.1) should be one-way, or in other
words, one-way function should exist.

It is not known to date whether or not the function in (8.4.1) is a trapdoor function (see
Property 8.1 in 88.1 for the meaning of one-way trapdoor function). That is, no one knows
how to embed trapdoor information inside this function to enable an efficient inversion of
the function (i.e., an efficient method to compute x from gX using trapdoor information).
However, if the function uses a composite modulus (the function remains one-way), then
the function becomes a trapdoor where the prime factorization of the modulus forms the
trapdoor information. The reader is referred to [229,224,228] for the technical details.

We still need more "common-language" explanations for these two assumptions.

These two assumptions essentially say that "there is no polynomial in k algorithms for solving
these two problems". However, we must read this statement with great care. A "poly(k) solver",
if it exists, runs in time k" for some integer n. On the other hand, we know there exists a
"subexponential solver" for the DLP running in time

Equation 8.4.2

1
3

sub_exp(q) = exp(e (log q)* (log log qj%}

wherec is a small constant (e.g., ¢ < 2). Combining "no poly(k) solver" and "having an
sub_exp(q) solver", we are essentially saying that k" is much much smaller than sub_exp(k log
2) (for k = |q] = log2q, we have logq = klog2). However, this "much much smaller"” relation can
only be true when n is fixed and k (as a function of n) is sufficiently large. Let us make this point
explicit.

Supposek is not sufficiently large. Taking natural logarithm on poly (k) and on sub_exp(k log
2), we become comparing the following two quantities:

n(logk)s and k3,

|" —_— " £ -l L]
where © = r_,“ug 2} = € Now we see that the known subexponential solver will be quicker

1
than a supposedly "non-existing poly solver” when n is at the level of 'k The real meaning of
"no poly(k) solver" is when k is considered as a variable which is not bounded (and hence can be
"sufficiently large" as stated in the two assumptions), while n is a fixed constant. In reality, k
cannot be unbounded. In particular, for the commonly agreed lower bound setting for security
parameter:k = 1024, and for ¢ < 2, there does exist a "poly(k) solver” which has a running time
bounded by a degree-9 polynomial in k (confirm this by doing Exercise 8.4).

From our discussions so far, we reach an asymptotic explanation for "no poly(k) solver": K is
unbound and is sufficiently large. In reality k must be bounded, and hence a poly(k) solver does
exist. Nevertheless, we can set a lower bound for k so that we can be content that the poly
solver will run in time which is an unmanageable quantity. In fact, the widely agreed lower
boundk = 1024 is worked out this way.

This asymptotic meaning of "no poly solver” will apply to all complexity-theoretic based
intractability assumptions to appear in the rest of the book.

Finally let us look at the relationship between these two problems.

Notice that the availability of a = logggl or b = loggg2 will permit the calculation of

ab b Il
g =4 =42

That is, an efficient algorithm which solves the DLP will lead to an efficient algorithm to solve the
CDH problem. Therefore if the DL assumption does not hold, then we cannot have the CDH
assumption. We say that the CDH problem is weaker than the DL problem, or equivalently, the
CDH assumption is a stronger assumption than the DL assumption. The converse of this
statement is an open question:

Can the DL assumption be true if the CDH assumption is false?

Maurer and Wolf give a strong heuristic argument on the relation between these two problems;
they suggest that it is very likely that these two problems are equivalent [190].

8.4.1 Importance of Arbitrary Instances for Intractability Assumptions

We should emphasize the importance of arbitrary instances required in the DL assumption. Let
ES

us consider — P with p being a k-bit prime and the problem of extracting a from h =g 2 (mod p).

We know that a is an element in Zp_l. If p— 1 = q192..qe with each factor gj being small

(meaning,q < polynomial(k) fori =1, 2, ..., &), then the discrete-logarithm-extraction problem
can be turned into extracting aj =a (mod q ;) from h(P-1)/9, (mod p) but now a; are small and can
be extracted in time polynomial in k. After aj,a 2, ..., ae are extracted, a can be constructed by
applying the Chinese Remainder Theorem (Theorem 6.7). This is the idea behind the polynomial-
time algorithm of Pohlig and Hellman [231] for solving the DL problem modulo p if p — 1 has no
large prime factor. Clearly, if every prime factor of p — 1 is bounded by a polynomial in k, then
the Pohlig-Hellman algorithm has a running time in polynomial in k.

A prime number p with p — 1 containing no large prime factor is called a smooth prime. But

sometimes we also say "p — 1 is smooth” with the same meaning. A standard way to avoid the

smooth-prime weak case is to construct the prime p such that p — 1 is divisible by another large
e

primep'. By Theorem 5.2(2), the cyclic group ~ F contains the unique subgroup of order p'. If p'
is made public, the users of the Diffie-Hellman key exchange protocol can make sure that the

th[F

protocol is working in this large subgroup; all they need to do is to find an elemen I such

that

5_::'“”‘”'-”"”I % 1 (mod p).

This element g generates the group of the prime order p'. The Diffie-Hellman key exchange
protocol should use (p, p', g) so generated as the common input. An accepted value for the size
of the prime p' is at least 160 (binary bits), i.e., p' > 2160, (Also see our discussion in §10.4.8.1.)

The DLP and the CDH problem are also believed as intractable in a general finite abelian group
of a large order, such as a large prime-order subgroup of a finite field, or a group of points on an
elliptic curve defined over a finite field (for group construction: 85.5, and for the elliptic-curve
discrete logarithm problem, ECDLP: 85.5.3). Thus, the Diffie-Hellman key exchange protocol will
also work well in these groups.

There are several exponential-time algorithms which are very effective for extracting the discrete
logarithm when the value to be extracted is known to be small. We have described Pollard's | -
method (83.6.1). Extracting small discrete logarithms has useful applications in many
cryptographic protocols.

Research into the DLP is very active. Odlyzko provided a survey of the area which included an
extensive literature on the topic [221].

8.5 The RSA Cryptosystem (Textbook Version)

The best known public-key cryptosystem is the RSA, named after its inventors Rivest, Shamir
and Adleman [246]. The RSA is the first practical realization of public-key cryptography based
on the notion of one-way trapdoor function which Diffie and Hellman envision [97,98].

The RSA cryptosystem is specified in Alg 8.1. We notice that this is a textbook version for
encryption in RSA.

We now show that the system specified in Alg 8.1 is indeed a cryptosystem, i.e., Alice's
decryption procedure will actually return the same plaintext message that Bob has encrypted.

Algorithm 8.1: The RSA Cryptosystem

Key Setup

To set up a user's key material, user Alice performs the following steps:

1. choose two random prime numbers p and q such that |p] = lal; (* this can be
done by applying a Monte-Carlo prime number finding algorithm, e.g., Alg 4.7

*)
2. computeN = pq;
3. computef(N) =(p—1) (- 1);

4. choose a random integer e < f(N) such that gcd(e,f (N)) = 1, and compute the
integerd such that

ed =1 (mod ¢(N));

(* since gcd(e,f (N)) = 1, this congruence does have a solution for d which can
be found by applying the Extended Euclid Algorithm (Alg 4.2). *)

5. publicize (N, e) as her public key, safely destroy p, g and f (N), and keep d as
her private key.
Encryption

To send a confidential message m < N to Alice, the sender Bob creates the ciphertext
c as follows

¢ — m° (mod N).

(* viewed by Bob, the plaintext message space is the set of all positive numbers less

*
N, although in fact the space is ™M .*)
Decryption

To decrypt the ciphertext c, Alice computes

m «— ¢ (mod N).

From the definition of the modulo operation (see Definition 4.4 in 84.3.2.5), congruenceed = 1
(modf (N)) in Alg 8.1 means

ed =1+ kd(N)

for some integer k. Therefore, the number returned from Alice's decryption procedure is

Equation 8.5.1

1+k$(N) = o . oo () (

S =mt=m m mod N).

g ¥
We should notice that for m < N, it is almost always the case that m e ZN

m € 4%y

group of integers relatively prime to N). In fact, the cases for arem = up or m = vq
for some u < g or v < p. In such cases, Bob can factor N by computing gcd(m, N). Assuming that
the factoring is difficult (we will formulate the factorization problem and an assumption on its
difficulty in a moment), we can assume that any message m < N prepared by Bob satisfies

m e Z*,.

(the multiplicative

i *
For M =

ordy(m) | #Zy = ¢(N).

, by Lagrange's Theorem (Corollary 5.2), we have

m e &%

This is true for all . By the definition of the order of a group element (see Definition

; #
5.9 in §5.2.2), this means that for all /. € Ly

m?W) =1 (mod N).

Obviously, this further implies

mFeW) = (#N))k =1 (mod N)

for any integer k. Thus, the value in (8.5.1) is, indeed, m.

Example 8.2.

Let Alice setN = 7x13 =91 and e = 5. Then f(N) = 6x12 = 72. Applying Alg 4.2 (by inputting
(a, b) = (72, 5)), Alice obtains:

72 x (—2)+5x 29 =1,

that is, 5x29 = 1 (mod 72). Therefore Alice has computed 29 to be her private decryption
exponent. She publicizes (N, e€) = (91, 5) as her public key material for the RSA cryptosystem.

Let Bob encrypt a plaintext m = 3. Bob performs encryption by computing

¢ =3% =243 = 61 (mod 91).

The resultant ciphertext message is 61.

To decrypt the ciphertext message 61, Alice computes

6129 = 3 (mod 91).

8.6 Cryptanalysis Against Public-key Cryptosystems

It makes sense to say "Cryptosystem X is secure against attack Y but is insecure against attack
Z," that is, the security of a cryptosystem is defined by an attack. Active attacks have been
modeled into three usual modes. These modes of active attacks will be used in the analysis of
the cryptosystems to be introduced in rest of this chapter. They are defined as follows.

Definition 8.3:Active Attacks on Cryptosystems

Chosen-plaintext attack (CPA)ANn attacker chooses plaintext messages and gets
encryption assistance to obtain the corresponding ciphertext messages. The task for the
attacker is to weaken the targeted cryptosystem using the obtained plaintext-ciphertext
pairs.

Chosen-ciphertext attack (CCA)An attacker chooses ciphertext messages and gets
decryption assistance to obtain the corresponding plaintext messages. The task for the
attacker is to weaken the targeted cryptosystem using the obtained plaintext-ciphertext
pairs. The attacker is successful if he can retrieve some secret plaintext information from a
"target ciphertext" which is given to the attacker after the decryption assistance is stopped.
That is, upon the attacker receipt of the target ciphertext, the decryption assistance is no
longer available.

Adaptive chosen-ciphertext attack (CCA2)This is a CCA where the decryption
assistance for the targeted cryptosystem will be available forever, except for the target
ciphertext.

We may imagine these attacks with the following scenarios:

e In a CPA, an attacker has in its possession an encryption box.

e In a CCA, an attacker is entitled to a conditional use of a decryption box: the box will be
switched off before the target ciphertext is given to the attacker.

e In a CCA2, an attack has in its possession a decryption box for use as long as he wishes,
before or after the target ciphertext is made available to the attacker, provided that he
does not feed the target ciphertext to the decryption box. This single restriction on CCA2 is
reasonable since otherwise there will be no difficult problem for the attacker to solve.

In all cases, the attacker should not have in its possession the respective cryptographic keys.

CPA and CCA are originally proposed as active cryptanalysis models against secret-key
cryptosystems where the objective of an attacker is to weaken the targeted cryptosystem using
the plaintext-ciphertext message pairs he obtains from the attacks (see e.g., §1.2 of [284]).
They have been adopted for modeling active cryptanalysis on public-key cryptosystems. We
should notice the following three points which are specific to public-key cryptosystems.

e The encryption assistance of a public-key cryptosystem is always available to anybody since
given a public key anyone has complete control of the encryption algorithm. In other
words, CPA can always be mounted against a public-key cryptosystem. So, we can call an
attack against a public-key cryptosystem CPA if the attack does not make use of any
decryption assistance. Consequently and obviously, any public-key cryptosystem must
resist CPA or else it is not a useful cryptosystem.

¢ In general, the mathematics underlying most public-key cryptosystems has some nice
properties of an algebraic structure underlying these cryptosystems, such as closure,
associativity, and homomorphism, etc., (review Chapter 5 for these algebraic properties).
An attacker may explore these nice properties and make up a ciphertext via some clever
calculations. If the attacker is assisted by a decryption service, then his clever calculations
may enable him to obtain some plaintext information, or even the private key of the
targeted cryptosystem, which otherwise should be computationally infeasible for him to
obtain. Therefore, public-key cryptosystems are particularly vulnerable to CCA and CCAZ2.
We will see that every public-key cryptosystem to be introduced in this chapter is
vulnerable to CCA or CCA2. As a general principle, we have provided in Property 8.2(ii) an
advice that the owner of a public key should always be careful not to allow oneself to
provide any decryption assistance to anybody. This advice must be followed for every
public-key cryptosystem introduced in this chapter. In Chapter 14 we will introduce
stronger public-key cryptosystems. Such cryptosystems do not require users to keep in
such an alert state all the time.

e It seems that CCA is too restrictive. In applications a user under attack (i.e., is asked to
provide decryption assistance) actually does not know the attack. Therefore the user can
never know when (s) he should begin to stop providing decryption assistance. We generally
assume that normal users are too naive to know the existence of attackers, and hence
decryption assistance should be generally available all the time. On the other hand, any
public-key cryptosystem must be secure against CPA since an attacker can always help
himself to perform encryption "assistance™ on chosen plaintext messages. For these
reasons, we will mainly consider techniques to counter CCA2.

8.7 The RSA Problem

Against CPA, the security of RSA lies on the difficulty of computing the e-th root of a ciphertext c
modulo a composite integer n. This is the so-called the RSAproblem.

Definition 8.4:RSA Problem

INPUT N = pg with p, g prime numbers;
e: an integer such that gcd(e, (p—1) (q —
1)) = 1;
c €Ly
. *
OUTPUT the unique integer me Eﬁ'satisfying m ©
=c (mod N).

No difference from all underlying difficult problems for the security of publickey cryptosystems, it
is also assumed that the RSA problem is only difficult under properly chosen parameters.

Assumption 8.3:RSA AssumptionAn RSA problem solver is a PPT algorithm A such that with
an advantage € > 0:

e = Prob[m «— A(N,e,m® (mod N))],

where the input to A is defined in Definition 8.4.

Let Ig be an RSA instance generator that on input 1K,runs in time polynomial in k, and outputs
(i)a 2k-bit modulus N = pg where p and g are two distinct uniformly random primes, each is k-

#
bit long, (if) © € Lip1)(g-1)

ec Z}

We say that (p—1)lg—1) satisfies the RSA assumption if there exists no RSA problem solver
for Ig(lk)with advantage € > 0 non-negligible in k for all sufficiently large k.

Similar to our discussion in Remark 8.1(3) (in §8.4), we know that holding of the RSA
assumption implies the existence of one-way function. Also related to our discussion in Remark
8.1(4), the one-way function implied by the RSA assumption is a trapdoor function: the prime
factorization of the modulus enables an efficient inversion procedure.

We should notice that the probability space in this assumption includes the instance space, the
plaintext message space and the space of the random operations of a randomized algorithm for
solving the RSA problem.

We further notice that in the description of the RSA assumption, the (alleged) algorithm takes
the encryption exponent e as part of its input. This precisely describes the target of the problem:
breaking the RSA problem under a given encryption exponent. There is a different version of the
RSA problem called strong RSA problem ([85]); its target is: for some odd encryption

exponente > 1, which may be the choice of the algorithm, solve the RSA problem under this e.
Clearly, solving the strong RSA problem is easier than doing that for the RSA problem which is
for a fixed encryption exponent. It is widely believed (assumed) that the strong RSA problem is
still an intractable one. Therefore some encryption algorithms or protocols base their security on
that intractability (strong RSA assumption).

It is clear that for public key (N, e), if m < N then encryption ¢ = me (mod N) will take no
modulo reduction, and hence m can be found efficiently by extracting the e-th root in integers.
This is one of the reasons why the case e = 3 should be avoided. In the case of e = 3, if one
messagem is encrypted in three different moduli: ¢ j = m3 (mod N; for i = 1, 2, 3, then because
the moduli are pair-wise co-prime, the Chinese Remainder Algorithm (Alg 6.1) can be applied to
constructC = m 3 (mod N1N5N3). Now because m < (N1N2N3)Y/3, the encryption exponentiation is
actually the same as it is performed in the integer space. So decryption of C is to extract the 3rd
root in integers and can be efficiently done (see hint in Ex. 8.8).

Coppersmith [82] further extends this trivial case to a non-trivial one: for m'= m + t where m is
known and t is unknown but t < N¥€, given ¢ = m* (mod N),t can be extracted efficiently.
Because in applications, partially known plaintext is not uncommon (we will see a case in
Chapter 15), it is now widely agreed that RSA encryption should avoid using very small
encryption exponents. A widely accepted encryption exponent is e = 216 + 1 = 65537 which is
also a prime number. This exponent makes encryption sufficiently efficient while refuting a small
exponent attack.

RSA is also CPA insecure if the decryption exponent d is small. Wiener discovers a method based
on continued fraction expansion of e/N to find d if d < N1/4 [298]. This result has been improved
tod < N 0.292 [50].

8.8 The Integer Factorization Problem

The difficulty of the RSA problem depends, in turn, on the difficulty of the integer factorization
problem.

Definition 8.5:Integer Factorization Problem (IF Problem)

INPUT N: odd composite integer with at least two
distinct prime factors.

OUTPUT prime p such that p|N.

Again, it is assumed that the IF problem is difficult only under properly chosen parameters.

Assumption 8.4: Integer Factorization Assumption (IF Assumption)An integer factorizer
is a PPT algorithm A such that with an advantage € > O:

e = Prob [A(N) divides N and 1 < A(N) < N|

where the input to A is defined in Definition 8.5.

Let Ig be an integer instance generator that on input 1K,runs in time polynomial in k, and
outputs a 2k-bit modulus N = pqg where p and q are each a k-bit uniformly random odd prime.

We say that Ig satisfies the integer factorization (IF) assumption if there exists no integer
factorizer for Ig(lk)with advantage € > 0 non-negligible in k for all sufficiently large k.

Obviously, an algorithm which solves the IF problem will solve the RSA problem since Alice
decrypts an RSA ciphertext exactly by first computing d =e -1 (mod (p— 1) (q — 1)), i.e., from
the knowledge of the factorization of N. Similar to the relation between the CDH problem and the
DL problem, the converse is also an open question: Can the IF assumption be true if the RSA
assumption is false?

Similar to the situation of a smooth prime making a weak case DL problem, a smooth prime
factor of N will also make a weak case IF problem. One such a weak case is shown by Pollard
using an efficient factorization algorithm known as Pollard’'s p — 1-algorithm [237]. The idea
behind Pollard’'s p — 1 algorithm can be described as follows. Let p be a prime factor of N where
the largest prime factor of p — 1 is bounded by B = Poly(k) where k = |[N| and Poly(k) is a
polynomial in k (B is called "the smoothness bound of p — 1"). We can construct

T = H T_L]ug Nflogr] _
primes r <B

By this construction, p — 1]A, and so a®* = 1 (mod p) for any a with gcd(a, p) = 1 due to
Fermat's Little Theorem (Theorem 6.10). If a = 1 (mod q) for some other prime factor g of N

(this is easily satisfiable), then a® — 1 (mod N) = Ip for some integer f which is not a multiple of
g. Thus, gcd(a® — 1 (mod N),N) must be a proper prime factor of N, and it must be p if N = pq.
It remains to show that the size of A is a polynomial in k, and so computing a* (mod N) takes
time in a polynomial in K.

By the prime number theorem (see e.g., page 28 of [170]), there are no more than B/logB
prime numbers less than B. So we have

A< BUUENJ].J;,IH = BF"[”::H

that is,

|A] < kBlog?2 < kPoly(k).

Clearly, the right-hand side is a polynomial in k. Thus, a* (mod N) can be computed in a number
of multiplications modulo N (using Alg 4.3) where the number is a polynomial in k. Notice that
the explicit construction of A is unnecessary; a* (mod N) can be computed by computing arl'og
N/log r1 (mod N) for all prime r < B.

Itis very easy to construct an RSA modulus N = pq such that the smoothness bound of p — 1 and
that of g — 1 are non-polynomially (in |[N|) small, and so the modulus would resist this factoring
method. One may start by finding large prime p’' such that p = 2p' + 1 is also a prime; and large
primeq’ such that g = 2gq"' + 1 is also prime. A prime of this format is called a safe prime and

an RSA modulus with two safe prime factors is called a safe-prime RSA modulus. There is a
debate on the need of using safe-prime RSA modulus for the RSA cryptosystems. The point
against the use (see e.g., [273]) is that an RSA modulus should be as random as possible, and
that for a randomly chosen prime p, the probability that p — 1 has a large prime factor is
overwhelming. However, many cryptographic protocols based on the IF problem do require
using safe-prime RSA moduli in order to achieve the correctness of the effects served by the
protocols.

It is also well-known that partial information of a prime factor of N can produce efficient
algorithms to factor N. For instance, for N = pq with p and q primes of roughly equal size,
knowledge of up to half the bits of p will suffice to factor N in polynomial time in the size of N,

see e.g., [82].

If not using any apriori information about the prime factors of the input composite, then the
current best factorization algorithm is the number field sieve (NFS) method which has the time
complexity expressed in (4.6.1). Thus, similar to the setting of the security parameter for the
DLP in finite fields, 1024 is the widely agreed lower bound setting for the size of an RSA modulus
in order to achieve a high confidence in security.

Recently, the number field sieve method demonstrated an effectiveness of massive
parallelization: in early 2000, a coalition of 9,000 workstations worldwide ran a parallel
algorithm and factored a 512-bit RSA modulus (the RSA-512 Challenge) after more than four
months of running the parallel algorithm [70].

Research into integer factorization is very active and it is impossible to rule out a decisive
advance. Boneh provided a survey on the RSA problem [48]. Discussions on the progress in the
area of IF problem with a literature review can be found in Chapter 3 of [198].

8.9 Insecurity of the Textbook RSA Encryption

We have labeled the RSA encryption algorithm in Alg 8.1 a textbook version because that version
is what the RSA encryption algorithm is in most textbook on cryptography. Now let us look at the
security (or insecurity) properties of the textbook RSA encryption algorithm.

For random key instance and random message instance, by Definition 8.5 and Assumption 8.3,
the existence of an efficient CPA against the RSA cryptosystem means the RSA assumption must
be false. Therefore we have

. Theorem 8.1

The RSA cryptosystem is "all-or-nothing"” secure against CPA if and only if the RSA assumption
holds.

|

Here, the meaning of "all-or-nothing" secure is explained in Property 8.2(i); while CPA means
the attacker remains passive as stipulated in Property 8.2(ii).

However, confidentiality of this quality is actually not a very useful one for reasons we now
explain.

First, let us consider "all-or-nothing” security. Notice that "all" here means to find the whole
block of plaintext message in the general case: the message has the size of the modulus. This
needn’'t be the case in applications. In real-world applications, a plaintext typically contains
some non-secret partial information which is known to an attack. The textbook RSA does not
hide some partial information about a plaintext. For example, if a plaintext is known as a
number less than 1,000,000 (e.g., a secret bid or a salary figure), then given a ciphertext, an
attacker can pinpoint the plaintext in less than 1,000,000 trial-and-error encryptions.

In general, for a plaintext m(<N), with a non-negligible probability, only ¥ M humber of trials

are needed to pinpoint m if ¥ M ize of memory is available. This is due to a clever observation

made by Boneh, Joux and Nguyen [52] which exploits the fact that factorization of small
plaintext message is not a hard problem and the multiplicative property of the RSA function. The
multiplicative property of the RSA function is as follows

Equation 8.9.1

(m1 x mg)® =mi x m§ =¢; x ¢z (mod N).

That is, factorization of plaintext implies that of the corresponding ciphertext. Itis normally a
hard problem to factor an RSA ciphertext since the mix-transformation property of the
encryption function will almost always cause a ciphertext to have the size of that of the modulus.
However, the multiplicative property indicates that if a plaintext is easy to factor, then so is the
corresponding ciphertext. The ease of factoring the latter leads to a "meet-in-the-middle" attack.
This is explained in the following example.

Example 8.3.

Letc = m © (mod N) such that Malice knows m < 2 . With non-negligible probability m is a
composite number satisfying

Equation 8.9.2

[
m =1y -ms with mq,ms < 22,

With RSA's multiplicative property, we have

Equation 8.9.3

c=mj-m3 (mod N).

Malice can build a sorted database

[EIES

{1°,2°%,3%,...,(22)°} (mod N).

Then he can search through the sorted database trying to find c/i® (mod N) (fori =

E= 1? 2? bt 23) from the database. Because of (8.9.2) and (8.9.3), a finding, signaled by

¢/i* = j° (mod N)

£
will show up before 22 steps of computing i€ (mod N). Now that Malice knows plaintexts i, j, he
uncoversm =i - j.

L
Let's measure Malice's cost. The database has a space cost of 22 log N bits. For time cost:
: L 3 ar
creating elements in the database costs Uﬂ{z i 10g N j
OH{ ;I and finally, searching through the sorted database to find j¢ (mod N) costs

£ 3 ar

AR - o Y o . . L
OH(Q {'2 | 10*‘-’ N D This final part comprises time for modulo exponentiation plus that for
binary search (using Alg 4.4). So the total time cost measured in bit-complexity is

gs+1 , (£ .i .
OE [22 [2 +log” N ” If the space of22 log N bits is affordable, then the time
complexity is signiflcantly Iess than 2 . This attack achieves a square-root level reduction in time

, sorting the database costs

complexity.

For cases of a plaintext message having sizes ranging from 40-64 bits, the probabilities that the
plaintext can be factored to two similar size integers range from 18%-50% (see Table 1 of [52]).

4

Example 8.4. A Real-life Instantiation of Attack 8.3

Now imagine a scenario of using an 1024-bit RSA to encrypt a DES key of 56 bits in the textbook
style. For a random DES key, the discovery of the key can be done with a non-negligible
probability (of factoring the DES key into two integers of 28 bits), using 228. 1024 = 238-pit
storage (= 32 gigabytes) and computing 222 modulo exponentiations. Both the space and time
costs can be realistically handled by a good personal computer, while direct searching for the
DES key from the encryption requires computing 256 modulo exponentiations which can be quite

prohibitive even using a dedicated device. b

Now we know that we must not use the textbook RSA to encrypt a short key or a password
which are less than 254. What happens if in an application we have to perform RSA encryption of
small numbers, even the message is as small as a single bit? We suggest that the reader should
use the encryption methods (including an RSA-based scheme) to be introduced in Chapter 15.

The next example further shows the inadequacy of the CPA security of the textbook RSA: against
an active attack, the textbook RSA fails more miserably.

Example 8.5.

Let Malice be in a conditional control of Alice's RSA decryption box. The condition is quite
"reasonable:" if the decryption result of a ciphertext submitted by Malice is not meaningful
(looks random), then Alice should return the plaintext to Malice. We say that this condition is
"reasonable" for the following two reasons:

i. "A random response for a random challenge" is quite a standard mode of operation in
many cryptographic protocols, and hence, a user should follow such a "challenge-response"
instruction. Indeed, often cryptographic protocols have been designed to allow this kind of
conditional control of a decryption box by a protocol participant. For example, the
Needham-Schroeder public-key authentication protocol (see Prot 2.5) has exactly such a
feature: Alice is instructed to decrypt a ciphertext from Bob.

ii. Anyway, we would like to hope that a random-looking decryption result should not provide
an attacker with any useful information.

Now suppose Malice wants to know the plaintext of a ciphertext c =m © (mod N) which he has
eavesdropped or intercepted from a previous confidential communication between Alice and

W . *
someone else (not with him!). He picks a random number RS EN, computes ¢' = réc (mod

N) and sends his chosen ciphertext c' to Alice. The decryption result by Alice will be

¢'* = rm (mod N)

which can be completely random for Alice since the multiplication of r is a permutation over
v

N, So Alice returns the decryption result rm back to Malice. Alas, Malice has r and thereby can
obtainm with a division modulo N. &

Examples 8.3—8.5 show that the textbook RSA is too weak to fit for real-world applications. A
systematic fix for these weaknesses is necessary. We will conduct a fix work in two steps:

e inChapter 14 we will strengthen security notions for public-key encryption schemes into
fit-for-application ones;

e inChapter 15 we will study a fit-for-application version of the RSA encryption which is also
a standard for encryption in RSA; we will show formal evidence of its security under the
strong and fit-for-application security notion.

8.10 The Rabin Cryptosystem (Textbook Version)

Rabin developed a public-key cryptosystem based on the difficulty of computing a square root
modulo a composite integer [240]. Rabin's work has a theoretic importance; it provided the first
provable security for public-key cryptosystems: the security of the Rabin cryptosystem is exactly
the intractability of the IF problem. (Recall our discussion for the case of the RSA: itis not
known if the RSA problem is equivalent to the IF problem). The encryption algorithm in the
Rabin cryptosystem is also extremely efficient and hence is very suitable in certain applications

such as encryption performed by hand-held devices.

Algorithm 8.2: The Rabin Cryptosystem

Key Setup

To set up a user's key material, user Alice performs the following steps:
1. choose two random prime numbers p and g such that |p| = lal (* same as
generating an RSA modulus in Alg 8.1 *)

2. computeN = pq;

r ok
3. pick a random integer b €L N

4. publicize (N, b) as her public key material, and keep (p, q) as her private key.

Encryption

m e 4%

To send a confidential message to Alice, the sender Bob creates ciphertext

c as follows:

¢ +— m{m + b) (mod N).
Decryption
To decrypt the ciphertext c, Alice solves the quadratic equation

m? 4+ bm — ¢ =0 (mod N)

form < N.

The Rabin cryptosystem is specified in Alg 8.2. We notice that this is a textbook version for

encryption in Rabin.

We now show that the system specified in Alg 8.2 is indeed a cryptosystem, i.e., Alice's
decryption procedure will actually return the same plaintext message that Bob has encrypted.

We know from elementary mathematics that the general solution to this equation can be written
as

Equation 8.10.1

—b+ w’

= {_1 ;"l-
m = ——a—— = (mo),

where

Equation 8.10.2

A, 52 4c (mod N).

m € L5y

Sincec is formed using , of course the quadratic equation

n®+bm—c=0 (mod N)

&
has solutions in E‘N, and these solutions include m sent from Bob. This implies that D, must be a
quadratic residue modulo N, i.e., an element in QRy.

The decryption computation involves computing square roots modulo N. From our study of the
square-rooting problem in 86.6.2 we know that the difficulty of this problem is computationally
equivalent to that of factoring N (Corollary 6.3). Therefore, the only person who can compute

(8.10.1) is Alice since only she knows the factorization of N. Alice can compute ¥ f}‘ﬂ using Alg

6.5. In 86.6.2 we also know that for each ciphertext ¢ sent by Bob, there are four distinct values

for ¥ f}‘ﬂ and hence there are four different decryption results. We assume that, in applications,
a plaintext message should contain redundant information to allow Alice to recognize the correct
plaintext from the four decryption results. We will provide in 810.4.3 the meaning for
"recognizable redundancy” and a common method for a message to be formated to contain
recognizable redundancy.

We notice that if N is a so-called Blum integer, that is, N = pq with p =q = 3 (mod 4), then it
is easier to compute square roots modulo N (by computing square roots modulo p and q using
Alg 6.3, Case p = 3, 7 (mod 8) and then constructing the square roots by applying the Chinese
Remainder Theorem). Therefore, in practice, the public modulus in the Rabin cryptosystem is set
to be a Blum integer.

The Rabin encryption algorithm only involves one multiplication and one addition and hence is
much faster than the RSA encryption.

Example 8.6.

Let Alice set N = 11 x 19 = 209 and b = 183. She publicizes (N, b) = (209, 183) as her public
key material for the Rabin cryptosystem.

Let Bob encrypt a plaintext message m = 31. Bob performs Rabin encryption:

c =31 x (31 +183) = 155 (mod 209).

The resultant ciphertext is 155.

To decrypt the ciphertext 155, Alice first computes D; using (8.10.2):

As = b +4c= 1832 + 4 x 155 = 42 (mod 209).

Now applying Alg 6.5, Alice finds that the four square roots of 42 modulo 209 are 135, 173, 36,
74. Finally, she can apply equation 8.10.1 and obtains the four decryption results: 185, 204, 31,
50. In real application of the Rabin cryptosystem, the plaintext should contain additional

information for the receiver to pinpoint the correct decryption result. 0

8.11 Insecurity of the Textbook Rabin Encryption

We have a more devastating active attack against the textbook Rabin. The following theorem
manifests this attack in a "provable" way.

. Theorem 8.2

I. The Rabin cryptosystem is provably "all-or-nothing" secure against CPA if and only if the IF
problem is hard.

Il1. The Rabin cryptosystem is completely insecure if it is attacked under CCA.

Proof (1) Because the specified decryption procedure of the Rabin cryptosystem uses the
factorization of an RSA modulus, the security of the Rabin encryption therefore implies the
intractability of factoring of RSA moduli. Thus for (I), we only need to prove the statement for
the other direction: the intractability of the IF problem implies the security of the Rabin
cryptosystem.

Suppose that there exists an oracle O which breaks the Rabin cryptosystem with a non-negligible
advantage €, i.e.,

Prob | O(c,N) = % (mod N) | cep Z’R] >

We choose a random message m, computes ¢ = m(m+b) (mod N) and call O(c, N) which will
m = —b+vA." _) V(T;

return - 2 (mod N) with advantage €. Here ¢ denotes any one of the four

square roots of D;. By Theorem 6.17 (in 86.6.2) we know with probability 1/2:

VA, VA

% + 5 +(m + g} (mod N).

| =

m’ 4+ -

[]
]

But because

s b Al . bz, r
(' + E} 7 = [£(m + E)] (mod N,

so as shown in Theorem 6.17,

Equation 8.11.1

b b
ged(m' + > + (m + E} N)=porgq.

That is, N can be factored with the non-negligible advantage €/2. This contradicts the assumed
intractability of factoring of RSA moduli (the IF assumption). We have thus shown (1).

Statement (I1) holds trivially true if an attacker can obtain a decryption assistance: the
decryption assistance plays exactly the role of the oracle used in the proof of statement (1)!
Since the attacker will generate (choose) ciphertext for the decryption oracle to decrypt, such an

attack is CCA. O

Theorem 8.2 tells us two opposite things. First, the Rabin cryptosystem is provably secure, in an
"all-or-nothing" sense in Property 8.2(i), with respect to the difficulty of factorization (N.B.
provided the plaintext itself is "all-or-nothing" secret, i.e., does not have known apriori
information). This is a strong and desirable result because it relates the (textbook) security of
the Rabin encryption scheme to a reputably hard problem. If the IF problem is indeed
intractable, then the alleged oracle O in the proof of (1) should not exist. However, we should
pay particular attention to the modifier "all-or-nothing" for the CPA security property. Here "all"
means to find the whole block of plaintext message in the general case: the message has the
size of the modulus. Clearly, due to the fact that the Rabin encryption is deterministic, finding
some special messages, such as short ones, needn't be as hard as factorization. We will come
back to this point when we discuss meet-in-the-middle attack on the Rabin scheme at the end of
this section.

Secondly, it is now clear that, in the Rabin cryptosystem, one should never allow oneself to be
used as a decryption oracle. CCA is devastating against the Rabin cryptosystem: the
consequence of such an attack is not merely finding some plaintext information (as in the case of
CCAZ2 against the RSA cryptosystem as illustrated in Example 8.5), it is the discovery of the

private key of the key owner, and hence the attacker will be able to read all confidential
messages encrypted under the targeted public key.

Example 8.7.

InExample 8.6 for the Rabin cryptosystem we have seen that for public key material (N, b) =
(209, 183), the four decryption results of the ciphertext 31 are 185, 204, 31, 50.

If these numbers are made available to a non-owner of the public key, e.g., via a CCA, they can
be used to factor the modulus 209. For example, applying (8.11.1):

ged (204 — 185,209) = 19,

or

ged((31 + 183/2) + (50 + 183/2), 209) = ged(264, 209) = 11.

|

Although we have warned that a public key owner of the Rabin encryption scheme should never

provide a decryption service, it is unrealistic for a user to keep this high degree of vigilance in
real world applications. Therefore, the textbook Rabin encryption scheme is not a fit-for-
application one. In Chapter 15 we shall introduce a fit-for-application method for encrypting in
Rabin (and in RSA). There we will also provide formal argument on fit-for-application security
for those encryption schemes.

We should also notice that since the modulus of the Rabin cryptosystem is the same as that of
the RSA cryptosystem, the cautionary measures that we have discussed for the proper choice of
the RSA modulus apply to the Rabin modulus.

Finally, meet-in-the-middle attack also applies to the following variation of the textbook Rabin
encryption scheme:

Encryption:c = m 2 (mod N).
Decryption: Computing square root of c modulo N.

Similar to case for the textbook RSA encryption, ease of factoring a small plaintext message and
the multiplicative property (explained in §8.9) of this Rabin encryption scheme enables a meet-
in-the-middle attack as we have shown in Example 8.3 for the textbook RSA case.

8.12 The ElIGamal Cryptosystem (Textbook Version)

ElGamal works out an ingenious public-key cryptosystem [102]. The cryptosystem is a successful
application of the Diffie-Hellman one-way trapdoor function which turns the function into a
public-key encryption scheme. ElIGamal’'s work inspires great interest in both research and
applications which has remained high to this day. We will see two further development of this
cryptosystem in Chapter 13 (an identity-based ElGamal encryption scheme), and in Chapter 15
(a variation with a strong provable security).

One reason for the great momentum following up ElGamal’s work is its enabling of the use of the
widely believed reliable intractability for underlying the security of public-key cryptosystems: the
CDH problem, which is widely believed to be as hard as the DL problem and the latter is
considered to be a good alternative to the other widely accepted reliable intractability: the IF
problem (the basis for the RSA and Rabin).

The ElIGamal cryptosystem is specified in Alg 8.3. We notice that this is a textbook version for
encryption in ElIGamal.

We now show that the system specified in Alg 8.3 is indeed a cryptosystem, i.e., Alice's
decryption procedure will actually return the same plaintext message that Bob has encrypted.

Since

&t = (¢")% = (¢®)F = y* = ca/m (mod p),

the decryption calculation (8.12.2) does indeed restore the plaintext m.

The division in the decryption step (8.12.2) needs to use the extended Euclid algorithm (Alg 4.2)
which is generally more costly than a multiplication. However Alice may avoid the division by
computing

m « exc; ' (mod p).

One may verify that this decryption method works, but notice that —x here means p — 1 — X.

Algorithm 8.3: The ElIGamal Cryptosystem

Key Setup

To set up a user's key material, user Alice performs the following steps:

1. choose a random prime number p;

E
2. compute a random multiplicative generator element g of = F;

& €y Lp—1

3. pick a random number as her private key;

4. compute her public key by

y < g* (mod p);

5. publicize (p, g, y) as her public key, and keep x as her private key.

(* similar to the case of the Diffie-Hellman key exchange protocol, a system-wide
users may share the common public parameters (p, g). *)

Encryption

Jii: EL’ Ep 1

To send a confidential message m < p to Alice, the sender Bob picks
and computes ciphertext pair (c1,c 2) as follows:

Equation 8.12.1

¢y +— g® (mod p),
ca +— y*m (mod p).
Decryption

To decrypt ciphertext (c1,c2), Alice computes

Equation 8.12.2

m « ca/c] (mod p).

Example 8.8.

FromExample 8.1 we know that 3 is a primitive root modulo 43. Let Alice choose 7 as her
private key. She computes her public key as

37 = 37 (mod 43).

Alice publicizes her public key material (p, g, y) = (43, 3, 37).

Let Bob encrypt a plaintext message m = 14. Bob picks a random exponent 26 and computes

¢1 = 15 = 3% (mod 43), e, = 31 = 37%% x 14 (mod 43).

The resultant ciphertext message pair is (15, 31).

To decrypt the ciphertext message (15, 31), Alice computes

14 = 31/36 =31/15" (mod 43).

Division requires application of Alg 4.2. But Alice can avoid it by computing:

14 = 31 x 15427 = 31 x 6 (1nod 43).

8.13 Insecurity of the Textbook EIGamal Encryption

The encryption algorithm (8.12.1) of the EIGamal cryptosystem is probabilistic: it uses a random
k ey &
I dpy

L Suppose that Alice's private key x is relatively prime to p — 1; then by

E>

Theorem 5.2(3) (in 85.2.3), her public key y =g * (mod p) remains being a generator of ¥
ES
Z
12

input

—1 Since
m e F*

multiplication modulo p is a permutation over = F for any plaintext message ' Pco,=ykm
ES

(sinceg is), and thereby y k (mod p) will range over ~ F when k ranges over
ES

(modp) will range over F when k ranges over Z (Theorem 6.6 in 86.2.2). Consequently, we

F; k ey Zy

havec ,€U F for . This means that the EIGamal encryption achieves the
distribution of the plaintext message uniformly over the entire message space. This is the ideal
semantic property for an encryption algorithm.

However, we should not be too optimistic! The ciphertext of the EIGamal encryption is not just
the single block cp, but the pair (c1,c 2), and these two blocks are statistically related. Therefore,
like all other public-key cryptosystems, the security of the EIGamal cryptosystem is conditional
under an intractability assumption. Moreover, we shall see in a moment (88.13.1) that in order
for the ideal semantic property to hold, the plaintext message must be in the group <g=>.
Unfortunately, this is usually not the case in the real-world applications.

First, we present an "all-or-nothing" security result for the EIGamal encryption scheme.

. Theorem 8.3

For a plaintext message uniformly distributed in the plaintext message space, the EIGamal
cryptosystem is "all-or-nothing" secure against CPA if and only if the CDH problem is hard.

Proof (=:') We need to show that if the EIGamal cryptosystem is secure, then the CDH
assumption holds.

Suppose on the contrary the CDH assumption does not hold. Then given any ciphertext (c1,c 2)
= (gk, ykm) (mod p) constructed under the public key y =g * (mod p), a CDH oracle will
compute from (p, g, g%, gk to gXk =y k (mod p) with a non-negligible advantage. Then m =
co/yk (mod p) with the same advantage. This contradicts the assumed security of the EIGamal
cryptosystem.

(=) We now need to show that if the CDH assumption holds, then there exists no efficient
algorithm that can recover plaintext message encrypted in an EIGamal ciphertext with non-
negligible advantage.

Suppose on the contrary there exists an efficient oracle O against the EIGamal cryptosystem,
that is, given any public key (p, g, y) and ciphertext (c1,c 2),0 outputs

m «— O(p, g,y,c1,c2)

with a non-negligible advantage d such that m satisfies

ca/m = g"'%8a ¥'°8: ©1) (mod p).

Then for an arbitrary CDH problem instance (p,g,9 1,9 2), we set (p,g,g 1) as public key and set

co € IFr

(g2,c 2) as ciphertext pair for a random P. Then with the advantage dO outputs

m — O(p, g, 91,92, c2)

withm satisfying

q\1og, g1 log, g2)

cofm=g (mod p).

This contradicts the holding of the CDH assumption.

O

Since the CPA security of the EIGamal cryptosystem is equivalent to the CDH problem, our
discussions for the CDH problem and DL problem in 88.4), such as the cautionary considerations
on the settings of the public-key parameters, all apply to the EIGamal cryptosystem. As in the
Diffie-Hellman key exchange protocol, the EIGamal cryptosystem can also work in a large prime-

order subgroup of [F"il‘, or in a large group of points on an elliptic curve defined over a finite field.

8.13.1 Meet-in-the-Middle Attack and Active Attack on Textbook
ElGamal

The reason we have labeled the EIGamal cryptosystem specified in Alg 8.3 a textbook scheme is
because it is a very weak encryption scheme. Now let us see why.

The ElIGamal encryption scheme, in a usual form used in applications, may leak partial
information even to a passive attacker. In practice, the EIGamal cryptosystem often uses g of
orderr = ord p(9) <‘<p as a means to obtain an improved efficiency. In such a case, if a message
m is not in the subgroup <g=>, then a meet-in-the-middle attack similar to that on the textbook
RSA (see Example 8.3) can also be applied to the textbook EIGamal. This is because, for
ciphertext (ci,c 2) = (g%, ykm) (mod p), Malice can obtain

ch =m’ (mod p).

That is, Malice has transformed the "probabilistic” encryption scheme of EIGamal into a
deterministic version! Moreover, it has the multiplicative property just as the textbook RSA does
(explained in 88.9). Therefore, for a small message which is easy to be factored, Malice can
launch the meet-in-the-middle attack on m" (mod p) exactly the same way as he does on the
textbook RSA (this meet-in-the-middle attack on the textbook ElIGamal encryption scheme is
observed in [52]).

From this attack we now know that when a plaintext message is not in the subgroup generated

byg, the ElIGamal cryptosystem becomes a deterministic scheme. A deterministic encryption
scheme of course leaks partial information since it permits a trial-and-error method to find small
plaintext messages, such as a secret bid or a salary figure.

Finally we provide an example of EIGamal’s vulnerability to active attack.

Example 8.9.

Let Malice be in a conditional control of Alice's EIGamal decryption box. As in Example 8.5, the
condition is a "reasonable" one in that if a decryption of a ciphertext submitted by Malice results
in a message which is not meaningful (looks random), then Alice should return the decryption
result to Malice.

Let Malice have a ciphertext (cy1,c 2) = (gk, ykm) (mod p) which he has eavesdropped or
intercepted from a previous confidential communication between Alice and someone else (not
with Malice!). If Malice wants to know the corresponding plaintext. He picks a random number
LAl -~ #*
r ey E‘N computes c's = rc2 (mod p) and sends his chosen ciphertext (c1,c' 2) to Alice. The
decryption result by Alice will be

rm (mod p)

which, viewed by Alice, is completely random since the multiplication of r < p is a permutation
ES

over F. So Alice returns the decryption result rm back to Malice. Alas, Malice has r and thereby
can obtain m with a division modulo p.

8.14 Need for Stronger Security Notions for Public-key
Cryptosystems

We have introduced several basic and textbook public-key cryptosystems. These basic schemes
can be viewed as direct applications of various one-way trapdoor functions. (The meaning of
one-way trapdoor functions has been given in Property 8.1.).

Now it is time to provide a summary on the insecurity features of these textbook schemes. We
should provide a brief discussion here on two aspects of vulnerabilities that a textbook public-
key cryptosystem has.

First, as having stated in Property 8.2(i), within the scope of this chapter we have only
considered a very weak notion of security: secrecy in an "all-or-nothing" sense. In most
applications of public-key cryptosystems, such a weak notion of secrecy is far from being good
enough and is also not very useful. In many applications plaintext messages contain apriori
information known to an attacker. For example, if a cipher encrypts a vote, then the apriori
information can be "YES" or "NO," or a handful names of the candidates; thus, regardless of how
strong a trapdoor function is, an attacker only needs several trial-and-error to pinpoint the
correct plaintext. In some other applications, some partial apriori information about the plaintext
will provide an attacker an unentitled advantage (we will see such an attack in §14.3.2). In
general, a textbook encryption algorithm does not hide such partial information very well. Thus,
stronger public-key cryptosystems secure for hiding any apriori information about the plaintext
are needed.

Secondly, as having stated in Property 8.2(ii), within the scope of this chapter we have only
considered a very weak mode of attack: "passive attacker."” However, for each textbook scheme
introduced in this chapter we have demonstrated an active attack on it (Examples 8.5,8.7,8.9).
In such an attack, the attacker can prepare a cleverly calculated ciphertext message and submit
it to a key owner for an oracle decryption service in CCA or CCA2 modes. Our attacks show that
textbook public-key cryptosystems are in general vulnerable to CCA or CCA2. Although we have
provided an advice as a general principle for a user to anticipate an active attacker: a public key
owner should always be vigilant not to provide a decryption service, however, considering that it
will be impractical to require an innocent user to keep in an alert state all the time, advising a
user not to respond to a decryption request cannot be a correct strategy against an active
attacker.

Public-key cryptosystems with stronger notions of security with respect to these two aspects
have been proposed by various authors. In Chapter 14 we will study the course of establishing
various stronger confidentiality notions and how to achieve formally provable security. In
Chapter 15 we shall introduce fit-for-application public-key cryptosystems which are provably
secure under a very strong security notion.

8.15 Combination of Asymmetric and Symmetric
Cryptography

Public-key cryptography solves the key distribution problem very nicely. However, in general,
public-key cryptographic functions operate in very large algebraic structures which mean
expensive algebraic operations. Comparatively, symmetric cryptographic functions are in general
much more efficient. Considering the AES for example, it works in a field of 256 elements; the
basic operations such as multiplication and inversion can be conducted by "table lookup™ method
(review 87.7.4) which is extremely efficient. In general, public-key cryptosystems are
comparatively much more computationally intensive than their symmetric-key counterparts.

In applications, in particular in those which need encryption of bulk data, it is now a standard
approach that encryption uses a hybrid scheme. In such a scheme, public-key cryptography is
used to encrypt a so called ephemeral key for keying a symmetric cryptosystem; this
establishes the shared ephemeral key between a sender and a receiver; the bulk data payload is
then encrypted under the shared ephemeral key using a symmetric cryptosystem. Such a
combined scheme achieves the best out of the two kinds of cryptosystems: the ease of key
distribution from public-key cryptosystems and the efficiency from the symmetric cryptosystems.

A widely used combination of public-key and symmetric-key cryptosystems in cryptographic
protocols is a so-called digital envelope technique. This is the combination of the RSA
cryptosystem with a symmetric-key cryptosystem such as the DES, the triple-DES or the AES.
This common combination (RSA + DES or RSA + triple DES) is the basic mode for the secure
sockets layer (SSL) protocol ([136], we will introduce the SSL protocol in Chapter 12) which
has been used in popular Web browsers such as Netscape and Internet Explorer and Web
servers. In the SSL protocol, the initiator of the protocol (let it be Alice, usually in the position of
a Web client) will first download the public-key material of the other communication party (let it
be Bob, usually in the position of a Web server); then Alice (in fact, her web-browser software)
will generate a random session key, encrypts ("envelopes™) the session key using Bob's public
key and send the "envelope" to Bob. After Bob (in fact, his web-server software) has decrypted
the "envelope" and retrieved the session key, the two parties can then use the session key to key
a symmetric encryption scheme for their subsequent confidential communications.

In the context of protocols, the simple hybrid encryption scheme is conceptually very simple. But
it has two limitations. First, the scheme uses a session key which is created by one party (the
message sender or the protocol initiator); the other party (the message receiver or the protocol
responder) will have to completely rely on the sender's or the protocol initiator's competence (or
honesty) in key generation for security. This may not be desirable in some circumstances, for
instance, in the SSL protocol's client-server setting where the client is the sender and is
implemented in software which is notoriously weak in generation of randomness.

The second limitation of the simple hybrid encryption scheme is due to its nonevanescent
property. In hybrid encryption scheme, an eavesdropper who can coerce the receiver into
revealing her/his private key can then recover the full Payload_Message. This weakness is often
referred to as lack of "forward secrecy property.” The forward secrecy property means it is
impossible for an eavesdropper to recover the plaintext message in a future time using the
ciphertext messages sent in the past, either by means of cryptanalysis or even by means of
coercion.

These two limitations can be overcome if the public-key cryptographic part of a hybrid
encryption scheme uses the Diffie-Hellman key exchange protocol.

Let us first look at how the first limitation disappears if a hybrid scheme uses the Diffie-Hellman

key exchange protocol. In the Diffie-Hellman key exchange protocol run between Alice and Bob,
the shared secret g2P contains randomness input from the both parties: Alice's contribution is
froma and Bob's, from b. Given that g generates a prime-order group and that the protocol

messages satisfy g2 # 1 and gb 1 (see the "cautionary details" that we have provided in
§8.3), Alice (respectively, Bob) can be sure that the shared secret session key derived from gaP
will be random as long as she (respectively, he) has used a random exponent. This is because

b hya a a
the mappings g = (9) and 9 l:ﬂ } are permutations in the group in question and
thereby a uniform exponent (less than the group order) will cause g2 (respectively, gP) being
mapped to a uniform group element g2ab.

Secondly, let us look at how the second limitation is overcome. We note that a hybrid encryption
scheme using the Diffie-Hellman key exchange protocol has the forward secrecy property if Alice
and Bob run the key exchange protocol in a cautionary manner which we have recommended in
88.3, and if they also properly process the subsequent session communications. To run the
Diffie-Hellman key exchange protocol in a cautionary manner, Alice and Bob should exchange
the session key g2P and then erase the exponents a and b upon termination of the protocol. To
properly process the subsequent session communications, Alice and Bob should destroy the
session key after the session ends and should properly dispose of the plaintext messages they
have communicated. If they follow these rather standard procedures, then obviously coercion
will not enable an eavesdropper to find out the plaintext messages that Alice and Bob have
communicated. Cryptanalysis won't do the job for the eavesdropper either since the forward
secrecy property (of the Diffie-Hellman key exchange protocol) is simply due to the difficulty of
the CDH problem (see §8.4).

Finally we point out that a hybrid encryption scheme can be designed to have a provable
security under a very strong notion of confidentiality. In Chapter 15 we shall conduct an
overview of a series of such schemes.

8.16 Key Channel Establishment for Public-key
Cryptosystems

The well-known man-in-the-middle attack on the Diffie-Hellman key exchange protocol (see
88.3.1) is general in public-key cryptosystems. In general, to send a confidential message to a
recipient by encrypting under her/his public key, the sender must first make sure that that the
key to be used really belongs to the intended recipient. Likewise, upon receipt a "digital
envelope,” the recipient must make sure that the "envelope” is really from the claimed source
before engaging in a confidential communications using the symmetric key retrieved from the
"envelope.™

Thus, no matter how "unconventional” public-key cryptographic techniques are, there is still a
need for establishing a secure key channel between communication parties. However, in public-

key cryptography we have ke ?’-‘kd (see Fig 7.1) and therefore transporting an encryption key ke
to the message sender need not involve handling of any secret. Therefore, the task for
establishing a secure key channel is purely an authentication problem, namely, the key channel
involves no handling of any secret and should only preserve the authenticity of the encryption
key.

Authenticated key channel establishment for public keys will be the topic of Chapter 13.
Directory based techniques for public-key channel setting-up will be introduced in §13.2 while
some identity based techniques will be introduced in §13.3.

8.17 Chapter Summary

In this chapter we have introduced several well-known and widely used public-key encryption
schemes: Diffie-Hellman key exchange protocol, the RSA, Rabin and EIGamal encryption
algorithms. Along with these basic public-key schemes, we introduce respective hard problems
as complexity-theoretic assumptions which are the security underpins for the basic public-key
encryption algorithms.

We declared that the quality of security considered in this chapter, all-or-nothing secrecy and
passive attacker, is a low one: it is labeled as a textbook security notion and is only suitable for
an ideal world in which data are already random and bad guys are nice (in that they do not
mount active attacks). All public-key schemes introduced in this chapter are textbook ones.
Various attacks on them have been demonstrated to manifest their insecurity qualities.

We then discussed the need for more stringent and fit-for-application security notions for public-
key encryption schemes, and the need for schemes which are secure under the stronger notions.
However, we decided to defer their introduction to several later chapters (in Part V). The reader
who does not plan to study Part V should carefully review the attacks given in this chapter,
especially if (s)he plans to use a textbook crypto scheme introduced in this chapter.

Exercises

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

What are the two prominent characteristics of a textbook crypto algorithm?

A cipher block chaining (CBC) mode of operation for a block cipher (introduced in
87.8.2) has a random input and as a result any partial information of a plaintext
can be well hidden. Is CBC still a textbook crypto algorithm? Why?

Let an attacker in a man-in-the-middle attack on the Diffie-Hellman key exchange
only relay messages between Alice and Bob (i.e., the "man in the middle"” does not
alter the conversations of Alice and Bob, apart from performing decryption and
encryption using the keys the attacker shares with Alice and Bob). Is the attack a
passive one or an active one?

Hint: the attack takes place before the message relays.

For the commonly agreed lower bound size setting for finite field Fq: |[g] = 1204 and
forc < 2 in the subexponential expression sub_exp(q) in (8.4.2), confirm that there

is a "poly solver" for the DLP in [F*i‘ where the "poly solver” runs in time bounded by
a degree-9 polynomial in the size of q.

Let group <g> have a non-secret order ord(g). Is the following problem hard?
Giveng ¢, find g2 and gb such that ab =c (mod ord(g)), that is, to construct a Diffie-
Hellman tuple (g, g2, g°, g%) from (g, g°).

What is the relationship between the discrete logarithm problem and the
computational Diffie-Hellman problem?

In RSA public-key material (e, N), why must the encryption exponent e be relatively
prime to f (N)?

Factoring an odd composite integer is in general a difficult problem. Is factoring a
prime power a difficult problem too? (A prime power is N = p' where p is a prime
number and i is an integer. Factor N.)

Hint: for any i > 1, how many index values i need to be tried in computing the i-th
root of N?

ForN being a prime power, one method for "computing the i-th root of N" in the
preceding problem is binary search. Design a binary search algorithm to root p' (i is
known). Prove that this algorithm is efficient.

|l:'l{.l__.::
Hint: consider binary searching primes of @ bits.

An RSA encryption function is a permutation in the multiplicative group modulo the
RSA modulus. RSA function is therefore also called a one-way trapdoor
permutation. Is Rabin (ElIGamal) encryption function a one-way trapdoor
permutation?

8.11

8.12

8.13

8.14

8.15

8.16

8.17

8.18

8.19

8.20

S
LetN == 21024 Randomly sampling elements in IfT‘- ". what is the probability for a
sampling result being less than 254? Use this result to explain why a 64-bit random
password should not be regarded as a random plaintext for the RSA (Rabin,
ElGamal) encryption algorithms.

Under what condition can the encryption function of the EIGamal cryptosystem be
viewed as a deterministic algorithm?

What are CPA, CCA and CCA2? Explain these notions.

We have used "all-or-nothing"™ as a modifier in the descriptions of the CPA security
properties for the RSA and Rabin cryptosystems (Theorem 8.1 and Theorem 8.2(1),
respectively). Why is this necessary?

Why must any public-key encryption algorithm (even a textbook crypto one) resist
CPA?

What is the main reason for textbook crypto algorithms being generally vulnerable
to active attacks?

What is an oracle (encryption, decryption) service? For a public-key encryption
algorithm, does an attacker need an oracle encryption service?

Since textbook crypto algorithms are generally vulnerable to active attacks, we have
advised that one should be careful not to provide any (oracle) decryption service. Is
this actually a correct attitude or a practical strategy?

Since an active attack generally involves modification of (ciphertext) message
transmitted over the network, will an active attack still work if a public-key
encryption algorithm has a data integrity protection mechanism which detects
unauthorized alteration of ciphertext messages?

What is the virtue of a hybrid cryptosystem?

Chapter 9. In An Ideal World: Bit Security
of The Basic Public-Key Cryptographic
Functions

Section 9.1. Introduction

Section 9.2. The RSA Bit

Section 9.3. The Rabin Bit

Section 9.4. The ElGamal Bit

Section 9.5. The Discrete Logarithm Bit

Section 9.6. Chapter Summary

Exercises

9.1 Introduction

We have seen from several examples that the basic public-key cryptographic functions
introduced in the preceding chapter in general do not hide partial information about plaintext
messages very well, especially when a plaintext message is not random. However, these basic
cryptographic primitive functions are not bad at all if they are used in an ideal world in which
plaintext messages are random. In such a situation, each of these basic functions is actually very
strong.

In this chapter we shall study the bit security of the basic public-key cryptographic functions.
We shall see that each of the basic and popular public-key cryptographic primitive functions
introduced in the preceding chapter has a strong bit security in that, provided the plaintext
messages are random, to find an individual bit of the plaintext from a ciphertext is just as
difficult as finding the whole plaintext block.

The positive results on bit security for the basic and popular public-key cryptographic functions
suggest that as long as a plaintext message is random, then the problem of finding any
information about the plaintext can be as hard as inverting these basic functions, since the latter
is the problem of finding the whole block of the plaintext message.

This observation has been applied by many researchers to constructing strong public-key
encryption schemes out of using the basic and popular public-key cryptographic primitive
functions. The idea is to randomize the plaintext messages using some randomization schemes
before applying a primitive function. In Part V, we will study a general methodology for security
proof which is called random oracle model. Under the random oracle model, public-key
encryption schemes (in fact, digital signature schemes too) which are based on the popular
public-key cryptographic functions introduced in the preceding chapter can be proved secure
under a strong notion of security. An important step for these proofs to go through is an
assumption that the plaintext (or message) input to these schemes have been randomized.

We should notice that "an ideal world" is one in which plaintext messages are random. Such a
world is not "the ideal world.” In the latter, in addition to random messages, Malice is also a nice
guy who never mounts an active attack. Therefore, the basic and popular public-key
cryptographic functions are still very weak in an ideal world. We will see such examples in this
chapter.

This chapter may be skipped by a reader who does not plan to find "know-why" about the fit-for-
application cryptographic schemes which we will study in Part V.

9.1.1 Chapter Outline

89.2 studies the RSA bit security. §9.3 studies the Rabin bit security and a technique for using
the Rabin bit to generate strong pseudo-random numbers. 89.4 studies the EIGamal bit security.
Finally, 89.5, studies the bit security of the discrete logarithm function.

9.2 The RSA Bit

If an RSA ciphertext encrypts a message which contains no apriori guessable information (for
example, when a message is a uniformly random number in Z'J"'-’), then it is known that the
problem of extracting a single bit of the plaintext message from a ciphertext is as hard as
extracting the whole block of the plaintext [128,76,75]. Without loss of generality, "one bit of
the plaintext” can be the least significant bit, i.e., the parity bit, of the plaintext message. What
we are trying to say here is the following statement.

. Theorem 9.1

Let N be an RSA modulus. The following two problems are equally hard (or equally easy):

I. given the RSA encryption of a message, retrieve the message;
11. given the RSA encryption of a message, retrieve the least significant bit of the message.

If one can solve (1) then obviously one can solve (Il). The converse seems not so
straightforward. One may think that these two problems can hardly be computationally
equivalent: () is a computational problem, while for uniformly random plaintext message, (lIl) is
a decisional problem and sheer guessing will entitle one to solve half the instances.

Nevertheless, if one can have possession an oracle which can answer (l11) reliably, then one can
indeed solve () by calling this oracle log2N times, and we shall show such a method. Since log2>N
is the size of N, such a method "reduces" (1) to (I1) in polynomial time in the size of the input,
and is therefore called a polynomial time reduction. Consequently, (1) can be solved in time
polynomial in the size of the input, on top of the time for the oracle to solve (11). We view these
two problems to have the same time complexity because we do not differentiate complexities
which are different up to a polynomial.

Now let us describe a polynomial reduction method from (1) to (11). Let us call the oracle solving
(I1) "RSA parity oracle” and denote it by POy, namely,

m (mod 2) «— POpx(m® (mod N)).

In our proof of Theorem 9.1, we denote by x € (a, b) an integer x in the open interval (a, b)
wherea and/or b may or may not be integer. Since x is an integer, x € (a, b) implies that x is in

the closed interval [ra-l, LbJ].

The crux of the proof is a binary search technique which is enabled by the following
observation.

.Lemma 9.1

Let N be an odd integer and X € (0, N).Then 2x (mod N)is even if and only if x (mod N)
€ (0,5)

N
Proof For all 55 (U‘ 2 :I multiplication 2x (mod N) takes no modulo operation and therefore
the result is 2x and is an even number in (0, N). Conversely, if 2x (mod N) is even then it can be

ze (0¥) O
divided by 2 and the division takes no modulo operation. Consequently .

@ € (D.%

Since all :I occupy exactly half the integers in (0, N),Lemma 9.1 also says that 2x

!\4 T
(modN) is odd if and only if © € (3. N)

Now let us prove Theorem 9.1.

Proof (of Theorem 9.1) We only need to show (Il) = (D). The proof is constructive. We
construct a binary search algorithm which makes use of a reliable POy and finds m from an RSA
ciphertextc = m © (mod N). The algorithm will maintain an interval (a, b), called "current
interval,” (CI for short). In the starting of the algorithm, the initial case for current interval is (a,
b) = (0, N). The binary search algorithm will maintain the following two invariant conditions:

e each iteration will cause CI to halve its length;
¢ the targeted plaintext remains in ClI.
For clarity in exposition, we shall only consider the first two iterations of the search procedure.

Iteration 1 We know that the plaintextis in (a, b) = (0, N). We ask POy by feeding it 28c (mod
N). Noticing Zec = (2m)& (mod N) from POn(28c) we can deduce from Lemma 9.1 whether

r b3
m e {U, i jl m € [:D + = z - N } . We therefore obtain a new Cl which contains the
plaintext and W|th the length halved. So when entering this iteration, (a, b) = (0, N); when out

{(I_.E):I = (0, %;jor (a,b) = (% N},

of this iteration, we have either
. : (a,b) = (X, N) . -
Iteration 2 Consider the case "™ 217 out of lteration 1. Let us feed 228c = (22m)e
(modN) to PO y. If POn(228¢) = 0, then the plaintext 22m = 4m (mod N) is even. By Lemma 9.1

N £¥
we have 2m (mod N) € (0, _} But remember 2m < 2N; so for 2m (mod N) < 2 itis only
- _ — 3N 3N P,
possible for 2m < 2N 2 , and thereby m < 4 . So we reach m < { ' o4)

(ﬂ'fb_ %}

Now we update Cl by performing (a’) . Thus, the invariant conditions are

maintained.

The reader may check the correctness of the following two general case for updating CI

e [IfPO \ answers O, the plaintext is in the lower half of CI = (a, b), and therefore b should be

|C1|
reduced by quantity 2 ;

e Otherwise, the plaintext is in the upper half of Cl = (a, b), and therefore a should be

(o)

increased by quantity 2

Clearly, after i = LlogzNJ + 1 steps of search, we will reach the case |ClI| = b —a < 1. The search
algorithm terminates and outputs m = b. To this end we have proven Theorem 9.1. 0

Alg 9.1 summarizes the general description of the binary search algorithm which we have

constructed in the proof of Theorem 9.1.

Example 9.1.

For RSA public key (N, e) = (15, 3), ciphertext c = 13, let us ask POy 4 questions and pinpoint
the secret plaintext m. We feed POy the following random-looking ciphertext queries:

(2% x 13, 4% x 13, 8% x 13, 16® x 13) = (14,7,11,13) (meod 15).

POn answers: 0, 1, 1, 1. From these answers we deduce:

0=me(0,15— 1) = (0,1

1st answer & } i.e., mE[1,7];

15 15y _ (15 15
2nd answer] = me (0+ 41 2)= a2 } i.e., m€[4,7];

l=me (L +

L]
—

3rd answer ,i.e., mE[6,7];

on

45 15 L0V B
] =}*’mE(T+F_~ T]_(ﬁ‘ },i.e.,mE[Z,ﬂ-

v

4th answer

So we have found m = 7. Indeed, 7 is the plaintext: 73 = 13 (mod 15). [l

Algorithm 9.1: Binary Searching RSA Plaintext Using a Parity
Oracle

INPUT (N, e): RSA public-key material;
¢ = m® (mod N): an RSA ciphertext;
POpn: a parity oracle, on inputting an RSA ciphertext,

it returns the least significant bit of the corresponding
plaintext.

OUTPUT m.

1. Initialize (a, b) +— (0, N);

(* the length of "current interval™ Cl = (a, b) will be halved in each iteration
whilem € (a, b) is maintained. *)

2. Fori=1,2, ... LNJ+ 1do

{

N
(* the length of (a, b) is always under 2:—1)

N
2.1 If (POy(2€C) = 0) then beb- a7

(*m is in the lower half of (a, b) *)

. N
22Fse AT a7

(*m is in the upper half of (a, b) *)
¥

3. Return(Lbl).

Theorem 9.1 tells us that the RSA least significant bit can be as strong as the whole block of the
plaintext.

InExample 8.5 we have seen that it is dangerous for a user, as the owner of an RSA public key,
to act as a decryption oracle to return a plaintext as a whole data block to a decryption request.
Now from the "RSA least significant bit security” result we further know that the user must also
not act as an "parity oracle,” or an "N/2-oracle" (due to Lemma 9.1) to answer any cipher query
on the parity bit of the corresponding plaintext (or to answer whether the plaintext is less than
N/2).

We should warn the reader that an attacker may embed such queries in an innocent-looking
protocol. See the following example.

Example 9.2.

When Alice and Malice need to agree on a secret session key to be shared exclusively between
them, Malice may provide a reasonable suggestion as follows:

"Alice, how about we send to each other 1,000 ciphertext messages encrypted under our
respective public keys? Let the session key be the bit string from XORing the parity bits of
each pair of the exchanged plaintext messages. By the way, to assure you that the session
key will be random, let me send my 1,000 blocks to you first!"

Alice not only agrees, she is also grateful for the trust Malice has shown her (in making the
session key random)! However, the 1,000 ciphertext messages Malice sends to her will be (2))ec
(modN) (i =1, 2, ..., 1000) where c is a ciphertext someone else sent to Alice and was
eavesdropped by Malice.

After the protocol, Malice pretends to have erred in the computation of the session key:

"Alice, I'm sorry for having messed up my computation. Would you be so kind and send me
the session key? Please encrypt it under my public key."

Poor Alice offers help. Alas, from the session key, Malice can extract the needed parity bits and
then applies Alg 9.1 to discover the plaintext encrypted inside c! 0

Here Malice is an active attacker: he modifies the ciphertext ¢ by binding it using multipliers (21)
(modN). Therefore, although the RSA least significant bit is as strong as the whole block of the

plaintext message, the function is still hopelessly weak against an active attack.

9.3 The Rabin Bit

Alg 9.1 can be easily modified and applied to the Rabin encryption if the encryption takes the
simple form of c = m2 (mod N) (i.e., the case of encryption exponent being e = 2, and that is all
the "modification™).

However, there is some complication. For N having two distinct prime factors, by Theorem 6.17
(in 86.6.2,), any given ¢ € ORy has four distinct square roots modulo N, i.e., the ciphertext c has
four different plaintexts. If an parity-oracle answers the parity of a random square root of c (i.e.,
random among the four), then this oracle is not a reliable one and hence cannot be used.
Nevertheless, if a square root has certain properties which allow an oracle to do the job
deterministically (and hence reliably), then the binary-search technique can still be applied to
the Rabin encryption.

One example of such a deterministic oracle is one which answers the parity bit of a smaller

square root of the positive Jacobi symbol. By Theorem 6.18 (in 86.7), we know that if N is a

Blum integer, then any quadratic residue c has two roots m, —m of the positive Jacobi symbol.
I;‘Er

SinceN is odd, only one of these two roots is less than 2, and so we can call it the “smaller root

ofc of the positive Jacobi symbol."”

2
(%) -
Now if we confine N to a more restricted form of Blum integer, such that ** (N = pq
withp =q (mod 8) will do), then a parity oracle which answers the parity bit of a smaller
2
(¥) -
square root of the positive Jacobi symbol will work. Notice that with ** , an i-th query
m

made to this reliable parity oracle will have the plaintext 2 (mod N) and so will keep the sign of
Jacobi symbol for all i plaintext queries. For details of a modified binary search algorithm for the
Rabin encryption case, see [128].

9.3.1 The Blum-Blum-Shub Pseudo-random Bits Generator

The fact that a binary search algorithm working for the Rabin encryption function suggests that
the Rabin least significant bit is strong if the IF assumption holds (Assumption 8.4 in 88.8). The
strength of the Rabin least significant bit has an important application: cryptographically
strong pseudo-random bits (CSPRB) generation [42]. The so-called Blum-Blum-Shub
pseudo-random number generator uses a seed xg € QRy where N is a k-bit Blum integer.
Then the pseudorandom bits generated from the BBS generator using the seed xg are composed
of the least significant bit of each number in the following sequence

Equation 9.3.1

To, T1 =Tp, ..., Ti =T5_ 1, ... (mod N)

It can be shown [42,128] that, without knowing the seed X g, predicting the least significant bits

in the sequence in (9.3.1) is computationally equivalent to factoring the Blum integer N.

.Remark 9.1

It is also known [13,295] that the problem of extracting the simultaneous log 2 log2N least
significant bits from a Rabin ciphertext is equivalent to factoring N. 0

Blum and Goldwasser applied this result and proposed an efficient cryptosystem which has a
strong security called semantic security. We will study semantic security in Chapter 14, there
we shall also introduce the semantically secure cryptosystem of Blum and Goldwasser based on
the strength of the Rabin bit.

9.4 The ElGamal Bit

For the EIGamal cryptosystem given in the form of Alg 8.3, since the plaintext message space is
*

P where p is a large prime number (hence odd), it is straightforward that the binary search
technique can also be applied. To find the plaintext message encrypted under a ciphertext pair
(c1,C 2), the querying ciphertext messages sent to a parity oracle should be

(c1, 25.{:2} (mod p), i=1,2,...,|logyp| + 1.

If the parity oracle is a human being (this is very likely, see Example 9.2), then in order to avoid
suspicion, the attacker can blind the queries, for instance, as follows:

(g"¢1, 2'y"ez) (mod p) with r; € Zpoy, i=1,2,..., [logyp] +1,

where (g, y) are the public key material of the parity oracle. These Llogzp I+1 pairs of
ciphertext messages are completely independent one another, however, they encrypt the related

message series 2im (mod p) fori= 1, 2, ..., Llogzp 1+ 1

(677,447 2'm) (mod p), i =1,2,..., [logy p| + 1.

To this end we can conclude that the bit security of the EIGamal cryptosystem is as hard as the
block data security. On the other hand, a public key owner should be careful not to be tricked to

play the game as in Example 9.2.

9.5 The Discrete Logarithm Bit

In 88.4 we have discussed that in an abelian group in the general case, the discrete logarithm
problem is hard: the function g* is believed to be one-way. Moreover, it is so far not known
whether the function is a trapdoor. So extraction of x from g* with the help of an oracle is a
strange idea. However, in order to investigate the relation between the bit security to the block
security for the discrete logarithm function, let us assume that there exists an oracle which can
answer some bit-level partial information of x upon being fed a pair (g, g%).

1
If the element g has an odd order, then the value 2 (mod ord (g)) is available if ord(g) is not
secret (this is the usual case). In this situation, the problem of extracting the discrete logarithm
using a parity oracle is in fact, bit-by-bit, the reverse operation of the modulo exponentiation
algorithm (see Alg 4.3). Since the modulo exponentiation algorithm is also called "squaring-and-
multiplying" method, the reverse algorithm should be called "square-rooting-and-dividing"
method.Alg 9.2 specifies such a method.

FS
Now what happens if g has an even order? For example, if g is a generator element of = ¥ with p

1
being a prime number, then ordy(g) = p — 1 is even and is not relatively prime to 2. Therefore 2
(modp —)does not exist. So square-rooting of h cannot be done in the form of Step 2.2 in Alg
9.2.

Algorithm 9.2: Extracting Discrete Logarithm Using a Parity
Oracle

INPUT (g, h):g is a group element of an odd order, h = g X;
POdesc(g): @ parity oracle, POgesc(g) (9, h) = loggh (mod 2).

OUTPUT integerx.

1. Setx +—0;y 1—% (mod ord(g))

2. Repeat the following steps until h = 1 (* including h = 1 *)
{
2.1 If (POdesc(g) (9, h) ==1) then h+=h/g;x #=x+ 1;

(* when loggh is odd, do "division and plus 1," as reverse to "multiplication and
minus 1" in modulo exponentiation *)

2.2h #=h Y;x = 2X;

(* now loggh is even, do "square rooting and doubling” as reverse to "squaring
and halving"” in modulo exponentiation *)

}

3. Return(x).

"
However, in this case (i.e., when g is a generator element in = ¥, we can still compute square
roots of h modulo p using Alg 6.4. For any quadratic residue element h € QRp, that square-

rooting algorithm will return two square roots of h, which we should denote by o ‘J/E Since g is
*

a generator of P, it holds g € QNRp; but h € QRp, therefore loggh must be an even number.
Thus, without loss of generality, we can write the discrete logarithms of the two square roots of
h to the base g as follows:

Equation 9.5.1

log, h p—1 log h
lﬂgy\/ﬁ: ‘; : lﬂgg[—\/ﬁj= 5 -+ 29 :

Notice because addition in (9.5.1) is computed modulo p — 1, exactly one of the two values in
B2 p—1

(9.5.1) is lessthan 2 , the other must be greater than or equal to 2 . Clearly, the square

root which has the smaller discrete logarithm to the base g is the correct square root. The

trouble is, from ‘/E and — ‘/E we cannot see which one of the two square roots has the
smaller discrete logarithm to the base g!

Algorithm 9.3: Extracting Discrete Logarithm Using a "Half-
order Oracle"

*

INPUT (g, h, p):g is a generator of = P with p prime; h = g* (mod
P);
POdesc(g): @ half-order oracle,
b= i if l-:)gg-:u < log,(—y)
PO, o) g 1y otherwise
p. g
OUTPUT integerx.

1. Setx +0;
2. Repeat the following steps until h = 1 (* including h = 1 *)

{

2.1 If (h €QNRp) then h #h/g;x #x + 1;

(*h € QNRp implies that loggh is odd; this can be done by testing Legendre
= Y=
symbol p . *)
2.2h +PO (p, g) (9, »/F _\/H);x — 2X;
(* we can do square-rooting with no difficulty, but we need the oracle to tell us

log, h
which root is the correct one, i.e., has the smaller discrete logarithm 2 . *)

}

3. Return(x).

Nevertheless, if we have a different "one-bit-information oracle" which, upon being fed (g, y,-Yy),
answersy or —y, whichever has the smaller discrete logarithm to the base g, then we can use
this oracle (call it "half-order oracle™) to pick the correct square root for us. Alg 9.3, which is
modified from Alg 9.2, does the job using the "half-order oracle."

Since testing Legendre symbol and computing square roots modulo a prime can be efficiently
done, from Alg 9.3 we know that being able to decide from (g, h) whether loggh is less than
ord(q)

2 is equivalent to extracting loggh from (g, h).

Alg 9.3 is more general than Alg 9.2 in that, it will also work with g of odd order. Let us
therefore go through Alg 9.3 with a small numerical example.

Example 9.3.

&
Suppose we have a "half-order oracle." For group E‘i’:ﬂ, generator g = 5 and elementh = 9, let
us extract x = logs9 (mod 22) by calling the "half-order oracle."

An execution tree of Alg 9.3 on input (5, 9, 23) can be given as follows. Each double arrow
stands for the "square-rooting," of which the horizontal ones (=|'-‘) are those chosen by the
"half-order oracle.” Each single arrows (=:') stands for "dividing-g" (g = 5). All computations
are performed modulo 23.

g = W = 4 = F = 5 5 1 =]

4 s . 4
3 21 18 22

At the starting of the algorithm, X is initialized to O (step 1). For each double arrow =,
operationx #= 2x will be performed (step 2.2), and for each single arrow =%, operation x #=x
+ 1 will be performed (step 2.1). Upon termination of the algorithm, the final value for x is 10.

Indeed, 9 = 510 (mod 23). [l

These results show that the individual bits of discrete logarithm are in general as hard as the
whole block. We now also know that if a generator element is a quadratic residue, then all bits

including the least significant bit of a discrete logarithm to this base are hard. This leads to a
"semantically secure" version of the EIGamal cryptosystem, which we shall introduce in Chapter
14.

9.6 Chapter Summary

Our investigations on the hardness of the bit-level security for the basic and popular public-key
cryptographic algorithms have invariantly reached very positive results: every single plaintext
bit hidden under these functions is as hard as the whole plaintext block. These positive results
suggest the following observation: if a plaintext message is random, then the problem of finding
any information about the plaintext can be as hard as inverting these basic functions.

This observation has been applied by many researchers to constructing stronger public-key
encryption schemes out of the basic and popular public-key cryptographic primitives. The idea is
to randomize the plaintext messages using some randomization schemes. In Part V, we will
study a general methodology named random oracle model to achieve the construction of
strong and provably secure public-key encryption schemes (in fact, digital signature schemes
too) out of using the basic and popular public-key cryptographic primitives.

Through our investigation on several basic and popular public-key cryptographic functions we
have also witnessed an invariant weakness of these functions: they are extremely vulnerable to
active attacks. The general methodology for strengthening public-key encryption algorithms to
be studied in Part V will also include mechanisms for foiling active attacks.

Exercises

9.1

9.2

9.3

9.4

9.5

Complete the other three cases of "Iteration 2" in the proof of Theorem 9.1, i.e.,

N
i. (a,b) =(2,N),PO n(228c) = 1;

N
ii. (a,b) = (0, 2),PO n(22%) = O;

N
iii. (a,b) = (0, 2),PO n(2%c) = 1.

Under what condition the RSA encryption algorithm can have a strong bit security?

Hint: if a plaintext has some verifiable partial information, can the encryption
algorithm have a strong block security?

Does the strong bit security of the basic public-key encryption algorithms imply that
these algorithms are secure?

What is the security basis for the Blum-Blum-Shub pseudo-random number
generator?

"
Letp be a prime and g be a generator elementin = F. The ease of computing
Legendre symbol of g* (mod p) means the ease of computing the parity bit of x. Why
is the extraction of x from g* (mod p) still a hard problem?

Chapter 10. Data Integrity Techniques

Section 10.1. Introduction

Section 10.2. Definition

Section 10.3. Symmetric Techniques

Section 10.4. Asymmetric Techniques |: Digital Signatures

Section 10.5. Asymmetric Techniques Il: Data Integrity Without Source ldentification

Section 10.6. Chapter Summary

Exercises

10.1 Introduction

InChapter 2 we made a realistic and standard assumption on the vulnerability of the open
communications network: all communications go through an adversary named Malice who is free
to eavesdrop, intercept, relay, modify, forge or inject messages. When Malice injects modified or
forged messages, he will try to fool the targeted receivers into believing that the messages are
sent from some other principals. To use such a vulnerable communications medium in a secure
manner, as is required for secure electronic commerce transactions, cryptographic mechanisms
which can provide the security service in terms of message confidentiality (i.e., protection
against eavesdropping) are inadequate. We need mechanisms which can enable a message
receiver to verify that a message has indeed come from the claimed source and has not been
altered in an unauthorized way during the transmission. Data integrity is the security service
against unauthorized modification of messages.

Data integrity in modern cryptography is closely related to, and evolves from, a classical subject
in communications: error-detection code. The latter is a procedure for detecting errors which can
be introduced into messages due to fault in communications. It is considered that using
information which has been modified in a malicious way is at the same risk as using information
which contains defects due to errors introduced in communications or data processing. As a
result, the working principle of the techniques providing data integrity and that of techniques
providing error-detection codes are essentially the same: a transmitter of a message creates a
"checking value” by encoding some redundancy into the message to be transmitted and appends
the checking value to the message; a receiver of the message then verifies the correctness of the
message received using the appended checking value according to a set of rules which are
agreed with the transmitter [275]. In error-detection codes, the redundancy is encoded in such a
way that the receiver can use a maximum likelihood detector to decide which message he should
infer as having most likely been transmitted from the possibly altered codes that were received.
In data integrity protection, the redundancy is encoded in such a way that the appended
checking value will be distributed as uniform as possible to the entire message space of the
checking values and so to minimize the probability for an attacker to forge a valid checking
value. The cryptographic transformation for the latter way of adding redundancy is similar to the
mixing-transformation property for encryption that we have described in §7.1), although for the
case of encryption the mix-transformation is not based on adding verifiable redundancy.

Like an encryption algorithm, the cryptographic transformations for achieving data integrity
should also be parameterized by keys. Thus, in the usual sense, a correct data-integrity
verification result will also provide the verifier with the knowledge of the message source, that
is, the principal who had created the data integrity protection. However, recently a notion of
"data integrity without source identification™ has emerged. This new notion is important in the
study of publickey cryptosystems secure against adaptive attackers. We will use an example to
introduce this notion. The example will serve a preparation for a later chapter where we study
the public-key cryptosystems secure against adaptive attackers.

10.1.1 Chapter Outline

We begin the technical part of this chapter with providing a syntactic definition for data integrity
protection (10.2). Cryptographic techniques for providing data integrity services will be
introduced. The introduction will be divided into symmetric techniques (810.3), asymmetric ones
(810.4) and the notion of data integrity without source identification §10.5.

10.2 Definition

Definition 10.1: Data Integrity ProtectionLetDatabe arbitrary information. Let Ke denote
an encoding key and Kv denote a verification key which matches the encoding key. Data integrity
protection onDatacomprises the following cryptographic transformations:

Manipulation detection code creation:

MDC «— f(Ke, Data);

Manipulation detection code verification:

g(kv, Data, MDC)
True, with probability 1 it MDC = f(Ke, Data)

False, with an overwhelming probability if MDC #£ f(Ke, Data)

Here fand g are efficient cryptographic transformations; the former is parameterized by an
auxiliary input Ke (encoding key) and the latter is parameterized by an auxiliary input Kv
(verification key); MDC stands formanipulation detection code.The probability space [2l
includes the space of all possible cases of Data, MDC and keys, and perhaps a random input
space if the signing/verification algorithms are probabilistic ones.

[al The meaning for the "overwhelming" probability follows the "overwhelming" notion we have defined in
§4.6.

Fig 10.1 provides an illustration of data integrity systems.

Figure 10.1. Data Integrity Systems

Source Message. Appended_Walue Recslver
—*T f i = Verificati -
Message [1Tans Ormation erification | ny.icage
Source Message Channel (] Receiver
ke o
Key Channel -
Key &
Generation
Secret—key Technigques: ke=kv Key Channel: e.g.. Courier
Public=key Technigues: ke =\= kv Key Channel: e.g., Directory

We should notice that although in our introductory discussions (and in Fig 10.1) we have used a
communications scenario to introduce the notion of data integrity protection, Definition 10.1
needn't be confined to communications; for example, the pair (Data, MDC) can be data stored to
or retrieved from an insecure data storage.

Similar to the case of cryptosystems, data integrity protection also have symmetric techniques
and asymmetric techniques. However we should notice a difference between the two systems in
the case of public-key techniques. In cryptosystems realized by asymmetric techniques, public
key and private key have fixed usages: public key is for message encoding (encryption) and
private key is for message decoding (decryption). In data-integrity systems realized by
asymmetric techniques, public (private) key can have both encoding and verification usages.
These two different usages will be the respective topics for 810.4 and 810.5.

10.3 Symmetric Techniques

In symmetric techniques for achieving data integrity, the cryptographic transformations f and g
(seeDefinition 10.1) are a symmetric cryptographic algorithm which means f = g and Ke = Kv,
that is, the creation and the verification of the consistency between Data and MDC use the
identical cryptographic operation.

Due to a close relation between data integrity and message authentication (we will study
message authentication in Chapter 11), MDC created by a symmetric cryptographic technique is
often called a message authentication code (MAC for short). A MAC can be created and
verified using a keyed hash function technique, or using a block cipher encryption algorithm.

10.3.1 Cryptographic Hash Functions

A common method for realizing a MAC is to use a so-called keyed hash function technique. We
first introduce cryptographic hash functions.

A hash function is a deterministic function which maps a bit string of an arbitrary length to a
hashed value which is a bit string of a fixed length. Let h denote a hash function whose fixed
output length is denoted by |h]. It is desired that h should have the following properties:

Property 10.1:Properties of a Hash Function

e Mixing-transformation On any input x, the output hashed value h(x) should be
computationally indistinguishable from a uniform binary string in the interval [0, 2Inl).
Here, the computational indistinguishability follows Definition 4.15 (in 84.7). By
Assumption 4.2 (also in 84.7), this property is a reasonable one.

e Collision resistance It should be computationally infeasible to find two inputs x, y with x

;ty such that h(x) = h(y). For this assumption to be reasonable, it is necessary that the
output space of h should be sufficiently large. The least value for |h| is 128 while a typical
value is 160.

e Pre-image resistance Given a hashed value h, it should be computationally infeasible to
find an input string x such that h = h(x). This assumption also requires the output space of
h be sufficiently large.

e Practical efficiency Given input string x, the computation of h(x) can be done in time
bounded by a small-degree polynomial (ideally linear) in the size of x.

The mixing-transformation and collision resistance properties of a hash function can be realized
by using operations similar to those used in the design of a block cipher algorithm (see
87.6—-87.7). The pre-image resistance property can be realized using some data compression
techniques which render partial loss of some input data and therefore make the function non-
invertible.

We shall not describe the design details of any real hash function. More inquisitive readers may
find them in the literature (e.g. Chapter 9 of [198]).

10.3.1.1 Hash Functions' Applications in Cryptography

Hash functions are widely used in cryptography. We can list here several important uses of hash
functions.

¢ In digital signatures, hash functions are generally used for generating "message digests™ or
"message fingerprints.” This usage is to add certain verifiable redundancy to a message to
be signed so that the hashed message contains recognizable information. We will see this
general usage of hash functions in digital signatures in this chapter (810.4). There we will
realize that security of a digital signature scheme (unforgeability) crucially depends on
some recognizable redundant information contained in the message sighed. Formal
arguments that this usage of hash functions offers provable security for digital signature
schemes will be described in Chapter 16.

e In public-key cryptosystems with fit-for-application security, hash functions are widely used
for realizing a ciphertext correctness verification mechanism. Such a mechanism is
necessary for an encryption scheme to achieve a provable security against active attackers.
We will see an example of this usage in this chapter (810.5). Formal evidence that this
usage of hash functions offers provable security for public-key encryption will be provided
inChapter 15 where we will further see the more fundamental role of hash functions play in
making public-key encryption provably secure.

e In a wide range of cryptographic applications where pseudo-randomness is required, hash
functions are widely used as practical pseudo-random functions. These applications include:
key agreement (e.g., two principals providing their own random seed input to a hash and
obtaining a shared key value), authentication protocols (e.g., for two protocol participants
to confirm the completion of a protocol run by exchanging some hashed values), electronic
commerce protocols (e.g., to achieve micro-payment aggregation via gambling [297,
201]), proof of knowledge protocols (e.g., to achieve a non-interactive mode of proof, see
§18.3.2.2). We will see abundant examples of such usages of hash functions in the rest of
this book.

10.3.1.2 Random Oracle

Let us recap the "mixing-transformation"” property of a hash function: on any input, the
distribution of the output hashed value is computationally indistinguishable from the uniform
distribution in the function's output space. If we change "is computationally indistinguishable
from the uniform distribution" into "is uniform," then we turn the hash function into a very
powerful and imaginary function named random oracle.

We regard random oracle a very powerful function because of the combination of the three
properties, i.e.: deterministic, efficient and uniform output. The reason for us to have labeled
random oracle an imaginary function is because from all computational models we know of,
there exists no computing mechanism or machinery which can be so powerful.

On the one hand, we know how to output uniformly distributed random values efficiently, e.g.,
tossing a fair coin. However this way of outputting randomness is not a deterministic procedure.
On the other hand, we can also relate a set of uniformly independent values deterministically,
e.g., by sorting a set of such values so that any two of them have a deterministic relation as the
distance between them in the sorted list. However, this relation cannot be computed in time
polynomial in the size of these random values (sorting a list of n items needs n log n steps).

In fact, a random oracle's properties of determinism and uniform output mean that the output of
a random oracle has an entropy greater than that of its input (review 83.7 for the definition of
entropy). However, according to Shannon's entropy theory (Theorem 3.2, in 83.7), a
deterministic function can never "amplify" entropy. Therefore, random oracle does not exist in

the real world.

Since the mixing-transformation property of a hash function is only a computational assumption
(Assumption 4.2, in 84.7), a hash function in the real world should have this property only up to
a computational indistinguishability given by Definition 4.15 (in 84.7), i.e., its output values
follow some probability distribution (in the output message space) which may not be discernible
by a polynomially bounded distinguisher. Thus, a real-world hash function only emulates the
random oracle behavior to a precision where the difference is hopefully a negligible quantity.

Nevertheless, hash function's emulated behavior of a random oracle plays an important role in
public-key cryptography. In essence, to hash a message is to add quality redundancy to the
message in a deterministically verifiable manner.

10.3.1.3 Birthday Attack

Assuming that a hash function h really behaves as a random oracle, the square-root attack (the
birthday attack, see 83.6) suggests that

olhl/2 _ \/9|h|

random evaluations of the hash function will suffice an attacker to obtain a collision with a non-
negligible probability. To mount a birthday attack, the attacker should generate random
message-hash pairs

(mi, h(ma)), (ma, h(mz)),

until he ends up with finding two messages m and m' satisfying

Equation 10.3.1

m#m', h(im)=h(m").

Such a pair of messages is called a collision under the hash function h. Of course, in order for a
birthday attack to be useful for the attacker, the collision message m and m' should contain
some meaningful sub-messages. For example, let a message to be hashed (and digitally signed,
see 810.4) be a payment authorization statement in the following form

M = Price, Goods_Description, R

whereR is a random number to make the protocol messages randomized (it is always desirable
that protocol messages are randomized). Then an interesting birthday attack can be

m = Price_l, Goods_Description, r

and

i - i i '
m' = Price_2, Goods_Description, r

where Price_1 # Price_2 and Goods_Description are fixed message parts, and the collision is on

the random numbers r Fr. Collision finding for such messages has the same complexity as
collision finding for random messages as in (10.3.1) since we can view

def

h'(x) = h(Price_1, Goods_Description, z)

and

h'(z) def h(Price 2, Goods_Description, x)

as two random functions.

It is obvious that fewer evaluations will be needed if a hash function is not a truely random
function.

Thus, the size of the output space of a cryptographic hash function must have a lower bound.
The current widely used hash functions in applied cryptography are SHA-1 [217] and RIPEMD-
160 [53]. Both have the output length |h| = 160. Their strength against the square-root attack
is therefore 289, This is compatible to the strength of a block cipher algorithm of the key length
up to 80 bits. The previous popular hash function MD5 [243] has the case |h| = 128 which was
tailored to suit the DES's key length of 56 bits and block length of 64 bits.

With the introduction of the AES-128, AES-192 and AES-256 (the AES of key lengths 128, 192
and 256 bits, respectively, see 87.7), standard bodies (e.g., the ISO/IEC [151]) are currently
standardizing hash functions of compatible output lengths |h| € {256, 384, 512}.

10.3.2 MAC Based on a Keyed Hash Function

Cryptographic hash functions naturally form a cryptographic primitive for data integrity. For use
in a shared-key scenario, a hash function takes a key as part of its input. The other part of the
input is the message to be authenticated. Thus, to authenticate a message M, a transmitter
computes

MAC = h(k | M),

wherek is a secret key shared between the transmitter and a receiver, and "||" denotes the bit
string concatenation.

From the properties of a hash function listed in 810.3.1, we can assume that in order to create a
valid MAC using a hash function with respect to a key k and a message M, a principal must

actually be in possession of the correct key and the correct message. The receiver who shares
the key k with the transmitter should recalculate the MAC from the received message M and
check that it agrees with the MAC received. If so the message can be believed to have come from
the claimed transmitter.

Because such a MAC is constructed using a hash function, it is also called an HMAC. It is often a
prudent practice that an HMAC is computed in the following format

HMAC = h(k || M || k),

that is, the key is pre-fixed and post-fixed to the message to be authenticated [288]. This is in
order to prevent an adversary from exploiting a "round-function iteration" structure of some
hash functions. Without guarding the both ends of the message with a secret key, such a known
structure of certain hash functions may allow an adversary to modify the message by pre-fixing
or post-fixing some chosen data to the message without need of knowing the secret key k.

10.3.3 MAC Based on aBlock Cipher Encryption Algorithm

A standard method for forming a keyed hash function is to apply the CBC mode of operation
using a block cipher algorithm. Conventionally, a keyed hash function so constructed is called a
MAC.

Lete k (m) denote a block cipher encryption algorithm keyed with the key k on inputing the
messagem. To authenticate a message M, the transmitter first divide M as

M=mms...myg

where each sub-message block m; (i =1, 2, ..., '5‘) has the size of the input of the block cipher
algorithm. Padding of a random value to the last sub-message block m; may be necessary if the
final block is not of the full block size. Let Co = IV be a random initializing vector. Now the
transmitter applies the CBC encryption:

C; +— E;;[T]'l-f'_ i {'1.;_]_:]_, I T

Then the pair

(IV,Ce)

will be used as the MAC to be appended with M and sent out.

It is obvious that the computation for creating a CBC-MAC involves noninvertible data
compression (in essence, a CBC-MAC is a "short digest" of the whole message), and so a CBC-
MAC is a one-way transformation. Moreover, the mixing-transformation property of the
underlying block cipher encryption algorithm adds a hash feature to this one-way transformation
(i.e., distributes a MAC over the MAC space as uniform as the underlying block cipher should do

over its ciphertext message space). Thus, we can assume that in order to create a valid CBC-
MAC, a principal actually has to be in possession of the key k which keys the underlying block
cipher algorithm. The receiver who shares the key k with the transmitter should recalculate the
MAC from the received message and check that it agrees with the version received. If so the
message can be believed to have come from the claimed transmitter.

We will sometimes denote by MAC(k, M) a MAC which provides the integrity service on the
messageM for principals who share the key k. In this denotation we ignore the implementation
details such as what underlying one-way transformation has been used for the MAC's realization.

10.4 Asymmetric Techniques I: Digital Signatures

In public-key cryptography, a principal can use her/his private key to "encrypt" a message and
the resultant "ciphertext” can be "decrypted" back to the original message using the principal’s
public key. Evidently, the "ciphertext" so created can play the role of a manipulation detection
code (MDC) accompanying the "encrypted" message, that is, provide data integrity protection
for the message. Here, the public-key "decryption” process forms a step of verification of the
MDC.

Moreover, while the verification of such an MDC can be performed by anybody since the public
key is available to anybody, it is considered that only the owner of the public key used for the
MDC verification could have created the MDC using the corresponding private key. Thus, this
usage of public key cryptography can model precisely the property of a sighature, a digital
signature, for proving the authorship of a message. In other words, public-key cryptography,
more precisely, a one-way trapdoor function (see Property 8.1, in 88.1) can be used to realize a
digital signature schemel®l. Diffie and Hellman envision the notion of digital signature first [97]
(the publication date of this paper is 1976, but the paper was first distributed in December 1975
as a preprint, see [96]).

[b] Although the more fundamental basis for digital signatures is one-way function, see [173], one-way
trapdoor function is the basis for practical digital signatures.

The ability to provide a digital signature forms a great advantage of public-key cryptography
over secret-key cryptography (the other significant advantage of public-key cryptography is the
possibility of achieving key distribution between remote parties, see, e.g., 88.15). Now that only
a single entity is able to create a digital signature of a message which can be verified by
anybody, it is easy to settle a dispute over who has created the signature. This allows provision
of a security service called non-repudiation which means no denial of a connection with a
message. Non-repudiation is a necessary security requirement in electronic commerce
applications.

Syntactically,Definition 10.2 specifies the definition of a digital signature scheme.

Definition 10.2: Digital Signature SchemeA digital signature scheme consists of the following
attributes:

a plaintext message space M a set of strings over some alphabet
e a signature space S: a set of possible sighatures

e a signing key space K: a set of possible keys for signature creation, and a verification key
space K': a set of possible keys for signature verification

e an efficient key generation algorithmGen : N — K x K'where K, K" are private, public
key spaces, respectively.

 an efficient signing algorithmSign:M x K ==*s
¢ an efficient verification algorithmVerify : M x S x K' F=* {True, False}.

For any sk € K and any m € M, we denote by

s «— Sign .(m)

the signing transformation and read it as "s is a signature of m created using key sk.”

For any secret key sk €K, let pk denote the public key matching sk, and for m €M, s ES, itis
necessary

True, with probability 1 if &« Sign_.(m)
Verify .(m, s) =
False, with an overwhelming probability if 5<% Sign,, (m)

where the probability space includes S, M, K and K', and perhaps a random input space if the
signing/verification algorithms are probabilistic ones.

This definition can be viewed as a special case of Definition 10.1: (Sign,Verify), (sk, pk) and (m,
s) in the former correspond to (f, g), (Ke, Kv) and (Data,MDC) in the latter, respectively.

Notice that the integer input to the key generation algorithm Gen provides the size of the output
signing/verification keys. Since the key generation algorithm is efficient with running time
polynomial in the size of its input, the input integer value should be unary encoded (reason see
Definition 4.7 in 84.4.6.1). This integer is the security parameter of the signature scheme and
defines the size of the signature space.

With the size of the signature space defined by the security parameter, the meaning for the

"overwhelming" probability for the case of Verifypk(m, s) = False when 3 (7"}_ Slgnsk{m} follows
the "overwhelming" notion defined in 84.6. However, this probability must disregard an easy
forgery case to be remarked in Remark 10.1. Quantitative measure for "overwhelming” will be
given for several "fit-for-application" signature schemes when we study formal proof of security
for digital signatures in Chapter 16.

Semantically, Shannon's mixing-transformation characterization for encryption algorithms (see
87.1) also makes a great sense for a digital signature scheme. Algorithm Sign should also be a
good mixing-transformation function: output signature values which are fairly uniformly
distributed over the entire signature space S. This property prevents an easy way of creating a
valid signature without using the corresponding signing key.

10.4.1 Textbook Security Notion for Digital Signatures

Analogous to the case of Property 8.2 (in 88.2) being a textbook security notion for the basic
public-key encryption algorithms introduced in Chapter 8, we shall also consider a very weak
security notion for digital signature schemes to be introduced in this chapter.

Property 10.2:Textbook Security Notion for Digital SignaturesWithin the scope of this
chapter we only consider a restricted notion of security for digital signatures. We say that a
digital signature is secure if it is computationally infeasible for an attacker to forge (i.e., to
create) a valid message-signature pair "from scratch.” That is, the attacker is given a public key
and the description of a signature scheme, and is required to output a valid message-signhature
pair which has never been issued by a targeted signer (i.e., the owner of the given public key).
The attacker is non-adaptive, that is, it does not try to ease its forgery task via, e.g., using some
other available message-signature pairs or interacting with the targeted signer for the signer to
issue valid signatures on the messages of the attacker's choice.

We should notice that this notion of security for digital signatures is inadequate for applications
because it assumes that the attacker is unreasonably weak or that the environment is extremely
harsh to the attacker. In reality, message-signature pairs with respect to a given public key and
a signature scheme are abundantly available since they are not secret information. Also in
general the attacker should be entitled to ask a signer to issue signatures on messages of its
choice. Such an attacker is an adaptive one because it can choose messages in an adaptive way.
In such an "adaptive chosen-message attack”, the attacker is given a target message, it can
choose messages based on the target message (maybe doing some algebraic transformation on
the target message) and send the chosen messages to a targeted signer to get them signed. This
is like the signer providing the attacker with a training course for signature forgery. The task for
the attacker is to forge a signature on the target message. As we have discussed in 88.6 on the
severity of adaptive attacks on cryptosystems, with the same reasons, an adaptive chosen-
message attack on signature schemes, although much severer than a non-adaptive one, is a
reasonable attacking scenario and hence should be seriously considered.

Recall that when we consider textbook security notion for textbook public-key encryption
algorithms in the preceding chapter, we have explicitly warned many times that a public key
owner must not provide a "naive decryption service" to an attacker. That level of vigilance may
be possible if a key owner is smart enough, even though demanding a user to keep a high
degree of vigilance is not a correct solution to adaptive attacks. Now in the signature case, we
can no longer demand or warn the user not to provide "naive signing services." Signing service
may be unavoidable: to issue signatures of given messages can be a perfectly normal service in
many applications.

A strong notion of security for digital signature, which can be called unforgeability against
adaptive chosen-message attack and is a fit-for-application security notion for digital
signatures as the counterpart to CCA2 (Definition 8.3, in 88.6) for cryptosystems, will be
introduced in Chapter 16. Formal security arguments for some digital signature schemes under
the strong security notion will also be studied there.

We remark on an easy but benign form of signature forgery:

. Remark 10.1 Existential forgery

The algorithms (Signsk, Verify p)form a one-way trapdoor function pair. The one-way part is
Verifypkand the trapdoor partisSign ax.In general, the functionVerify pc(s, m)is computed in the
direction from s to m. Therefore, many digital signature schemes based on a one-way trapdoor
function generally provide an efficient method for forging "valid message-signature” pairs using
the one-way functionVerify pxcomputing from s to m. However, thanks to the mixing-
transformation property which must also be possessed by the one-way function Verify px,a
"message” generated from a "signature” using function Verify pcwill look random and is almost
certainly meaningless. This easy way of forgery is part of a forgery technique called existential
forgery.Digital signature schemes based on one-way trapdoor functions generally permit
existential forgery. A usual method to prevent existential forgery is to add recognizable
redundancy to the message to be signed which permits a verifier to verify non-random

distribution of a message. 0

Algorithm 10.1: The RSA Signature Scheme

Key Setup

The key setup procedure is the same as that for the RSA cryptosystems (Alg 8.1).
(* thus, user Alice's public-key material is (N, e) where N = pq with p and g being
two large prime numbers of roughly equal size, and e is an integer such that gcd(e,

f(N)) = 1. She also finds an integer d such that ed = 1 (mod f(N)). The integer d is
Alice's private key. *)

Signature Generation

. me £y ..
To create a signature of message N, Alice creates

s = Signy(m) — m? (mod N).

Signature Verification

Let Bob be a verifier who knows that the public-key material (N, e) belongs to Alice.
Given a message-signhature pair (m, s), Bob's verification procedure is

Verify(n) (m, 5) = True if m = s (mod V).

(* N.B., Message m must be a recognizable one, see §10.4.3. *)

Let us now introduce several well-known digital signature schemes.

10.4.2 The RSA Signature (Textbook Version)

The RSA signature scheme is the first digital signature scheme following the envision of Diffie
and Hellman. It is realized by Rivest, Shamir and Adleman [246]. The RSA signature scheme is
specified in Alg 10.1. We notice that this is a textbook version for signing in RSA.

It is easy to see that the RSA digital signature procedures are in the same format as those for
the RSA encryption and decryption (see 88.5), except that now Alice performs "encryption" first
using her private key, and Bob (or anybody) performs "decryption” later using Alice's public key.
The holding of the verification congruence for a valid signature follows exactly the argument we
have made in 88.5 for the cases of the RSA encryption and decryption.

10.4.3 Informal Security Argument for the RSA Signature

If the RSA signhature scheme is just as simple as we have described, then itis not difficult at all

for anybody to forge Alice's signature. For example, Bob can pick a random number s € N and

compute

Equation 10.4.1

m «— 8% (mod N).

Of course, for such a prepared "message"-signature pair, the verification will return True. Also,
the multiplicative property of the RSA function (see (8.9.1) in 88.9) provides an easy-to-forge
new message-signature pair from existing ones, e.g., a new message-signature pair (mimzo,
s182) from existing message-signature pairs (m1,s 1) and (maz,s 2).

As we have remarked in Remark 10.1, the above methods of forgery are existential forgeries.
Sincem created in (10.4.1) or by multiplication should look random, the existential forgery is
usually prevented by adding recognizable redundant information to m so that m becomes non-
random or is "meaningful.” The simplest method for adding recognizable information into a
message is to have a message contain a recognizable part, e.g., m = M || | where M is the
message really signed and | is a recognizable string such as the signer's identity.

The most commonly used method for adding recognizable information to a message is to "hash"
the message using a cryptographic hash function (§10.3.1). Let h be such a hash function
mapping from {0, 1}* to M. Then a message m €M is regarded as recognizable or meaningful if
there exists a string M € {0, 1}* such that

m = h(M).

Under such a notion of message recognizability, forging an RSA signature should no longer be an
easy job. Computing m from s as in (10.4.1) does not constitute a useful forgery if the attacker
cannot also come up with a message m which is recognizable, e.g., the attacker has in its
possession a pre-image of m under the cryptographic hash function used. If we assume that the
hash function behaves like a random oracle does (the random oracle behavior is described in
810.3.1.2), then "forging from scratch” an RSA signature for a given message should have the
difficulty of solving the RSA problem, i.e., that of extracting the eth root modulo N (Definition
8.4, in 88.7).

However, we must notice that we have not provided any formal evidence (i.e., proof) for this
result. The textbook RSA signature scheme in Alg 10.1 certainly does not have a provable
security. For the simple version using hash function on the message, no one knows how to prove
its security under adaptive chosen-message attack. Hence, this simple version should also be
labeled a textbook RSA signature.

A better algorithm for signing in RSA using hash functions will be introduced in Chapter 16. That
algorithm is a probabilistic one, meaning a sighature output from the signing algorithm has a
random distribution in the signature space, which is indistinguishable from a uniform
distribution. That algorithm is also a fit-for-application version of the RSA signature scheme.
Formal argument for security of that RSA signature scheme will be considered under a stronger
and fit-for-application security notion which will also be introduced in Chapter 16.

10.4.4 The Rabin Signature (Textbook Version)

The Rabin signature scheme [240] is very similar to the RSA signature scheme. The difference
between the two schemes is that they use different kinds of verification exponents. In the case of
RSA, the verification exponent e is an odd integer since it is required that gcd(e,f (N)) = 1 where
p(N) is an even number, while in the case of the Rabin, e = 2.

The Rabin signature scheme is specified in Alg 10.2. We notice that this is a textbook version for
signing in Rabin.

The Rabin signhature has a couple of advantages over RSA. First, forgery is provably as hard as
factoring (formal argument deferred). Secondly, verification is faster, and is suitable to use in
applications where signature verification uses small computing devices, such as handheld ones.

FollowingRemark 10.1, if m is not a recognizable message, then it is trivially easy to forge a
valid "message"-signature pair for the Rabin signature scheme. This is an existential forgery.
The usual prevention method is to hash a message as in 810.4.3 so that the message becomes
recognizable.

10.4.5 A Paradoxical Security Basis for Signing in Rabin

Using the same idea in Theorem 8.2 (in 88.11) we can also show that if there exists an
algorithm for forging a Rabin signature, then the forging algorithm can be used for factoring the
composite modulus used in the signature scheme. This is a desirable property because it relates
signature forgery to a reputably hard problem (factorization).

However, this strong security property also means that the Rabin signature scheme is fatally
insecure against an adaptive attack in which an attacker can ask the signer to issue the

+*
signatures of messages of its choice. For example, the attacker can pick an arbitrary s E EN,

and submit m = s2 (mod N) to Alice for her to return a Rabin signature of message m. Alice's

reply, let it be s', is any one of four square roots of m. If s’ & +s (mod N), then her modulus can
be factored by the adaptive attacker.

Therefore, the textbook Rabin signature scheme specified in Alg 10.2 is absolutely unusable in
any real world application where an adaptive attack is unavoidable. Signing in Rabin for any real
world application must prevent an adaptive attacker from obtaining two different square roots of
one message.

Algorithm 10.2: The Rabin Signature Scheme

Key Setup

User Alice sets up her public modulus same as an RSA modulus. (* so her modulus is
N = pq with p, g being distinct odd primes. N is her public key and p, q form her
private key. *)

Signature Generation

Y
To create a signature of message m € EJ"’-’. Alice creates signature

s — m"? (mod n).

(* for this calculation to be possible, it is necessary for m € QRy; from 86.6.2 we
_ #QRy = #2Z%5 /4
know that for N being an RSA modulus, N N , i.e., a quarter of the

£l
elements in =N are in QRy; thus, Alice can employ a suitable message formatting
mechanism so that she can make sure m € QRy; for such m, Alice can use Alg 6.5 to
compute a square root of m. *)
Signature Verification

Let Bob be a verifier who knows that the public modulus N belongs to Alice. Given a
message-signature pair (m, s), Bob's verification procedure is

Verifyy(m, s) = True if m = s* (mod B).

(* N.B., Message m must be a recognizable one, see §10.4.3. *)

A better and fit-for-application scheme for signing in Rabin using hash functions will be
introduced in Chapter 16. That algorithm is a probabilistic one which guarantees that multiple
issuances of signatures for the same message will be randomized so that an adaptive attacker
cannot obtain two different square roots of one message. That Rabin signature scheme is
therefore a fit-for-application one. Formal argument for security of that Rabin signature scheme
will be considered under a stronger and fit-for-application security notion which will also be
introduced in Chapter 16.

We summarize a paradoxical result regarding security for signing in Rabin.

On the one hand, using the same method in Theorem 8.2 (in §8.11), the textbook sense of
unforgeability for the textbook Rabin signature can be shown as equivalent to factorization. This
result not only is a very strong one since it is formal evidence (i.e., a proof), but also is a
desirable one since it relates forgery to a reputably hard problem: integer factorization.

On the other hand, the textbook version of the Rabin signature scheme is hopelessly weak and
absolutely unusable in real world applications where adaptive chosen-message attacks are

common. Such attacks totally destroy the scheme. A fit-for-application variation for signing in
Rabin is necessary and such a variation will be introduced in Chapter 16. Unfortunately however,
as we shall see in that chapter, our proof of security (formal evidence of security) for that
scheme will no longer relate unforgeability to integer factorization.

10.4.6 The ElIGamal Signature

In addition to his elegant public-key cryptosystem in §8.12, EIGamal also works out an ingenious
digital signature scheme. Similar to the case of the EIGamal public-key cryptosystem inspiring
great follow-up research and application interests which last to this day, the EIGamal signature
scheme is also the origin of many further digital signature schemes which belong to the family of
ElGamal-like signature schemes (some of them will be introduced in §10.4.8 and their security
properties further studied in Chapter 16).

The ElGamal signature scheme is specified in Alg 10.3.

10.4.7 Informal Security Argument for the EIGamal Signature

Let us now investigate a few security issues in the EIGamal signature scheme.

10.4.7.1 Warnings

We notice a few warnings in the EIGamal signature schemes.

Warning 1

The first warning is the importance of checking r < p in the signature verification.
Bleichenbacher [41] discovers the following attack if Bob would accept signatures where r is

larger than p. Let (r, s) be a signature on message m. Malice can forge a new signhature on an
arbitrary message m' as follows:

1. u+#=—m'm-1(modp-1)
2. s'#&==su(mod p—1)

3. computer' satisfying: r' =ru (mod p— 1) and r' =r (mod p); this can be done by applying
the Chinese Remainder Theorem (Alg 6.1)

Then it is routine to go through the following congruence:

yﬂi e - yAru,r,ﬁu - (_HATT,SJH - gmu = gmr {l'ﬂ(}d ﬂ}

Algorithm 10.3: The ElIGamal Signature Scheme

Key Setup

The key setup procedure is the same as that for the EIGamal cryptosystems (see

§8.12).

(* thus, user Alice's public-key material is a tuple (g, y, p) where p is a large prime

IF* -
number, gE P is a random multiplicative generator element, and ya =g *A (mod
p) for a secret integer xa < p — 1; Alice's private key is xa. *)

Signature Generation

E
To create a signature of message m € FP', Alice picks a random number

{ ey Z;

=1 (ie., f <p-1andgcd(l, p—1) = 1) and creates a signature pair (r,s)
where

Equation 10.4.2

r «— g (mod p)

1

s+— 0~ m —xar) (mod p — 1).

* f—l can be computed using the extended Euclid's algorithm (Alg 4.2). *)
Signature Verification

Let Bob be a verifier who knows that the public-key material (g, ya,p) belongs to
Alice. Given a message-signature pair (m,(r, s)), Bob's verification procedure is

Verify, y(m, (r,s)) = True if

Gy 4AP

I

r<p and yao"r® = g™ (mod p).

(* N.B., Message m must be a recognizable one, see §10.4.7.2. *)

The attack is prevented if Bob checks r < p. This is because r' computed from the Chinese
Remainder Theorem in step 3 above will be a value of a magnitude p(p — 1).

Warning 2

The second warning is also discovered by Bleichenbacher [41]: Alice should pick the public

%
parameterg randomly in — F. If this parameter is not chosen by Alice (e.g., in the case of the
system-wide users share the same public parameters g, p), then a publicly known procedure
must be in place for users to check the random choice of g (e.g., g is output from a pseudo-
random function).

Now let us suppose that public parameters g, p are chosen by Malice. Parameter p can be setup
in a standard way which we have recommended in 88.4.1: let p—1 = bq where g can be a
sufficiently large prime but b can be smooth (i.e., b only has small prime factors and so
computing discrete logarithm in group of order b is easy, see 88.4.1).

Malice generates g as follows

g = 3" (mod p)

for some b = cq with ¢c < b.

For Alice's public key yA, we know that the extraction of the discrete logarithm of yA to the base
g is hard. However, the extraction of the discrete logarithm of yAY to the base g9 is easy. The
discrete logarithm is z =x o (mod b), that is the following congruence holds:

ya? = (g?)* (mod p).

Withz, Malice can forge Alice's signature as follows:

T+— 3 =cq
8 — t(m —ecqz) (mod p— 1)

Then it is routine to go through the following congruence:

yAT‘,rS = y‘ch{ﬁ:‘.]{rn—ﬁ‘qz} = Igcq:y-;:r:.—cqz = g™ (I‘IID{'_I p)

Hence, (r, s) is indeed a valid signature on m, which is created without using xa (but using Xa
(modb)).

We notice that in this signature forgery attack, r is a value divisible by q. So in the standard
parameter setting for p satisfying p = bq where q is a large prime, this attack of Bleichenbacher

can be prevented if in the verification time Bob checks q ;l’ E (suppose that the standard setting
up of p makes q part of the public parameter). Related to this point, later in 8§16.3.2.1 when we
will conduct a formal prove for unforgeability of the EIGamal signature scheme, we will see that

the condition 4 J'rr must be in place in order for the formal proof to go through.

Warning 3

The third warning is the care of the ephemeral key f Similar to the case of the EIGamal
encryption: the ElIGamal signature generation is also a randomized algorithm. The

randomization is due to the randomness of the ephemeral key &‘

Alice should never reuse an ephemeral key in different instances of signature issuance. If an

ephemeral key f is reused to issue two signatures for two messages mi #m 2 (mod p — 1), then
from the second equation in (10.4.2), we have

£(s1 — 82) = mq —mo (mod p—1).

Since f—l (mod p — 1) exists, my Fm 2 (mod p — 1) implies

Equation 10.4.3

(71 = (51 —s2)/(my —mg) (mod p — 1),

i.e., f—l is disclosed. In turn, Alice's private key xa can be computed from the second equation in
(10.4.2) as

Equation 10.4.4

xA = (my —¥s1)/r (mod p—1).

o
Notice also that the ephemeral key must be picked uniformly randomly from the space Eﬁ—l. A
particular caution should be taken when a signature is generated by a small computer such as a
smartcard or a handheld device: one must make sure that such devices should be equipped with
adequately reliable randomness source.

As long as f is used once only per sighature and is generated uniformly random, the second
equation for signature generation (10.4.2) shows that it essentially provides a one-time
multiplication cipher to encrypt the signer's private key x. Therefore, these two secrets protect
one another in the information-theoretical secure sense.

10.4.7.2 Prevention of Existential Forgery

Existential forgery given in Remark 10.1 applies to the EIGamal signature too if the message
signed does not contain recognizable redundancy. That is, it is not difficult to forge a valid
"message"-signature pair under the ElIGamal signature scheme where the resultant "message" is
not a recognizable one.

For example, let u, v be any integers less than p — 1 such that gcd(v, p — 1) = 1; set

r— g"ya" (mod p),

s« —rv~! (mod p—1),

m «— —ruv~ ! (mod p — 1);

then (m, (r, s)) is indeed a valid "message"-signature pair for the EIGamal signature scheme
related to Alice's public key yA since

ru A

YA T
ya (g ya’)”

T — 1 3N — T
= ya"(g")™"™" (ya®)™™

"

yT' ?_S
o1

1

—Truy

— ' 1 e
= YA g YA

— g—ruq:_ 1

g™ (mod p).

However, in this forgery, "message" m is not recognizable due to the good mixing-
transformation property of the modulo exponentiation.

A message formatting mechanism can defeat this forgery. The simplest message formatting
mechanism is to have m to contain a recognizable part, e.g., m = M || | where M is the message
to be signed and | is a recognizable string such as the signer's identity.

The most commonly used message formatting mechanism is to have m to be a hashed value of
the message to be signed. An example of such a hashed message can be

m = H(M,r)

whereH is a cryptographic hash function and M is a bit string representing a message. Now the
signature is of the message M. The verification step includes verifying m = H(M, r). The one-way
property of the hash function effectively stops the existential forgery shown above.

If we assume that the hash function H behaves like a random oracle does (see §10.3.1.2), then
formal evidence to relate the unforgeability of EIGamal signature to the discrete logarithm
problem (a reputably hard problem) can be obtained. However, at this moment we do not have
sufficient tool to demonstrate such formal evidence. The formal demonstration will be deferred to

Chapter 16.

For the same reason, we will also defer to Chapter 16 formal proof of security for other signature
schemes in the EIGamal signature family.

10.4.8 Signature Schemes in the ElIGamal Signature Family

After EIGamal's original work, several variations of the EIGamal sighature scheme emerged. Two
influential ones are the Schnorr signature scheme [256,257] and the Digital Signature Standard

(DSS) [215,216].

10.4.8.1 The Schnorr Signature

The Schnorr signature scheme is a variation of the EIGamal signature scheme but possesses a
feature which forms an important contribution to public-key cryptography: a considerably
shortened representation of prime field elements without having degenerated the underlying
intractable problem (which is the DL problem, see 88.4). This idea is later further developed to
finite fields of a more general form in a new cryptosystem: the XTR public-key system [175].

The shortened representation is realized by constructing a field Fp such that it contains a much
smaller subgroup of prime order q. We notice that the current standard parameter setting for p

in ElGamal-like cryptosystems is p == 21024 e should further notice that the size for p is likely
to grow to suit the advances in solving the DL problem. However, after Schnorr's work, it has

become a standard convention (a rule of thumb) that parameter setting for q is q == 2160_ |t is
quite possible that this setting is more or less a constant regardless of the growth of the size of
p. This is because that the subgroup information does not play a role in general methods for
solving the DL problem in Fp, even if the target element is known in the given subgroup. The
constant-ish 2160 setting for q is merely imposed by the lower-bound requirement due to the
square-root attack (see 83.6).

The Schnorr signature scheme is specified in Alg 10.4

Notice that in the setting-up of public parameters, a generator g can be found quickly. This is
because for q|p — 1,

Prob [ged(ord(f),q) = 1| f €v Z,,] < 1/q,

p—1
q

i.e., the probability of random chosen f satisfying g g+ Jr =1 (mod 'P) is negligibly
small. By Fermat's Little Theorem (Theorem 6.10in 86.4), we have

g? =1 (mod p).

Thereforeg indeed generates a subgroup of g elements.

The signature verification works correctly because if (m, (s, e)) is a valid message-signature pair
created by Alice, then

As we have discussed earlier, working in the order-q subgroup of FP, a signature in the Schnorr
signature scheme is much shorter than that of a signature in the EIGamal signature scheme:
2]q| bits are required for transmitting a Schnorr signature, in comparison with 2|p| bits for

transmitting an ElIGamal signature. The shortened signature also means fewer operations in
signature generation and verification: Og(logzq log 2p) in Schnorr vs. O g(log3p) in EIGamal.
Further notice that in signature generation, the modulo p part of the computation can be
conducted in an off-line manner. With this consideration, real-time signature generation only
needs to compute one multiplication modulo g, the hardwork is done in offline time. Such a
design arrangement is suitable for a small device to perform.

Same as the case of the EIGamal signature, the ephemeral key f should never be reused, and
should be uniformly random. Under these conditions, the ephemeral key and the signer's private
key protect one another in an information-theoretical secure sense.

10.4.8.2 The Digital Signature Standard (DSS)

In August 1991, the US standards body, National Institute of Standards and Technology (NIST),
announced a new proposed digital signature scheme called the Digital Signature Standard (DSS)
[215,216]. The DSS is essentially the EIGamal signature scheme, but like the Schnorr signature

scheme, it works in a much smaller prime-order subgroup of a larger finite field in which the DL

problem is believed to be hard. Therefore, the DSS has a much reduced signature size than that
for the EIGamal signature scheme.

Algorithm 10.4: The Schnorr Signature Scheme

Setup of System Parameters

1. Setup two prime numbers p and g such that q|p — 1;

(* typical sizes for these parameters: |p|] = 1024 and |q| = 160 *)
*
2. Setup an element g€ Z'13' of order q;

. TE 1}
(* this can be done by picking f €v ZP and setting g+~ f{p & (mod P).
Ifg = 1, repeat the procedure until g F1 *)

H:{0,1}" — Z,.

3. Setup a cryptographic hash function
(* for example, SHA-1 is a good candidate for H *)
The parameters (p, g, g, H) are publicized for use by system-wide users.
Setup of a Principal's Public/Private Key

rey L

User Alice picks a random number 9 and computes

T

y+— g " (mod p).

Alice's public-key material is (p, q, 9, ¥, H); her private key is x.

Signature Generation

To create a signature of message m € {0, 1}*, Alice picks a random number

{ ey

Zfi and computes a signature pair (e, s) where
r «— ¢* (mod p);

e — H(m | r);

s « {4+ ze (mod g).

Signature Verification

Let Bob be a verifier who knows that the public-key material (p, q, g, y, H) belongs
to Alice. Given a message-signature pair (m, (e, s)), Bob's verification procedure is

r' «— g%y° (mod p),
e — H(m || '),
Verifye, o o.4.0 (M, (s,€)) = True if € =e.

Algorithm 10.5: The Digital Signature Standard

Setup of System Parameters

(* the system parameters are identical to those for the Schnorr signature scheme;
thus, parameters (p, q, g, H), which have the same meaning as those in Alg 10.4,
are publicized for use by the system-wide users. *)

Setup of a Principal's Public/Private Key

User Alice picks a random number r ey L

7 as her private key, and computes her
public key by

y +— g* (mod p).

Alice's public-key material is (p, g, g, ¥, H); her private key is x.

Signature Generation

To create a signature of message m € {0, 1}*, Alice picks a random number

{ = &

4 and computes a signature pair (r, s) where

r + (g* (mod p)) (mod q),
s — 7Y H(m) + zr) (mod q).

Signature Verification

Let Bob be a verifier who knows that the public-key material (p, q, g, y, h) belongs
to Alice. Given a message-sighature pair (m, (r, s)), Bob's verification procedure is

w+— s~ (mod q),

wy «— H(m)w (mod q),
ta — rw (mod q),
Verify , 4 a.0.0) (11 (1, 8)) = True if r = (g™ y"* (mod p)) (mod g).

The DSS is specified in Alg 10.5

Signature verification works correctly because if (m, (r, s)) is a valid message-signature pair
created by Alice, then

H(m)s ™ yrs™" — g(Him)tar)s™ — o€ (104 p):

i,

Y

t

g =4

=
Il

comparing the right-hand side with the first equation for signature generation, this congruence
should return r if is further operated modulo g.

The communication bandwidth and the computational requirements for the DSS are the same as
those for the Schnorr signature scheme if the public parameters of these two schemes have the
same size.

The DSS has been standardized together with a compatible standardization process for its hash
function, namely SHA-1 [217]. The use of the standard hash function provides the needed
property for message recognizability and so prevents existential forgery.

Finally, the caution for the ephemeral key is also necessary as in all signature schemes in the
ElGamal signature family.

10.4.9 Formal Security Proof for Digital Signature Schemes

Analogous to our discussion in 88.14 on the need for stronger security notions for public-key
cryptosystems, we should also provide a brief discussion on the issue of provable security for
digital signature schemes.

The reader may have noticed that in this chapter we have not provided any formal evidence on
showing security for the digital signature schemes introduced. Indeed, as we have remarked in
Remark 10.2, in this chapter we will not consider formal proof for signature schemes. There are
two reasons behind this.

To explain the first reason, we notice that it is reasonable to expect that forging a signature
"from scratch” should be harder than doing the job by making use of some available message-
signature pairs which an attacker may have in possession before it starts to forge. The forgery
task may be further eased if the attacker can interact with a targeted signer and persuade the
latter to provide a signing service, i.e., to issue signatures of messages chosen by the attacker.
Signature forgery based on making use of a targeted signer’s signing service is called forgery via
adaptive chosen-message attack.

In reality, message-signature pairs with respect to a given public key are abundantly available.
Also, adaptive attacks are hard to prevent in applications of digital signatures: to issue
signatures of given messages can be a perfectly legitimate service in many applications.
Consequently, a fit-for-application notion of security for digital signatures is necessary. Such a
security notions will be defined in Chapter 16. This is the first reason why we have deferred
formal security proof for digital signature schemes.

For the second reason, we have also seen that it is generally easy to forge a message-signature
pair, even to forge it "from scratch" if the "message" is not recognizable (in general, see Remark
10.1 for ease of existential forgery and in specific, review many concrete cases of existential
forgery in our description of various concrete schemes). To prevent such easy ways of forgery,
any digital signature scheme must be equipped with a message formatting mechanism which
renders a message to be signed into a recognizable one. Most frequently, message formatting
mechanisms use cryptographic hash functions. It is thus reasonable to expect that a formal
evidence for security of a digital signhature scheme should be supplied together with a formally
modeled behavior of a cryptographic hash function. In absence of a formally modeled hash
function behavior, we have not been able to provide formal argument on security for digital
signature schemes introduced so far in this chapter. This is the second reason why we have
deferred formal security proof for digital signature schemes.

We have discussed in §10.3.1.2 that cryptographic hash functions try to emulate random
functions. For cryptographic schemes which use hash functions, a notion for establishing formal
evidence for their security is called random oracle model (ROM) for provable security. This
notion will be available in Chapter 16. There, we shall see that under the ROM, we will be able to
provide formal evidence to relate the difficulty of signature forgery (even via adaptive chosen-
message attack) to some well-known computational assumptions in the theory of computational
complexity.

10.5 Asymmetric Techniques Il: Data Integrity Without
Source ldentification

In a data integrity mechanism realized by a digital signature scheme, the usual setting for key
parameters stipulates that Ke is a private key and Kv is the matching public key. Under this
setting, a correct integrity verification result of a message provides the message verifier the
identity of the message transmitter who is the signer of the message, i.e., the owner of the
public key Kv.

We should notice however that this "usual setting for key parameters,"” while being a necessary
element for achieving a digital signature scheme, is unnecessary for a data-integrity system. In
fact, in Definition 10.1 we have never put any constraint on the two keys for constructing and for
verifyingMDC.

Thus, for example, we can actually set the two keys, Ke and Kv, opposite to that for a digital
signature scheme, that is, let Ke be a public key and Kv be a private key. Under such a key
setting, anybody is able to use the public key Ke to create a consistent (i.e., cryptographicly
integral) pair (Data, MDC) or a "message-signature pair" (m, s), while only the holder of the
private key Kv is able to verify the consistency of the pair (Data, MDC) or the validity of the
"signature" (m, s). Of course, under such an unusual key setting, the system can no longer be
regarded as a digital signature scheme. However, we must notice that, according to Definition
10.1, the system under such an unusual key setting remains a data-integrity system!

Since anybody can have used the public key Ke to create the consistent pair (Data, MDC), we
shall name this kind of data-integrity system data-integrity without source identification.
From our familiarity with the behavior of Malice (the bad guy), there is no danger for us to
conveniently rename this data-integrity service "data integrity from Malice."

Let us now look at an example of a public-key encryption scheme which provides this sort of
service. This is a scheme with such a property: Malice can send to Alice a confidential message
such that the message is "non-malleable” (e.g., by other friends of Malice), that is, it's
computationally hard for any other member in the clique of Malice to modify the message
without being detected by Alice, the message receiver. This algorithm, with its RSA instantiation
being specified in Alg 10.6, is named Optimal Asymmetric Encryption Padding (OAEP) and
is invented by Bellare and Rogaway [24].

If the ciphertext has not been modified after its departure from the sender, then from the
encryption algorithm we know that Alice will retrieve the random number r correctly, and
therefore

v=s®G(r)=(m| 0")®G(r)®Gr) =m| 0k,

Therefore, Alice will see k; zeros trailing the retrieved plaintext message.

On the other hand, any modification of the ciphertext will cause an alteration of the message
sealed under the RSA function. This alteration will further cause "uncontrollable" alteration to the
plaintext message, including the random input and the redundancy of k; zeros trailing the
plaintext message, which have been input to the OAEP function. Intuitively, the "uncontrollable"
alteration is due to a so-called "random oracle" property of the two hash functions used in the
scheme (see our discussions of random oracles in 810.3.1.2). The uncontrollable alteration will
show itself up by damaging the redundancy (the string of k1 zeros) added into the plaintext with

a probability at least 1 — 27%,. Given 27K, being negligible, 1 — 2K, is significant. Thus, indeed,
the scheme provides a data-integrity protection on the encrypted message.

Notice that the data-integrity protection provided by the RSA-OAEP encryption algorithm is a
strange one: although upon seeing the string of k1 zeros Alice is assured that the ciphertext has
not been modified, she can have no idea who the sender is. That is why in Alg 10.6 we have
deliberately specified Malice as the sender. The notion of "data integrity from Malice" is very
useful and important. This notion became apparent as a result of advances in public-key
encryption schemes secure with respect to adaptively chosen ciphertext attack (CCA2, see
Definition 8.3, in 88.6). In a public-key cryptosystems secure with respect to CCA2, the
decryption procedure includes a data-integrity verification step. Such a cryptosystem is
considered to be invulnerable even in the following extreme form of abuse by an attacker:

e The attacker and a public-key owner play a challenge-response game. The attacker is in the
position of a challenger and is given freedom to send, as many as he wishes (of course the
attacker is polynomially bounded), "adaptively chosen ciphertext" messages to the owner of
the public key for decryption in an oracle-service manner (review our discussion on "oracle
services" in 88.2 and see a concrete example of an oracle encryption service in §8.2).

e The owner of the public key is in the position of a responder. If the data-integrity
verification in the decryption procedure passes, the key owner should simply send the
decryption result back regardless of the fact that the decryption request may even be from
an attacker who may have created the ciphertext in some clever and unpublicized way with
the intention to break the target cryptosystem (either to obtain a plaintext message which
the attacker is not entitled to see, or to discover the private key of the key owner).

Algorithm 10.6: Optimal Asymmetric Encryption Padding for
RSA (RSA-OAEP) [24]

Key Parameters
Let (N, e, d, G, H, n, ko, k1) #=UGen (1 %) satisfy: (N, e, d) is the RSA key material

whered = e ~1 (mod f(N)) and |[N|] = k = n + kg + k; with 27K, and 2%, being
negligible quantities; G, H are two hash functions satisfying

G:{0,1} — {0, 1} % H:{0,1}*" = {01},

n is the length for the plaintext message.
Let (N, e) be Alice's RSA public key and d be her private key.
Encryption

To send a message m € {0, 1}" to Alice, Malice performs the following steps:

1. r+«U {0, 1}Ky;s &= (m || O) $G(r);t —_r @D H(s);

2. 1l (s || t = N) go to 1:

3. c+(s|] t)® (mod N).

The ciphertextis c.

(* here, "||" denotes the bit string concatenation, @ the bit-wise XOR operation,
and "0K,," the string of k1 zeros functioning as redundancy for data-integrity
checking in decryption time. *)

Decryption

Upon receipt of the ciphertext c, Alice performs the following steps:
1. s || t#=c9 (mod N) satisfying |s| =n + ki = k — ko, |t] = Ko;
2. u+t $H(s);v —s $G(u);

if v =m || 0%

m
OUEpYS REJECT otherwise

(* when REJECT is output, the ciphertext is deemed invalid *)

[al we use trial-and-error test in order to guarantee that the padding result as an integer is always less than N.
The probability of repeating the test i times is 2-I. An alternative way is to make r and H, and hence t, one-bit
shorter than the length of N, see a "PSS Padding" algorithm in §16.4.2

If a ciphertext has the correct data integrity, then it is considered that the sender should have
known already the plaintext encrypted in. This is a notion known as "plaintext awareness." If
the attacker has known already the encrypted plaintext, then an oracle decryption service should
provide him no new information, not even in terms of providing him with a cryptanalysis training
for how to break the target cryptosystem. On the other hand, if the attacker has tried an
adaptive way to modify the ciphertext, then with an overwhelming probability the data integrity
checking will fail, and then the decryption will be a null message. So against a cryptosystem with
data integrity protection on the ciphertext, an active attacker won't be effective.

InChapter 14 we will introduce a formal model for capturing the security notion under
adaptively chosen ciphertext attack (CCA2). We will also study some public-key cryptosystems
which are formally provably secure with respect to such attacks in Chapter 15. The RSA-OAEP is
one of them. In §15.2 we shall provide a detailed analysis on the security of the RSA-OAEP
encryption scheme. The analysis will be a formal proof that the RSA-OAEP is secure under a very
strong attacking scenario: indistinguishability against an adaptively chosen ciphertext attacker.
Due to this stronger security quality, the RSA-OAEP is no longer a textbook encryption
algorithm; it is a fit-for-application public-key cryptosystem.

As having been shown in the RSA-OAEP algorithm, the usual method to achieve a CCA2-secure
cryptosystem is to have the cryptosystem include a data-integrity checking mechanism without
having the least concern of message source identification.

Message source identification is part of authentication service called data-origin authentication.
Authentication is the topic for the next chapter.

10.6 Chapter Summary

In this chapter we have introduced the basic cryptographic techniques for providing data-
integrity services. These techniques include (i) symmetric techniques based on using MACs
constructed from hash functions or from block cipher algorithms, and (ii) asymmetric techniques
based on digital signatures. Data-integrity served by these techniques comes together with a
sub-service: message source identification.

The security notion for digital signature schemes provided is this chapter is a textbook version
and hence is a very weak one. For some digital signature schemes introduced here we have also
provided early warning signals on their (textbook) insecurity. The strengthening work for both
security notions and for constructing strong signature schemes will be conducted in Chapter 16.

Finally, we also identified a peculiar data-integrity service which does not come together with
identification of the message source, and exemplified the service by introducing a public-key
cryptosystem which makes use of this service for obtaining a strong security (not reasoned
here). In Chapter 15 we will see the important role played by this peculiar data-integrity service
in formalizing a general methodology for achieving fit-for-application cryptosystems.

Exercises

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

10.9

What is a manipulation detection code (MDC)? How is an MDC generated and used?
Is a message authentication code (MAC) an MDC? Is a digital signature (of a
message) an MDC?

What is a random oracle? Does a random oracle exist? How is the random oracle
behavior approximated in the real world?

Let the output space of a hash function have magnitude 2160, What is the expected
time cost for finding a collision under this hash function?

Why is a hash function practically non-invertible?

What is the main difference between a symmetric data-integrity technique and an
asymmetric one?

What is existential forgery of a digital signature scheme? What are practical
mechanisms to prevent existential forgery?

Why is the textbook security notion for digital signatures inadequate?

Hint: consider the fatal vulnerability of the Rabin signature against an active
attacker.

What is the security notion "data integrity from Malice?"

Is a ciphertext output from the RSA-OAEP algorithm (Alg 10.6) a valid MDC?

Part IV: Authentication

Nowadays, many commerce activities, business transactions and government services have
been, and more and more of them will be, conducted and offered over an open and
vulnerable communications network such as the Internet. It is vitally essential to establish
that the intended communication partners and the messages transmitted are bona fide. The
security service needed here is authentication, which can be obtained by applying
cryptographic techniques. This part has three chapters on various protocol techniques of
authentication. In Chapter 11 we study authentication protocols on their basic working
principles, examine typical errors in authentication protocols and investigate causes. In
Chapter 12 we examine case studies of several important authentication protocol
techniques applied in the real world. In Chapter 13 we introduce the authentication
framework for public-key infrastructure.

Chapter 11. Authentication Protocols —
Principles

Section 11.1. Introduction

Section 11.2. Authentication and Refined Notions

Section 11.3. Convention

Section 11.4. Basic Authentication Techniques

Section 11.5. Password-based Authentication

Section 11.6. Authenticated Key Exchange Based on Asymmetric Cryptography

Section 11.7. Typical Attacks on Authentication Protocols

Section 11.8. A Brief Literature Note

Section 11.9. Chapter Summary

Exercises

11.1 Introduction

InChapter 2 we have exposed ourselves to a number of authentication protocols. Most protocols
there are fictional ones (with two exceptions): we have deliberately designed them to be flawed
in several ways in order for them to serve as an introduction to a culture of caution and vigilance
in the areas of cryptography and information security.

In this chapter we return to the topic of authentication. The purpose of returning to the topic is
for us to have a more comprehensive study of the area. Our study in this chapter will be divided
into two categories:

An Introduction to Various Authentication Techniques

In this category we shall study various basic techniques for authentication. These include
the very basic mechanisms and protocol constructions for message and entity
authentication, password-based authentication techniques and some important
authenticated key establishment techniques. We believe that a number of basic
authentication mechanisms and protocol constructions in several international standards
are the ones which have been selected from the literature and subsequently gone through a
careful (and long) process of expert review and improvement revision. Therefore, in our
introduction to the basic authentication techniques, we shall pay particular attention to the
mechanisms which have been standardized by international standard bodies. In addition,
we shall introduce a few other reputable authentication and authenticated key
establishment protocols. We believe that authentication mechanisms and protocols
introduced in this category have a value for serving as building blocks and guidelines for
designing good protocols. We therefore consider that this category provides the model
authentication techniques for protocol designers.

An Exemplified Study of a Wide Range of Protocol Flaws

This is an inevitable part in the subject of authentication. We shall list various known and
typical attacking techniques which can be mounted on authentication protocols. We shall
analyze and discuss each attacking technique using some flawed protocols with the
applicable attacks demonstrated. Through this study, we shall become familiar with a
common phenomenon that authentication protocols are likely to contain security flaws even
when they have been designed by experts. The comprehensive list of typical protocol flaws
and the related attacking techniques provide essential knowledge for a protocol designer:
"Did you know this sort of attack?"

Unlike in the cases of Chapter 2 where we have deliberately designed fictional protocols with
artificial flaws, the security flaws in the protocols to be demonstrated in this chapter are not
artificial ones; indeed, none of them is! These flaws were all discovered after the flawed
protocols were published by reputable authors in information security and/or cryptography. A
fact we shall see through the study in this chapter is that, even though conforming to standard
documents, following well-thought-out design principles, and even being familiar with many
typical protocol flaws, design of authentication protocol remains extremely error-prone, even for
experts in the areas.

Due to the notorious error-prone nature of authentication protocols, this chapter plus the next,
as follow-up of Chapter 2, are still not an end for the topic of authentication in this book.
Systematic approaches (i.e., formal methods) to the development of correct authentication
protocols are currently serious research topics. We shall study the topics of formal approaches to
correct authentication protocols in Chapter 17.

11.1.1 Chapter Outline

In 811.2 we discuss the notion of authentication by introducing several refined notions. In 811.3
we agree on conventions for expressing components in authentication protocol and for the
default behavior of protocol participants. The next three sections form the first category of our
study in this chapter: in §11.4 we study the very basic and standard constructions for
authentication protocols; in 811.5 we study some password based authentication techniques,
and in 811.6 we study an important protocol which achieves authentication and authenticated
key exchange using cryptographic techniques which are alternatives to those used in the
previous two sections. The second category of our study is contained in 811.7 where we list and
demonstrate typical attacking techniques applicable to authentication protocols.

Finally, we end this chapter in 811.8 by recommending a brief but important list of literature
references in the area.

11.2 Authentication and Refined Notions

For a very short description of authentication, we may say that it is a procedure by which an
entity establishes a claimed property to another entity. For example, the former is a subject
claiming a legitimate entry to, or use of, the latter which is a system or a service, and by
authentication, the latter establishes the claimed legitimacy. From this short description we can
already see that authentication involves at least two separate entities in communication.
Conventionally, a communication procedure run between or among co-operative principals is
called a protocol. An authentication procedure is hence an authentication protocol.

The notion of authentication can be broken down to three sub-notions: dataorigin
authentication, entity authentication and authenticated key establishment. The first
concerns validating a claimed property of a message; the second pays more attention to
validating a claimed identity of a message transmitter; and the third further aims to output a
secure channel for a subsequent, application-level secure communication session.

11.2.1 Data-Origin Authentication

Data-origin authentication (also called message authentication) relates closely to data
integrity. Early textbooks in cryptography and information security viewed these two notions
with no essential difference (e.g., Chapter 5 of [89] and 81.2-81.3 of [93]). Such a view was
based on a consideration that using information which has been modified in a malicious way is at
the same risk as using information which has no reputable source.

However, data-origin authentication and data integrity are two very different notions. They can
be clearly differentiated from a number of aspects.

First, data-origin authentication necessarily involves communications. It is a security service for
a message receiver to verify whether a message is from a purported source. Data integrity
needn’'t have a communication feature: the security service can be provided on stored data.

Secondly, data-origin authentication necessarily involves identifying the source of a message,
while data integrity needn't do so. In 810.5, we have shown and argued with a convincing
example that data integrity as a security service can be provided without message source
identification. We have even coined a phrase "data integrity from Malice" to label a data-
integrity service with such a property. We should remember that according to our stipulation
made in Chapter 2 Malice is a faceless principal whose identity has the least to do with a
reputable source of a message. In Chapter 15 we shall realize that "data integrity from Malice" is
a general mechanism for achieving a provably secure public-key cryptosystems.

Thirdly and the most significantly, data-origin authentication necessarily involves establishing
freshness of a message, while, again, data integrity needn't do so: a piece of stale data can
have perfect data integrity. To obtain data-origin authentication service, a message receiver
should verify whether or not the message has been sent sufficiently recently (that is, the time
interval between the message issuance and its receipt is sufficiently small). A message which is
deemed by the receiver to have been issued sufficiently recently is often referred to as a fresh
message. Requiring that a message be fresh follows a common sense that a fresh message
implies a good correspondence between the communication principals, and this may further
imply less likelihood that, e.g., the communication principals, apparatus, systems, or the
message itself may have been sabotaged. In §2.6.4 we have seen an attack on the Needham-
Schroeder Symmetric-key Authentication Protocol (the attack of Denning and Sacco, Attack 2.2)
in which a replayed old message has absolutely valid data integrity but has invalid authenticity.

Authentication failure of this kind can be referred to as valid data integrity without liveness of the
message source.

Notice that whether or not a message is fresh should be determined by applications. Some
applications require a rather short time interval for a message being fresh which can be a matter
of seconds (as in many challenge-response based real-time secure communication applications).
Some applications allow a longer freshness period; for example, in World War 11, the German
military communications encrypted by the famous Enigma machine stipulated a rule that each
day all Enigma machines must be set to a new "day-key" [277]. This rule has become a widely
used key-management principle for many security systems today, though "day-key" may have
been changed to "hour-key" or even "minute-key." Some other applications permit a much
longer time interval for message freshness. For example, a bank check may have passed
examinations in terms of its integrity and source identification; then its validity (authenticity) for
authorizing the payment should be determined by the age of the check, that is, the time interval
between the date of the check's issuance and that of the check's deposit. Most banks permit
three months as the valid age for a check.

Finally, we point out that some anonymous credential enabled by some cryptographic schemes
(e.g., blind signature) also provide a good differentiation between data-origin authentication and
data integrity. A user can be issued an anonymous credential which enables the holder to gain a
service by proving membership to a system anonymously. Notice that here, the data integrity
evidence can even be demonstrated in a lively correspondent fashion, however, the system is
prevented from performing source identification. We will study such cryptographic techniques in
a later chapter.

From our discussions so far, we can characterize the notion of data-origin authentication as
follows:

i. It consists of transmitting a message from a purported source (the transmitter) to a
receiver who will validate the message upon reception.

ii. The message validation conducted by the receiver aims to establish the identity of the
message transmitter.

iili. The validation also aims to establish the data integrity of the message subsequent to its
departure from the transmitter.

iv. The validation further aims to establish liveness of the message transmitter.

11.2.2 Entity Authentication

Entity authentication is a communication process (i.e., protocol) by which a principal establishes
alively correspondence with a second principal whose claimed identity should meet what is
sought by the first. Often, the word "entity" is omitted, as in this statement: "An important goal
of an authentication protocol is to establish lively correspondence of a principal.”

Often, a claimed identity in a protocol is a protocol message in its own right. In such a situation,
confidence about a claimed identity and about the liveness of the claimant can be established by
applying data-origin authentication mechanisms. Indeed, as we shall see in many cases in this
chapter, for a claimed identity being in the position of a protocol message, treating it as a
subject of data-origin authentication does form a desirable approach to entity authentication.

There are several types of entity authentication scenarios in distributed systems depending on
various ways of classifying principals. We list several usual scenarios which are by no means

exhaustive.

Host-host type Communication partners are computers called "nodes" or platforms in a
distributed system. Host-level activities often require cooperation among them. For example, in
remote "reboot"[al of a platform, upon reboot, the platform must identify a trusted server to
supply necessary information, such as a trusted copy of an operating system, trusted clock
setting, or the current trusted environment settings. The establishment of the trusted
information is usually achieved via running an authentication protocol. A customary case in this
host-host type of communication is a client-server setting where one host (client) requests
certain services from the other (server).

[al "Reboot" is a technical term in computer science for re-initialization of a computer system from some
simple preliminary instructions or a set of information which may be hardwired in the system.

User-host type A user gains access to a computer system by logging in to a host in the system.
The simplest examples are to login in to a computer via telnet, or to conduct file transfer via ftp
(file transfer protocol); both can be achieved via running a password authentication protocol. In
a more serious application where a compromised host will cause a serious loss (e.g., when a
user makes an electronic payment via a smart card), mutual authentication is necessary.

Process-host type Nowadays distributed computing has been so highly advanced that a great
many functionalities and services are possible. A host may grant a foreign process various kinds
of access rights. For example, a piece of "mobile code" or a "Java™ applet'[2l can travel to a
remote host and run on it as a remote process. In sensitive applications, it is necessary and
possible to design authentication mechanisms so that an applet can be deemed a friendly one by
a host and be granted an appropriate access right on it.

b1 A Java™ applet is an executable code to run by a "web browser" on a remote host in order to effect a
function on the issuing host's behalf.

Member-club type A proof of holding a credential by a member to a club can be viewed as a
generalization of the "user-host type.” Here a club may need only to be concerned with the
validation of the member's credential without necessarily knowing further information such as
the true identity of the member. Zero-knowledge identification protocols and undeniable
sighature schemes can enable this type of entity authentication scenario. We shall study these
authentication techniques in Chapter 18.

11.2.3 Authenticated Key Establishment

Often, communication partners run an entity authentication protocol as a means to bootstrap
further secure communications at a higher or application level. In modern cryptography,
cryptographic keys are the basis for secure communication channels. Therefore, entity
authentication protocols for bootstrapping higher or application-level secure communications
generally feature a sub-task of (authenticated) key establishment, or key exchange, or key
agreement.

As in the case where entity authentication can be based on data-origin authentication regarding
the identity of a claimant, in protocols for authenticated key establishment, key establishment
material also forms important protocol messages which should be the subject for data-origin
authentication.

In the literature, (entity) authentication protocols, authenticated key establishment (key
exchange, key agreement) protocols, security protocols, or sometimes even cryptographic
protocols, often refer to the same set of communication protocols.

11.2.4 Attacks on Authentication Protocols

Since the goal of an authentication protocol (data-origin, entity, key establishment) is to
establish a claimed property, cryptographic techniques are inevitably used. Also inevitably, the
goal of an authentication protocol will be matched with a counter-goal: attack. An attack on an
authentication protocol consists of an attacker or a coalition of them (who we name collectively
Malice, see 82.3) achieving an unentitled gain. Such a gain can be a serious one such as Malice
obtaining a secret message or key, or a less serious one such as Malice successfully deceiving a
principal to establish a wrong belief about a claimed property. In general, an authentication
protocol is considered flawed if a principal concludes a normal run of the protocol with its
intended communication partner while the intended partner would have a different conclusion.

We must emphasize that attacks on authentication protocols are mainly those which do not
involve breaking the underlying cryptographic algorithms. Usually, authentication protocols are
insecure not because the underlying cryptographic algorithm they use are weak, but because of
protocol design flaws which permit Malice to break the goal of authentication without necessarily
breaking any cryptographic algorithm. We shall see many such attacks in this chapter. For this
reason, in the analysis of authentication protocols, we usually assume that the underlying
cryptographic algorithms are "perfect” without considering their possible weakness. Those
weakness are usually considered in other subjects of cryptography.

11.3 Convention

In authentication protocols to appear in the rest of this chapter, we stipulate a set of conventions
for the semantical meanings of some protocol messages according to their syntactic structures.
This convention set is as follows:

e Alice, Bob, Trent, Malice, ... : principal names appear as protocol messages; sometimes
they may be abbreviated to A, B, T, M, ...;

e Alice = Bob: M; Alice sends to Bob message M; a protocol specification is a sequence of
several such message communications;

o {M}k: a ciphertext which encrypts the message M under the key K;

o K, Kag, KaT, Ka, ... : cryptographic keys, where Kxy denotes a key shared between principals
X and Y, and Kx denotes a public key of principal X;

e N, Na, ... - nonces, which stands for "numbers use for once" [61]; these are random
numbers sampled from a sufficiently large space; Nx is generated by principal X;

e Tx: atimestamp created by principal X;

e siga(M): a digital signature on message M created by principal A.

.Remark 11.1

We should notice that the semantical meanings of protocol messages which are associated to
their syntactic structures (types) as above are not necessarily comprehensible by a protocol
participant (say Alice). In general, for any message or part of a message in a protocol, if the
protocol specification does not require Alice to perform a cryptographic operation on that
message or message part, then Alice (in fact, her protocol compiler) will only understand that
message part at the syntactic level. At the syntactic level, Alice may misinterpret the semantical
meanings of a protocol message. We exemplify various possibilities of misinterpretations in

Example 11.1. J

Example 11.1.

At the syntactic level, Alice may make wrong interpretations on protocol messages. Here are a
few examples:

e She may consider a message chunk as a ciphertext and may try to decrypt it if she thinks
she has the right key, or forward it to Bob if she thinks that the chunk is for him. However,
the message chunk may in fact be a principal's identity (e.g., Alice or Bob) or a nonce or a
timestamp.

e She may decrypt a ciphertext and sends the result out by "following protocol instruction,"
where the ciphertext is in fact one which was created earlier by herself, perhaps in a
different context.

¢ She may view a key parameter as a nonce; etc.

It may seem that Alice is very "stupid"” in understanding protocol messages. No, we should
rather consider that she is too innocent and cannot always anticipate the existence of "clever"
Malice who may have already "recompiled" a protocol by misplacing various message parts in

order to cause the misinterpretation. 0

In general, we have a further set of conventions for the behavior of a protocol participant,
whether a legitimate one or an uninvited one:

e An honest principal in a protocol does not understand the semantical meanings of any
protocol message before a run of the protocol terminates successfully.

e An honest principal in a protocol cannot recognize {M}k or create it or decompose it unless
the principal has in its possession the correct key.

¢ An honest principal in a protocol cannot recognize a random-looking number such as a
nonce, a sequence number or a cryptographic key, unless the random-looking number
either has been created by the principal in the current run of the protocol, or is an output to
the principal as a result of a run of the protocol.

e An honest principal in a protocol does not record any protocol messages unless the protocol
specification instructs so. In general, an authentication protocol is stateless, that is, it does
not require a principal to maintain any state information after a protocol run terminates
successfully, except for information which is deemed to be the output of the protocol to the
principal.

e Malice, in addition to his capability specified in 82.3, knows the "stupidities" (to be more
fair, the weaknesses) of honest principals which we have exemplified in Example 11.1, and
will always try to exploit them.

Authentication protocols are meant to transmit messages in a public communication network,
which is assumed to be under Malice's control, and to thwart his attacks in such an environment
although Malice is "clever" and honest principals are "stupid.”

Now let us see how this is achieved.

11.4 Basic Authentication Techniques

There are numerous protocol-based techniques for realizing (data-origin, entity) authentication
and authenticated key establishment. However, the basic protocol constructions, in particular
those which should be regarded as good ones, and the simple technical ideas behind the good
constructions, are not so diverse.

In this section let us study basic authentication techniques through introducing some basic but
important protocol constructions. In our study, we shall pay particular attention to constructions
which have been documented in a series of international standards. We consider that these
constructions should serve as models for the design of authentication protocols. We shall also
argue why some constructions are more desirable than others, exemplify a few bad ones and
explain why they are bad.

The following basic authentication techniques will be studied in this section:

e Standard mechanisms for establishing message freshness and principal liveness (811.4.1)
¢ Mutual authentication vs. unilateral authentication (811.4.2)

e Authentication involving a trusted third party (811.4.3)

11.4.1 Message Freshness and Principal Liveness

To deem whether a message is fresh is a necessary part of data-origin authentication (please
notice the difference between message source identification and data-origin authentication which
we have discussed in §11.2.1), as well as in the case of entity authentication where a principal is
concerned with lively correspondence of an intended communication partner. Therefore,
mechanisms which establish message freshness or principal liveness are the most basic
components in authentication protocols.

Let us now describe the basic and standard mechanisms to achieve these functions. In our
descriptions, we shall let Alice be in the position of a claimant regarding a property (e.g., her
liveness, or freshness of a message), and Bob be in the position of a verifier regarding the
claimed property. We assume that Alice and Bob share a secret key Kag if @ mechanism uses
symmetric cryptographic techniques, or that Bob knows Alice's public key via a public-key
certification frameworkI€l if a mechanism uses asymmetric cryptographic techniques.

[c] Public-key certification frameworks will be introduced in Chapter 13.

11.4.1.1 Challenge-Response Mechanisms

In a challenge-response mechanism, Bob (the verifier) has his input to a composition of a
protocol message and the composition involves a cryptographic operation performed by Alice
(the claimant) so that Bob can verify the lively correspondence of Alice via the freshness of his
own input. The usual form of Bob's input can be a random number (called a nonce) which is
generated by Bob and passed to Alice beforehand. Let Ng denote a nonce generated by Bob. This
message freshness mechanism has the following interactive format:

Equation 11.4.1

accepts if he sees Ng
rejects otherwise.

Bob decrypts the cipher chunk and {

Here, the first message transmission is often called Bob's challenge to Alice, and the second
message transmission is thereby called Alice's response to Bob. Bob is in a position of an
initiator while Alice is in a position of a responder.

The specified mechanism uses symmetric cryptographic technique: symmetric encryption.
Therefore, upon receipt of Alice's response, Bob has to decrypt the ciphertext chunk using the
shared key Kag. If the decryption extracts his nonce correctly (be careful of the meaning of
"correctly," it actually means correct data integrity, as we shall see in a moment) then Bob can
conclude that Alice has indeed performed the required cryptographic operation after his action of
sending the challenge; if the time interval between the challenge and the response is acceptably
small (according to an application requirement as we have discussed in 811.2.1), then the
messageM is deemed to be fresh. The intuition behind this message freshness mechanism is a
confidence that Alice's cryptographic operation must have taken place after her receipt of Bob's
nonce. This is because Bob's nonce has been sampled at random from a sufficiently large space
and so no one can have predicted its value before his sampling.

Now let us explain what we meant by Bob's decryption and extraction of his nonce "correctly” (as
we warned in the previous paragraph). The use of symmetric encryption in this mechanism may
deceptively imply that the cryptographic service provided here is confidentiality. In fact, the
necessary security service for achieving message freshness should be data integrity. The reader
might want to argue that the two principals may want to keep the message M confidential, e.g.,
M may be a cryptographic key to be used for securing a higher-level communication session later
(and thus this basic construction includes a sub-task of session key establishment). This does
constitute a legitimate reason for using encryption. We could actually further consider that the
two parties may also like to keep Bob's nonce secret and so in that case Bob should also encrypt
the first message transmission. Therefore, we are not saying that the use of encryption for
providing the confidentiality service is wrong here provided such a service is needed. What we
should emphasize here is that if the encryption algorithm does not provide a proper data-
integrity service (an encryption algorithm usually doesn't), then the specified mechanism is a
dangerous one because the necessary service needed here, data integrity, is missing! In 8§17.2.1
we shall see with convincing evidence the reason behind the following statement:

.Remark 11.2

If the encryption algorithm in authentication mechanism (11.4.1) does not offer a proper data-
integrity service then Bob cannot establish the freshness of the message M.

The really correct and a standard approach to achieving data-integrity service using symmetric
cryptographic techniques is to use a manipulation detection code (MDC, see Definition 10.1 in
810.1). Therefore, in mechanism (11.4.1), the encryption should be accompanied by an MDC
which is keyed with a shared key and inputs the ciphertext chunk which needs integrity
protection. If the message M does not need confidentiality protection, then the following
mechanism is a proper one for achieving message freshness:

Equation 11.4.2

1. Bob — Alice: Npg;
2. Alice — Bob: M, MDC(K 45, M, Ng);
3. Bob reconstructs MDC(K 45, M, Ng) and
accepts if two MDCs are identical
{ rejects otherwise.

Notice that in order for Bob to be able to reconstruct the MDC in step 3, the message M now
must be sent in cleartext in step 2. Of course, M can be a ciphertext encrypting a confidential
message.

In 817.2.1 we shall argue with convincing evidence that, in terms of achieving authentication
using symmetric cryptographic techniques, mechanism (11.4.2) is a correct approach while
mechanism (11.4.1) is an incorrect one. There we shall also see that, without proper data-
integrity, confidentiality of M in (11.4.1) needn't be in place even if the mechanism uses a strong
encryption algorithm.

The challenge-response mechanism can also be achieved by applying an asymmetric
cryptographic technique, as in the following mechanism:

Equation 11.4.3

1. Bob — Alice: Npg;

2. Alice — Bob: sig4(M,Np);

3. Bob verifies the signature using his nonce and
accepts if signature verification passes
rejects otherwise.

Notice that in this mechanism, Alice's free choice of the message M is very important. Alice's free
choice of M should be part of the measure to prevent this mechanism from being exploited by
Bob to trick Alice to sign inadvertently a message of Bob's preparation. For example, Bob may
have prepared his "nonce" as

Ng = h(Transfer £1000 to Bob's Acc.No. 123 from Alice's Acc.No. 456.)
whereh is a hash function.

In some applications, a signer in the position of Alice in mechanism (11.4.3) may not have
freedom to choose M. In such situations, specialized keys can be defined to confine the usages of
keys. For example, the public key for verifying Alice's signature in mechanism (11.4.3) can be
specified for the specific use in this mechanism. Specialization of cryptographic keys is a subject
inkey management practice.

11.4.1.2 Standardization of the Challenge-response Mechanisms

The I1SO (the International Organization for Standardization) and the IEC (the International
Electrotechnical Commission) have standardized the three challenge-response mechanisms

introduced so far as the basic constructions for unilateral entity authentication mechanisms.
The standardization for mechanism (11.4.1) is called "ISO Two-Pass Unilateral Authentication
Protocol" and is as follows [147]:

1. B=>A:Rp || Textl;
2. A =3B : TokenAB.
Here TokenAB = Text3 || €kas(Rs || B || Text2).

Upon receipt of TokenAB, Bob should decrypt it; he should accept the run if the decryption
reveals his nonce Rg correctly, or reject the run otherwise.

Here and below in the ISO/IEC standards, we shall use precisely the notation of the ISO/IEC for
protocol specification. In the ISO/IEC specification, Textl, Text2, etc. are optional fields, ||
denotes bit string concatenation, Rg is a nonce generated by Bob.

We should remind the reader of the importance for the encryption algorithm to provide data
integrity service which is a necessary condition to allow testing whether or not a decryption
result is correct (review Remark 11.2in §11.4.1.1).

Notice also that while we regard (11.4.1) as a basic message freshness mechanism, its ISO/IEC
standard version is an entity authentication mechanism. Therefore the inclusion of the message
"B," i.e., Bob's identity, in place of M in (11.4.1) becomes vitally important: the inclusion makes
it explicit that the ISO/IEC mechanism is for the purpose of establishing Bob's lively
correspondence, is an entity authentication protocol in which Bob is the subject of
authentication. Abadi and Needham propose a list of prudent engineering principles for
cryptographic protocols design [1]; making explicit the identity of the intended authentication
subject is an important principle in their list. In 811.7.7 we shall see the danger of omission of
the principal’s identity in authentication protocols.

The I1SO/IEC standardization for mechanism (11.4.2) is called "ISO Two-Pass Unilateral
Authentication Protocol Using a Cryptographic Check Function (CCF)," and is as follows [149]:

1. B=2*A:Rpg || Textl;
2. A =3B : TokenAB.

Hereld]l TokenAB = Text2 || fkas(Re || B || Text2); fis a CCF, and is essentially a
cryptographic hash function. The use of the CCF here is keyed.

[d1 In [149], Text2 in the cleartext part is mistaken to Text3. Without Text2 in cleartext, B cannot verify
the CCF by reconstructing it.

Upon receipt of TokenAB, B should reconstruct the keyed CCF using the shared key, his
nonce, his identity and Text2; he should accept the run if the reconstructed CCF block is
identical to the received block, or reject the run otherwise.

The I1SO/IEC standardization for mechanism (11.4.3) is called "ISO Public Key Two-Pass
Unilateral Authentication Protocol," and is as follows [148]:

1. B=>A:Rp || Textl;

2. A =3B : CertA || TokenAB.

Here TokenAB = Ra || Re || B || Text3 || siga(Ra |l Re || B || Text2); CertA is Alice's public
key certificate (we shall study public-key certification in the next chapter).

Upon receipt of TokenAB, B should verify the signature; he should accept the run if the
verification passes, or reject the run otherwise.

As we have discussed regarding mechanism (11.4.3), in this ISO/IEC protocol, A's free choice of
Ra forms part of the measure preventing A from inadvertently signing a message of B's
preparation.

11.4.1.3 Timestamp Mechanisms

In a timestamp mechanism, Alice adds the current time to her message composition which
involves a cryptographic operation so that the current time is cryptographically integrated in her
message.

LetT o denote a timestamp created by Alice when she composes her message. This message
freshness mechanism has the following non-interactive format:

Equation 11.4.4

1. Alice — Bob: &g, ,(M,T4);

2. Bob decrypts the cipher chunk and
accepts if Ty is deemed valid
rejects otherwise.

Analogous to mechanism (11.4.1), the decryption performed by Bob must be tested for data-
integrity correctness (review 811.4.1.1 and Remark 11.2 given there). After decryption, Bob can
compare the revealed Ta with his own time (we assume that the protocol participants use a
global standard time, such as Greenwich Mean Time). If the time difference is sufficiently small
as allowed by the application in Bob's mind, then the message M is deemed fresh.

Analogous to our criticism in 811.4.1.1 on encryption without data-integrity as misuse of
security service, a more desirable version of the timestamp mechanism using symmetric
cryptographic techniques should be as follows:

Equation 11.4.5

1. Alice — Bob: M,Ta,MDC(Kag, M,T4);
2. DBob reconstructs MDC(K o, M,T4) and
accepts if two MDCs are identical and T4 is deemed wvalid
{ rejects otherwise.

In this version, Bob performs data-integrity validation by checking a one-way transformation

style of cryptographic integration between the timestamp and message. Of course, if M also
needs confidentiality protection, then it is necessary to use encryption; however, the use of
encryption does not rule out the necessity of data-integrity protection.

Obviously, a timestamp mechanism can also be obtained by applying asymmetric cryptographic
techniques:

Equation 11.4.6

1. Alice — Bob: sig,(M,T4):
2. Bob verifies the signature and
accepts if signature verification passes & T4 is deemed valid
{ rejects otherwise,

(11.4.6)

A timestamp mechanism avoids the need for interaction, and is therefore suitable for
applications which involves no interaction, e.g., in an electronic mail application. However, the
disadvantage of a timestamp mechanism is that synchronized time clocks are required and must
be maintained securely. This can be difficult. Difficulties, precautions and objections to
timestamps have been well-documented in the literature [28,34,115,99].

In the basic protocol constructions introduced so far, a nonce or a timestamp are special
message components. They play the role of identifying the freshness of other messages which
are cryptographically integrated with them. We shall use freshness identifier to refer to a
nonce or a timestamp.

11.4.1.4 Standardization of Timestamp Mechanisms

The 1SO/IEC have also standardized timestamp mechanisms for authentication protocols.

The I1SO/IEC standardization for mechanism (11.4.4) is called "ISO Symmetric Key One-Pass
Unilateral Authentication Protocol” [147] and is as follows:

1.A =3B : TokenAB.

T4
Here TokenAB = Text2 || €xas({VA || B || Text1).

Again, because this simple mechanism uses an encryption-decryption approach, we should recall
Remark 11.2in 811.4.1.1 for the importance for the encryption algorithm to serve data-integrity
protection.

T'a

Here J"""'A denotes the choice between the use of Ta, which is a timestamp, and Na, which is a
sequence number. In the case of using a sequence number, Alice and Bob maintain a
synchronized sequence number (e.g., a counter) so that the sequence number Na will increase in
a manner known to Bob. After a successful receipt and validation of a sequence number, each of
the two principals should update its sequence-number keeper to the new state.

There are two disadvantages in a sequence-number mechanism. First, a set of state information
must be maintained for each potential communication partner; this can be difficult for
applications in an open environment where each principal may communicate with many other

principals. Therefore a sequence-number mechanism does not scale well. Secondly,
management of a sequence-number keeper can be very troublesome in the presence of
communication errors, either genuine ones or deliberate ones (such as a result of a denial-of-
service attack). Recall our convention made in §11.3 that an authentication protocol should be
stateless; a stateful protocol cannot function properly in a hostile environment. We therefore do
not recommend a sequence-number mechanism even though such mechanisms have been
documented in ISO/IEC standards.

The 1SO/IEC standardization for mechanism (11.4.5) is called "ISO One-Pass Unilateral
Authentication with Cryptographic Check Functions™ [149], and is as follows:

1.A =3B : TokenAB.

T4 T4

Herelel TokenAB = VA || B |] TextL || frws (©VA || B || Textl) fis a keyed CCF, e.g., a keyed
hash function.

[e] As in Footnote d, [149] mistakenly specifies Text2 in the cleartext part of Textl, and so B may not be able
to check the CCF.

The reader may have already predicted the following named protocol as the public-key
counterpart for encryption and cryptographic-check-function versions: "ISO Public Key One-Pass
Unilateral Authentication Protocol" [148]:

1.A =3B : CertA || TokenAB.

T4 T4
Here TokenAB = VA || B || Text2 || siga (VA || B || Text1)

11.4.1.5 Non-standard Mechanisms

We have introduced so far several basic constructions for building authentication protocols. It is
not difficult at all to imagine numerous other variations which can achieve the same purpose as
has been achieved by the introduced basic constructions. For example, a variation for
mechanism (11.4.1) using symmetric cryptographic techniques can be

Equation 11.4.7

1. Bob — Alice: Bob,Ex,.(M,Ng);
2. Alice — Bob: Npg:

accepts if the returned nonce is correct
3. Bob . .

rejects otherwise.

For another example, a variation for mechanism (11.4.3) using asymmetric cryptographic
techniques can be:

Equation 11.4.8

1. Bob — Alice: £k, (M, Bob, Ng);
2. Alice — Bob: Npg:
, accepts if the returned nonce is correct
3. DBob . .
rejects otherwise.

Here €EKa denotes a public-key encryption algorithm under Alice's public key. In these two
variations, Bob validates Alice’'s lively correspondence by encrypting a freshness identifier and
testing if she can perform timely decryption. We shall use encryption-then-decryption (of
freshness identifier) to refer to these mechanisms.

While performing encryption-then-decryption of freshness identifier does provide a means for
validating the lively correspondence of an intended communication partner, such a mechanism is
not desirable for constructing authentication protocols. In such a mechanism Alice can be used
as a decryption oracle (see §7.8.2.1 and 8.9 for the meaning of an oracle service) and
inadvertently disclose confidential information. For example, Malice may record a ciphertext
chunk from a confidential conversation between Alice and Bob, and insert it in a protocol which
uses an encryption-then-decryption mechanism; then Alice may be tricked into disclosing the
confidential conversation. Recall our convention for honest principals (in §11.3): Alice may
misinterpret a message as a nonce and therefore return the "nonce" by faithfully following the
"protocol instruction.™

The undesirability of encryption-then-decryption mechanisms has also been manifested by the
fact that the ISO/IEC standardization process has not been considered to standardize such a
mechanism. That is part of the reason why we name mechanisms in (11.4.7) and (11.4.8) as
non-standard ones.

However, many authentication protocols have been designed to use an encryption-then-
decryption mechanism. We will analyze several such protocols in 817.2; there we shall identify
as the use of the non-standard mechanisms is the main cause of the security flaws in those
protocols.

11.4.2 Mutual Authentication

The basic mechanisms for message freshness or principal-liveness introduced so far achieve so-
called "unilateral authentication™ which means that only one of the two protocol participants is
authenticated. In mutual authentication, both communicating entities are authenticated to
each other.

I1SO and IEC have standardized a number of mechanisms for mutual authentication. A signature
based mechanism named "ISO Public Key Three-Pass Mutual Authentication Protocol" [148] is
specified in prot 11.1. We choose to specify this mechanism in order to expose a common
misunderstanding on mutual authentication.

One might want to consider that mutual authentication is simply twice unilateral authentication;
that is, mutual authentication could be achieved by applying one of the basic unilateral
authentication protocols in §11.4.1 twice in the opposite directions. However, this is not
generally true!

A subtle relationship between mutual authentication and unilateral authentication was not clearly
understood in an early stage of the ISO/IEC standardization process for prot 11.1. In several
early standardization drafts for prot 11.1 [143,130],

Protocol 11.1: ISO Public Key Three-Pass Mutual
Authentication Protocol

PREMISE: A has public key certificate Certa;
B has public key certificate Certg;

GOAL: They achieve mutual authentication.

1. B=3*A: R p;
2. A =3B : Cert 5, TokenAB;
3. B =3>A : Cert g, TokenBA.
Here
TokenAB = Ra || Re || B || siga(Ra || Re || B);

TokenBA = Rg || Rall A1l sigs I Ra |l A).

(* optional text fields are omitted. *)

TokenBA was slightly different from that in the current version:

TokenBA = Ry || Ra || A | sigp(Rp || Ra || A).

The early draft intentionally disallowed B to reuse his challenge nonce Rg in order to avoid him
signing a string which is partly defined, and fully known in advance, by A. Apart from this
reasonable consideration, TokenBA in the early drafts was a syntactic and symmetric mirror
image of TokenAB. This version survived through a few revisions of ISO/IEC 9798-3, until an
attack was discovered by the Canadian member body of ISO [143]. The attack is hence widely
known as the "Canadian Attack.” The attack is due to Wiener (see 812.9 of [198]). In addition to
the ISO documentation, Diffie, van Oorschot and Wiener discuss the attack in [99]. We shall
therefore also call the attack Wiener's attack.

11.4.2.1 Wiener's Attack (the Canadian Attack)

Wiener's attack on an early draft for "1SO Public Key Three-Pass Mutual Authentication Protocol”
is given in Attack 11.1 (recall our notation agreed in §2.6.2 for describing Malice sending and
intercepting messages in a masquerading manner).

After the discovery of Wiener's attack, the ISO/IEC 9798 series for standardization of
authentication protocols start to take a cautious approach to mutual authentication. If TokenAB

appears in a unilateral authentication protocol, then in a mutual authentication protocol which is
augmented from the unilateral version, the matching counterpart TokenB A for mutual
authentication will have a context-sensitive link to TokenAB; this link is usually made via reusing
a freshness identifier used in the same (i.e., current) run.

Attack 11.1: Wiener's Attack on ISO Public Key Three-Pass
Mutual Authentication Protocol

PREMISE: In addition to that of prot 11.1,

Malice has public key certificate Certy;

1. Malice("B") =*A: R g
2. A= Malice("B") : Certa, Ra || Re || B || siga(Ra || Rg || B)
1'. Malice("A™) ==*B : R a
2'.B =3 Malice("A") : Certg,R' g || Ra || A |l sige(R's || Ra || A)
3. Malice("B") =2*A : Certg,R' g || Rall A |lsige(R's || Ra |l A)
CONSEQUENCE:

A thinks that it is B who has initiated the run and accepts B's identity; but B did not
initiate the run, and is still awaiting for terminating a run started by Malice("A").

In the current version of "ISO Public Key Three-Pass Mutual Authentication Protocol” (i.e., prot
11.1 which has been fixed from the early version vulnerable to Wiener's attack), A is explicitly
instructed to maintain the state regarding B's nonce Rg until the current run terminates.

11.4.3 Authentication Involving Trusted Third Party

In the basic constructions of authentication protocols introduced in this chapter so far, we have
assumed that the two protocol participants either already share a secure channel (in the cases of
the constructions using symmetric cryptographic techniques), or one knows the public key of the
other (in the cases of the constructions structions using asymmetric cryptographic techniques).
So we may say that these protocol constructions are for use by principals who already know
each other. Then why do they still want to run an authentication protocol? One simple answer is
that they want to refresh the secure channel between them by reconfirming a lively
correspondence between them.

Another answer, a better one, is that these basic protocol constructions actually form building
blocks for authentication protocols which are for a more general and standard mode of
communications in an open system environment.

The standard mode of communications in an open system is that principals "interact then

forget.” An open system is too large for a principal to maintain the state information about its
communications with other principals in the system. If two principals, who may be unknown to
each other, want to conduct secure communications, they will first establish a secure channel. In
modern cryptography, a secure communication channel is underpinned by a cryptographic key.
Therefore, the two principals who wish to establish a secure channel between them should run
an authentication protocol which has a sub-task of establishing an authenticated key. Such a
protocol is called an authenticated key establishment protocol. Upon completion of a session of
secure communication which is underpinned by the key established, the two principals will
promptly throw the channel away. Here, "throw the channel away" means that a principal
forgets the key underpinning that channel and will never reuse it anymore. That is why a secure
channel established as an output of a run of an authenticated key establishment protocol is often
called a session channel and the output key underpinning the channel is called a session key.

The standard architecture for principals to run authentication and key establishment protocols in
an open system is to use a centralized authentication service from a trusted third party or a
TTP. Such a TTP service may be an online one, or an offline one. In the next chapter we shall
introduce the authentication frameworks for authentication services provided by an offline TTP.

In authentication services provided by an online TTP, the TTP has a longterm relationship with a
large number of subjects in the system or in a subsystem. Authentication and/or authenticated
key establishment protocols under the online TTP architecture are so designed that they are built
upon the basic protocol constructions in 811.4.1 and §11.4.2 where one of the two "already
known to each other" principals is the TTP, and the other is a subject. Cryptographic operation
performed by the TTP can imply or introduce a proper cryptographic operation performed by a
subject. With the help from the TTP, a secure channel between any two subjects can be
established even if the two principals may not know each other at all. In Chapter 2 we have
already seen a number of such protocols, where we name the TTP Trent.

The 1SO/IEC standards for authentication protocols (the 9798 series) have two standard
constructions involving an online trusted third party [147]. One of them is named "ISO Four-
Pass Authentication Protocol™ and the other, "ISO Five-Pass Authentication Protocol.” These two
protocols achieve mutual entity authentication and authenticated session key establishment. We
shall, however, not specify these two protocols here for two reasons.

First, these protocols are built upon applying the basic protocol constructions we have introduced
in 811.4.1 and 811.4.2, and therefore, in terms of providing design principles, they will not offer
us anything new or positive in terms of conducting our further study of the topic. On the
contrary, they contain a prominent feature of standardization which we do not wish to introduce
in a textbook: many optional fields which obscure the simple ideas behind the protocols.

Secondly, they already have a "normal size" of authentication protocols, and should no longer be
considered as building blocks for constructing authentication protocols for higher-level
applications. Moreover, they actually contain some undesirable features such as a sequence
number maintained by the protocol participants (including TTP, i.e., stateful TTP!). Therefore,
these two protocols must not be considered as model protocol constructions for any future
protocol designers! On the contrary again, great care should be taken if either of these two
protocols is to be applied in real applications.

We shall look at an entity authentication protocol involving TTP. However, this protocol is an
insecure one: it is vulnerable to several kinds of attacks which we will expose in a later section.

11.4.3.1 The Woo-Lam Protocol

The protocol is due to Woo and Lam [301] and hence we name it the Woo-Lam Protocol. The
protocol is specified in Prot 11.2.

By choosing to introduce the Woo-Lam Protocol, we do not recommend it as a model protocol.
On the contrary, not only is this protocol fatally flawed in several ways, although it has several
different repaired versions which are all still flawed, it also contains undesirable design features
we should expose, criticize and identify as one fundamental reason for the discovered flaws in it.
So we think that the Woo-Lam Protocol serves a useful role in our study of the difficult matter of
designing correct authentication protocols.

The goal of this protocol is for Alice to authenticate herself to Bob even though the two principals
do not know each other initially.

Initially, since Alice and Bob do not know each other, Alice's cryptographic capability can only be
shown to Trent: she encrypts Bob's nonce Ng using her long term key shared with Trent (step 3).
Trent, as TTP, will honestly follow the protocol and decrypt the ciphertext formed by Alice (after
receiving the message in step 4). Finally, when Bob sees his fresh nonce retrieved from the
cipher chunk from Trent, he can conclude: Trent's honest cryptographic operation is only
possible after Alice's cryptographic operation, and both of these operations are on his nonce
which he has deemed fresh; thus, Alice's identity and her liveness have been demonstrated and
confirmed.

Protocol 11.2: The Woo-Lam Protocol

PREMISE: Alice and Trent share a symmetric key Kar,
Bob and Trent share a symmetric key KgT;
GOAL: Alice authenticates herself to Bob

even though Bob does not know her.

1. Alice = Bob: alice;

2. Bob = Alice: Ng;

3. Alice = Bob: {Ng}K at;

4. Bob = Trent: {Alice, {Ng}K aT}K gT;

5. Trent = Bob: {Ng}K gT;

6. Bob decrypts the cipher chunk using KgT, and accepts if the decryption returns

his nonce correctly; he rejects otherwise.

On the one hand, the Woo-Lam Protocol can be viewed as being built upon applying a standard
protocol construction which we have introduced and recommended in 811.4.1.1. For example,
message lines 2 and 3 are compatible with mechanism (11.4.1); the same mechanism is also
applied in message lines 3 and 4.

We shall defer the revelation of several security flaws in the Woo-Lam Prototol to §11.7. In
additon, this protocol has a deeper undesirable design feature which we believe to be

responsible for its security flaws. However, we shall further defer our analysis and criticism of
that undesirable feature to 817.2.1 where we investigate formal approaches to developing
correct authentication protocols.

11.5 Password-based Authentication

Because it is easily memorable by the human brain, password-based authentication is widely
applied in the "user-host" mode of remotely accessed computer systems. In this type of
authentication, a user and a host share a password which is essentially a long-term but rather
small-size symmetric key.

So a user U who wishes to use the service of a host H must first be initialized by H and issued a
password.H keeps an archive of all users' passwords. Each entry of the archive is a pair (ID y,
Pu) where IDy is the identity of U, and Py is the password of U. A straightforward password-
based protocol for U to access H can be as follows:

1. U==*H :ID ;
2. H==*U : "Password";
3. U=>H:Py;
4. H finds entry (IDy,P y) from its archive;
Access is granted if Py received matches the archive.

We should note that this protocol does not actually achieve any sense of entity authentication,
not even a unilateral authentication from U to H. This is because no part of the protocol involves
a freshness identifier for identifying lively correspondence of U. Nevertheless, the term
"password authentication™ began to be used in the early 1970s when a user accessed a
mainframe host from a dumb terminal and the communication link between the host and the
terminal was a dedicated line and was not attackable. Under such a setting of devices and
communications, the above protocol does provide unilateral entity authentication from U to H.

However, under a remote and open network communication setting, because no principal in the
password protocol performs any cryptographic operation, this protocol has two serious
problems.

The first problem is the vulnerability of the password file kept in H. The stored password file in H
may be read by Malice (now Malice is an insider who can even be a system administrator). With
the password file, Malice obtains all rights of all users; he can gain access to H by impersonating
a user and cause undetectable damage to the impersonated user or even to the whole system.
Obviously, causing damage under a user's name lowers the risk of Malice being detected.

The second problem with the simple password-based remote access protocol is that a password
travels from U to H in cleartext and therefore it can be eavesdropped by Malice. This attack is
calledonline password eavesdropping.

11.5.1 Needham's Password Protocol and its Realization in the UNIX
Operating System

Needham initiates an astonishingly simple and effective method to overcome the secure storage
of passwords in a host (see "Acknowledgements" in [105], see also [132]). The host H should
use a one-way function to encode the passwords, that is, the entry (IDy,P y) should be replaced
with (IDy,f(P y)) where f is a one-way function which is extremely difficult to invert. The simple

"password protocol” given above should also be modified to one shown in Prot 11.3.

Protocol 11.3;: Needham's Password Authentication Protocol

PREMISE: UserU and Host H have setup U's password
entry (IDy,f(P y)) where fis a one-way
function;U memorizes password P y;

GOAL: U logs in H using her/his password.

1. U=3H: IDy;
2. H =3U : "Input Password:";
3. U==3H:Py;

4. H applies f on Py, finds entry (IDy,f(P y)) form its archive; Access is granted if
the computed f(PyP) matches the archived.

Prot 11.3 is realized as the password authentication scheme for the UNIXIfl operating system. In
this realization, the function f is realized using the DES encryption algorithm (87.6). The system
at the host H stores in a password file a user's identity (UID) and a ciphertext generated from a
cryptographic transformation of the string of 64 zeros (as input) where the transformation is the
DES encryption which uses the user's password Py as the encryption key. In order to prevent the
use of off-the-shelf high-speed DES hardware to crack passwords, the transformation f(Py) is
actually not a pure encryption in the DES. Instead, it repeats 25 successive rounds of the DES
encryption in conjunction with a varying method called "bit-swapping permutation.” The "bit-
swapping permutation” is on the output ciphertext block from each round. In each round, certain
bits in the ciphertext block output from the DES encryption are swapped according to a 12-bit
random number called salt which is also stored in the password file. The ciphertext block after
the "bit-swapping permutation” is then used as the input to the next round of the DES
encryption. For details of the scheme, see [206].

[f1 UNIX is a trademark of Bell Laboratories.

In this way, the transformation f(Py) using the DES function can be considered as a keyed and
parameterized one-way hashing of the constant string 084 where the key is Py and the parameter
is the salt. With the involvement of the salt, a password entry stored in the password file in H
should be viewed as (IDy, salt, f (Py, salt)), although for clarity in exposition, we shall still use
f(Py) in place of f(Py, salt).

Now in the UNIX realization of Needham's Password Protocol, stealing f(Py) from H will no longer
provide Malice with an easy way to attack the system. First, f(Py) cannot be used in Prot 11.3
because using it will cause H to compute f(f(Py)) and fail the test. Secondly, it is computationally
infeasible to invert the one-way function f, especially considering the transformation involves 25
rounds of "bit-swapping permutation.” So if the users choose their passwords properly so that a
password cannot be guessed easily, then it will be very difficult for Malice to find Py from f(Py).
(We shall discuss the password guessing problem in §11.5.3.)

Although confidentiality of the password file becomes less of a concern, the dataintegrity of the
file must be maintained. Still, the protocol is vulnerable to online password eavesdropping
attack. A one-time password scheme is proposed to tackle this attack. Let us now describe it.

11.5.2 A One-time Password Scheme (and a Flawed Modification)

Lamport proposes a simple idea to thwart online password eavesdropping [174]. The technique
can be considered as a one-time password scheme. Here "one-time" means that the passwords
transmitted from a given U to H do not repeat, however they are computationally related one
another. Now, a password eavesdropped from a protocol run is no good for further use, and
hence the password eavesdropping problem is successfully prevented.

In the user initialization time, a password entry of U is set to (IDy, f"(Py)) where

F Py = gl HEg)))
e

()

def

for a large integer n. The user U still memorizes Py as in the case of the Password Authentication
Protocol.

WhenU and H engages in the first run of password authentication, upon prompted by
"Password" (message line 2 in the Password Authentication Protocol), a computing device of U,
such as a client platform or a calculator, will ask U to key in Py, and will then compute f™~1(Py)
by repeatedly applying f n — 1 times. This can be efficiently done even for a large n (e.g., n =
1000). The result will be sent to H as in message line 3 in the Password Authentication Protocol.

Upon receipt of f"~1(Py),H will apply f once on the received password to obtain f "(Py) and then
performs the correctness test as in step 4 in the Password Authentication Protocol. If the test
passes, it assumes that the received value is f*1(Py) and must have been computed from Py
which was set-up in the user initialization, and hence it must be U at the other end of the
communication. So U is allowed to enter the system. In addition, H will update U's password
entry: replace f'(Py) with f*-1(Py).

In the next run of the protocol, U (whose computing device) and H will be in the state of using
f"=2(Py) with respect to f"~1(Py), as in the previous case of using f"™~1(Py) with respect to f"(Py).
The protocol is hence a stateful one on a counter number descending from n to 1. When the
counter number reaches 1, U and H have to reset a new password.

The method requires U and H to be synchronous for the password state: when H is in state of
usingf I(Py) then U must be in state of sending fi-1(Py). This synchronization can be lost if the
communication link is "unreliable” or when the system "crashes." Notice that "unreliability” or a
"crash" can be the working of Malice!

Lamport consider a simple method to reestablish synchronization if itis lost [174]. The method
is essentially to have the system to "jump forward:" if H's state is fi(Py) while U's state is fK(Py)

withj Fk+ 1, then synchronization is lost. The system should "jump forward" to a state fi(Py)

forH and f =1(Py) for U where i = min(j, K). It is clear that this way of resynchronization requires
mutually authenticated communications between H and U, however, no detail for this necessity
is given in Lamport's short technical note.

Lamport's password-based remote access scheme has been modified and implemented into a

"one-time password" system named S/KEYIAl [134]. The S/KEY modification attempts to
overcome the "unreliable communication™ problem by H maintaining a counter number c for U.
In the user initialization time H stores U's password entry (I1Dy,f ¢(Py),c) where c is initialized to
n.Prot 11.4 specifies the S/KEY scheme.

[91 S/KEY is a trademark of Bellcore.

Clearly, in Prot 11.4,U and H will no longer lose synchronization and thereby unreliable
communication link will no longer be a problem.

Unfortunately, the S/KEY modification to Lamport's original technique is a dangerous one. We
notice that a password-based remote access protocol achieves, at best, an identification of U to
H. Thus, the counter number sent from H can actually be one from Malice, or one modified by
him. The reader may consider how Malice should, e.g., modify the counter number and how to
follow up an attack. The reader is encouraged to attack the S/KEY Protocol before reading
811.7.2.

One may want to argue: "the S/KEY Protocol cannot be more dangerous than Needham's
Password Authentication Protocol (Prot 11.3) which transmits passwords in cleartext!" We should
however notice that Needham's Password Authentication Protocol never claims security for
preventing an online password eavesdropping attack. The S/KEY Protocol is designed to have
this claim, which unfortunately does not stand.

Protocol 11.4: The S/IKEY Protocol

PREMISE: UserU and Host H have setup U's initial
password entry (IDy, f"(Py),n) where fis a
cryptographic hash function; U memorizes
passwordP y;

The current password entry of U in H is (IDy,
f¢(Py),c) for 1 <c Sn.

GOAL: U authenticates to H without transmitting Py
in cleartext.

1. U==*H : ID ;

2. H==U : c, "Input Password:";

3. U==H: Q= fcL(Py);

4. H finds entry (I1Dy, f¢(Py),c) from its archive;

Access is granted if f(Q) = f¢(Py), and U's password entry is updated to (IDy, Q,
c—1).

11.5.3 Add Your Own Salt: Encrypted Key Exchange (EKE)

Most password-based systems advise users to choose their passwords such that a password
should have eight keyboard (ASCII) characters. A password of this length is memorable by most
users without writing down. Since an ASCII character is represented by a byte (8 bits), an eight-
character password can be translated to a 64-bit string. A space of 64-bit strings has 264
elements and is therefore comfortably large. So it seems that an 8-key-board-character
password should resist guessing and even automated searching attacks mounted by a non-
dedicated attacker.

However, the "64-bit" password is not a true story. Although the information rate of the full set
of ASCII characters is not substantially below 8 bits/character (review §3.8 for information rate
of a language), people usually do not choose their passwords using random characters in the
ASCII table. In contrast, they choose bad passwords that are easily memorable. A typical bad
password is a dictionary word, or a person's name, all in lower case, maybe trailed by a digit or
two. Shannon estimated that the rate of English is in the range of 1.0 to 1.5 bits/character
([265], this estimate is based on English words of all lower case letters, see 83.8). Thus, in fact,
the space of 8-character passwords should be much much smaller than 264, and may be
significantly much smaller if many passwords in the space are bad ones (lower case alphabetic,
person's names, etc.). The smaller password space permits an offline dictionary attack. In
such an attack, Malice uses f(Py) to search through a dictionary of bad passwords for the
matchingP y. Because the attack is mounted offline, it can be automated and can be fast. We
should notice that Lamport's one-time password scheme does not provide protection against
offline dictionary attacks either: Malice can eavesdrop the current state value i and f (Py) and
hence can conduct the dictionary search.

Bellovin and Merritt propose an attractive protocol for achieving secure password based
authentication. Their protocol is named encrypted key exchange (EKE) [29]. The EKE Protocol
protects the password against not only online eavesdropping, but also offline dictionary attacks.
The technique used in the EKE scheme is essentially probabilistic encryption. In Chapter 14
we shall study general techniques for probabilistic encryption. Here, the reader may consider the
trick as "adding your own salt” to a password.

Unlike in the password based protocols (Prot 11.3 or Prot 11.4) where H only possesses a one-
way image of U's password, in the EKE Protocol U and H share a password Py. The shared
password will be used as a symmetric cryptographic key, though, as we have mentioned, this
symmetric key is chosen from a rather small space.

The EKE Protocol is specified in Prot 11.5.

The ingenuity of the EKE Protocol is in the first two steps. In step 1, the cipher chunk Py(€y) is a
result of encrypting a piece of one-time and random information €y under the shared password
Pu. In step 2, the content which is doubly encrypted in the cipher chunk Py(€y(K)) is another
one-time and random number: a session key K. Since Py is human-brain memorable and hence
is small, the random strings €y and K must have larger sizes than that of Py. So the two cipher
chunks in message lines 1 and 2 can hide Py in such a way that Py is statistically independent
from these two cipher chunks.

We must emphasize that it is the one-time randomness of € that plays the "adding you own
salt" trick. Should the "public key" be not one-time, the unique functionality of the EKE Protocol
would have failed completely: it would even be possible to facilitate Malice to search the
passwordP y using the weakness of a textbook public-key encryption algorithm (see, e.g., a
"meet-in-the-middle" attack in 88.9).

If the nonces Ny,N y encrypted in message lines 3, 4 and 5 are generated at random and have
adequately large sizes (i.e, larger than that of the session key K), then they further hide the
session key K in the same fashion as the password Py is hidden in the first two messages. Thus,
Py remains statistically independent from any messages passed in the EKE Protocol.

The statistical independence of the password Py from the messages passed in a protocol run
means that the password is hidden from an eavesdropper in an information-theoretically secure
sense (see 87.5). So a passive eavesdropper can no longer mount an offline dictionary attack on
Py using the protocol messages. The only possible other ways to attack the protocol are either to
try to guess Py directly, or to mount an active attack by modifying protocol messages. The
guessing attack is an uninteresting one, it can never be prevented, however fortunately, it can
never be effective. An active attack, on the other hand, will be detected with a high probability
by an honest protocol participant, and will cause a run being promptly abandoned.

Protocol 11.5: Encrypted Key Exchange (EKE)

PREMISE: UserU and Host H share a password P y; The
system has agreed on a symmetric
encryption algorithm, K() denotes symmetric
encryption keyed by K;U and H have also
agreed on an asymmetric encryption
scheme, €, denotes asymmetric encryption
underU's key.

GOAL: U and H achieve mutual entity
authentication, they also agree on a shared
secret key.

1. U generates a random "public" key €y, and sends to H:

U, Py(€v);

(* the "public” key is in fact not public, it is the encryption key of an
asymmetric encryption algorithm *)

2. H decrypts the cipher chunk using Py and retrieves €;H generates random
symmetric key K, and sends to U:

Py(€u (K));

3. U decrypts the doubly encrypted cipher chunk and obtains K;U generates a
nonceN y, and sends to H:

Kv (J'VU J :

4. H decrypts the cipher chunk using K, generates a nonce Ny, and sends to U:

er[1"'."'” A N g }

5. U decrypts the cipher chunk using K, and return to H:

K(Ng);

6. If the challenge-response in steps 3, 4, 5is successful, logging-in is granted
and the parties proceed further secure communication using the shared key K.

The encryption of a random public key in step 1 by U, and that of a random session key in step 2
byH, are what we have referred to as "add your own salt" to the password P y. The ever
changing "salt" keeps an attacker out of step. Therefore, the first two message lines in the EKE
Protocol provide an ingenious technical novelty. The message lines 3, 4 and 5 form a
conventional challenge-response-based mutual authentication protocol. Indeed they can be
replaced by a suitable mutual protocol construction based on a shared symmetric key.

The EKE Protocol is very suitable for being realized using the Diffie-Hellman key exchange
mechanism. Let a generate a group of order larger than 264 > 2IP l. Then in step 1, U's
computing device picks at random x € (0, 264) and computes €y = aX, and in step 2, H picks at
randomy € (0, 254) and computes £y(K) = aY. The agreed session key between U and H will be
K = aX¥. Now, each party has its own contribution to the agreed session key. In this realization,
the group generator a can be agreed between U and H in public: U sends to H the group
description (which includes the group generator a) in a pre-negotiation step.

Notice that we have only required that a generates a group of order larger than 264, This is a
very small number as a lower bound for a group order for use by an asymmetric cryptographic
system. So the protocol can be very efficient. The small group order renders easy ways to
compute discrete logarithm, and hence to solve the computational Diffie-Hellman problem.
However, without aX,a ¥Y,a XY, the ease of solving Diffie-Hellman problem is of no help for finding
the password: Py remains statistically independent in a space of size 254, Likewise, for
sufficiently large and random nonces encrypted in message lines 3, 4, and 5, the session key K
shall remain independent in the group of an order larger than 264. Thus, offline dictionary
attacks or online key guessing remain difficult.

In essence, the random "salt" added to a password "amplifies" the size of the password space
from that of a dictionary to that of the random asymmetric key. This is the trick behind the EKE
Protocol.

11.6 Authenticated Key Exchange Based on Asymmetric
Cryptography

We say that a protocol establishes a shared session key via a key transport mechanism if the
protocol outputs a shared key which comes from one of the protocol participants. We say that a
protocol establishes a shared session key via a key exchange (or key agreement) mechanism
if a run of the protocol outputs a shared key which is a function of all protocol participants’
random input. The advantage of key exchange over key transport is that each of the key-sharing
parties can have its own control, hence a high confidence, on the quality of the key output.

Apart from the Diffie-Hellman realized EKE protocol, the basic authentication techniques
introduced so far, if involving key establishment, are all key transport mechanisms. Now let us
introduce a key exchange mechanism.

Key exchange can be achieved by generating a key as the output of a pseudo-random function or
a one-way hash function where the key-sharing parties have their own inputs to the function.
The most commonly used method is the great discovery of Diffie and Hellman: Diffie-Hellman
Key Exchange, which we have considered as a one-way function (see Remark 8.1.3 in 88.4). We
have specified Diffie-Hellman Key Exchange in Prot 8.1. This mechanism achieves agreement on
a key between two remote principals without using encryption.

Prot 8.1 is the basic version of Diffie-Hellman Key Exchange which achieves unauthenticated key
agreement. We have seen a man-in-the-middle attack in Attack 8.1 in which Malice shares
one key with Alice and another with Bob and hence can relay the “confidential” communications
between Alice and Bob. A proper use of Diffie-Hellman Key Exchange must be a variation of Prot
8.1. The simplest variation is a two-party protocol in which Alice knows for sure that gP is Bob's
public key:

Equation 11.6.1
1. Alice — Bob: Alice, g°

where number a is picked at random by Alice from a suitably large integer interval.

After sending the message in (11.6.1), Alice knows that gab is a key exclusively shared with Bob
since for anybody other than herself and Bob, to find g2° is to solve the computational Diffie-
Hellman problem (CDH problem, see Definition 8.1 in 88.4) which is assumed computationally
infeasible. Since Alice has picked her exponent at random which is new, the agreed key is fresh
and this means that the key is authenticated to Alice. However, upon receipt of g2, Bob cannot
know with whom he shares the key g2P or whether the key is fresh. Therefore, this simple
variation achieves unilateral authenticated key agreement.

Applying various mechanisms introduced so far, it is not difficult to augment mechanism
(11.6.1) to one which allows the agreed key to be mutually authenticated. For example, Alice
may digitally sign g2 with her identity and a timestamp.

Let us introduce here a well-known authenticated key exchange protocol which is a variation of
Diffie-Hellman Key Exchange.

11.6.1 The Station-to-Station Protocol

TheStation-to-Station (STS) Protocol is proposed by Diffie et al. [99].

In the STS Protocol, Alice and Bob have agreed on using a large finite abelian group which is
generated by a common element a. System-wide users can use a common generator a. The

reader may review 88.4.1 for cautions to setting up the shared group to be used in the STS

Protocol.

Alice and Bob also have their respective public key certificates:

Cert 4 = sige 4(Alice, Pa,desc {a))

Certp = sige 4(Bob, Pg, desc («))

whereCA is a certification authority (see Chapter 13),P A and Pg are the public keys of Alice and

Bob, respectively, and desc {a} is the description of the shared group generated by a. In
addition, the two parties have also agreed on using a symmetric-key encryption algorithm,
which we shall use the notation given in Definition 7.1 (in 87.2). The encryption algorithm can
also be agreed upon for system-wide users.

The STS Protocol is specified in Prot 11.6.

It is intended that the STS Protocol should have the following four security properties (several of
them are only true if a minor flaw in the protocol is fixed):

Mutual Entity Authentication However this property actually does not hold according to the
rigorous definition for authentication given by the authors of the STS Protocol. In [99], Diffie et
al. make two mistakes in this respect. We shall discuss them in §11.6.2 and 811.6.3,
respectively.

Mutually Authenticated Key Agreement Key agreement is obvious from the Diffie-Hellman
key exchange protocol; the freshness of the agreed key is guaranteed if each party has picked
her/his random exponent properly; the exclusive sharing of the agreed key is implied by both
parties' digital signature on their key agreement material. However, pulling together all these
features does not actually result in mutually authenticated key agreement: the property will only
hold if a minor flaw in the protocol is fixed.

Mutual Key Confirmation Upon termination of a run, both parties have seen that the other
party has used the agreed key to encrypt the key agreement material. Again, the correct mutual
key confirmation depends on the correct mutual authentication which only holds if a minor flaw
in the protocol is fixed.

Perfect Forward Secrecy (PFS) This is an attractive property of a key establishment protocol
which means that if a long-term private key used in a key establishment protocol is
compromised at a point in time, the security of any session established earlier than that point
will not be effected [133,99]. The PFS property holds for a key establishment protocol where a
session key is properly agreed using the Diffie-Hellman key exchange mechanism. Here in the
case of the STS protocol, the long-term keys are the private keys of Alice and Bob. Since each
session key agreed in a run of the protocol is a one-way function of two ephemeral secrets which
will be securely disposed of upon termination of the run, compromise of either of the signing
long-term keys cannot have any effect on the secrecy of the previously agreed session keys.

Protocol 11.6: The Station-to-Station (STS) Protocol

PREMISE: Alice has her public-key certificate Certp,
Bob has his public-key certificate Certg, the
system-wide users share a large finite

abelian group desc {a}, and they agree on a
symmetric encryption algorithm €;

GOAL: Alice and Bob achieves mutual
authentication and mutually authenticated
key agreement.

1. Alice picks a random large integer x, and sends to Bob:

ml‘

(]

2. Bob picks a random large integer y, and sends to Alice:

a?, Certp, €k (sigg(a?,a™));
3. Alice sends to Bob:

Cert 4, Ex(sig4(a”™,a?)).

HereK = a *¥ = a¥x.

WARNING:

This protocol is flawed in a minor way; to be analysed in §11.6.3.

Anonymity (Deniability) If the public-key certificates are encrypted inside the respective
cipher chunks, then the messages communicated in a run of the protocol will not be revealed to
any third party who are involved in the message exchanges. However we should notice that
addressing information transmitted in a lower-layer communication protocol may disclose the
identities of the protocol participants. Therefore, precisely speaking, "anonymity" should be
rephrased to a kind of "deniability" which means that a network monitor cannot not prove that a
given protocol transcript takes place between two specific principals. Because the STS Protocol is
one of the bases for the Internet Key Exchange (IKE) protocol suite for Internet Security [135,
158,225], this property is a feature in the IKE. We shall study IKE (and this feature) in the next
chapter (812.2).

The STS Protocol, although the version specified in Prot 11.6 is flawed in a very minor way, is an
important and influential work in the area of authentication and authenticated key-exchange

protocols. It is one of the bases for "Internet Key Exchange (IKE) Protocol” [135,225] which is
an industrial standard authentication protocol for Internet security. We will study IKE in §12.2
and see the influence of the STS Protocol on it.

The paper [99] contains two flaws: a serious one in a simplified version of the STS Protocol for
an "authentication only" usage; a minor one in the STS Protocol proper. If a widely recognized
protocol design principle is followed (that principle was documented and became widely
acknowledged after the publication of [99]), then both flaws disappear. Let us now look at these
flaws. Our study of these flaws shall lead to that widely recognized protocol design principle.

11.6.2 A Flaw in a Simplified STS Protocol

In order to argue the mutual authentication property, Diffie et al. simplify the STS Protocol into
one they name "Authentication-only” STS Protocol (85.3 of [99]). They claim that the "simplified
protocol is essentially the same as the three-way authentication protocol” proposed by ISO. The
"1SO protocol” they referred to is in fact what we named (after ISO/IEC's name) the "1SO Public
Key Three-Pass Mutual Authentication Protocol” (prot 11.1 with Wiener's attack having been
fixed, see §11.4.2).

The simplified "Authentication-only” STS Protocol is specified in Prot 11.7.

However,Prot 11.7 has an important difference from the 1SO Protocol. In this simplified STS
Protocol, the signed messages do not contain the identities of the protocol participants, while in
the ISO Protocol the signed messages contain the identities. The simplified STS Protocol suffers a
"certificate-signature-replacement attack” which is demonstrated in Attack 11.2.

In this attack, Malice, who is a legitimate user of the system and hence has a public-key
certificate, waits for Alice to initiate a run. Upon occurrence of such an opportunity, he starts to
talk to Bob by impersonating Alice and using her nonce. Upon receipt of Bob's reply, Malice
replaces Bob's certificate and signature with his own copies, respectively. Doing so can
successfully persuade Alice to sign Bob's nonce, which in turn allows Malice to cheat Bob
successfully. This is a perfect attack because neither Alice nor Bob can discover anything wrong.

Notice that in this attack, Malice is not passive in the whole attacking run orchestrated by him:
he signs Bob's nonce and hence successfully persuades Alice to sign Bob's nonce so that he can
fool Bob completely. Should Malice be passive, i.e., behave like a wire, then Bob would have
never received Alice's signature on his nonce, and thereby would not have been cheated.

Protocol 11.7: Flawed "Authentication-only" STS Protocol

PREMISE: Alice has her public-key certificate Certa,

Bob has his public-key certificate Certg.

Alice Bob

Cert g, Rf;.ﬁi,‘.l,'”(R,l;. Ry)

Cert 4, SIE 4 {HH yHg)

This "certificate-signature-replacement attack™ does not apply to the STS Protocol because the
encryption used in the full version of the protocol prevents Malice from replacing Bob’s signature.
The attack does not apply to the ISO Protocol (prot 11.1) either because there, Malice's identity
will appear in the message signed by Alice, and hence that message cannot be passed to Bob to
fool him.

Itis interesting to point out that, in their paper (85.1 of [99]) Diffie et al. do discuss a similar
"certificate-signature-replacement attack™ on a dismissed simplification of the STS Protocol
where the encryption is removed. That attack has not been tried on the "Authentication-only"
STS Protocol, perhaps because the latter looks very similar to the fixed version of the ISO
Protocol. The same paper (86 of [99]) demonstrates Wiener's attack on the flawed version of the
1SO Protocol, which is obviously different from the "certificate-signature-replacement attack”
(the reader may confirm that Wiener's attack on the flawed version of the 1SO Protocol does not
apply to the "Authentication-only" STS Protocol). From these entanglements we are witnessing
the error-prone nature of authentication protocols.

Attack 11.2: An Attack on the "Authentication-only" STS
Protocol

PREMISE: In addition to that in Prot 11.7,

Malice has his public key certificate Certy.

(* so Malice is also a normal user in the
system *)

(* Malice faces Alice using his true identity, but he faces Bob by masquerading as
Alice: *)

Alice Malice — I'm “Alice” — Bob
Ra Ea
{'_‘:'ri s, sigy (R Ra) C‘-n.;-rl.”. Rp.sigp(R)
Cert 4. sig 4 (R 4. H_-,»}L Certq.sig 4 (Ra. HH}-—
CONSEQUENCE:

Bob thinks he has been talking with Alice while she thinks to have been talking with
Malice.

Including the identity of the intended verifier inside a signature does indeed constitute a method
to fix the flaw. Of course, we do not suggest that adding identity is the only way to fix this flaw.
In some applications (e.g., "Internet Key Exchange (IKE) Protocol,"” see 812.2.3), identities of
the protocol participants are desirably omitted in order to obtain a privacy property (see
812.2.4). A novel way of fixing such flaws while keeping the desired privacy property can be
devised by using a novel cryptographic primitive, which we shall introduce in a later chapter.

11.6.3 A Minor Flaw of the STS Protocol

Lowe discovers a minor attack on the STS Protocol [179]. Before presenting Lowe's attack, let us
review a rigorous definition for authentication given by the authors of the STS Protocol.

In [99], Diffie et al. define a secure run of an authentication protocol using the notion of

"matching records of runs.” Let each protocol participant record messages received during a run.
A "matching records of a run" means that the messages originated by one participant must
appear in the record of the other participant in the same order of sequence as the messages are
sent, and vice versa. Then an insecure run of an authentication protocol (Definition 1 of [99]) is

one:

if any party involved in the run, say Alice, executes the protocol faithfully, accepts the
identity of another party, and the following condition holds: at the time that Alice accepts
the other party's identity, the other party's record of the partial or full run does not match
Alice's record.

Under this definition for an insecure run of an authentication protocol, what is demonstrated in
Attack 11.3 qualifies a legitimate attack on the STS Protocol, even though the damage it can
cause is very limited.

Lowe's attack is a minor one in the following two senses:

In the run part between Alice and Malice, although Malice is successful in fooling Alice, he
does not know the shared session key and hence cannot fool Alice any further after the run.

In the run part between Malice and Bob, Malice cannot complete the run, and so this part is
not a successful attack.

We however think Lowe's attack qualifies a legitimate attack also for two reasons:

Alice accepts the identity of Bob as a result of Malice simply copying bit-by-bit all of Bob's
message to Alice. However, in Bob's end, since he sees the communication partner as
Malice while he signs Alice's random challenge, his recorded messages do not match those
of Alice. Therefore, the attack meets the "insecure run" criterion defined by the STS
authors, i.e., mutual authentication actually fails. Of course, as the notion of entity
authentication is quite hard to capture precisely, and as the area of study has been
developing through mistakes, a verdict of an attack given on the basis of a quite old
definition (i.e., that of an "insecure run" given by Diffie et al. [99]) may not be sufficiently
convincing. Today, one may well question whether that early definition is correct at all.
However, a better question should be: "Will this 'attack' be a concern in practice today?"
This is answered in (I1).

Malice successfully fools Alice into believing a normal run with Bob. Her subsequent
requests or preparation for secure communications with Bob will be denied without any
explanation since Bob thinks he has never been in communication with Alice. Also, nobody
will notify Alice of any abnormality. We should compare this consequence with one resulted
from a much less interesting "attack"” in which Malice is passive except for cutting the final
message from Alice to Bob without letting Bob receive it. In this less interesting "attack,"
due to the expected matching records, Bob may notify Alice the missed final message.
Regarding whether Lowe's attack is a concern in practice today, we may consider that if
Alice is in a centralized server's situation, and is under a distributed attack (i.e., is under a
mass attack launched by Malice's team distributed over the network), lack of notification
from end-users (i.e., from many Bobs) is indeed a concern: the server will reserve
resources for many end-users and its capacity to serve the end-users can be drastically
powered down. We should particularly notice that in Lowe's attack, Malice and his friends
do not use any cryptographic credentials (certificates). So this attack costs them very little.
This is again very different from a conventional denial-of-service attack in which Malice and
his friends have to talk to Alice in their true names (i.e., with certificates).

Attack 11.3: Lowe's Attack on the STS Protocol (a Minor Flaw)

(* Malice faces Bob using his true identity, but he faces Alice by masquerading as
Bob: *)

Alice — I'm “Bob" — Malice Bob
a’ a”
o, Cerlg, o’ Certg
Ex(siggla¥, a”)) Ex(siggla¥, a”))
Cert 4,

Ex(sig4(a”, a¥))

CONSEQUENCE:

Alice is fooled perfectly and thinks she has been talking and sharing a session key
with Bob, while Bob thinks he has been talking with Malice in an incomplete run.
Alice will never be notified of any abnormality, and her subsequent requests or
preparation for secure communications with Bob will be denied without any
explanation.

For the reason explained in (I1), we shall name Lowe's attack a perfect denial of service
attack against Alice: the attackers succeed using other parties' cryptographic credentials.

This attack can be avoided if the protocol is modified into one which follows a correct and well
recognized protocol design principle proposed by Abadi and Needham [1]:

If the identity of a principal is essential to the meaning of a message, it is prudent to
mention the principal's name explicitly in the message.

Indeed, the signed messages in the STS Protocol should include the identities of both protocol
participants! This way, the message from and signed by Bob will contain "Malice" so that Malice
cannot forward it to Alice in Bob's name, i.e., Malice can no longer fool Alice. Moreover, if the
simplified "Authentication-only” STS Protocol is simplified from this identities-in-signature
version, then it will not suffer the "certificate-signature-replacement attack” either since now the
simplified version is essentially the 1SO Protocol (prot 11.1).

As we have mentioned earlier, the STS Protocol is one of the bases for the "Internet Key
Exchange (IKE) Protocol" [135,158,225]. As a result, we shall see in 8§12.2 that the "perfect
denial of service attack" will also apply to a couple of modes in IKE.

Finally, we should recap a point we have made in 811.6.2: adding identity of a signature verifier
is not the only way to prevent this attack. For example, using a designated verifier signature
can achieve a better fix while without adding the identity. Such a fix will be a topic in a later
chapter.

11.7 Typical Attacks on Authentication Protocols

In 82.3 we have agreed that Malice (perhaps by co-working with his friends distributed over an
open communication network) is able to eavesdrop, intercept, alter and inject messages in the
open communication network, and is good at doing so by impersonating other principals.
Viewing from a high layer (the application layer) of communications, Malice's capabilities for
mounting these attacks seem like magic: how can Malice be so powerful?

However, viewing from a lower-layer (the network layer) communication protocol, it actually
does not require very sophisticated techniques for Malice to mount these attacks. We shall see
the technical knowhow for mounting such attacks on a lower-layer communication protocol in
812.2 where we shall also see how communications take place in the network layer. For the time
being, let us just accept that Malice has magic-like capabilities. Then, a flawed authentication
protocol may permit Malice to mount various types of attacks.

While it is impossible for us to know all the protocol attacking techniques Malice may use (since
he will constantly devise new techniques), knowing several typical ones will provide us with
insight into how to develop stronger protocols avoiding these attacks. In this section, let us look
at several well-known protocol attacking techniques in Malice's portfolio. We should notice that,
although we classify these attacking techniques into separate types, Malice may actually apply
them in a combined way: a bit of this and a bit of that, until he can end up with a workable
attack.

Before we go ahead, we should emphasize the following important point:

.Remark 11.3

A successful attack on an authentication or authenticated key establishment protocol usually does
not refer to breaking a cryptographic algorithm, e.g., via a complexity theoretic-based
cryptanalysis technique. Instead, it usually refers to Malice's unauthorized and undetected
acquisition of a cryptographic credential or nullification of a cryptographic service without
breaking a cryptographic algorithm. Of course, this is due to an error in protocol design, not one

in the cryptographic algorithm. 0

11.7.1 Message Replay Attack

In a message replay attack, Malice has previously recorded an old message from a previous run
of a protocol and now replays the recorded message in a new run of the protocol. Since the goal
of an authentication protocol is to establish lively correspondence of communication parties and
the goal is generally achieved via exchanging fresh messages between/among communication
partners, replay of old messages in an authentication protocol violates the goal of
authentication.

In 82.6.4.2 we have seen an example of message replay attack on the Needham-Schroeder
Symmetric-key Authentication protocol (Attack 2.2). Notice that there (review the last paragraph
of 82.6.4.2) we have only considered one danger of that message replay attack: the replayed
message encrypts an old session key which is assumed vulnerable (Malice may have discovered
its value, maybe because it has been discarded by a careless principal, or maybe due to other
vulnerabilities of a session key that we have discussed in §2.5).

Another consequence, probably a more serious one, of that attack should be referred to as

authentication failure, i.e., absence of a lively correspondence between the two communication
partners. Indeed, for that attack to work (review Attack 2.2) Malice does not have to wait for an
opportunity that Alice starts a run of the protocol with Bob; he can just start his attack by
jumping to message line 3 and replaying the recorded messages, as long as he knows the old
session key K':

3. Malice("Alice™) == Bob: {K'Alice}K gT;
4. Bob =% Malice ("Alice"): {I'm Bob! Ng}K';
5. Malice("Alice™) == Bob: {I'm Alice! Ng — 1}K".
Now Bob thinks Alice is communicating with him, while in fact Alice is not even online at all.

Message replay is a classic attack on authentication and authenticated key establishment
protocols. It seems that we have already established a good awareness of message-replay
attacks. This can be evidently seen from our ubiquitous use of freshness identifiers (nonces,
timestamps) in the basic and standard protocol constructions introduced in 811.4. However, a
good awareness does not necessarily mean that we must also be good at preventing such
attacks. One subtlety of authentication protocols is that mistakes can be made and repeatedly
made even when the designers know the errors very well in a different context. Let us look at the
following case which shows another form of message replay attack.

In [293], Varadharajan et al. present a number of "proxy protocols" by which a principal passes
on its trust in another principal to others who trust the former. In one protocol, Bob, a client,
shares the key Kgt with Trent, an authentication server. Bob has generated a timestamp Tg and
wants a key Kgs to communicate with another server S. Then S constructs {Tg + 1}Kgs, and
sends:

5. == Bop: S, B, {Ts + 1}Kss, {Kes}KarT.
The authors reason:

Having obtained Kgs, Bob is able to verify using Tg that S has replied to a fresh message,
so that the session key is indeed fresh.

However, although a freshness identifier is cryptographically integrated with Kgs, Bob can obtain
no assurance that Kgg is fresh. All that he can deduce is that Kgs has been used recently, but it
may be an old, or even compromised key.

So we remark:

.Remark 11.4

Sometimes, a cryptographic integration between a freshness identifier and a message may only
indicate the fresh action of the integration, not the freshness of the message being integrated.

11.7.2 Man-in-the-Middle Attack

Man-in-the-middle attack in the spirit of the well-known “"chess grandmaster problem"Ihl js
generally applicable in a communication protocol where mutual authentication is absent. In such
an attack, Malice is able to pass a difficult question asked by one protocol participant to another
participant for an answer, and then passes the answer (maybe after a simple processing) back to
the asking party, and/or vice versa.

[A novice who engages in two simultaneous chess games with two distinct grandmasters, playing Black in
one game and White in the other, can take his opponents' moves in each game and use them in the other to
guarantee himself either two draws or a win and a loss, and thereby unfairly have his chess rating improved.

In 82.6.6.3 and 88.3.1, we have seen two cases of man-in-the-middle attack, one on the
Needham-Schroeder Public-key Authentication Protocol, one on the unauthenticated Diffie-
Hellman key exchange protocol.

A man-in-the-middle attack on the S/KEY Protocol (Prot 11.4, attack shown in Attack 11.4)
shows another good example on how Malice can gain a cryptographic credential without
breaking the cryptographic algorithm used in the scheme.

The cryptographic hash function f used in the S/KEY scheme can be very strong so that itis
computationally infeasible to invert; also the user U can have chosen the password Py properly
so that an offline dictionary attack aiming at finding Py from f¢(Py) does not apply (review
811.5.3 for offline dictionary attack). However, the protocol fails miserably on an active attack
which is demonstrated in Attack 11.4.

TheAttack 11 .4 works because in the S/KEY Protocol, messages from H are not authenticated to
u.

The countermeasure for man-in-the-middle attack is to provide data-origin authentication
service in both directions of message exchanges.

11.7.3 Parallel Session Attack

In a parallel session attack, two or more runs of a protocol are executed concurrently under
Malice's orchestration. The concurrent runs make the answer to a difficult question in one run
available to Malice so that he can use the answer in another run.

An early attack on the Woo-Lam Protocol (Prot 11.2) discovered by Abadi and Needham [1]
illustrates a parallel session attack. The attack is shown in Attack 11.5.

This attack should work if Bob is willing to talk to Alice and Malice at roughly the same time.
Then Malice can block messages flowing to Alice. In messages 1 and 1', Bob is asked to respond
two runs, one with Malice and one with "Alice.” In messages 2 and 2', Bob responds with two
different nonce challenges, of course both will be received by Malice (one of them, Ng, will be
received via interception).

Attack 11.4: An Attack on the S/KEY Protocol
(* notations in the attack are the same as those in Prot 11.4 *)
U Malice H
Dy 1Dy
c— 1, “Password” c, “Pasaword”
Fe(Py) £ (B
CONSEQUENCE:
Malice has in his possession f©=2(Py) which he can use for logging-in in the name of U
in the next session.

Malice throws away N'g which is meant for him to use, but uses the intercepted Ng which is
intended for Alice to use. So in messages 3 and 3' Bob receives {Ng}Kur. Notice that the two
ciphertext chunks received in messages 3 and 3' may or may not be identical, this depends on
the encryption algorithm details (see Chapters 14 and 15). At any rate, Bob should simply follow
the protocol instruction in messages 4 and 4': he just encrypts them and sends them to Trent.
Notice that even if the two cipher chunks received by Bob in messages 3 and 3' are identical
(when the encryption algorithm is deterministic, a less likely case nowadays in applications of
encryption algorithms), Bob should not be able to notice it since the cipher chunk is not
recognizable by Bob as it is not a message for Bob to process. Not to process a "foreign
ciphertext" is consistent with our convention for the behavior of honest principals (see §11.3):
Bob is not anticipating an attack and cannot recognize ciphertext chunks which are not meant for
him to decrypt. We know such a behavior is stupid, but we have agreed as convention that Bob
should be so "stupid.” Now in messages 5 and 5', one of the cipher chunks Bob receiving from
Trent will have the nonce Ng correctly returned, which will deceive Bob to accept "the run with
Alice," but Alice is not online at all; the other cipher chunk will be decrypted to "garbage"
because itis a result of Trent decrypting {Ng}Kut using Kat. The result, Bob rejects the run with
Malice, but accepts the run "with Alice."

Attack 11.5: A Parallel-Session Attack on the Woo-Lam
Protocol

PREMISE: In addition to that of Prot 11.2, Malice and
Trent share long term key Kyr. (* so Malice
is also a normal user in the system *)

1. Malice("Alice") ==% Bob: Alice;

1'. Malice ==* Bob: Malice;

2. Bob =% Malice("Alice™): Ng;

2'. Bob = Malice: N’

3. Malice("Alice™) == Bob: {Ng}KyT;

3'. Malice = Bob: {Ng}Kur;

4. Bob = Trent: {Alice, {Ng}Kur}KgT;

4'. Bob = Trent: {Malice, {Ng}Ku1}KgT;

5. Trent =% Bob: {"garbage"}KaT;

(* "garbage" is the result of Trent decrypting {Ng}Kut using Kat *)
5'. Trent =% Bob: {Ng}KgT;

6. Bob rejects the run with Malice;

(* since decryption returns "garbage" rather than nonce N'g *)
6'. Bob accepts "the run with Alice,” but it is a run with Malice;
(* since decryption returns Ng correctly *)

CONSEQUENCE:

Bob believes that Alice is corresponding to him in a run while in fact Alice has not
participated in the run at all.

In a parallel session attack, the sequence of the two parallelled sessions are not important. For
example, if Bob receives message 3' before receiving message 3, the attack works the same
way. Bob can know who has sent which of these two messages from the addressing information
in the network layer and we will see this clearly in 8§12.2.

Abadi and Needham suggest a fix for the Woo-Lam Protocol which we shall see in a moment.
They also inform Woo and Lam about the attack in Attack 11.5 [1]. The latter authors propose a
series of fixes [302] which includes the fix suggested by Abadi and Needham (called 113 in [302])
and several more aggressive fixes. The most aggressive fix is called 11f: adding the identities of

the both subjects, i.e., Alice and Bob, inside all cipher chunks. They claim that their fixes are
secure. Unfortunately, none of them is (and hence the fix suggested by Abadi and Needham is
also flawed). Each of their fixes can be attacked in an attack type which we shall describe now.

11.7.4 Reflection Attack

In a reflection attack, when an honest principal sends to an intended communication partner a
message for the latter to perform a cryptographic process, Malice intercepts the message and
simply sends it back to the message originator. Notice that such a reflected message is not a
case of "message bounced back:" Malice has manipulated the identity and address information
which is processed by a lowerlayer communication protocol so that the originator will not notice
that the reflected message is actually one "invented here." We shall see the technical know-how
in §812.2.

In such an attack, Malice tries to deceive the message originator into believing that the reflected
message is expected by the originator from an intended communication partner, either as a
response to, or as a challenge for, the originator. If Malice is successful, the message originator
either accepts an "answer" to a question which was in fact asked and answered by the originator
itself, or provides Malice with an oracle service which Malice needs but cannot provide to himself.

After having discovered the parallel-session attack (Attack 11.5) on the original Woo-Lam
Protocol (Prot 11.2), Abadi and Needham suggested a fix [1]: the last message sent from Trent
to Bob in Prot 11.2 should contain the identity of Alice:

Equation 11.7.1
5. Trent — Bob: {Alice, N}k,

This fix indeed removes the parallel-session attack in Attack 11.5 since now if Malice still attacks
that way then the following will occur:

5. Trent = Bob: {Malice, Ng}KgT

while Bob is expecting (11.7.1), and hence detects the attack.

Attack 11.6: A Reflection Attack on a"Fixed" Version of the
Woo-Lam Protocol

PREMISE: Same as that of Prot 11.2;

1. Malice("Alice™) = Bob: Alice;

2. Bob =% Malice("Alice™): Ng;
3. Malice("Alice") ==* Bob: Ng;
4. Bob ==* Malice("Trent"): {Alice, Bob, Ng}KgT;
5. Malice("Trent") = Bob: {Alice, Bob, Ng}KgrT;

6. Bob accepts.
CONSEQUENCE:

Bob believes that Alice is alive in a protocol run, however in fact Alice has not
participated in the run at all.

However, while having the identities of the protocol participants explicitly specified in a protocol
is definitely an important and prudent principle for developing secure authentication protocols
(an issue to be addressed in a different attacking type in 811.7.7), it is only one of many things
which need to be considered. Often, one countermeasure prevents one attack but introduces
another. The fixed version of Abadi and Needham [1] for the Woo-Lam Protocol is still insecure.
Their fixed version of the Woo-Lam Protocol suffers a reflection attack which is given in Attack
11.6 (the attack is due to Clark and Jacob [77]).

Here, Malice mounts reflection attack twice: message 3 is a reflection of message 2, and
message 5 is that of message 4. This attack works under an assumption that, in messages 3 and
5, Bob receives messages and cannot detect anything wrong. This assumption holds perfectly for
both cases according to our agreed convention for the behavior of honest principals (811.3).
First, the random chunk Bob receives in message 3 is actually Bob's nonce sent out in message
2; however, Bob can only treat it as an unrecognizable foreign cipher chunk; to follow the
protocol instruction is all that he can and should do. Again, the cipher chunk Bob receives in
message 5 is actually one created by himself and sent out in message 4; however, Bob is
stateless with respect to the message pair 4 and 5. This also follows our convention on stateless
principal agreed in 811.3). Therefore Bob cannot detect the attack.

A series of fixes for the Woo-Lam Protocol proposed by Woo and Lam in [302] are also flawed in
a similar way: they all suffer various ways of reflection attack. For the most aggressive fix, I1fin
which the identities of both user principals will be included in each ciphertext, reflection attack
will still work if Bob is not sensitive about the size of a foreign cipher chunk. This is of course a
reasonable assumption due to our agreement on the "stupidity" of honest principals.

A more fundamental reason for the Woo-Lam Protocol and its various fixed versions being flawed
will be investigated in 817.2.1 where we take formal approaches to developing correct

authentication protocols. A correct approach to the specification of authentication protocols will
be proposed in 817.2.2. The correct approach will lead to a general fix for the Woo-Lam Protocol
and for many other protocols, too. We shall see in §17.2.3.2 that the Woo-Lam Protocol under
the general fix (Prot 17.2) will no longer suffer any of the attacks we have demonstrated so far.

11.7.5 Interleaving Attack

In an interleaving attack, two or more runs of a protocol are executed in an overlapping fashion
under Malice's orchestration. In such an attack, Malice may compose a message and sends it out
to a principal in one run, from which he expects to receive an answer; the answer may be useful
for another principal in another run, and in the latter run, the answer obtained from the former
run may further stimulate the latter principal to answer a question which in turn be further used
in the first run, and so on.

Some authors, e.g., [34], consider that interleaving attack is a collective name for the previous
two attacking types, i.e., parallel-session attack and reflection attack. We view these attacking
types different by thinking that an interleaving attack is more sophisticated than reflection and
parallel-session attacks. In order to mount a successful interleaving attack, Malice must exploit a
sequentially dependent relation among messages in different runs.

Wiener's attack (Attack 11.1) on an early draft of the "ISO Public Key Three-Pass Mutual
Authentication Protocol,” which we have seen in 811.4.2, is a good example of interleaving
attack. In that attack, Malice initiates a protocol run with A by masquerading as B (message line
1); upon receipt A's response (message line 2), Malice initiates a new run with B by
masquerading as A (message line 1'); B's response (message line 2') provides Malice with the
answer that A is waiting for, and thus, Malice can return to and complete the run with A. In
comparison with the parallel-session attack (e.g., Attack 11.5), an interleaving attack is very
sensitive to the sequence of the message exchanges.

Related to Wiener's attack, the "certificate-signature-replacement attack™ on the
"Authentication-only" STS Protocol (Attack 11.2) is another perfect interleaving attack. Also,
Lowe's attack on the Needham-Schroeder Public-key Authentication Protocol (Attack 2.3) is an
interleaving attack.

Usually, a failure in mutual authentication can make an interleaving attack possible.

11.7.6 Attack Dueto Type Flaw

In a type flaw attack, Malice exploits a fact we agreed upon in §11.3 regarding an honest
principal's inability to associate a message or a message or a message component with its
semantic meaning (review Remark 11.1 and Example 11.1in §11.3).

Typical type flaws include a principal being tricked to misinterpret a nonce, a timestamp or an
identify into a key, etc. Misinterpretations are likely to occur when a protocol is poorly designed
in that the type information of message components are not explicit. Let us use a protocol
proposed by Neuman and Stubblebine [214] to exemplify a type flaw attack [285,69]. First,
here is the protocol:

1. Alice = Bob: A, Nja;

2. Bob = Trent: B, {A, Na, Tg}KgT, Ng;

3. Trent = Alice: {B, Na, Kag, Te}Kat, {A, Kag, Te}KgT, Np;
4. Alice = Bob: {A, Kag, Te}KeT, {Ne}Kas.

This protocol intends to let Alice and Bob achieve mutual authentication and authenticated key
establishement by using a trusted service from Trent. If a nonce and a key are random numbers
of the same size, then this protocol permits Malice to mount a type-flaw attack:

1. Malice("Alice™) ==* Bob: A, Na;

2. Bob =3 Malice("Trent"): B, {A, Na, Tg}KgT, Np;
3. none;

4. Malice("Alice™) =+ Bob: {A, Na, Tg}KpT, {Ng}NA.

In this attack, Malice uses the nonce Na in place of the session key Kag to be established, and
Bob can be tricked to accept it if he cannot tell the type difference. Indeed, there is no good
mechanism to prevent Bob from being fooled.

A type flaw is usually implementation dependent. If a protocol specification does not provide
sufficiently explicit type information for the variables appearing in the protocol, then type flaw
can be very common in implementation. Boyd [54] exemplified the problem using the Otway-
Rees Authentication Protocol [226] where he discussed the importance for avoiding hidden
assumptions in cryptographic protocols.

11.7.7 Attack Due to Name Omission

In authentication protocols often the names relevant for a message can be deduced from other
data parts in the context, and from what encryption keys have been applied. However, when this
information cannot be deduced, name omission is a blunder with serious consequences.

It seems that experts in the fields (reputable authors in cryptography, computer security and
protocol design) are ready to make a name-omission blunder. Perhaps this is because of their
desire to obtain an elegant protocol which should contain little redundancy. The two attacks on
two versions of the STS Protocol, which we have studied in §11.6.2 and 811.6.3, respectively,
are such vivid examples. Here is another.

Denning and Sacco proposed a protocol as a public-key alternative to their fix of the Needham-
Schroeder Symmetric-key Authentication Protocol [94]. The protocol of Denning and Sacco is as
follows:

1. Alice =2 Trent: A, B;
2. Trent ==* Alice: Certa, Certg;
3. Alice = Bob: Certa, Certg, {siga(Kag, Ta) }ks.

In this protocol, the third message is encrypted for both secrecy and authenticity. When Bob
receives the message from Alice, he sees that the session key Kag should be exclusively shared
between Alice and him because he sees Alice's signature and the use of his public key.

Unfortunately, nothing in this protocol guarantees such an exclusive-key sharing property. Abadi

and Needham discovered a simple but rather shocking attack [1] in which Bob, after receiving
the message from Alice, can fool another principal to believe this "property:"

3'. Bob("Alice™) =% Charlie: Certa, Certc, {siga (Kag, Ta)}xc.

Charlie will believe that the message is from Alice, and may subsequently send a confidential
message to Alice encrypted under the session key Kag. Alas, Bob can read it!

The intended meaning of message line 3 is: "At time Ta, Alice says that Kag is a good key for
communication between Alice and Bob." The obvious way to specify this in this protocol should
be:

3. Alice =2 Bob: Certa, Certg, {siga(A, B, Kag, Ta) }ke-

Making explicit the identities of participants in authentication protocols, especially making them
explicit inside the scope of a cryptographic operation, must have been "common sense" for
protocol designers. However, we have witnessed that it is not rare for experienced protocol
designers to neglect "common sense.” Abadi and Needham have documented this "common
sense" as one of the prudent principles for authentication protocol design [1]. We should quote
here again this prudent principle for protocol design:

If the identity of a principal is essential to the meaning of a message, it is prudent to
mention the principal's name explicitly in the message.

Our reemphasis of this prudent principle is not redundant: in 812.2 we shall further see name-
omission blunders in the current version of the IKE Protocol for Internet security [135], even
after many years of the protocol’'s development by a committee of highly experienced computer
security experts.

11.7.8 Attack Due to Misuse of Cryptographic Services

We should mention finally a very common protocol design flaw: misuse of cryptographic
services.

Misuse of cryptographic services means that a cryptographic algorithm used in a protocol
provides an incorrect protection so that the needed protection is absent. This type of flaw can
lead to various attacks. Here are two of the most common ones:

i. Attacks due to absence of data-integrity protection. We will demonstrate an attack on a
flawed protocol to illustrate the importance of data-integrity protection. Many more
attacking examples of this type on public-key cryptographic schemes will be shown in
Chapter 14 where we study the notion of security against adaptively active attackers. We
shall further study this type of protocol failure in depth in 817.2 where we study a topic of
formal approaches to authentication protocols analysis.

ii. Confidentiality failure due to absence of "semantic security" protection. In this type of
protocol (and cryptosystem) failure, Malice can extract some partial information about a
secret message encrypted in a ciphertext and hence achieves his attacking agenda without
fully breaking an encryption algorithm in terms of a "all-or-nothing™ quality of
confidentiality (see Property 8.2 in 88.2). We shall study the notion of semantic security in
Chapter 14 and show many such attacks there. There and in Chapter 15 we shall also study
cryptographic techniques which offer semantic security.

These two common misuses of cryptographic services frequently appear in the literature of

authentication protocols. Apparently, the misuses indicate that those protocol designers were not
aware of the general danger of "textbook crypto.”

Now let us demonstrate a flaw due to missing of integrity service. The flawed protocol is a
variation of the Otway-Rees Protocol [226]. We have derived the variation by following a
suggestion in [61]. The variation is specified in Prot 11.8.

Protocol 11.8: A Minor Variation of the Otway-Rees Protocol

PREMISE: Alice and Trent share key KaT;

Bob and Trent share key KgT;

GOAL: Alice and Bob authenticate to each other;

they also establish a new and shared session
keyK AB-

1. Alice == Bob: M, Alice, Bob, {Na, M, Alice, Bob}kar;

2. Bob = Trent:M, Alice, Bob, {Na, M, Alice, Bob}kar, {Ns}ker, {M, Alice,
Bob}ker;

3. Trent = Bob:M, {Na, Kag}KaT, {Ng, Kag}KgT;
4. Bob =% Alice:M, {Na, Kap}KAaT.

(*M is called a run identifier for Alice and Bob to keep tracking the run between
them™)

Prot 11.8 applies the rather standard technique of using an online authentication server (Trent)
to achieve mutual authentication and authenticated session establishment between two user
principals. Let us consider Bob's view on a protocol run (Alice's view can be considered likewise).
Bob can conclude that the session received in step 3 is fresh from the cryptographic integration
between the key and his nonce. He should also be able to conclude that the session key is shared
with Alice. This is implied by the cryptographic integration between the run identifier M and the
two principals' identities; the integration has been created by Bob himself and has been verified
by Trent.

The variation differs from the original Otway-Rees Protocol only very slightly: in step 2 of the
variation, Bob's encrypted messages (encrypted under the key KaT) are in two separate cipher
chunks, one encrypts his nonce Ng, the other encrypts other message components. In the
original Otway-Rees Protocol, the nonce and the rest of the message components are encrypted
(more precisely, they are specified to be encrypted) inside one cipher chunk: {Ng, M, Alice,
BOb}KBT.

It is interesting to point out that for some implementors, this variation may not qualify as a
variation at all: encryption of a long message is always implemented in a plural number of
blocks whether or not the specification uses one chunk or two chunks. This is an important point

and we shall return to clarify it at the end of our discussion of this type of protocol failure.

This minor variation is actually a much less aggressive version of modification to the original
protocol than that suggested in [61]. There it is considered that Bob's nonce needn't be a secret,
and hence Bob can send it in cleartext. Indeed, if the freshness identifier has been sent in
cleartext in step 2, Bob can of course still use Ng returned in step 3 to identify the freshness of
the session key Kag. We, however, insist on using encryption in step 2 in order to expose our
point more clearly.

Prot 11.8 is fatally flawed. Attack 11.7 shows an attack. This attack was discovered by Boyd and
Mao [55].

In this attack, Malice begins with masquerading as Alice to initiate a run with Bob. He then
intercepts the message from Bob to Trent (step 2); he changes Alice's identity into his own, does
not touch Bob's first cipher chunk (no need for him to know the encrypted nonce) and replaces
Bob's second cipher chunk {M, Alice, Bob}Kgt with an old chunk {M, Malice, Bob}Kgt which he
has recorded from a previous normal run of the protocol between himself and Bob. After sending
the modified messages to Trent by masquerading as Bob (step 2"), everything will go fine with
Trent and Bob: Trent thinks that the two client-users requesting authentication service are
Malice and Bob, while Bob thinks that the run is between Alice and himself. Alas, Bob will use the
established session key which he thinks to share with Alice but in fact with Malice, and will
disclose to Malice the confidential messages which should be sent to Alice!

This attack reveals an important point: to protect the freshness identifier Ng in terms of
confidentiality is to provide a wrong cryptographic service! The correct service is data integrity
which must be provided to integrate the nonce and the principals identities. Ng can indeed be
sent in clear if a proper integrity protection is in place. Without integrity protection, encryption of
Ng is missing the point!

We have mentioned that for some implementors, Prot 11.8 will not be viewed as a variation from
the original Otway-Rees Protocol. This is true indeed because, encryption of a long message is
always implemented in a plural number of blocks. If in an implementation, a plural number of
ciphertext blocks are not integrated with one another cryptographically, then both protocols will
be implemented into the same code, and hence one cannot be a "variation" of the other.

In the usual and standard implementation of block ciphers, a sequence of separate ciphertext
blocks are cryptographically chained one another. The cipher-block-chaining (CBC, see §7.8.2)
mode of operation is the most likely case. We should notice that in the CBC mode, the
cryptographically chained cipher blocks are actually not protected in terms of data integrity
service, as in contrast to a common and wrong belief. Without integrity protection, some of the
chained blocks can be modified without having the modification detected during decryption time.
We shall show how CBC misses the point of providing data-integrity protection in 817.2.1.2.

Attack 11.7: An Attack on the Minor Variation of the Otway-
Rees Protocol

PREMISE: In addition to that in Prot 11.8,

Malice and Trent share key Kyr.

(* so Malice is also a normal user in the
system *)

1. Malice("Alice™) =* Bob: M, Alice, Bob, {Nu, M, Malice, Bob}Kyrt;

2. Bob == Malice("Trent"): M, Alice, Bob, {Nu, M, Malice, Bob}Kut, {Ne}KgT, {M,
Alice, Bob}KpgT;

2'. Malice("Bob") =3 Trent: M, Malice, Bob, {Nwm, M, Malice, Bob}Kut, {Ns}KpgT,
{M, Malice, Bob}KgT;

(* where {M, Malice, Bob}KgT, is an old cipher chunk which Malice preserves
from a previous normal run between himself and Bob. *)

3. Trent = Bob: M, {Nu, Kva}Kwt'{Nz, Kma}KsT;
4. Bob = Malice("Alice™): M, {Nwv, Kyg}KwuT.
CONSEQUENCE:

Bob believes that he has been talking to Alice and shares a session key with her.
However, in fact he has been talking to Malice and shares the session key with the
latter.

Not the End of the List

It is still possible to further name several other ways to attack authentication protocols, such as
"side channel attack” (we shall see such an attack on the TLS/SSL Protocol in 812.5.4 and in that
case the side-channel attack is a "timing analysis attack™), "implementation dependent attack,"
"binding attack,” and "encapsulation attack™ (see 84 of [77]) or "misplaced trust in server
attack" (see 812.9.1 of [198]), etc. Because some of these types of attacks have certain
overlapping parts with some of the types we have listed, also because, even including them, we
still cannot exhaust all possible types of attacks, we should therefore stop our listing here.

The readiness for authentication protocols to contain security flaws, even under the great care of
experts in the fields, have urged researchers to consider systematic approaches to design and
analysis of authentication protocols. In Chapter 17 we shall study several topics on formal
methods for design and analysis of authentication protocols.

11.

8 A Brief Literature Note

Authentication is a big subject in cryptographic protocols. We recommend a few important
literature references in this subject.

A logic of authentication by Burrows, Abadi and Needham [61]. This seminal paper is
essential reading. Most security protocol papers reference it. Itis a good source of many
early authentication protocols and an early exposure of many security flaws with them.

A survey on various ways cryptographic protocols fails by Moore [204,205]. This is an
important paper. Itis a good introduction to various cryptographic failures which are not a
result of any inherent weakness in the cryptographic algorithms themselves, rather it is
because the way in which they are used requires that they provide certain cryptographic
services which they do not in fact provide.

Prudent engineering practice for cryptographic protocols summarized by Abadi and
Needham [1]. This paper sets out eleven heuristic principles which intend to guide protocol
designers to develop good protocols. The principles from an engineering account of protocol
development, serving a menu for protocol designers: "have | checked this sort of attack?"
An excellent piece of work and will prove of considerable use for protocol designers.

A survey of authentication protocol literature written by Clark and Jacob [77]. This
document includes a library of a large number of authentication and key-establishment
protocols. Many of the protocols in the library are accompanied by attacks. The document
also has a comprehensive and well annotated literature survey. This is an essential reading
for protocol developers. A Web site called "Security Protocols Open Repository” (SPORE)
has been setup as the further development of the document of Clark and Jacob. The Web
address for SPORE is http://www.lsv.ens-cachan.fr/spore/

A forthcoming book of Boyd and Mathuria entitled "Protocols for Key Establishment and
Authentication™ (Information Security and Cryptography Series, Publisher: Springer, ISBN:
3-540-43107-1). This book is the first comprehensive and integrated treatment of
authentication key-establishment protocols. For key-establishment protocols which include
the basic protocols using symmetric and asymmetric cryptographic techniques, group-
oriented, conferencekey, and password-based protocols, this book takes an exhaustive
approach to their description, explanation and reporting of the known flaws. The book
allows researchers and practitioners to quickly access a protocol for their needs and
become aware of existing protocols which have been broken in the literature. As well as a
clear and uniform presentation of the protocols this book includes a description of all the
main attack types and classifies most protocols in terms of their properties and resource
requirements. It also includes tutorial material suitable for graduate students.

http://www.lsv.ens-cachan.fr/spore/

11.9 Chapter Summary

Our study of authentication in this chapter covers a wide range of topics in the subject with
indepth discussions. The range includes basic concepts (data-origin, entity, authenticated-key-
establishment, unilateral, mutual, liveness), good constructions of authentication protocols
(recommended by the international standards), standard protocols, several interesting and
useful protocols (e.g., one-time password, EKE, STS) and a taxonomy of attacks.

As an active academic research topic, authentication protocols is an important but also rather a
pre-mature subject in the area of cryptographic protocols. Our coverage of the subject in this
chapter is by no means comprehensive. We therefore have listed a brief literature note for the
readers who will be interested in a further study of the subject in an academic research
direction. For these readers, a later chapter in this book (Chapter 17 on formal analysis
methodologies of authentication protocols) is also material for further study.

Authentication protocols have importance in real world applications. This chapter has touched a
few aspects of applications. Let us turn to the real world applications of authentication protocols
in the next chapter.

Exercises

11.1

11.2

11.3

11.4

11.5

11.6

11.7

11.8

11.9

11.10

11.11

11.12

11.13

Describe the difference for the following security services: data integrity, message
authentication, entity authentication.

What is a freshness identifier?

Does the recency of a cryptographic action performed by a principal necessarily
imply the freshness of a message sent by the principal?

After the decryption of a ciphertext (e.g., formed by the AES-CBC encryption) Alice
sees a valid freshness identifier (e.g., a nonce she has just sent out). Can she
conclude the freshness of the ciphertext message?

Why is the data integrity of an encrypted protocol message important for the
message's secrecy?

In 811.4 we have introduced the most basic constructions of authentication
protocols. In these constructions, what is the essential difference between the
standard constructions and the non-standard ones?

Identify a non-standard construction in the Woo-Lam Protocol (Prot 11.2).

Hint: observe a security service used in the interaction between Bob and Trent in
message lines 4 and 5, and compare the construction with thatin (11.4.7).

What is common in the following three attacks? (i) Wiener's attack on the flawed
version of the 1SO Protocol (Attack 11.1), (ii) the "certificate-signature-

replacement attack" on the "Authentication-only" STS Protocol (Attack 11.2) and
(iii) Lowe's attack on the Needham-Schroeder Public-key Authentication Protocol

(Attack 2.3).

Inside computers every ASCII character is represented by 8 bits. Why usually does
a password of 8 ASCII characters contain information quantity which is less than
that measured by 64 bits?

What is a salt in a password-based authentication protocol? What is the role of a
salt?

In the password authentication protocol for the UNIX operating system (see
811.5.1 and Prot 11.3), the cryptographic transformation f(Py) is generated using
the DES encryption function. Does the protocol apply the DES decryption function?
Discuss an important difference between this transformation and that in the non-
standard authentication mechanism (11.4.7).

The S/KEY Protocol (Prot 11.4) uses essentially the same cryptographic
transformation as the UNIX password authentication protocol (Prot 11.3) does.
Why do we say that the former is flawed while the latter is not?

The EKE Protocol (Prot 11.5) uses asymmetric cryptographic techniques. Is it a
public-key based authentication protocol?

11.14

11.15

We have shown a flaw in the "Authentication-only” STS Protocol (Attack 11.2).
Revise the protocol to remove the flaw.

In §11.6.3 we have reasoned that signing the intended verifier's identity provides
a fix for the minor flaw in the STS Protocol (the minor flaw is demonstrated in
Attack 11.3). However, such a fix damages the anonymity (deniability) property of
the protocol. Provide a different fix which does not involve signing identities.

Hint: the two parties actually have not combined the shared session key with the
intended identities; that was why we did not consider that the agreed session key
has been mutually confirmed, see our discussions on the intended properties of the
protocol in §11.6.1.

Chapter 12. Authentication Protocols —
The Real World

Section 12.1. Introduction

Section 12.2. Authentication Protocols for Internet Security

Section 12.3. The Secure Shell (SSH) Remote Login Protocol

Section 12.4. The Kerberos Protocol and its Realization in Windows 2000

Section 12.5. SSL and TLS

Section 12.6. Chapter Summary

Exercises

12.1 Introduction

Our study of authentication protocols in the preceding chapter has an academic focus: we have
studied good (and standard) constructions for authentication protocols, introduced a few
important authentication protocols and techniques selected from the literature, and conducted a
systematic examination of various "academic attacks" on authentication protocols. However, we
have touched little on the application aspect. Undoubtedly, real world applications of
authentication protocols must have real world problems to solve, some of which are very
challenging.

In this chapter, let us face some authentication problems in the real world. We shall introduce
and discuss a number of authentication protocols which have been proposed for, and some
already widely used in, various important applications in the real world. All of the protocols to be
introduced in this chapter are de facto or industrial standards.

The first real world protocol we shall study is the Internet Key Exchange Protocol (IKE) [135,
158] which is the authentication mechanism for the IETF (Internet Engineering Task Force)
standard for Internet Security (IPSec). This protocol suite (a system) contains authentication
and authenticated key exchange protocols which operate at a low layer of communications called
the network layer. Our study shall let us see how communications take place at the network
layer, understand how various attacks demonstrated in the previous chapter can be based on
various ways for Malice to manipulate addressing information handled by the network layer
protocol, and realize that security offered at the network layer can be very effective in thwarting
those attacks. We shall also see that a challenging problem in IKE is for the protocol suite to
offer an optional privacy feature which is desirable at the network layer of communications in
order not to cause privacy damage to applications in higher layers of communications.

Next, we shall introduce the Secure Shell (SSH) Protocol [304,307,308,305,306]. Thisis a
public-key based authentication protocol suite for secure access of remote computer resource
(secure remote login) from an untrusted machine (i.e., from an untrusted client machine to a
remote server host). It is a de facto standard for secure remote login computer resources in an
open systems environment and is already widely used in the global range. SSH is a client-server
protocol. Its server part mainly runs on machines which use UNIXI&l, or its popular variant,
Linux, operating systems (this is true especially on the server side); its client part further covers
other operating systems such as Windows, etc. A challenging problem for this protocol is to
enable a security service in a harmonic manner: insecure systems are already in wide use,
secure solutions should be added on with the least interruption to the insecure systems which
are already in operation (backward compatibility).

[al UNIX is a trademark of Bell Laboratories.

Next, we shall introduce another important and already-in-wide-use authentication protocol
system: the Kerberos Authentication Protocol [202,168]. This is the network authentication
basis for another popular operating system: Windows 2000. This operating system is in wide use
in an enterprise environment where a user is entitled to enterprise-wide distributed services
while unable to keep many different cryptographic credentials for using the different servers (it
is unrealistic for a user to memorize many different passwords and is uneconomic for a user to
manage many smartcards). We shall see that Kerberos''single-signon" authentication
architecture finds a good application in such an environment.

Finally, we shall overview the Secure Socket Layer (SSL) Protocol [136], or the Transport Layer
Security (TLS) Protocol named by the Internet-wide industrial standards community IETF. At the
time of writing, this protocol qualifies as the most-widely-used public-key based authentication
technique: it is nowadays an integral part in every WorldWideWeb browser and Web server,

though in most cases its use is limited to unilateral authentication only (a server authenticates to
a client). This is an authentication protocol for a typical client-server environment setting.
Although the idea behind the protocol is extremely simple (this is the simplest protocol of the
four real-world authentication protocols to be introduced in this chapter), we shall see from this
case that a real-world realization of any simple authentication protocol is never a simple job.

12.1.1 Chapter Outline

IPSec and the IKE Protocol will be introduced in 812.2. The SSH Protocol will be introduced in
812.3. An enterprise single-signon scenario suitable for using the Windows 2000 operating
system will be discussed in §12.4, and then the Kerberos Protocol, the network authentication
basis for this operating system, will be described. Finally we overview the SSL (TLS) Protocol in
8§12.5.

12.2 Authentication Protocols for Internet Security

We have been introducing various cryptographic techniques for protecting messages transmitted
through open networks. The techniques introduced so far in this book all provide protections at a
high communication layer or the application layer. A protection at the application layer means
that only the content part of a message is protected whereas the addressing part, regarded as
low-layer information, is not.

However, for securing communications over the Internet, protection provided at a low layer of
communication which covers the addressing information as well as the content can be very
effective. This is because, as we have witnessed in 811.7, manipulation of a message's
addressing information is the main source of tricks available to Malice for mounting various
attacks.

In this section we shall first look at how messages are processed by a low-layer communication
protocol. There, we shall realize how Malice could materialize his tricks due to absence of
security in that protocol. We shall then study a suite of authentication protocols proposed by a
standards body for Internet security. That suite of protocols is collectively named the Internet
Key Exchange (IKE); they are intended to protect messages in the low-layer communication
protocol using authentication techniques we have studied in the preceding chapter. We shall
analyze a couple of important "modes” in IKE and reveal some vulnerabilities they have. We
shall also report some critical comments and concerns on IKE from the research community.

12.2.1 Communications at the Internet Protocol Layer

The Internet is an enormous open network of computers and devices called "nodes.” Each node
is assighed a unique network address so that messages sent to and from the node have this
address attached. A protocol which processes the transmission of messages using the network
address is called the Internet Protocol (IP for short) and hence, the unique network address of
a node is called the IP address of the node. According to the I1SO’s "Open Systems
Interconnection (ISO-OSI) Seven-layer Reference Model" (e.g., pages 416—417 of [227] or
81.5.1 of [159]), the IP works at "layer 3" (also called the network layer or the IP layer). Many
communication protocols including many authentication protocols which are invoked by end-
users work at "layer 7" (also called the application layer). This is another reason why we have
called the IP a "low-layer” communication protocol and the other protocols "high-layer" ones.

Communications at the IP layer take the form of "IP packets.” Fig 12.1 illustrates an IP packet
which has no cryptographic protection. The first three fields of an IP packet have apparent
meanings. The fourth field, "Upper-layer Fields" contains two things: (i) the specification of the
protocol which runs in the immediate upper layer and processes the IP packet (e.g.,
"transmission control protocol”™ TCP), and (ii) data which are transmitted by the IP packet.

Figure 12.1. An Unprotected IP Packet

I header

I Header Sonree Destination Upper-layver
Fields IP address I address Fields

an I’ packet

Let us use electronic mail communication to exemplify Internet communications which are
organized in IP packets. We begin with considering an insecure case where IP packets has no
cryptographic protection. Let Janes_Bond@O07.654.321 and M ss_NMoneypenny@.23.456.700 be
two e-mail addresses. Here, Janes_Bond and M ss_Mbneypenny are users' identities, each is
called an "endpoint identity,"” 007.654.321 and 123.456.700 are two IP addresseslPl; for
example, the former can be the IP address of a palm-top multi-purpose device, while the latter
can be the IP address of an office computer. An e-mail sent from

M ss_NMbneypenny@.23.456.700 to James_Bond@07.654.321 viewed at the IP layer can be

[b] Often an IP address is mapped to a "domain name" for ease of memory; for instance, 007.654.321 may be
mapped to the following "domain name:" spyl.mi.five.gb.

I Header Dear James,

Field 123.456.700 007.654.321
felds

For exposition clarity, we have only presented the data field in "Upper-layer fields" and omitted
the processing protocol specification (the omitted protocol specification in this case is "SMTP"
which stands for simple mail transfer protocol [164]). Notice that the two endpoint identities will
appear in some "IP header fields,” and hence when Janes_Bond receives the e-mail, he may
know who has sent it and may be able to reply.

These two parties may wish to conduct confidential communications by applying end-to-end
encryption, using either a shared key or public keys. Since an end-to-end encryption operates in
the application-layer protocol, only the message content in the fourth box in the "IP packet” will
be encrypted. If the IP they use offers no security, then the data fields in "IP header" are not
protected. Modification of data in these fields forms the main source of tricks behind the attacks
which we have listed in §11.7. Let us now see how.

12.2.2 Internet Protocol Security (IPSec)

The Internet Engineering Task Force (IETF) has been in a series of standardization processes for
IP security widely known as IPSec [163,161]. Briefly speaking, IPSec is to add cryptographic
protection to "IP header"” which consists of the first three boxes in an IP packet (see Fig 12.1).
IPSec stipulates a mandatory authentication protection for "IP header" and an optional
confidentiality protection for the endpoint-identity information which is in some "IP header
fields."

We should notice that, in absence of security at the IP layer, it is the unprotected transmission of
"IP header"” that may permit Malice to mount various attacks on Internet communications such
as spoofing (masquerading), sniffing (eavesdropping) and session hijacking (combination of
spoofing and sniffing while taking over a legitimate party's communication session). For

example, if Malice intercepts an IP packet originated from Janes_Bond@O07.654.321, copies
"Source IP address” to "Destination IP address,” and sends it out, the packet will go back to
Janmes_Bond@07.654.321. If this modification is undetected due to lack of security means at the
IP layer, then the modification can essentially cause a "reflection attack” which we have seenin
811.7.4. Moreover, if Malice also forges a "Source IP address™” and an endpoint identity (say

"M ss_Mboneypenny™), then James_Bond@O07.654.321 may be fooled to believe that the message
came from the forged sender. This is exactly the attack scenario which we have denoted at the
application layer by

Malice(“Miss_Moneypenny”) — James_Bond: ...

Virtually all attacks which we have seen in 811.7 require Malice to perform some manipulations
on the IP-address and endpoint-identity information in an "IP header." Security protection
offered at the IP layer can therefore effectively prevent such attacks since now any message
manipulation in "IP header" can be detected. In general, security at the IP layer can provide a
wide protection on all applications at higher layers.

Moreover, for traffic between two firewallsl¢l, because each firewall is a node which shields
many nodes "inside" or "behind" it, an IP-layer protection can cause encryption on the IP
address of any node "inside" the firewall. This means that unauthorized penetration through a
firewall can be prevented via cryptographic means which is a very strong form of protection.
Without security offered at the IP layer, the firewall technique uses much weaker form of
"secrets" such as IP addresses, machine names and user names, etc., and so penetration is
much easier.

[c] A firewall is a special-purpose computer which connects a cluster of protected computers and devices to the
Internet so that accessing the protected computers and devices from the Internet requires knowing some
identity and IP address information.

It has been widely agreed that offering security at the IP layer is a wise thing to do.

12.2.2.1 Authentication Protection in IPSec

The Internet Protocol (IP) has evolved from version 4 (IPv4) to version 6 (IPv6). The data
structure for IPv6 is a multiple of 32-bit data blocks called datagrams. In IPv6 with IPSec
protection, an IP packet (Fig 12.2, cf. Fig 12.1) has an additional field called "Authentication
Header" (AH). The position for the AH in an IP packet is in between "IP header" and the "Upper-
layer fields." AH can have a variant length but must be a multiple of 32-bit datagrams which are
organized into several subfields which contain data for providing cryptographic protection on the
IP packet.

Figure 12.2. The Structure of an Authentication Header and its Position
in an IP Packet

Parts of 1P Packet with Cryptographic Protection

Pl e

Authentication § L T o g wa
IP Header Header (AH) ngher-layer Fields
Mext Header Payload Length Reserved for future use
(8 hits) {8 hits) (16 bits)

Security Parameters Index (5P1, 32 bits)

Sequence Number Field (32 bis)

Authentication Data (rmultiple of 32-hbit blocks)

Authentication (in fact, data integrity with origin identification) is a mandatory service for IPSec.
The protection is achieved by data provided in two subfields in an AH. One of the subfield is
named "Security Parameters Index" (SP1). This subfield is an arbitrary 32-bit value which
specifies (uniquely identifies) the cryptographic algorithms used for the authentication service
for this IP packet. The other subfield is named "Authentication Data" which contains the
authentication data generated by the message sender for the message receiver to conduct data-
integrity verification (hence the data is also called Integrity Check Value, ICV). The receiver of
the IP packet can use the algorithm uniquely identified in SPI and a secret key to regenerate
"Authentication Data" and compare with that received. The secret key used will be discussed in
§12.2.3.

The subfield named "Sequence Number" can be used against replay of IP packets. Other
subfields in the first datagram of an AH with names "Next Header", "Payload Length” and
"Reserved for future use" do not have security meanings and therefore their explanations are
omitted here.

12.2.2.2 Confidentiality Protection in IPSec

Confidentiality (encryption) is an optional service for IPSec. To achieve this, a multiple of 32-bit
datagrams named "Encapsulating Security Payload™ (ESP) [162] is specified and allocated in
an IP packet. An ESP can follow an AH as the second shaded field in Fig 12.2 ("Upper-layer
fields"). The format of an ESP is shown in Fig 12.3.

Figure 12.3. The Structure of an Encapsulating Security Payload

Security Parameters Index (SP1. 32 bits)

Sequence Number Field (32 bits)

Payload Data {(multiple of 32—bit blocks)

Padding ((0-255 bytes)

Pad Length (8 birs) | Next Header (8 bits)

Authentication Data (multiple of 32-hit blocks)

The first subfield is "Security Parameters Index (SPI)" which now specifies (i.e., uniquely
identifies) the encryption algorithm. The second subfield "Sequence Number" has the same
meaning as that in an AH (see §12.2.2.1). The third subfield "Payload Data" has a variable
length which is the ciphertext of the confidential data. Since an IP (v6) packet must have a
length as a multiple of 32 bits, the plaintext "Payload Data" of variable length must be padded,
and the paddings are given in "Padding"”. The Padding bytes are initialized with a series of
(unsigned, 1-byte) integer values. The first padding byte appended to the plaintext is numbered
1, with subsequent padding bytes making up a monotonically increasing sequence:

01 || 02' || - -

| xy’

where 'xy'is the hexadecimal value such that ors Xy < FF. Therefore, the maximum number

of the padding bytes is 'FF'= 255(10). The length of the padding bytes is stated in "Padding
Length". Finally, "Authentication Data" has the same meaning as that in an AH.

The reader should notice the difference between "Authentication Data" in an ESP and that in an
AH. In an ESP, this data is for providing a data integrity protection on the ciphertext in the ESP
packet (i.e., the fields in ESP packet minus the subfield "Authentication Data'") and is optional
[162], while in an AH, "Authentication Data" is for providing a data integrity protection on an IP
packet and is mandatory.

The optional inclusion of "Authentication Data" in ESP is in fact a mistake. We shall discuss this
mistake in §12.2.5.
12.2.2.3 Security Association

Central to IPSec is a notion called "Security Association” (SA). An SA is uniquely identified by
triple

(SPI, “IP Destination Address,” “Service Identifier”)

where "Service Identifier" identifies either Authentication or ESP.

In essence, IPSec can be considered as AH + ESP. For two nodes to communicate under IPSec
protection, they need to negotiate mandatorily one SA (for authentication) or optionally two SAs
(for authentication and confidentiality) and the secret cryptographic keys to be shared between
the two nodes in order for them to compute the cryptographic protections. The negotiation is
achieved using the Internet Key Exchange Protocol which we shall now introduce.

12.2.3 The Internet Key Exchange (IKE) Protocol

With the added "Authentication Header" (HA) and "Encapsulating Security Payload” (ESP), IPSec
accommodates cryptographic protections on an IP packet. However, two nodes in
communication must first agree on SAs (which contains cryptographic keys, algorithms,
parameters) in order to enable the protections. This is achieved using the Internet Key
Exchange (IKE) Protocol [135,158]. IKE is the current IETF standard of authenticated key
exchange protocol for IPSec.

IKE is a suite of authentication and authenticated key exchange protocols. Each protocol in the
suite is a hybrid one which uses part of "Oakley" (the Oakley Key Determination Protocol [225]),
part of "SKEME" (a Versatile Secure Key Exchange Mechanism for Internet [172]) and part of
"ISAKMP" (the Internet Security Association and Key Management Protocol [187]).

Oakley describes a series of key exchanges - called "modes" - and gives details of the services
provided by each (e.g., perfect forward secrecy for session keys, endpoint identity hiding, and
mutual authentication). SKEME describes an authenticated key exchange technique which
supports deniability of connections between communication partners (due to using shared key, a
feature adopted in IKE and IKE v2, to be discussed in a moment) and quick key refreshment.
ISAKMP provides a common framework for two communication parties to achieve authentication
and authenticated key exchange, to negotiate and agree on various security attributes,
cryptographic algorithms, security parameters, authentication mechanisms, etc., which are
collectively called "Security Associations (SAs)." However ISAKMP does not define any specific
key exchange technique so that it can support many different key exchange techniques.

As a hybrid protocol of these works, IKE can be thought of as a suite of two-party protocols,
featuring authenticated session key exchange, most of them in the suite using the Diffie-Hellman
key exchange mechanism, having many options for the two participants to negotiate and agree
upon in an on-line fashion.

The IKE Protocol consists of two phases, called "Phase 1" and "Phase 2," respectively.

Phase 1 assumes that each of the two parties involved in a key exchange has an identity of
which each party knows. Associated with that identity is some sort of cryptographic capability
which can be shown to the other party. This capability might be enabled by a pre-shared secret
key for a symmetric cryptosystem, or by a private key matching a reliable copy of a public key
for a public-key cryptosystem. Phase 1 attempts to achieve mutual authenticationld] based on
showing that cryptographic capability, and establishes a shared session key which is used in the
current run of Phase 1, can be used to protect Phase 2 exchanges if they are needed, or can be
further used to secure higher-level communications as an output from the IKE phases of
exchanges.

[d] we shall see in a moment that some modes in IKE Phase 1 fail to achieve mutual authentication in that an
entity may be fooled perfectly to believe sharing a session key with an intended party, whereas actually
sharing it with another party.

A multiple number of Phase 2 exchanges may take place after a Phase 1 exchange between the
same pair of entities involved in Phase 1. Phase 2 is often referred to as "Quick Mode." It relies
on the shared session key agreed in Phase 1. The reason for having a multiple number of Phase
2 exchanges is that they allow the users to set up multiple connections with different security
properties, such as "integrity-only," "confidentiality-only,” "encryption with a short key" or
"encryption with a strong key."

To see a flavor of IKE, let us focus our attention only on a couple of IKE Phase 1 modes.

12.2.3.1 IKE Phase 1

There are eight variants for the IKE Phase 1. This is because there are three types of keys (pre-
shared symmetric key, public key for encryption, and public key for signature verification), and
in addition there are two versions of protocols based on public encryption keys, one of which is
intended to replace the other, but the first must still be documented for backward compatibility.
Thus there are actually four types of keys (pre-shared symmetric key, old-style public encryption
key, new-style public encryption key, and public signature-verification key). For each key type
there are two types of Phase 1 exchanges: a "main mode" and an "aggressive mode."

Each main mode has six messages exchanges; 3 messages sent from an initiator (I for short) to
a responder (R for short), 3 sent from R to I. A main mode is mandatory in IKE, that is, two
users cannot run an aggressive mode without running a main mode first.

Each aggressive mode has only three messages; | initiates a message, R responds one, then |
sends a final message to terminate a run. An aggressive mode is optional, that is, it can be
omitted.

For IKE Phase 1, we shall only describe and analyze "signature based modes." Other modes
generally use an encryption-then-decryption of freshness identifier mechanism for achieving
authentication; we have labeled such a mechanism non-standard (see §811.4.1.5) which we will
further criticize in 817.2.

12.2.3.2 Sighature-based IKE Phase 1 Main Mode

Signature-based IKE Phase 1 Main Mode (also named "Authenticated with Signatures,” 85.1 of
[135]) is specified in Prot 12.1. This mode is born under the influence of several protocols,
however, its real root can be traced back to two protocols: the STS Protocol (Prot 11.6), and a
protocol proposed by Krawczyk [171] named SIGMA Protocol (we shall discuss SIGMA design in

8§12.2.4).

In the first pair of messages exchange | sends to R HDR; and SA, and R responds with HDRg and
SAR. The header messages HDR| and HDRg include "cookies" C| and Cg; the former is for R to
keep the run (session) state information for I, and vice versa for the latter. Of the two Security
Associations, SA, specifies a list of security attributes that | would like to use; SAR specifies ones
chosen by R.

Protocol 12.1: Signature-based IKE Phase 1 Main Mode

1. | =*R: HDR |, SA;

R ==*|: HDR R, SAR;

N

| ==*R: HDR |,g X, N|;

3

4. R =%I: HDR r,g Y, NR;

5. | =*R: HDR |, {IDy, Cert,, Sigi}g*;
6. R =1: HDR g, {IDg, Certg, Sigr}g®.

Notation (* for ease of exposition, we omitted some minute details. Our omission will
not effect the functionality of the protocol, in particular, it will not effect an attack we
shall describe in a moment. *)

I, R: An initiator and a responder, respectively.

HDR|, HDRR: Message headers of | and R, respectively. These data contain C|, Cr
which are "cookies"[2l of | and R, respectively, which are for keeping the session
state information for these two entities.

SA|, SARr: Security Associations of | and R, respectively. The two entities use SA|, SAR
to negotiate parameters to be used in the current run of the protocol; negotiable
things include: encryption algorithms, signature algorithms, pseudo-random
functions for hashing messages to be signed, etc. | may propose multiple options,
whereasR must reply with only one choice.

g%, g¥: Diffie-Hellman key agreement material of | and R, respectively.
1D, IDRr: Endpoint identities of | and R, respectively.
Ni, Nr: Nonces of | and R, respectively.

Sigy, Sigr: Signature created by | and R, respectively. The sighed messages are M,
andM g, respectively, where

M = prf, (pris (N7 |Ngr|g™)

g°|9Y|Cr|Cr|SA;|ID;)

Mg = prf, (priy (N[Ng|g®™)|g%|g%|Cr|Cr|SAR|ID g)

where prf; and prf; are pseudo-random functions agreed in SAs.

[al A "cookie" is a text-only string that gets entered into a remote host system's memory or saved to file there
for the purpose of keeping the state information for a client-server communication session.

The second pair of messages consists of the Diffie-Hellman key exchange material.

In message 5 and 6, the algorithms for encryption, signature and pseudo-random functions for
hashing messages to be signed are the ones agreed in the SAs.

Signature-based IKE Phase 1 Main Mode has some similarity to the STS Protocol (Prot 11.6).
However, two significant differences can be spotted:

i. The STS Protocol leaves the certificates outside of the encryptions, whereas here the
certificates are inside the encryptions. Encryption of the certificates allows an anonymity
feature which we have discussed when we introduced the STS Protocol (811.6.1). This is
possible and a useful feature for | and/or R being endpoints inside firewalls.

ii. Signatures in the STS Protocol do not involve the agreed session key, whereas here a
signed message is input to a pseudo-random function prf which also takes in the agreed
session key g*¥ as the seed. Hence in this mode, the signatures are exclusively verifiable by
the parties who have agreed the shared session key.

12.2.3.3 Authentication Failure in Signature-based IKE Phase 1 Main Mode

Similar to the situation in the STS Protocol, a signed message in this mode of IKE only links to
the endpoint identity of the signer, and not also to that of the intended communication partner.
The lack of this specific explicitness also makes this mode suffer from an authentication-failure
flaw similar to Lowe's attack on the STS Protocol (Attack 11.3). The flaw is illustrated in Example
12.1. Meadows has shown a similar flaw for this mode of IKE [195].

With this flaw, Malice can successfully fool R into believing that | has initiated and completed a

run with it. However in fact | did not do so. Notice that R is fooled perfectly in the following two
senses: first, it accepts a wrong communication partner and believes to have shared a key with
the wrong partner, and second, nobody will ever report to R anything abnormal. So Attack 12.1
indeed demonstrates an authentication failure.

The authentication-failure attack can also be called a "denial of service attack" for a good
reason. In IKE, after a successful Phase 1 exchange, a server in the position of R will keep the
current state with | so that they may use the agreed session key for further engagement in a
multiple number of Phase 2 exchanges. However, after the attack run shown in Attack 12.1,1
will never come to R and hence, R may keep the state, allocate resource with | and wait for | to
come back for further exchanges. If Malice mounts this attack in a distributed manner, using a
large team of his friends over the Internet to target a single server at the same time, then the
server's capacity to serve other honest nodes can be drastically reduced or even nullified. Notice
that this attack does not demand sophisticated manipulation nor complex computation from
Malice and his distributed friends, and hence the distributed denial of service attack can be very
effective.

Attack 12.1: Authentication Failure in Sighature-based IKE
Phase 1 Main Mode

(* Malice faces | using his true identity, but he faces R by masquerading as I: *)

1. | = Malice: HDR|, SA|;
1' Malice("I') ==*R: HDR |, SA|;
2R = Malice("1'): HDRR, SARg;
2. Malice ==*1: HDR g, SAg;
3. | = Malice: HDRy, g%, Nj;
3' Malice("1") ==*R: HDR |, g%, Nj;
4'R = Malice("1"): HDRR, g¥, Ng;
4. Malice ==*I: HDR g, @Y, Ng;
5. | =3 Malice: HDRy, {ID, Cert,, Sigi}¢*;
5' Malice("I'") ==*R: HDR |, {ID,, Cert;, Sigi}¢*;
6'R = Malice("I"): HDRg, {IDg, Certg, Sigr}g;
6. Dropped.
CONSEQUENCE:
R is fooled perfectly and thinks it has been talking and sharing a session key with I,
whilel thinks it has been talking with Malice in an incomplete run. R will never be
notified of any abnormality and may either be denied a service from I; it enters a

state awaiting a service request from | (perhaps only drops the state upon
"timeout").

This attack works because a signed message in the protocol only contains the identity of the
signer, and so it can be used to fool a principal who is not the intended communication partner
of the signer. If both endpoint identities of the intended principals are included in a signed
message, then the message becomes specific to these two principals, and hence cannot be used

for any other purpose.

We have witnessed again the generality of attacks due to name omission.

12.2.3.4 Signature-based IKE Phase 1 Aggressive Mode

Signature-based IKE Phase 1 Aggressive Mode is a cut-down simplification from Main Mode: it
does not use encryption and has three message exchanges instead of six. Using the same

notation as that in Main Mode (Prot 12.1), this mode is specified as follows:

1. | =R: HDR |, SA;,g X,N |, ID;
2. R =I: HDR g, SAg, g¥, Ng, IDg, Certgr, Sigr
3. | =3*R: HDR g, Cert,, Sig;

At first glance, this mode is very similar to "Authentication-only STS Protocol” (Prot 11.7) due to
omission of encryption. A closer look exposes a difference: in "Authentication-only STS Protocol,”
signed messages do not involve the session key, whereas here, a signed message is input to
pseudo-random function prf which also takes in the agreed session key g*¥ as the seed. So in
this mode, the signatures are exclusively verifiable by the principals who hold the agreed session
key. This difference prevents the "certificate-signature-replacement attack” (Attack 11.2) from
being applied to this mode.

However, this mode fails to achieve mutual authentication in a different way. A similar "denial of
service attack™ applies to this mode. It is essentially Lowe's attack on the STS Protocol (see
Attack 11.3). Now it is | who can be fooled perfectly in believing that it has been talking and
sharing a session key with R, whereas R does not agree so. We shall leave the concrete
construction of the attack as an exercise for the reader (Exercise 12.6).

We should further notice that if the signature scheme used in this mode features message
recovery, then Malice can gain more. For example, from a signed message Malice can obtain
prf2(NINRr]g*Y) and so he can use this material to create his own signature using his own
certificate and identify. Thus he can mount a "certificate-signature-replacement attack" which we
have seen in Attack 11.2 against the "Authentication-only STS Protocol." Such an attack is a
perfect one because both interleaved runs which Malice orchestrates in between | and R will
terminate successfully and so neither of the two honest entities can find anything wrong. Notice
that some signature schemes do feature message recovery (e.g., [220] which is even
standardized [150]). Therefore, it is not impossible for the two communication partners to have
negotiated to use a signature scheme with message recovery feature. In §12.2.5, we shall
discuss the IKE's feature of supporting flexible options.

Without using encryption or MAC, the IKE's Aggressive Mode cannot have a "plausible deniability
feature™ which we shall discuss in §12.2.4. When this feature is not needed, a fix for the
authentication-failure flaw is standard: both two endpoint identities of the intended principals
should be included inside the both signatures so that the signed messages are unusable in any
context other than this mode between the intended principals.

Methods for fixing authentication failure while keeping a deniability feature will be discussed in
8§12.2.4.

12.2.3.5 Other Security Analysis on IPSec and IKE

Several researchers have conducted security analysis work on IKE.

Meadows, using her NRL Protocol Analyzer (an automated exhaustive flaw checker, to study in
817.5.2[194,193]), has discovered that the Quick Mode (an IKE Phase 2 exchange) is
vulnerable to a reflection attack [195].

Ferguson and Schneier conduct a comprehensive cryptographic evaluation for IPSec [108].

Bellovin makes an analysis on a serious problem with IPSec: an option for an IPSec mode in
which ciphertext messages are not protected in terms of data integrity [27]. We have seen

through an attacking example and now know that confidentiality without integrity completely
misses the point (811.7.8). We shall further see in later chapters (Chapters 14-17) that most
encryption algorithms cannot provide proper confidentiality protection if the ciphertext messages
they output are not also protected in terms of data integrity. However, this dangerous option
seems to remain unnoticed by the IPSec community (see below), maybe due to the high system
complexity in the specifications for IPSec.

12.2.4 A Plausible Deniability Featurein IKE

At the time of writing, IKE Version 2 (IKEv2) specification has been published [158]. IKEv2
unites the many different "modes" of "Phase 1 Exchanges" of IKE into a single IKEv2 "Phase 1
Exchange." However, the current specification [158] limits the protocol to using digital
signatures as the basis for authentication (see Section 5.8 of [158]). Boyd, Mao and Paterson
demonstrate that IKEv2 "Phase 1 Exchange" suffers essentially the same weakness of IKE shown
inAttack 12.1 [56].

A feature which is adopted as an option in IKEV2 is called "plausible deniability” [139] of
communications by an entity who may have been involved in a connection with a communication
partner. This feature, which originates from the SIGMA protocol construction of Krawczyk
(SIGMA stands for "Sign and MAc", see an explanation in [171]), and Canetti and Krawczyk
[67], permits an entity to deny "plausibly” the existence of a connection with a communication
partner. Offering such a denying-of-a-connection feature at the IP layer is desirable because it
permits various fancy privacy services, such as anonymity, to be offered at the higher layers
with uncompromised quality. A privacy damage caused at the IP layer can cause irreparable
privacy damage at the application layer. For example, an identity connected to an IP address, if
not deniable, certainly nullifies an anonymous quality offered by a fancy cryptographic protocol
running at the application level.

The "plausible deniability"” feature in the SIGMA design can be described by following two
message lines in the position of message lines 5 and 6 in Prot 12.1:

I — R:s,IDy,Sig;(“17, s, 4%, 9¥), MAC(g*¥, “17,5,1Dy)

R — I :5,IDg, Sigg(“07, s, g%, g%), MAC(g™¥, “0", 5,IDR)

Here (s is session identifier) both parties can verify the respective signatures and then use the
shared session key to verify the respective MACs, and hence are convinced that the other end is
the intended communication partner. Now, if they dispose of the session key then they cannot
later prove to a third party that there was a connection between them.

It is not difficult to see that this construction contains the authentication-failure flaw
demonstrated in Attack 12.1. Canetti and Krawczyk did anticipate a less interesting form of
attack in which Malice simply prevents the final message from reaching |I. They suggested a
method for preventing this "cutting-final-message attack" by adding a final acknowledgement
message from | to R (see Remark 2 in [67]). Since now R (who is normally in the server's
position) receives the final message, the "cutting-final-message attack" will be detected by R and
hence upon occurrence of the attack, R should reset the state and release the resources. In this
way, the protocol is less vulnerable to a denial of service attack. The final acknowledgement may
have a useful side effect of preventing the authentication-failure flaw (depending on the
cryptographic formulation of the acknowledgement message). But clearly this method of fixing
the protocol is not particularly desirable, since it involves additional traffic and protocol

complexity.

Since a deniability feature is useful, we should keep it while fixing the authentication failure flaw.
We suggest augmenting the SIGMA design into the following two lines:

I — R:s,1Dy,Sig;(“17, s, g%, g¥), MAC(g®, “17, 5,1D;, IDR)

R — I:5,IDg,Sign(“0”,5,g%,g%), MAC(g™, 0", s,IDg, ID;)

Namely, the two principals should still not explicitly sign their identities and so to retain the
"plausible deniability" feature, however, they should explicitly verify both intended identities
inside the MACs.

Notice that this denying-of-a-connection feature is not high quality because a party (call it a
"traitor') who keeps the session key g*¥ can later still show to a third party the evidence that a
named (authenticated) entity has been involved in this connection. This is clearly possible since
the traitor can use exactly the same verification operations it has used when the two parties
were in the authentication connection. That is why the deniability must be prefixed by the
modifier "plausible.”

In 813.3.5 we will introduce a new and practical cryptographic primitive which can provide a
deniable authentication service in an absolute sense.

12.2.5 Critiques on IPSec and IKE

The most prominent criticism of IPSec and IKE is of their intensive system complexity and lack of
clarity. They contain too many options and too much flexibility. There are often many ways of
doing the same or similar things. Kaufman has a calculation on the number of cryptographic
negotiations in IKE: 1 MUST, 806,399 MAY [157]. The high system complexity relates to an
extreme obscurity in the system specification. The obscurity is actually not a good thing: it may
easily confuse expert reviewers and blind them from seeing security weaknesses, or may mislead
implementors and cause them to code flawed implementations.

Ferguson and Schneier regard the high-degree system complexity as a typical "committee effect"”
[108]. They argue that "committees are notorious for adding features, options, and additional
flexibility to satisfy various factions within the committee.” Indeed, if a committee effect, i.e., the
additional system complexity, is seriously detrimental to a normal (functional) standard (as we
sometimes experience), then it shall have a devastating effect on a security standard.

A serious problem with the high-degree flexibility and numerous options is not just an extreme
difficulty for reviewers to understand the system behavior, nor just a ready possibility for
implementors to code incorrect system, but that some specified options may themselves be
dangerous. In §12.2.3.4, we have depicted an optional scenario for Malice to mount a perfect
interleaving attack on IKE's Sighature-based Aggressive Mode, by choosing a signature scheme
with message recovery property. Let us now see another example of such dangers.

The example of danger is manifested by an excerpt from an interpretation paper entitled
"Understanding the IPSec Protocol Suite" [12]. That paper, published in March 2000, provides
explanations on IPSec and IKE at various levels, from a general concept for network security to
some detailed features of IPSec and IKE. The following excerpt (from page 6 of [12]) explains an
optional feature for "Authentication within the encapsulating security payload (ESP)" (an ESP is a
ciphertext chunk which encrypts some confidential data transmitted in an IP packet, see

§12.2.2.2):

The ESP authentication field, an optional field in the ESP, contains something called an
integrity check value (ICV) — essentially a digital signature computed over the remaining
part of the ESP (minus the authentication field itself). It varies in length depending on the
authentication algorithm used. It may also be omitted entirely, if authentication services
are not selected for the ESP.

In this explanation, we can see an option to omit the entire data-integrity protection for a
ciphertext. We have seen in 811.7.8 and shall further see in a few later chapters that encryption
without integrity (authentication” in the excerpt) is generally dangerous, and most encryption
algorithms cannot provide proper confidentiality protection without a proper data-integrity
protection. Thus, a security problem in IPSec which Bellovin identified and criticized in 1996 (see
the final paragraph of §12.2.3.5) is retained and explained as a feature four years later (the
IPSec explanation paper was published in March 2000)! We believe that it is the high complexity
of the IPSec specifications that contributes to the hiding of this dangerous error.

Aiello et al. [10] criticize IKE for its high (system design) complexities in computation and
communication. They consider that protocols in IKE are vulnerable to denial of service attacks:
Malice and his friends distributed over the Internet can just initiate numerous requests for
connections, which include numerous stateful "cookies" for a server to maintain. They proposed
a protocol named "Just Fast Keying" (JFK) and suggest that JFK be the successor of IKE. Blaze
disclosed one reason why their protocol should be named JFK [39]:

We decided this was an American-centric pun on the name lke, which was the nickname of
President Eisenhower, who had the slogan "I like Ike.” We don't like IKE, so we'd like to see
a successor to IKE. We call our protocol JFK, which we claim stands for "Just Fast Keying,"
but is also the initials of a president who succeeded Eisenhower for some amount of time.
We're hoping not to ever discuss the protocol in Dallas. If there's ever an IETF in Dallas
againl€l, we're not going to mention our protocol at all there.

[e] The 34th IETF was held in Dallas, Texas in December 1995.

12.3 The Secure Shell (SSH) Remote Login Protocol

The Secure Shell (SSH) [304,307,308,305,306] is a public-key based authentication protocol
suite which enables a user to securely login onto a remote server host machine from a client
machine through an insecure network, to securely execute commands in the remote host, and to
securely move files from one host to another. The protocol is a de facto industrial standard and
is in wide use for server machines which run UNIX or Linux operating systems. The client part of
the protocol can work for platforms running any operating systems. The reason for the protocol
to work mainly for UNIX (Linux) servers is because of these operating systems’'open architecture
of supporting interactive command sessions for remote users.

The basic idea of the SSH Protocol is for the user on a client machine to download a public key of
a remote server, and to establish a secure channel between the client and the server using the
downloaded public key and some cryptographic credential of the user. Now imagine the case of
the user's credential being a password: then the password can be encrypted under the server's
public key and transmitted to the server. This is already a stride of improvement in security from
the simple password authentication protocol we have seen in the preceding chapter.

12.3.1 The SSH Architecture

The SSH protocol runs between two untrusted computers over an insecure communications
network. One is called the remote server (host), the other is called the client from which a user
logs on to the server by using the SSH protocol.

The SSH protocol suite consists of three major components:

e The SSH Transport Layer Protocol [308] provides server authentication to a client. This
protocol is public-key based. The premise of (i.e., input to) this protocol for the server part
is a public key pair called "host key" and for the client part is the public host key. The
output from this protocol is a unilaterally authenticated secure channel (in terms of
confidentiality and data integrity) from the server to the client. This protocol will typically
be run over a TCP (Transport Control Protocol) and (Internet Protocol) connection, but
might also be used on top of any other reliable data stream.

e The SSH User Authentication Protocol [305]. This protocol runs over the unilateral
authentication channel established by the SSH Transport Layer Protocol. It supports various
unilateral authentication protocols to achieve entity authentication from a client-side user
to the server. For this direction of authentication to be possible, the remote server must
have a priori knowledge about the user's cryptographic credential, i.e., the user must be a
known one to the server. These protocols can be public-key based or password based. For
example, it includes the simple password based authentication protocol (Prot 11.3). The
output from an execution of a protocol in this suite, in conjunction with that from the SSH
Transport Layer Protocol, is a mutually authenticated secure channel between the server
and a given user in the client side.

e The SSH Connection Protocol [306]. This protocol runs over the mutually authenticated
secure channel established by above two protocols. It materializes an encrypted
communication channel and tunnels it into several secure logical channels which can be
used for a wide range of secure communication purposes. It uses standard methods for
providing interactive shell sessions.

Clearly, the SSH Connection Protocol is not an authentication protocol and is outside the interest

of this book, and the SSH User Authentication Protocol suite can be considered as a collection of
applications of standard (unilateral) authentication protocols which we have introduced in
Chapter 11 (however notice a point to be discussed in 812.3.4). Thus, we only need to introduce
the SSH Transport Layer Protocol.

12.3.2 The SSH Transport Layer Protocol

In the new version of the SSH Protocol [307,308], the SSH Transport Layer Protocol applies the
Diffie-Hellman key exchange protocol and achieves unilateral authentication from the server to
the client by the server signing its key exchange material.

12.3.2.1 Server's Host Keys Pairs

Each server host has a pair of host public-private keys. A host may have multiple pairs of host
keys for supporting multiple different algorithms. If a server host has key pairs at all, it must
have at least one key pair using each required public-key algorithm. The current Internet-Draft
[307] stipulates the default required public-key algorithm be the DSS (Digital Sighature
Standard,10.4.8.2). The default public-key algorithm for the current version in use ([304] in the
time of writing) is the RSA signature (§10.4.2).

The server host (private, public) keys are used during key exchange: the server uses its private
key to sign its key exchange material; the client uses the server's host public key to verify that it
is really talking to the correct server. For this to be possible, the client must have a priori
knowledge of the server's host public key.

SSH supports two different trust models on the server's host public key:

e The client has a local database that associates each server host name with the
corresponding public part of the host key. This method requires no centrally administered
infrastructure (called public-key infrastructure, to be introduced in Chapter 13), and hence
no trusted third party's coordination. The downside is that the database for (server-name,
host-public-key) association may become burdensome for the user to maintain. We shall
exemplify a realistic method (812.3.2.2) for a remote user to obtain an authenticated copy
of the host public key.

e The (server-name, host-public-key) association is certified by some trusted certification
authority (CA) using the technique to be introduced in Chapter 13. The client only needs to
know the public key of the CA, and can verify the validity of all host public keys certified by
the CA.

The second alternative eases the key maintenance problem, since ideally only a single CA's
public key needs to be securely stored on the client (security here means data integrity). On the
other hand, each host public key must be appropriately certified by a CA before authentication is
possible. Also, a lot of trust is placed on the central infrastructure.

As there is no widely deployed public-key infrastructure (PKI, Chapter 13) available on the
Internet yet, the first trust model, as an option, makes the protocol much more usable during
the transition time until a PKI emerges, while still providing a much higher level of security than
that offered by older solutions (such as the UNIX session commands: rl ogi n,rsh,rftp, etc.).

12.3.2.2 Realistic Methods for Authenticating a Server's Host Public Key

A workable method for a user to have an authenticated copy of the server's host public key is for
the user to bring with her/him a copy of the server's host public key and put it in the client
machine before running the key exchange protocol. For example, when the user is traveling,
(s)he can bring with her/him a floppy diskette which contains the server's host public key. In the
current working version of the SSH Protocol [304] with the client machine running UNIX or Linux
operating systems, the server's host public key used by a client machine is put in a file named
$HOVE/ . ssh/ known_host s. The user should physically secure the server's host public key (e.g.,
in a floppy diskette the user takes while traveling) in terms of data integrity while traveling. In
the case of client machine running a Windows operating system (e.g., , the server's host public
key may only exists in the internal memory of the client machine and in this case the public key
is downloaded in real time from the server (of course, via an insecure link) with a "fingerprint"
(see the next paragraph) of the public key displayed to the user.

Another realistic method for a user to have an authenticated copy of the server's host public key
downloaded via an insecure link is to use voice authentication over the telephone. First, the
server's host public key is downloaded by the user in the client machine via an insecure
communication link. A hexadecimal "fingerprint" of the host public key will be displayed to the
user. This "fingerprint" is

“fingerprint” (host key) = H (host key)

whereH is an agreed cryptographic hash function, such as SHA-1. In the SHA-1 case, the whole
"fingerprint” has 160 bits and can therefore be read over the phone as 40 hexadecimal
characters. So the user can make a phone call to the site of the remote server and check the
"fingerprint” with the security administrator of the server to see if the copy computed by the
client machine is identical to that read by the security administrator. In this way, the user at the
client side and the security administrator at the remote server side use their voices to
authenticate the correctness of the host public key. We assume that the user and the security
administrator recognize each other's voices.

These means are not secure in a foolproof sense, but are practically secure and workable to a
quite good degree. They are useful today when PKI is not ready over the Internet.

12.3.2.3 The Key Exchange Protocol

A key exchange connection is always initiated by the client side. The server listens on a specific
port waiting for connections. Many clients may connect to the same server machine.

The new version of the SSH Protocol [307,308] applies Diffie-Hellman key exchange protocol
(88.3) to achieve session key agreement. In the description of the protocol we use the following
notation:

e C: the client;

e S: the server;

e p: alarge safe prime;

e g: agenerator for a subgroup Gq of GF(p);

e q: the order of the subgroup Gg;

e V¢, Vs: C's and S's protocol versions, respectively;

e Kg: S's public host key;

e Ic, Is: C'sand S's "Key Exchange Initial Message" which have been exchanged before this
part begins.

The key exchange protocol is as follows:

1. C generates a random number x (1 < x <) and computes

e «— g* (mod p);

CsendsetoS;

2. S generates a random number y (0 <y <) and computes

f — g¥ (mod p);

S receives e; it computes

K « e (mod p),

H — hash(Veo || Vs

| Ic

| Is || Ks

el £ K),

SsendsKs || f|] stoC;

3. C verifies that Ks really is the host key for S (using any suitable methods, e.g. a certificate
or a trusted local database or the method described in §12.3.2.2);

C then computes
K «— " (mod p),

H « hash(Vg || Vs || Ic

| Is || Ks |l el f || K),

and verifies the signature s on H;C accepts the key exchange if the verification passes.

After the key exchange, the communications between the two parties will be encrypted using the
agreed session key K. The two parties turn to execute the SSH User Authentication Protocol
[305] which may be any one of the known unilateral authentication technique. After that, the
user on the client can request a service using the SSH Connection Protocol [306].

12.3.3 The SSH Strategy

One of the goals of the SSH Protocol is to improve security on the Internet in a progressive
manner. The permission for the client to use "any suitable methods" (e.g., those given in
8§12.3.2.2) to verify authenticity of the server's public key clearly demonstrates SSH's strategy of
quick deployment and supporting backward compatibility.

At the stage way before a public-key infrastructure is ready over the Internet, the improved
security from SSH needn't be a very strong one, but is much stronger and than without. The
easy to use and quick to deploy solution is a great value of SSH and is the reason why the
technique has been popularly implemented and widely used in cases where the servers are UNIX
or Linux platforms.

From this real-world application of authentication techniques we also see that public-key
cryptography forms a vital enabler for the easy solution. The server's host key in the untrusted
environment (e.g., in the client or in the route from the server to the client) only exists in public-
key form, and so the management of this important key material becomes much easier. The
problem will become immensely complicated if the protocol is based on secret-key cryptographic
techniques.

12.3.4 Warnings

Finally, we should point out warning for a user to handle with care her/his cryptographic
credential which is used by the SSH User Authentication Protocol. This credential, which can be
public-key-based, password-based, or a secure-hardware-token-based, will be used by the
protocol part running on the client machine which is considered part of the untrusted
environment.

In the current working version of the SSH Protocol [304], a public-key-based user cryptographic
credential (i.e., the private key matching the user's public key) is encrypted under the user's
password and the resultant ciphertext is stored in a file on the client machine where the file is
named$HOVE/ . ssh/identity (in the case of client machine running UNIX or Linux operating
systems). This file is read at protocol execution time by the client part of the protocol which
prompts the user to input password. Naturally, the user should make sure that the protocol part
running on the client machine is a genuine one. To minimize the risk of the private key being
searched by an off-line attacker (its algorithm which inputs the user's public key and searches
the matching private key by searching through passwords), the user should also delete the
encrypted private key file $HOVE/ . ssh/i dentity from the client machine after use.

A secure-hardware-token-based mechanism should be the most secure means for the user side
credential. This mechanism in the user side uses a small hardware token of handheld size or a
keyring size. The token has a window displaying a number of several digits which keep changing
in synchronization with the server host and is customized to an individual user by a password
shared with the server host. Of course, since the password is small, the user should securely
keep in physical possession of the token and report its loss immediately.

12.4 The Kerberos Protocol and its Realization in
Windows 2000

Let Alice be an employee of a multi national company. She may be provided with various kinds
of information resources and services. For example, from her "home server,” Alice gets the usual
computer network services (i.e., WorldWideWeb, e-mail, etc.); on a "project server,” Alice and
her team members will be the exclusive users and the owners of the data related to their work;
on an "human resource server,"” Alice may manage her HR related issues, e.g., managing how
much percentage of her next month's salary should be invested for company share purchase; if
Alice is a manager, she may need to update her subordinates'performance review records on an
HR database; from an "intellectual property server,” Alice (as an inventor) may be working on
her current patent filling; on an "expenses server,” Alice shall often make expense claims after
her business trips. It is not difficult to imagine more examples of services.

In an enterprise environment, a user (an employee or a customer) is usually entitled to use
enterprise-wide distributed information services. These services are usually maintained by
various business units in the enterprise. As a result, the various information servers can operate
in different geographical locations (even around the globe). Speaking in terms of network
organization, these servers are in different network domains. For secure use of these services
(all examples we have listed in the previous paragraph involve seriously sensitive information), a
user needs various credentials for her/him to be authenticated before a service can be granted.
However, it would be unrealistic and uneconomic to require a user to maintain several different
cryptographic credentials, whether in terms of memorizing various passwords, or in terms of
holding a number of smartcards.

A suitable network authentication solution for this environment is the Kerberos Authentication
Protocol [202,168]. The basic idea is to use a trusted third party to introduce a user to a service
by issuing a shared session key between the user and the server. This idea is due to Needham
and Schroeder [213] and is illustrated in the Needham-Schroeder Authentication Protocol (Prot
2.4). As the original Needham-Schroeder protocol is flawed (see 82.6.4.2), Kerberos uses
essentially a timestamp version of the Needham-Schroeder protocol.

Now consider that Alice in Prot 2.4 is in the position of a user who shares a long-term secret key
with a trusted third party (Trent in that protocol). Also consider that Bob in that protocol is in the
position of a server who also shares a long-term secret key with the trusted third party. When
Alice wants to use Bob's service, she can initiate a protocol run with Trent and ask Trent for a
cryptographic credential good for accessing Bob's service. Trent can provide a (“ticket granting")
service by issuing a session key to be shared between Alice and Bob, and securely delivers the
session key inside two "tickets" encrypted under the long-term secret keys which Trent shares
with Alice and with Bob, respectively. That's the idea.

Windows 2000, an important operating system now widely used in an enterprise network
environment, uses the Kerberos Authentication Protocol (based on Version 5 [168]), as its
network authentication basis.

Kerberos is created by Project Athena at the Massachusetts Institute of Technology (MIT) as a
solution to network security problems. MIT has developed the Kerberos Version 5 as a free
software (with source code available) which can be downloaded from MIT's Web site
<http://web.mit.edu/kerberos/www/>. However, due to the exportation control on
cryptographic products regulated by the government of the United States of America, at the time
of writing, this distribution of Kerberos executables is only available to the citizens of the USA
located in the USA, or to Canadian citizens located in Canada.

http://web.mit.edu/kerberos/www/

The Kerberos Protocol Version 5 is slightly more complex than the Needham-Schroeder
Authentication Protocol (the timestamp-fixed version). Let us now introduce Kerberos Protocol
Version 5.

12.4.1 A Single-signon Architecture

The Kerberos Authentication Protocol consists of a suite of three sub-protocols called
exchangeslfl. These three exchanges are:

[l The suite contains a much bigger number of auxiliary sub-protocols for various specialized tasks, such as
password changing, ticket renewal, error handling, etc., however, we shall only describe the three main
protocols which provide authentication functions.

1. The Authentication Service Exchange (AS Exchange): it runs between a "client” C and an
"authentication server™ AS.

2. The Ticket-Granting Service Exchange (TGS Exchange): it runs between C and a "ticket
granting server"” TGS after the AS Exchange.

3. The Client/Server Authentication Application Exchange (AP Exchange): it runs between C
and an "application server" S after the TGS Exchange.

Each of these three exchanges is a two-message exchange protocol. These exchanges have the
sequential dependent relation listed above which can be illustrated as a three-headed creatureldl

inFig 12.4.

[91 The name Kerberos comes from Greek mythology; it is the three-headed dog that guarded the entrance to
Hades.

Figure 12.4. Kerberos Exchanges

3 TGS_REQ 4. TKT

5. AP_REQ

1. AS_REQ 6. AP_REP

Kerberos has five principals who operate in these three exchanges and these principals have the
following roles:

U: a User (a human being) whose actions in the protocols are always performed by her/his
client process; so U only appears in the protocols as a message. Each user memorizes a
password as her/his single-signon credential for using the Kerberos system.

C: a Client (a process) which makes use of a network service on behalf of a user. In an AS
Exchange, in which C is initiated by U, C will need U's Kerberos system credential. This user
credential is given to C as it prompting U to key-in her/his password.

S: an application Server (a process) which provides an application resource to a network
clientC. In an AP Exchange, it receives an "application request” (AP_REQ) from C. It
responds with "application reply” (AP_REP) which may entitle C an application service.

An AP_REQ contains C's credential called a "ticket" (TKT) which in turn contains an
application session key K¢, s temporarily shared between C and S.

KDC: Key Distribution Center. KDC is a collective name for the following two authentication
servers:

-AS: an Authentication Server. In an AS Exchange, it receives a plaintext
"authentication service request” (AS_REQ) from a client C. It responds with a "ticket
granting ticket” (TGT) which can later be used by C in a subsequent TGS Exchange.

Initially,AS shares a password with each user it serves. A shared password is set up
via a single-signon means outside the Kerberos system.

A TGT supplied to a client C as the result of an AS Exchange has two parts. One part
is for C to use and is encrypted under a key derived from a user's single-signon
password. The other part is for a "ticket granting server" (to be described in the TGS
item below) to use and is encrypted under a long-term key shared between AS and
the latter. Both parts of a TGT contain a ticket session key K¢, 1gs to be shared
betweenC and a "ticket granting server."

-TGS: a Ticket Granting Server. In a TGS Exchange it receives a "ticket granting
request” (TGS_REQ) (which contains a "ticket-granting ticket” TGT) from a client C. It
responds with a "ticket" (TKT) which entitles C to use in a subsequent AP Exchange
with an application server S.

Similar to a TGT, a TKT has two parts. One part is for a client C to use and is
encrypted under a ticket session key K¢, tes (which has been distributed to C and
TGS in TGT). The other partis for an application server S to use and is encrypted
under key Ks 1gs which is a long-term key shared between S and TGS.

Both parts of a TKT contain a new application session key K¢, s to be shared between
C and S. The application session key is the cryptographic credential for C to run a
subsequent AP Exchange with S to get an application service from S.

12.4.1.1 Why is KDC Divided into two Sub-servers AS and TGS?

We shall see in a moment that the roles of AS and TGS are actually very similar: both are
collectively referred to as a key distribution center (KDC).

The reason to divide KDC into two similar roles is the consideration that the system may be used
in a very large network "realm” in which application servers belonging to different network
domains should be organized as subordinators of different TGS's in different domains. Therefore,
even though a fixed user U only has a fixed single-signon AS, (s)he can be served by a plural
number of TGS's and consequently by even a larger number of application servers.

12.4.2 The Kerberos Exchanges

Now let us describe each of the three Kerberos exchanges. For ease of exposition of the main
idea in the Kerberos Authentication Protocol, we shall only present mandatory protocol
messages. For the full description of all protocol message details which include an enormous
volume of optional messages, the interested reader should study [168].

12.4.2.1 The Authentication Service Exchange

The AS Exchange concerns only C and AS:

1. AS_REQC ==2*AS : U, TGS, Life_timel,N ;
2. TGTAS ==C : U, T ¢, 16s, TGTc

where

Teres = {U,C, TGS, K¢ 1es, Time_start, Time_expire} g , ¢ cx

TGTe = {TGS, Kc ras, Timestart, Time_expire, N1 } k. .

Message 1 is invoked by the user U. The client C informs the authentication server AS using the
plaintext AS_REQ messages that it wishes to communicate on behalf of the user U with the ticket
granting server TGS. A lifetime Life_timel (bookkeeping information) and a nonce Nj (freshness
identifier) are also included in the request.

In response, the authentication server AS generates a new ticket session key K¢, 165 for sharing
betweenC and TGS; it then encrypts the ticket session key inside a ticket granting ticket TGT
and sends it back to C as message 2.

The part of TGT for TGS is Tc, tes and is encrypted using the long-term key Kas tes shared
between itself and TGS, the part of TGT for C is T¢c and is encrypted under the user's password
Ku.

Upon receipt of message 2, C can decrypt T¢ (it has prompted U for inputting the password Ky).
If everything passes validation (be careful about the validation, to discuss in §12.4.3), then C
accepts the ticket session key K¢, 1gs and the ticket Tc, 1¢s.C now has a valid "ticket granting
ticket" for use with TGS.

A warning on proper decryption of a Kerberos ticket will be discussed in §12.4.3.

12.4.2.2 The Ticket-granting Service Exchange

The TGS Exchange has a format similar to that of the AS Exchange, except that the client's
request message, TGS_REQ, now contains an authenticator trailing after the plaintext request
message.

3. TGS_REQC —3TGS : S, Life_time2, N 2,T ¢, T6s, Ac, TGs
4. TKT TGS ==*C : U, T ¢ s, TKTc

where
Tes =1{U,C, S, K¢ s, Time_start, Time_expire} ko poq

TKTe = {8, K¢ g, Time_start, Time_expire, No } k..

TS 7

= el :
Acres = {C,Client_time} i, 1.5

The functionalities of this pair of exchange and actions of principals can be explained
analogously to those for the AS Exchange. The only additional item worth explaining is Ac, Tcs.
This is an authenticator. The use of an authenticator is to show the ticket granting server TGS
that the client C has used the ticket session key K¢, tgs in Client_time. TGS should check its local
host time to confirm that the difference between Client_time and its local time is within an
allowable range.

A warning on a Kerberos authenticator is discussed in §12.4.3.

12.4.2.3 The Application Service Exchange

Finally, in the AP Exchange a client C uses the newly obtained application session key K¢, s and
the ticket T¢, s to obtain an application service from an application server S.

5.AP_REQC =3S:Tc¢ s, Ac s
6. AP REPS=3*C :As ¢

where

Ae.s = {C, Client_timel } k.. .,

Ag.c = {Client_timel } g, ..

The meaning of this pair of exchange is straightforward.

As we have warned in the descriptions of the previous two exchanges, we shall pay attention to
the warnings below.

12.4.3 Warnings

We must discuss two warnings in Kerberos exchanges.
The first one is about careful validation of a Kerberos ciphertext in a decryption time.

When a principal decrypts a ticket, it should validate the decryption. From the structure of a
Kerberos ticket, the validation obviously include steps for checking the freshness identifiers and
the correctness of the intended identities. However, what is not so obvious is the need of
verifying data-integrity of a ciphertext. The importance of the data-integrity verification has
been illustrated by several examples in the previous chapter (e.g., 811.7.8), and will be further
investigated in §17.2.1.

This warning applies to all encryption in Kerberos exchanges.
The second warning is about "authenticator.”

Although the name "authenticator™ and its position and usage (trailing a ticket) may suggest
that it plays the role of a message authentication code (MAC, see 810.3) for providing a data-
integrity protection on the ticket it trails (e.g., Ac, Tes With respect to T¢c, 1gs), this imagined
"protection” is actually absent.

Not only must the needed integrity protection on the ticket be supplied by a proper mechanism
(e.g., by a MAC), but also notice: using encryption to create an authenticator is using a wrong
cryptographic service. In order to prevent an adversary from modifying a Client_time in an
authenticator, the cipher block of an authenticator itself needs data-integrity protection!

This warning applies to all authenticators in Kerberos.

12.5 SSL and TLS

An important authentication protocol, mainly for WorldWideWeb (Web for short) security, is the
Secure Sockets Layer Protocol (SSL) [136,111]. The term "sockets" refers to standard
communication channels linking peer processes on network devices (e.g., on client/server
machines). A sockets-layer protocol runs under the application-layer protocols such as the
Hypertext Transfer Protocol (HTTP), Lightweight Directory Access Protocol (LDAP), or Internet
Messaging Access Protocol (IMAP), and above the network layer protocols such as Transport
Control Protocol (TCP) and Internet Protocol (IP). When the sockets-layer communications are
secured (e.g., in confidentiality and data integrity), communications in all application-layer
protocols will be secured in the same manner.

SSL is a commonly used protocol for managing the security of a message transmission on the
Internet. The protocol is originally developed by Netscape Communications Corporation as an
integral part of its Web browser (client-side software) and Web server. It is later accepted by
Microsoft and other Internet client/server developers as well, and evolves into the de facto
standard for Web security until it further evolves into the Transport Layer Security (TLS) [95].
The latter is an Internet standard for Web security developed by the industrial standardization
body Internet Engineering Task Force (IETF).

TLS is based on SSL and is not drastically different from SSL. However, since TLS succeeds SSL
as Internet standard for Web security, we shall from now on comply with the standards track
and only use the term TLS in our description of the Web security protocol.

12.5.1 TLS Architecture Overview

TLS is composed of two layered protocols: the TLS Record Protocol and the TLS Handshake
Protocol. The latter is on top of the former.

The TLS Record Protocol provides secure encapsulation of the communication channel for use by
higher layer application protocols. This protocol runs on top of the TCP and IP layers and
provides a reliable session connection. It takes messages to be transmitted, fragments the data
into manageable blocks, optionally compresses the data, applies a MAC (HMAC, see §10.3.2) for
data-integrity, encrypts (symmetric algorithm) for confidentiality, and transmits the result to the
peer communicant. At the receiving end, it receives cipher data blocks, decrypts them, verifies
the MAC, optionally decompressed, reassembles the blocks and delivers the result to higher level
application processes.

The keys for symmetric encryption and for HMAC are generated uniquely for each session
connection and are based on a secret negotiated by the TLS Handshake Protocol.

The TLS Handshake Protocol allows the server and client to authenticate each other, negotiate
cryptographic algorithms, agree on cryptographic keys and thereby establish a secure session
connection for the TLS Record Protocol to process secure communications for higher level
application protocols.

From this TLS architecture description it is clear that the TLS Record Protocol is not an
authentication protocol, although it is a protocol for achieving secure communications. We
therefore should only introduce the TLS Handshake Protocol.

125.2 TLS Handshake Protocol

The TLS Handshake Protocol can be considered as a stateful process running on the client and
server machines. A stateful connection is called a "session" in which the communication peers
perform the following steps:

e They exchange hello messages to agree on algorithms, exchange random values, and check
for session resumption.

e They exchange the necessary cryptographic parameters to allow the client and server to
agree on a secret (called "master secret™).

e They exchange certificates and cryptographic information to allow the client and server to
authenticate themselves to one another.

e They generate session secrets from the master secret by exchanging random values.

e They verify that their peer has calculated the same security parameters to confirm that the
handshake has been completed without having been tampered with by an attacker.

e The established secure channel is passed on to the TLS Record Protocol for processing
higher level application communications.

These steps are realized by four message exchanges which we describe below. In order to
achieve a better exposition of the protocol idea we shall only describe a simplified version of the
TLS Handshake Protocol by omitting some optional elements. In the protocol description, C
denotes the client (i.e., the client-side Web browser), S denotes the Web server. If a message is
trailed with *, this message is optional.

1.c =3s: ClientHello;

2.5 ==3C: ServerHello,
ServerCertificate™,
ServerKeyExchange*,
CertificateRequest™,
ServerHelloDone;

3.C =¥s: ClientCertificate™,
ClientKeyExchange,
CertificateVerify>,
ClientFinished;

4.5 ==3C : ServerFinished.

This protocol can be executed with all the optional messages and the ClientKeyExchange
message omitted. This is the case when the client wants to resume an existing session.

Now let us provide an overview level explain on the messages exchanged in the TLS Handshake
Protocol.

12.5.2.1 Hello Message Exchange

The client starts the session connection by sending a ClientHello message to which the server
must respond with a ServerHello message, or else the connection will fail. These two messages
establish the following fields: "protocol_version,” "random,"” "session_id," "cipher_suites," and
"compression_methods."

The field "protocol_version" is for backward compatibility use: the server and client may use this
field to inform their peer of the version of the protocol it is using.

The field "random" contains random numbers (nonces as freshness identifiers) which are
generated by the both sides and are exchanged. It also contains the local time of the each
communicant.

The field "session_id" identifies the current session connection. When the client wishes to start a
new session connection, ClientHello.session_id should be empty. In this case, the server
generates a new session_id, uses this new value in the field ServerHello.session_id, and caches
the session_id in its local memory. If ClientHello.session_id is non-empty (when the client wants
to resume an existing session), the server should try to find the session_id from its local cache,
and resume the identified session.

A point of noticing is the field "cipher_suites.”™ ClientHello.cipher_suites is a list of the
cryptographic options supported in the client side machine, sorted with the client's first
preference first. A wide range of public-key and symmetric cryptographic algorithms, digital
signature schemes, MAC schemes and hash functions can be proposed by the client. The server
selects a single scheme for each necessary cryptographic operation, and informs the client in
ServerHello.cipher_suites.

12.5.2.2 Server's Certificate and Key-exchange Material

After the hello message exchange, the server may optionally send its certificate, if it is to be
authenticated. The ServerCertificate message, if non-empty, is a list of X.509.v3 certificates (see
813.2). An X.509 certificate contains sufficient information about the name and the public key of
the certificate owner and that about the issuing certification authority (see Example 13.1).
Sending a list of certificates permits the client to choose one with the public key algorithm
supported at the client's machine.

Subsequent to ServerCertificate is ServerKeyExchange. It contains the server's public key
material matching the certificate list in ServerCertificate. The material for Diffie-Hellman key
agreement will be included here which is the tuple (p, g, g¥) where p is a prime modulus, g is a
generator modulo p of a large group and y is an integer cached in the server's local memory
(linked to "session_id").

The server who provides non-anonymous services may further request a certificate from the
client using the CertificateRequest message, if that is appropriate to its selection of the public-
key algorithm from ClientHello.cipher_suite.

Now the server will send the ServerHelloDone message, indicating that the hellomessage phase
of the handshake is complete. The server will then wait for a client response.

12.5.2.3 Client Response

If the server has sent the CertificateRequest message, the client must send either the
ClientCertificate message or the NoCertificate alert.

The ClientKeyExchange message is now sent. The content of this message will depend on the
public key algorithm agreed between the ClientHello and ServerHello messages.

In the case of the client's KeyExchangeAlgorithm being RSA, the client generates a
"master_secret" (a 48-byte number) and encrypts it under the server's certified RSA public key
(obtained from the ServerCertificate).

If the client has sent a certificate and the client has the signing ability, then a digitally-signed
CertificateVerify message will be sent for the server to explicitly verify the client's certificate.

12.5.2.4 Finished Message Exchange

The client now sends the ClientFinished message which includes a keyed HMAC (keyed under the
"master_secret") to allow the server to confirm the proper handshake executed at the client side.

In response, the server will send its own ServerFinished message which also includes a keyed
HMAC to allow the client to confirm the proper handshake executed at the server side.

At this point, the handshake is complete and the client and server may begin to exchange
application layer data.

12.5.3 A Typical Run of the TLS Handshake Protocol

Let us complete our description of the TLS Protocol by exemplifying a typical run of the
Handshake Protocol. The execution example is illustrated in Prot 12.2.

Protocol 12.2: A Typical Run of the TLS Handshake Protocol.

1.C =S : ClientHello.protocol_version = "TLS Version
1.0,

ClientHello.random = T¢, N¢,
ClientHello.session_id = "NULL",

ClientHello.crypto_suite = "RSA: encryption,
SHA-1: HMAC",

ClientHello.compression_method = "NULL";

2.5 ==3C: ServerHello.protocol_version = "TLS Version
1.0",

ServerHello.random = Tg, Ng,
ServerHello.session_id = "xyz123",

ServerHello.crypto_suite = "RSA:
encryption, SHA-1: HMAC",

ServerHello.compression_method = "NULL",

ServerCertificate = point_to(server's
certificate),

ServerHelloDone;

3.C =S : ClientKeyExchange =
point_to(RSA_Encryption(master_secret)),

ClientFinished = SHA-1(master_secret || C

II,N C! NS'I"');
4.8 ==C: ServerFinished = SHA-1(master_secret || S
I1.N s, N¢,...).

In this execution of the TLS Handshake Protocol, the client chooses to be anonymous and so is
not authenticated to the server, the client chooses to use RSA for encryption, SHA-1 for
computing HMACs. As a result, the server unilaterally authenticates itself to the client. The
output from the execution is a unilaterally authenticated channel from the server to the client.

This execution shows a typical example of using the TLS Protocol in a Web-based electronic
commerce application, for example, buying a book from an online bookseller. The output channel
assures the client that only the authenticated server will receive its instructions on book
purchase which may include confidential information such as its user's bankcard details, the
book title, and the delivery address.

12.5.4 A Side Channel Attack on a TLS Application

Inside channel attacks Malice tries to find some subliminal information which a principal
disclose inadvertently. A timing analysis attack is a special case of side channel attacks. In
this special case, Malice observes and analyzes the time behavior of a principal in responding to
his challenge in order to discover a secret. The first published side-channel and timing-analysis
attack is that of Kocher [167] which is best applied on a system performing modulo
exponentiation (e.g., signing or decrypting in RSA, ephemeral-key exponentiation in EIGamal
family signature scheme of in Diffie-Hellman key exchange). The attack aims to discover the
secret exponent. Modulo exponentiation uses the square-and-multiply technique and proceeds
bit-by-bit on the exponent (see alg 4.3). The operation performs, for each bit 1 in the exponent,
squaring and multiplication while for each bit O, squaring only. The attack is to detect the time
difference between these two cases. A successful detection means to extract the secret exponent
bit by bit.

Recently, Canvel et al. [68] discover a side channel (via timing analysis) attacking technique
against a protocol case: a TLS/SSL protected link between a server and a client. A typical target
of this attack is a user’s password for accessing an e-mail (IMAP) server. In this case, the
targeted password is sent from a client machine to an e-mail server and the communications
between the client and the server is protected by a TLS link. The link is encrypted using a strong
session key as a result of a TLS protocol run (e.g., that illustrated in Prot 12.2). The session
encryption uses a strong block cipher (e.g., triple DES) in the CBC mode of operation (see

87.8.2).

The timing analysis attack utilizes Vaudenay's "bomb oracle attack” on the standard CBC
padding scheme [294] which we have studied in 87.8.2.1. Let us recap that attack briefly here.

LetC be a CBC ciphertext block which encrypts a password and is recorded by Malice. In
Vaudenay's attack on the standard CBC plaintext padding scheme, Malice sends to a decryption
oracle

.

wherer is some random data block(s). Malice then waits for the decryption oracle's response,
either "correct padding” or "incorrect padding”. The "correct padding"” response reveals the final
plaintext byte encrypted under C (in the case of C encrypting a password, this byte reveals the
final character of the password). Now we are technically ready to describe the timing analysis
attack against the TLS link.

Now Malice sends to the e-mail server r, C, pretending that he is the owner of the targeted
password encrypted in C and is accessing e-mail. The server, upon receipt of r, C, will perform
CBC decryption and check the validity of the padding. If the padding is correct (with probability
close to 278, see §7.8.2.1), it will further check data integrity by recalculating a MAC (message
authentication code, review the data integrity mechanism using MAC in 810.3.3). If a padding
error is detected, then there is no need to perform the data-integrity checking (i.e., no further
recalculation of the MAC). An error in either cases will be sent back to the client machine, of
course, encrypted under the strong TLS session key.

It seems that Malice, who does not know the strong session key, cannot get an oracle service,
that is, the e-mail server who sends error messages encrypted, is not a decryption oracle.

However, for random r, if the CBC padding is correct, then in an overwhelming probability the
data integrity checking will fail. Therefore, the e-mail server under attack actually only responds
in one of the following two ways:

i. Sending back {"invalid padding"}K, with probability ~1- 278, or
ii. Sending back {"invalid MAC"}K, with probability = -8
The case (ii) implies "valid padding” from which Malice obtains the final plaintext byte under C.

Now the timing attack kicks in! For a sufficiently large r (a few blocks), in case (ii) the server has
to recalculate a lengthy CBC MAC while in case (i) no such calculation is performed. On a fairly
standard implementation of the server, Canvel et al. [68] detect consistent difference in the
server's response time and the difference is in terms of a few milliseconds. Thus, under timing
analysis, the server acts, indeed, as a decryption oracle. Notice that the error-handling
procedure, usually necessary in applications, means that the decryption oracle never explodes; it
is a reliable oracle!

By changing r craftily (without changing C), Malice can discover the whole password byte-by-
byte backward. The method of changing r is left as an exercise for the reader (a hint is given in
Exercise 12.12). If C encrypts a password of 8 bytes, the extraction of the whole password can
be done in 8 x 28 = 2048 trials which are pretended e-mail accessing loging-in sessions.

This is an extraordinary attack, although it works better on (or is probably confined to) the case
of local area network (LAN) where the client and the server are in the same LAN so that the
difference in time delay can be detected more accurately. This attack manifests that oracle
services can be generally available, sometimes via side channels. From this attack we also know
that error messages in cryptographic protocols need to be handled with care.

A possible fix for this attack in this specific application is that the server should take a random
elapse of "sleep” before responding an error message.

12.6 Chapter Summary

In this chapter we have introduced four authentication protocols (systems and standards) for
real world applications. They are: IKE as the IETF authentication standard for IPSec, SSH as the
de facto authentication standard for remote secure shell interaction sessions, Kerberos as the
industrial standard for Windows-based operating systems for an enterprise computer and
information resource environment, and TLS (SSL) as the de facto standard for the Web security.

Although in our description of each protocol suite (system), we have taken a great deal of
simplification, still, our descriptions show enough engineering complexities. These complexities
are due to real-world necessities such as algorithm and parameter negotiation, compatibility for
use by a wide range of systems, backward compatibility, easy to use, etc. In the case IPSec and
IKE, the need of supporting a general quality of confidentiality also contributed to the high
system complexity. From our study in this chapter we know that for any real-world application of
authentication protocols, we are not only facing a number of security problems, but also facing a
great deal of system engineering problems. The latter problems, if not dealt with due care, can
cause serious consequences in security.

We have also seen that the extreme error-prone nature of authentication protocols inevitably
appears in the versions for real world applications. For this reason, we have still not completed
our topic on authentication protocols for this book. We will return to this important topic in
Chapter 17 on formal analysis techniques.

Exercises

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

12.9

12.10

12.11

12.12

In absence of IPSec protection for IP communications, by what means can Malice
manipulate messages transmitted over the Internet (e.g., masquerade as a
message originator, reroute a message, etc.)?

What role does an "authentication header” (AH) play in an IPSec enabled IP
packet?

What is the relationship between IPSec and IKE?

In which two ways can an IP packet be cryptographically protected?

InExercise 11.15 we have considered a fix of the minor flaw in the STS protocol
without damaging its anonymity (deniability) property. Provide a similar fix for the

minor flaw in the IKE Signature-based Phase 1 Main Mode without damaging its
"plausible deniability" property.

Demonstrate a "perfect denial service attack™ on Signature-based IKE Phase 1
Aggressive Mode in 812.2.3.4.

Hint: such an attack is similar to one in Attack 11.3.

Both the encrypted key exchange (EKE) protocol (Prot 11.5) and the SSH protocol
encrypt passwords using asymmetric encryption algorithms. However, there is an
essential difference between them. What is the difference?

How can a server in the SSH protocol be practically authenticated to a user on a
client?

Why in the general setting of the Kerberos protocol should each client face three
different kinds of servers?

Why is the Kerberos protocol suitably used in an enterprise environment? Is it
suitable for a cross-enterprise (open systems) environment?

The TLS (SSL) protocols have been widely used in the Web-based electronic
commerce applications. However, are these protocols naturally suitable in such
applications? If not, why?

Hint: these protocols do not support authorization of payments with the
nonrepudiation service.

In §12.5.4 we have introduced a timing attack technique for extracting the final
byte in the plaintext message encrypted in a CBC ciphertext block which uses the
standard CBC plaintext padding scheme. How are further bytes extracted?

Hint: review the standard CBC plaintext padding scheme in 87.8.2.1; to extract
the-last-but-one byte after successful extraction of the last byte, you should
consider the following event of "valid padding": the two final bytes (*two padding
bytes™) are '02' || '02'; now modify the final byte of r to maximize the probability
for this event to occur.

Chapter 13. Authentication Framework for
Public-Key Cryptography

Section 13.1. Introduction

Section 13.2. Directory-Based Authentication Framework

Section 13.3. Non-Directory Based Public-key Authentication Framework

Section 13.4. Chapter Summary

Exercises

13.1 Introduction

In the usual sense of public-key cryptography, a key generation procedure invariantly contains
the following step:

Equation 3.1.1

public-key = I private-key).

Here,F is some efficient and one-way function which maps from the private key space to the
public-key space. Due to the one-way property of the function F (a good mixing-transformation),
public-key computed from private-key always contains a part which looks random.

With every public key containing a random-looking part, it is obviously necessary that a
principal's public key be associated with the principal's identity information in a verifiable and
trustworthy way. Clearly, to send a confidential message encrypted under a public key, the
sender must make sure that the random-looking public key used really belongs to the intended
recipient. Likewise, to establish the origin of a message using a digital signature scheme, the
verifier must make sure that the public key used for the signature verification really belongs to
the claimed signer.

In general, to use public-key cryptography in real-world applications, we need a mechanism
which enables a ready verification of the association between a public key and a principal’s
identity. Such a mechanism is usually realized in an authentication framework: it enables the
owner of a public key to authenticate toward the system.

13.1.1 Chapter Outline

In the rest of this chapter we will introduce two different ways to establish an authentication
framework for public-key cryptography: one is called public key certification infrastructure
(PKI1) (813.2), and the other, identity-based public-key cryptography (813.3).

13.2 Directory-Based Authentication Framew ork

For a pair of principals who communicate frequently, it need not be difficult for them to securely
identify the other party's public key: they can exchange their public keys initially in a physically
secure manner, e.g., in a face-to-face meeting, and then store the keys by a secure means.
However, this "simple" key-management method does not scale up well. In the general setting
for an open communications system, communications take place between principals who may
have never met before; also in most cases a communication may take place between a pair of
principalsonce only. The "simple" key-management method will require each principal to
manage an unrealistically huge number of public keys. Moreover, such a method does not really
make use of the advantages of public-key cryptography.

In 82.4 we have seen an online service offered by a trusted principal for the management of
secret keys. The service is a combination of sub-services such as key registration, authentication
and name-directory. To use the key-management service, every principal should first establish a
one-to-one and long-term relationship with a trusted server principal (authentication server) by
sharing a long-term secret key with the latter. When two (end-user) principals need to conduct a
secure communication between them, they can engage in an authentication protocol run
together with the authentication server to establish a secure communication channel between
them. Thus, each end-user principal only need to manage a single secret key shared with the
authentication server. The key-management and authentication service introduced in Chapter 2
is for authentication protocols based on secret-key cryptosystems (even though in §2.6.6 we
discussed the Needham-Schroeder publickey authentication protocol, the authentication service
in that protocol still uses an online trusted third party, essentially in a secret-key style).

The secret-key management service can naturally be extended to the management of public
keys. Here the key-management service is called public-key certification service, and a
trusted server is called a certification authority (CA). A CA is a special principal who is well-
known and trusted directly by the principals in the domain it serves, and can also be known and
trusted in a bigger domain through an indirect way (we shall discuss more about "trust" in a
moment). For each end-user within the domain of a CA, the CA will issue a public-key
certificate for certifying the user's public key material. A public-key certificate is a structured
data record with a number of data entries which include a uniquely identifiable identity of the
holder and her/his public key parameter. A certificate is digitally signed by the issuing CA. Thus
the CA's signature of a certificate provides a cryptographic binding between the holder's identity
and her/his public key. A principal, after having verified the certificate of another principal,
should believe the validity of the binding if she/he trusts the CA in that the CA has issued the
certificate only after having properly identified the holder. In this way, the verification principal
establishes a secure key channel which is directed from the certified public key toward her/him
(in fact, toward the system). Kohnfelder first uses the name "public key certificate" [169].

A public-key channel based on a certification service is often called a directorybased channel, as
we have illustrated in Figures 7.1 and 10.1. The certification service is thus also often called a
directory service.

Notice that, in comparison with the "trust” required by an authentication server for secret-key
based authentication protocols (see §2.4), the "trust” required by a CA is much weaker. Here,
the security service provided is message authentication, which can be provided without need of
handling any secret (since verifying a CA's sighature of a certificate only involves using the CA's
public key). Without the need of handling any secret, the service can be provided off-line, that
is, a CA need not be engaged in a protocol run with the end-user principals. An important
feature of an off-line service is that it can scale up to deal with a very large system. Obviously, a
CA's public key used for verifying the certificates that the CA has issued can itself, in turn, be
certified by another CA, and so on.

The data entries in a certificate should include the identity information and the public key
information of the issuing CA. They should also include some additional information, such as the
description on the algorithm to be used for verifying the issuing CA's signature and that to be
used by the public key certified, the valid period, condition of the use, etc. Semi-formally, a
public-key certificate may be defined as in Example 13.1.

Example 13.1. Public-key Certificate

certificate ::=
{
i ssuer nane;
i ssuer information;
subj ect nane;
subj ect infornation;
validity period;
}
i ssuer information ::=
{
i ssuer public key;
signature algorithmidentifier
hash function identifier
}
subject information ::=
{
subj ect public key;

public key algorithmidentifier

validity period ::=

{

start date;

finish date

13.2.1 Certificate Issuance

In the issuance of a certificate, a CA should validate the identity of a principal who requests a
certificate. The validation should of course involve some physical (i.e., non-cryptographic)
means of identification, as we usually have to conduct in some business interaction (e.g., in the
opening of a bank account). The principal should also prove that she/he knows the private
component of the public key to be certified. The proof can either be in the form of a user creating
a signature of a challenge message, which is verifiable using the public key, or be in the form of
a zero-knowledge proof protocol between the user and the CA, with the public key as the
common input. Some applications requires the private component of a public key to have certain
structure. In such applications, a zero-knowledge protocol can be designed to enable a proof of
the needed structure. We shall see in later chapter a few zero-knowledge protocols for proof of
the structure of a secret.

13.2.2 Certificate Revocation

Occasionally, it may be necessary to revoke a certificate. Compromise of a user's private key or
a change of user information are two examples of this situation.

In the case of the directory-based certification framework, the root CA should maintain a hot list
of the revoked certificates. The hot list may be available online. Alternatively, the root CA may
issue a "D-revocation list” throughout the system, which only contains newly revoked certificates.
The system-wide users can update their local copies of the certificate revocation list whenever
they receive a D-revocation list.

A revocation of a certificate should be timestamped by the revocation CA. Signatures of a
principal issued prior to the date of her/his certificate's revocation should be considered as still
valid (according to application) even if the date of the signature verification is later than the date
of the certificate's revocation.

13.2.3 Examples of Public-key Authentication Framework

Now let us see several examples of directory-based public-key authentication framework.

13.2.3.1 X.509 Public-key Certification Framework

The standard public-key certification framework, called the X.509 [152] certification
infrastructure, scales up in a tree hierarchy, called a directory information tree (DIT). In such
a tree hierarchy, each node represents a principal whose public-key certificate is issued by its
immediate parent node. The leaf nodes are end-user principals. The non-leaf nodes are CAs at
various levels and domains; for example, a country level CA has industry, education and
government organization domains; each of these domains has many sub-domains, e.g, the
education domain has various university sub-domains. The root node is called the root CA which
is a well-known principal in the whole system. The root CA should certify its own public key.
Since each CA is potentially capable of serving a large domain (of CAs or end-users), the depths
of a DIT need not be a large number. Two end-user principals can establish a secure
communication channel by finding upward in the DIT a CA who is the nearest common ancestor
node of them.

13.2.3.2 PGP "Web of Trust"

Another public-key certification framework which has a large number of amateur users is called
a PGP "web of trust” or "key-ring" (PGP stands for "Pretty Good Privacy" which is a secure e-mail
software developed by Zimmermann [312]). This authentication model scales up in an
unhierarchical manner. In the PGP "web of trust,” any individual can be a "CA" for any other
principals in the system by signing their "key certificates" which is simply a pair {name key}.
Evidently, the signing relationship forms a web structure. Any single "CA" in the web is not well
trusted or not trusted at all. The theory is that with enough such signatures, the association {

name, key} could be trusted because not all of these signers would be corrupt. Thus, when Alice
wants to establish the authenticity of Bob's key, she should request to see a number of Bob's
"key certificates." If some of the issuing "CAs" of these certificates are "known" by Alice "to some
extent," then she gains a certain level of authenticity about Bob's public key. Alice can demand
Bob to provide more "certificates" until she is satisfied with the level of the trust.

13.2.3.3 Simple Public Key Infrastructure (SPKI)

The X.509 public-key certification framework can be viewed as a global online telephone book.
Each individual user occupies an entry in it and therefore the entry subject name in each user's
certificate (see Example 13.1) must be a globally distinguished name. Such an authentication
framework seems quite adequate for the early years of applications of public-key cryptography:
secure communications in terms of confidentiality (i.e., against eavesdropping): the recipient of
a confidential message should be uniquely identified together with her/his key.

Since the 1990's, applications of public key became much wider to include electronic commerce,
remote access and actions (see a list of applications in the Preface). Ellison et al. consider that
for the newly emerged applications, a globally distinguished name with a key bound to it
becomes inadequate [103]. What an application needs to do, when given a public key certificate,
is to answer the question of whether the remote key holder is permitted some access, or some
authorized action. That application must make a decision. The data needed for that decision is
almost never the spelling of a key holder's name. Instead, the application needs to know if the
key holder is authorized for some access. This should be the primary job of a public-key
certificate.

Ellison et al. also consider that the original X.500 plan is unlikely ever to come to fruition.
Collections of directory entries (such as employee lists, customer lists, contact lists, etc.) are
considered valuable or even confidential by those owning the lists and are not likely to be
released to the world in the form of an X.500 directory sub-tree. For an extreme example, they
imagine the CIA adding its directory of agents to a world-wide X.500 pool, how can this be
possible? The X.500 idea of a distinguished name (a single, globally unique name that everyone
could use when referring to an entity) is also not likely to occur. That idea requires a single,
global naming discipline and there are too many entities already in the business of defining
names not under a single discipline. Legacy therefore militates against such an idea.

Ellison et al. propose a directory-based public-key certification framework named SPKI1 (which
stands for ""Simple Public Key Infrastructure') [103]. It is also a tree-structured framework,
similar to an X.509 key certification framework. However, its naming convention includes a
person's usual name and a hash of the public key value. For example:

(nanme (hash shal | TLCgPLFI GTzgUbcaYLWBKGTEnUk=|) jim therese)

is the proper SPKI name for the person whose usual name is "Jim Therese.” Here, the use of the
SHA-1 hash of a public key makes the SPKI name globally uniquely identifiable, even though
there may be many "Jim Thereses."

This naming method is suggested by Rivest and Lampson in SDSI [245] (which stands for "A
Simple Distributed Security Infrastructure™). SDSI features localization naming rules. These
features also aim to make a decentralized authentication and authorization framework. Thus, a
SPKI name is also called a SDSI name.

SPKI also considers "authorization" and "delegation" entries which carry authorization and
delegation information. A piece of authorization information can be an authorization description
which is bound to a public key. Thus, a certificate can directly show to an application whether or
not the requester is authorized to perform an action. The delegation information describes the
requester's power to delegate authorization to another person. We may say that SPKI extends
X.509 authentication framework to one with authorization and delegation features. At the heart
of the authorization scheme of SPKI is the use of LISP-likel2l S-expressions proposed by Rivest
[244]. As an example, the S-expression

[al LISP: a programming language.

(obj ect docunent (attributes (nane *.doc) (loc Belgium)

(op read) (principals (users OgEU)))

might express the authorization of all users in Or gEU to read objects of type docunment which
have names postfixed doc and are located in Belgium.

PolicyMaker [40] is another proposal which considers authorization and policy issues in an
authentication framework. PolicyMaker features the descriptions of certificate holder's role and
the role-based policy.

13.2.4 Protocols Associated with X.509 Public-key Authentication
Infrastructure

There are several protocols for processing practical necessities in the X.509 Public-key
Authentication Infrastructure. They are:

¢ Certificate Management Protocol (CMP) [7,208]. This protocol supports online interactions
between Public Key Infrastructure (PKIl) components. For example, a management protocol
might be used between a Certification Authority (CA) and a client system with which a key
pair is associated, or between two CAs that issue cross-certificates for each other. These
interactions are needed when, e.g., an entity (either end-entity or CA) is required to prove
the possession of a private key upon its request for key certification or key update.

e Online Certificate Status Protocol (OCSP) [207]. This protocol enables applications to
determine the (revocation) state of an identified certificate. OCSP may be used to satisfy
some of the operational requirements of providing more timely revocation information than
is possible with CRLs and may also be used to obtain additional status information. An
OCSP client issues a status request to an OCSP responder and suspends acceptance of the
certificate in question until the responder provides a response.

e Internet X.509 Public Key Infrastructure Time Stamp Protocols [6]. This protocol consists of
a request sent to a Time Stamping Authority (TSA) and of the response that is returned. It
also establishes several security-relevant requirements for TSA operation, with regards to
processing requests to generate responses. Non-repudiation services require the ability to
establish the existence of data before specified times. This protocol may be used as a
building block to support such services.

e Internet X.509 Public Key Infrastructure Operational Protocols: FTP and HTTP [140]. This is
a specification of protocol conventions for PKI to use the File Transfer Protocol (FTP) and
the Hypertext Transfer Protocol (HTTP) to obtain certificates and certificate revocation lists
(CRLs) from PKI repositories.

These protocols are developed as standards under the IETF standardization body "the Public-Key

Infrastructure X.509 Working Group” (the PKIX Working Group). We shall not described the
details of these protocols. Interested readers should visit the PKIX Working Group's web page:

http:Z//www.ietf.orgZ/html.charters/pKkix-charter.html

where documents describing these protocols (the references cited above) can be downloaded.

http://www.ietf.org/html.charters/pkix-charter.html

13.3 Non-Directory Based Public-key Authentication
Framew ork

The key generation procedure in (13.1.1) in the usual sense of public-key cryptography renders
all public keys random. Consequently, it is necessary to associate a public key with the identity
information of its owner in an authentic manner. We have seen that such an association can be
realized by a public-key authentication framework: a tree-like hierarchical public-key
certification infrastructure (e.g., X.509 certification framework, see 813.2.3). However, to
establish and maintain a tree hierarchy, PKI incur a non-trivial level of system complexity and
cost. It has long been desired that the standard public-key authentication framework be
simplified.

It is reasonable to think that, if public keys are not random-looking, then the system complexity
and the cost for establishing and maintaining the public-key authentication framework may be
reduced. Imagine, if a public key of a principal is self-evidently associated with the principal's
identity information such as name, affiliation information plus electronic and postal mail
addresses, then in essence there is no need to authenticate a public key. Indeed, our postal mail
systems work properly this way.

Shamir pioneers a public-key cryptosystem in an unusual sense [260]. It enables a great-deal of
reduction in the system complexity for key authentication: in essence to one similar to that of a
postal mail system. In his unusual public-key cryptosystem, the key generation procedure has
the following step

Equation 13.3.1

private-key = F'(master-key, public-key).

This key generation step takes the opposite direction to the key generation step for the usual
sense of public-key cryptosystems, see (13.1.1). Of course, in order for a so-computed private-
key to be kept secret, the computation must not be public: it is restricted to a privileged

principal (a trusted authority, TA). TA possesses exclusively the secret key master-key in order
to be able to perform the computation in (13.3.1). Now that public-key is an input to the key
generation procedure, any bit string can be public-key! Since using identity information as a
public key can greatly reduce the complexity of public-key authentication, Shamir suggested that
the public keys in his novel public-key cryptosystem be chosen as users' identities and thus he
named his scheme identity-based public-key cryptography.

It is obvious that the key generation procedure in (13.3.1) is a service offered by TA to system
wide users. The service is essentially an authentication one: the private key that TA creates for a
principal in connection to her/his ID as public key provides the key owner with a credential for
her/his ID-based public key to be recognized and used by other users in the system. Before
creating a private key for a principal, TA should conduct a thorough checking of the identity
information of the principal. This checking should include some physical (i.e., noncryptographic)
means of identification. Also, TA has to be satisfied that the identity information supplied by the
principal can uniquely pinpoint the principal. A similar identification checking is necessary before
a CA issues a public-key certificate to a principal (see §13.2.1).

Now that users' private keys are generated by TA, they have to trust TA absolutely, completely
and unconditionally: namely, they must not feel uncomfortable with the situation that TA can

read all of their private communications or forge all of their signatures. Therefore, 1D-based
cryptography should only be suitable for applications where an unconditional trust is acceptable
to the users. In an organization environment in which the employer has the complete ownership
of the information communicated to and from the employees; then the employer can play the
role of TA. It is however possible that TA represents a plural number entities who collectively
computes (13.3.1) for a user. Privacy intrusion then must be done collectively by these entities.
This collective basis of trust is more acceptable. We will see such a technique in §13.3.7.1.

With a principal's uniquely identifiable identity being directly used as her/his public key, during
the use of an ID-based public-key cryptosystem there is no need for the user to establish a key
channel; namely, the "key channels" in Figures 7.1 and 10.1 are no longer needed. Moreover, ke
inFigures 7.1 and kv in Fig 10.1 can be replaced with a string of a piece of self-evident
information, for example, a globally distinguishable identity.

13.3.1 Shamir's ID-Based Signature Scheme

In Shamir's ID-based signature scheme there are four algorithms:

e Setup: this algorithm is operated by TA (from now on let us call TA Trent) to generate
global system parameters and master-key.

e User-key-generate: this algorithm (also operated by Trent), inputting master-key and an
arbitrary bit string id € {0, 1}*, outputs private-key which corresponds to id; this is an
instantiation of (13.3.1).

e Sign: a signature generation algorithm; inputting a message and the signer's private key, it
outputs a sighature.

e Verify: a signature verification algorithm; inputting a message-signature pair and id, it
outputsTrue or False.

Alg 13.1 specifies Shamir's ID-based signature scheme.
We now show that the system specified in Alg 13.1 is indeed a signature scheme.

ATrue case in a signature verification shows that Alice has in her possession of both ID-t MtIM)
and its unique e-th root modulo N (which is s, and the uniqueness is guaranteed by the fact
gcd(e, g(N)) = 1).

The construction of ID-t"(t1lIM) need not be a difficult job. For example, one can choose a random
t, construct h(t || M), then compute t"®IM (mod N) and lastly multiply ID to the result.
However, because the value so constructed is recognizable due to the involvement of a
cryptographic hash function in the construction, it should be difficult to extract the e-th root of a
so-constructed value. Itis therefore assumed that Alice should have in her possession of the e-th
root of ID, which is her private key issued by Trent, and should have used the private key in the
construction of the signature pair.

However we have not provided a formal and strong argument for the unforgeability of Shamir's
ID-based signature scheme. Because the difficulty of signature forgery is related to that of
constructinglD-t "M (mod N) and finding its e-th root modulo N, the difficulty must certainly
be related to the details of the hash function used (in addition to the RSA problem). Similar to
the situation of providing security proofs for other digital signature schemes, a rigorous
argument on the security for Shamir's ID-based signature scheme requires a formal model of the
behavior of the hash function h. Such a model will be given in a later chapter.

Algorithm 13.1: Shamir's Identity-based Signature Scheme

Setup of System Parameters

Trent sets up:

1. N: the product of two large primes;
2. e: aninteger satisfying gcd(e, g(N)) = 1;

(* (N, e) are public parameters for using by the system-wide users *)
3. d: aninteger satisfying ed = 1 (mod a(N));

(*d is Trent's master-key *)

h : '{D, 1}" — Etmhf]_

(*h is a strong one-way hash function *)

Trent keeps d as the system private key (master-key), and publicizes the system
parameters (N, e, h).

User Key Generation

LetlD denote user Alice's uniquely identifiable identity. Having performed physical
identification of Alice and made sure the uniqueness of ID, Trent's key generation
service is

g «— ID? (mod N).

Signature Generation

T ey L

To sign a message M € {0, 1}*, Alice chooses N, and computes

t «— r¢ (mod N),
s g-ri(t| M) (mod N).

The signature is the pair (s, t).
Signature Verification

Given the message M and the signature (s, t), Bob uses Alice's identity ID to verify
the signature as follows:

Verify(ID, s, £, M) = True if s¢ = ID - "M} (;mod N).

13.3.2 What Exactly does ID-Based Cryptography Offer?

In public-key cryptography in the usual sense, for Bob to verify a signature of Alice using her
public key, Bob should also verify, separately, the authenticity of Alice's public-key, e.g., by
verifying her key certificate (which links Alice's public key with her identity). Namely, Bob should
make sure that the key channel from and to Alice has been properly established (see Fig 10.1).

It is interesting to realize that in an ID-based signature scheme, there is no need for Bob to
perform a separate verification for the proper establishment of a key channel. Here, a True case
in a signature verification shows Bob two things at the same time:

e the signature has been created by Alice using her private key which is behind her I1D; and

e herlD has been certified by Trent, and it is the result of Trent's certification of her ID that
has enabled Alice to create the signature.

Being able to simultaneously verify these two things in one go is a nice feature offered by an ID-
based signature scheme. Being able to avoid transmitting a certificate from the signer to the
verifier also saves the communication bandwidth. This feature also brands the ID-based
cryptography with another name: non-interactive public key cryptography. We will see in a
moment that the non-interaction property will make better sense in an ID-based encryption
system.

Finally we must recap and remember that Trent can forge any user's signature! Therefore,
Shamir's ID-based signature scheme is not suitable for applications in an open system
environment. Rather, it is more suitable for those in a closed system in which Trent has
legitimate ownership of all information in the whole system. This is unfortunately a very
restrictive setting.

A challenging open problem is to design an ID-based signature scheme which is free from this
restrictive setting. Another open problem is to design an ID-based signature scheme which
features non-interactive key revocation. Key revocation is necessary when a user's private key is
compromised.

It seems that without having these two open problems solved, an ID-based signature scheme
will have rather limited applications. We shall see in the remainder of this chapter that one of
these two problems, free from the need for an absolute trust on Trent, can be solved for an ID-
based encryption scheme.

13.3.3 Self-certified Public Keys

Let (s, P) be a pair of secret and public keys, respectively. A public-key authentication
framework is to provide a key pair with a guarantee G which links P to an identity I.

In a directory-based public-key authentication framework (e.g., X.509 which we have seen in
Example 13.1), the guarantee G takes the form of a digital signature of the pair (I, P), which is
computed and delivered by a certification authority CA. The authentication framework is
organized by items of four distinct attributes: (s, I, P, G). Three of them, (I, P, G), are public

and should be available in a public directory. When a principal needs an authenticated copy of I's
public key, it gets the public triple (I, P, G), checks G using CA's public key, and afterwards
makes use of P to authenticate this user.

In identity-based authentication framework (e.g., Shamir's scheme in 813.3.1), the public key is
nothing but the identity I. So P = | and the authentication framework is organized by items of
two attributes: (s,). As we have seen in §13.3.1, when a principal needs to authenticate I's
public key I, it has to verify a signature; a True answer confirms the authenticity of the public
keyl. Therefore, the guarantee is nothing but the secret key itself, i.e., G = s.

Girault proposes a scheme for public-key authentication framework which is intermediate
between a certificate-based scheme and identity-based one [122,121]. In Girault's scheme, the
guarantee is equal to public key, i.e., G = P, which therefore may be said self-certified, and each

user has three attributes: (s, P, 1). In Girault's scheme, a user's private key can be chosen by
the user.

13.3.3.1 Girault's Scheme

Girault's scheme still needs a trusted authority TA (let it be Trent), who sets up the system
parameter and helps an individual user to set up her/his key attribute.

13.3.3.2 System Key Material

Trent generates an RSA key material as follows:

1. a public modulus N = PQ where P, Q are large primes of roughly equal size, e.g., |P| = |QI
=512;

2. apublic exponent e co-prime to g(N) = (P—-1) (Q — 1);

3. asecret exponent d satisfying ed = 1 (mod g(N));

b

4. a public element g€ ZN which has the maximum multiplicative order modulo N; to
computeg, Trent can find gp as a generator modulo P and g g as a generator modulo Q,
and can then construct g by applying the Chinese Remainder Theorem (Theorem 6.7 in
86.2.3).

Trent publicizes the system public key material (N, e, g), and keeps the system secret key
materiald securely.

13.3.3.3 User Key Material
Alice randomly chooses a secret key sa which is a 160-bit integer, computes

v g ** (mod N)

and gives v to Trent. Then she proves to Trent that she knows sp without revealing it, by using a
simple protocol to be described in §13.3.3.4. Alice also sends her identity I to Trent.

Trent creates Alice's public key as the raw RSA signature of the value v — Ia:

Py — (v — fﬂq}d (mod N).

Trent sends Pa to Alice as part of her public key. So the following equation holds:

Equation 13.3.2

I4 = P5 —v(mod N).

£
At first sight, in this key setup, because both P, and v are random elements in ““V, so it seems
that making equation (13.3.2) is not a difficult job. For example, Alice can pick Pa at random,
£

computesv using PA and lp using (13.3.2). However, if v is computed this way, then Alice
should not be able to know its discrete logarithm to the base g modulo N.

It is Alice's capability to demonstrate her possession of the discrete logarithm of v to the base g
moduloN, i.e., the value —s ,, that will provide the guarantee that Pa has been issued by Trent.
The simplest way to achieve this demonstration is by using a variation of the Diffie-Hellman key
exchange protocol to be described in §13.3.3.4.

13.3.3.4 Key Exchange Protocol

Let (sa, Pa, 1a) be Alice's public key material, and (sg, Pg, I1g) be Bob's public key material. They
can simply exchange an authenticated key by agreeing:

Kap = (P§ +14)"® = (P + Ip)** = ¢~*4** (mod N).

€ 54
In this key agreement, Alice computes {PH +1Ip)

dE EH
“ AT I-d-] (mod N). Therefore it is indeed the Diffie-Hellman key agreement protocol. If the
two parties can agree on the same key, then they know that the other end has proved her/his
identity.

(mod N) and Bob computes

Girault also proposes an identity-based identification protocol and an identitybased signature
scheme which is in the EIGamal signature scheme [122].

13.3.3.5 Discussions

The self-certified public keys of Girault share one feature of Shamir's identity-based scheme:
free from verifying an additional key certificate issued by a trusted third party to a key owner.
The verification is implicit and is done at the same time of verifying the key owner's
cryptographic capability.

However, the verifier needs a separate public key in addition to an identity, i.e., P in addition to

I, and the former cannot be derived from the latter by the verifier. This means that the verifier
has to ask for the key owner to send the public key over before using it. This is an additional
step of communication. Therefore, Girault's self-certified public keys cannot be considered as
non-interactive public key cryptography (review our discussion on this pointin 813.3.2). This is
a drawback of self-certified public keys.

13.3.4 Identity-Based Public-key Cryptosystems from Pairings on
"Weak" Elliptic Curves

Shamir's original I1D-based public-key cryptosystem is a digital signature scheme. He also
conjectures the existence of ID-based encryption systems. After Shamir's posing of the problem
in 1984, several ID-based cryptosystems have been proposed [251,51,78,141,191,289,287].

Sakai, Ohgishi and Kasahara [251] and Joux [154] independently pioneer the idea of utilizing a
special property of a pairing-mapping function which works on an abelian group formed by
points on an elliptic curve. (see 85.5). The work of Sakai, Ohgishi and Kasahara [251] is a
marvelous application of a previous cryptanalysis result (to explain in §13.3.4.1) which make
Shamir's conjecture a practical reality. Independently, the work of Joux [154] uses the same
technique to achieves another fascinating application: one-round three-party Diffie-Hellman key
sharing (Joux names it "tripartite Diffie-Hellman".

The independent applications of the pairing technique by Sakai, Ohgishi and Kasahara [251] and
by Joux [154] not only achieve things which previously no one knew how to do, more
importantly, they turn a previous cryptanalysis result of Menezes, Okamoto and Vanstone [197]
into positive applications. Their seminal works gave rise to a resurgence of interest in identity-
based cryptography after the year 2000.

The special property utilized by Sakai et al. [251] and Joux [154] is the following. In a "weak"
elliptic curve group in which a "pairing-mapping" can be efficiently computed, the decisional
Diffie-Hellman problem (DDH problem) is easy while its computational counterpart remains
difficult. Let us first study the weak cases of elliptic curves and the related easy DDH problem.
After this study we will then introduce these two pairing based key agreement schemes.

13.3.4.1 A"Weak" Class of Elliptic Curves

Menezes, Okamoto and Vanstone [197] show that for a special class of elliptic curves defined

over finite fields]Ffi, there exists an efficient algorithm to "map-in-pair"” two points on the curve
E{IF"?} to a "non-degenerated" (i.e., not a multiplicative unity) finite field element HE IF‘?{. The
special curves are called supersingular curves; they satisfy that t in (5.5.6) is divisible by the

F

characteristic of
greater than 3).

4 (we confine our description to the easy case of the field characteristic

F

In this case (i.e., tin (5.5.6) is divisible by the characteristic of

F

1), for some (large) prime

E(F)

number M#E{Fq}, a curve defined over an extension of = 4, i.e., , contains many

points of order a, that is, point P satisfying [a]P = O (if necessary, review 85.5). Group E“F‘I" }
is non-cyclic, and hence many of these order-a points are "linearly independent" to one another;
that is, for P, Q being two (prime) order-a and linearly independent points, P ;t [a]Q and Q ;t
[b]P for any integers a, b (in other words, P & {Q} and Q & {P}). For this prime a the field

E

extension FU' also has a unique order-a subgroup (since 7' is cyclic, see Theorem 5.2).

Menezes, Okamoto and Vanstone [197] show that a 1-1 onto and operation-preserving mapping

E(F,)

(i.e., an isomorphism) is available between an order-a subgroup of and the order-a

subgroup of 4". Moreover, the field extension is a small one: f < 6. The smallness of the field
extension is very important! We shall return to this pointin a moment.

The isomorphism used by Menezes, Okamoto and Vanstone is called the Weil pairing. The Weil

pairing takes two points in order-a subgroups of EI{IE“?") to an elementin qu. From the view
point of the mapping being an isomorphism between two order-a groups, we should really view
one of the two "mapped from" points to be related to a fixed constant (i.e., only one of the two
points is a variable in an order-a group on the curve). Let X € E{Fﬁf")
("the fixed constant™). We denote the Weil pairing

ex (P, Q)

be a fixed order-a point

where either P € {X} orQE€ {X} In this denotation, ex(P, Q) is an a-th root of the unity, i.e., an

F

order-a element, in — 4" if and only if P and Q have the prime order a and they are linearly
independent (for example, only one of P and Q is in {X}).

E(F)

Denote by G; an order-a subgroup of with elements in it (apart from O) linearly

independent from "the fixed order-a constant X (such a subgroup exists unless E{]F“I’"} is cyclic

and then is non-supersingular), and by G, = {ex(P, X)} the order-a subgroup in q' generated
bye x (P, X). Then we know #G1 = #G2 = a.

These two subgroups are isomorphic under the Weil pairing. Notice that even though G1 is an
additive group of the points on a supersingular elliptic curve and G, multiplicative subgroup of a
finite field, under the isomorphism, these two algebraic structures have no essential difference.

The Weil pairing satisfies the following properties:

Property 13.1: The Weil Pairing PropertiesLet (G 1, +), (G2, .) be two prime-order
isomorphic abelian groups under the Weil pairing ex. The pairing has the following properties:

Identityfor all P €G ;:

ex(P, P) = 1gq,.

Bilinearityfor all P, Q €G 1:

ex(P+@Q,R)=ex(P,Rlex(Q,R), ex(R,P+Q)=ex(R,Plex(R,Q).

Non-degeneracyfor all P €G jwith P ?’-‘o (hence P and X are linearly independent):

ex(P, X) # 1G,, ex(X,P)# la,.

Practical Efficiencyfor all P €G 1,R € {X},e x (P, R) and ex(R, P) are practically efficiently
computable.

Notice that by bilinearity we have

ex([n]P, X) =ex (P, X)" = ex(P, [n] X).

Further by non-degeneracy we know that, as long as Cx J’”, the above "pairing mapped" result
is not the unity of G, i.e., is not an uninteresting element in G,.

These properties of the Weil pairing enable a profound reduction, called the MOV reduction,
from the difficulty of the elliptic curve discrete logarithm problem (ECDLP, defined in §5.5.3) to
that of the discrete logarithm problem in finite fields. To apply the MOV reduction to the ECDLP
on given pair of points (P, [n] P), we can compute the Weil pairings x = ex(P, X) and h = ex [n]
P, X) and notice

Equation 13.3.3
n=-ex([n|P,X)=ex(P,X)" =£&".

So the pair (xh) in G 2 provides a discrete logarithm problem in the multiplicative group G

(hence in the finite field fir). We know that for the latter problem, we have a subexponential
solver with the time complexity expressed as sub_exp(q) (using q in place of g in the
complexity expression (8.4.2)). Recall that we have discussed earlier, that for supersingular

curves, f <6. Therefore, the MOV reduction is a drastic one: it reduces a widely believed

exponential problem: O(\/E} ~ O{\/?ﬂ into a subexponential one: sub_exp(q) with &‘ not
exceeding 6.

Considering that the progress of the hardware computing technology will cause g to grow its
size, then the parameter of a supersingular curve has to grow in the way of that of finite field. In
other words, the advantage of using elliptic curve in cryptography is gone. Therefore, after the
cryptanalysis work of Menezes, Okamoto and Vanstone [197], it becomes a widely agreed
convention that supersingular elliptic curves should be excluded from cryptographic use. They
are weak curves.

Then why have we used the quoted form of "weak" in the title of this subsection? These curves
have a newly discovered useful property which sends a shock wave to the research community.
Let us first describe the decisional form of the Diffie-Hellman problem.

13.3.4.2 Decisional Diffie-Hellman Problem

InDefinition 8.1 (in 88.4) we have introduced the CDH problem (the computational version of
the Diffie-Hellman problem). The decisional version of the problem is given below in Definition
13.1.

Definition 13.1:Decisional Diffie-Hellman Problem (DDH Problem)

INPUT desc(G): the description of an abelian group
G: (g, g2, gP, g°) €G 4 where g is a generator
of the group G;

OUTPUT YES if ab = ¢ (mod #G).

The DDH problem can not be harder than the CDH problem. If there exists a CDH problem solver
(such an assumed solver is usually called an oracle), then on inputting (g, g2, g, g%, the oracle

can find gaP from the first three elements in the input, and thus can answer the DDH problem by
checking whether or not the output from the CDH oracle is equal to g°.

However, in the general case of abelian groups we do not know for sure anything more than this
relation between these two problems. Moreover, we do not know any efficient algorithm to solve
the DDH problem. The difficulty of answering the DDH problem has rendered the problem a
standard and widely accepted intractability assumption (to be described in Assumption 14.2) for
underlying the security of many cryptographic systems, e.g., [20,58,84,209,283].

Now for the special case of supersingular elliptic curves, we know the following newly discovered
fact: the DDH problem is easy. This is identified by Joux and Nguyen [155]. Before we explain
the fact, we need to translate the problem (and the CDH, DL problems) into the additive form,
since the elliptic curve groups are written additively.

The Discrete Logarithm (DL) Problem in (G, +)

INPUT Two elements P, Q £G with P being a group
generator;
OUTPUT Integera such that Q = aP.

The Computational Diffie-Hellman (CDH) Problem in (G, +)

INPUT Three elements P, aP, bP £G with P being a
group generator;

OUTPUT Element(ab)P €G.

The Decisional Diffie-Hellman (DDH) Problem in (G, +)

INPUT Four elements P, aP, bP, cP €G with P being
a group generator;

OUTPUT YES iff c =ab (mod #G).

13.3.4.3 "Weak" Curves Enable Easy Decisional Diffie-Hellman Problem

The identity property of the Weil pairing (see Property 13.1) is somewhat awkward. It means

that for P, Q in G1 (and so Q = [a]P for some integer a), pairing ex (P, Q) = ex(P, P)2 =12 =1,
In order to obtain a non-degenerated mapped result, another order-a point X which is linearly
independent from the elements in G1 has to be found. This is a big limitation for the Weil pairing
to be directly used in positive cryptographic applications.

Verheul [296] engineers a what he names "distortion map" method. A distortion map is a
modification on the coordinates of a curve point (the modification is done in the underlying field

]FEI). Denote by l:D(P) this modification. For P being a point in b'(IFfJ"j

b(F'&'") of the same order (torsion) as long as P has an order greater than 3. What is more

important is that P and (D(P) are linearly independent. Under a distortion map, the Weil pairing
is modified to

e(P, P) = ex(P,®(P)).

D) is still a point in

Clearly now, e(P, P) ;t 1 since P and (I)(P) are linearly independent. Moreover, for P, Q €G 1, we
further have the following symmetric property for the modified Weil pairing:

Equation 13.3.4
e(P,Q) = e(P,[n]P) = e(P, P)" = ¢e([n] P, P) = ¢(Q, P).

Now consider the DDH problem in group G1. To answer whether a quadruple (P, [a]P, [b]P, [c]P)
is a DH quadruple, we compute pairings x = e(P, [c]P) and h = e([a]P, [b]P). Noticing

£ = F(P. PJP', n=e(P, P)n.b:

ande(P,P) ;t 1, therefore the quadruple is DH one if and only if x = h, i.e., if and only if ab =c
(mod #G1). With the practical efficiency property of the modified Weil pairing, this decisional
question can be efficiently answered.

This important observation made by Joux and Nguyen [155] enables many interesting new
cryptographic usages of supersingular elliptic curves. The ID-based cryptography is a prominent
one of them. These new usages are based on a fact and an intractability assumption which we
have discussed so far, which are summarized here:

Fact (The DDH Problem is easy)

The DDH problem in supersingular elliptic curve group can be efficiently answered using the
Weil pairing algorithm.

Assumption (CDH, DL Problems remain hard)

The CDH problem (and hence the DL problem) in supersingular elliptic curve groups
remains hard by a suitable choice on the size of of an elliptic curve. For a curve E(Fg), the

difficulty can be expressed as sub_exp(qg®) for f < 6.

In the assumption "CDH, DL problems remain hard,” the complexity expression sub_exp(q)

follows the effect of the MOV reduction and the subexponential algorithm for solving the discrete
logarithm in finite fields. Thus, we now have to use an enlarged security parameter (the size of
the curve) for a supersingular curve in comparison with the general curves. The enlarged
security parameter should be one such that sub_exp(g) is an infeasible quantity. So, in order to
make use of the newly discovered mathematical property in supersingular elliptic curves (the
positive applications to be presented in §13.3.5-813.3.7), we choose to sacrifice the efficiency
which is the original advantage of elliptic curves over finite fields.

There are two kinds of pairing techniques: the modified Weil pairing which we have discussed,
and the Tate pairing. The latter is more efficient. The details of the pairing algorithms are out of
the scope of this book. The interested reader may study them from [51,116]. In the remainder
of this chapter we will always use the modified Weil pairing.

13.3.5 ID-based Non-interactive Key Sharing System of Sakai, Ohgishi
and Kasahara

Like Shamir's ID-based signature scheme, the key sharing system of Sakai, Ohgishi and
Kasahara [251] (SOK key sharing system) also needs a trusted authority TA (let it be named
Trent) to operate a key setup center.

The SOK key sharing system has the following three components:

e System Parameters Setup Trent runs this algorithm to set up global system parameters
and master-key;

e User Key Generation Trent runs this algorithm; on inputting master-key and an arbitrary
bit string id € {0, 1}, this algorithm outputs private-key which corresponds to id; this is an
instantiation of (13.3.1);

e Key-Sharing-Scheme Two end-users run this scheme in a non-interactive manner; for
each end-user, the scheme takes in as input the private key of the end-user and the public
key (id) of the intended communication partner; the scheme outputs a secret key shared
between the two end-users.

These three components are realized by the following steps.
System Parameters Setup

Trent sets up the system parameters before opening a key generation center to offer the key
generation service. In the generation of the system parameters, Trent performs:

1. Generate two groups (G1, +), (G, .) of prime order p and the modified Weil pairingltle :
(G1, +)2 = (G, -). Choose an arbitrary generator P £G 1;

[b] The original SOK key sharing system uses the unmodified Weil pairing, and is less convenient than
the version presented here.

2. Pick tey Zy and set Ppyp [&‘]P; {is in the position of master-key;

3. Choose a cryptographically strong hash function f : {0, 1}* F=2*G ;; this hash function is for
mapping a user's id to an elementin Gj.

Trent publishes the system parameters and their descriptions

(desc(G1), desc(G2), e, P, Ppus, f),

and keeps f as the system private key. Since Trent is assumed to be the system-wide well-
known principal, the published system parameters will also be well-known by all users in the
system (for example, maybe these parameters will be hardwired into every application that uses
this scheme).

Notice that the secrecy of the master key f is protected by the difficulty of the DLP in G1.
Trent now opens the key generation center.

User Key Generation

LetlD A denote user Alice's uniquely identifiable identity. We assume that 1Da contains a
sufficient quantity of redundancy such that it is impossible for any other user in the system to

also have IDa as her/his identity. Having performed physical identification of Alice and made
sure of the uniqueness of IDp, Trent's key generation service is as follows:

1. ComputePID p #=f(ID p), this is an elementin G1, and is Alice's ID-based public key;

2. Set Alice's private key Sibp as Siba + [f]PlDA.
Notice that as a hashed value, Piba should look random. However, with IDa containing sufficient
recognizable (redundant) information and being the pre-image of PIba under the cryptographic
hash function f,PID A is a recognizable element. Therefore, there is essentially no difference to
viewlD a as Alice's public key, or to view Pipa as Alice's public key.

We should also notice that Alice’s private key is protected by the difficulty of the CDH problem in
G1; this is because Pibp must be generated by P (a generator element of G1) and so we can

denote it by PipDa = [a]P for some a < p; then from P, Ppup(= [!]P),PID A (=[a]P), to find

Sip, = [{]Pp, = [ta]P

is clearly a CDH problem in Gj.

Key-Sharing-Scheme

For users Alice and Bob, IDa and IDg are their ID information which is known to them one
another. Therefore, the respective public keys Py = f(IDa) and Pg = f(I1Dg) are known to them

one another, too.

Alice can generate a shared key Kag € (G»2,.) by computing

Kap — e(Sip,; Ppg)

Bob can generate a shared key Kga € (G2,.) by computing

I{H.‘fl L E{L€|D;g ¥ HD',)

Noticing the bilinear property of the pairing (Property 13.1), we have

Kag = e(Sipss Ppy) = e([]Pp,, Poy) = el Po,, Pp,)"

Similarly,

Kpa =e(Pp,, Pp,)%

Due to the symmetric property (13.3.4) of the modified Weil pairing, we have

Kap = Kpa.

So Alice and Bob can indeed share a secret even without interaction with one another.

For a party other than Alice, Bob and Trent, to find Kag from the public data (P, Pipa, Pips, Ppub)
is a problem called bilinear Diffie-Hellman problem [51]. It is essentially a CDH problem.

When Bob receives a message which is authenticated using Kag, he knows exactly that Alice is
the author of the message as long as himself has not authored it. However, Alice, while showing
the authorship to the designated verifier Bob, can deny her involvement in the communication in
front of a third party since Bob has the same cryptographic capability to have constructed the
message. One may consider a scenario that Alice and Bob are spies. When they contact, they
must authenticate themselves to one another. However, Alice, as a double agent, may be
worrying that Bob is a double agent too. Therefore, an authentication scheme for spies must
have an absolutely deniable authentication property. The SOK key sharing system has precisely
such a feature. It is a public-key based system, that is, the authentication needn't be based on
an online trusted third party (like the one based on shared secret which we have introduced in

Chapter 2).

A more serious application scenario for the SOK key sharing system can be for the Internet Key
Exchange Protocol (IKE, introduced in the preceding chapter). The IKE Protocol has an
authentication mode which has a "plausible deniability" feature (see 812.2.4). The absolute
deniability feature of the key sharing system of Sakai et al. can provide an obviously better
solution while keeping the protocol public-key based.

13.3.6 Tripartite Diffie-Hellman Key Agreement

Joux [154] applies the pairing technique and achieves key agreement among three parties in an
astonishingly simple way. He names his protocol "tripartite Diffie-Hellman". Again, Joux's
original protocol works in the Weil pairing and hence is less convenient for a real application use
(have to construct linearly independent points). We introduce the version using a modified Weil
pairing.

Let Alice constructs her key agreement material Pa by computing

Py «— [a]P

whereP €G ; is an order-a (prime) point on supersingular elliptic curve, a < a is an integer.
Similarly, let the respective key agreement material of Bob and Charlie be

Pp « [b|P, Pg+ [c|P

for some integers b < a,c < a. The integers a, b, c are the secret keys of these parties,
respectively.

The three parties exchange Pp, Pg and Pc, e.g., each announce the key agreement material on a
public directory. Once this is done, they share the following key:

fﬁ(PB; P(j.‘}“ = .E(PA? Pf_-,)b = ﬁ(PA, PH)-:: sy fJ{P._. P}ﬂ.b{_‘.

Alice computes the shared key by exponentiating the first pairing, Bob does the second, and
Charlie, the third.

Without using the pairing technique, tripartite Diffie-Hellman key agreement cannot be achieved
with a single round.

Of course, as in the original Diffie-Hellman key exchange protocol, this scheme does not have
the authentication property.

13.3.7 ID-Based Cryptosystem of Boneh and Franklin

Since a shared key can be established between two principals by only using their identities,
encryption is also possible by only using identities. Boneh and Franklin [51] apply the pairing
technique and achieve the first practical ID-based public key cryptosystem which fully satisfies
Shamir's call for ID-based public-key cryptosystems.

There are four algorithms in the ID-based cryptosystem of Boneh and Franklin.
e System Parameters Setup Trent runs this algorithm to generate global system
parameters and master-key;

e User Key Generate Trent runs this algorithm; on inputting master-key and an arbitrary
bit string id € {0, 1}*, the algorithm outputs private-key which corresponds to id; this is an
instantiation of (13.3.1);

e Encryption This is a probabilistic algorithm; it encrypts a message under the public key id;

e Decryption This algorithm inputs a ciphertext and private-key, and returns the
corresponding plaintext.

Alg 13.2 specifies the identity-based cryptosystem of Boneh and Franklin.
We now show that the system specified in Alg 13.2 is indeed a cryptosystem. Observe

eldip, U) = ¢ [s]Qp. [r|P) = e Quo. [r] P)* = e(Qip, [rs]P) = e(Qip, [r] Pput) = g10-

Therefore, the value which Alice puts inside the hash function H in the decryption time is in fact
glD, i.e., the same value which Bob has put inside the hash function H in the encryption time.
Then

Vo HEe(dp,U))=M®H(gp)® H(gp) =M

since bitwise-XOR-ing is self inverting.

Algorithm 13.2: The Identity-Based Cryptosystem of Boneh and
Franklin

System Parameters Setup (performed by Trent)

1. Generate two groups (G1, +), (G2,-) of prime order p and a mapping-in-pair e :
(G1, +)2 = (G5, -). Choose an arbitrary generator P €G ;.

2. pick 3 €U Lp and set Ppub #= [s]P;s is in the position of master-key.

3. Choose a cryptographically strong hash function F : {0, 1}* F*G 1; this hash
function is for mapping a user's id to an element in Gy;

4. Choose a cryptographically strong hash function H : G, =* {0, 1}"; this hash
function determines that /M (the plaintext message space) is {0, 1}".

Trent keeps s as the system private key (master-key), and publicizes the system
parameters and their descriptions

{(-;11.{;2, £, T, P,_, Ppub:« F', H]I.,

User Key Generation

LetlD denote user Alice's uniquely identifiable identity. Having performed physical
identification of Alice and made sure the uniqueness of ID, Trent's key generation
service is as follows:

1. ComputeQip +=F(ID), this is an elementin G 1, and is Alice's ID-based public

key;
2. Set Alice's private key dipb as dip + [s]QiD.
Encryption

To send confidential messages to Alice, Bob first obtains the system parameters (G4,
Gz.e, n, P, P pub, F, H). Using these parameters, Bob then computes

Qip = F(ID).

Let the message be blocked into n-bit blocks. Then to encrypt M € {0, 1}", Bob picks
T E;_r Zp

and computes

qiD 'F(QlDy [r] Ppuh :‘ € Ga,
C'— ([r|P, M & H(gp)).

C = ([r]P, M & H(gipn))

The ciphertext is
Decryption

LetC = (U, V) EC be a ciphertext encrypted using Alice's public key ID. To decrypt C
using her private key dip €G 1, Alice computes

V@ H(e(dp,U)).

Boneh and Franklin also provide a formal proof of security for their ID-based encryption scheme.
The security notion is a strong one: adaptive chosen-ciphertext attack. The direct use of a hash
function in the ElIGamal style of encryption means that the proof is based on a so-called "random
oracle model”. Because we will study formal and strong notion of security and the random oracle
model in Part V, we shall not introduce their proof of security technique here.

13.3.7.1 Extension to an Open System's Version

We must notice that Trent can decrypt every ciphertext message sent to every principal in the
system! Therefore, the basic scheme of Boneh and Franklin is not suitable for applications in an
open system. However, their basic scheme can be extended to one which is suitable for
applications in an open system environment. We describe here an extension method which is a
simplified variation of the method discussed in the paper of Boneh and Franklin.

The basic idea is to, of course, use multiple TAs. However, doing so will be interesting only if it
won't cause a blowup in the number of the individual user's ID, nor in the size of the ciphertext.
Here is one way to do it. We describe the case of two TAs. It is trivial to extend to many TAs.

System Parameters Setup Let parameters (G1,G 2,e, n, P, F, H) be identical to those defined
in 813.3.7. Let further

such that the tuple

(P?PLPE}

is in the position of

[P: ﬂmbj

in 813.3.7, that is, s; and sy are the two master keys of TA; and TAj, respectively.

Thus, (G1,G 2,e, n, P, P 1,P 2,F, H) is the system-wide public parameters. These parameters can
be "hardwired" into applications.

User Key Generation Let ID denote user Alice's uniquely identifiable identity. For i = 1, 2, the
key generation service