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In this paper, we propose a formal definition of ‘computer 

worms” and discuss some of their properties. We begin by 

reviewing the formal definition of “computer viruses”, and 

their properties. We then define “computer worms” as a sub- 
class of viruses, and show that many of the interesting ptop- 
erties derived for viruses hold for worms. Finally, we 

summarize results, draw conclusions, and propose further 

work. 
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1. Background 

A n informal definition of “computer viruses” 
was first published in 1984 b 

was soon followed by his forma r 
Cohen [l], and 
definition first 

published in 1985 [2] based on Turing’s model of 
computation [3]. An alternative formal definition 
was proposed by Adleman [4] in 1989 based on set 
theory. In each of these cases, detection of viruses 
was shown to be undecidable, and several other 
results were derived. 

These definitions were quite general in scope, and 
covered a broad range of replicating programs, 
possibly including the as yet only poorly defined, 
but widely used term *worm”. Unfortunately, the 

*Funded by ASP, P.O. Box 81270. Pittsburgh, PA 152 17, USA. 

lack of an adequate and standard definition of 
worms has created numerous misinterpretations 
and wasted time, and few of the results on worms 
have gone beyond the speculative phase. In this 
paper, we address this problem. 

We begin here with an informal discussion by 
presenting a pseudo-code example of a very simple 
virus: 

v: = [F = RANDOM-FILE-NAME; COPY v TO F;] 

This virus simply replicates into files with random 
names, and is unlikely to be successful in any 
current computing environment because the 
chances are very poor that any of the replicas will 
ever be run. Even if they were run, they would not 
perform the functions the programs they replaced 
performed prior to replication, and thus would be 
rapidly detected. Since these replicas are of no 
practical value, they would likely be destroyed. 
More purposeful viruses, both malicious and 
benevolent, have been shown to be quite powerful, 
primarily due to their prodigious reliability and 
ability to spread. Viruses have also caused quite a 
problem in some environments. 

The first published scientific references to com- 
puter worms that we are aware of came from 
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Shoch and Hupp [S], who described several experi- 
ments with 

4 
rograms which replicated segments of 

themselves or parallel processing over a network. 
Unfortunately, no formal definition followed, and 
no sample code was provided. This left an unfilled 
void, and a host of informal but widely varying 
discussions using the poorly defined term followed 
in the literature. 

Recently, the term “worm” has been widely used to 
describe programs that automatically replicate and 
initialize interpretation of their replicas.’ By 
contrast, the definition of viruses covers all self- 
replicating programs but does not address the 
manner in which replicas may be actuated. Here is 
a pseudo-code example of a simple worm: 

W: = [F = F&DO~~-FILE-NAME;C~IY W TO F;RUN F;] 

With the ability to replicate comes a host of other 
issues. The most obvious issue is that a replicating 
program might exhaust all of the available 
resources in a system, thus causing a system failure. 
In the case of this worm in a uniprocessing 
environment, the system eternally runs replicas of 
the worm, and no other processing can take place 
while the worm runs. In a multiprocessing 
environment, well-designed worms may be able to 
coexist safely with other programs if they are 
limited in their replication and evolution so as not 
to seriously impact performance. 

Another important aspect of viruses is their ability 
to “carry” additional code with them. For example, 
in the 1984 paper [l], pseudo-code was provided 
for a compression virus, a denial of services virus, 
and other examples. The early worm experiments 

I 
51 solved large problems by including subprob- 
ems in replicas, thus allowing them to solve parts 

of the problem using remote resources. More com- 
monly used viruses include the ‘diskcopy” pro- 
gram provided with the DOS operating system, 

‘This idea was first brought to my attention in a paper 
published in Computers and Security in which Thomas A. Long- 

staff and E. Eugene Schultz describe several Lwormsn. 

which, in certain environments, replicates and 
carries along the contents of the entire disk on 
which it resides; product installation programs, 
which replicate as part of their installation process; 
and backup programs which make copies of them- 
selves and other programs on other media to 
improve system reliability. 

Another interesting feature of self-replicating pro- 
grams is their resilience. In environments where 
non-replicating programs often fail or are destroyed 
through errors or omissions, viruses seem to thrive. 
This is because of the natural redundancy provided 
by replication. In this environment, viruses seem to 
be more fit than non-viral programs. 

From a protection standpoint, viruses offer unique 
problems. Their resilience makes then very hard to 
remove from an operating environment, while 
their transitive spread bypasses most modern pro- 
tection methods. General-purpose detection is 
undecidable [ 1,2, 41, while special-purpose methods 
are not cost effective [o]. There are many other 
interesting properties of self-replicating programs. 
We refer the interested reader to some of the 
recent literature in this area [6]. 

In the remainder of this paper, we will formalize 
the notion of worms, describe how that formal- 
ism leads very quickly to a series of conclusions 
about worm properties, show how these results 
impact multiprocessing and multiprocessor 
environments, discuss some of the potentials for 
both malicious and benevolent worms, describe a 
number of historical incidents, summarize results, 
draw conclusions, and propose further work 

2. Some Formalities 

Cohen [2] presents “Viral Sets” in terms of a set of 
“histories” with respect to a given machine. A viral 
set is a set of symbol sequences which, when inter- 
preted, causes one or more elements of the viral set 
to be written elsewhere on the machine in all of 
the histories followin 

B 
the interpretation. We 

include here some o the relevant definitions 
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M:(s~, I~, 0,: sMxIM-IM, NM: SMxIM+S,w 4,: WG-+d) 

Jv=jo... a} 
Y={l...=J} 

&={s O,...JnI, nfE.9 

IM={i,,...,ij}, jE# 

“natural” numbers) 

positive “integers”) 

states) 

tape symbols) 

where: 

d={-l,O, +1} 

S,:Af/l/-S, 

q ,:&-xJv-+I, 

PM: JVN-N 

head motions) 

state over time) 

tape contents over time) 

(current A! cell at each time) 

Box 1 

I [vcI*] Ufld [ME&] U#d VOE TnJHV& jEJ 

[[P!=j] d [S,=&] d (‘I,j,...,‘i,,+~“~-I)= v] * 
3v’E V, 3t’, t”, j'%V and t’> t 

(1) 
(4 
(3) 

[[(j'+I4)Gj] 0r[(j+I4>~j’]l and 
[(ql+‘P I’Jy”f(-,)= v’] and 

[3t”[t<r”<t’] and [P,.Ej',...,j'+Iv'I- l]] 

Box 2 

required for the remainder of the paper, starting 
with the definition of a set of Turing-like [3] com- 
puting machines “L# * as in Box 1. 

The “history” of the machine HIM is given by 

g9 
0, P),2 the “initial state” is described by 

07 q ,, PO), and the set of possible AZ tape sub- 
sequences is designated by I*. We say that; 

“For convenience, we drop the M subscript when we are deal- 
ing with a single machine except at the first definition of each 
term. 

M is halted at time twV’t’> t, H,= H,f, (t,t’~N); 

that 

M haltso3tE.&‘, M is halted at time 1; 

that p “runs” at time t-the “initial state” occurs 
when PC, is such that p appears at q ,.,,“; and that 
p runs@%EN, p runs at time t. The formal 
definition of the viral set ( W) is given in Box 2. 

The interested reader is referred co [2] for details. 
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3. Definition of Computer Worms 

We define a “Worm Set” w as a viral set in which any worm (w) that is run at some move i results in a 
worm w’ being run at some subsequent time i’ (Box i). ’ ’ 

VMVW(M, W)EW- 

[WI*] and [ME&q and VWE WVHVC,jE.N 

[[pl=j ] and [sl=sCJ] and (‘l,j,‘..rOr.j+lw(-l)= w] * 
3w’E W3t’, t”, l”‘,j’EJV,f’> I 

0) 
(2) 
(3) 
(4) 

[[(j’+ Iw’I)q] or [(i+ M)q’]] md 
[(ot,;+., •,~,j~+iru’i_,)=W’] Und 

W[t<r”<t’] und[P,~Ej’,...,j’+Iw’(--l] and 

3t”‘[C’ < t”‘] and [Pp =j’] and [Sp = So] 

Box 3 

Translated into English, this means (approximately): 

(M, W) is a “worm set” if and only if: 
all worms in W are AZ sequences -and- M is a A? -and- 

for each worm w in W, for all histories of M, 
for all times t and cells j 

if the tape head is in front of cell j at time t -and- 
A is in its initial state at time t -and- 
the tape cells starting at j hold the worm w -then- 

there is a worm w ’ in I+‘, a time t’ > t, and place j ’ such that 
(1) at a place j ’ not overlapping worm w 
(2) the tape cells starting at cell j ’ hold worm w ’ -and- 
(3) at time t” between t and t’, worm w’ is written by M -and- 
(4) at some later time t”‘, worm w’ is run by M 

The definition of W is different from that of W 
only in condition 4 being added, and because this 
term is an “and” on the right side of an implica- 
tion, WCW. We normally refer to elements of 
V,(M, V)E Y for a given machine M as “viruses” 
on M, and in the same parlance we will refer to 
members of W,(M, W)E W for a given machine M 
as “worms” on M. We typically drop the “on M” 
when we are referring to a particular M, and make 
statements like “all worms are viruses”. 

It turns out that most of the examples used for 

proofs about viruses [2] were not only viruses but 
also worms by the present definition, and thus 
the proofs apply directly. The remaining proofs 
do not depend on the lack of condition 4 above, 
and thus most of them arc also true for worms. 
For the purpose of brevity, we list some of the 
useful results for viruses that also hold for worms, 
along with page numbers from the cited work:3 

‘Some of these require a trivial modification to the sample M 
so that instead of halting after replicarion, M moves the tape 
head to rhe start of the replica and changes to state S,,. 
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PI2 Theorem 1 

P13 Lemma 1.1 

P’4 Theorem 2 

P14 Theorem 3 

PI9 Theorem 4 

P21 Theorem 5 

P23 Theorem 6 

P25 Lemma 6.1 

P26 Theorem 7 

A union of Ws is a W. 

3 “largest” W for any machine M. 

3 %mallestn Ws ( Wmin) for some M. 

3 Wmin of every size iE9 for a universal ./%. 

There are uncountable Ws for some M. 

Every sequence of symbols is a worm on some M. 

Worm detection is undecidable. 

Detecting evolutions of a known worm is undecidable. 

Worm evolution is as general as .& computation. 

Another interesting result of this definition is that 
once a worm runs, M can never halt! More 
formally:4 

Theorem A: 

V w E W,(M, W) C W, w runs =+ M never halts. 

This is because at all times after w runs, there 
is always another WE W that must run at a sub- 
sequent time. More formally, assume 3wG W,(M, 
W)C W and w is run at time t. Then by condition 
4 in the definition: 

31”’ > t:[J+ =j ‘1 and [S,. = S”] 

and by condition 2 of the definition: 

(o,.,,,, ,...) 0 t”‘.,‘+,lu’,-,)= w’ 

Thus w’ is run at time r”‘! But if any WE W is run 
at any time t (specifically, w’ at time Y), we return 
to the previous situation. By the induction 
theorem, if a condition is true at some time 1 and if 
being true at time t implies it is true at time t + 1, it 

‘We use letters for theorems and lemmas herein to avoid con- 
flicts with the theorem numbering from cited works. 

is true for all time t’ > t. By condition 3 of the 
definition: 

VtEN, 2” > t: [& = So] and If” > t: P,. # P, 

so by definition, VH,M is not halted at time t, or in 
other words, M never halts. Thus a system running 
a worm has the “liveliness” property. 

Lemma A. 1: 

VwE W’,(M,W)E W, M halts*jtEN, w runs at 
time t. 

4. Multiprocessing Environments 

In a multiprocessing environment, worms are quite 
different than in a uniprocessing environment. For 
example, in a multiprocessing environment, a 
worm need not dominate processing. With proper 
controls on replication, a stable system can be put 
in place to attain desirable levels of worm activity. 
Here is a simple example in which a system func- 
tion ok returns the number of currently active wk 
worms: 

COPY W,TOFRUNFJF [Oh> @XT;]] 
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In this k limits the number of worms in the 
system. Each worm will replicate until k total 
worms are in the system. From that point on, each 
worm will wait until there are k or fewer worms in 
the system, replicate, and then exit. Assuming we 
have a fair scheduler and an accurate ok we get a 
relatively stable population of worms. 

The I#, worms could implement ok by updating a 
commonly accessible integer, by using unique pro- 
cess names in the process table, by associating 
themselves with files stored in a particular area, or 
by any other interprocess communication method 
available on the system. 

In order to model this sort of environment and 
show properties of worms, we require additional 
structure, but we don’t want to abandon the 
mathematics associated with Turing machines in 
the process. This model extension is provided by 
the “Universal Protection Machine” [2] (S), which 
is implemented on a universal A? (A!), and pro- 
cesses moves from each of a finite set of J%S 
simulated on M by using a “scheduler” and a 
“special state” which implements “system calls”. 
This machine is defined as: 

.9:(M,S,O,R,f:Sx O-R,%‘) 

where: 

ME& an “interpretation unit” 

S=(So,..., si), i ES a set of ?ubjects” 

O=(oO,..., ~,)JEY a set of “objects” 

R=(r,,,..., rk), kE# a set of “rights” of Ss over OS 

f :(S x 0 *R) a protection matrix [8] 

9 = ((s, o)~, . . . ,(A o),), 1e.f a “run sequence” of sub- 
jects “running” objects 

When a subject interprets an object (i.e., (s,~)EL@)), 
M uses the rights of s for the duration of the inter- 

pretation of o. We are particularly interested in the 
rights “read” (I) and “write” (w), because these 
translate into the flow (f) of information between 
subjects. (i.e., s,wo, and syro,* s.~&) [lo]. This is 
alternatively expressed as: 

Information flow is transitive (i.e., s,fs and 
syjz* S.&J when M is a universal & [2f, and 
using this model a vital result that viruses can 
spread to the transitive closure of information flow 
from the source subject was derived.’ This is 
because 39 in which each subject in the transitive 
closure of information flow, in turn, interprets an 
object modified by the virus interpreted by a sub- 
ject previously in the information flow from the 
original virus source. 

In any “fair” scheduler with unbounded work to be 
done and assuming that all accessible programs are 
run with some non-zero frequency, such an A? 
will eventually be realized because there will 
always be a partial subsequence of 9 in which 
each of the necessary objects will be interpreted in 
sequence [2]. 

It turns out that the same result is, in general, true 
for worms, but transitivity doesn’t result simply 
from running replicas. That is, if no object is modi- 
fied by subjects running the worm, and if we 
ignore all other causal factors (e.g., a progenitor of a 
worm is run by some other user independent of the 
actions of the worm under consideration), only 
subjects with direct access to the worm can run it. 
Mathematically: 

(M,W’)EW, QaE W, Qb4 W, Q&3?, QsGS 

j(s,b)e andQ(s,a)~,(s,b)Bw~dH,:b~ W 

We will call worms that do not output to any 
objects “pure worms” ( Wp). By definition, 

5Page 35 [2]. 
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~runs a*(s,a)Er, 

so 

Theorem B: 

This implicitly assumes that R is static with res 
to s and a over the period of the operation o P 

ect 
the 

worm. If this is not the case, the situation may be 
far more complex because, in general, it is undecid- 
able whether at some future time, ($,a)~ r will be 
true [8]. This does not seem to be important in the 
short term; however, over the long term, there are 
often cases where momentary lapses in protection 
parameters could cause the undesired extension of 
rights. Once extended, of course, such rights 
cannot necessarily be revoked from a pure worm 
because the worm is operating with the authority 
of the subject that invoked it. Even though the 
right to invoke the worm may have been removed, 
all of the operating instances of replicas of the 
worm cannot necessarily be terminated without 
massive denial of service. This situation is partially 
covered by the “time transitivity” analysis used for 
viruses [lo]. 

We anthropomorphize objects containing worms 
by sayin that a worm (w) has been granted the 
rights o H a subject (S)OS runs Tut W,(M, I&‘)Ew, 
and we express this as w +S (read w gets s). If only 
the creator of a pure worm has direct access to it, it 
follows that the rights of all replicas will be limited 
to the rights of the originator, since only the 
originator can run it and, by definition, rights are 
only extended to objects by virtue of the subjects 
that interpret them. More generally, a pure worm 
only gets the subjects who run it: 

Lemma B. 1: 

VwEW,, WCS-S runs w. 

In the case of pure worms, evaluating the worst 
case impact of time variations on the protection 

state is trivial. Every subject that is ever granted 
direct access to w is potentially impacted, and all 
other subjects are completely safe from its direct 
impact. This model ignores performance impacts 
because the Turing machine model of computation 
generally assumes that moves take no time, and is 
used primarily to analyze the possibilities rather 
than the practicalities of any particular situation. A 
more realistic impact assessment is to assume that 
all users operating on all machines where there is 
an impacted user are impacted because of the per- 
formance degradation effects of the worm on those 
machines. This is an area for further research. 

In a uniprocessing environment, because worms 
always run their replica, they are a bit harder to 
intentionally control than non-worm viruses 
because there is no obvious way to reduce the 
population. For viruses, however, this is not the 
case. For example, the following virus (v~) limits 
itself through the use of a name space: 

0,: = [F = RANDOM-DIGIT;COPY V, TO F;] 

Since the digits consist only of (0...9), the total 
number of copies of v, is limited (i.e., they over- 
write each other). We can trivially extend this 
result to any &rite-sized name space. Even a virus 
which optionally runs replicas can be controlled by 
a semaphore mechanism to adapt to the require- 
ments of the environment. For example, the 
following viral variant (vi) on the previous worm: 

V,: = [WHILE TRUE 110 (F$,F” = MN~~M-FI~~-NA~sJF [q> ~]EX.IT; 

IF [U, < k/2][COPY V, TO F AND F’;WUN F AND F’;];COPY V, TO F”JKJN F”;]] 

In this case, vi exists without replication while there 
are more than k replicas operating, and replicates at 
a higher rate if less than k/2 replicas are present. 
Thus, there is a stronger drive for replication when 
the population is low, while death becomes promi- 
nent when population is high. This too can be 
generalized to provide varying drives for survival of 
the species as a function of population. 
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Most multiprocessing environments have mechan- 
isms whereby one process can force another pro- 
cess to stop processing. These can be used by 
worms as a means of population control. For 
example, a pair of worms (w, , wJ could be used to 
form a stable population ratio by spending some 
portion of their time forcing the other to halt (i.e., 
“kill” another process): 

W,: = [WHILE [ 0, > k2], kL.L A W,; PAUSE ; REPLICATE;] 

W2: = [WHILE [(7, > k,], KILL A W,; PAUSE ; REPLICATE;] 

As long as at least one of each w, and wa are active, 
and finding and killing processes takes far less than 
the duration of a “pause”, the system will regain a 
balance at k, and k, respectively of w, and wa. If 
instead of simply waiting, each worm performed 
some useful functions requiring relatively little 
time, we would have a useful worm computation 
environment. We can call this a 2-worm system, 
and it is simple to extend the principle to an n- 
worm system as follows: 

w,: = [Vi < n [WHILE [ai> k;], &LL A w,;]; 

PAUSE; REPLICATE;] 

By makin an n-worm system for large n, we may 
dramatica ly improve overall system reliability. In K 
one experimental implementation, we used an n- 
worm to perform regular maintenance tasks on a 
UnixTM system. In this case, the worms deleted old 
temporary files and “core” files, regenerated data- 
bases, killed errant processes, and performed other 
regular maintenance functions. The result was an 
Yecosystemn in which almost no systems adminis- 
tration was required for continued operation over a 
four-year period. 

Despite the potential practicality of worms in 
multiprocessing environments, we have encoun- 
tered more destructive worms than practical ones 
in the global multiprocessing environment, and 
early experiments with practical worms have 
occasionally resulted in problems. In 1985, an 

experimental worm in a UnixTM environment 
replicated until the maximum number of processes 
available to the user were consumed. At that point, 
all of the replicas were forced into a wait state 
because they could not create new replicas until 
some other replica failed. It turned out that in this 
case there was no way to stop the worm except 
through a system reboot, because we couldn’t kill 

all of the processes simultaneously, and as soon as 
one was killed, another replica was created. The 
inherent priorities of the scheduler made the prob- 
lem unresolvable. This worm did no serious harm, 
because all of the replicas were in wait states, and 
consumed no critical resource. 

Another worm which impacts multiprocessing 
environments is commonly called a “paging 
monster”. A paging monster simply copies itself 
into each of a series of pages in memory, cycling 
through memory periodically. In most paged 
virtual memory systems, this worm forces the 
system paging program to page out other processes 
at a very high rate, and thus forces the system to 
thrash. By combining the UnixTM worm described 
above with the paging monster, the situation can 
become far more damaging, because you cannot 
eliminate the paging monsters by simply killing 
processes. 

We return for a moment to Lemma B. 1. In each of 
the examples given above, the worms were pure 
worms run by a single user, and although they had 
an impact on the system, in each case, no rights 
were extended to them beyond those granted to the 
user who created them. By directly limiting the 
impact of a single user on system behavior and 
prudent use of standard access controls, we can 
protect users in a multiprocessing environment 
from severe damage due to pure worms. We don’t 
have to worry about the transitive closure of rights 
in this case. 

There is a temptation to try to extend Lemma B.l 
to cover non-pure worms whose modifications to 
other objects don’t cause those objects to include 
worms, but this doesn’t work for two reasons. The 
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first reason is that any modification could be inter- 
preted by some M’ simulated by interpreting some 
third object so as to make the modification intro- 
duce a worm for machine M’. For any universal 
.H, there always exists such an M’. The second 
reason is that we would have to exclude all modi- 
fications that might eventually result in the genera- 
tion of a worm. For example, multiple separate and 
independent modifications, none of which intro- 
duces a worm for some machine M, could generate 
a worm through their combined action. The only 
cases where we may be able to extend Lemma B.l 
are cases where M is not a universal .M , which is of 
relatively little interest in most modern computing 
environments; and the case where information 
flow is closed under transitivity. 

5. Multiprocessor Environments 

Just as multiprocessing environments provide 
unique opportunities for worms and viruses to per- 
form useful or malicious functions, multiprocessor 
environments have features that impact the effec- 
tiveness of worms and viruses. There are several 
important cases in the modern environment to 
consider because of their large numbers. They are 
(loosely): 

l Tightly coupled systems where processors effec- 
tively share all non-processing resources for 
improved performance. 

l Shared f;‘le sysfemr where multiple processors 
effectively share a file system either directly or 
through networking. 

l Remote procedure calls where processes on remote 
processors can invoke local processes. 

0 Remote Zogins where remote users can run pro- 
grams on local machines by logging in and invok- 
ing commands. 

l File transfer andforward systems where remote users 
can send files to or through local machines. 

We don’t yet know a great deal about protection 
from worms and viruses on these systems other 
than the general results previously published on 
viruses. There are, however, some interesting 
points to be made and some possible areas of 
research to be explored. 

In tightly coupled systems, processors are essen- 
tially not distinguishable from a protection stand- 
point, and thus they can be treated as a single 
system. At the other extreme, in file transfer and 
forward systems, remote processors have limited 
functionality, and while they can be impacted by 
large numbers of network requests, livelock, and 
deadlock of the network, etc., with nominal pro- 
tection in the form of setting low priorities for 
remote file transfers and limited function interfaces 
for incoming files, almost all impact from remote 
systems can be eliminated. 

Systems allowing remote logins dominate in the 
timesharing arena, with almost every timesharing 
system now providing remote login over modems, 
and networked systems allowing remote login 
through explicit “remote shell” and “remote login” 
network calls. In much of the modern computing 
environment, remote login is permitted to known 
users without additional authentication, and in 
cases where this is not typical it is common to pro- 
vide login scripts for accessing remote systems 
using known user identities and passwords. The 
increased standardization of this process makes the 
extension of rights from machine to machine very 
simple. 

For example, it is simple to write a worm program 
that attempts remote logins to hosts which are 
allowed to login to the current host (since reci- 
procity is the norm in the modem computing 
environment). Assuming this has some success, the 
worm can replicate into the new system and 
operate from there, attempting to extend privileges 
to a new machine. By combining this mechanism 
with known attacks, the worm may attempt to 
attain increased privilege. Once increased privilege 
is attained, the worm has more candidates available 
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for remote and thus mechanism to 
privilege still A simple that guesses 

on remote once access 

attained works well because, pass- 
word is relatively and a of 
user and limited on the 
is commonly A lack audit trails 
this sort attack also keep the simple 
and 

The mechanism remote procedure is often 
to implement operations in 

where special exist in 
machines. For a local server may 

all of incoming mail keep desired 
lists available that the 

doesn’t have be duplicated the 
network, it is to provide 
printer access that expensive that don’t 

to be can be The key 
is that remote operation made very 
and transparent that user is maxi- 

This in provides capabilities remote 
processors local processing file storage, 

other system To the that the 
is less ideal, this 

possibilities for and viral 

A shared system provides means by a 
user make a available to multitude of 

with great For example, 
planting a in a called “1~“~ 
offerin users to another in the 

% irectory, users may fooled into 
to that and running When 

they that, and their search is set 
as most users’ search are set the 

local will be which will the worm. 
the designer a bit the “1s” will 

first or rename then perform 
system’s “1s” and then itself, thus 

its presence to the observer. 

6”ls” is the name of the Unix directory program used by most 

users to see what files arc in a directory. ‘1s” is also the most 

frequently run program under Unix according to statistics 

taken in the first virus experiments in 1984. 
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The effect of the shared file system is to make this 
sort of access far more likely and casual. In most 
shared file system environments, this mechanism 
can be used to effectively im act 
machines in the environment. A s K 

all of the 
ared file system, 

even if most of it is read-only to any given user, 
provides a very high bandwidth and easy-to- 
exploit environment for worms and viruses. It 
facilitates the execution of programs by remote 
processors under conditions that grant the program 
access to the remote user’s privileges instantly and 
with no additional authentication required. Even a 
pure worm can spread throughout such a system 

with relative ease, and a virus that “infects” files 
should typically be able to take over the entire 
network of shared file system machines in very 
short order. Based on the timesharing experiments 
with viruses [I], it would not be surprising to see 
the vast majority of the network fall to attack in 
under an hour. 

The current trend in distributed computing envi- 
ronments is toward the shared file system situation, 
and without some substantial effort to provide pro- 
tection in this environment this is a disaster waiting 
to happen. The current protection techniques, 
which effectively allow a systems administrator to 
prevent read or write access to a file system or on a 
directory or file basis restrict access to particular 
areas of a file system, are completely inadequate for 
protection against viruses and worms. In the 
current environment, each site protects itself only 
against intrusion caused by outside agents, whereas 
in the case of worms and viruses the intrusion 
comes from inside agents (i.e., the users on the 
impacted system running external programs). 

6. Some More Specific Examples 

Remote process invocation makes the problem of 
malicious worm control in a multiprocessor 
cnvironmcnt far more difficult. As examples, the 
UnixTM remote procedure call facility, the Novclle 

‘The scqucncc of places the command interpreter looks to find 
a program. 
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NetWareTM add-on packages that allow remote 
command execution on workstations, and the 
DecNetTM remote command interface, each pro- 
vide rich environments for uncontrolled worm 

spread. 

Even though these systems may limit the author- 
ized remote users who may invoke these facilities, 
this is ineffective against worms because they 
spread transitively. Thus, unless the transitive 
closure of machines with users authorized for 
remote process invocation is a closed subset of the 
systems or none of the users ever runs a worm, all 
of the members of the environment are susceptible. 
Here we see that in the case of worms in a remote 
process invocation environment, just as in the case 
of viruses in general, transitive spread results in a 
partially ordered set of infectable users from any 
given source, and just as in the case of viruses, 
nearly all of the networked computers in the world 
today are susceptible. 

Even very simple worms in the environment today 
wreak widespread havoc, and just as viruses may 
evolve in a very general fashion thus making eradi- 
cation very difficult, worms may evolve with the 
same generality. In the case of worms, the problem 

is particularly unnerving because of the require- 
ment for concerted action throughout a distributed 
network. 

For example, the Internet worm [o], which did not 
evolve, required concerted action, but this action 
was made easy because the attack depended on a 
“bug” which was easily repaired, and because all of 
the replicas were essentially identical. If this worm 
had evolved during replication in a substantial 
manner, and had not depended on a “bugn, but 
rather on the legitimate rcmotc procedure call 
capability of UnixTM, the eradication problem 
would have been far more severe. The worm 

experiments that went awry at Xerox [j] required a 
concerted network-wide reboot and the UnixTM 
worm described earlier required a system reboot. 

Returning again to Lemma B. 1, even in the casts of 
these relatively severe network worms no extension 

of privileges was achieved. In other words, the 
I 

systems extended the privileges exploited by these 
worms to their originator, either by design or 
implementation error. The worms did not gain 
privileges by being run unknowingly by users with 

special rights, they were granted system rights by 
exploiting flaws in the systems they attacked. 

7. Summary and Further Work 

We have provided a mathematical definition of 
“computer worms” that we feel reflects the current 
usage and reconciles many of the inconsistencies in 
recent literature. We have listed several important 
properties of worms and systems containing worms, 
and derived several new results that are specific to 
specific sorts of worms. We have shown several 
methods by which self-controlled worms and 

viruses can coexist with other programs in multi- 
processin and multiprocessor environments, and 
that wea L esses exist in current multiprocessing 
environments which facilitate uncontrolled worm 
spread. 

In future papers, we hope to present theoretically 
sound defenses for specific subclasses of worms and 
criteria for the safe coexistence of some viruses and 
non-viral programs. A number of other subclasses 
of viruses also appear to be of interest, and we 
believe that theoretical results may guide us toward 
improved defenses against many subclasses of 
viruses currently exploited by attackers, 

We encourage other researchers to examine and 

challenge our definition with mathematical altcr- 
natives. As we stated earlier, the lack of a mathe- 
matical definition has caused numerous problems 

in this area, and we hope that this presentation of 
one will lead to substantial progress. 

References 

[i] F. Cohen, Computer viruses: theory and experiments, 

DOLMV73.S 7111 Conference on Compukr Srcuriry, originally 

appearing in IFIP-set 84 (1984), also appearing as invited 
paper in IFIP-TCl 1, Comput Secur., 6 (January 1987). 
22-35, and other publications in several languages. 

651 



F. B. CohenlA Formal Definition of Computer Worms 

[2] F. Cohen, Computer Viruses, ASP Press, Pittsburgh, 1985, 

subsequently approved as a dissertation at the University 
of Southern California, 1986. 

[3] A. Turing, On computable numbers, with an application 

to the Entscheidungsproblem, London M&z. Sot. Ser. 2, 

1936. 
[4] L. Adleman, An abstract theory of computer viruses, 

Crypro-89. 

[j] J. Shoch and J. Hupp, The “worm” programs: early expcri- 

ence with a distributed computation. CACM (March 
1982). 172-180. 

Fred Cohen received a B.S. in Elcctri- 

cal Engineering from Carnegie-Mellon 

University in 1977, an MS. in Informa- 

tion Science from the University of 

Pittsburgh in 198 1, and a Ph.D. in Elrc- 
trical Engineering from the University 

of Southern California in 1986. He was a 

professor of Computer Science and 
Electrical Engineering at Lehigh 

University from January 1983 through 

April 1987, and a professor of Electrical and Computer 

Engineering at The University of Cincinnati from September 

of IY87 through Dccembcr of 1988. He is currently the Presi- 

dent of ASP in Pittsburgh, PA, U.S.A. 

Dr. Cohen has published over 20 refereed papers and over 20 

other professional articles, has written several graduate level 

texts, and has designed and implemcntcd numerous devices 

and systems for information protection. He is most well known 

for his ground-breaking work in compurcr viruses. where he 
did the first in-depth mathematical analysis, performed many 

startling experiments which have since been widely confirmed. 
and developed the first protection mechanisms, many of which 

are now in widespread use. His current rcscarch interests are 
concentrated in high integrity systems. 

[6] C. Langton (ed.), Arfij%al Life, Addison-Wesley, Reading, 

MA, 1989. 

[7] J. Kochlis and M. Eichin, With microscope and tweezers: 
the worm from MIT’s perspective, C4CM. 32 (June 

1989). 

[8] M. Harrison, W. Kuzzo and J. Ullman, Protection in 

operating sysrems, CACM, 1 Y (August 1976). 46 I -47 1. 

[Y] F. Cohen, A cost analysis of typical computer viruses and 

defenses, IFIP-TCl 1, Camput. Sew., 10 (IYYl) 23Y. 

[lo] F. Cohen, Protection and administration of information 

networks under partial orderings, IFIP-TCl 1, Cmput. 
Sew., 6 (1987). 1 18- 128. 

652 


