
A NOTE ON COHEN'S FORMAL MODEL FOR COMPUTER VIRUSES

Kimmo Kaurmmn and Erkki Mfikinen

University of Tampere

Department of Computer Science

P.O. Box 607

SF-33101 Tampere, Finland

Abstract . This note discusses the formal model for computer viruses presented

by Fred Cohen. We propose some refinements for the model. Especially, we

define a computer virus to be a description of a Turing machine capable of writing a

description of another Turing machine to the tape of a universal Turing nmchine.

Keywords : computer virus, Turing machine.

1. Introduction

Fred Cohen [1] has presented a formal model for computer viruscs which nicely

illustrates both the infection and evolution properties of viruses. The concept of

viral sets is essential in the model. A viral set is a pair (M,W) where M is a

Turing machine and W is a set of strings over its tape alphabet. Each string w in

W has the property that when M, being in its start state, starts reading w it always

writes another string w' of W to somewhere else in its tape. Hcnce, each w in

W is a virus and when M (i.e. "a computer") reads it, another virus will apl)car

somewhere in its tape (i.e. in its "memory"). The most interesting result in

Cohen's model follows from the halting problem of Turing machines: it is

undecidable whether or not a given pair (Ivl, { w }) is a viral set.

In Cohen's model a Turing machine (hereafter abbreviated as TM) corresponds to

computer, but it is not clear what entities correspond to programs. As a virus is a

string of tape symbols, one might suppose that strings of tape symbols (of some

undefined form) stand for programs, too. Although the model does not at all

employ the concept of program, it would be advantageous for the clearness of the

model if there were natural counterparts for the basic concepts of COmlmter

systems.

Cohen's definition for a virus requires that in order to cause a viral effect M must

be in its start state when it starts reading the string w; otherwise a virus is harmless

40 SIGSAC Review
Summer 1990

(actually. it is undefined what happens if M starts reading a virus while not in the

start state). This restriction is necessary for the internal consiste,cy of the model,

but it does not have a meaningful real life interpretation. We could protect TMs

against viruses by defining their state systems in such a way that TM never return

to their starting state. Unfortunately, this prolection nmchanism is possible only in

the model, not in real computer systems!

We suggest some modifications to Cohcn's model in order to overcome the above

shortcomings. Instead of a TM we use the universal Turing machi,e (U'IM) as a

model of computer. Viruses are then descriptions of TMs causing another

descriptions to be written to the tape of the UTM. In Cohen's model the set of

viruses depends on the TM on which they are interpreted. In our modification the

set of viruses depends on the rules according to which the descriptions of TMs are

written.

2. Tu r ing machines

We assume a familiarity with TMs, decidability, and related topics as given e.g. in

[2]. In order to fix the notations we start by recalling the definition of TMs. We

mainly follow the notations and definitions of [2]; all unexplained co~cepts are as in

this reference.

A Turing machine (TM) is a 7-tuple M = (Q. Z. F. 8. q0. B. F). where

Q is the finite set of states.

F is the finite set of tape symbols,

B is a special symbol in F, the blank symbol,

Z, a subset of F not including B, is the set of input symbols,

6 is the next move partialfwzction fiom QxF to QxFx { l c f l , right},

q0 in Q is the start state, and

F, a subset of Q, is the set ofJina/states.

We may well suppose that F is a singleton set, i.e. there is a tmiquc fi.al state. M

operates by making moves according to 5. The structure of lXl can be entirely

described by the set of valid moves provided that the start state and the final stale

can be inferred from the encoding used.

Suppose tile states in Q and the alphabets ill F are named by { ql q,} and

{al am}. and the directions left and right are called by the synonyms dl and

SIGSAC Review
41 Summer 1990

d2, respectively. Then a move ~(qi, aj) = (qk, al, dm) can be encoded by a binary

string

0il0Jl0kl010 m.

A binary code for a whole TM is

111 <code 1> 11 <code 2> 11 11 <code p> 111,

where each <code r>, r = 1 p, is an encoding of a move according to ~5 and

p is tim number of such moves [21.

Given the above code for M plus the initial tape contents the UTM U is capable

of simulating the computation of M. It is obvious that there are encodings whose

simulation produces other encodings having this same property to the tape of U.

3. Formal definit ion of viruses

Informally, a computer virus is a program that can "infect" other programs by

modify ing them to include, a possible evolved, copy of itself I 1]. It is now

straightforward to formally define a computer virus to be a description of a TM

whose simulation by the UTM causes another description of a viral TM to appear to

the tape of the UTM.

The simplest virus in our model is a TM which writes a copy of itself somewhcre to

the tape. This TM runs on a blank tape, i.e. its description contains tim valid

moves only. In general, viruses may use the initial tape contents as a parameter

during their evolution processes. We will not give further examples of viruses; an

interested reader can create his/her favourite vires by using the standard techniques

for TM construction [2,3].

By fixing the encoding for TMs we have fixed tile set of strings which can be

interpreted as viruses. A different encoding gives a different set of viruses. One

who prefers a closer connection between the model and existing computer systems

may think that different encodings for TMs correspond to different operating

systems.

Viruses, defined as a special kind of TlVls, have tim full computational power of

TMs. Then of course, the undecidability results shown by Cohen I 11 hold in our

model as well. Especially, it is undecidable whether or not a given string is a virus.

SIGSAC Review
42 Summer 1990

A careful reader might have noticed that our viruses do not actually modify other

programs but rather write new programs to the tape. We can still increase the

concreteness of our model by requiring that viruses indeed modify exis t i ,g

programs, i.e. modify the encoded descriptions of TMs. We end this chapter by

sketching a TM having the desired Property.

Consider a TM T performing the following tasks:

1. finds a description of some other TM, say T', from the tape,

2. inserts a special symbol to the beginning of the initial tape contents of T'

3. supplements the encoding of T' by moves having the effects described in

the items 3a-3c below,

3a. reading the new symbol from the causes T' to enter to a new

subsystem of states,

3b. a copy of T is inserted to the description of T',

3c. the control is returned to the start state of T' and the head of T' is

moved to the first cell of the original tape contents.

There are several details to take care of: For example, M must find out the number

of states in M' in order to be able to properly label the new states to be inserted.

This and other similar details are left to the readcr.

4. Final remarks

We have suggested some modifications to Cohen's formal model for computer

viruses. Our suggestions deal with the level of abstraction used in the model. It is

our opinion that dropping the level of abstraction greatly increases the clearness of

the model without affecting to the computabil i ty and other mathematical

considerations related to the model.

R e f e r e n c e s

[1] F. Cohen, Computational aspects of computer viruses. Computcrs& Security

8 (1989), 325-344.

[2] J.E. Hopcroft , and J.D. Ulhnan, Introduction to Automata Theory,

Languages, and Computation. Addiso.-Wcsley, Reading, MA, 1979.

[3] M. Minsky, Computation: Finite and InJhzite machines, l 'rcnticc-llall,

London, 1972.

43

SIGSAC Review
Summer 19c~0

