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Abstract .  This note discusses the formal model for computer viruses presented 

by Fred Cohen. We propose some refinements for the model.  Especially, we 

define a computer virus to be a description of a Turing machine capable of writing a 

description of another Turing machine to the tape of a universal Turing nmchine. 
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1. Introduction 

Fred Cohen [1] has presented a formal model for computer viruscs which nicely 

illustrates both the infection and evolution properties of viruses. The concept of 

viral sets is essential in the model. A viral set is a pair (M,W) where M is a 

Turing machine and W is a set of strings over its tape alphabet. Each string w in 

W has the property that when M, being in its start state, starts reading w it always 

writes another string w' of W to somewhere else in its tape. Hcnce, each w in 

W is a virus and when M (i.e. "a computer") reads it, another virus will apl)car 

somewhere in its tape (i.e. in its "memory"). The most interesting result in 

Cohen's model follows from the halting problem of Turing machines: it is 

undecidable whether or not a given pair (Ivl, { w } ) is a viral set. 

In Cohen's model a Turing machine (hereafter abbreviated as TM) corresponds to 

computer, but it is not clear what entities correspond to programs. As a virus is a 

string of tape symbols, one might suppose that strings of tape symbols (of some 

undefined form) stand for programs, too. Although the model does not at all 

employ the concept of program, it would be advantageous for the clearness of the 

model if there were natural counterparts for the basic concepts of COmlmter 

systems. 

Cohen's definition for a virus requires that in order to cause a viral effect M must 

be in its start state when it starts reading the string w; otherwise a virus is harmless 
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(actually. it is undefined what happens if M starts reading a virus while not in the 

start state). This restriction is necessary for the internal consiste,cy of the model, 

but it does not have a meaningful real life interpretation. We could protect TMs 

against viruses by defining their state systems in such a way that TM never return 

to their starting state. Unfortunately, this prolection nmchanism is possible only in 

the model, not in real computer systems! 

We suggest some modifications to Cohcn's model in order to overcome the above 

shortcomings. Instead of a TM we use the universal Turing machi,e (U'IM) as a 

model of computer. Viruses are then descriptions of TMs causing another 

descriptions to be written to the tape of the UTM. In Cohen's model the set of 

viruses depends on the TM on which they are interpreted. In our modification the 

set of viruses depends on the rules according to which the descriptions of TMs are 

written. 

2. Tu r ing  machines  

We assume a familiarity with TMs, decidability, and related topics as given e.g. in 

[2]. In order to fix the notations we start by recalling the definition of TMs. We 

mainly follow the notations and definitions of [2]; all unexplained co~cepts are as in 

this reference. 

A Turing machine (TM) is a 7-tuple M = (Q. Z. F. 8. q0. B. F). where 

Q is the finite set of states. 

F is the finite set of tape symbols, 

B is a special symbol in F, the blank symbol, 

Z, a subset of F not including B, is the set of input symbols, 

6 is the next move partialfwzction fiom QxF to QxFx { l c f l ,  right}, 

q0 in Q is the start state, and 

F, a subset of Q, is the set ofJina/states.  

We may well suppose that F is a singleton set, i.e. there is a tmiquc fi.al state. M 

operates by making moves according to 5. The structure of lXl can be entirely 

described by the set of valid moves provided that the start state and the final stale 

can be inferred from the encoding used. 

Suppose tile states in Q and the alphabets ill F are named by { ql . . . . .  q,} and 

{al ..... am}. and the directions left and right are called by the synonyms dl and 
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d2, respectively. Then a move ~(qi, aj) = (qk, al, dm) can be encoded by a binary 

string 

0il0Jl0kl010 m. 

A binary code for a whole TM is 

111 <code 1> 11 <code 2> 11 .... 11 <code p> 111, 

where each <code r>, r = 1 ..... p, is an encoding of  a move according to ~5 and 

p is tim number of  such moves [21. 

Given the above code for M plus the initial tape contents the UTM U is capable 

of simulating the computation of  M. It is obvious that there are encodings whose 

simulation produces other encodings having this same property to the tape of U. 

3. Formal  definit ion of viruses 

Informally, a computer  virus is a program that can "infect" other programs by 

modify ing  them to include, a possible evolved,  copy of  itself I 1]. It is now 

straightforward to formally define a computer  virus to be a description of a TM 

whose simulation by the UTM causes another description of  a viral TM to appear to 

the tape of  the UTM. 

The simplest virus in our model is a TM which writes a copy of  itself somewhcre to 

the tape. This TM runs on a blank tape, i.e. its description contains tim valid 

moves only. In general, viruses may use the initial tape contents as a parameter 

during their evolution processes. We will not give further examples of viruses; an 

interested reader can create his/her favourite vires by using the standard techniques 

for TM construction [2,3]. 

By fixing the encoding for TMs we have fixed tile set of  strings which can be 

interpreted as viruses. A different encoding gives a different set of viruses. One 

who prefers a closer connection between the model and existing computer  systems 

may think that different encodings for TMs correspond to different operating 

systems. 

Viruses, defined as a special kind of TlVls, have tim full computational  power of 

TMs. Then of  course, the undecidability results shown by Cohen I 11 hold in our 

model as well. Especially, it is undecidable whether or not a given string is a virus. 
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A careful reader might have noticed that our viruses do not actually modify other 

programs but rather write new programs to the tape. We can still increase the 

concreteness of our model by requiring that viruses indeed modify exis t i ,g  

programs, i.e. modify the encoded descriptions of TMs. We end this chapter by 

sketching a TM having the desired Property. 

Consider a TM T performing the following tasks: 

1. finds a description of some other TM, say T', from the tape, 

2. inserts a special symbol to the beginning of the initial tape contents of T' 

3. supplements the encoding of T' by moves having the effects described in 

the items 3a-3c below, 

3a. reading the new symbol from the causes T' to enter to a new 

subsystem of states, 

3b. a copy of T is inserted to the description of T', 

3c. the control is returned to the start state of T' and the head of T' is 

moved to the first cell of the original tape contents. 

There are several details to take care of: For example, M must find out the number 

of states in M' in order to be able to properly label the new states to be inserted. 

This and other similar details are left to the readcr. 

4. Final remarks  

We have suggested some modifications to Cohen's formal model for computer 

viruses. Our suggestions deal with the level of abstraction used in the model. It is 

our opinion that dropping the level of abstraction greatly increases the clearness of 

the model without  affecting to the computabil i ty and other mathematical  

considerations related to the model. 
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