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ABSTRACT

In this paper, an artificial Immune system (AlS) is used to detect
abnormality in a computer network in an effort to provide
protection from illegal intrusion and unauthorized use. The
problem of anomaly detection can be addressed as the problem of
distinguishing self patterns from non-self patterns. The self
patterns could be any variety of characteristics of a system or its
users. Detectors of an AlS recognize non-self patterns and invoke
an alarm. In this work, an AlS was used to monitor simulated
TCP/IP traffic on a simulated broadcast local area network.
Detectors, in the form of interval constraints, were used to develop
asimple and effective AlS.
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INTRODUCTION

The immune system is critical in protecting the human body against the natural
environment that contains a wide variety of pathogens in the form of viruses and bacteria
[5]. Upon entering the body, these pathogens elicit immune system responses, during
which antibody-mediated immunity kills and clears them from the body [5].

An artificial immune system (AIS) [4], inspired by the vertebrate immune system,
IS an automated system that can be used as the basis of a network security system. An
AIlS can monitor the traffic on a network and detect suspicious behavior [4]. An AIS can
accomplish this by classifying normal traffic as self and abnormal traffic as non-self [1,
4].

Many researchers have investigated the effectiveness of AISs for computer
security [1, 2, 4] and network security [3]. However these approaches have used binary
coded detectors. In this paper, we propose an alternative network-based AlSthat uses
detectors that are coded as interval constraints. The remainder of this paper is as follows.
In the next section, we briefly explain the rationale on our AIS, next discuss our
implementation followed a discussion of our problem set. Next we present our results
followed by our conclusions.



RATIONALE

The problem of anomaly detedion can be aldressed as distinguishing self patterns from
non-self patterng 1]. The patterns could be avariety of charaderistics of a system, such as
the sequence of system calls[1, 3], the specification of a TCP/IP padet [4].

Our AIS monitors the TCP/IP traffic on a locd area network (LAN). Ead
incoming or outgoing padket is broadcast to all the hosts on the LAN. For eat packet, its
source | P, destinations IP and port number on the internal host compose a data path triple
(DP3) [4], which, as a pattern of the padket, is inspeded by AIS; abnormal patterns are
recognized as non-self. Non-self patterns will correspond to either a network intrusion by
an external hacker, or misuse by an internal user.

An AIS contains immature, mature aad memory detedors [4]. Mature and
memory detedors are responsible deteding anomalous adivity. The immature detectors
are randomly generated and must go through an immunological processcaled negative
seledion [4], during which illegitimate detedors which bind to self DP3s are killed.
Immeature detectors that have survived the process of negative seledion will bind to non-
self DP3s and becme mature detectors. A mature detector has a lifespan during which it
must cach at least one non-self DP3; otherwise it dies. After a mature detedor matches a
non-self DP3, it becomes a memory detedor that has a longer lifespan than mature
detectors. If a memory or mature detector matches a DP3 transmitted on the network, an
alarm message is ent the network administrator. This is similar to what is proposed in

[4].
IMPLEMENTATION

Our implementation is as modified from [4]. For a TCP/IP padet, at least one internal
host is involved in the wnnedion. An IP addressis composed of 4 bytes. For aclass C
LAN, the least significant byte is enough to identify an internal host, while the 4 bytes are
al needed to speafy the external hosts. The port on a host is identified by 2 bytes, which
give 64k different numbers. To simplify the process the port numbers is mapped into 69
caegories acording to [4]. Thus, a DP3 has 6 integers to specify a padcet, with 4
integers for an external host IP address 1 integer for the internal host IP address and 1
integer for the port on the internal host. The first 5 integers range between 0 and 255, and
the last integer ranges from O to 68. Another bit isincluded to indicate padet diredion. If
it’san incoming padet, this bit is st to 0, and it’s st to 1if the padket is outgoing.

Accordingly, our constraint-based detedors are composed of 6 pairs of integer
intervals and 1 diredion bit. If an interval covers the crresponding number, the detector
matches this field. If the detedor matches the direction bit and all the six fields of a DP3,
the detector matches the DP3 completely. A match threshold is st to adjust the
specificity or generality for detectors to match a DP3. The match is most specific if the
threshold is st to 6, and most general if the threshold is st to 1.

The self set is composed of DP3s that represent normal activity on the network. It
is reasonable to assume that the DP3s of the self set can be divided into separate sub self
sets because the onnedions are between LANs and all the external hosts on a single



LAN have the same network address. For example, if 5 LANs have hosts connecting to a
sixth LAN, then the self set of this sixth LAN may be classified into 5 clusters (or sub-
self sets).

EXPERIMENT SET-UP

A simulation of 10 hosts each running an AlS was studied. Each of the AlSs
contained 100 constraint-based detectors. The self set had a size of 2000 DP3s, which
were randomly generated and evenly spread into anumber of clusters. There were several
variables in setting up the experiment, including match threshold, number of self-clusters,
and the lifespan of immature detectors. The lifespan of mature detectors was set to
100,000, which means it must match a non-self DP3 within 100,000 DP3 transmission on
the network, or it dies and is replaced by a randomly generated immature detector. The
lifespan of a memory detector was set to 200,000.

The match threshold took on values between 1 and 6. The number of self-clusters
took on values fromthe set {1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 80, 100}. The lifespan of for
immature detectors was selected from the set {10000, 15000, 20000}. For each possible
set of parameters the resulting network security system was trained and tested 30 runs. A
non-self set, consisting of 200 DP3s, was created by randomly generated. The self and
non-self sets for each of the 30 runs were mutually exclusive.

The experiment was divided into two stages. In the first stage, the training was
carried out by randomly picking self-patterns from the self set and feeding them to the
AlSs. The training stage lasted for 150,000 iterations which equivalent to transmitting
150,000 DP3s across the simulated LAN. False positives were counted for the last 29,000
iterations in the first stage. In the testing stage, non-self patterns, or simulated attacks,
were fed to the system to test the efficiency of detection. The number non-self DP3s
identified by the system was summed up, and the summation divided by 200 in order to
compute the detection rate. This was repeated nine additional times with nine other non-
self sets being fed into the system, which resulted in 10 detection rates. The overall
detection rate was calculated as the average of these 10 detection rates.

RESULTS

Average detection rates over various system settings are shown in Figures 1 - 3.
From these figures, it can be seen that the detection rate went down when the number of
clustersincreased. However, for match thresholds of 2 and 3, the detection rates remained
close to 1.0 until the cluster number increased beyond 40. The detection rate dropped
because the increasing in self-clusters means more diversity in the self patterns, which
requires more learning time and more memory resources as well. It’s reasonable to
predicate that longer the training time and the larger size of the detector set the better the
detection rate when working with a larger number of self-clusters.

It can also be observed that for the best systems (those with a match threshold of
3 or 4 in Figures 1-3) a longer lifespan for immature detectors causes a decreased the
detection rate. The reason is that the longer the immature detector lifespan, the greater
chance for the immature detector to match a self-pattern during negative selection. This
lessens the chance of an immature detector surviving negative selection and developing



into a mature detector. This, in turn, reduces the total number of mature detectors in the
system. Although the resulting system may have fewer mature detectors, with a longer
immature detector lifespan, the mature detectors are less likely to bind to self patterns
which reduces the number of false positives generated. The issue of false positives will
be discussed later.

Life-Span of Immature Detectors: 10000 Life-Span of Immature Detectors: 15000

PGP P PRI A I Y— — PGP P AT A I —
—e—MT:1 —e—MT:1
B —m—MT:2 3 —m—MT:2
“w “w
£ MT: 3 i MT: 3
E MT: 4 E MT: 4
5 —%—MT:5 & —H—MT:5
—e—MT:6 —e—MT:6

1 2 4 5 8 10 20 25 40 50 8 100

Clwsters

1 2 4 5 8 10 20 25 40 50 8 100

Clwsters

Figure 1. Detection rate with lifespan of immature
detector set to 10000

Figure 2. Detection rate with lifespan of immature
detector set to 15000
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Figure 4. False positives when the matching
threshold was 2

Figure 3. Detection rate with lifespan of immature
detector set to 20000

In Figures 1-3, one can see that the match threshold is more important than the
lifespan of immature detectors. It can be seen in figures that match thresholds of 3 and 4
were consistently the better performers. Lower threshold for a detector to match to a
pattern means a relaxed constrain satisfaction, thus the immature detector got grester
possibility to match to some pattern. This leads to less amount of mature detector with the
same logic related above. On the other hand, high threshold leads to more mature
detectors, however, these detectors have more trouble to match a pattern, even if it's an
obvious non-self pattern. So there's a balance between the two, a which highest
detection rate takes place.

The number of self clusters also affects the setting of match threshold. If the
number of self-clusters was below 25, 2 might be an ideal choice because the detection
rate was kept very close to 1.0; however, it would be more advisable to choose 3 if the
self patterns fall into more clusters because the detection rate with 3 as match threshold
was kept over 0.95 even the cluster number reached 50 if the lifespan of immature
detector was set to 10000.



The relationship between false positives and match threshold are shown in
Figures 4 - 8. Match threshold of 1 resulted in O false positives regardless of the number
of self clusters. It can be seen that increasing clusters increased the diversity of the self
DP3s, which resulted in more false positives. This basically matches with the results as
shown in Figures 1 - 3, except that when the match threshold was set to 2 there was a
peak in the number of false positives for unknown reasons. From Figure 1 it can be seen
that for match threshold of 2, the detection rate was kept very close to 1.0 until the
number of clusters increased to 25, when it began to drop, and it was at this point that
highest false positive rate occurred. When the cluster number exceeded 25, the detection
rate dropped and so did the number of false positives. This was because with more
diversity in the self DP3s, the system had fewer mature detectors and more difficulty
matching a DP3, no matter it would be a false positive in the training phase, or it was a
true intrusion in the testing phase.

It was also observed that different settings on match threshold had a significant
effect on the number of false positives generated, except for match threshold of 1. When
the match threshold was set to 3 or 4, the system had the highest false positive rate, at
which point the system also gave the highest detection rate, and the false positive
dropped when the match threshold increased to 5 and 6. If the system is capable of
recognizing more DP3s, it also potentially generates more false positives. So, there's a
trade-off between the detection rate and the accuracy of the detection. If the security of
the network system were more concerned, higher detection rate would be more desired
over the accuracy while false alarms are not much trouble, then a shorter immature
detector lifespan and a match threshold of 3 or 4 would be suitable.

The size of the self set was set to 2000 for the results reported here, however, we
also tested the system with self set of varied size, and it turned out the self set size did not
noticeably affect the system effectiveness.
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CONCLUSION

We proposed an alternative approach to build an simple and efficient AlS. Constraint-
based detector is easier to understand compared with binary string based detector [3],
which facilitates the system security officer to analyze the network traffic when intrusion
happens.
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The diversity of the self patterns decides the difficulty of the detedion problem,
which significantly influences the effectiveness of the AIS. The match threshold decides
the specificity or generality of the match between detedors and petterns. A high match
threshold results in more mature detedors that match patterns more specificdly, while a
low match threshold results in fewer mature detectors that match patterns more generally.
The detedion rate might be low if the match threshold is either too high or too low. The
lifespan of an immature detector may also affed the number of mature detedors
generated duing the training phase. The longer the lifespan of immature detedors the
fewer number of mature detectorsthere may be. This can leal to alower detection rate.

Effediveness and acairacy are two important requirements for a good intrusion
detection system. If the diversity of the self patterns were low with resped to the size of
the AIS, the system would be both effedive and acarate, giving a high anomaly
detection rate and low false positive rate. However, if the self patterns $owed high
diversity with respect to the size of the AIS, there would be a trade-off between
effediveness and acaracy, one of which might be saaificed for the other.

REFERENCES

1. S Forrest, S Hofmeyr, A. Somayaji and T. Longstaff, “A Sense of Sef for Unix Processes’.
Proceedings of IEEE Symposium on Security and Privacy, 120-128 (1996).

2. P. Harmer and G. Lamont, “An Agent Based Architedure for a Computer Virus Immune System”.
Proceedings of the Genetic and Evol utionary computation Conference, (2000).

3. S Hofmeyr, A. Somayaji and S. Forrest, “Intruson Detedion using Sequences of System Calls’.
Journal of Computer Security 6: pp. 151-180 (1998).

4. S Hofmeyr and S. Forrest, “Immunity by Design: An Artificial Immune System”. Proceedings of the
Genetic and Evolutionary Computation Conference, (1999.

5. D. Krogh, “The Immune System: Defending the Body from Invaders’. Biology, |SBN: 00236@911
(2000).



