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Abstract. In this paper, we present the design of a metamorphic engine
representing a type of hurdle that antivirus systems need to get over in
their fight against malware. First we describe the two steps of the en-
gine replication process : obfuscation and modeling. Then, we apply this
engine to a real worm to evaluate current antivirus products detection ca-
pacities. This assessment leads to a classification of detection tools, based
on their observable behavior, in two main categories: the first one, rely-
ing on static detection techniques, presents low detection rates obtained
by heuristic analysis. The second one, composed of dynamic detection
programs, focuses only on elementary suspicious actions. Consequently,
no products appear to reliably detect the candidate malware after appli-
cation of the metamorphic engine. Through this evaluation of antivirus
products, we hope to help defenders understand and defend against the
threat represented by this class of malware.

1 Introduction

Malware is a generic term used to describe all kinds of software presenting ma-
licious behavior. In terms of security of computer users, malicious software is
considered as major threat. Many detection programs are based on form de-
tection relying on byte signature to identify a specific malware. To circumvent
these detection tools, attackers have developed specific counter-measures, giving
birth to more and more advanced code mutation techniques. Among all these
techniques such as encryption and polymorphism, metamorphism is certainly
the most advanced one. Metamorphism consists in canceling as much as possible
any fixed element that would represent a potential detection pattern according
to byte signature matching. Here, we consider metamorphism as a special class
of self-replicating program.

From a theoretical point of view, few results exist concerning the detection
complexity of code mutation techniques, even if these notions have already been



evoked in F. Cohen’s seminal works [10]. Recently, D. Spinellis has proved [24]
that the detection of bounded-length polymorphic viruses is an NP-complete
problem. Then, E. Filiol has formalized metamorphism by the means of formal
grammars and languages [16] to extract three classes of detection complexity
according to the corresponding grammar class identified by N. Chomsky [7, 8]:
polynomial complexity for class 3 grammars, NP-complexity for class 1 and 2
grammars, and undecidablility for class 0 grammars.

From a practical point of view, very few metamorphic malware are known
to exist thanks to the difficulty of writing such complex programs. The most
advanced metamorphic virus known is MetaPHOR [13], for which 14 000 lines
of assembly instructions (90% of the code) are dedicated to the metamorphic
engine. Despite this complexity, this virus only uses simple instructions rewriting
rules to change its forms. Thus, it was shown that this malware belongs to class
3 grammars and can then easily be detected [16].

In this paper, we focus on metamorphic malware detection. More precisely,
it was suggested in [16] that a metamorphic malware presents few limitations
from an execution context point of view, whereas any antivirus tool is bounded
by severe time constraints. To take advantage of this time constraint, a new
class of obfuscator denoted τ -obfuscator was introduced in [3] to delay code
analysis for a predefined time τ . Our work aims at evaluating current antivirus
products confronted by possible future threats that metamorphic malware could
represent by taking advantage of the time-answer constraint from a detection
point of view.

The contributions of this paper are the following:

– We propose a design of a metamorphic engine corresponding to a future
possible threat that antivirus tools must deal with.

– We practically evaluate current malware detection products confronted by
the well known worm MyDoom [14] after application of the metamorphic
engine.

This paper is organized as follows. In section 2 we introduce metamorphic
malware detection and its link with code obfuscation. In section 3 we present
the description of our metamorphic engine. In section 4 we evaluate detection
tools with the application of the metamorphic engine to a real worm.

2 Metamorphism and obfuscation

Metamorphic malware and code obfuscation techniques are narrow linked sub-
jects. Indeed, as mentioned in [9], a metamorphic code can be viewed as an
obfuscated program. So, detecting such a program leads to the ablility to de-
obfuscate it. Before describing our metamorphic engine approach, we briefly
introduce these two fundamental notions of obfuscation and metamorphism.

Barak et al. informally defined an obfuscator O as a probabilistic compiler
taking in input a program P , and producing a new program O(P ) with the



same functionality as P but being unintelligible [2]. Starting with this informal
definition, they proposed a formal one based on oracle access to program. Then,
they proved that no obfuscator exists according to this definition. Recently,
another formalization of obfuscation, based on the notion of oracle programs led
to the same impossibility result [3]. Despite these theoretical results, practical
obfuscation has been intensively investigated to protect intellectual property
and especially concerning high level languages such as .NET and JAVA [11,
12]. Indeed, with such languages, the resulting code contains all the information
allowing us to easily retrieve the original program such as names, structures,
data types, etc.

Concerning malware, obfuscation schemes were used to change the syntac-
tic structure of the code to escape simple form detection techniques such as
pattern matching. Metamorphic malware traditionally used basic obfuscation
transformations modifying either data flow (rewriting rules, registers exchange)
or control flow (branch insertions) to avoid pattern detection [5]. The choice of
such basic obfuscations transformations was clearly evoked in [21] as follows: “...
a metamorphic virus must be able to disassemble and reverse itself. Thus a meta-
morphic virus cannot utilize [...] techniques that make it harder or impossible for
its code to be disassembled or reverse engineered by itself.” In agreement with
this point of view, many static detection approaches based on de-obfuscation
techniques (such as data flow analysis [1], slicing [26]) were developed [6, 29, 23].
However, more complex obfuscation schemes based on control flow modifications
such as [5], could thwart these static detection techniques. Being aware of static
detection limitations, an increasing number of antivirus products consider be-
havioral detection, which can be divided in two classes [18]. The first one is
represented by dynamic detectors relying on sequences of observable events such
as system call traces. The second one is composed of static verifiers relying on in-
struction meta-structures (graphs, temporal logic formula). In all cases, a behav-
ioral description comprises temporal aspects. In [19], the coverage of behavioral
detection engines was assessed with the introduction of functional polymorphic
engines. Briefly, a functional polymorphic engine was defined as a malware em-
bedding a non deterministic compiler to dynamically produce functional variants
from a high level malware description. In this paper, we focus on the temporal
constraint aspect by investigating the new threat that τ -obfuscation-based meta-
morphic malware could represent on antivirus products.

3 Metamorphic engine description

From a high level point of view, a metamorphic engine offers a self-replicating
property which has to produce a syntactically different but semantically equiva-
lent mutated form. A generic description of metamorphic binary-transformation
is given in [28]. Here, we present our metamorphic engine self replication process,
which acts in two steps:



1. In the first step, known as the obfuscation step, the engine changes its form
to escape detection algorithms. The main purpose of this step is to avoid
static detection approaches such as [9, 6, 4]

2. In the second step, the already obfuscated engine reverses its own obfusca-
tion transformations to come back to its original form. This step, known as
the modeling step, allows the engine to re-obfuscate itself. It is worth men-
tioning here that the reverse engine in charge of the engine modeling is itself
obfuscated otherwise it could be easily detected by pattern matching.

This section presents the design of our metamorphic engine. More precisely,
in 3.1, we focus on the obfuscation step. In 3.2, we describe the engine infor-
mation needed to ensure its modeling. In 3.3, we describe the whole replication
process. Finally, in 3.4, we explain how to produce a metamorphic binary starting
from the sources of an original program.

3.1 Obfuscation step

This section presents the obfuscation step in the self-replication process of our
metamorphic engine. The obfuscation process has to work on both the code and
the data in a program at the same time .

Code obfuscation The general code obfuscation scheme detailed hereafter is
inspired from [5]. Let P be a program composed of n consecutive instructions
(I1, . . . In). This program P is split in k consecutive blocks P = (P1, . . . , Pk).
Each of these blocks contains a random number of instructions. Let σ be a
random permutation over the set [1, n] used to randomize Pi blocks. For each Pi
block, we define a new block P ′σ(i) with its transition. This approach is illustrated
in figure 1. On the left hand, we have an original program P composed of ten
instructions whose control flow is represented with arrows. The boxes illustrate
the random splitting of P in five blocks. On the right hand, the new program
P ′ is obtained by permutating Pi blocks according to σ.

It is easy to see that whatever the Control Flow Graph (CFG) of program P
looks like, the execution remains the same if after executing the last instruction
of block P ′σ(i), the first instruction of P ′σ(i+1) is reached. These transitions, rep-
resented with dashed arrows in figure 1, are the key points of the obfuscation
scheme. For instance, considering the block containing instructions I1, I2 and
I3, the execution of instruction I3 must lead to I4 as illustrated in P and P ′.

As the splitting is randomly generated, no syntactic pattern can be directly
extracted, according to this approach. Moreover, it was proved in [5] that the
static detection of metamorphic malware employing such a technique in a multi
path assumption, is an NP-complete problem. In static analysis, the multi path
assumption translates the difficulty of branch target evaluation. Indeed, consid-
ering a branch instruction, represented as follows, “if (condition) {branch1}
else {branch2}”, the condition evaluation can be highly complicated by the
use of opaque predicates as detailed in [11]. Informally, a predicate is said to
be opaque if it has a property which is known to the obfuscator, but which is
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Fig. 1. Illustration of the obfuscation scheme. Original program P on the left and the
obfuscated program P ′ on the right.

difficult for the deobfuscator to deduce. Thus, if a program cannot determine the
condition value, then it has to consider the two branches as possibly executable
paths. However, the creation of opaque predicates which are difficult to resolve
is a hard task [11]. It is also the case from a metamorphic malware point of view.
Instead of focusing on opaque predicate creation, we deliberately choose to take
advantage of the malware time detection constraint evoked in [16] and [3].

In other words, each block P ′ transition is τ -obfuscated by dynamically
computing the target destination. Several approaches were detailed in [3] to
τ -obfuscate programs. In order to facilitate time measurement, we decided to
use an obfuscated loop which computes the destination address. So, for the rest
of the article, the τ delaying time is measured thanks to the number of itera-
tions in the transitions loops. Here, we only present a sketch of our τ obfuscation
design for two reasons. First, from an ethical point of view, giving a complete
description of the implementation could lead an attacker to directly write such
a metamorphic engine, which is a non affordable risk. Second, according to the
experiment result, τ -obfuscation seems to have no impact on current detection
tools. So, τ -obfuscation does not appear to be the key component of the meta-



morphic engine. To achieve τ -obfuscation, the key idea consists in choosing a
random function f for each transition. Then the target address is determined
by the number of compositions of this function f . Of course, this simple loop is
obfuscated using classical techniques such as rewriting rules to avoid any pat-
terns.

Data obfuscation A simple way to protect data is encryption as used in poly-
morphic malware, for example. In this case, the malware execution begins with
a (polymorphic) decryption routine acting on the rest of the code and data. Af-
ter this decryption, all the code and data represent a possible detection pattern.
Thus, a practical detection ([25] pages 451-458) consists in emulating the decryp-
tion routine to come back to classical pattern matching detection techniques on
the decrypted program.

To avoid such a detection, a better approach consists in decrypting data just
before they are used and re-encrypting them just after. By data we mean a
block of data which cannot be divided without a loss of semantics (for instance,
a string, a switch table, a structure,etc.). This technique known as on-the-fly
encryption is commonly used in malware protection (DarkParanoid [20] and
W32/Elkern [15]). More precisely, let f be a function taking as parameter a
data block, denoted D. Our original program P computes the function f(D).
Let E be a symmetric encryption scheme. We modify the original program P to
get the program P ′ defined as follows: P ′ contains (in its binary representation)
an encryption key K and the encrypted data C = EK(D). Then, during its
execution, P ′ starts with the decryption of the encrypted data C. After that,
P ′ computes f with the previous decrypted data D. Finally, P ′ re-encrypts this
data D with the same key K. So, without the knowledge of the key K, the
protection of D is guaranteed by the robustness of the encryption scheme.

The data obfuscation process consists in randomizing the key value and its
position in such a way that only the piece of code which previously had access to
this key has access to the new one. The new program contains the new encryption
K ′ and the new encrypted data C ′ = EK′(D). In this case, the decryption key
can only be discovered by disassembling the code. Thus, the robustness of data
obfuscation directly relies on the robustness of the previous code obfuscation
guaranteed by τ -obfuscation.

3.2 Modeling Step : the necessity of extra information

This section presents the modeling step in the self replication process of the
metamorphic engine. From now on, we consider that the metamorphic engine
M is already obfuscated, as presented in section 1. The obfuscated metamorphic
engine is denoted M ′ in the rest of the section.

From its entry point, M ′ must be able to extract its structure in memory in
order to re-obfuscate itself. Without any particular information on the way it
was produced, M ′ would have to disassemble itself as any other external program
would have to. In this case, the engine would be confronted with the difficulty



of reversing its own obfuscation scheme. So, to easily reverse its own code, M ′

must embed extra information allowing its de-obfuscation without simplifying
the detection.

According to the obfuscation scheme presented in 3.1, coming back to M
means recovering the original sequence of code blocks (M1, . . . ,Mn) and the
original data blocks. More precisely, the extra information to be embedded is
composed of:

1. the description of the original sequence of code blocks (P1, . . . , Pn);
2. the description of data blocks with their corresponding encryption key;
3. the description of memory references.

With these three elements, the metamorphic engine M ′ is able to come back
to its exact original (de-obfuscated) form M . We shall explain the necessity of
references. At binary level, each logical element in a program (a block of data,
an instruction, an import table entry,etc.) is represented by its address. As these
addresses change during each mutation according to the previous obfuscation
scheme, the metamorphic engine must be able to find and update these references
according to the new position of the corresponding element. Unfortunately, the
exact determination of references in a binary program is difficult.

To illustrate this problem, let us consider the following assembly instruction:
cmp eax, 0402000h. This instruction compares the value contained in the eax
register with the hexadecimal value 402000. Considering the metamorphic engine
(or any disassembler), the problem consists in determining the semantics of this
value. In other words, is it an address or not? Now, let us consider the two
following programs described in C language: both of them declared a constant
value MY_FLAG in line 1 and a global string Global1 in line 2. The main function
only declares a variable in line 6, whose value is supposed to be defined later
in the main function. The key point is the if statement line 8 which compares
var1 with MY_FLAG in the first source and with Global1 in the second source.

1 #define MY FLAG 0x402000
2 char Global1 [ ]= ” s t r i n g ” ;
3
4 main ( )
5 {
6 int var1 ;
7 . . .
8 i f ( var1==MY FLAG) { . . . }
9 }

1 #define MY FLAG 0x402000
2 char Global1 [ ]= ” s t r i n g ” ;
3
4 main ( )
5 {
6 char∗ var1 ;
7 . . .
8 i f ( var1==Global1 ) { . . . }
9 }

Fig. 2. Example of references determination problem.

Considering the particular case where the compilation process places the
Global1 string at address 402000 in the two resulting binaries, line 8 corresponds
to the previous assembly instruction. It is worth mentioning that this extreme



academic case is not very probable, but clearly illustrates the problem of the
references. Concerning our metamorphic approach, code and data are randomly
dispersed throughout the program during the replication. So, considering the
previous example, the address of Global1 will be different after replication. And
then, to be correct, in the statement cmp eax, 402000h, the hexadecimal value
must be updated by the new address of Global1 only in the second program’s
binary.

3.3 Metamorphic engine replication with no constant kernel

At this stage we have illustrated :

1. how to obfuscate a program to guarantee that it cannot be disassembled
under a predefined time τ in 3.1;

2. which information is mandatory to create a program able to reverse this
previous obfuscation scheme in 3.2;

We now have to describe how the metamorphic engine can link these two steps
to achieve its self-replication. Figure 3 illustrates this replication process. For
the purpose of simplicity, we only present how the description of the original
code blocks sequence is used in the replication process.
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Fig. 3. Illustration of the replication process of the metamorphic engine.

Let M ′ be an already-obfuscated version of the metamorphic engine M , as
described in section 3.1. M ′ embeds its own rebuilding information, as presented
in section 3.2. More precisely, M ′ is here composed of 20 instructions (I1, . . . , I20)
distributed in 7 blocks (M ′1, . . . ,M

′
7) as represented in (1). Each instruction index

represents its execution order, I1 stands for the first executed one whereas I20

is the last instruction. Each block M ′i contains a random number of instructions
and a random position in the program M ′. At the end of each block, another one
denoted τ ′i represents the τ -obfuscated branch whose destination is highlighted
by pointed arrows. As previously mentioned, the destination of this block cannot
be determined before the τ ′i duration.



Without loss of generality, let us assume that the rebuilding information is
used by instruction I4 to start the modeling step. Then, this instruction has
a reference to the first block description represented in (2). This description
gives the position and the size of each M ′i block. So, M ′ can disassemble M ′1,
then M ′2 until the last block M ′7. From now, M ′ has its own instructions se-
quence (I1, . . . , I20) in memory as illustrated in (3). The re-obfuscation starts
here, as described in 3.1 whose results is illustrated in (4): new code blocks are
randomly generated (M ′′1 , . . . ,M

′′
6 ) with their corresponding τ -obfuscated tran-

sitions (τ ′′1 , . . . , τ
′′
6 ). The original code block sequence (M ′′1 , . . . ,M

′′
6 ) is inserted

in a new data block represented in (5). The key point consists in updating the
reference to this rebuilding information in instruction I4, to be sure that this
instruction will use the new code blocks description. Moreover, the entry point
of M ′′ is defined in its header to point to the position of I1 instruction in M ′′.

From a detection point of view, rebuilding information presents no constant
part nor constant position between the two mutated programs. Thus, we assume
that reaching rebuilding information means to be able to disassemble any obfus-
cated program until identifying the part of the program using this information.
In this case, any disassembler would be confronted with the robustness of the
code obfuscation scheme.4 And then detection is delayed during the amount of
time defined by τ -obfuscation.

3.4 Embedding the metamorphic engine in another program

We have illustrated how the metamorphic engine can reproduce itself according
to its rebuilding information. However, the remaining question is the origin of this
information. In other words, how can we get the first obfuscated metamorphic
binary? First, our metamorphic engine works at binary level taking advantage of
the dissembling difficulty in x86 architecture. Second, the purpose of the engine
is to be generic, in order to transform high level language programs to make them
metamorphic. Here we only focus on programs written in C language. Thus, we
have to modify the compilation process to build the first metamorphic binary
in the same way the metamorphic engine does. This is achieved by inserting an
obfuscator in the compilation process as illustrated in figure 4 step (2).

The compilation process starts normally by taking two inputs programs, the
metamorphic engine and the to-be-obfuscated program. First, the compiler pro-
duces the corresponding assembly sources. Second, the obfuscator transforms
these sources, as presented in 3.1. The obfuscated assembly sources now con-
tain all the rebuilding information for the whole program. Then, the assembler
produces object files which will be linked with additional libraries to obtain the
final metamorphic binary just like any classical assembling process.

4 The question of heuristic detection of the permuted code is not mentioned here.
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4 Malware detectors evaluation

This section aims at empirically evaluating the impact of our metamorphic en-
gine approach on the state of the art detection tools. In 4.1, we present the way
we transform the well known worm MyDoom into a metamorphic one. In 4.2,
we describe the evaluation platform. In 4.3, we present the results of our exper-
iments.

4.1 Building a metamorphic version of MyDoom

All our experiments are based on the well known worm MyDoom.A [14] discov-
ered in January 2004. The choice of this malware was motivated by two major
reasons:

1. the worm sources [27] are available in C language, which allow us to directly
use our metamorphic engine;

2. according to its virulence (number of emails generated), MyDoom is consid-
ered as the most serious worm attack ever known [25].

Briefly, MyDoom is a worm propagating through a peer-to-peer client and
by emails. Its payload is composed of two parts: first, the worm tries a Denial
Of Service (DOS) on a specific web site. Second, MyDoom embeds an encrypted
Dynamic Link Library (DLL) which represents a backdoor listening on a TCP
port ranging between 3127 and 3198 . This DLL can be viewed as a standalone



malware, loaded by the Windows Explorer.exe process, and waiting for mali-
cious commands. Thus, we have two malware candidates for detection purpose:
MyDoom, and its backdoor. In the original sources of MyDoom, the CopyFile
function is in charge of the worm replication. To use our metamorphic engine,
we have modified the sources of MyDoom to replace all the CopyFile calls to
the replication entry point of the metamorphic engine. Concerning the backdoor,
its detection could make MyDoom suspicious according to heuristics detection
techniques. As a non-replicating program the backdoor does not use the meta-
morphic engine but has to be obfuscated as the worm is.

Backdoor
(xproxy.c)

Obfuscated
Backdoor
(xproxy.dll)

xproxy.inc

MyDoom
sources

Metamorphic
worm

Metamorphic
engine
sources

(1) (2) (3)

Fig. 5. Illustration of the incorporation of the obfuscated backdoor (xproxy) in the
metamorphic worm (MyDoom).

The generation of the metamorphic worm is illustrated in figure 5: first the
backdoor is obfuscated as explained in figure 3.1 to obtain the obfuscated back-
door (xproxy.dll) in step (1). Then, the backdoor binary has to be encrypted
as the worm normally does. This encrypted binary is then translated as a table
of hexadecimal values in a source file (xproxy.inc). This step is denoted in (2).
Finally, the metamorphic worm is produced as illustrated in 4 from the previous
xproxy.inc file, the metamorphic engine and MyDoom sources in step (3).

4.2 Evaluation platform

To observe the malware’s behavior in a safe and protected environment, a target
platform was installed. The adopted solution consisted in using virtual machines
for two reasons: first, to prevent any infection of the real operating system from
the malware. On this subject, we verified beforehand that MyDoom did not try
to detect any virtualisation environment. Indeed, malwares are used to chang-
ing their behavior in case of virtualisation. Second, virtual machines allowed
us to easily come back to a clean state independently of detection success by
restoring the safe machine image. The evaluation platform was composed of two
components, namely the guest and the host machine.

Guest Machine : VMWare workstation was chosen as the emulating environ-
ment. Windows XP Pro SP3 was installed with up-to-date hot fixes to represent



a personal user configuration. To observe the worm propagation, a mail client
and a peer-to-peer one were configured. An ISP account was also defined with
different parameters and especially the SMTP server address. This guest machine
configuration was cloned according to the number of antivirus to be tested. An
antivirus program was installed on each configuration.

Host Machine : A bridge was installed between the two machines to establish
a network communication between them. A fake SMTP server listening on TCP
port 25 was in charge of collecting the worm’s mail. All the guest traffic was
oriented toward the bridge to reach the host machine.

In order to validate the metamorphic engine replication, and to bring rep-
resentative results, each sample of malware used in the followings experiments
was produced as follows:

1. a metamorphic worm obtained, as illustrated in 5, was installed on a guest
machine containing no activated detection product. The parameters of the
metamorphic engine were configured according to the experiments (code
block sizes and τ iteration values).

2. this worm was then executed on the guest machine until two mutated worms
were obtained. These two worms were collected from the peer-to-peer client
and from emails by the host machine.

3. the virtual environment was finally restored to a clean state and this process
was renewed (step 2) with the previously collected malware until the desired
sample of worms was obtained.

4.3 Experiment results

To be as general as possible, we started with 15 of the most used antivirus
software regardless of their detection techniques (heuristic, behavioral blockers,
state automata [17]). In terms of license several products present ambiguities
concerning black box evaluations : “You shall not use this Software in auto-
matic, semi-automatic or manual tools designed to create virus signatures, virus
detection routines, any other data or code for detecting malicious code or data.”
To be as neutral as possible, all the results are given anonymously denoted by
AV1 to AV15. All detection software were used with their default configuration
parameters.

Concerning the metamorphic engine parameters, τ -obfuscation was initial-
ized to a single iteration and the code blocks size was set to contain from 1 to
5 instructions. For detection purpose, each worm was installed on a guest ma-
chine and submitted to on demand detection. Then, non detected malware were
executed until mail and peer-to-peer propagations.

Two samples of malware differing only in their replications were submitted
to antivirus products: the first one used direct replication API calls (CopyFile),
whereas the second one used the metamorphic engine replication functionality.
The interest of such a distinction lies in the difficulty of determining the self



replication of the metamorphic engine whereas it is quite simple to identify
a direct copy. The detection results concerning the two submitted samples of
malware are presented in table 1 with their corresponding observed detection
technique.

Software Obfuscated worms Metamorphic worms
Observed detection

technique

AV1
100/100 detected as

0/100 behavior monitoring
generic Trojan

AV2
100/100 blocked for

0/100 behavior monitoringsuspicious files actions (self copies)
and registry actions (residency)

AV3
40/100 blocked for 40/100 blocked for

file blocker
suspicious files actions suspicious files actions

AV4
100/100 blocked for 100/100 blocked for

registry blocker
registry modifications (residency) registry modifications (residency)

AV5
100/100 blocked for 100/100 blocked for

actions blocker
suspicious actions suspicious actions

AV6
10/100 detected as 10/100 detected as heuristic
“Heur PE virus” “Heur PE virus” form-analysis

AV7 0/100 0/100 no detection

.

.

.
.
.
.

.

.

.
.
.
.

AV15 0/100 0/100 no detection

Table 1. Detection results obtained on 15 antivirus products with 100 obfuscated worms (first
column) and 100 metamorphic ones (second column).

According to table 1, which presents the observed results obtained from the
two submitted worms samples, four classes of detection techniques can be ex-
tracted:

1. behavioral monitoring software represented by AV1 and AV2;
2. behavioral blocker products represented by AV3, AV4 and AV5;
3. heuristic-based detection tools represented by AV6;
4. form-based detection software unable to detect any obfuscated worm or

metamorphic ones (AV7 to AV15);

The first three detection classes are detailed hereafter.

Behavioral monitoring results. This class of detectors includes two software
(AV1 and AV2) able to detect all the obfuscated worms but no metamorphic
ones. This result tends to illustrate that AV1 and AV2 considered self-copying
as a key component for detection purposes. However, the self replication problem
is a well-known undecidable one, as F.Cohen proved [10]. Our results show that
direct replication by calling the CopyFile function was detected but not the
metamorphic engine replication process illustrated in 3. AV1 gave no more in-
formation to help understand the precise detection technique used. It seems that
sensible events (files creations, file and registry modifications, self copying, etc.)
were correlated to identifying a generic class of malware (here trojans). AV2 de-
tected two suspicious behaviors before blocking any obfuscated worms: the first



one concerned suspicious file actions such as copying itself and the second one
was the attempt of residency through registry modifications.

Behavioral blocker results. All these software (AV3, AV4 and AV5) required
a user decision concerning each detected suspicious action. AV3 blocked each
file containing an executable program disguised by harmless file extension. This
happened during mail creation with a probability of 40% set in the source code.
More precisely, in this case, the worm packed itself in a temporary directory with
a .tmp extension before encoding this copy as a mail attachment. Consequently,
all of these temporary files were detected as suspicious by AV3. AV4 blocked all
the malware attempts to become resident by registry modifications. Finally, AV5
monitored several behavior with different level of risks and gave the following
warnings for all the metamorphic worms:

1. modifying your computer so that another computer can access it;
2. copying an “executable” file to a sensitive area of your system;
3. registering itself in your “Windows System Startup” list;
4. copying another program to an area of your computer that shares files with

other computers;
5. connecting to the Internet in a suspicious manner to send out emails.

Here, it is worth mentioning that this product was not able to detect the self
replication of the metamorphic engine. Indeed expressions “an executable” in 2
and “another program” in 4 confirmed the self replication detection difficulty
as for AV1 and AV2. Moreover, it was verified that AV5 could detect self repli-
cation on the obfuscated versions of MyDoom. However, in all cases a warning
was generated for any program copy as well as a self copying. Moreover, these
different warnings were not correlated to identify a specific malware behavior.
Behavioral blocking is a proactive detection technique preventing any malicious
action before execution. Each of these action relies on a single system call. So,
τ -obfuscation is usless on this class of detectors.

Heuristic-based detection results. AV6 detected all the malware accord-
ing to their binary files and not during their executions. More precisely, all the
malware were detected under the label “Heur PE virus” which suggests that
heuristics were used for detection purpose. To validate this heuritic-based de-
tection assumption, we created 3 samples of malware with different τ values (1,
500, and 1 000 000 iterations). Each of these samples was composed of 4 groups
of 100 malware with different code block sizes. Figure 6 gives the corresponding
detections rates.
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Fig. 6. Detection rates of AV6 according to code block sizes and τ values.

According to these results, the detections rates seem proportional to the code
block sizes. Moreover, τ -obfuscation appears to have no impact on detection.
This confirms that AV6 used heuritics-based detection approach to recognize
these metamorphic malware. No information was given by the product on these
specific heuristic detection techniques.

4.4 Discussion on the experiments results

The previous experiments emphasize the two main representative dynamic detec-
tion techniques used in current dynamic industrial malware detectors: behavioral
monitoring and behavioral blocking. AV1 and AV5 produce two interesting re-
sults, each one representing a different class of dynamic detection techniques. In-
deed, AV1 is able to correlate some suspicious actions to identify generic malware
behavior. Unfortunately, complex self-replications such as metamorphic ones are
not detected, leading to a 100% false negatives results when confronted with
our experimental metamorphic worms. AV6 can detect all elementary suspicious
actions which could describe the behavior of the worm MyDoom. Unfortunately,
these events are not correlated to identify the generic worm behavior. Finally, in
all cases, it appears to be too immature to evaluate the impact of τ -obfuscation
on the current state of the art dynamic detection products. Behavioral detections
seems too early to detect complex metamorphic malware.



5 Conclusion

In this paper, we have proposed an approach of a generic metamorphic engine
based on advanced code transformation techniques. Describing the process of
the metamorphic engine self-replication, we have illustrated the difficulty of de-
tecting it. From a static point of view, the obfuscation scheme was designed to
avoid any syntactic signature which could represent a possible detection pattern.
Moreover, classical static analysis techniques based on data flow propagation or
slicing are limited by the robustness of code obfuscation.

To evaluate the threat represented by self-replicating metamorphic malware,
we applied our metamorphic engine to a representative worm to assess current
industrial antivirus products detection capabilities. The results show that no
tested detection tool is able to reliably detect this class of malware as a worm.
Concerning static detection products, only one seems able to detect samples of
malware according to some heuristics. Concerning dynamic detection tools, two
techniques seem to be used : behavioral monitoring and behavioral blocking.
Unfortunately, our experiments found some worrying limitations in these detec-
tion techniques. Indeed, behavioral monitoring fails to identify the replication
process of the proposed metamorphic engine, leading to false positive results.
Behavioral blocking, which consists in suspending some suspicious actions, relies
on the user decision to achieve system security and appears unable to detect
a global malicious behavior. Consequently, behavioral detection seems an early
detection strategy, which is not yet effective against τ -obfuscation.

Finally, this work aimed at focusing on the threats that metamorphic mal-
ware could represent. By considering the practical case where no user can decide
on the malicious aspect of an action, the question is about the automatic de-
tection of such τ -obfuscated threats. As underlined in [22], we believe that alert
correlation would offer interesting perspectives in malware detection, as has al-
ready been done concerning intrusion detection. From now, our work will be
aimed at dynamically detecting this type of malware.
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