The

e1s8

ile Web
evelolgargllent

Important Information

About Rails Versions

Rails is an evolving framework. The core Rails developers are continually
making changes, adding new features, fixing bugs, and so on. Periodically
they package up the latest version of Rails into a release. These releases are
then available to application developers as RubyGems.

This book is written for Rails 1.2.

As the book is going to press the core team have created the codebase for
Rails 1.2. However, they have not yet packaged it into a gem. This gives us a
bit of a problem. We want the book to reflect all the latest and greatest Rails
features, but we also know that it is hard for folks to jump through the hoops
required to get the so-called Edge version of Rails installed on their systems.
And until a gem is available, the 1.2 features are only available in Edge Rails.

Now, it may well be that by the time you get your hands on this book, the
Rails 1.2 gem is out. It’s easy to find out. After you've installed Rails (as
described in Chapter 3, Installing Rails, on page 31), bring up a command
prompt and enter rails -v. If it reports “Rails 1.2” or later, you're fine.

If instead you see something like “Rails 1.1.6,” you'll need to update to get
the code in this book to run. We've prepared a snapshot of the Rails frame-
work code that we used when writing this book. You can install it in your
own Rails applications as a temporary measure until 1.2 is released.

¢ Create your application normally. You'll find that it will contain a direc-
tory called vendor

* Download http://media.pragprog.com/titles/rails2/code/rails.zip into your
application’s vendor directory and unzip it. It should create a new direc-
tory called rails

¢ In your application’s top-level directory, issue the command
rake rails:update

Once Rails 1.2 is released, you can install it and remove the directory tree
vendor/rails from your applications.

The version of Rails from our web site is not an official release, and should
not be used in production applications.

» Dave Thomas

http://media.pragprog.com/titles/rails2/code/rails.zip

Second Edition

Dave Thomas

David Heinemeier Hansson

with Leon Breedt

Mike Clark

James Duncan Davidson
Justin Gehtland
Andreas Schwarz

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Pragmatic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and The Pragmatic Program-
mers, LLC was aware of a trademark claim, the designations have been printed in initial capital
letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic Program-
ming, Pragmatic Bookshelf and the linking g device are trademarks of The Pragmatic Programmers,
LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes no
responsibility for errors or omissions, or for damages that may result from the use of information
(including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create better
software and have more fun. For more information, as well as the latest Pragmatic titles, please
visit us at

http://www.pragmaticprogrammmer.com

Copyright © 2007 The Pragmatic Programmers LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 0-9776166-3-0

ISBN-13: 978-0-9776166-3-3

Printed on acid-free paper with 85% recycled, 30% post-consumer content.
P2.00 printing, January 15, 2007

Version: 2007-1-8

http://www.pragmaticprogrammer.com

— Comeats

Preface to the Second Edition 12
1 Introduction 14
1.1 RailsIsAgile, 16
1.2 Finding Your Way Around 17
1.3 Acknowledgments, 19
Part I—Getting Started 21
2 The Architecture of Rails Applications 22
2.1 Models, Views, and Controllers 22
2.2 Active Record: Rails Model Support 25
2.3 Action Pack: The View and Controller 29
3 Installing Rails 31
3.1 Your Shopping List, 31
3.2 InstallingonWindows 32
3.3 InstallingonMacOSX 34
3.4 InstallingonLinux. 35
3.5 Development Environments 36
3.6 Railsand Databases. 39
3.7 Keeping Up-to-Date 42
3.8 RailsandISPs 0., 42
4 Instant Gratification 43
4.1 Creating a New Application. 43
4.2 Hello,Rails! oo 45
4.3 Linking Pages Together 56

4.4 What WedJustDid 59

CONTENTS «d 6

Part II—Building an Application 61
5 The Depot Application 62
5.1 Incremental Development 62
5.2 WhatDepotDoes 63
53 LetsCode, 67
6 Task A: Product Maintenance 68
6.1 Iteration Al: Get Something Running 68
6.2 Iteration A2: Add a Missing Column 79
6.3 Iteration A3: Validate!, . 81
6.4 Iteration A4: Prettier Listings 85
7 Task B: Catalog Display 94
7.1 Iteration B1: Create the Catalog Listing 94
7.2 Iteration B2: Add a Page Layout 98
7.3 Iteration B3: Use a Helper to Format the Price 100
7.4 Iteration B4: Linkingtothe Cart 100
8 Task C: Cart Creation 104
8.1 SESSIONS e 104
8.2 Iteration Cl: Creatinga Cart. 107
8.3 Iteration C2: ASmarterCart 110
8.4 Iteration C3: Handling Errors 113
8.5 Iteration C4: Finishingthe Cart 118
9 Task D: Add a Dash of AJAX 122
9.1 Iteration D1: Moving the Cart 123
9.2 Iteration D2: An AJAX-Based Cart 128
9.3 Iteration D3: Highlighting Changes 131
9.4 Iteration D4: Hidean Empty Cart 133
9.5 Iteration D5: Degrading If Javascript Is Disabled 137
9.6 WhatWedustDid 138
10 Task E: Check Out! 140
10.1 TIteration E1l: Capturingan Order 140
11 Task F: Administration 155
11.1 TIteration F1: Adding Users 155
11.2 TIteration F2: LoggingIn 163
11.3 Iteration F3: Limiting Access 166
11.4 Iteration F4: A Sidebar, More Administration 168

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=6

CONTENTS d 7

12 Task G: One Last Wafer-Thin Change 175
12.1 Generatingthe XML Feed. 175
12.2 FinishingUp, 182

13 Task T: Testing 185
13.1 Tests Baked RightIn 185
13.2 UnitTesting of Models 186
13.3 Functional Testing of Controllers 198
13.4 Integration Testing of Applications 213
13.5 Performance Testing. 221
13.6 Using Mock Objects 225

Part III—The Rails Framework 228

14 Rails in Depth 229
14.1 So,Where'sRails? 229
14.2 Directory Structure 229
14.3 Rails Configuration 238
14.4 Naming Conventions 241
14.5 LogginginRails 244
14.6 DebuggingHints 245
14.7 What'sNext i 247

15 Active Support 248
15.1 Generally Available Extensions 248
15.2 Enumerations and Arrays 0. 249
15.3 String Extensions 0000, 250
15.4 ExtensionstoNumbers 252
15.5 Time and Date Extensions 253
15.6 An Extension to Ruby Symbols 255
15.7 with_options L L 256
15.8 Unicode Support L 257

16 Migrations 263
16.1 Creating and Running Migrations 264
16.2 Anatomy of a Migration 266
16.3 ManagingTables 270
16.4 Data Migrations 275
16.5 Advanced Migrations, 278
16.6 When MigrationsGoBad 280
16.7 Schema Manipulation Outside Migrations 281
16.8 Managing Migrations, 282

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=7

CONTENTS «d 8

17 Active Record: The Basics 284
17.1 Tablesand Classes v v v v vt v 285
17.2 Columns and Attributes 285
17.3 PrimaryKeysandIDs 289
17.4 Connecting to the Database 291
17.5 CRUD—Create, Read, Update, Delete. 296
17.6 Aggregation and Structured Data 314
17.7 Miscellany o e 321

18 Active Record: Relationships between Tables 324
18.1 CreatingForeignKeys 325
18.2 Specifying Relationshipsin Models 327
18.3 belongs_to and has_xxx Declarations 329
18.4 Joining to Multiple Tables 344
18.5 Self-referentialJoins 354
18.6 ACISAS. . . . o i e e e e e e e e e e e e e e 355
18.7 When Things GetSaved 359
18.8 Preloading Child Rows 361
18.9 Counters i i e e e e e 362

19 Active Record: Object Life Cycle 364
19.1 Validation e 364
19.2 Callbacks i e e e e 374
19.3 Advanced Attributes L L oo oo 381
19.4 Transactions i i it it it e 384

20 Action Controller: Routing and URLSs 393
20.1 TheBasics ittt e 393
20.2 RoutingRequests, . 394

21 Action Controller and Rails 425
21.1 ActionMethods. 425
21.2 Cookiesand Sessions, 436
21.3 Flash—Communicating between Actions 446
21.4 Filters and Verification 448
21.5 Caching,PartOne 456
21.6 The Problem with GET Requests 463

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=8

CONTENTS «d 9

22 Action View 466
22.1 Templates e 466
222 UsingHelpers. oL 472
22.3 Helpers for Formatting, Linking, and Pagination 474
224 HowFormsWork. 481
22.5 Forms That Wrap Model Objects 483
22.6 Custom Form Builders 495
22.7 Working with Nonmodel Fields. 499
22.8 Uploading Files to Rails Applications 502
22.9 Layouts and Components 506
22.10 Caching, PartTwo, . 514
22.11 Adding New Templating Systems 519

23 The Web, V2.0 522
23.1 Prototype e 522
23.2 Script.aculo.us 543
23.3 RJSTemplates 559
234 Conclusion 0 e 566

24 Action Mailer 568
24.1 SendingE-mail 0oL oL 568
24.2 ReceivingE-mail 0L oL 579
243 TestingE-mail, . 580

25 Web Services on Rails 584
25.1 What AWSIs (and WhatItIsnt) 584
25.2 The API Definition 585
25.3 Dispatching Modes 590
25.4 Using Alternate Dispatching 591
25.5 Method Invocation Interception 593
25.6 Testing Web Services 595
25.7 ProtocolClients 598

Part IV—Secure and Deploy Your Application 599

26 Securing Your Rails Application 600
26.1 SQ@QLInjection e, 600
26.2 Creating Records Directly from Form Parameters 602
26.3 Don’t TrustID Parameters 604
26.4 Don’t Expose Controller Methods 605
26.5 Cross-Site Scripting (CSS/XSS) 606
26.6 Avoid Session Fixation Attacks 608
26.7 FileUploads 609

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=9

CONTENTS <« 10

26.8 Don't Store Sensitive Information in the Clear 610
26.9 Use SSL to Transmit Sensitive Information 611
26.10 Don’t Cache Authenticated Pages 612
26.11 Knowing ThatItWorks 612
27 Deployment and Production 614
27.1 StartingEarly. 0. 615
27.2 How a Production Server Works 616
27.3 Comparing Front-End Web Servers 618
27.4 Repeatable Deployments with Capistrano 619
27.5 Setting Up a Deployment Environment. 620
27.6 Checking Up on a Deployed Application 626
27.7 Production Application Chores 627
27.8 Moving On to Launchand Beyond 628
Part V—Appendices 630
A Introduction to Ruby 631
A.1 Ruby Is an Object-Oriented Language 631
A2 RubyNames 632
A3 Methods e 633
A4 CIasses oot e e e e 635
A5 Modules 637
A6 ArraysandHashes 638
A7 Control Structures. oL 639
A.8 RegularExpressions., 640
A9 BlocksandlIterators 640
A.10 Exceptions e 641
A.11 Marshaling Objects 642
A.12 Interactive Ruby 0 0L, 642
A.13 Rubyldioms 642
A.14 RDoc Documentation 644
B Configuration Parameters 645
B.1 Top-Level Configuration 645
B.2 Active Record Configuration 647
B.3 Action Controller Configuration 649
B.4 Action View Configuration 650
B.5 Action Mailer Configuration 651
B.6 Test Case Configuration 652

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=10

CONTENTS « 11

C Source Code 653
C.1 The Full Depot Application 653
D Resources 684
D.1 Online Resources v v i i i i it i i i 684
D.2 Bibliography e 684

Index 685

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=11

Tous les jours, a tous les points de vue, je vais de mieux en
mieux.
» Emile Coué

Prefce to the Seooud R

It has been 18 months since I announced the first edition of this book. It
was clear before the book came out that Rails would be big, but I don’t think
anyone back then realized just how significant this framework would turn out
to be.

In the year that followed, Rails went from strength to strength. It was used
as the basis for any number of new, exciting web sites. Just as significantly,
large corporations (many of them household names) started to use Rails for
both inward- and outward-facing applications. Rails gained critical acclaim,
too. David Heinemeier Hansson, the creator of Rails, was named Hacker of the
Year at OSCON. Rails won a Jolt Award as best web development tool, and the
first edition of this book received a Jolt Award as best technical book.

But the Rails core team didn’t just sit still, soaking up the praise. Instead,
they’'ve been heads-down adding new features and facilities. Rails 1.0, which
came out some months after the first edition hit the streets, added features
such as database migration support, as well as updated AJAX integration.
Rails 1.1, released in the spring of 2006, was a blockbuster, with more than
500 changes since the previous release. Many of these changes are deeply
significant. For example, RJS templates change the way that developers write
AJAX-enabled applications, and the integration testing framework changes the
way these applications can be tested. A lot of work has gone into extending and
enhancing Active Record, which now includes polymorphic associations, join
models, better caching, and a whole lot more.

The time had come to update the book to reflect all this goodness. And, as I
started making the changes, I realized that something else had changed. In the
time since the first book was released, we’d all gained a lot more experience
of just how to write a Rails application. Some stuff that seemed like a great
idea didn’t work so well in practice, and other features that initially seemed
peripheral turned out to be significant. And those new practices meant that
the changes to the book went far deeper than I'd expected. I was no longer
doing a cosmetic sweep through the text, adding a couple of new APIs. Instead,
I found myself rewriting the content. Some chapters from the original have
been removed, and new chapters have been added. Many of the rest have been

PREFACE TO THE SECOND EDITION < 13

completely rewritten. So, it became clear that we were looking at a second
edition—basically a new book.

It seems strange to be releasing a second edition at a time when the first
edition is still among the best-selling programming books in the world. But
Rails has changed, and we need to change this book with it.

Enjoy!

Dave Thomas
October 2006

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=13

Chapter 1

w
Ruby on Rails is a framework that makes it easier to develop, deploy, and
maintain web applications. During the months that followed its initial release,
Rails went from being an unknown toy to being a worldwide phenomenon. It
has won awards, and, more important, it has become the framework of choice
for the implementation of a wide range of so-called Web 2.0 applications. It

isn’t just trendy among hard-core hackers: many multinational companies are
using Rails to create their web applications.

Why is that? There seem to be many reasons.

First, there seemed to be a large number of developers who were frustrated
with the technologies they were using to create web applications. It didn’'t seem
to matter whether they were using Java, PHP, or .NET—there was a growing
sense that their job was just too damn hard. And then, suddenly, along came
Rails, and Rails is easier.

But easy on its own doesn’t cut it. We're talking about professional developers
writing real-world web sites. They wanted to feel that the applications they
were developing would stand the test of time—that they were designed and
implemented using modern, professional techniques. So these developers dug
into Rails and discovered it wasn’t just a tool for hacking out sites.

For example, all Rails applications are implemented using the Model-View-
Controller (MVC) architecture. Java developers are used to frameworks such
as Tapestry and Struts, which are based on MVC. But Rails takes MVC further:
when you develop in Rails, there’s a place for each piece of code, and all the
pieces of your application interact in a standard way. It’s as if you start out
with the skeleton of an application already prepared.

Professional programmers write tests. And again, Rails delivers. All Rails appli-
cations have testing support baked right in. As you add functionality to the

CHAPTER 1. INTRODUCTION < 15

code, Rails automatically creates test stubs for that functionality. The frame-
work makes it easy to test applications, and as a result Rails applications tend
to get tested.

Rails applications are written in Ruby, a modern, object-oriented scripting
language. Ruby is concise without being unintelligibly terse—you can express
ideas naturally and cleanly in Ruby code. This leads to programs that are easy
to write and (just as importantly) are easy to read months later.

Rails takes Ruby to the limit, extending it in novel ways that make a pro-
grammer’s life easier. This makes our programs shorter and more readable.
It also allows us to perform tasks that would normally be done in external
configuration files inside the codebase instead. This makes it far easier to see
what’s happening. The following code defines the model class for a project.
Don’t worry about the details for now. Instead, just think about how much
information is being expressed in a few lines of code.

class Project < ActiveRecord::Base

belongs_to :portfolio

has_one :project_manager

has_many :milestones

has_many :deliverables, :through => :milestones
validates_presence_of :name, :description

validates_acceptance_of :non_disclosure_agreement
validates_uniqueness_of :short_name
end

Developers who came to Rails also found a strong philosophical underpinning.
The design of Rails was driven by a couple of key concepts: DRY and conven-
tion over configuration. DRY stands for Don’t Repeat Yourself—every piece of
knowledge in a system should be expressed in just one place. Rails uses the
power of Ruby to bring that to life. You'll find very little duplication in a Rails
application; you say what you need to say in one place—a place often sug-
gested by the conventions of the MVC architecture—and then move on. For
programmers used to other web frameworks, where a simple change to the
schema could involve them in half a dozen or more code changes, this was a
revelation.

Convention over configuration is crucial, too. It means that Rails has sensi-
ble defaults for just about every aspect of knitting together your application.
Follow the conventions, and you can write a Rails application using less code
than a typical Java web application uses in XML configuration. If you need to
override the conventions, Rails makes that easy, too.

Developers coming to Rails found something else, too. Rails is new, and the
core team of developers understands the new Web. Rails isn’t playing catch-
up with the new de facto web standards: it's helping define them. And Rails

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=15

RaILS Is AGILE «d 16

makes it easy for developers to integrate features such as AJAX and RESTful
interfaces into their code: support is built in. (And if you're not familar with
AJAX and REST interfaces, never fear—we’ll explain them later on.)

Developers are worried about deployment, too. They found that with Rails you
can deploy successive releases of your application to any number of servers
with a single command (and roll them back equally easily should the release
prove to be somewhat less than perfect).

Rails was extracted from a real-world, commercial application. It turns out
that the best way to create a framework is to find the central themes in a
specific application and then bottle them up in a generic foundation of code.
When you're developing your Rails application, you're starting with half of a
really good application already in place.

But there’s something else to Rails—something that’s hard to describe. Some-
how, it just feels right. Of course you’ll have to take our word for that until
you write some Rails applications for yourself (which should be in the next 45
minutes or so...). That’s what this book is all about.

1.1 Rails Is Agile

The title of this book is Agile Web Development with Rails. You may be sur-
prised to discover that we don’t have explicit sections on applying agile prac-
tices X, Y, and Z to Rails coding.

The reason is both simple and subtle. Agility is part of the fabric of Rails.

Let’s look at the values expressed in the Agile Manifesto as a set of four pref-
erences.! Agile development favors the following.

¢ Individuals and interactions over processes and tools
* Working software over comprehensive documentation
* Customer collaboration over contract negotiation

* Responding to change over following a plan

Rails is all about individuals and interactions. There are no heavy toolsets,
no complex configurations, and no elaborate processes. There are just small
groups of developers, their favorite editors, and chunks of Ruby code. This
leads to transparency; what the developers do is reflected immediately in what
the customer sees. It’s an intrinsically interactive process.

Rails doesn’t denounce documentation. Rails makes it trivially easy to cre-
ate HTML documentation for your entire codebase. But the Rails development
process isn’t driven by documents. You won't find 500-page specifications at

1. http://agilemanifesto.org/. Dave Thomas was one of the 17 authors of this document.

http://agilemanifesto.org/
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=16

FINDING YOUR WAY AROUND < 17

the heart of a Rails project. Instead, you'll find a group of users and develop-
ers jointly exploring their need and the possible ways of answering that need.
You'll find solutions that change as both the developers and users become
more experienced with the problems they're trying to solve. You'll find a frame-
work that delivers working software early in the development cycle. This soft-
ware may be rough around the edges, but it lets the users start to get a glimpse
of what you’ll be delivering.

In this way, Rails encourages customer collaboration. When customers see
just how quickly a Rails project can respond to change, they start to trust
that the team can deliver what'’s required, not just what has been requested.
Confrontations are replaced by “What if?” sessions.

That'’s all tied to the idea of being able to respond to change. The strong, almost
obsessive, way that Rails honors the DRY principle means that changes to
Rails applications impact a lot less code than the same changes would in other
frameworks. And since Rails applications are written in Ruby, where concepts
can be expressed accurately and concisely, changes tend to be localized and
easy to write. The deep emphasis on both unit and functional testing, along
with support for test fixtures and stubs during testing, gives developers the
safety net they need when making those changes. With a good set of tests in
place, changes are less nerve-wracking.

Rather than constantly trying to tie Rails processes to the agile principles,
we've decided to let the framework speak for itself. As you read through the
tutorial chapters, try to imagine yourself developing web applications this way:
working alongside your customers and jointly determining priorities and solu-
tions to problems. Then, as you read the deeper reference material in the back,
see how the underlying structure of Rails can enable you to meet your cus-
tomers’ needs faster and with less ceremony.

One last point about agility and Rails: although it’s probably unprofessional
to mention this, think how much fun the coding will be.

1.2 Finding Your Way Around

The first two parts of this book are an introduction to the concepts behind
Rails and an extended example—we build a simple online store. This is the
place to start if you're looking to get a feel for Rails programming. In fact, most
folks seem to enjoy building the application along with the book. If you don’t
want to do all that typing, you can cheat and download the source code (a
compressed tar archive or a zip file).?

2. http://www.pragmaticprogrammer.com/titles/rails2/code.html has the links for the downloads.

http://www.pragmaticprogrammer.com/titles/rails2/code.html
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=17

FINDING YOUR WAY AROUND <« 18

The third part of the book, starting on page 229, is a detailed look at all the
functions and facilities of Rails. This is where you'll go to find out how to
use the various Rails components and how to deploy your Rails applications
efficiently and safely.

Along the way, you'll see various conventions we've adopted.

Live Code
Most of the code snippets we show come from full-length, running exam-
ples, which you can download. To help you find your way, if a code listing
can be found in the download, there’ll be a bar above the snippet (just
like the one here).

Download work/demo1/app/controllers/say_controller.rb

class SayController < ApplicationController
def hello
end

end

This contains the path to the code within the download. If you're reading
the PDF version of this book and your PDF viewer supports hyperlinks,
you can click the bar, and the code should appear in a browser window.
Some browsers (such as Safari) will mistakenly try to interpret some of
the templates as HTML. If this happens, view the source of the page to
see the real source code.

Ruby Tips
Although you need to know Ruby to write Rails applications, we realize
that many folks reading this book will be learning both Ruby and Rails
at the same time. Appendix A, on page 631, is a (very) brief introduction
to the Ruby language. When we use a Ruby-specific construct for the
first time, we’ll cross-reference it to that appendix. For example, this
paragraph contains a gratuitous use of :name, a Ruby symbol. In the nome
margin, you'll see an indication that symbols are explained on page 633. page 633
If you don’t know Ruby, or if you need a quick refresher, you might want
to go read Appendix A, on page 631, before you go too much further.
There’s a lot of code in this book....

David Says...
Every now and then you’ll come across a David Says... sidebar. Here’s
where David Heinemeier Hansson gives you the real scoop on some par-
ticular aspect of Rails—rationales, tricks, recommendations, and more.
Because he’s the fellow who invented Rails, these are the sections to read
if you want to become a Rails pro.

Joe Asks...
Joe, the mythical developer, sometimes pops up to ask questions about
stuff we talk about in the text. We answer these as we go along.

http://media.pragprog.com/titles/rails2/code/work/demo1/app/controllers/say_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=18

ACKNOWLEDGMENTS < 19

This book isn’t a reference manual for Rails. We show most of the modules and
most of their methods, either by example or narratively in the text, but we don’t
have hundreds of pages of API listings. There’s a good reason for this—you get
that documentation whenever you install Rails, and it’s guaranteed to be more
up-to-date than the material in this book. If you install Rails using RubyGems
(which we recommend), simply start the gem documentation server (using the
command gem_server), and you can access all the Rails APIs by pointing your
browser at http://localhost:8808. (The sidebar on page 39 describes another way
of installing the full API documentation.)

Rails Versions
This book documents Rails 1.2.

If you are not running Rails 1.2, then you’ll need to update before trying the
code in this book. If Rails 1.2 is not yet available (this book went to print before
the official Gem was released), you can download an interim version. See the
instructions inside the front cover.

1.3 Acknowledgments

You’d think that producing a second edition of a book would be easy. After all,
you already have all the text. It’s just a tweak to some code here and a minor
wording change there, and you're done. You'd think....

It’'s difficult to tell exactly, but my impression is that creating this second
edition of Agile Web Development with Rails took about as much effort as the
first edition. Rails was constantly evolving and, as it did, so did this book.
Parts of the Depot application were rewritten three or four times, and all of
the narrative was updated. The emphasis on REST and the addition of the
deprecation mechanism all changed the structure of the book as what was
once hot became just lukewarm.

So, this book would not exist without a massive amount of help from the
Ruby and Rails communities. As with the original, this book was released as
a beta book: early versions were posted as PDFs, and people made comments
online. And comment they did: more than 1,200 suggestions and bug reports
were posted. The vast majority ended up being incorporated, making this book
immeasurably more useful than it would have been. Thank you all, both for
supporting the beta book program and for contributing so much valuable feed-
back.

As with the first edition, the Rails core team was incredibly helpful, answering
questions, checking out code fragments, and fixing bugs. A big thank you to

Scott Barron (htonl), Jamis Buck (minam), Thomas Fuchs (madrobby),
Jeremy Kemper (bitsweat), Michael Koziarski (nzkoz),

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=19

ACKNOWLEDGMENTS < 20

Marcel Molina Jr, (noradio), Rick Olson (technoweenie),
Nicholas Seckar (Ulysses), Sam Stephenson (sam), Tobias Liitke (xal),
and Florian Weber (csshsh).

I'd like to thank the folks who contributed the specialized chapters to the
book: Leon Breedt, Mike Clark, James Duncan Davidson, Justin Gehtland,
and Andreas Schwarz.

I keep promising myself that each book will be the last, if for no other reason
than each takes me away from my family for months at a time. Once again:
Juliet, Zachary, and Henry—thank you for everything.

Dave Thomas
November 2006
dave@pragprog.com

“Agile Web Development with Rails...I found it
in our local bookstore and it seemed great!”
—Dave’s Mum

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=20

Part I

Getting Started

2.1

Chapter 2

One of the interesting features of Rails is that it imposes some fairly serious
constraints on how you structure your web applications. Surprisingly, these
constraints make it easier to create applications—a lot easier. Let’'s see why.

Models, Views, and Controllers

Back in 1979, Trygve Reenskaug came up with a new architecture for develop-
ing interactive applications. In his design, applications were broken into three
types of components: models, views, and controllers.

The model is responsible for maintaining the state of the application. Some-
times this state is transient, lasting for just a couple of interactions with the
user. Sometimes the state is permanent and will be stored outside the appli-
cation, often in a database.

A model is more than just data; it enforces all the business rules that apply
to that data. For example, if a discount shouldn’t be applied to orders of less
than $20, the model will enforce the constraint. This makes sense; by putting
the implementation of these business rules in the model, we make sure that
nothing else in the application can make our data invalid. The model acts as
both a gatekeeper and a data store.

The view is responsible for generating a user interface, normally based on
data in the model. For example, an online store will have a list of products
to be displayed on a catalog screen. This list will be accessible via the model,
but it will be a view that accesses the list from the model and formats it for
the end user. Although the view may present the user with various ways of
inputting data, the view itself never handles incoming data. The view’s work
is done once the data is displayed. There may well be many views that access
the same model data, often for different purposes. In the online store, there’ll

MODELS, VIEWS, AND CONTROLLERS <« 23

D Browser sends request

“fﬁj"“’;mmwmm @ Controller interacts with model
@ Controller invokes view
Controller @ View renders next browser screen
N7 N\
— =
: R
View - Model <+— | Database

Figure 2.1: The Model-View-Controller Architecture

be a view that displays product information on a catalog page and another set
of views used by administrators to add and edit products.

Controllers orchestrate the application. Controllers receive events from the
outside world (normally user input), interact with the model, and display an
appropriate view to the user.

This triumvirate—the model, view, and controller—together form an architec-
ture known as MVC. Figure 2.1 shows MVC in abstract terms.

MVC was originally intended for conventional GUI applications, where devel-
opers found the separation of concerns led to far less coupling, which in turn
made the code easier to write and maintain. Each concept or action was
expressed in just one well-known place. Using MVC was like constructing a
skyscraper with the girders already in place—it was a lot easier to hang the
rest of the pieces with a structure already there.

In the software world, we often ignore good ideas from the past as we rush
headlong to meet the future. When developers first started producing web
applications, they went back to writing monolithic programs that intermixed
presentation, database access, business logic, and event handling in one big
ball of code. But ideas from the past slowly crept back in, and folks started
experimenting with architectures for web applications that mirrored the 20-
year-old ideas in MVC. The results were frameworks such as WebObjects,
Struts, and JavaServer Faces. All are based (with varying degrees of fidelity)
on the ideas of MVC.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=23

MODELS, VIEWS, AND CONTROLLERS «d 24

y @ http://my.url/store/add_to_cart/123

* @) @ Routing finds Store controller

@ Controller interacts with model

@ Controller invokes view

® View renders next browser screen

Controller

Active —
Record <+— | Database

Model

Figure 2.2: Rails and MVC

Ruby on Rails is an MVC framework, too. Rails enforces a structure for your
application—you develop models, views, and controllers as separate chunks of
functionality and it knits them all together as your program executes. One of
the joys of Rails is that this knitting process is based on the use of intelligent
defaults so that you typically don’t need to write any external configuration
metadata to make it all work. This is an example of the Rails philosophy of
favoring convention over configuration.

In a Rails application, incoming requests are first sent to a router, which
works out where in the application the request should be sent and how the
request itself should be parsed. Ultimately, this phase identifies a particular
method (called an action in Rails parlance) somewhere in the controller code.
The action might look at data in the request itself, it might interact with the
model, and it might cause other actions to be invoked. Eventually the action
prepares information for the view, which renders something to the user.

Figure 2.2, shows how Rails handles an incoming request. In this example, the
application has previously displayed a product catalog page and the user has
just clicked the button next to one of the products. This button
links to http://my.url/store/add_to_cart/123, where add_to_cart is an action in our
application and 128 is our internal id for the selected product.!

1. We cover the format of Rails URLs later in the book. However, it’s worth pointing out here that
having URLs perform actions such as add to cart can be dangerous. See Section 21.6, The Problem
with GET Requests, on page 463 for more details.

http://my.url/store/add_to_cart/123
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=24

ACTIVE RECORD: RAILS MODEL SUPPORT <« 25

The routing component receives the incoming request and immediately picks
it apart. In this simple case, it takes the first part of the path, store, as the
name of the controller and the second part, add_to_cart, as the name of an
action. The last part of the path, 123, is by convention extracted into an internal
parameter called id. As a result of all this analysis, the router knows it has to
invoke the add_to_cart method in the controller class StoreController (we’ll talk
about naming conventions on page 241).

The add_fo_cart method handles user requests. In this case it finds the current
user’s shopping cart (which is an object managed by the model). It also asks
the model to find the information for product 123. It then tells the shopping
cart to add that product to itself. (See how the model is being used to keep
track of all the business data; the controller tells it what to do, and the model
knows how to do it.)

Now that the cart includes the new product, we can show it to the user. The
controller arranges things so that the view has access to the cart object from
the model, and it invokes the view code. In Rails, this invocation is often
implicit; again conventions help link a particular view with a given action.

That’s all there is to an MVC web application. By following a set of conven-
tions and partitioning your functionality appropriately, you'll discover that
your code becomes easier to work with and your application becomes easier to
extend and maintain. Seems like a good trade.

If MVC is simply a question of partitioning your code a particular way, you
might be wondering why you need a framework such as Ruby on Rails. The
answer is straightforward: Rails handles all of the low-level housekeeping for
you—all those messy details that take so long to handle by yourself—and lets
you concentrate on your application’s core functionality. Let’s see how....

2.2 Active Record: Rails Model Support

In general, we’ll want our web applications to keep their information in a rela-
tional database. Order-entry systems will store orders, line items, and cus-
tomer details in database tables. Even applications that normally use unstruc-
tured text, such as weblogs and news sites, often use databases as their back-
end data store.

Although it might not be immediately apparent from the SQL? you use to
access them, relational databases are actually designed around mathematical
set theory. Although this is good from a conceptual point of view, it makes
it difficult to combine relational databases with object-oriented programming

2. SQL, referred to by some as Structured Query Language, is the language used to query and
update relational databases.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=25

ACTIVE RECORD: RAILS MODEL SUPPORT <« 26

languages. Objects are all about data and operations, and databases are all
about sets of values. Operations that are easy to express in relational terms
are sometimes difficult to code in an OO system. The reverse is also true.

Over time, folks have worked out ways of reconciling the relational and OO
views of their corporate data. Let’s look at two different approaches. One orga-
nizes your program around the database; the other organizes the database
around your program.

Database-centric Programming

The first folks who coded against relational databases programmed in proce-
dural languages such as C and COBOL. These folks typically embedded SQL
directly into their code, either as strings or by using a preprocessor that con-
verted SQL in their source into lower-level calls to the database engine.

The integration meant that it became natural to intertwine the database logic
with the overall application logic. A developer who wanted to scan through
orders and update the sales tax in each order might write something exceed-
ingly ugly, such as

EXEC SQL BEGIN DECLARE SECTION;
int id;
float amount;

EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE cl AS CURSOR FOR select id, amount from orders;

while (1) {
float tax;
EXEC SQL WHENEVER NOT FOUND DO break;
EXEC SQL FETCH c1 INTO :id, :amount;
tax = calc_sales_tax(amount)
EXEC SQL UPDATE orders set tax = :tax where id = :id;
}
EXEC SQL CLOSE c1;
EXEC SQL COMMIT WORK;

Scary stuff, eh? Don’t worry. We won't be doing any of this, even though this
style of programming is common in scripting languages such as Perl and PHP.
It's also available in Ruby. For example, we could use Ruby’s DBI library to
produce similar-looking code. (This example, like the previous one, has no
error checking.) Method definition
— page 633
def update_sales_tax
update = @db.prepare("update orders set tax=? where id=?")
@db.select_all("select id, amount from orders") do |id, amount]|
tax = calc_sales_tax(amount)
update.execute(tax, id)
end
end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=26

ACTIVE RECORD: RAILS MODEL SUPPORT d 27

This approach is concise and straightforward and indeed is widely used. It
seems like an ideal solution for small applications. However, there is a prob-
lem. Intermixing business logic and database access like this can make it hard
to maintain and extend the applications in the future. And you still need to
know SQL just to get started on your application.

Say, for example, our enlightened state government passes a new law that
says we have to record the date and time that sales tax was calculated. That’s
not a problem, we think. We just have to get the current time in our loop, add
a column to the SQL update statement, and pass the time to the execute call.

But what happens if we set the sales tax column in many different places
in the application? Now we’ll need to go through and find all these places,
updating each. We have duplicated code, and (if we miss a place where the
column is set) we have a source of errors.

In regular programming, object orientation has taught us that encapsulation
solves these types of problems. We'd wrap everything to do with orders in a
class; we’d have a single place to update when the regulations change.

Folks have extended these ideas to database programming. The basic premise
is trivially simple. We wrap access to the database behind a layer of classes.
The rest of our application uses these classes and their objects—it never inter-
acts with the database directly. This way we've encapsulated all the schema-
specific stuff into a single layer and decoupled our application code from the
low-level details of database access. In the case of our sales tax change, we’d
simply change the class that wrapped the orders table to update the time
stamp whenever the sales tax was changed.

In practice this concept is harder to implement than it might appear. Real-life
database tables are interconnected (an order might have multiple line items,
for example), and we’d like to mirror this in our objects: the order object should
contain a collection of line item objects. But we then start getting into issues of
object navigation, performance, and data consistency. When faced with these
complexities, the industry did what it always does: it invented a three-letter
acronym: ORM, which stands for object-relational mapping. Rails uses ORM.

Object-Relational Mapping

ORM libraries map database tables to classes. If a database has a table called
orders, our program will have a class named Order. Rows in this table corre-
spond to objects of the class—a particular order is represented as an object of
class Order. Within that object, attributes are used to get and set the individual
columns. Our Order object has methods to get and set the amount, the sales
tax, and so on.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=27

ACTIVE RECORD: RAILS MODEL SUPPORT <« 28

In addition, the Rails classes that wrap our database tables provide a set of
class-level methods that perform table-level operations. For example, we might
need to find the order with a particular id. This is implemented as a class
method that returns the corresponding Order object. In Ruby code, this might class method

look like — page 635
order = Order.find(1) puts
puts "Order #{order.customer_id}, amount=#{order.amount}" — page 633

Sometimes these class-level methods return collections of objects.

iterating
Order.find(:all, :conditions => "name='dave'").each do |order| < page 640
puts order.amount
end

Finally, the objects corresponding to individual rows in a table have methods
that operate on that row. Probably the most widely used is save, the operation
that saves the row to the database.
Order.find(:all, :conditions => "name='dave'").each do |order|

order.discount = 0.5

order.save
end

So an ORM layer maps tables to classes, rows to objects, and columns to
attributes of those objects. Class methods are used to perform table-level oper-
ations, and instance methods perform operations on the individual rows.

In a typical ORM library, you supply configuration data to specify the map-
pings between entities in the database and entities in the program. Program-
mers using these ORM tools often find themselves creating and maintaining a
boatload of XML configuration files.

Active Record

Active Record is the ORM layer supplied with Rails. It closely follows the stan-
dard ORM model: tables map to classes, rows to objects, and columns to object
attributes. It differs from most other ORM libraries in the way it is configured.
By relying on convention and starting with sensible defaults, Active Record
minimizes the amount of configuration that developers perform. To illustrate
this, here’s a program that uses Active Record to wrap our orders table.

require 'active_record'

class Order < ActiveRecord::Base
end

order = Order.find(1)

order.discount = 0.5
order.save

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=28

ACTION PACK: THE VIEW AND CONTROLLER < 29

This code uses the new Order class to fetch the order with an id of 1 and modify
the discount. (We've omitted the code that creates a database connection for
now.) Active Record relieves us of the hassles of dealing with the underlying
database, leaving us free to work on business logic.

But Active Record does more than that. As you'll see when we develop our
shopping cart application, starting on page 62, Active Record integrates seam-
lessly with the rest of the Rails framework. If a web form sends the application
data related to a business object, Active Record can extract it into our model.
Active Record supports sophisticated validation of model data, and if the form
data fails validations, the Rails views can extract and format errors with just
a single line of code.

Active Record is the solid model foundation of the Rails MVC architecture.
That's why we devote three chapters to it, starting on page 284.

2.3 Action Pack: The View and Controller

When you think about it, the view and controller parts of MVC are pretty
intimate. The controller supplies data to the view, and the controller receives
events from the pages generated by the views. Because of these interactions,
support for views and controllers in Rails is bundled into a single component,
Action Pack.

Don’t be fooled into thinking that your application’s view code and controller
code will be jumbled up just because Action Pack is a single component. Quite
the contrary; Rails gives you the separation you need to write web applications
with clearly demarcated code for control and presentation logic.

View Support

In Rails, the view is responsible for creating either all or part of a page to be
displayed in a browser.® At its simplest, a view is a chunk of HTML code that
displays some fixed text. More typically you'll want to include dynamic content
created by the action method in the controller.

In Rails, dynamic content is generated by templates, which come in three fla-
vors. The most common templating scheme, called rhtml, embeds snippets of
Ruby code within the view’'s HTML using a Ruby tool called ERb (or Embedded
Ruby).* This approach is very flexible, but purists sometimes complain that
it violates the spirit of MVC. By embedding code in the view we risk adding
logic that should be in the model or the controller. This complaint is largely

3. Or an XML response, or an e-mail, or.... The key point is that views generate the response back
to the user.
4. This approach might be familiar to web developers working with PHP or Java’s JSP technology.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=29

ACTION PACK: THE VIEW AND CONTROLLER < 30

groundless: views contained active code even in the original MVC architec-
tures. Maintaining a clean separation of concerns is part of the job of the
developer. (We look at HTML templates in Section 22.1, RHTML Templates, on
page 469.)

The second templating scheme, called rxml, lets you construct XML documents
using Ruby code—the structure of the generated XML will automatically follow
the structure of the code. We discuss rxml templates starting on page 468.

Rails also provides rjs views. These allow you to create JavaScript fragments
on the server that are then executed on the browser. This is great for creating
dynamic Ajax interfaces. We talk about these starting on page 559.

And the Controller!

The Rails controller is the logical center of your application. It coordinates the
interaction between the user, the views, and the model. However, Rails handles
most of this interaction behind the scenes; the code you write concentrates on
application-level functionality. This makes Rails controller code remarkably
easy to develop and maintain.

The controller is also home to a number of important ancillary services.

¢ It is responsible for routing external requests to internal actions. It han-
dles people-friendly URLs extremely well.

¢ It manages caching, which can give applications orders-of-magnitude
performance boosts.

¢ It manages helper modules, which extend the capabilities of the view
templates without bulking up their code.

¢ It manages sessions, giving users the impression of ongoing interaction
with our applications.

There’s a lot to Rails. Rather than attack it component by component, let’s roll
up our sleeves and write a couple of working applications. In the next chapter
we’ll install Rails. After that we’ll write something simple, just to make sure
we have everything installed correctly. In Chapter 5, The Depot Application, on
page 62 we’ll start writing something more substantial—a simple online store
application.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=30

3.1

Chapter 3

Normally these kinds of books build up slowly, starting with the easy stuff and
building slowly to the advanced material. The idea is to lull folks into thinking
it's easy while they're browsing in the bookstores, and then hit them with the
enormity of their purchase only after they've taken the book home.

We're not that kind of book. Because Rails is just so easy, it turns out that
this is probably the hardest chapter in the book. Yup—it's the “how to get a
Rails environment running on your computer” chapter.

Don’t let that put you off; it really isn’t that hard. It’s just that you're installing
a professional-quality web tier on your box, and a number of components are
involved. And, because operating systems differ in the way they support com-
ponents such as web servers, you'll find that this chapter will have different
sections for Windows, Mac, and Unix users. (Don’t worry, though. Once we're
past this chapter, all the operating system dependencies will be behind us.)

Mike Clark and Dave Thomas run a series of Rails Studios,! where people
who've never used Rails or Ruby learn to write applications. The recommenda-
tions in this chapter are based on our experiences getting these folks up and
running as quickly and painlessly as possible.

Also, you'll notice that this section defers to online resources. That’s because
the world is changing rapidly, and any low-level instructions printed in a book
are likely to become outdated.

Your Shopping List
To get Rails running on your system, you’ll need the following.

* A Ruby interpreter. Rails is written in Ruby, and you’ll be writing your
applications in Ruby too. The Rails team now recommends Ruby version

1. http://pragmaticstudio.com

http://pragmaticstudio.com

INSTALLING ON WINDOWS <« 32

1.8.4. (The latest version of Ruby as of October 2006 is 1.8.5. This runs
Rails just fine, but you may encounter some issues using the break-
pointer.)

* Ruby on Rails. This book was written using Rails version 1.2.
* Some libraries.
¢ A database. We're using MySQL 5.0.22 in this book.

For a development machine, that’s about all we’ll need (apart from an editor,
and we’ll talk about editors separately). However, if you're going to deploy your
application, you’ll also need to install a production web server (as a minimum)
along with some support code to let Rails run efficiently. We have a whole
chapter devoted to this, starting on page 614, so we won'’t talk about it more
here.

So, how do you get all this installed? It depends on your operating system....

3.2 Installing on Windows

If you're using Windows for development, you're in luck, because Curt Hibbs
has put together a bundle of everything you’ll need to get started with Rails.
InstantRails is a single download that contains Ruby, Rails, MySQL (version 4
at the time of writing), and all the gubbins needed to make them work together.
It even contains an Apache web server and the support code that lets you
deploy high-performance web applications.

1. Create a folder to contain the InstantRails installation. The path to the
folder cannot contain any spaces (so C:\Program Files would be a poor
choice).

2. Visit the InstantRails web site? and follow the link to download the latest
zZip file. (I's about 50MB, so make a pot of tea before starting if you're on
a slow connection.) Put it into the directory you created in step 1.

3. You'll need to unzip the archive if your system doesn’t do it automatically.

4. Navigate to the InstantRails directory, and start InstantRails up by double-
clicking the InstantRails icon (it’s the big red I).

¢ If you see a pop-up asking whether it’'s OK to regenerate configura-
tion files, say .

¢ If you see a security alert saying that Apache has been blocked by
the firewall, well.... We're not going to tell you whether to block it
or unblock it. For the purposes of this book, we aren’t going to be
using Apache, so it doesn’t matter. The safest course of action is to

2. http://instantrails.rubyforge.org/wiki/wiki.pl

http://instantrails.rubyforge.org/wiki/wiki.pl
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=32

INSTALLING ON WINDOWS < 33

I Instant Rails E]
l?" | pyr— N Started MySOL E Pending... _lm ﬂ
Help 3
- - DWNLO™1NINSTAN1NINSTAN™1~Apache ;C: \DO“
Lag Files , @gils: Servers starting

onfiguration file changed
Configure ¥ ICanfinuation file channed ails_apps
Rails Applications * Manage Rails Applications. ..
1z _apps >dir
Open Ruby Console Window
Open Windows Explorer

ztantRailssrails_apps

w1 oo 2006 83 PM <DIR>
04272006 B3 PM .-
B4.-19 /2006 88 AM cookbook
04192006 B8 AM typo-2.6.8
B Fileds> @ bytes
4 Dirds> 12,.844.6408.256 hytes free

C:~Downloads~InstantRails~InstantRails\rails_apps>ruby -v
ruby 1.8.4 (2805-12-24> [i386-mswin321]

C:“Downloads~InstantRails~InstantRails\rails_apps>rails -v
Rails 1.1.2

C:“DownloadssInstantRailssInstantRailssrails apps>

Figure 3.1: Instant Rails—Start a Console

say |Keep Blocking]. If you know what you're doing and you aren’t

running IIS on your machine, you can unblock the port and use
Apache later.

You should see a small InstantRails window appear. You can use this to
monitor and control Rails applications. However, we’ll be digging a little
deeper than this, so we’ll be using a console window. To start this, click
the I button in the top-left corner of the InstantRails window (the button
has a black I with a red dot in the lower right). From the menu, select
Rails Applications..., followed by Open Ruby Console Window. You should see a
command window pop up, and you’ll be sitting in the rails_apps directory,
as shown in Figure 3.1. You can verify your versions of Ruby and Rails
by typing the commands ruby -v and rails -v, respectively.

At this point, you're up and running. But, before you skip to the start of the
next chapter you should know two important facts.

First, and most important, whenever you want to enter commands in a console
window, you must use a console started from the InstantRails menu. Follow the
same procedure we used previously (clicking the I, and so on). If you bring up
a regular Windows command prompt, stuff just won't work. (Why? Because
InstantRails is self-contained—it doesn’t install itself into your global Windows
environment. That means all the programs you need are not by default in the
Windows path. You can, with a little fiddling, add them and then use the
regular command window, but the InstantRails way seems just as easy.)

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=33

INSTALLING ON MAC OS X <« 34

Second, at any time you can upgrade your version of Rails to the very latest
by bringing up an InstantRails console and typing

C:\rails_apps> gem update rails --include-dependencies

OK. You Windows users are done: you can skip forward to Section 3.5, Devel-
opment Environments, on page 36. See you there.

3.3 Installing on Mac OS X

As of OS X 10.4.6, Mac users have a decent Ruby installation included as
standard.® You can install Rails on top of this by installing RubyGems and
then installing Rails and a database.

Interestingly, though, many Mac users choose a different path. Rather than
build on the built-in Ruby, either they use a prepackaged solution, such as
Ryan Raaum’s Locomotive, or they use a package management system such
as MacPorts.

Although using a bundled solution such as Locomotive might seem like a no-
brainer, it comes with a downside: it doesn’t include the MySQL database.
Instead, it comes with a database called SQLite. Now, SQLite is a perfectly good
database for small applications, and this might suit you fine. However, the
examples in this book use MySQL, and most Rails sites deploy using MySQL
or Postgres. Also, Locomotive runs its applications under a web server called
Mongrel. This is fine, but the samples in this book assume you're using some-
thing called WEBrick. Both work fine, but you’ll need to adjust the instructions
to fit Mongrel’s way of working. So, we recommend that you have a look at the
“install-it-yourself” instructions that follow. If these seem too scary, feel free to
install Locomotive (the details are on the next page).

Roll-Your-Own Mac Installation

Ready to roll your sleeves up and do some real installing? You came to the
right place. In fact, just in case the instructions that follow seem too easy,
we’ll make it even harder by forcing you to make a decision up front.

What we’ll be doing in this section is installing all the software needed by Ruby
and Rails onto your system. And there are as many ways of doing that as there
are developers on the Mac.* Because the installation has a number of steps
and because these steps to some extent depend of the version of OS X you're
running, were going to delegate the description of the installation to some
write-ups on the Web. Here comes the decision: we've found two really good
(and well-tested) descriptions of how to install Rails on your Mac.

3. And OS X 10.5 will include Rails itself.
4. More, probably, because I for one rarely install software the same way twice.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=34

INSTALLING ON LINUX < 35

The first comes from Dan Benjamin. His article, Building Ruby, Rails, LightTPD,
and MySQL on Tiger, is a step-by-step guide to downloading and building all
the software you need to turn your Mac into a Rails machine. Find it at

® hitp://hivelogic.com/articles/2005/12/01/ruby_rails_lighttpd_mysqgl_tiger

An alternative approach is to let the computer do some of the low-level work for
you. There are at least two package management systems for OS X. These han-
dle downloading, dependency management, installation, and updating of soft-
ware. James Duncan Davidson has a great description of how to use the Mac-
Ports package management system to install Rails on OS X. (When Duncan
wrote this article, MacPorts was still called DarwinPorts.) Duncan’s approach
has one real advantage: because the package manager handles dependencies,
it makes it easier to upgrade and roll back versions of the individual compo-
nents. It has one slight disadvantage: you delegate control of your installation
layout to the package manager, so you do things the MacPorts way or not at
all. In practice, this isn’t a problem. Anyway, you’ll find Duncan’s write-up at

® hitp://duncandavidson.com/essay/2006/04/portsandbox

Read both through, make your choice, and then go for it. We'll wait.... When
you come back, join us on the following page for a discussion of editors.

Locomotive Mac Installation
You can download Locomotive as a .dmg file from http://locomotive.raaum.org.
Mount it, and drag the Locomotive folder somewhere appropriate. Then start
Locomotive by navigating into the folder and running Locomotive.app (but only
after admiring the cool train icon).

Locomotive lets you import existing Rails projects and create new projects. Its
main window displays a list of all the Rails projects that it is managing and
allows you to start and stop those applications. You edit your application’s
files outside Locomotive.

If you decided to peek at the Windows installation instructions, you’ll have
seen that there’s a strong warning: use the console supplied by InstantRails to
type Rails commands. Well, the same is true here. When using Locomotive, you
must use its console to type commands. Access it from the Applications — Open
Terminal menu option.

3.4 Installing on Linux

If you are the “I-code-by-twiddling-the-bits-on-my-hard-drive-with-a-magnet”
kind of Linux user, then Dan Benjamin’s instructions for the Mac will probably
get you going. One caveat: be wary if your box already has Ruby installed:
it may not have the libraries you need. I (Dave) always install Ruby into a

http://hivelogic.com/articles/2005/12/01/ruby_rails_lighttpd_mysql_tiger
http://duncandavidson.com/essay/2006/04/portsandbox
http://locomotive.raaum.org
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=35

DEVELOPMENT ENVIRONMENTS < 36

directory under my home directory (say ~/ruby) and then include ~/ruby/bin in
my path.

The rest of us mortals will probably use our distribution’s package manager
to install the code we need (pretty much the way James Duncan Davidson’s
instructions did for the Mac). But, because each distribution is different, we're
going to punt on the details and instead reference an online resource that
has the scoop for Ubuntu, the popular Debian-based distribution. The link
here is for the “Dapper Drake” distribution. You may find that this has been
superceded by the time you read this.

® Nhitp://wiki.rubyonrails.com/rails/pages/RailsOnUbuntuDebianTestingAndUnstable

® hitp://wiki.rubyonrails.com/rails/pages/RailsOnUbuntu

3.5 Development Environments

The day-to-day business of writing Rails programs is pretty straightforward.
Everyone works differently; here’s how I work.

The Command Line

I do a lot of my work at the command line. Although there are an increasing
number of GUI tools that help generate and manage a Rails application, I find
the command line is still the most powerful place to be. It's worth spending a
little while getting familiar with the command line on your operating system.
Find out how to use it to edit commands that you're typing, how to search
for and edit previous commands, and how to complete the names of files and
commands as you type.®

Version Control

I keep all my work in a version control system (currently Subversion). I make a
point of checking a new Rails project into Subversion when I create it and com-
miting changes once I've got passing tests. I normally commit to the repository
many times an hour.

If you're working on a Rails project with other people, consider setting up a
continuous integration (CI) system. When anyone checks in changes, the CI
system will check out a fresh copy of the application and run all the tests.
It’s simple insurance against you accidentally breaking stuff when you make
a change. You also set up your CI system so that your customers can use it

5. So-called tab completion is standard on Unix shells such as Bash and zsh. It allows you to type
the first few characters of a filename, hit , and have the shell look for and complete the name
based on matching files. This behavior is also available by default in the Windows XP command
shell. You can enable this behavior in older versions of Windows using the freely available TweakUI
power toy from Microsoft.

http://wiki.rubyonrails.com/rails/pages/RailsOnUbuntuDebianTestingAndUnstable
http://wiki.rubyonrails.com/rails/pages/RailsOnUbuntu
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=36

DEVELOPMENT ENVIRONMENTS < 37

4 N

Where’s My IDE?

If you’re coming to Ruby and Rails from languages such as C# and Java, you
may be wondering about IDEs. After all, we all know that it’s impossible to
code modern applications without at least 100MB of IDE supporting our every
keystroke. For you enlightened ones, here’s the point in the book where we rec-
ommend you sit down, ideally propped up on each side by a pile of framework
references and 1,000 page “Made Easy” books.

There are no fully fledged IDEs for Ruby or Rails (although some environments
come close). Instead, most Rails developers use plain old editors. And it turns
out that this isn‘t as much of a problem as you might think. With other, less
expressive languages, programmers rely on IDEs to do much of the grunt work
for them: IDEs do code generation, assist with navigation, and compile incre-
mentally to give early warning of errors.

With Ruby, however, much of this support just isn‘t necessary. Editors such as
TextMate give you 90% of what you'd get from an IDE but are far lighter weight.
Just about the only useful IDE facility that’s missing is refactoring support.*

«. | prefer using one editor for everything. Others use specialized editors for creating
application code versus (say) HTML layouts. For the latter, look for plugins for popular
tools such as Dreamweaver.

to play with the bleeding-edge version of your application. This kind of trans-
parency is a great way of ensuring that your project isn’t going off the tracks.

Editors

I write my Rails programs using a programmer’s editor. I've found over the
years that different editors work best with different languages and environ-
ments. For example, I'm writing this chapter using Emacs, as its Filladapt
mode is unsurpassed when it comes to neatly formatting XML as I type. But
Emacs isn't ideal for Rails development: I use TextMate for that. Although the
choice of editor is a personal one, here are some suggestions of features to
look for in a Rails editor.

* Support for syntax highlighting of Ruby and HTML. Ideally support for
.rhtml files (a Rails file format that embeds Ruby snippets within HTML).

¢ Support of automatic indentation and reindentation of Ruby source. This
is more than an aesthetic feature: having an editor indent your program
as you type is the best way of spotting bad nesting in your code. Being
able to reindent is important when you refactor your code and move stuff.
(TextMate’s ability to reindent when it pastes code from the clipboard is
very convenient.)

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=37

DEVELOPMENT ENVIRONMENTS < 38

¢ Support for insertion of common Ruby and Rails constructs. You'll be
writing lots of short methods: if the IDE creates method skeletons with a
keystroke or two, you can concentrate on the interesting stuff inside.

* Good file navigation. As we’ll see, Rails applications are spread across
many files.® You need an environment that helps you navigate quickly
between these: you'll add a line to a controller to load up a value, switch
to the view to add a line to display it, and then switch to the test to verify
you did it all right. Something like Notepad, where you traverse a File
Open dialog to select each file to edit, just won’t cut it. I personally prefer
a combination of a tree view of files in a sidebar, a small set of keystrokes
that’ll let me find a file (or files) in a directory tree by name, and some
built-in smarts that knows how to navigate (say) between a controller
action and the corresponding view.

* Name completion. Names in Rails tend to be long. A nice editor will let
you type the first few characters and then suggest possible completions
to you at the touch of a key.

We hesitate to recommend specific editors because we've used only a few in
earnest and we’ll undoubtedly leave someone’s favorite editor off the list. Nev-
ertheless, to help you get started with something other than Notepad, here are
some suggestions.

* TextMate (http://macromates.com/): The Ruby/Rails editor of choice on
Mac OS X.

RadRails (http://www.radrails.org/): An integrated Rails development envi-
ronment built on the Eclipse platform that runs on Windows, Mac OS X,
and Linux. (It won an award for being the best open source developer tool
based on Eclipse in 2006.)

jEdit (http://www.jedit.org/): A fully featured editor with support for Ruby.
It has extensive plugin support.

Komodo (http://www.activestate.com/Products/Komodo/): ActiveState’s IDE
for dynamic languages, including Ruby.

Arachno Ruby (http://www.ruby-ide.com/ruby/ruby_ide_and_ruby_editor.php):
A commercial IDE for Ruby.

Ask experienced developers who use your kind of operating system which edi-
tor they use. Spend a week or so trying alternatives before settling in. And,
once you've chosen an editor, make it a point of pride to learn some new fea-
ture every day.

6. A newly created Rails application enters the world containing 44 files spread across 36 directo-
ries. That’s before you've written a thing....

http://macromates.com/
http://www.radrails.org/
http://www.jedit.org/
http://www.activestate.com/Products/Komodo/
http://www.ruby-ide.com/ruby/ruby_ide_and_ruby_editor.php
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=38

RAILS AND DATABASES <« 39

4 N

Creating Your Own Rails APl Documentation

You can create your own local version of the consolidated Rails APl docu-
mentation. Just type the following commands at a commmand prompt (remem-
bering to start the command window in your Rails environment if you‘re using
InstantRails or Locomotive).

rails_apps> rails dummy_app

rails_apps> cd dummy_app

dummy_app> rake rails:freeze:gems

dummy_app> echo >vendor/rails/activesupport/README
dummy_app> rake doc:rails

The last step takes a while. When it finishes, you'll have the Rails APl documen-
tation in a directory tree starting at doc/api. | suggest moving this folder to your
desktop, then deleting the dummy_app tree.

The Desktop
I'm not going to tell you how to organize your desktop while working with Rails,
but I will describe what I do.

Most of the time, I'm writing code, running tests, and poking at my application
in a browser. So my main development desktop has an editor window and a
browser window permanently open. I also want to keep an eye on the logging
that’s generated by my application, so I keep a terminal window open. In it I
use tail -f to scroll the contents of the log file as it’s updated. I normally run
this window with a very small font so it takes up less space—if I see something
interesting flash by, I zoom it up to investigate.

I also need access to the Rails API documentation, which I view in a browser.
In the introduction we talked about using the gem_server command to run a
local web server containing the Rails documentation. This is convenient, but
it unfortunately splits the Rails documentation across a number of separate
documentation trees. If you're online, you can use http://api.rubyonrails.org to see
a consolidated view of all the Rails documentation in one place. The sidebar
describes how to create this same documentation on your own machine.

3.6 Rails and Databases

The examples in this book were written using MySQL (version 5.0.22 or there-
abouts). If you want to follow along with our code, it’s probably simplest if you
use MySQL too. If you decide to use something else, it won’t be a major prob-
lem. You may have to make minor adjustments to any explicit SQL in our code,
but Rails pretty much eliminates database-specific SQL from applications.

http://api.rubyonrails.org
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=39

RAILS AND DATABASES <« 40

4 N

Database Passwords

Here’s a note that may well prove to be controversial. You always want to
set a password on your production database. However, most Rails develop-
ers don’t seem to bother doing it on their development databases. In fact,
most go even further down the lazy road and just use the default MySQL
root user when in development too. Is this dangerous? Some folks say so, but
the average development machine is (or should be) behind a firewall. And,
with MySQL, you can go a step further and disable remote access to the
database by setting the skip-networking option. So, in this book, we’ll assume
you‘'ve gone with the flow. If instead you’ve created special database users
and/or set passwords, you'll need to adjust your connection parameters and
the commands you type (for example adding the -p option to MySQL com-
mands if you have a password set). For some online notes on creating secure
MySQlL installations for production, have a look at an article at Security Focus
(http://www.securityfocus.com/infocus/1726).

You need two layers of software to link your application code to the database
engine. The first is the database driver, a Ruby library that connects the low-
level database API to the higher-level world of Ruby programming. Because
databases are normally supplied with interface libraries accessible from C,
these Ruby libraries are typically written in C and have to be compiled for your
target environment.” The second layer of code is the Rails database adapter.
This sits between the Ruby library and your application. Each database library
will have its own database-specific API. The Rails database adapters hide these
differences so that a Rails application doesn’t need to know what kind of
database it is running on.

We installed the MySQL database driver in the installation steps at the start of
this chapter. This is probably good enough while you're getting to know Rails.
If so, you can safely skip to Section 3.7, Keeping Up-to-Date, on page 42.

If you're still reading this, it means you want to connect to a database other
than MySQL. Rails works with DB2, MySQL, Oracle, Postgres, Firebird, SQL
Server, and SQLite. For all but MySQL, you’'ll need to install a database driver,
a library that Rails can use to connect to and use your database engine. This
section contains the links and instructions to get that done.

The database drivers are all written in C and are primarily distributed in
source form. If you don’t want to bother building a driver from source, have
a careful look on the driver’s web site. Many times you’ll find that the author
also distributes binary versions.

7. However, you may not have to do the compiling yourself—it’s often possible to find precompiled
libraries for your platform.

http://www.securityfocus.com/infocus/1726
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=40

RAILS AND DATABASES < 41

If you can't find a binary version or if you'd rather build from source anyway,
you’'ll need a development environment on your machine to build the library.
Under Windows, this means having a copy of Visual C++. Under Linux, you'll
need gee and friends (but these will likely already be installed).

Under OS X, you’'ll need to install the developer tools (they come with the oper-
ating system but aren’t installed by default). You'll also need to install your
database driver into the correct version of Ruby. In the installation instruc-
tions starting back on page 34 we installed our own copy of Ruby, bypassing
the built-in one. It’s important to remember to have this version of Ruby first
in your path when building and installing the database driver. I always run
the command which ruby to make sure I'm not running Ruby from /usr/bin.

The following table lists the available database adapters and gives links to
their respective home pages.

DB2 http://raa.ruby-lang.org/project/ruby-db2
Firebird http://rubyforge.org/projects/fireruby/
MySQL http://www.tmtm.org/en/mysgl/ruby
Oracle http://rubyforge.org/projects/ruby-oci8
Postgres http://ruby.scripting.ca/postgres/

SQL Server (see notes after table)

SQLite http://rubyforge.org/projects/sqlite-ruby

There is a pure-Ruby version of the Postgres adapter available. Download
postgres-pr from the Ruby-DBI page at http://rubyforge.org/projects/ruby-dbi.

MySQL and SQLite are also available for download as RubyGems (mysqgl and
sqlite, respectively).

Interfacing to SQL Server requires a little effort. The following is based on a
note written by Joey Gibson, who wrote the Rails adapter.

Assuming you used the one-click installer to load Ruby onto your system, you
already have most of the libraries you need to connect to SQL Server. However,
the ADO module is not installed. Follow these steps (courtesy of Daniel Berger):

1. Wander over to http://rubyforge.org/projects/ruby-dbi, and get the latest dis-
tribution of Ruby-DBI.

2. Open a command window, and navigate to where you unpacked the ruby-
dbi library. Enter these commands:

c:\ruby-dbi> ruby setup.rb config --with=dbd_ado
c:\ruby-dbi> ruby setup.rb setup
c:\ruby-dbi> ruby setup.rb install

The SQL Server adapter will work only on Windows systems, because it relies
on Win320LE.

http://raa.ruby-lang.org/project/ruby-db2
http://rubyforge.org/projects/fireruby/
http://www.tmtm.org/en/mysql/ruby
http://rubyforge.org/projects/ruby-oci8
http://ruby.scripting.ca/postgres/
http://rubyforge.org/projects/sqlite-ruby
http://rubyforge.org/projects/ruby-dbi
http://rubyforge.org/projects/ruby-dbi
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=41

KEEPING UP-TO-DATE <« 42

3.7 Keeping Up-to-Date

Assuming you installed Rails using RubyGems, keeping up-to-date is relatively
easy. Issue the command

dave> gem update rails --include-dependencies

and RubyGems will automatically update your Rails installation. The next time
you start your application, it will pick up this latest version of Rails. (We have
more to say about updating your application in production in the Deployment
and Production chapter, starting on page 614.) RubyGems keeps previous ver-
sions of the libraries it installs. You can delete these with the command

dave> gem cleanup

After installing a new version of Rails, you might also want to update the files
that Rails initially added to your applications (the JavaScript libraries it uses
for AJAX support, various scripts, and so on). You can do this by running the
following command in your application’s top-level directory.

app> rake rails:update

3.8 Rails and ISPs

If you're looking to put a Rails application online in a shared hosting environ-
ment, you'll need to find a Ruby-savvy ISP. Look for one that supports Ruby,
has the Ruby database drivers you need, and offers FastCGI and/or LightTPD
support. We'll have more to say about deploying Rails applications in Chap-
ter 27, Deployment and Production, on page 614.

The page http://wiki.rubyonrails.com/rails/pages/RailsWebHosts on the Rails wiki lists
some Rails-friendly ISPs.

Now that we have Rails installed, let’s use it. On to the next chapter.

http://wiki.rubyonrails.com/rails/pages/RailsWebHosts
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=42

4.1

Chapter 4

————

Let’s write a simple application to verify we've got Rails snugly installed on our
machines. Along the way, we’ll get a peek at the way Rails applications work.

Creating a New Application

When you install the Rails framework, you also get a new command-line tool,
rails, which is used to construct each new Rails application that you write.

Why do we need a tool to do this—why can’t we just hack away in our favorite
editor, creating the source for our application from scratch? Well, we could
just hack. After all, a Rails application is just Ruby source code. But Rails
also does a lot of magic behind the curtain to get our applications to work
with a minimum of explicit configuration. To get this magic to work, Rails
needs to find all the various components of your application. As we’ll see later
(in Section 14.2, Directory Structure, on page 229), this means that we need
to create a specific directory structure, slotting the code we write into the
appropriate places. The rails command simply creates this directory structure
for us and populates it with some standard Rails code.

To create your first Rails application, pop open a shell window, and navigate
to a place in your filesystem where you’ll want to create your application’s
directory structure. In our example, we’ll be creating our projects in a directory
called work. In that directory, use the rails command to create an application
called demo. Be slightly careful here—if you have an existing directory called
demo, you will be asked whether you want to overwrite any existing files.
dave> cd work

work> rails demo

create

create app/controllers

create app/helpers
create app/models

CREATING A NEW APPLICATION <« 44

create Tog/development.log
create Tlog/test.log
work>

The command has created a directory named demo. Pop down into that direc-
tory, and list its contents (using Is on a Unix box or dir under Windows). You
should see a bunch of files and subdirectories.

work> cd demo
demo> 1s -p

README components/ doc/ public/ tmp/
Rakefile config/ Tib/ script/ vendor/
app/ db/ Tog/ test/

All these directories (and the files they contain) can be intimidating to start
with, but we can ignore most of them when we start. In this chapter, we’ll use
only two of them directly: the app directory, where we’ll write our application,
and the script directory, which contains some useful utility scripts.

Let’s start in the script subdirectory. One of the scripts it contains is called
server. This script starts a stand-alone web server that can run our newly cre-
ated Rails application under WEBrick.! So, without further ado, let’s start our
demo application.

demo> ruby script/server

=> Booting WEBrick...

=> Rails application started on http://0.0.0.0:3000

=> Ctr1-C to shutdown server; call with --help for options

[2006-01-08 21:44:10] INFO WEBrick 1.3.1

[2006-01-08 21:44:10] INFO ruby 1.8.2 (2004-12-30) [powerpc-darwin8.2.0]
[2006-01-08 21:44:11] INFO WEBrick::HTTPServer#start: pid=10138 port=3000

As the last line of the start-up tracing indicates, we just started a web server on
port 3000.2 We can access the application by pointing a browser at the URL
http://localhost:3000. The result is shown in Figure 4.1 (although the version
numbers you see will be different).

If you look at the window where you started WEBTrick, you’'ll see tracing show-
ing you accessing the application. We're going to leave WEBrick running in
this console window. Later on, as we write application code and run it via
our browser, we’ll be able to use this console window to trace the incoming
requests. When the time comes to shut down your application, you can press

1. WEBTrick is a pure-Ruby web server that is distributed with Ruby 1.8.1 and later. Because it
is guaranteed to be available, Rails uses it as its development web server. However, if web servers
called Mongrel or Lighttpd are installed on your system (and Rails can find one of them), the
script/server command will use one of them in preference to WEBrick. You can force Rails to use
WEBrick by providing an option to the command.

demo>ruby script/server webrick

2. The 0.0.0.0 part of the address means that WEBTrick will accept connections on all interfaces. On
Dave’s OS X system, that means both local interfaces (127.0.0.1 and ::1) and his LAN connection.

http://localhost:3000
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=44

HELLO, RAILS! < 45

‘_fj_-ﬁo Ruby on Rails: Welcome aboard

3 S Bhlt_p:f,fiocalhosljuom ~(Q- R

(Search) the Rails site

"‘t Welcome aboard

- You're riding the Rails!
RAILS

About your application’s environment : g
Join the community

Getting started Ruby on Rails
Here's how to get rolling: Official weblog
Mailing lists
1. Create your databases and edit IRC channel
config/database.yml Wiki

Bug tracker
Rails needs to know your login and password.

Browse the

2. Use script/generate to create your documentation
models and controllers
To see all available options, run it without parameters. Rails API
Ruby standard library
3. Set up a default route and remove or St

rename this file

Routes are setup in config/routes.rb.

|

Figure 4.1: Newly Created Rails Application

control-C in this window to stop WEBTrick. (Don’'t do that yet—we’ll be using
this particular application in a minute.)

At this point, we have a new application running, but it has none of our code
in it. Let’s rectify this situation.

4.2 Hello, Rails!

I can’t help it—I just have to write a Hello, World! program to try a new system.
The equivalent in Rails would be an application that sends our cheery greeting
to a browser.

As we saw in Chapter 2, The Architecture of Rails Applications, on page 22,
Rails is a Model-View-Controller framework. Rails accepts incoming requests
from a browser, decodes the request to find a controller, and calls an action
method in that controller. The controller then invokes a particular view to
display the results to the user. The good news is that Rails takes care of most
of the internal plumbing that links all these actions. To write our simple Hello,

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=45

HELLO, RAILS! < 46

World! application, we need code for a controller and a view. We don’t need
code for a model, because we're not dealing with any data. Let’s start with the
controller.

In the same way that we used the rails command to create a new Rails appli-
cation, we can also use a generator script to create a new controller for our
project. This command is called generate, and it lives in the script subdirectory
of the demo project we created. So, to create a controller called Say, we make
sure we're in the demo directory and run the script, passing in the name of
the controller we want to create.?

demo> ruby script/generate controller Say

exists app/controllers/

exists app/helpers/

create app/views/say

exists test/functional/

create app/controllers/say_controller.rb

create test/functional/say_controller_test.rb
create app/helpers/say_helper.rb

The script logs the files and directories it examines, noting when it adds new
Ruby scripts or directories to your application. For now, we're interested in
one of these scripts and (in a minute) the new directory.

The source file we’ll be looking at is the controller. You'll find it in the file

app/controllers/say_controller.rb. Let’s have a look at it. defining classes
— page 635
Download work/demol/app/controllers/say_controller.rb

class SayController < ApplicationController
end

Pretty minimal, eh? SayController is an empty class that inherits from Applico-
tionController, so it automatically gets all the default controller behavior. Let’s
spice it up. We need to add some code to have our controller handle the incom-
ing request. What does this code have to do? For now, it'll do nothing—we sim-
ply need an empty action method. So the next question is, what should this
method be called? And to answer this question, we need to look at the way
Rails handles requests.

Rails and Request URLs

Like any other web application, a Rails application appears to its users to be
associated with a URL. When you point your browser at that URL, you are
talking to the application code, which generates a response to you.

3. The concept of the “name of the controller” is actually more complex than you might think,
and we’ll explain it in detail in Section 14.4, Naming Conventions, on page 241. For now, let’s just
assume the controller is called Say.

http://media.pragprog.com/titles/rails2/code/work/demo1/app/controllers/say_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=46

HELLO, RAILS! <« 47

http://pragprog.com/say/hello

1. First part of URL addresses
the application

2. then the controller (say)

3. and the action (hello)

Figure 4.2: URLs Are Mapped to Controllers and Actions

However, the real situation is somewhat more complicated than that. Let’s
imagine that your application is available at the URL http://pragprog.com/.
The web server that is hosting your application is fairly smart about paths.
It knows that incoming requests to this URL must be talking to the applica-
tion. Anything past this in the incoming URL will not change that—the same
application will still be invoked. Any additional path information is passed to
the application, which can use it for its own internal purposes.

Rails uses the path to determine the name of the controller to use and the
name of the action to invoke on that controller.* This is illustrated in Fig-
ure 4.2. The first part of the path is the name of the controller, and the second
part is the name of the action. This is shown in Figure 4.3, on the following

page.

Our First Action

Let’s add an action called hello to our say controller. From the discussion in the

previous section, we know that adding a hello action means creating a method

called hello in the class SayController. But what should it do? For now, it doesn’t

have to do anything. Remember that a controller’s job is to set up things so

that the view knows what to display. In our first application, there’s nothing

to set up, so an empty action will work fine. Use your favorite editor to change methods
the file say_controllerrb in the app/controllers directory, adding the hello method 7 page 633
as shown.

Download work/demol/app/controllers/say_controller.rb

class SayController < ApplicationController
def hello
end

end

4. Rails is fairly flexible when it comes to parsing incoming URLs. In this chapter, we describe the
default mechanism. We’ll show how to override this in Section 20.2, Routing Requests, on page 394.

http://media.pragprog.com/titles/rails2/code/work/demo1/app/controllers/say_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=47

HELLO, RAILS! €@ 48

http://pragprog.com/say/hello

~

Create an instance
of SayController

class UserController | / and invoke the action
class SayController | method hello
class ProductController |\ l

class LoginController
def login class SayController
#code . .. def hello
end # code for hello action
end end

end

Figure 4.3: Rails Routes to Controllers and Actions

Now let’s try calling it. Navigate to the URL http://localhost:3000/say/hello in a
browser window. (Note that in the development environment we don’t have any
application string at the front of the path—we route directly to the controller.)
You’'ll see something that looks like the following.

("'nff"! Action Controller: Exception caught ===
\ a4 > @ A hip:/ flocalhost: 3000 /say/hello Q- Google Q\,"

Template is missing

Missing template script/../config/../app/views/say/hello.rhtm|

It might be annoying, but the error is perfectly reasonable (apart from the
weird path). We created the controller class and the action method, but we
haven't told Rails what to display. And that’s where the views come in. Remem-
ber when we ran the script to create the new controller? The command added
three files and a new directory to our application. That directory contains the
template files for the controller’s views. In our case, we created a controller
named say, so the views will be in the directory app/views/say.

To complete our Hello, World! application, let’s create a template. By default,
Rails looks for templates in a file with the same name as the action it’s han-
dling. In our case, that means we need to create a file called hello.rhtml in the
directory app/views/say. (Why .rhtml? We'll explain in a minute.) For now, let’s
just put some basic HTML in there.

http://localhost:3000/say/hello
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=48

HELLO, RAaILS! < 49

class SayController < ApplicationController

demo/ def hello
|_app/ e::d

T —
controllers/

L say_controller.rb
<html>

models/ <head>
<title>Hello, Rails!</title>
views/ </head>

|_y <h1>Hello from Rails!</h1>
hello.rhtml

</body>
</html>

Figure 4.4: Standard Locations for Controllers and Views

Download work/demol/app/views/say/hello.rhtml

<html>
<head>
<title>Hello, Rails!</title>
</head>
<body>
<hl>Hello from Rails!</hl>
</body>
</htm1>

Save the file hello.rhtml, and refresh your browser window. You should see it
display our friendly greeting. Notice that we didn’t have to restart the appli-

cation to see the update. During development, Rails automatically integrates
changes into the running application as you save files.

{!‘:fﬁ"‘! Hello, Rails! =

!lr_i [j A hrep:/ /localhost:3000/say/hello = Qr Google Q-f
Hello from Rails!

So far, we've added code to two files in our Rails application tree. We added
an action to the controller, and we created a template to display a page in
the browser. These files live in standard locations in the Rails hierarchy: con-
trollers go into app/controllers, and views go into subdirectories of app/views.
This is shown in Figure 4.4.

http://media.pragprog.com/titles/rails2/code/work/demo1/app/views/say/hello.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=49

HELLO, RAILS! < 50

Making It Dynamic

So far, our Rails application is pretty boring—it just displays a static page. To
make it more dynamic, let’s have it show the current time each time it displays
the page.

To do this, we need to make a change to the template file in the view—it now
needs to include the time as a string. That raises two questions. First, how
do we add dynamic content to a template? Second, where do we get the time
from?

Dynamic Content

There are two ways of creating dynamic templates in Rails.® One uses a tech-
nology called Builder, which we discuss in Section 22.1, Builder Templates,
on page 468. The second way, which we’ll use here, is to embed Ruby code in
the template itself. That’s why we named our template file hello.rhtml: the .rhtml
suffix tells Rails to expand the content in the file using a system called ERb
(for Embedded Ruby).

ERD is a filter that takes a .rhtml file and outputs a transformed version. The
output file is often HTML in Rails, but it can be anything. Normal content is
passed through without being changed. However, content between <%= and
%> is interpreted as Ruby code and executed. The result of that execution is
converted into a string, and that value is substituted into the file in place of
the <%=...%> sequence. For example, change hello.rhtml to contain the following.

Download erb/ex1.rhtml

Addition: <%= 1+2 %> </11i>
Concatenation: <%= "cow" + "boy" %> </1i> 1.hour.from_now
<1i>Time in one hour: <%= 1.hour.from_now %> </1i> — page 253

When you refresh your browser, the template will generate the following HTML.

Addition: 3 </Ti>

Concatenation: cowboy </1i>

<1i>Time in one hour: Tue May 16 08:55:14 CDT 2006 </T1i>

In the browser window, you'll see something like the following.
* Addition: 3
® Concatenation: cowboy
® Time in one hour: Sun May 07 16:06:43 CDT 2006

5. Actually, there are three ways, but the third, rjs, is useful only for adding AJAX magic to
already-displayed pages. We discuss rjs on page 559.

http://media.pragprog.com/titles/rails2/code/erb/ex1.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=50

HELLO, RalLs! < 51

In addition, stuff in .rhtml files between <% and %> (without an equals sign) is
interpreted as Ruby code that is executed with no substitution back into the
output. Interestingly, this kind of processing can be intermixed with non-Ruby

code. For example, we could make a festive version of hello.rhtml.
3.times
<% 3.times do %> — page 641

Ho!

<% end %>
Merry Christmas!

This will generate the following HTML.

Ho!

Ho!

Ho!

Merry Christmas!

Note how the text in the file within the Ruby loop is sent to the output stream
once for each iteration of the loop.

But there’s something strange going on here, too. Where did all the blank lines
come from? They came from the input file. If you think about it, the original file
contains an end-of-line character (or characters) immediately after the %> of
both the first and third lines of the file. So, the <% 3.times do %> is stripped out
of the file, but the newline remains. Each time around the loop, this newline is
added to the output file, along with the full text of the Ho! line. This accounts
for the blank line before each Ho! line in the output. Similarly, the newline
after <% end %> accounts for the blank line between the last Ho! and the Merry
Christmas! line.

Normally, this doesn’t matter, because HTML doesn’t much care about whites-
pace. However, if you're using this templating mechanism to create e-mails, or
HTML within <pre> blocks, you'll want to remove these blank lines. Do this
by changing the end of the ERb sequence from %> to -%>. That minus sign tells
Rails to remove any newline that follows from the output. If we add a minus
on the 3.times line

<% 3.times do -%>

Ho!

<% end %>
Merry Christmas!

we get the following.

Ho!

Ho!

Ho!

Merry Christmas!

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=51

HELLO, RAILS! <« 52

4 N

Making D | t Eqsi
You might have noticed something about the development we‘ve been doing
so far. As we've been adding code to our application, we haven’t had to
restart the running application. It has been happily chugging away in the
background. And yet each change we make is available whenever we access
the application through a browser. What gives?

It turns out that the WEBrick-based Rails dispatcher is pretty clever. In devel-
opment mode (as opposed to testing or production), it automatically reloads
application source files when a new request comes along. That way, when we
edit our application, the dispatcher makes sure it’s running the most recent
changes. This is great for development.

However, this flexibility comes at a cost—it causes a short pause after you
enter a URL before the application responds. That’'s caused by the dispatcher
reloading stuff. For development it’s a price worth paying, but in production it
would be unacceptable. Because of this, this feature is disabled for production
deployment (see Chapter 27, Deployment and Production, on page 614).

Adding a minus on the line containing end

<% 3.times do -%>
Ho!

<% end -%>

Merry Christmas!

gets rid of the blank line before Merry Christmas.

Ho!

Ho!

Ho!

Merry Christmas!

In general, suppressing these newlines is a matter of taste, not necessity. How-
ever, you will see Rails code out in the wild that uses the minus sign this way,
so it’s best to know what it does.

In the following example, the loop sets a variable that is interpolated into the
text each time the loop executes.

Download erb/ex3.rhtml

<% 3.downto(1l) do |count| -%>
<%= count %>...

<% end -%>

Lift off!

That will send the following to the browser.

http://media.pragprog.com/titles/rails2/code/erb/ex3.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=52

HELLO, RaILS! < 53

...

...

...

ift off!

3
2
1
L
There’s one last ERb feature. Quite often the values that you ask it to sub-
stitute using <%=...%> contain less-than and ampersand characters that are
significant to HTML. To prevent these from messing up your page (and, as
we'll see in Chapter 26, Securing Your Rails Application, on page 600, to avoid
potential security problems), you’ll want to escape these characters. Rails has
a helper method, h, that does this. Most of the time, you're going to want to
use it when substituting values into HTML pages.

Download erb/ex4.rhiml

Email: <%= h("Ann & Bill <frazers@isp.email>") %>

In this example, the h method prevents the special characters in the e-mail
address from garbling the browser display—they’ll be escaped as HTML enti-
ties. The browser sees Email: Ann & Bill <frazers@isp.email>, and the spe-
cial characters are displayed appropriately.

Adding the Time

Our original problem was to display the time to users of our application. We
now know how to make our application display dynamic data. The second
issue we have to address is working out where to get the time from.

One approach is to embed a call to Ruby’s Time.now method in our hello.rhtml
template.
<html>
<head>
<title>Hello, Rails!</title>
</head>
<body>
<hl>Hello from Rails!</hl>
<p>
It is now <%= Time.now %>
</p>
</body>
</htm1>

This works. Each time we access this page, the user will see the current time
substituted into the body of the response. And for our trivial application, that
might be good enough. In general, though, we probably want to do something
slightly different. We’ll move the determination of the time to be displayed into
the controller and leave the view the simple job of displaying it. We’ll change
our action method in the controller to set the time value into an instance

variable called @time. instance variable
— page 636

http://media.pragprog.com/titles/rails2/code/erb/ex4.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=53

HELLO, RAILS! <« 54

Download work/demo2/app/controllers/say_controller.rb

class SayController < ApplicationController
def hello
@time = Time.now
end
end

In the .rhiml template we’ll use this instance variable to substitute the time into
the output.

Download work/demo2/app/views/say/hello.rhtml

<html>
<head>
<title>Hello, Rails!</title>
</head>
<body>
<hl>Hello from Rails!</hl>
<p>
It is now <%= @time %>
</p>
</body>
</htm1>

When we refresh our browser window, we see the time displayed using Ruby’s
standard format:

800 Hello, Rails!

j < > E] 3 hitp://localhost:3000/say/ hello A(Q- Google c;\q
Hello from Rails!

It is now Sun Jan 08 23:08:56 CST 2006

Notice that if you hit Refresh in your browser, the time updates each time the
page is displayed. Looks as if we're really generating dynamic content.

Why did we go to the extra trouble of setting the time to be displayed in the
controller and then using it in the view? Good question. In this application,
you could just embed the call to Time.now in the template, but by putting it
in the controller instead, you buy yourself some benefits. For example, we
may want to extend our application in the future to support users in many
countries. In that case we'd want to localize the display of the time, choosing
both the format appropriate to the user’s locale and a time appropriate to their
time zone. That would be a fair amount of application-level code, and it would
probably not be appropriate to embed it at the view level. By setting the time
to display in the controller, we make our application more flexible—we can
change the display format and time zone in the controller without having to
update any view that uses that time object. The time is data, and it should

http://media.pragprog.com/titles/rails2/code/work/demo2/app/controllers/say_controller.rb
http://media.pragprog.com/titles/rails2/code/work/demo2/app/views/say/hello.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=54

HELLO, RaILS! < 55

4 N

\1/? Joe Asks...
"~ __How Does the View Get the Time?

In the description of views and controllers, we showed the controller setting the
time to be displayed into an instance variable. The .rhtml file used that instance
variable to substitute in the current time. But the instance data of the controller
object is private to that object. How does ERb get hold of this private data to
use in the template?

The answer is both simple and subtle. Rails does some Ruby magic so that
the instance variables of the controller object are injected info the template
object. As a consequence, the view template can access any instance vari-
ables set in the controller as if they were its own.

Some folks press the point: “just how do these variables get set?” These folks
clearly don’t believe in magic. Avoid spending Christmas with them.

be supplied to the view by the controller. We’ll see a lot more of this when we
introduce models into the equation.

The Story So Far
Let’s briefly review how our current application works.

1. The user navigates to our application. In our case, we do that using a
local URL such as http://localhost:3000/say/hello.

2. Rails analyzes the URL. The say part is taken to be the name of a con-
troller, so Rails creates a new instance of the Ruby class SayController
(which it finds in app/controllers/say_controller.ro).

3. The next part of the URL path, hello, identifies an action. Rails invokes
a method of that name in the controller. This action method creates a
new Time object holding the current time and tucks it away in the @time
instance variable.

4. Rails looks for a template to display the result. It searches the directory
app/views for a subdirectory with the same name as the controller (say)
and in that subdirectory for a file named after the action (hello.rhtml).

5. Rails processes this template through ERb, executing any embedded
Ruby and substituting in values set up by the controller.

6. The result is returned to the browser, and Rails finishes processing this
request.

http://localhost:3000/say/hello
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=55

LINKING PAGES TOGETHER < 56

This isn’t the whole story—Rails gives you lots of opportunities to override
this basic workflow (and we’ll be taking advantage of these shortly). As it
stands, our story illustrates convention over configuration, one of the funda-
mental parts of the philosophy of Rails. By providing convenient defaults and
by applying certain conventions, Rails applications are typically written using
little or no external configuration—things just knit themselves together in a
natural way.

4.3 Linking Pages Together

It's a rare web application that has just one page. Let’'s see how we can add
another stunning example of web design to our Hello, World! application.

Normally, each style of page in your application will correspond to a sepa-
rate view. In our case, we'll also use a new action method to handle the page
(although that isn’t always the case, as we'll see later in the book). We’ll use
the same controller for both actions. Again, this needn’t be the case, but we
have no compelling reason to use a new controller right now.

We already know how to add a new view and action to a Rails application. To
add the action, we define a new method in the controller. Let’s call this action
goodbye. Our controller now looks like the following.

Download work/demo3/app/controllers/say_controller.rb

class SayController < ApplicationController
def hello
@time = Time.now
end

def goodbye
end
end

Next we have to create a new template in the directory app/views/say. This
time it’s called goodbye.rhtml, because by default templates are named after
the associated actions.

Download work/demo3/app/views/say/goodbye.rhtml

<html>
<head>
<title>See You Later!</title>
</head>
<body>
<h1>Goodbye!</h1>
<p>
It was nice having you here.
</p>
</body>
</htm1>

http://media.pragprog.com/titles/rails2/code/work/demo3/app/controllers/say_controller.rb
http://media.pragprog.com/titles/rails2/code/work/demo3/app/views/say/goodbye.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=56

LINKING PAGES TOGETHER < 57

Fire up our trusty browser again, but this time point to our new view using
the URL http://localhost:3000/say/goodbye. You should see something like this.

See You Later! 1]

|[]111 [2 @ 6h(tp:ffloca\hosl‘Z‘.Dﬂﬂjsawgcmdhve a(Q~ Google G‘l\
Goodbye!

It was nice having you here.

Now we need to link the two screens. We'll put a link on the hello screen that
takes us to the goodbye screen, and vice versa. In a real application we might
want to make these proper buttons, but for now we’ll just use hyperlinks.

We already know that Rails uses a convention to parse the URL into a target
controller and an action within that controller. So a simple approach would be
to adopt this URL convention for our links. The file hello.rhtml would contain
the following.

<html>

<p>
Say Goodbye!

</p>

And the file goodbye.rhtml would point the other way.

<html>

<p>
Say Hello!
</p>

This approach would certainly work, but it’s a bit fragile. If we were to move
our application to a different place on the web server, the URLs would no
longer be valid. It also encodes assumptions about the Rails URL format into
our code; it’s possible a future version of Rails might change this.

Fortunately, these aren’t risks we have to take. Rails comes with a bunch of
helper methods that can be used in view templates. Here, we’ll use the helper
method link_to, which creates a hyperlink to an action.® Using link_to, hello.rhtml
becomes

Download work/demo4/app/views/say/hello.rhtml

<html>
<head>
<title>Hello, Rails!</title>
</head>

6. The link_fo method can do a lot more than this, but let’s take it gently for now....

http://localhost:3000/say/goodbye
http://media.pragprog.com/titles/rails2/code/work/demo4/app/views/say/hello.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=57

LINKING PAGES TOGETHER <« 58

<body>
<hl>Hello from Rails!</hl>
<p>
It is now <%= @time %>.
</p>
<p>
Time to say
<%= 1ink_to "Goodbye!", :action => "goodbye" %>
</p>
</body>
</htm1>

There’s a link_fo call within an ERb <%=...%> sequence. This creates a link to a
URL that will invoke the goodbye action. The first parameter in the call to link_to
is the text to be displayed in the hyperlink, and the next parameter tells Rails
to generate the link to the goodbye action. As we don’t specify a controller, the
current one will be used.

Let’s stop for a minute to consider how we generated the link. We wrote

Tink_to "Goodbye!", :action => "goodbye"

First, link_to is a method call. (In Rails, we call methods that make it easier
to write templates helpers.) If you come from a language such as Java, you
might be surprised that Ruby doesn’t insist on parentheses around method
parameters. You can always add them if you like.

The :action part is a Ruby symbol. You can think of the colon as meaning
the thing named..., so :action means the thing named action.” The => "goodbye"
associates the string goodbye with the name action. In effect, this gives us
keyword parameters for methods. Rails makes extensive use of this facility—
whenever a method takes a number of parameters and some of those param-
eters are optional, you can use this keyword parameter facility to give those
parameters values.

OK. Back to the application. If we point our browser at our hello page, it will
now contain the link to the goodbye page, as shown here.

[Ehs)(s) Hello, Rails! i
| 4 » | @ hup://localhost:3000/say/helle = Q- Google f’

Hello from Rails!

It is now Sun May 28 09:25:47 CDT 2006.

Time to say Goodbye!
7|

7. Symbols probably cause more confusion than any other language feature when folks first come
to Ruby. We've tried many different explanations—no single explanation works for everyone. For
now, you can just think of a Ruby symbol as being like a constant string but one without all the
string methods. It’s the name tag, not the person.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=58

WHAT WE JUST DID < 59

We can make the corresponding change in goodbye.rhtml, linking it back to the
initial hello page.

Download work/demo4/app/views/say/goodbye.rhtmi

<html>
<head>
<title>See You Later!</title>
</head>
<body>
<h1>Goodbye!</h1>
<p>
It was nice having you here.
</p>
<p>
Say <%= link_to "Hello", :action => "hello" %> again.
</p>
</body>
</htm1>

4.4 What We Just Did

In this chapter we constructed a toy application. Doing so showed us

* how to create a new Rails application and how to create a new controller
in that application,

* how Rails maps incoming requests into calls on your code,

* how to create dynamic content in the controller and display it via the
view template, and

* how to link pages together.

This is a great foundation. Now let’s start building real applications.

Playtime
Here’s some stuff to try on your own.

* Write a page for the say application that illustrates the looping you can
do in ERb.

¢ Experiment with adding and removing the minus sign at the end of the
ERb <%= %> sequence (i.e., changing %> into -%>, and vice versa. Use your
browser’s View — Source option to see the difference.

¢ A call to the following Ruby method returns a list of all the files in the
current directory.

@files = Dir.glob('*")

http://media.pragprog.com/titles/rails2/code/work/demo4/app/views/say/goodbye.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=59

WHAT WE JUST DID < 60

Use it to set an instance variable in a controller action, and then write
the corresponding template that displays the filenames in a list on the
browser.

Hint: in the ERb examples, we saw how to iterate n times. You can iterate
over a collection using something like

<% for file in @files %>
file name 1is: <%= file %>
<% end %>

You might want to use a for the list.

(You'll find hints at http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime)

Cleaning Up

Maybe you've been following along, writing the code in this chapter. If so, the
chances are that the application is still running on your computer. When we
start coding our next application in 10 pages or so, we’ll get a conflict the first
time we run it, because it will also try to use your computer’s port 3000 to talk
with the browser. Now would be a good time to stop the current application by
pressing control-C in the window you used to start it.

http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=60

Part 11

Building an Application

5.1

Charge it!
» Wilma Flintstone and Betty Rubble

Chapter 5

We could mess around all day hacking together simple test applications, but
that won’t help us pay the bills. So let’s get our teeth into something meatier.
Let’s create a web-based shopping cart application called Depot.

Does the world need another shopping cart application? Nope, but that hasn’t
stopped hundreds of developers from writing one. Why should we be different?

More seriously, it turns out that our shopping cart will illustrate many of the
features of Rails development. We’ll see how to create simple maintenance
pages, link database tables, handle sessions, and create forms. Over the next
eight chapters, we’ll also touch on peripheral topics such as unit testing, secu-
rity, and page layout.

Incremental Development

We'll be developing this application incrementally. We won’t attempt to specify
everything before we start coding. Instead, we’ll work out enough of a specifi-
cation to let us start and then immediately create some functionality. We'll try
ideas out, gather feedback, and continue on with another cycle of minidesign
and development.

This style of coding isn’t always applicable. It requires close cooperation with
the application’s users, because we want to gather feedback as we go along.
We might make mistakes, or the client might discover they asked for one thing
but really wanted something different. It doesn’t matter what the reason—the
earlier we discover we've made a mistake, the less expensive it will be to fix
that mistake. All in all, with this style of development there’s a lot of change
as we go along.

Because of this, we need to use a toolset that doesn’t penalize us for changing
our mind. If we decide we need to add a new column to a database table
or change the navigation between pages, we need to be able to get in there

WHAT DEPOT DOES < 63

and do it without a bunch of coding or configuration hassle. As you'll see,
Ruby on Rails shines when it comes to dealing with change—it’s an ideal agile
programming environment.

Anyway, on with the application.

5.2 What Depot Does

Let’s start by jotting down an outline specification for the Depot application.
We'll look at the high-level use cases and sketch out the flow through the web
pages. We'll also try working out what data the application needs (acknowledg-
ing that our initial guesses will likely be wrong).

Use Cases

A use case is simply a statement about how some entity uses a system. Con-
sultants invent these kinds of phrases to label things we've all known all
along—it’s a perversion of business life that fancy words always cost more
than plain ones, even though the plain ones are more valuable.

Depot’s use cases are simple (some would say tragically so). We start off by
identifying two different roles or actors: the buyer and the seller.

The buyer uses Depot to browse the products we have to sell, select some to
purchase, and supply the information needed to create an order.

The seller uses Depot to maintain a list of products to sell, to determine the
orders that are awaiting shipping, and to mark orders as shipped. (The seller
also uses Depot to make scads of money and retire to a tropical island, but
that’s the subject of another book.)

For now, that’s all the detail we need. We could go into excruciating detail
about “what it means to maintain products” and “what constitutes an order
ready to ship,” but why bother? If there are details that aren’t obvious, we’ll
discover them soon enough as we reveal successive iterations of our work to
the customer.

Talking of getting feedback, let’s not forget to get some right now—let’s make
sure our initial (admittedly sketchy) use cases are on the mark by asking our
user. Assuming the use cases pass muster, let’s work out how the application
will work from the perspectives of its various users.

Page Flow

I always like to have an idea of the main pages in my applications, and to
understand roughly how users navigate between them. This early in the devel-
opment, these page flows are likely to be incomplete, but they still help me
focus on what needs doing and know how actions are sequenced.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=63

WHAT DEPOT DOES < 64

Some folks like to mock up web application page flows using Photoshop, Word,
or (shudder) HTML. I like using a pencil and paper. It's quicker, and the cus-
tomer gets to play too, grabbing the pencil and scribbling alterations right on
the paper.

Cataloa TAGe

Chev fage

M:lébe show

Co SOMM’:\ »

Figure 5.1: Flow of Buyer Pages

Figure 5.1 shows my first sketch of the buyer flow. It’s pretty traditional. The
buyer sees a catalog page, from which he or she selects one product at a
time. Each product selected gets added to the cart, and the cart is displayed
after each selection. The buyer can continue shopping using the catalog pages
or check out and buy the contents of the cart. During checkout we capture
contact and payment details and then display a receipt page. We don’'t yet
know how we’re going to handle payment, so those details are fairly vague in
the flow.

The seller flow, shown in Figure 5.2, on the next page, is also fairly simple.
After logging in, the seller sees a menu letting her create or view a product or
ship existing orders. Once viewing a product, the seller may optionally edit the
product information or delete the product entirely.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=64

WHAT DEPOT DOES < 65

| ogzn

Nowe

Qass;wrd

SHow PENDING ODELS

Toe Smi¥h
/ l ‘13 Ma.\u g't'
Create

———

$—

1§83 3»\‘($.,-

24 Pencin

@l 4 ¢/

= (for aow)
L Eaix \sicallyy Showos
Some Scizew oS \ next
creete .

Figure 5.2: Flow of Seller Pages

The shipping option is very simplistic. It displays each order that has not yet
been shipped, one order per page. The seller may choose to skip to the next,
or may ship the order, using the information from the page as appropriate.

The shipping function is clearly not going to survive long in the real world,
but shipping is also one of those areas where reality is often stranger than
you might think. Overspecify it up front, and we're likely to get it wrong. For
now let’s leave it as it is, confident that we can change it as the user gains
experience using our application.

Data
Finally, we need to think about the data we're going to be working with.

Notice that we're not using words such as schema or classes here. We're also
not talking about databases, tables, keys, and the like. We're simply talking
about data. At this stage in the development, we don’t know whether we’ll even
be using a database—sometimes a flat file beats a database table hands down.

Based on the use cases and the flows, it seems likely that we’ll be working
with the data shown in Figure 5.3, on the following page. Again, pencil and

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=65

WHAT DEPOT DOES <« 66

- -
.- ~

Roduct Cart: AOrder:

s Noame . (mjer details
. deSC(;g(‘.\OV\ . ‘Dogmem{ details
. imase .gL\'.PF\'.nj 3"4*‘"8
. pm‘ ce

Seller Delerils:

. {Oai-« Nawme

+ Password

Figure 5.3: Initial Guess at Application Data

paper seems a whole lot easier than some fancy tool, but use whatever works
for you.

Working on the data diagram raised a couple of questions. As the user buys
items, we’ll need somewhere to keep the list of products they bought, so I
added a cart. But apart from its use as a transient place to keep this product
list, the cart seems to be something of a ghost—I couldn’t find anything mean-
ingful to store in it. To reflect this uncertainty, I put a question mark inside
the cart’s box in the diagram. I'm assuming this uncertainty will get resolved
as we implement Depot.

Coming up with the high-level data also raised the question of what infor-
mation should go into an order. Again, I chose to leave this fairly open for
now—we’ll refine this further as we start showing the customer our early iter-
ations.

Finally, you might have noticed that I've duplicated the product’s price in the
line item data. Here I'm breaking the “initially, keep it simple” rule slightly,
but it’s a transgression based on experience. If the price of a product changes,
that price change should not be reflected in the line item price of currently
open orders, so each line item needs to reflect the price of the product at the
time the order was made.

Again, at this point I'll double-check with my customer that we're still on the
right track. (My customer was most likely sitting in the room with me while I

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=66

LET'S CoDE «d 67

drew these three diagrams.)

5.3 Let’'s Code

So, after sitting down with the customer and doing some preliminary analy-
sis, we're ready to start using a computer for development! We’ll be working
from our original three diagrams, but the chances are pretty good that we’ll be
throwing them away fairly quickly—they’ll become outdated as we gather feed-
back. Interestingly, that’s why we didn’t spend too long on them—it’s easier to
throw something away if you didn’t spend a long time creating it.

In the chapters that follow, we’ll start developing the application based on our
current understanding. However, before we turn that page, we have to answer
just one more question. What should we do first?

I like to work with the customer so we can jointly agree on priorities. In this
case, I'd point out to her that it’s hard to develop anything else until we have
some basic products defined in the system, so I'd suggest spending a couple of
hours getting the initial version of the product maintenance functionality up
and running. And, of course, she’'d agree.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=67

6.1

In this chapter, we'll see

creating a new application

configuring the database

creating models and controllers

running database migrations

using static and dynamic scaffolds
performing validation and error reporting
working with views and helpers

Chapter 6

Task A: Prociuct M

Our first development task is to create the web interface that lets us maintain
our product information—create new products, edit existing products, delete
unwanted ones, and so on. We'll develop this application in small iterations,
where small means “measured in minutes.” Let’s get started.

Iteration Al: Get Something Running

Perhaps surprisingly, we should get the first iteration of this working in almost
no time. We'll start off by creating a new Rails application. This is where we’ll
be doing all our work. Next, we’ll create a database to hold our information (in
fact we’ll create three databases). Once that groundwork is in place, we’ll

¢ configure our Rails application to point to our database(s),
* create the table to hold the product information, and

* have Rails generate the initial version of our product maintenance appli-
cation for us.

Create a Rails Application

Back on page 43 we saw how to create a new Rails application. Go to a com-
mand prompt, and type rails followed by the name of our project. In this case,
our project is called depot, so type

work> rails depot

We see a bunch of output scroll by. When it has finished, we find that a new
directory, depot, has been created. That's where we’ll be doing our work.

work> cd depot

depot> 1s -p
README components/ doc/ public/ tmp/
Rakefile config/ Tib/ script/ vendor/

app/ db/ Tog/ test/

ITERATION Al: GET SOMETHING RUNNING <« 69

Create the Database

For this application, we’ll use the open source MySQL database server (which
you’ll need too if you're following along with the code). I'm using MySQL ver-
sion 5 here. If you're using a different database server, the commands you’ll
need to create the database and grant permissions will be different.

We also have to talk briefly about database users and passwords. When you
initially install MySQL, it comes with a user called root. In this book, we’ll use
the root user to access the database in development and test mode. If you're
developing and testing on a dedicated machine, this works fine. In production,
or if you're running a database that’s accessible to others, you'll definitely
want to create special user accounts and passwords to prevent other people
accessing your data. Let me repeat that: ALWAYS CHANGE THE USER NAME
AND PASSWORD OF THE PRODUCTION DATABASE BEFORE DEPLOYING.
See your database documentation for details.

What shall we call our database? Well, we could call it anything (Walter is a
nice name). However, as with most of Rails, there’s a convention. We called our
application “depot,” so let’s call our development database depot_development.

We'll use the mysgladmin command-line client to create our databases, but if
you're more comfortable with tools such as phpmyadmin or CocoaMySQL, go for
it.

depot> mysqladmin -u root create depot_development

Now you get to experience one of the benefits of going with the flow.! If you're
using MySQL and if you've created a development database with the suggested
name, you can now skip forward to Section 6.1, Testing Your Configuration, on
page 71.

Configure the Application

In many simple scripting-language web applications, the information on how
to connect to the database is embedded directly into the code—you might find
a call to some connect method, passing in host and database names, along
with a user name and password. This is dangerous, because password infor-
mation sits in a file in a web-accessible directory. A small server configuration
error could expose your password to the world.

The approach of embedding connection information into code is also inflexible.
One minute you might be using the development database as you hack away.
Next you might need to run the same code against the test database. Even-
tually, you'll want to deploy it into production. Every time you switch target
databases, you have to edit the connection call. There’s a rule of programming

1. Or, convention over configuration, as Rails folks say (ad nauseam)

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=69

ITERATION Al: GET SOMETHING RUNNING < 70

that says you'll mistype the password only when switching the application into
production.

Smart developers keep the connection information out of the code. Sometimes
you might want to use some kind of repository to store it all (Java developers
often use JNDI to look up connection parameters). That’s a bit heavy for the
average web application that we’ll write, so Rails simply uses a flat file. You'll
find it in Config/d<:1’r<:1bose.yml.2

... some comments ...
development:
o adapter: mysql
(2] database: depot_development
(3} username: root
password:
4] host: Tocalhost

database.yml contains information on database connections. It contains three
sections, one each for the development, test, and production databases. If
youre going with the flow and using MySQL with root as the user name,
your database.yml file is probably ready to use—you won’t need to make any
changes. However, if you've decided to rebel and use a different configuration,
you might need to edit this file. Just open it in your favorite text editor, and edit
any fields that need changing. The numbers in the list that follows correspond
to the numbers next to the source listing.

©® The adapter section tells Rails what kind of database you're using (it’s
called adapter because Rails uses this information to adapt to the pecu-
liarities of the database). We're using MySQL, so the adapter name is
mysql. A full list of different adapter types is given in Section 17.4, Con-
necting to the Database, on page 291. If you're using a database other
than MySQL, you’ll need to consult this table, because each database
adapter has different sets of parameters in database.yml. The parameters
that follow here are for MySQL.

® The database parameter gives the name of the database. (Remember, we
created our depot_development database using mysgladmin back on the
preceding page.)

® The username and password parameters let your application log in to
the database. We're using the user root with no password. You'll need to
change these fields if you've set up your database differently.

2. The .yml part of the name stands for YAML, or YAML Ain’t a Markup Language. It's a simple
way of storing structured information in flat files (and it isn’'t XML). Recent Ruby releases include
built-in YAML support.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=70

ITERATION Al: GET SOMETHING RUNNING < 71

(N\

lectin Different Dat

You tell Rails which database adapter to use by changing values in the
database.yml file in the config directory. Clearly, you can first create your appli-
cation and then edit this file to use the correct adapter.

However, if you know that you’ll be using a database other than MySQL, you
can save yourself some effort by telling Rails when you create the application.

work> rails depot --database=sqlite3

The command rails --help gives the list of available options. Remember that
you'’ll need the appropriate Ruby libraries for the database you select.

If you leave the user name blank, MySQL might connect to the database
using your login name. This is convenient, because it means that dif-
ferent developers will each use their own user names when connecting.
However, we've heard that with some combinations of MySQL, database
drivers, and operating systems, leaving these fields blank makes Rails
try to connect to the database as the root user. Should you get an error

such as “Access denied for user 'root’@localhost.localdomain’,” put an
explicit user name and password in these two fields.

® The host parameter tells Rails what machine your database is running
on. Most developers run a local copy of MySQL on their own machine, so
the default of localhost is fine.

Remember—if you're just getting started and you’re happy to use the Rails
defaults, you shouldn’t have to worry about all these configuration details.

Testing Your Configuration

Before you go too much further, we should probably test your configuration
so far—we can check that Rails can connect to your database and that it has
the access rights it needs to be able to create tables. From your application’s
top-level directory, type the following magic incantation at a command prompt.
(It's magic, because we don’t really need to know what it’s doing quite yet. We'll
find out later.)

depot> rake db:migrate
One of two things will happen. Either you’'ll get a single line echoed back (say-
ing something like “in (/Users/dave/work/depot)”), or you'll get an error of some

sort. The error means that Rails can’t work with your database. If you do see
an error, here are some things to try.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=71

ITERATION Al: GET SOMETHING RUNNING <« 72

* Check the name you gave for the database in the development: section
of database.yml. It should be the same as the name of the database you
created (using mysgladmin or some other database administration tool).

* Check that the user name and password in database.yml match the one
you created on page 69.

® Check that your database server is running.

* Check that you can connect to it from the command line. If using MySQL,
run the following command.

depot> mysql -u root depot_development
mysql>

¢ If you can connect from the command line, can you create a dummy
table? (This tests that the database user has sufficient access rights to
the database.)

mysql> create table dummy(i int);
mysql> drop table dummy;

¢ If you can create tables from the command line but rake do:migrate fails,
double-check the database.yml file. If there are socket: directives in the
file, try commenting them out by putting a hash character (#) in front of
each.

¢ If you see an error saying “No such file or directory...” and the filename in

the error is mysqgl.sock, your Ruby MySQL libraries can’t find your MySQL
database. This might happen if you installed the libraries before you
installed the database, or if you installed the libraries using a binary
distribution, and that distribution made the wrong assumption about
the location of the MySQL socket file. To fix this, the best idea is to rein-
stall your Ruby MySQL libraries. If this isn’t an option, add a socket: line
to your database.yml file containing the correct path to the MySQL socket
on your system.
development:

adapter: mysql

database: depot_development

username: root

password:

host: Tocalhost
> socket: /var/1lib/mysql/mysql.sock

¢ If you get the error “Mysql not loaded,” it means you’re running an old
version of the Ruby Mysql library. Rails needs at least version 2.5.

* Some readers also report getting the error message “Client does not
support authentication protocol requested by server; consider upgrad-
ing MySQL client.” This incompatibility between the installed version of

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=72

ITERATION Al: GET SOMETHING RUNNING <« 73

MySQL and the libraries used to access it can be resolved by following the
instructions at http://dev.mysgl.com/doc/mysql/en/old-client.html and issu-
ing a MySQL command such as set password for ‘some_user’'@'some_host’ =
OLD_PASSWORD('newpwd");.

¢ If you're using MySQL under Cygwin on Windows, you may have prob-
lems if you specify a host of localhost. Try using 127.0.0.1 instead.

* You may have problems if you're using the pure-Ruby MySQL library (as
opposed to the more performant C library). Solutions for various operat-
ing systems are available on the Rails wiki.>

¢ Finally, you might have problems in the format of the database.yml file.
The YAML library that reads this file is strangely sensitive to tab charac-
ters. If your file contains tab characters, you’ll have problems. (And you
thought you’d chosen Ruby over Python because you didn't like Python’s
significant whitespace, eh?)

If all this sounds scary, don’t worry. In reality, database connections work like
a charm most of the time. And once you've got Rails talking to the database,
you don't have to worry about it again.

Create the Products Model and Table

Back in Figure 5.3, on page 66, we sketched out the basic content of the
products table. Now let’s turn that into reality. We need to create a database
table and a Rails model that lets our application use that table.

At this point, we have a decision to make. How do we specify the structure of
our database table? Should we use low-level Data Definition Language (DDL)
statements (create table and friends)? Or is there a higher-level way, one that
makes it easier to change the schema over time? Of course there is! In fact,
there are a number of alternatives.

Many people like using interactive tools to create and maintain schemas. The
phpMyAdmin tool, for example, lets you maintain a MySQL database using
web forms. At first sight this approach to database maintenance is attractive—
after all, what’s better than just typing some stuff into a form and having the
tool do all of the work? However, this convenience comes at a price: the history
of the changes you've made is lost, and all your changes are effectively irre-
versible. It also makes it hard for you to deploy your application: you have to
remember to make the same changes to both your development and produc-
tion databases (and we all know that if you're going to fat finger something,
it'll be when you're editing the production schema).

3. http://wiki.rubyonrails.com/rails/pages/Mysgl+Connection+Problems/

http://dev.mysql.com/doc/mysql/en/old-client.html
http://wiki.rubyonrails.com/rails/pages/Mysql+Connection+Problems/
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=73

ITERATION Al: GET SOMETHING RUNNING <« 74

Fortunately, Rails offers a middle ground. With Rails, you can define database
migrations. Each migration represents a change you want to make to the
database, expressed in a source file in database-independent terms. These
changes can update both the database schema and the data in the database
tables. You apply these migrations to update your database, and you can
unapply them to roll your database back. We have a whole chapter on migra-
tions starting on page 263, so for now, we’ll just use them without too much
more comment.

Just how do we create these migrations? Well, when you think about it, we
normally want to create a database table at the same time as we create a Rails
model that wraps it. So Rails has a neat shortcut. When you use the generator
to create a new model, Rails automatically creates a migration that you can
use to create the corresponding table. (As we’ll see later, Rails also makes it
easy to create just the migrations.)

So, let’s go ahead and create the model and the migration for our products
table. Note that on the command line that follows, we use the singular form,
product. In Rails, a model is automatically mapped to a database table whose name mapping
name is the plural form of the model’s class. In our case, we asked for a model page 241
called Product, so Rails associated it with the table called products. (And how
will it find that table? We told it where to look when we set up the development
entry in config/database.yml.)
depot> ruby script/generate model product
exists app/models/
exists test/unit/
exists test/fixtures/
create app/models/product.rb
create test/unit/product_test.rb
create test/fixtures/products.yml

create db/migrate
create db/migrate/001_create_products.rb

The generator creates a bunch of files. The two were interested in are the
model itself, product.rb, and the migration 001_create_products.ro. Let’s look at
that migration file first.

The migration has a sequence number prefix (001), a name (create_products),
and the file extension (.rb, because it’s a Ruby program). Let’s add the code to
this file that creates the table in the database. Go to the db/migrate directory
and open the file 001_create_products.ro. You'll see two Ruby methods.

class CreateProducts < ActiveRecord::Migration

def self.up
create_table :products do |t]
t.column :name, :string

end
end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=74

ITERATION Al: GET SOMETHING RUNNING <« 75

def self.down
drop_table :products
end
end

The up method is used when applying the migration to the database. This is
where the code that defines our table goes. The down method undoes the effect
of the up method: it is run when reverting the database to a previous version.
You can see that Rails has already added the code that will create and drop
the table in these two methods. Our job now is to tell it the columns we want.

Edit the file so that it looks like the following.

Download depot_a/db/migrate/001_create_products.rb

class CreateProducts < ActiveRecord::Migration

def self.up
create_table :products do |t]
t.column :title, :string
t.column :description, :text
t.column :image_url, :string
end
end

def self.down
drop_table :products
end
end

The file looks fairly similar to raw DDL that we might feed to our database
directly, but it’s actually Ruby code. Where we might type create table to
MySQ@L or Oracle, we say create_table in a migration. Our up method defines
three columns for our products table. Isn’'t Ruby a wonderful language?

Now we get Rails to apply this migration to our development database. This
uses the rake command. Rake is like having a reliable assistant on hand all
the time: you tell it to do some task, and that task gets done. In this case, we’ll
tell Rake to apply any unapplied migrations to our database.

depot> rake db:migrate

(in /Users/dave/work/depot)
== CreateProducts: migrating
-- create_table(:products)
-> 0.0625s

== CreateProducts: migrated (0.0656s)

And that’s it. Rake looks for all the migrations not yet applied to the database
and applies them. In our case, the products table is added to the database
defined by the development: section of the database.yml file.*

4. If you're feeling frisky, you can experiment with rolling back the migration. Just type
depot>rake db:migrate VERSION=0

Your schema will be transported back in time, and the products table will be gone. Calling rake
db:migrate again will re-create it.

http://media.pragprog.com/titles/rails2/code/depot_a/db/migrate/001_create_products.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=75

ITERATION Al: GET SOMETHING RUNNING <« 76

How does Rake know which migrations have and have not been applied to your
database? Have a look at your schema after running a migration. You'll find a
table called schema_info that it uses to keep track of the version number.®

Create Your Controller
As we saw when we looked at MVC architectures, our application will need
a controller to coordinate the stuff it has to do when maintaining the list of
products. We'll call this controller admin. Create it using one of Rails’ handy-
dandy generators:
depot> ruby script/generate controller admin

exists app/controllers/

exists app/helpers/

create app/views/admin

exists test/functional/

create app/controllers/admin_controller.rb

create test/functional/admin_controller_test.rb
create app/helpers/admin_helper.rb

We’'ll see what all these files do later.

Create the Maintenance Application

OK. All the groundwork has been done. We set up our Depot application as a
Rails project. We created the development database and configured our appli-
cation to be able to connect to it. We created an admin controller and a product
model and used a migration to create the corresponding products table. Time
to write the maintenance app:

Using your favorite editor, open the file admin_controller.rb in the app/controllers
directory. It should look like this.

class AdminController < ApplicationController
end

Edit it, adding a line so that it now looks like this.

Download depot_a/app/controllers/admin_controller.ro

class AdminController < ApplicationController
scaffold :product
end

That wasn’t hard now, was it?

That single extra line has written a basic maintenance application. The scaffold
declaration tells Rails to generate the application code at runtime, and the

5. Sometimes this schema_info table can cause you problems. For example, if you create the migra-
tion source file and run db:migrate before you add any schema-defining statements to the file, the
database will think it has been updated, and the schema info table will contain the new version
number. If you then edit that existing migration file and run db:migrate again, Rails won’t know to
apply your new changes. In these circumstances, it’s often easiest to drop the database, re-create
it, and rerun your migration(s).

http://media.pragprog.com/titles/rails2/code/depot_a/app/controllers/admin_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=76

ITERATION Al: GET SOMETHING RUNNING <« 77

:product parameter told it that we want to maintain data using the product
model. Before we worry about just what happened behind the scenes here,
let’s try our shiny new application. First, we’ll start a local WEBrick-based
web server, supplied with Rails.

depot> ruby script/server

=> Booting WEBrick...

=> Rails application started on http://0.0.0.0:3000

=> Ctr1-C to shutdown server; call with --help for options

[2006-01-09 19:41:37] INFO WEBrick 1.3.1

[2006-01-09 19:41:37] INFO ruby 1.8.2 (2004-12-30) [powerpc-darwin8.2.0]
[2006-01-09 19:41:37] INFO WEBrick::HTTPServer#start: pid=4323 port=3000

Just as it did with our demo application in Chapter 4, Instant Gratification, this
command starts a web server on our local host, port 3000.° Let’s connect to
it. Remember, the URL we give to our browser contains both the port number
(83000) and the name of the controller in lowercase (admin).

5‘3:6»6 Scaffoiding_

" a4 > @ 3 http:/ /localhost:3000/admin S1Qr Google 4
Listing products

Title Description Image url

il

New product

That’s pretty boring. It’s showing us an empty list of products. Let’s add some.
Click the New product link, and a form should appear. Go ahead and fill it in.

& 88l SEaiolding 5
” a4 & @ €3 http: / flocalhost:3000/admin/new @ B Q- Google -}'

New product

Title

Pragmatic Version Control

Description

| <p> |
i This book is a recipe-based approach to using O
| Subversion that will get you up and running [
! quickly---and correctly. All projects need version

| control: it's a foundational piece of any project's)

Image url

fimages/svn.jpg

(Create)

p

Back
A
T —

6. You might get an error saying “Address already in use” when you try to run WEBrick. That
simply means that you already have a Rails WEBrick server running on your machine. If you've
been following along with the examples in the book, that might well be the Hello World! application
from Chapter 4. Find its console, and kill the server using control-C.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=77

ITERATION Al: GET SOMETHING RUNNING <« 78

?'5595_ Scaffolding
" a4 > l @ €3 hrtp: [/localhost:3000/admin/list (] "rQ' Gaogle

Product was successfully created

Listing products

Title Description Image url

>l

This book is a recipe-based approach to using
Subversion that will get you up and running guickly---

Pragmatic and correctly. All projects need version control: it's a
Version foundational piece of any project's infrastructure. Yet /images/svn.jpg Show Edit Destroy J
Control half of all project teams in the U.S. don't use any
version control at all. Many others don't use it well,
and end up experiencing time-consuming probiems.

EIEY

B

Figure 6.1: We Just Added Our First Product

Click the Create button, and you should see the new product in the list (Fig-
ure 6.1). Perhaps it isn’t the prettiest interface, but it works, and we can show
it to our client for approval. She can play with the other links (showing details,
editing existing products, and so on...). We explain to her that this is only a
first step—we know it’s rough, but we wanted to get her feedback early. (And
25 minutes into the start of coding probably counts as early in anyone’s book.)

Rails Scaffolds

We covered a lot of ground in a very short initial implementation, so let’s take
a minute to look at that last step in a bit more detail.

A Rails scaffold is an autogenerated framework for manipulating a model.

When we started the application, the model examined the database table,
worked out what columns it had, and created mappings between the database
data and Ruby objects. That’s why the New product form came up already
knowing about the title, description, and image fields—because they are in
the database table, they are added to the model. The form generator created
by the scaffold can ask the model for information on these fields and uses
what it discovers to create an appropriate HTML form.

Controllers handle incoming requests from the browser. A single application
can have multiple controllers. For our Depot application, it’s likely that we’ll
end up with two of them, one handling the seller’s administration of the site
and the other handling the buyer’s experience. We created the product mainte-

nance scaffolding in the Admin controller, which is why the URL that accesses
it has admin at the start of its path.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=78

ITERATION A2: ADD A MISSING COLUMN < 79

4 N

Q David Says. ..

U Won’t We En Replacing All the Scaffolds?

Most of the time, yes. Scaffolding is not infended to be the shake 'n’ bake of
application development. It's there as support while you build the applica-
tion. As you're designing how the list of products should work, you rely on the
scaffold-generated create, update, and delete actions. Then you replace the
generated creation functionality while relying on the remaining actions. And
so on and so forth.

Sometimes scaffolding will be enough, though. If you're merely interested in
gefting a quick interface to a model online as part of a back-end interface,
you may not care that the looks are bare. But this is the exception. Don’t
expect scaffolding to replace the need for you as a programmer just yet (or
ever).

You don’t always use scaffolds when creating a Rails application—in fact, as
you get more experienced, you'll probably find yourself using them less and
less. The scaffold can be used as the starting point of an application—it isn’'t a
finished application in its own right. Think of construction sites: the scaffold-
ing helps the workers erect the final building. It’s normally taken down before
the occupants move in.

Let’s make use of the transient nature of scaffolds as we move on to the next
iteration in our project.

6.2 Iteration A2: Add a Missing Column

So, we show our scaffold-based code to our customer, explaining that it’s still
pretty rough-and-ready. She’s delighted to see something working so quickly.
Once she plays with it for a while, she notices that something was missed—our
products have no prices.

This means we’ll need to add a column to the database table. Some developers
(and DBAs) would add the column by firing up a utility program and issuing
the equivalent of the command

alter table products add column price decimal(8,2);

But we know all about migrations. Using a migration to add the new column
will give us a version-controlled history of the schema and a simple way to
re-create it.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=79

ITERATION A2: ADD A MISSING COLUMN < 80

We'll start by creating the migration. Previously we used a migration generated
automatically when we created the product model. This time, we have to create
one explicitly. We’'ll give it a descriptive name—this will help us remember what
each migration does when we come back to our application a year from now.
Our convention is to use the verb create when a migration creates tables and
add when it adds columns to an existing table.

depot> ruby script/generate migration add price

exists db/migrate
create db/migrate/002_add_price.rb

Notice how the generated file has a sequence prefix of 002. Rails uses this
sequence number to keep track of what migrations have been and have not
been added to the schema (and also to tell it the order in which migrations
should be applied).

Open the migration source file, and edit the up method, inserting the code to
add the price column to the products table, as shown in the code that follows.
The down method uses remove_column to drop the column.

Download depot_a/db/migrate/002_add_price.rb

class AddPrice < ActiveRecord::Migration
def self.up
add_column :products, :price, :decimal, :precision => 8, :scale => 2, :default => 0
end

def self.down
remove_column :products, :price
end
end

The :precision argument tells the database to store eight significant digits for
the price column, and the :scale option says that two of these digits will fall
after the decimal point. We can store prices from -999,999.99 to +999,999.99.

This code also shows another nice feature of migrations—we can access fea-
tures of the underlying database to perform tasks such as setting the default
values for columns. Don’t worry too much about the syntax used here: we’ll
talk about it in depth later.

Now we can run the migrations again.

depot> rake db:migrate

(in /Users/dave/Work/depot)
== AddPrice: migrating
-- add_column(:products, :price, :decimal, {:precision=>8, :scale=>2, :default=>0})
-> 0.0258s

== AddPrice: migrated (0.0264s)

Rails knows that the database is currently at version 001, so applies only our
newly created 002 migration.

http://media.pragprog.com/titles/rails2/code/depot_a/db/migrate/002_add_price.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=80

ITERATION A3: VALIDATE! < 81

4 N

Pri Dollar n nts

When we defined our schema, we decided to store the product price in a
decimal column, rather than a float. There was a reason for this. Floating-point
numbers are subject to round-off errors: put enough products intfo your cart,
and you might see a total price of 234.99 rather than 235.00. Decimal numbers
are stored both in the database and in Ruby as scaled integers, and hence
they have exact representations.

Here’s the cool part. Go to your browser, which is already talking to our appli-
cation. Hit Refresh, and you should now see the price column included in the
product listing.

Remember we said that the product model went to the products table to find out
what attributes it should have. Well, in development mode, Rails reloads the
model files each time a browser sends in a request, so the model will always
reflect the current database schema. At the same time, the scaffold declaration
in the controller will be executed for each request (because the controller is
also reloaded), so it can use this model information to update the screens it
displays.

There’s no real magic here at the technical level. However, this capability has
a big impact on the development process. How often have you implemented
exactly what a client asked for, only to be told “Oh, that’s not what I meant”
when you finally showed them the working application? Most people find it
far easier to understand ideas when they can play with them. The speed with
which you can turn words into a working application with Rails means that
you're never far from being able to let the client play with their application.
These short feedback cycles mean that both you and the client get to under-
stand the real application sooner, and you waste far less time in rework.

6.3 Iteration A3: Validate!

While playing with the results of iteration 2, our client noticed something. If
she entered an invalid price or forgot to set up a product description, the appli-
cation happily accepted the form and added a line to the database. Although a
missing description is embarrassing, a price of $0.00 actually costs her money,
so she asked that we add validation to the application. No product should be
allowed in the database if it has an empty title or description field, an invalid
URL for the image, or an invalid price.

So, where do we put the validation?

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=81

ITERATION A3: VALIDATE! <« 82

The model layer is the gatekeeper between the world of code and the database.
Nothing to do with our application comes out of the database or gets stored
into the database that doesn’t first go through the model. This makes it an
ideal place to put all validation; it doesn’t matter whether the data comes
from a form or from some programmatic manipulation in our application. If
the model checks it before writing to the database, then the database will be
protected from bad data.

Let’s look at the source code of the model class (in app/models/product.rbo).

class Product < ActiveRecord::Base
end

Not much to it, is there? All of the heavy lifting (database mapping, creating,
updating, searching, and so on) is done in the parent class (ActiveRecord::Base,
a part of Rails). Because of the joys of inheritance, our Product class gets all of
that functionality automatically.

Adding our validation should be fairly clean. Let’s start by validating that the
text fields all contain something before a row is written to the database. We do
this by adding some code to the existing model.

class Product < ActiveRecord::Base

validates_presence_of :title, :description, :image_url
end

The validates_presence_of method is a standard Rails validator. It checks that
a given field, or set of fields, is present and its contents are not empty. Fig-
ure 6.2, on the next page shows what happens if we try to submit a new
product with none of the fields filled in. It’s pretty impressive: the fields with
errors are highlighted, and the errors are summarized in a nice list at the top
of the form. Not bad for one line of code. You might also have noticed that after
editing and saving the product.rb file you didn’t have to restart the application
to test your changes—the same reloading that caused Rails to notice the ear-
lier change to our schema also means it will always use the latest version of
our code, too.

Now we’d like to validate that the price is a valid, positive number. We'll
attack this problem in two stages. First, we’ll use the delightfully named vali-
dates_numericality_of method to verify that the price is a valid number.

validates_numericality_of :price

Now, if we add a product with an invalid price, the appropriate message will
appear, as shown in Figure 6.3, on page 84.

Next, we need to check that the price is greater than zero. We do that by writing
a method named validate in our Product model class. Rails automatically calls
this method before saving away instances of our product, so we can use it to

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=82

ITERATION A3: VALIDATE! < 83

L@ lle Admin: create —=
< b @ 3 http: / /localhost:3000/admin/ create @ F(Q- coogle

New product

3 errors prohibited this product from being saved

There were problems with the following fields:

= Image url can't be blank
= Title can't be blank
= Description can't be blank

Title

Description

Image url

Figure 6.2: Validating That Fields Are Present

check the validity of fields. We make it a protected method, because it shouldn’t protected

be called from outside the context of the model.” 7 page 637
protected
def validate
errors.add(:price, "should be at least 0.01") if price.nil? || price < 0.01
end

If the price is less than one cent, the validate method uses errors.add(...) to
record the error. Doing this stops Rails writing the row to the database. It also

7. MySQL gives Rails enough metadata to know that price contains a number, so Rails stores it
internally as a BigDecimal. With other databases, the value might come back as a string, so you'd
need to convert it using BigDecimal(price) (or perhaps Float(price) if you like to live dangerously)
before using it in a comparison.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=83

ITERATION A3: VALIDATE! < 84

Admin: create -

ﬂ a4 @ l@ @ http: / /localhost: 3000 /admin/create © 2 Q- Coogle 1'1
New product

1 error prohibited this product from being saved

There were problems with the following fields:

= Price is not a number

Title

Pragmatic Unit Testing

Description

A true masterwork. Comparable to Kafka at his
funniest, or Marx during his slapstick period.
Move over, Tolstoy, there's a new funster

in town.

Image url

| fimages/utj.jpg

Price

| wibble 1

{ Create)

Back

Figure 6.3: The Price Fails Validation

gives our forms a nice message to display to the user.® The first parameter to
errors.add is the name of the field, and the second is the text of the message.

Note that before we compare the price to 0.01, we first check to see whether
it’s nil. This is important: if the user leaves the price field blank, no price will
be passed from the browser to our application, and the price variable won’t be
set. If we tried to compare this nil value with a number, we’d get an error.

Two more items to validate. First, we want to make sure that each product has
a unique title. One more line in the Product model will do this. The uniqueness

8. Why test against one cent, rather than zero? Well, it’s possible to enter a number such as 0.001
into this field. Because the database stores just two digits after the decimal point, this would end
up being zero in the database, even though it would pass the validation if we compared against
zero. Checking the number is at least one cent ensures only correct values end up being stored.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=84

ITERATION A4: PRETTIER LISTINGS < 85

validation will perform a simple check to ensure that no other row in the
products table has the same title as the row we're about to save.

validates_uniqueness_of :title

Lastly, we need to validate that the URL entered for the image is valid. We'll

do this using the validates_format_of method, which matches a field against a

regular expression. For now we’ll just check that the URL ends with one of .gif, regular expression
Jog, or .png.? = page 640
validates_format_of :image_url,

:with => %r{\.(gif|jpg|png) $}i,
:message => "must be a URL for a GIF, JPG, or PNG image"

So, in a couple of minutes we've added validations that check

The field’s title, description, and image URL are not empty.
* The price is a valid number not less than $0.01.

The title is unique among all products.
¢ The image URL looks reasonable.

This is the full listing of the updated Product model.

Download depot_b/app/models/product.rb

class Product < ActiveRecord::Base
validates_presence_of :title, :description, :image_url
validates_numericality_of :price
validates_uniqueness_of :title
validates_format_of :image_url,
:with => %r{\.(gif|jpg|png)$}i,
:message => "must be a URL for a GIF, JPG, or PNG image"

protected
def validate

errors.add(:price, "should be at Teast 0.01") if price.nil? || price < 0.01
end

end

Nearing the end of this cycle, we ask our customer to play with the application,
and she’s a lot happier. It took only a few minutes, but the simple act of adding
validation has made the product maintenance pages seem a lot more solid.

6.4 Iteration A4: Prettier Listings

Our customer has one last request (customers always seem to have one last
request). The listing of all the products is ugly. Can we “pretty it up” a bit?

9. Later on, we’d probably want to change this form to let the user select from a list of available
images, but we’d still want to keep the validation to prevent malicious folks from submitting bad
data directly.

http://media.pragprog.com/titles/rails2/code/depot_b/app/models/product.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=85

ITERATION A4: PRETTIER LISTINGS < 86

And, while we're in there, can we also display the product image along with
the image URL?

We're faced with a dilemma here. As developers, we're trained to respond to
these kinds of requests with a sharp intake of breath, a knowing shake of the
head, and a murmured “you want what?” At the same time, we also like to
show off a bit. In the end, the fact that it’s fun to make these kinds of changes
using Rails wins out, and we fire up our trusty editor.

But then we're faced with a second dilemma. So far, the only code we’'ve written
that has anything to do with displaying the product list is

scaffold :product

There’s not much scope for customizing the view there! We used a dynamic
scaffold, which configures itself each time a request comes in. If we want to
see the actual view code in the scaffold, we’ll need to get Rails to generate it
explicitly, creating a static scaffold. The scaffold generator takes two parame-
ters: the names of the model and the controller.
depot> ruby script/generate scaffold product admin

exists app/controllers/

exists app/helpers/

exists app/views/admin

exists test/functional/
dependency model

exists app/models/
exists test/unit/
exists test/fixtures/
skip app/models/product.rb
identical test/unit/product_test.rb
identical test/fixtures/products.yml

create app/views/admin/_form.rhtml
create app/views/admin/1ist.rhtml
create app/views/admin/show.rhtml
create app/views/admin/new.rhtml
create app/views/admin/edit.rhtml
overwrite app/controllers/admin_controller.rb? [Ynaqd] y
force app/controllers/admin_controller.rb
overwrite test/functional/admin_controller_test.rb? [Ynaqd] y
force test/functional/admin_controller_test.rb
identical app/helpers/admin_helper.rb
create app/views/layouts/admin.rhtml
create public/stylesheets/scaffold.css

Wow! That’s a lot of action. Basically, though, it’'s fairly simple. It checks to
make sure we have a model file and then creates all the view files needed to
display the maintenance screens. However, when it gets to the controller, it
stops. It notices that we have edited the file admin_controller and asks for our
permission before overwriting it with its new version. The only change we made
to this file was adding the scaffold :product line, which we no longer need, so

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=86

ITERATION A4: PRETTIER LISTINGS < 87

we say Y. It also asks permission before overwriting the controller’s functional
test, and again we agree.

If you refresh your browser, you should see no difference in the page that’s
displayed: the code added by the static scaffold is identical to that generated
on the fly by the dynamic scaffold. However, as we now have code, we can edit
it.

The Rails view in the file app/views/admin/list.rhtml produces the current list
of products. The source code, which was produced by the scaffold generator,
looks something like the following.

<hl>Listing products</hl>

<table>
<tr>
<% for column in Product.content_columns %>
<th><%= column.human_name %></th>
<% end %>
</tr>

<% for product in @products %>
<tr>
<% for column in Product.content_columns %>
<td><%=h product.send(column.name) %></td>
<% end %>
<td><%= 1link_to 'Show', :action => 'show', :id => product %></td>
<td><%= link_to 'Edit', :action => 'edit', :id => product %></td>
<td><%= 1link_to 'Destroy', { :action => 'destroy', :id => product },
:confirm => 'Are you sure?',
:method => :post %></td>
</tr>
<% end %>
</table>

<%= link_to 'Previous page',
{ :page => @product_pages.current.previous } if @product_pages.current.previous %>
<%= 1link_to 'Next page',
{ :page => @product_pages.current.next } if @product_pages.current.next %>

<%= Tlink_to 'New product', :action => 'new' %>

The view uses ERD to iterate over the columns in the Product model. It creates &ro

a table row for each product in the @products array. (This array is set up by the — "
list action method in the controller.) The row contains an entry for each column

in the result set.

The dynamic nature of this code is neat, because it means that the display will
automatically update to accommodate new columns. However, it also makes
the display somewhat generic. So, let’s take this code and modify it to produce
nicer-looking output.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=87

ITERATION A4: PRETTIER LISTINGS

Before we get too far, though, it would be nice if we had a consistent set of
test data to work with. We could use our scaffold-generated interface and type
data in from the browser. However, if we did this, future developers working
on our codebase would have to do the same. And, if we were working as part
of a team on this project, each member of the team would have to enter their
own data. It would be nice if we could load the data into our table in a more
controlled way. It turns out that we can. Migrations to the rescue!

Let’s create a data-only migration. The up method adds three rows containing
typical data to our products table. The down method empties the table out. The
migration is created just like any other.

depot> ruby script/generate migration add_test_data
exists db/migrate
create db/migrate/003_add_test_data.rb

We then add the code to populate the products table. This uses the create
method of the Product model. The following is an extract from that file. (Rather
than type the migration in by hand, you might want to copy the file from
the sample code available online.!° Copy it to the do/migrate directory in your
application. While you're there, copy the images'! and the file depot.css'? into
corresponding places (public/images and public/stylesheets in your application).

Download depot_c/db/migrate/003_add_test_data.rb

class AddTestData < ActiveRecord::Migration
def self.up
Product.delete_all
Product.create(:title => 'Pragmatic Version Control',
:description =>
%{<p>
This book is a recipe-based approach to using Subversion that will
get you up and running quickly--and correctly. A1l projects need
version control: it's a foundational piece of any project's
infrastructure. Yet half of all project teams in the U.S. don't use
any version control at all. Many others don't use it well, and end
up experiencing time-consuming problems.
</p>},
:image_url => '/images/svn.jpg',
rprice => 28.50)
.
end

def self.down
Product.delete_all
end
end

10. http://media.pragprog.com/titles/rails2/code/depot_c/db/migrate/003_add_test_data.rb
11. http://media.pragprog.com/titles/rails2/code/depot_c/public/images
12. http://media.pragprog.com/titles/rails2/code/depot_c/public/stylesheets/depot.css

http://media.pragprog.com/titles/rails2/code/depot_c/db/migrate/003_add_test_data.rb
http://media.pragprog.com/titles/rails2/code/depot_c/db/migrate/003_add_test_data.rb
http://media.pragprog.com/titles/rails2/code/depot_c/public/images
http://media.pragprog.com/titles/rails2/code/depot_c/public/stylesheets/depot.css
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=88

ITERATION A4: PRETTIER LISTINGS < 89

(Note that this code uses %{...}. This is an alternative syntax for double-quoted
string literals, convenient for use with long strings.)

Running the migration will populate your products table with test data.

depot> rake db:migrate

Now let’s get the product listing tidied up. There are two pieces to this. Even-
tually we’ll be writing some HTML that uses CSS to style the presentation. But
for this to work, we’ll need to tell the browser to fetch the stylesheet.

We need somewhere to put our CSS style definitions. All scaffold-generated
applications use the stylesheet scaffold.css in the directory public/stylesheets.
Rather than alter this file, we created a new application stylesheet, depot.css,
and put it in the same directory. A full listing of this stylesheet starts on
page 679.

Finally, we need to link these stylesheets into our HTML page. If you look at
the .rhtml files we've created so far, you won'’t find any reference to stylesheets.
You won't even find the HTML <head> section where such references would
normally live. Instead, Rails keeps a separate file that is used to create a stan-
dard page environment for all admin pages. This file, called admin.rhtml, is a
Rails layout and lives in the layouts directory.

Download depot_b/app/views/layouts/admin.rhtml

<html>

<head>
<title>Admin: <%= controller.action_name %></title>
<%= stylesheet_link_tag 'scaffold' %>

</head>

<body>

<p style="color: green"><%= flash[:notice] %></p>
<%= yield :layout %>

</body>

</htm1>

The fourth line loads the stylesheet. It uses stylesheet_link_tag to create an HTML
<link> tag, which loads the standard scaffold stylesheet. We’ll simply add our
depot.css file here (dropping the .css extension). Don’t worry about the rest of
the file: we’ll look at that later.

<%= stylesheet_Tlink_tag 'scaffold', 'depot' %>

While we're in there, we'll add a <!DOCTYPE... directive to the top of the file.
Without this line, Internet Explorer operates in quirks mode, which is incom-
patible with web standards. The top of our layout now looks like this.

http://media.pragprog.com/titles/rails2/code/depot_b/app/views/layouts/admin.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=89

ITERATION A4: PRETTIER LISTINGS < 90

<!DOCTYPE html1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtm11/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>Admin: <%= controller.action_name %></title>
<%= stylesheet_link_tag 'scaffold', 'depot' %>
</head>

Now that we have the stylesheet all in place, we’ll use a simple table-based
template, editing the file list.rhtml in app/views/admin, replacing the dynamic
column display.

Download depot_c/app/views/admin/list.rhtml

<div id="product-Tist">

<h1>Product Listing</hl>

<table cellpadding="5" cellspacing="0">
<% for product in @products %>

<tr valign="top" class="<%= cycle('list-1ine-odd', 'list-line-even') %>">
<td>
<img class="list-image" src="<%= product.image_url %>"/>
</td>

<td width="60%">
<%= h(product.title) %>

<%= h(truncate(product.description, 80)) %>

</td>

<td class="Tist-actions">

<%= Tlink_to 'Show', :action => 'show', :id => product %>

<%= link_to 'Edit', :action => 'edit', :id => product %>

<%= link_to 'Destroy', { :action => 'destroy', :id => product },

:confirm => "Are you sure?",
:method => :post %>
</td>
</tr>
<% end %>
</table>
</div>

<%= 1if @product_pages.current.previous
Tink_to("Previous page", { :page => @product_pages.current.previous })
end
%>
<%= if @product_pages.current.next
Tink_to("Next page", { :page => @product_pages.current.next })

end
%>

<%= link_to 'New product', :action => 'new' %>

http://media.pragprog.com/titles/rails2/code/depot_c/app/views/admin/list.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=90

ITERATION A4: PRETTIER LISTINGS <« 91

4 N

What’s with :method => :post?

You may have noticed that the scaffold-generated “Destroy” link includes the
parameter :method => :post. This parameter was added to Rails 1.2, and it gives
us a glimpse into the future of Rails.

Browsers use HTTP to talk with servers. HTTP defines a set of verbs that browsers
can employ and defines when each can be used. A regular hyperlink, for
example, uses an HTTP GET request. A GET request is defined by HTIP to be
used fo retrieve data: it isn’t supposed to have any side effects. The technical
term is idempotent—you should be able to issue the same GET request many
times and get the same result each time.

But if we use a GET request as a link fo a Rails action that deletes a product, it’s
no longer idempotent: it’ll work the first fime but fail on subsequent clicks. So,
the Rails team changed the scaffold code generator to force the link to issue
an HTTP POST. These POST requests are permitted to have side effects and so
are more suitable for deleting resources.

Over time, expect to see Rails become more and more strict about the correct
use of HTTR

Even this simple template uses a number of built-in Rails features.

* The rows in the listing have alternating background colors. This is done
by setting the CSS class of each row to either list-line-even or list-line-odd.
The Rails helper method called cycle does this, automatically toggling
between the two style names on successive lines.

¢ The h method is used to escape the HTML in the product title and descrip-
tion. That's why you can see the markup in the descriptions: it's being
escaped and displayed, rather than being interpreted.

* We also used the truncate helper to display just the first 80 characters of
the description.

* Look at the link_to ‘Destroy’ line. See how it has the parameter :confirm =>
"Are you sure?". If you click this link, Rails arranges for your browser to
pop up a dialog box asking for confirmation before following the link and
deleting the product. (Also, see the sidebar on this page for some scoop
on this action.)

So, we've loaded some test data into the database, we rewrote the list.rhtml file
that displays the listing of products, we created a depot.css stylesheet, and we
linked that stylesheet into our page by editing the layout admin.rhtml. Bring

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=91

ITERATION A4: PRETTIER LISTINGS <« 92

up a browser, point to localhost:3000/admin/list, and the resulting product listing
might look something like the following.

Glala) Admin: list q
4 b @ 3 htp: / /localhost:3000 /admin/list S Qr Google ['-
Product Listing
b Pragmatic Version Control Show
<p> This book is a recipe-based approach to Egit
ﬁ using Subversion that will get y... Deéstroy
S
_— Pragmatic Project Automation Show
L™ <p> Pragmatic Project Eoit
- Automation shows you how to Destroy
—_— improve the...
frd Pragmatic Unit Testing (C#) Show
ok <p> Pragmatic programmers use feedback Eit
Fi to drive their development and... Destroy
New product
/]

A static Rails scaffold provides real source code, files that we can modify and
immediately see results. The combination of dynamic and static scaffolds gives
us the flexibility we need to develop in an agile way. We can customize a par-
ticular source file and leave the rest alone—changes are both possible and
localized.

So, we proudly show our customer her new product listing, and she’s pleased.
End of task. Time for lunch.

What We Just Did
In this chapter we laid the groundwork for our store application.

* We created a development database and configured our Rails application
to access it.

* We used migrations to create and modify the schema in our development
database and to load test data.

* We created the products table and used the scaffold generator to write an
application to maintain it.

* We augmented that generated code with validation.
* We rewrote the generic view code with something prettier.

One topic we didn’t cover was the pagination of the product listing. The scaf-
fold generator automatically used Rails’ built-in pagination helper. This breaks
the lists of products into pages of 10 entries each and automatically handles
navigation between pages. We discuss this in more depth starting on page 479.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=92

ITERATION A4: PRETTIER LISTINGS < 93

Playtime
Here’s some stuff to try on your own.

* The method validates_length_of (described on page 370) checks the length
of a model attribute. Add validation to the product model to check that
the title is at least 10 characters long.

* Change the error message associated with one of your validations.

¢ Add the product price to the output of the list action.

(You’ll find hints at http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime)

http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=93

7.1

In this chapter, we'll see

writing our own views

using layouts o decorate pages
integrating CSS

using helpers

linking pages to actions

Chapter 7

All in all, it has been a successful day so far. We gathered the initial require-
ments from our customer, documented a basic flow, worked out a first pass
at the data we’ll need, and put together the maintenance page for the Depot
application’s products. We even managed to cap off the morning with a decent
lunch.

Thus fortified, it’s on to our second task. We chatted through priorities with
our customer, and she said she’d like to start seeing what the application looks
like from the buyer’s point of view. Our next task is to create a simple catalog
display.

This also makes a lot of sense from our point of view. Once we have the prod-
ucts safely tucked into the database, it should be fairly simple to display them.
It also gives us a basis from which to develop the shopping cart portion of the
code later.

We should also be able to draw on the work we did in the product maintenance
task—the catalog display is really just a glorified product listing. So, let’'s get
started.

Iteration B1: Create the Catalog Listing

Back on page 78, we said that we’d be using two controller classes for this
application. We've already created the Admin controller, used by the seller to
administer the Depot application. Now it’s time to create the second controller,
the one that interacts with the paying customers. Let’s call it Store.

depot> ruby script/generate controller store index
exists app/controllers/
exists app/helpers/
create app/views/store
exists test/functional/
create app/controllers/store_controller.rb

ITERATION B1: CREATE THE CATALOG LISTING < 95

create test/functional/store_controller_test.rb
create app/helpers/store_helper.rb
create app/views/store/index.rhtml

Just as in the previous chapter, where we used the generate utility to create
a controller to administer the products, here we've asked it to create a new
controller (class StoreController in the file store_controller.rb) containing a single
action method, index.

So why did we choose to call our first method index? Well, just like most web
servers, if you invoke a Rails controller and don’t specify an explicit action,
Rails automatically invokes the index action. In fact, let’s try it. Point a browser
at http://localhost:3000/store, and up pops our web page.!

)’_8'06 http://localhost:3000/store _
"l 4 » @ €3 hitp: { /localhost:3000/store ~'Q- Google \‘

Storeffindex

Find me in app/views/store/index thtml

It might not make us rich, but at least we know everything is wired together
correctly. The page even tells us where to find the template file that draws this

page.

Let’s start by displaying a simple list of all the products in our database. We
know that eventually we’ll have to be more sophisticated, breaking them into
categories, but this will get us going.

We need to get the list of products out of the database and make it available to
the code in the view that will display the table. This means we have to change
the index method in store_controllerrb. We want to program at a decent level of
abstraction, so let’s just assume we can ask the model for a list of the products
we can sell.

Download depot_d/app/controllers/store_controller.rb

class StoreController < ApplicationController
def qindex
@products = Product.find_products_for_sale
end
end

1. If you instead see a message saying “no route found to match...” you may need to stop and
restart your application at this point. Press control-C in the console window in which you ran
script/server, and then rerun the command.

http://localhost:3000/store
http://media.pragprog.com/titles/rails2/code/depot_d/app/controllers/store_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=95

ITERATION B1: CREATE THE CATALOG LISTING < 96

Obviously, this code won't run as it stands. We need to define the method
find_products_for_sale in the product.ro model. The code that follows uses the
Rails find method. The :all parameter tells Rails that we want all rows that
match the given condition. We asked our customer whether she had a prefer-
ence regarding the order things should be listed, and we jointly decided to see
what happened if we displayed the products in alphabetical order, so the code

does a sort on title. def self.xxx
— page 635
Download depot_d/app/models/product.rb

class Product < ActiveRecord::Base

def self.find_products_for_sale
find(:all, :order => "title")
end

validation stuff...
end

The find method returns an array containing a Product object for each row
returned from the database. We use its optional :order parameter to have these
rows sorted by their title. The find_products_for_sale method simply passes this
array back to the controller. Note that we made find_products_for_sale a class
method by putting self. in front of its name in the definition. We did this because
we want to call it on the class as a whole, not on any particular instance—we’ll
use it by saying Product.find_products_for_sale.

Now we need to write our view template. To do this, edit the file index.rhtml in
app/views/store. (Remember that the path name to the view is built from the
name of the controller [store] and the name of the action [index]. The .rhtml part
signifies an ERb template.)

Download depot_d/app/views/store/index.rhtml

<h1l>Your Pragmatic Catalog</hl>

<% for product in @products -%>
<div class="entry">
<img src="<%= product.image_url %>"/>
<h3><%= h(product.title) %></h3>
<%= product.description %>
<%= product.price %>
</div>
<% end %>

This time, we used the h(string) method to escape any HTML element in the
product title but did not use it to escape the description. This allows us to add
HTML stylings to make the descriptions more interesting for our customers.?

2. This decision opens a potential security hole, but because product descriptions are created by
people who work for our company, we think that the risk is minimal. See Section 26.5, Protecting
Your Application from XSS, on page 607 for details.

http://media.pragprog.com/titles/rails2/code/depot_d/app/models/product.rb
http://media.pragprog.com/titles/rails2/code/depot_d/app/views/store/index.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=96

ITERATION B1: CREATE THE CATALOG LISTING < 97

http:{/localhost: 3000/ store

806
@ A hitp:/ /localhost: 3000/ store A Q- Google

Your Pragmatic Catalog

] |_J. 1)

Pragmatic
cl
Aufomation

Pragmatic Project Automation

Pragmatic Project Automation shows you how to improve the consistency and repeatability of your
project's procedures using automation to reduce risk and errors.

Simply put, we're going 1o put this thing called a computer to work for you doing the mundane (but
important) project stuff. That means you'll have more time and energy to do the really exciting---and J
difficult---stuff, like writing quality code.

2995

" e
E i
Pragmatic Unit Testing (C#)

Pragmatic programmers use feedback to drive their development and personal processes. The most

NI

Figure 7.1: Our First (Ugly) Catalog Page

In general, try to get into the habit of typing <%= h(...) %> in templates and then
removing the h when you've convinced yourself it’s safe to do so.

Hitting Refresh brings up the display in Figure 7.1. It’s pretty ugly, because we
haven't yet included the CSS stylesheet. The customer happens to be walking
by as we ponder this, and she points out that she’d also like to see a decent-
looking title and sidebar on public-facing pages.

At this point in the real world we’d probably want to call in the design folks—
we've all seen too many programmer-designed web sites to feel comfortable
inflicting another on the world. But the Pragmatic Web Designer is off getting
inspiration on a beach somewhere and won't be back until later in the year, so
let’s put a placeholder in for now. It’s time for an iteration.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=97

ITERATION B2: ADD A PAGE LAyouT < 98

7.2 Iteration B2: Add a Page Layout

The pages in a typical web site often share a similar layout—the designer will
have created a standard template that is used when placing content. Our job
is to add this page decoration to each of the store pages.

Fortunately, in Rails we can define layouts. A layout is a template into which
we can flow additional content. In our case, we can define a single layout for
all the store pages and insert the catalog page into that layout. Later we can
do the same with the shopping cart and checkout pages. Because there’s only
one layout, we can change the look and feel of this entire section of our site
by editing just one file. This makes us feel better about putting a placeholder
in for now; we can update it when the designer eventually returns from the
islands.

There are many ways of specifying and using layouts in Rails. We'll choose the
simplest for now. If you create a template file in the app/views/layouts directory
with the same name as a controller, all views rendered by that controller will
use that layout by default. So let’s create one now. Our controller is called
store, so we’ll name the layout store.rhtml.

Download depot_e/app/views/layouts/store.rhtml

Line 1 <!DOCTYPE html1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
- "http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">

<html>
<head>
5 <title>Pragprog Books Online Store</title>
<%= stylesheet_link_tag "depot", :media => "all" %>
</head>

<body id="store">
<div id="banner">

10
<%= @page_title || "Pragmatic Bookshelf" %>
</div>

<div id="columns">
<div id="side">
15 Home

Questions

News

Contact

</div>
20 <div id="main">
<%= yield :Tayout %>
</div>
</div>
- </body>
25 </html>

Apart from the usual HTML gubbins, this layout has three Rails-specific items.
Line 6 uses a Rails helper method to generate a <link> tag to our depot.css

http://media.pragprog.com/titles/rails2/code/depot_e/app/views/layouts/store.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=98

ITERATION B2: ADD A PAGE LAyouT < 99

ﬂﬁ n - Pragprog Books Online Store
‘1_ @ 3 http://localhost:3000/store ~Q- Gongle “1
=il A P
RAGMATIC BOOKSHELF

=" Pragmatic Project Automation

T Pragmatic Project Automation shows you how to improve
the consistency and repeatability of your project's
procedures using automation to reduce risk and errors.

Simply put, we're going to put this thing called a computer to work for
you doing the mundane (but important) project stuff. That means you'll
have more time and energy to do the really exciting—and difficult-—
stuff, like writing quality code.

29.95

[r— Pragmatic Unit Testing (C#)
ey Pragmatic programmers use feedback to drive their
gi development and personal processes. The most valuable
feedback you can get while coding comes from unit testing.

‘Without good tests in place, coding can become a frustrating game of
"whack-a-mole." That's the carnival game where the player strikes ata

Figure 7.2: Catalog with Layout Added

stylesheet. On line 11 we set the page heading to the value in the instance
variable @page_title. The real magic, however, takes place on line 21. When we
invoke yield, passing it the name :layout, Rails automatically substitutes in the
page-specific content—the stuff generated by the view invoked by this request.
In our case, this will be the catalog page generated by index.rhtml.?

To make this all work, we need to add to our depot.css stylesheet. It’s starting
to get a bit long, so rather than include it inline, we show the full listing
starting on page 679. Hit Refresh, and the browser window looks something
like Figure 7.2. It won’t win any design awards, but itll show our customer
roughly what the final page will look like.

3. Rails also sets the variable @content_for_layout to the results of rendering the action, so you can
also substitute this value into the layout in place of the yield. This was the original way of doing it
(and I personally find it more readable). Using yield is considered sexier.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=99

ITERATION B3: USE A HELPER TO FORMAT THE PRICE < 100

7.3 Iteration B3: Use a Helper to Format the Price

There’s a problem with our catalog display. The database stores the price as a
number, but we’d like to show it as dollars and cents. A price of 12.34 should
be shown as $12.34, and 13 should display as $13.00.

One solution would be to format the price in the view. For example, we could
say

<%= sprintf("$%0.02f", product.price) %>

This will work, but it embeds knowledge of currency formatting into the view.
Should we want to internationalize the application later, this would be a main-
tenance problem.

Instead, let’s use a helper method to format the price as a currency. Rails has
an appropriate one built in—it’s called number_to_currency.

Using our helper in the view is simple: in the index template, we change

<%= product.price %>

to

<%= number_to_currency(product.price) %>

Sure enough, when we hit Refresh, we see a nicely formatted price.

doing'lhc mundane fbm important) project stuff. That means you'll have more
time and energy to do the really exciting---and difficult---smff, like writing
quality code.

$29.95
A 4

7.4 Iteration B4: Linking to the Cart

Our customer is really pleased with our progress. We're still on the first day of
development, and we have a halfway decent-looking catalog display. However,
she points out that we've forgotten a minor detail—there’s no way for anyone
to buy anything at our store. We forgot to add any kind of Add to Cart link to
our catalog display.

Back on page 57 we used the link_to helper to generate links from a Rails view
back to another action in the controller. We could use this same helper to put
an Add to Cart link next to each product on the catalog page. As we saw on
page 91, this is dangerous. The problem is that the link_to helper generates an
HTML tag. When you click the corresponding link, your browser
generates an HTTP GET request to the server. And HTTP GET requests are not
supposed to change the state of anything on the server—they're to be used
only to fetch information.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=100

ITERATION B4: LINKING TO THE CART <« 101

We previously showed the use of :method => :post as one solution to this prob-
lem. Rails provides a useful alternative: the button_to method also links a view
back to the application, but it does so by generating an HTML form that con-
tains just a single button. When the user clicks the button, an HTTP POST
request is generated. And a POST request is just the ticket when we want to
do something like add an item to a cart.

Let’s add the |Add to Cart|button to our catalog page. The syntax is the same

as we used for link_fo.

<%= button_to "Add to Cart", :action => :add_to_cart %>

However, there’s a problem with this: how will the add_to_cart action know
which product to add to our cart? We'll need to pass it the id of the item
corresponding to the button. That's easy enough—we simply add an :id option
to the button_fo call. Our index.rhtml template now looks like this.

Download depot_f/app/views/store/index.rhtml

<hl>Your Pragmatic Catalog</hl>

<% for product in @products -%>
<div class="entry">
<img src="<%= product.image_url %>"/>
<h3><%= h(product.title) %></h3>
<%= product.description %>
<%= number_to_currency(product.price) %>
<%= button_to "Add to Cart", :action => :add_to_cart, :id => product %>
</div>
<% end %>

There’s one more formatting issue. button_to creates an HTML <form>, and
that form contains an HTML <div>. Both of these are normally block elements,
which will appear on the next line. We'd like to place them next to the price,
so we need a little CSS magic to make them inline.

Download depot_f/public/stylesheets/depot.css

#store .entry form, #store .entry form div {
display: inline;

}

Now our index page looks like Figure 7.3, on the following page.

What We Just Did

We've put together the basis of the store’s catalog display. The steps were as
follows.

1. Create a new controller to handle customer-centric interactions.

2. Implement the default index action.

http://media.pragprog.com/titles/rails2/code/depot_f/app/views/store/index.rhtml
http://media.pragprog.com/titles/rails2/code/depot_f/public/stylesheets/depot.css
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=101

ITERATION B4: LINKING TO THE CART <« 102

-hn f'\ Pragprog Baoks Online Stare
4 B l@ http:/ flocalhost:3000/store & Q- Google |
PRAGMATIC BOOKSHELF

Your Pragmatic Catalog

Pragmatic Project Automation
Pragmatic Project Automation shows you how to improve the

consistency and repeatability of your project's procedures using
automation to reduce risk and errors.

Simply put, we're going to put this thing called a computer to work for you
doing the mundane (but important) project stuff. That means you'll have more
time and energy to do the really exciting---and difficult---stuff, like writing
quality code. -

$2995 (Addwcan)

Figure 7.3: Now There’s an Add to Cart Button

3. Add a class method to the Product model to return salable items.

4. Implement a view (an .rhtml file) and a layout to contain it (another .rhtml
file).

5. Create a simple stylesheet.

6. Use a helper to format prices the way we’d like.

7. Add a button to each item to allow folks to add it to our cart.
Time to check it all in and move on to the next task.
Playtime
Here’s some stuff to try on your own:

* Add a date and time to the sidebar. It doesn’t have to update: just show
the value at the time the page was displayed.

¢ Change the application so that clicking a book’s image will also invoke
the add_to_cart action. (It’s OK, I know we haven’'t written that action
yet....) Hint: the first parameter to link_fo is placed in the generated <a>
tag, and the Rails helper image_tag constructs an HTML tag. Look
up image_tag in the Rails API documentation at http://api.rubyonrails.org,
and include a call to it as the first parameter to a link_fo call.

* The full description of the number_to_currency helper method is

number_to_currency(number, options = {})

http://api.rubyonrails.org
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=102

ITERATION B4: LINKING TO THE CART <« 103

Formats a number into a currency string. The options hash can be used
to customize the format of the output. The number can contain a level of
precision using the :precision key; default is 2 The currency type can be set
using the :unit key; default is "$” The unit separator can be set using the

"on

:separator key; default is ".” The delimiter can be set using the :delimiter key;

default is ",".
number_to_currency(1234567890.50) = $1,234,567,890.50
number_to_currency(1234567890.506) => $1,234,567,890.51

number_to_currency(1234567890.50, :unit => "£",
:separator => ",", :delimiter => "")
=> £1234567890, 50

Experiment with setting various options, and see the effect on your cat-
alog listing.

(You'll find hints at http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime)

http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=103

8.1

In this chapter, we'll see

sessions and session management
nondatabase models

error diagnosis and handling

the flash

logging

Chapter 8

Task C: Cart Crea

Now that we have the ability to display a catalog containing all our wonderful
products, it would be nice to be able to sell them. Our customer agrees, so
we've jointly decided to implement the shopping cart functionality next. This is
going to involve a number of new concepts, including sessions, error handling,
and the flash, so let’s get started.

Sessions

Before we launch into our next wildly successful iteration, we need to spend
just a little while looking at sessions, web applications, and Rails.

As a user browses our online catalog, he or she will (we hope) select products
to buy. The convention is that each item selected will be added to a virtual
shopping cart, held in our store. At some point, our buyers will have everything
they need and will proceed to our site’s checkout, where they’ll pay for the stuff
in the cart.

This means that our application will need to keep track of all the items added
to the cart by the buyer. This sounds simple, except for one minor detail. The
protocol used to talk between browsers and application programs is stateless—
it has no memory built in. Each time your application receives a request from
the browser is like the first time they’ve talked to each other. That’s cool for
romantics but not so good when you're trying to remember what products your
user has already selected.

The most popular solution to this problem is to fake out the idea of stateful
transactions on top of HTTP, which is stateless. A layer within the application
tries to match an incoming request to a locally held piece of session data. If a
particular piece of session data can be matched to all the requests that come
from a particular browser, we can keep track of all the stuff done by the user
of that browser using that session data.

SEssIoNs <« 105

The underlying mechanisms for doing this session tracking are varied. Some-
times an application encodes the session information in the form data on each
page. Sometimes the encoded session identifier is added to the end of each
URL (the so-called URL Rewriting option). And sometimes the application uses
cookies. Rails uses the cookie-based approach.

A cookie is simply a chunk of named data that a web application passes to
a web browser. The browser remembers it. Subsequently, when the browser
sends a request to the application, the cookie data tags along. The application
uses information in the cookie to match the request with session information
stored in the server. It's an ugly solution to a messy problem. Fortunately, as
a Rails programmer you don’t have to worry about all these low-level details.
(In fact, the only reason to go into them at all is to explain why users of Rails
applications must have cookies enabled in their browsers.)

Rather than have developers worry about protocols and cookies, Rails provides

a simple abstraction. Within the controller, Rails maintains a special hash-like hash
collection called session. Any key/value pairs you store in this hash during the page 638
processing of a request will be available during subsequent requests from the

same browser.

In the Depot application we want to use the session facility to store the infor-
mation about what’s in each buyer’s cart. But we have to be slightly careful
here—the issue is deeper than it might appear. There are problems of resilience
and scalability.

By default, Rails stores session information in a file on the server. If you have
a single Rails server running, there’s no problem with this. But imagine that
your store application gets so wildly popular that you run out of capacity on a
single-server machine and need to run multiple boxes. The first request from
a particular user might be routed to one back-end machine, but the second
request might go to another. The session data stored on the first server isn’t
available on the second; the user will get very confused as items appear and
disappear in their cart across requests.

So, it’s a good idea to make sure that session information is stored somewhere
external to the application where it can be shared between multiple applica-
tion processes if needed. And if this external store is persistent, we can even
bounce a server and not lose any session information. We talk all about setting
up session information in Section 21.2, Rails Sessions, on page 438, and we’ll
see that there are a number of different session storage options. For now, let’s
arrange for our application to store session data in a table in our database.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=105

SEssioNs <« 106

Putting Sessions in the Database

Rails makes it easy to store session data in the database. We’ll need to run
a couple of Rake tasks to create a database table with the correct layout.
First, we’ll create a migration containing our session table definition. There’s
a predefined Rake task that creates just the migration we need.

depot> rake db:sessions:create

exists db/migrate
create db/migrate/004_add_sessions.rb

Then, we’ll apply the migration to add the table to our schema.

depot> rake db:migrate
If you now look at your database, you’ll find a new table called sessions.

Next, we have to tell Rails to use database storage for our application (because
the default is to use the filesystem). This is a configuration option, so not
surprisingly you'll find it specified in a file in the config directory. Open the file
environment.rb, and you’ll see a bunch of configuration options, all commented
out. Scan down for the one that looks like

Use the database for sessions instead of the file system

(create the session table with 'rake db:sessions:create')
config.action_controller.session_store = :active_record_store

Notice that the last line is commented out. Remove the leading # character on
that line to activate database storage of sessions.
Use the database for sessions instead of the file system

(create the session table with 'rake db:sessions:create')
config.action_controller.session_store = :active_record_store

The next time you restart your application (stopping and starting script/server),
it will store its session data in the database. Why not do that now?

Carts and Sessions

So, having just plowed through all that theory, where does that leave us in
practice? We need to be able to assign a new cart object to a session the first
time it’s needed and find that cart object again every time it's needed in the
same session. We can achieve that by creating a method, find_cart, in the store
controller. A simple (but verbose) implementation would be

def find_cart

unless session[:cart] # if there's no cart in the session
session[:cart] = Cart.new # add a new one
end
session[:cart] # return existing or new cart
end

Remember that Rails makes the current session look like a hash to the con-
troller, so we'll store the cart in the session by indexing it with the symbol :cart.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=106

ITERATION C1: CREATING A CART

We don’t currently know just what our cart will be—for now let’s assume that
it’s a class, so we can create a new cart object using Cart.new. Armed with all
this knowledge, we can now arrange to keep a cart in the user’s session.

It turns out there’s a more idiomatic way of doing the same thing in Ruby.

Download depot_f/app/controllers/store_controller.rb

private

def find_cart
session[:cart] ||= Cart.new
end

This method is fairly tricky. It uses Ruby’s conditional assignment operator,

||=. If the session hash has a value corresponding to the key :cart, that value is |=
returned immediately. Otherwise a new cart object is created and assigned to ~ " o
the session. This new cart is then returned.

Note that we make the find_cart method private. This prevents Rails from mak-
ing it available as an action on the controller. Be careful as you add methods
to this controller as we work further on the cart—if you add them after the
private declaration, they’ll be invisible outside the class. New actions must go
before the private line.

8.2 Iteration C1: Creating a Cart

We're looking at sessions because we need somewhere to keep our shopping
cart. We've got the session stuff sorted out, so let’s move on to implement the
cart. For now, let’s keep it simple. It holds data and contains some business
logic, so we know that it is logically a model. But, do we need a cart database
table? Not necessarily. The cart is tied to the buyer’s session, and as long as
that session data is available across all our servers (when we finally deploy
in a multiserver environment), that’s probably good enough. So for now we’ll
assume the cart is a regular class and see what happens. We’ll use our editor
to create the file cart.rb in the app/models directory.1 The implementation is
simple. The cart is basically a wrapper for an array of items. When a product
is added (using the add_product method), it is appended to the item list.

Download depot_f/app/models/cart.rb
class Cart attr_reader

attr_reader :items < page 636

def initialize
@items = []
end

1. Note that we don’t use the Rails model generator to create this file. The generator is used only
to create database-backed models.

http://media.pragprog.com/titles/rails2/code/depot_f/app/controllers/store_controller.rb
http://media.pragprog.com/titles/rails2/code/depot_f/app/models/cart.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=107

ITERATION C1: CREATING A CART <« 108

def add_product(product)
@items << product
end
end

Observant readers (yes, that’'s all of you) will have noticed that our catalog
listing view already includes an |[Add to Cart|button for each product.

Download depot_f/app/views/store/index.rhtml

<%= button_to "Add to Cart", :action => :add_to_cart, :id => product %>

This button links back to an add_tfo_cart action in the store controller (and
we haven’t written that action yet). It will pass in the product id as a form
parameter.? Here’s where we start to see how important the id field is in our
models. Rails identifies model objects (and the corresponding database rows)
by their id fields. If we pass an id to add_to_cart, we're uniquely identifying the
product to add.

Let’s implement the add_to_cart method now. It needs to find the shopping
cart for the current session (creating one if there isn’t one there already), add
the selected product to that cart, and display the cart contents. So, rather
than worry too much about the details, let’s just write the code at this level of
abstraction. Here’s the add_to_cart method in app/controllers/store_controller.ro.

Download depot_f/app/controllers/store_controller.rb

Line 1 def add_to_cart
@cart = find_cart
product = Product.find(params[:id])
@cart.add_product(product)
5 end

On line 2 we use the find_cart method we implemented on the preceding page
to find (or create) a cart in the session. The next line uses the params object to
get the id parameter from the request and then calls the Product model to find
the product with that id. Line 4 then adds this product to the cart.

The params object is important inside Rails applications. It holds all of the
parameters passed in a browser request. By convention, params[:id] holds the
id, or the primary key, of the object to be used by an action. We set that id
when we used :id => product in the button_to call in our view.

Be careful when you add the add_to_cart method to the controller. Because it is
called as an action, it must be public and so must be added above the private
directive we put in to hide the find_cart method.

What happens when we click one of the |[Add to Cart|buttons in our browser?

2. Saying :id=>product is idiomatic shorthand for :id=>product.id. Both pass the product’s id back
to the controller.

http://media.pragprog.com/titles/rails2/code/depot_f/app/views/store/index.rhtml
http://media.pragprog.com/titles/rails2/code/depot_f/app/controllers/store_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=108

ITERATION C1: CREATING A CART < 109

|

Nals] Action Controller: Exception caught 1
@ @ hitp:/ flocalhost:3000,/store/add_to_cart/2 ~'Q- Google \

Template is missing

Missing template script/../config/../app/views/store/add_to_cart.rhtml

What does Rails do after it finishes executing the add_tfo_cart action? It goes
and finds a template called add_to_cart in the app/views/store directory. We
haven’t written one, so Rails complains. Let’s make it happy by writing a trivial
template (we’ll tart it up in a minute).

Download depot_f/app/views/store/add_to_cart.rhiml

<hl>Your Pragmatic Cart</hl>

<% for item in @cart.items %>
<%= h(item.title) %></11i>
<% end %>

So, with everything plumbed together, let’s hit Refresh in our browser. Your
browser will probably warn you that you're about to submit form data again
(because we added the product to our cart using button_to, and that uses a
form). Click OK, and you should see our simple view displayed.

8'6 L&) Pragprog Books Online Store f
4 B @ € hitp:/ /localhost:3000/store fadd_to_cart/2 Al Qr Google \‘

PRAGMATIC BOOKSHELF

Your PragmaTIC CART

« Pragmatic Project Automation
« Pragmatic Project Automation

i

There are two products in the cart because we submitted the form twice (once
when we did it initially and got the error about the missing view and the second
time when we reloaded that page after implementing the view).

Go back to http://localhost:3000/store, the main catalog page, and add a different
product to the cart. You'll see the original two entries plus our new item in your
cart. It looks like we've got sessions working. It's time to show our customer,
so we call her over and proudly display our handsome new cart. Somewhat to

http://media.pragprog.com/titles/rails2/code/depot_f/app/views/store/add_to_cart.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=109

ITERATION C2: A SMARTER CART <« 110

our dismay, she makes that tsk-tsk sound that customers make just before
telling you that you clearly don’t get something.

Real shopping carts, she explains, don’t show separate lines for two of the
same product. Instead, they show the product line once with a quantity of 2.
Looks like we're lined up for our next iteration.

8.3 Iteration C2: A Smarter Cart

It looks like we have to find a way to associate a count with each product in our
cart. Let’s create a new model class, Carflfem, which contains both a reference
to a product and a quantity.

Download depot_g/app/models/cart_item.rb

class CartItem
attr_reader :product, :quantity

def initialize(product)
@product = product
@quantity = 1

end

def increment_quantity
@quantity += 1
end

def title
@product.title
end

def price
@product.price * @quantity
end
end

We'll now use this from within the add_product method in our Cart. We see
whether our list of items already includes the product we're adding; if it does,
we bump the quantity, and otherwise we add a new Cartitem.

Download depot_g/app/models/cart.ro

def add_product(product)
current_item = @items.find {|item| item.product == product}
if current_item
current_item.increment_quantity
else
@items << CartItem.new(product)
end
end

http://media.pragprog.com/titles/rails2/code/depot_g/app/models/cart_item.rb
http://media.pragprog.com/titles/rails2/code/depot_g/app/models/cart.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=110

ITERATION C2: A SMARTER CART <« 111

We'll also make a quick change to the add_to_cart view to use this new infor-
mation.

Download depot_g/app/views/store/add_to_cart.rhtml

<hl>Your Pragmatic Cart</hl>

<% for cart_item in @cart.items %>
<%= cart_item.quantity %> × <%= h(cart_item.title) %></11i>
<% end %>

By now we're pretty confident in our Rails-fu, so we confidently go to the store

page and hit the button for a product. And, of course, there’s

nothing like a little hubris to trigger a reality check. Rather than seeing our
new cart, we're faced with a somewhat brutal error screen, shown here.

800 Action Controller: Exception caught -
“ 4 = @ €3 http://localhost:3000/store/add_to_cart/ 1 AlQ- Google)

NoMethodError in Store#add_to_cart “

undefined method “product' for #<Product:0x2736e30>

RAILS _ROOT: script/../config/..

Application Trace | Framewerk Trace | Full Trace

./soript/../config/.. /vendor/rails/activerecord/lib/active record/base.rb:1639:in “method missing'
#{RAILS_ROOT}/app/models/cart.rb:9:in ~add product’

#{RATLS_ROOT}/app/models/cart.rb:9:in “find'

#{RAILS_ROOT}/app/models/cart.rb:9:in “each’

aln

At first, we might be tempted to think that we’d misspelled something in cart.rb,
but a quick check shows that it’s OK. But then, we look at the error message
more closely. It says “undefined method ‘product’ for #<Product:...>.” That
means that it thinks the items in our cart are products, not cart items. It's
almost as if Rails hasn’t spotted the changes we've made.

But, looking at the source, the only time we reference a product method, we're
calling it on a Cartltem object. So, why does it think the @items array contains
products when our code clearly populates it with cart items?

To answer this, we have to ask where the cart that we're adding to comes from.
That’s right. It’s in the session. And the cart in the session is the old version,
the one where we just blindly appended products to the @items array. So, when
Rails pulls the cart out of the session, it’s getting a cart full of product objects,
not cart items. And that’s our problem.

The easiest way to confirm this is to delete the old session, removing all traces
of the original cart implementation. Because we're using database-backed ses-
sions, we can use a handy Rake task to clobber the session table.

depot> rake db:sessions:clear

http://media.pragprog.com/titles/rails2/code/depot_g/app/views/store/add_to_cart.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=111

ITERATION C2: A SMARTER CART <« 112

Now hit Refresh, and you'll see the application is running the new cart and the
new add_to_cart view.

The Moral of the Tale

Our problem was caused by the session storing the old version of the cart
object, which wasn’t compatible with our new source file. We fixed that by
blowing away the old session data. Because we're storing full objects in the
session data, whenever we change our application’s source code, we potentially
become incompatible with this data, and that can lead to errors at runtime.
This isn’t just a problem during development.

Say we rolled out version one of our Depot application, using the old version
of the cart. We have thousands of customers busily shopping. We then decide
to roll out the new, improved cart model. The code goes into production, and
suddenly all the customers who are in the middle of a shopping spree find
they’re getting errors when adding stuff to the cart. Our only fix is to delete
the session data, which loses our customers’ carts.

This tells us that it’s generally a really bad idea to store application-level
objects in session data. Any change to the application could potentially require
us to lose existing sessions when we next update the application in production.

Instead, the recommended practice is to store only simple data in the session:
strings, numbers, and so on. Keep your application objects in the database,
and then reference them using their primary keys from the session data. If we
were rolling the Depot application into production, we’d be wise to make the
Cart class an Active Record object and store cart data in the database.® The
session would then store the cart object’s id. When a request comes in, we'd
extract this id from the session and then load the cart from the database.*
Although this won’t automatically catch all problems when you update your
application, it gives you a fighting chance of dealing with migration issues.

Anyway, we've now got a cart that maintains a count for each of the products
that it holds, and we have a view that displays that count. Figure 8.1, on the
following page shows what this looks like.

Happy that we have something presentable, we call our customer over and
show her the result of our morning’s work. She’s pleased—she can see the site
starting to come together. However, she’s also troubled, having just read an
article in the trade press on the way e-commerce sites are being attacked
and compromised daily. She read that one kind of attack involves feeding
requests with bad parameters into web applications, hoping to expose bugs

3. But we won't for this demonstration application, because we wanted to illustrate the problems.
4. In fact, we can abstract this functionality into something called a filter and have it happen
automatically. We'll cover filters starting on page 448.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=112

ITERATION C3: HANDLING ERRORS <« 113

I'_f"‘l f\ @ Pragprog Books Online Store __'
4 B @ 3 http:/ /localhost:3000 /store/add_to_cart/3 = Qr Google 1“'
™

PRAGMATIC BOOKSHELF

Your Pragmatic Cart

e 3 x Pragmatic Project Automation
e 2 x Pragmatic Version Control
® 1 x Pragmatic Unit Testing (C#)

FERY

B

Figure 8.1: A Cart with Quantities
.

and security flaws. She noticed that the link to add an item to our cart looks
like store/add_to_cart/nnn, where nnn is our internal product id. Feeling mali-
cious, she manually types this request into a browser, giving it a product id
of “wibble.” She’s not impressed when our application displays the page in
Figure 8.2, on the next page. This reveals way too much information about
our application. It also seems fairly unprofessional. So it looks as if our next
iteration will be spent making the application more resilient.

8.4 Iteration C3: Handling Errors

Looking at the page displayed in Figure 8.2, it’s apparent that our application
threw an exception at line 16 of the store controller.® That turns out to be the
line

product = Product.find(params[:id])

If the product cannot be found, Active Record throws a RecordNotFound excep-
tion,® which we clearly need to handle. The question arises—how?

We could just silently ignore it. From a security standpoint, this is probably
the best move, because it gives no information to a potential attacker. How-
ever, it also means that should we ever have a bug in our code that gener-

5. Your line number might be different. We have some book-related formatting stuff in our source
files.

6. This is the error thrown when running with MySQL. Other databases might cause a different
error to be raised. If you use PostgreSQL, for example, it will refuse to accept wibble as a valid value
for the primary key column and raise a Statementinvalid exception instead. You'll need to adjust
your error handling accordingly.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=113

ITERATION C3: HANDLING ERRORS <« 114

Action Controller: Exception caught j

@ € http:/ /localhost:3000/store/add_to_cart/wibbie = Q- Google _J

ActlveReJ: Record NotFound in |
Store#add_to_cart

Couldn't find Product with ID=wibble

RAILS_ROOT: script/../config/..

Application Trace | Framework Trace | Full Trace

./script/../config/../vendor/rails/activerecord/lib/active_record/base.rb:408:in “find'

#{RATLS_ROOT}/app/controllers/store controller.rb:l6:in “add to_cart’

Request

Parameters: {"id"=>"wibble"} P

Figure 8.2: Our Application Spills Its Guts

ates bad product ids, our application will appear to the outside world to be
unresponsive—no one will know there has been an error.

Instead, we’ll take three actions when an exception is thrown. First, we’ll
log the fact to an internal log file using Rails’ logger facility (described on
page 244). Second, we’ll output a short message to the user (something along
the lines of “Invalid product”). And third, we’ll redisplay the catalog page so
they can continue to use our site.

The Flash!

As you may have guessed, Rails has a convenient way of dealing with errors
and error reporting. It defines a structure called a flash. A flash is a bucket
(actually closer to a Hash) in which you can store stuff as you process a request.
The contents of the flash are available to the next request in this session
before being deleted automatically. Typically the flash is used to collect error
messages. For example, when our add_fo_cart action detects that it was passed
an invalid product id, it can store that error message in the flash area and
redirect to the index action to redisplay the catalog. The view for the index
action can extract the error and display it at the top of the catalog page. The
flash information is accessible within the views by using the flash accessor
method.

Why couldn’t we just store the error in any old instance variable? Remember
that after a redirect is sent by our application to the browser, the browser
sends a new request back to our application. By the time we receive that

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=114

ITERATION C3: HANDLING ERRORS <« 115

request, our application has moved on—all the instance variables from previ-
ous requests are long gone. The flash data is stored in the session in order to
make it available between requests.

Armed with all this background about flash data, we can now change our
add_to_cart method to intercept bad product ids and report on the problem.

Download depot_h/app/controllers/store_controller.rb

def add_to_cart
begin
product = Product.find(params[:id])
rescue ActiveRecord: :RecordNotFound
Togger.error("Attempt to access invalid product #{params[:id]}")

flash[:notice] = "Invalid product"”
redirect_to :action => :index
else

@cart = find_cart
@cart.add_product(product)
end
end

The rescue clause intercepts the exception thrown by Product.find. In the han-
dler we

* Use the Rails logger to record the error. Every controller has a logger
attribute. Here we use it to record a message at the error logging level.

* Create a flash notice with an explanation. Just as with sessions, you
access the flash as if it were a hash. Here we used the key :notice to store
our message.

* Redirect to the catalog display using the redirect_to method. This takes a
wide range of parameters (similar to the link_to method we encountered
in the templates). In this case, it instructs the browser to immediately
request the URL that will invoke the current controller’s index action.
Why redirect, rather than just display the catalog here? If we redirect, the
user’s browser will end up displaying a URL of http://.../store/index, rather
than http://.../store/add_to_cart/wibble. We expose less of the application
this way. We also prevent the user from retriggering the error by hitting
the Reload button.

This code uses a little-known feature of Ruby’s exception handling. The else
clause invokes the code that follows only if no exception is thrown. It allows us
to specify one path through the action if the exception is thrown and another
if it isn’t.

With this code in place, we can rerun our customer’s problematic query. This
time, when we enter the URL

http://Tocalhost:3000/store/add_to_cart/wibble

http://media.pragprog.com/titles/rails2/code/depot_h/app/controllers/store_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=115

ITERATION C3: HANDLING ERRORS <« 116

we don’t see a bunch of errors in the browser. Instead, the catalog page is dis-
played. If we look at the end of the log file (development.log in the log directory),
we’ll see our message.”

Parameters: {"action"=>"add_to_cart", "id"=>"wibble", "controller"=>"store"}

Product Load (0.000427) SELECT » FROM products WHERE (products.id = 'wibble') LIMIT 1
Attempt to access invalid product wibble

Redirected to http://Tocalhost:3000/store/index
Completed in 0.00522 (191 reqgs/sec)

Processing StoreController#index

Rendering within Tlayouts/store
Rendering store/index

So, the logging worked. But the flash message didn’t appear on the user’s
browser. That’s because we didn’t display it. We’ll need to add something to the
layout to tell it to display flash messages if they exist. The following rhtml code
checks for a notice-level flash message and creates a new <div> containing it
if necessary.

<% if flash[:notice] -%>

<div id="notice"><%= flash[:notice] %></div>
<% end -%>

So, where do we put this code? We could put it at the top of the catalog display
template—the code in index.rhtml. After all, that's where we’d like it to appear
right now. But as we continue to develop the application, it would be nice if
all pages had a standardized way of displaying errors. We're already using a
Rails layout to give all the store pages a consistent look, so let’'s add the flash-
handling code into that layout. That way if our customer suddenly decides
that errors would look better in the sidebar, we can make just one change and
all our store pages will be updated. So, our new store layout code now looks
as follows.

Download depot_h/app/views/layouts/store.rhtml

<!DOCTYPE html1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">

<html>
<head>

<title>Pragprog Books Online Store</title>

<%= stylesheet_link_tag "depot", :media => "all" %>
</head>

7. On Unix machines, we’d probably use a command such as tail or less to view this file. On Win-
dows, you could use your favorite editor. It’s often a good idea to keep a window open showing new
lines as they are added to this file. In Unix you'd use fail -f. You can download a fail command for
Windows from http://gnuwin32.sourceforge.net/packages/coreutils.htm or get a GUI-based tool from
http://tailforwin32.sourceforge.net/. Finally, some OS X users find Console.app (in Applications — Ufil-
ities) a convenient way to track log files. Use the open command, passing it the name of the log
file.

http://media.pragprog.com/titles/rails2/code/depot_h/app/views/layouts/store.rhtml
http://gnuwin32.sourceforge.net/packages/coreutils.htm
http://tailforwin32.sourceforge.net/
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=116

ITERATION C3: HANDLING ERRORS <« 117

<body id="store">
<div id="banner">

<%= @page_title || "Pragmatic Bookshelf" %>
</div>
<div id="columns">
<div id="side">
Home

Questions

News

Contact

</div>
<div id="main">
<% if flash[:notice] -%>
<div id="notice"><%= flash[:notice] %></div>
<% end -%>
<%= yield :Tayout %>
</div>
</div>
</body>
</htm1>

We'll also need a new CSS styling for the notice box.

Download depot_h/public/stylesheets/depot.css

#notice {
border: 2px solid red;
padding: lem;
margin-bottom: 2em;
background-color: #f0f0f0;
font: bold smaller sans-serif;

}

This time, when we manually enter the invalid product code, we see the error
reported at the top of the catalog page.

Pragprog Books Online Store = ..

f@@ 3 http:/ /localhost:3000/store/ index 8Q- Google \‘

é‘r"—'ﬁ% PrAGMATIC BOOKSHELF ﬂ

Invalid product |

Your Pragmatic Catalog

== Pragmatic Project Automation
"B

Pragmatic Project Automation shows you how to improve the >
consistency and repeatability of your project's procedures using +
automation to reduce risk and errors.

A

Sensing the end of an iteration, we call our customer over and show her that
the error is now properly handled. She’s delighted and continues to play with

http://media.pragprog.com/titles/rails2/code/depot_h/public/stylesheets/depot.css
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=117

ITERATION C4: FINISHING THE CART <« 118

4 N

@ David Says...
How Much Inline Error Handling Is N d?

The add_to_cart method shows the deluxe version of error handling in Rails
where the particular error is given exclusive attention and code. Not every
conceivable error is worth spending that much time catching. Lots of input
errors that will cause the application o raise an exception occur so rarely that
we'd rather just freat them to a uniform catchall error page.

We talk about setting up a global error handler on page 628.

the application. She notices a minor problem on our new cart display—there’s
no way to empty items out of a cart. This minor change will be our next itera-
tion. We should make it before heading home.

8.5 Iteration C4: Finishing the Cart

We know by now that in order to implement the empty cart function, we have
to add a link to the cart and implement an empty_cart method in the store
controller. Let’s start with the template. Rather than use a hyperlink, let’s use
the button_to method to put a button on the page.
Download depot_h/app/views/store/add_to_cart.rhtml
<hl>Your Pragmatic Cart</hl>

<% for cart_item 1in @cart.items %>

<1i><%= cart_item.quantity %> × <%= h(cart_item.title) %></1i>

<% end %>

<%= button_to "Empty cart", :action => :empty_cart %>

In the controller, we’ll implement the empty_cart method. It removes the cart
from the session and sets a message into the flash before redirecting to the
index page.

Download depot_h/app/controllers/store_controller.rb

def empty_cart

session[:cart] = nil
flash[:notice] = "Your cart is currently empty"
redirect_to :action => :index

end

http://media.pragprog.com/titles/rails2/code/depot_h/app/views/store/add_to_cart.rhtml
http://media.pragprog.com/titles/rails2/code/depot_h/app/controllers/store_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=118

ITERATION C4: FINISHING THE CART < 119

Now when we view our cart and click the Empty cart link, we get taken back
to the catalog page, and a nice little message says

Home

Questions
News Your cart is currently empty

Contact

However, before we break an arm trying to pat ourselves on the back, let’s look
back at our code. We've just introduced some duplication.

In the store controller, we now have two places that put a message into the
flash and redirect to the index page. Sounds like we should extract that com-
mon code into a method, so let’s implement redirect_to_index and change the
add_to_cart and empty_cart methods to use it.

Download depot_i/app/controllers/store_controller.rb

def add_to_cart
begin
product = Product.find(params[:id])
rescue ActiveRecord: :RecordNotFound
Togger.error("Attempt to access invalid product #{params[:id]}")
redirect_to_index("Invalid product")
else
@cart = find_cart
@cart.add_product(product)
end
end

def empty_cart

session[:cart] = nil

redirect_to_index("Your cart is currently empty")
end

private

def redirect_to_index(msg)
flash[:notice] = msg
redirect_to :action => :index
end

And, finally, we’ll get around to tidying up the cart display. Rather than use
 elements for each item, let’s use a table. Again, we’ll rely on CSS to do
the styling.

Download depot_i/app/views/store/add_to_cart.rhtml

<div class="cart-title">Your Cart</div>
<table>
<% for cart_item in @cart.items %>

http://media.pragprog.com/titles/rails2/code/depot_i/app/controllers/store_controller.rb
http://media.pragprog.com/titles/rails2/code/depot_i/app/views/store/add_to_cart.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=119

ITERATION C4: FINISHING THE CART < 120

<tr>

<td><%= cart_item.quantity %>×</td>
<td><%= h(cart_item.title) %></td>

<td class="item-price"><%= number_to_currency(cart_item.price) %></td>
</tr>

<% end %>

<tr class="total-Tine">
<td colspan="2">Total</td>

<td class="total-cell"><%= number_to_currency(@cart.total_price) %></td>
</tr>

</table>

<%= button_to "Empty cart", :action => :empty_cart %>

To make this work, we need to add a method to the Cart model that returns
the total price of all the items. We can implement one using Rails’ nifty sum
method to sum the prices of each item in the collection.

Download depot_i/app/models/cart.rb

def total_price

@items.sum { |item| item.price }
end

This gives us a nicer-looking cart.

Glalal Pragprog Books Online Store

ER @ €3 http:/ flocalhost:3000/store/ add_to_cart/2 © A(Q- Google ﬂ

PrRAGMATIC BOOKSHELF

Your Cart

3x Pragmatic Project Automation $89.85
2% Pragmatic Unit Testing (C#) $55.50
1x Pragmatic Version Control $28.50

Total $173.85
[Empty cart |

B

What We Just Did

It has been a busy, productive day. We've added a shopping cart to our store,
and along the way we've dipped our toes into some neat Rails features.

¢ Using sessions to store state
* Creating and integrating nondatabase models
¢ Using the flash to pass errors between actions
¢ Using the logger to log events

¢ Removing duplication from controllers

http://media.pragprog.com/titles/rails2/code/depot_i/app/models/cart.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=120

ITERATION C4: FINISHING THE CART <« 121

We've also generated our fair share of errors and seen how to get around them.

But, just as we think we've wrapped this functionality up, our customer wan-
ders over with a copy of Information Technology and Golf Weekly. Apparently,
there’s an article about a new style of browser interface, where stuff gets
updated on the fly. “AJAX,” she says, proudly. Hmmm...let’s look at that
tomorrow.

Playtime
Here’s some stuff to try on your own.

* Add a new variable to the session to record how many times the user has
accessed the index action. (The first time through, your count won’t be in
the session. You can test for this with code like

if session[:counter].nil?

If the session variable isn’t there, you’ll need to initialize it. Then you’ll
be able to increment it.

* Pass this counter to your template, and display it at the top of the catalog
page. Hint: the pluralize helper (described on page 475) might be useful
when forming the message you display.

* Reset the counter to zero whenever the user adds something to the cart.

* Change the template to display the counter only if it is greater than five.

(You'll find hints at http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime)

http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=121

In this chapter, we'll see

using partial templates

rendering into the page layout

updating pages dynamically with AJAX and rjs
highlighting changes with Script.aculo.us
hiding and revealing DOM elements

working when JavaScript is disabled

Chapter 9

M
Our customer wants us to add AJAX support to the store. But just what is
AJAX?

In the old days (up until a year or two ago), browsers were treated as really
dumb devices. When you wrote a browser-based application, you'd send stuff
down to the browser and then forget about that session. At some point, the
user would fill in some form fields or click a hyperlink, and your application
would get woken up by an incoming request. It would render a complete page
back to the user, and the whole tedious process would start afresh. That’s
exactly how our Depot application behaves so far.

But it turns out that browsers aren’t really that dumb (who knew?). They can
run code. Almost all browsers can run JavaScript (and the vast majority also
support Adobe’s Flash). And it turns out that the JavaScript in the browser
can interact behind the scenes with the application on the server, updating
the stuff the user sees as a result. Jesse James Garrett named this style of
interaction AJAX (which once stood for Asynchronous JavaScript and XML but
now just means Making Browsers Suck Less).

So, let’s AJAXify our shopping cart. Rather than having a separate shopping
cart page, let’s put the current cart display into the catalog’s sidebar. Then,
we’ll add the AJAX magic that updates the cart in the sidebar without redis-
playing the whole page.

Whenever you work with AJAX, it’s good to start with the non-AJAX version of
the application and then gradually introduce AJAX features. That's what we’ll
do here. For starters, let's move the cart from its own page and put it in the
sidebar.

ITERATION D1: MOVING THE CART <« 123

9.1 Iteration D1: Moving the Cart

Currently, our cart is rendered by the add_to_cart action and the corresponding
.rhtml template. What we’d like to do is to move that rendering into the layout
that displays the overall catalog. And that’s easy, using partial templates.'

Partial Templates

Programming languages let you define methods. A method is a chunk of code
with a name: invoke the method by name, and the corresponding chunk of
code gets run. And, of course, you can pass parameters to a method, which lets
you write one piece of code that can be used in many different circumstances.

You can think of Rails partial templates (partials for short) as a kind of method
for views. A partial is simply a chunk of a view in its own separate file. You can
invoke (render) a partial from another template or from a controller, and the
partial will render itself and return the results of that rendering. And, just as
with methods, you can pass parameters to a partial, so the same partial can
render different results.

We'll use partials twice in this iteration. First, let’s look at the cart display
itself.

Download depot_i/app/views/store/add_to_cart.rhtml

<div class="cart-title">Your Cart</div>
<table>
<% for cart_item in @cart.items %>
<tr>
<td><%= cart_item.quantity %>×</td>
<td><%= h(cart_item.title) %></td>
<td class="item-price"><%= number_to_currency(cart_item.price) %></td>
</tr>
<% end %>

<tr class="total-Tine">
<td colspan="2">Total</td>
<td class="total-cell"><%= number_to_currency(@cart.total_price) %></td>
</tr>
</table>

<%= button_to "Empty cart", :action => :empty_cart %>

1. Another way would be to use components. A component is a way of packaging some work done
by a controller and the corresponding rendering. In our case, we could have a component called
display_cart, where the controller action fetches the cart information from the session and the view
renders the HTML for the cart. The layout would then insert this rendered HTML into the sidebar.
However, there are indications that components are falling out of favor in the Rails community, so
we won't use one here. (For a discussion of why components are déclassé, see Section 22.9, The
Case against Components, on page 513.)

http://media.pragprog.com/titles/rails2/code/depot_i/app/views/store/add_to_cart.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=123

ITERATION D1: MOVING THE CART <« 124

It creates a list of table rows, one for each item in the cart. Whenever you
find yourself iterating like this, you might want to stop and ask yourself, is
this too much logic in a template? It turns out we can abstract away the loop
using partials (and, as we’ll see, this also sets the stage for some AJAX magic
later). To do this, we’ll make use of the fact that you can pass a collection to
the method that renders partial templates, and that method will automatically
invoke the partial once for each item in the collection. Let’s rewrite our cart
view to use this feature.

Download depot_j/app/views/store/add_to_cart.rhtml

<div class="cart-title">Your Cart</div>
<table>
<%= render(:partial => "cart_item", :collection => @cart.items) %>

<tr class="total-Tine">
<td colspan="2">Total</td>
<td class="total-cell"><%= number_to_currency(@cart.total_price) %></td>
</tr>
</table>

<%= button_to "Empty cart", :action => :empty_cart %>

That’s a lot simpler. The render method takes the name of the partial and the
collection object as parameters. The partial template itself is simply another
template file (by default in the same directory as the template that invokes it).
However, to keep the names of partials distinct from regular templates, Rails
automatically prepends an underscore to the partial name when looking for
the file. That means our partial will be stored in the file _cart_item.rhtml in the
app/views/store directory.

Download depot_j/app/views/store/_cart_item.rhtml

<tr>

<td><%= cart_item.quantity %>×</td>

<td><%= h(cart_item.title) %></td>

<td class="item-price"><%= number_to_currency(cart_item.price) %></td>
</tr>

There’s something subtle going on here. Inside the partial template, we refer
to the current cart item using the variable cart_item. That’s because the render
method in the main template arranges to set a variable with the same name
as the partial template to the current item each time around the loop. The
partial is called cart_item, so inside the partial we expect to have a variable
called cart_item.

So now we've tidied up the cart display, but that hasn’t moved it into the
sidebar. To do that, let’s revisit our layout. If we had a partial template that
could display the cart, we could simply embed a call to

render(:partial => "cart")

http://media.pragprog.com/titles/rails2/code/depot_j/app/views/store/add_to_cart.rhtml
http://media.pragprog.com/titles/rails2/code/depot_j/app/views/store/_cart_item.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=124

ITERATION D1: MOVING THE CART <« 125

within the sidebar. But how would the partial know where to find the cart
object? One way would be for it to make an assumption. In the layout, we have
access to the @cart instance variable that was set by the controller. It turns out
that this is also available inside partials called from the layout. However, this
is a bit like calling a method and passing it some value in a global variable.
It works, but it's ugly coding, and it increases coupling (which in turn makes
your programs brittle and hard to maintain).

Remember using render with the collection option inside the add_to_cart tem-
plate? It set the variable cart_item inside the partial. It turns out we can do the
same when we invoke a partial directly. The :object parameter to render takes
an object that is assigned to a local variable with the same name as the partial.
So, in the layout we could call

<%= render(:partial => "cart", :object => @cart) %>
and in the _cart.rhtml template, we can refer to the cart via the variable cart.

Let's do that wiring now. First, we'll create the _cart.rhtml template. This is
basically our add_to_cart template but using cart instead of @cart. (Note that
it’s OK for a partial to invoke other partials.)

Download depot_j/app/views/store/_cart.rhtml

<div class="cart-title">Your Cart</div>
<table>
<%= render(:partial => "cart_item", :collection => cart.items) %>

<tr class="total-1ine">
<td colspan="2">Total</td>
<td class="total-cell"><%= number_to_currency(cart.total_price) %></td>
</tr>
</table>

<%= button_to "Empty cart", :action => :empty_cart %>

Now we’ll change the store layout to include this new partial in the sidebar.

Download depot_j/app/views/layouts/store.rhtml

<!DOCTYPE html1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">

<html>
<head>

<title>Pragprog Books Online Store</title>

<%= stylesheet_link_tag "depot", :media => "all" %>
</head>

<body id="store">
<div id="banner">

<%= @page_title || "Pragmatic Bookshelf" %>
</div>
<div id="columns">

http://media.pragprog.com/titles/rails2/code/depot_j/app/views/store/_cart.rhtml
http://media.pragprog.com/titles/rails2/code/depot_j/app/views/layouts/store.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=125

ITERATION D1: MOVING THE CART <« 126

<div id="side">

> <div id="cart">
> <%= render(:partial => "cart", :object => @cart) %>
> </div>

Home

Questions

News

Contact

</div>
<div id="main">
<% if flash[:notice] -%>
<div id="notice"><%= flash[:notice] %></div>
<% end -%>
<%= yield :Tayout %>
</div>
</div>
</body>
</htm1>

Now we have to make a small change to the store controller. We're invoking
the layout while looking at the store’s index action, and that action doesn’t
currently set @cart. That’s easy enough to remedy.

Download depot_j/app/controllers/store_controller.ro

def index
@products = Product.find_products_for_sale
@cart = find_cart

end

If you display the catalog after adding something to your cart, you should see
something like Figure 9.1, on the following page.? Let’s just wait for the Webby
Award nomination.

Changing the Flow

Now that we’re displaying the cart in the sidebar, we can change the way that
the button works. Rather than displaying a separate cart page,
all it has to do is refresh the main index page. The change is pretty simple: at
the end of the add_to_cart action, we simply redirect the browser back to the
index.

Download depot_k/app/controllers/store_controller.rb

def add_to_cart
begin
product = Product.find(params[:id])
rescue ActiveRecord: :RecordNotFound
Togger.error("Attempt to access invalid product #{params[:id]}")
redirect_to_index("Invalid product™)

2. And if you've updated your CSS appropriately.... See the listing on page 679 for our CSS.

http://media.pragprog.com/titles/rails2/code/depot_j/app/controllers/store_controller.rb
http://media.pragprog.com/titles/rails2/code/depot_k/app/controllers/store_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=126

ITERATION D1: MOVING THE CART <« 127

ﬁf’\ iy Pragprog Books Online Store i
"' 4 b @ 3 http:/ /localhost:3000/store "'"b.v Google "’

PrAGMATIC BOOKSHELF

Your Cart
1x Pragmatic Project Automation $29.95

Total $20.95 Your Pragmatic Catalog

-Em pty cart
Pragmatic Project Automation
Pragmatic Project Automation shows you
how to improve the consistency and
Coatans rcl?eatabi]jty of your projoct's? procedures v
using automation to reduce risk and errors.

Figure 9.1: The Cart Is in the Sidebar

else
@cart = find_cart
@cart.add_product(product)
> redirect_to_index
end
end

For this to work, we need to change the definition of redirect_to_index to make
the message parameter optional.

Download depot_k/app/controllers/store_controller.ro

def redirect_to_index(msg = nil)
flash[:notice] = msg if msg
redirect_to :action => :index
end

We should now get rid of the add_to_cart.rhtml template—it’s no longer needed.
(What’s more, leaving it lying around might confuse us later in this chapter.)

So, now we have a store with a cart in the sidebar. When you click to add an
item to the cart, the page is redisplayed with an updated cart. However, if our
catalog is large, that redisplay might take a while. It uses bandwidth, and it
uses server resources. Fortunately, we can use AJAX to make this better.

http://media.pragprog.com/titles/rails2/code/depot_k/app/controllers/store_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=127

ITERATION D2: AN AJAX-BASED CART <« 128

9.2 Iteration D2: An AJAX-Based Cart

AJAX lets us write code that runs in the browser that interacts with our server-
based application. In our case, we'd like to make the buttons
invoke the server add_fo_cart action in the background. The server can then
send down just the HTML for the cart, and we can replace the cart in the
sidebar with the server’s updates.

Now, normally you’'d do this by writing JavaScript that runs in the browser and
by writing server-side code that communicated with this JavaScript (possibly
using a technology such as JSON). The good news is that, with Rails, all this
is hidden from you. We can do everything we need to do using Ruby (and with
a whole lot of support from some Rails helper methods).

The trick when adding AJAX to an application is to take small steps. So, let’s
start with the most basic one. Let's change the catalog page to send an AJAX
request to our server application, and have the application respond with the
HTML fragment containing the updated cart.

On the index page, we're using buffon_fo to create the link to the add_to_cart
action. Underneath the covers, button_to generates an HTML form. The helper

<%= button_to "Add to Cart", :action => :add_to_cart, :id => product %>

generates HTML that looks something like

<form method="post" action="/store/add_to_cart/1" class="button-to">
<input type="submit" value="Add to Cart" />
</form>

This is a standard HTML form, so a POST request will be generated when
the user clicks the submit button. We want to change this to send an AJAX
request instead. To do this, we’ll have to code the form explicitly, using a Rails
helper called form_remote_tag. The form_..._tag parts of the name tell you it’s
generating an HTML form, and the remote part tells you it will use AJAX to
create a remote procedure call to your application. So, edit index.rhtml in the
app/views/store directory, replacing the button_to call with something like this.

Download depot_I/app/views/store/index.rhtml

<% form_remote_tag :url => { :action => :add_to_cart, :id => product } do %>
<%= submit_tag "Add to Cart" %>
<% end %>

You tell form_remote_tag how to invoke your server application using the :url
parameter. This takes a hash of values that are the same as the trailing param-
eters we passed to button_to. The code inside the Ruby block (between the do
and end keywords) is the body of the form. In this case, we have a simple
submit button. From the user’s perspective, this page looks identical to the
previous one.

http://media.pragprog.com/titles/rails2/code/depot_l/app/views/store/index.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=128

ITERATION D2: AN AJAX-BASED CART <« 129

While we're dealing with the views, we also need to arrange for our application
to send the JavaScript libraries used by Rails to the user’s browser. We'll talk
a lot more about this in Chapter 23, The Web, V2.0, on page 522, but for now
let’s just add a call to javascript_include_tag to the <head> section of the store
layout.

Download depot_|/app/views/layouts/store.rhtml

<html>
<head>
<title>Pragprog Books Online Store</title>
<%= stylesheet_link_tag "depot", :media => "all" %>
> <%= javascript_include_tag :defaults %>
</head>

So far, we've arranged for the browser to send an AJAX request to our appli-
cation. The next step is to have the application return a response. The plan
is to create the updated HTML fragment that represents the cart and to have
the browser stick that HTML into the DOM as a replacement for the cart that’s
already there. The first change is to stop the add_to_cart action redirecting to
the index display. (I know, we just added that only a few pages back. Now we're
taking it out again. We're agile, right?)
Download depot_I/app/controllers/store_controller.rb
def add_to_cart
begin
product = Product.find(params[:id])
rescue ActiveRecord: :RecordNotFound
Togger.error("Attempt to access invalid product #{params[:id]}")
redirect_to_index("Invalid product")
else
@cart = find_cart
@cart.add_product(product)
end
end

Because of this change, when add_to_cart finishes handling the AJAX request,
Rails will look for an add_to_cart template to render. We deleted the old .rhtml
template back on page 127, so it looks like we’ll need to add something back
in. Let’s do something a little bit different.

Rails 1.1 introduced the concept of RJS templates. The js in .fjs stands for
JavaScript. An .1js template is a way of getting JavaScript on the browser to
do what you want, all by writing server-side Ruby code. Let’s write our first:
add_to_cart.rijs. It goes in the app/views/store directory, just like any other tem-
plate.

Download depot_I/app/views/store/add_to_cart.rjs

page.replace_html("cart”, :partial => "cart”, :object => @cart)

http://media.pragprog.com/titles/rails2/code/depot_l/app/views/layouts/store.rhtml
http://media.pragprog.com/titles/rails2/code/depot_l/app/controllers/store_controller.rb
http://media.pragprog.com/titles/rails2/code/depot_l/app/views/store/add_to_cart.rjs
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=129

ITERATION D2: AN AJAX-BASED CART < 130

Let's analyze that template. The page variable is an instance of something
called a JavaScript generator—a Rails class that knows how to create Java-
Script on the server and have it executed by the browser. Here, we tell it
to replace the content of the element on the current page with the id cart
with...something. The remaining parameters to replace_html look familiar. They
should—they're the same ones we used to render the partial in the store lay-
out. This simple .rjs template renders the HTML that represents the cart. It
then tells the browser to replace the content of <div>> whose id="cart" with that
HTML.

Does it work? It’'s hard to show in a book, but it sure does. Make sure you
reload the index page in order to get the form_remote_tag and the JavaScript
libraries loaded into your browser. Then, click one of the buttons.
You should see the cart in the sidebar update. And you shouldn’t see your
browser show any indication of reloading the page. You've just created an
AJAX application.

Troubleshooting

Although Rails makes AJAX incredibly simple, it can’t make it foolproof. And,
because you're dealing with the loose integration of a number of technologies,
it can be hard to work out why your AJAX doesn’t work. That’s one of the
reasons you should always add AJAX functionality one step at a time.

Here are a few hints if your Depot application didn’t show any AJAX magic.
* Did you delete the old add_to_cart.rhtml file?

* Did you remember to include the JavaScript libraries in the store layout
(using javascript_include_tag)?

* Does your browser have any special incantation to force it to reload every-
thing on a page? Sometimes browsers hold local cached versions of page
assets, and this can mess up testing. Now would be a good time to do a
full reload.

¢ Did you have any errors reported? Look in development.log in the logs
directory.

¢ Still looking at the log file, do you see incoming requests to the action
add_to_cart? If not, it means your browser isn’t making AJAX requests.
If the JavaScript libraries have been loaded (using View — Source in your
browser will show you the HTML), perhaps your browser has JavaScript
execution disabled?

* Some readers have reported that they have to stop and start their appli-
cation to get the AJAX-based cart to work.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=130

ITERATION D3: HIGHLIGHTING CHANGES <« 131

¢ If you're using Internet Explorer, it might be running in what Microsoft
call quirks mode, which is backward compatible with old IE releases but
is also broken. IE switches into standards mode, which works better with
the AJAX stuff, if the first line of the downloaded page is an appropriate
DOCTYPE header. Our layouts use

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtm11/DTD/xhtml1l-transitional.dtd">

The Customer Is Never Satisfied

We're feeling pretty pleased with ourselves. We changed a handful of lines
of code, and our boring old Web 1.0 application now sports Web 2.0 AJAX
speed stripes. We breathlessly call the client over. Without saying anything,
we proudly press and look at her, eager for the praise we know
will come. Instead, she looks surprised. “You called me over to show me a
bug?” she asks. “You click that button, and nothing happens.”

We patiently explain that, in fact, quite a lot happened. Just look at the cart in
the sidebar. See? When we add something, the quantity changes from 4 to 5.

“Oh,” she says, “I didn't notice that.” And, if she didn’t notice the page update,
it’s likely our customers won't either. Time for some user-interface hacking.

9.3 Iteration D3: Highlighting Changes

We said earlier that the javascript_include_tag helper downloads a number of
JavaScript libraries to the browser. One of those libraries, effectss, lets you
decorate your web pages with a number of visually interesting effects.> One of
these effects is the (now) infamous Yellow Fade Technique. This highlights an
element in a browser: by default it flashes the background yellow and then
gradually fades it back to white. Figure 9.2, on the following page, shows
the Yellow Fade Technique being applied to our cart: the image at the back
shows the original cart. The user clicks the button, and the count
updates to 2 as the line flares brighter. It then fades back to the background
color over a short period of time.

Let’s add this kind of highlight to our cart. Whenever an item in the cart is
updated (either when it is added or when we change the quantity), let’s flash
its background. That will make it clearer to our users that something has
changed, even though the whole page hasn’t been refreshed.

The first problem we have is identifying the most recently updated item in the
cart. Right now, each item is simply a <tr> element. We need to find a way to
flag the most recently changed one. The work starts in the Cart model. Let’s

3. effectsjs is part of the Script.aculo.us library. Have a look at the visual effects page at
http://wiki.script.aculo.us/scriptaculous/show/VisualEffects to see the cool things you can do with it.

http://wiki.script.aculo.us/scriptaculous/show/VisualEffects
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=131

ITERATION D3: HIGHLIGHTING CHANGES <« 132

Your Cart

1x Pragmatic Project Automation $29.95

Toul §2995 Your Pragmatic Catalog ‘

Your Cart
55990 .
Toul $59.90 Your Pragmatic Catalog

Your Cart
2 Pragmatic Project Automation $59.90

Tol §59.90 Your Pragmatic Catalog ‘

Your Cart
2x Pragmatic Project Automation $59.90

Toul $59.90 Your Pragmatic Catalog ‘

Your Cart
2 Pragmatic Project Automation $59.90

Toul $59.90 Your Pragmatic Catalog

¥ oo

Home

Questions

Pragmatic Project Automat
Pragmatic Project Automation sho'
and repeatability of your project's p!
and errors.

Contact

Simply put, we're going to put this thing called
mundane (but important) project stuff. That mez
the really exciting---and difficult---stuff, like wr|

$2995 (Redcy)

Figure 9.2: Our Cart with the Yellow Fade Technique

have the add_product method return the Cartlfem object that was either added
to the cart or had its quantity updated.

Download depot_m/app/models/cart.rb

def add_product(product)
current_item = @items.find {|item| item.product == product}
if current_item
current_item.increment_quantity
else
current_item = CartItem.new(product)
@items << current_item
end
current_item
end

Over in store_confrollerrb, we’ll take that information and pass it down to the
template by assigning it to an instance variable.

Download depot_m/app/controllers/store_controller.rb

def add_to_cart
begin
product = Product.find(params[:id])
rescue ActiveRecord: :RecordNotFound
Togger.error("Attempt to access invalid product #{params[:id]}")
redirect_to_index("Invalid product")

else
@cart = find_cart
> @current_item = @cart.add_product(product)
end

end

http://media.pragprog.com/titles/rails2/code/depot_m/app/models/cart.rb
http://media.pragprog.com/titles/rails2/code/depot_m/app/controllers/store_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=132

ITERATION D4: HIDE AN EMPTY CART <« 133

In the _cart_iffem.rhiml partial, we then check to see whether the item we're
rendering is the one that just changed. If so, we tag it with an id of current_item.

Download depot_m/app/views/store/_cart_item.rhiml

<% if cart_item == @current_item %>
<tr id="current_item">
<% else %>
<tr>
<% end %>
<td><%= cart_item.quantity %>×</td>
<td><%= h(cart_item.title) %></td>
<td class="item-price"><%= number_to_currency(cart_item.price) %></td>
</tr>

As a result of these three minor changes, the <tr> element of the most recently
changed item in the cart will be tagged with id="currenf_item"'. Now we just need
to tell the JavaScript to invoke the highlight effect on that item. We do this in
the existing add_to_cart.fjs template, adding a call to the visual_effect method.

Download depot_m/app/views/store/add_to_cart.rjs

page.replace_html("cart”, :partial => "cart”, :object => @cart)

page[:current_item].visual_effect :highlight,
:startcolor => "#88ff88",
:endcolor => "#114411"

See how we identified the browser element that we wanted to apply the effect
to by passing :current_item to the page? We then asked for the highlight visual
effect and overrode the default yellow/white transition with colors that work
better with our design. Click to add an item to the cart, and you’ll see the
changed item in the cart glow a light green before fading back to merge with
the background.

9.4 Iteration D4: Hide an Empty Cart

One last request from the customer: right now, even carts with nothing in
them are still displayed in the sidebar. Can we arrange for the cart to appear
only when it has some content? But of course!

In fact, we have a number of options. The simplest is probably to include the
HTML for the cart only if the cart has something in it. We can do this totally
within the _cart partial.

<% unless cart.items.empty? %>
<div class="cart-title">Your Cart</div>
<table>
<%= render(:partial => "cart_item", :collection => cart.items) %>

<tr class="total-1ine">

http://media.pragprog.com/titles/rails2/code/depot_m/app/views/store/_cart_item.rhtml
http://media.pragprog.com/titles/rails2/code/depot_m/app/views/store/add_to_cart.rjs
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=133

ITERATION D4: HIDE AN EMPTY CART <« 134

<td colspan="2">Total</td>
<td class="total-cell"><%= number_to_currency(cart.total_price) %></td>
</tr>
</table>

<%= button_to "Empty cart", :action => :empty_cart %>
<% end %>

Although this works, the user interface is somewhat brutal: the whole side-
bar redraws on the transition between a cart that’s empty and a cart with
something in it. So let’s not use this code. Instead, let’s smooth it out a little.

The Script.aculo.us effects library contains a number of nice transitions that
make elements appear. Let’'s use blind_down, which will smoothly reveal the
cart, sliding the rest of the sidebar down to make room.

Not surprisingly, we’ll use our existing .rfjs template to call the effect. Because
the add_fo_cart template is invoked only when we add something to the cart,
then we know that we have to reveal the cart in the sidebar whenever there is
exactly one item in the cart (because that means that previously the cart was
empty and hence hidden). And, because the cart should be visible before we
start the highlight effect, we’ll add the code to reveal the cart before the code
that triggers the highlight.

The template now looks like this.

Download depot_n/app/views/store/add_to_cart.rjs

page.replace_html("cart", :partial => "cart", :object => @cart)
P page[:cart].visual_effect :blind_down if @cart.total_items ==

page[:current_item].visual_effect :highlight,
:startcolor => "#88ff88",
rendcolor => "#114411"

This won’t yet work, because we don’t have a total_items method in our cart
model.

Download depot_n/app/models/cart.rb

def total_items
@items.sum { |item| item.quantity }
end

We have to arrange to hide the cart when it's empty. There are two basic ways
of doing this. One, illustrated by the code at the start of this section, is not
to generate any HTML at all. Unfortunately, if we do that, then when we add
something to the cart and suddenly create the cart HTML, we see a flicker in
the browser as the cart is first displayed and then hidden and slowly revealed
by the blind_down effect.

http://media.pragprog.com/titles/rails2/code/depot_n/app/views/store/add_to_cart.rjs
http://media.pragprog.com/titles/rails2/code/depot_n/app/models/cart.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=134

ITERATION D4: HIDE AN EMPTY CART <« 135

A better way to handle the problem is to create the cart HTML but set the CSS
style to display: none if the cart is empty. To do that, we need to change the
store.rhtml layout in app/views/layouts. Our first attempt is something like this.
<div id="cart"

<% if @cart.items.empty? %>

style="display: none"

<% end %>

>
<%= render(:partial => "cart", :object => @cart) %>

</div>

This code adds the CSS style= attribute to the <div> tag, but only if the cart is
empty. It works fine, but it’s really, really ugly. That dangling > character looks
misplaced (even though it isn’t), and the way logic is interjected into the middle
of a tag is the kind of thing that gives templating languages a bad name. Let’s
not let that kind of ugliness litter our code. Instead, let’s create an abstraction
that hides it—we’ll write a helper method.

Helper Methods
Whenever we want to abstract some processing out of a view (any kind of view),
we want to write a helper method.

If you look in the app directory, you'll find four subdirectories.

depot> 1s -p app
controllers/ helpers/ models/ views/

Not surprisingly, our helper methods go in the helpers directory. If you look in
there, you'll find it already contains some files.

depot> 1s -p app/helpers
admin_helper.rb application_helper.rb store_helper.rb

The Rails generators automatically created a helper file for each of our con-
trollers (admin and store). The Rails command itself (the one that created
the application initially) created the file application_helperrb. The methods we
define in a controller-specific helper are available to views referenced by that
controller. Methods in the overall application_helper file are available in all the
application’s views. This gives us a choice for our new helper. Right now, we
need it just in the store view, so let’s start by putting it there.

Let’s have a look at the file store_helper.ro in the helpers directory.

module StoreHelper
end

Let’'s write a helper method called hidden_div_if. It takes a condition and an
optional set of attributes. It creates a <div> tag and adds the display: none
style if the condition is true. We’'d use it in the store layout like this.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=135

ITERATION D4: HIDE AN EMPTY CART <« 136

Download depot_n/app/views/layouts/store.rhtml

<%= hidden_div_if(@cart.items.empty?, :id => "cart") %>
<%= render(:partial => "cart", :object => @cart) %>
</div>

We'll write our helper so that it is local to the store controller by adding it to
store_helper.rb in the app/helpers directory.

Download depot_n/app/helpers/store_helper.rb

module StoreHelper

def hidden_div_if(condition, attributes = {})

if condition
attributes["style"] = "display: none"

end
attrs = tag_options(attributes.stringify_keys)
"<div #{attrs}>"

end

end

Note that we cheated slightly here. We copied code from the Rails standard
helper called content_tag; that’s how we knew to call tag_options the way we
did.*

And, finally, we need to remove the flash message that we used to display
when the user empties a cart. It really isn’t needed any more, because the cart
clearly disappears from the sidebar when the catalog index page is redrawn.
But there’s another reason to remove it, too. Now that were using AJAX to
add products to the cart, the main page doesn’t get redrawn between requests
as people shop. That means we’ll continue to display the flash message saying
the cart is empty even as we display a cart in the sidebar.

Download depot_n/app/controllers/store_controller.rb

def empty_cart
session[:cart] = nil
redirect_to_index
end

Although this might seem like a lot of steps, it really isn’t. All we did to make
the cart hide and reveal itself was to make the CSS display style conditional
on the number of items in the cart and to use the .ijs template to invoke the
blind_down effect when the cart went from being empty to having one item.

Everyone is excited to see our fancy new interface. In fact, because our com-
puter is on the office network, our colleagues point their browsers at our test
application and try it for themselves. Lots of low whistles follow as folks mar-
vel at the way the cart appears and then updates. Everyone loves it. Everyone,

4. And how did we find the source code of the content_tag method? We brought up the Rails API
documentation in a browser and clicked the View Source link.

http://media.pragprog.com/titles/rails2/code/depot_n/app/views/layouts/store.rhtml
http://media.pragprog.com/titles/rails2/code/depot_n/app/helpers/store_helper.rb
http://media.pragprog.com/titles/rails2/code/depot_n/app/controllers/store_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=136

ITERATION D5: DEGRADING IF JAVASCRIPT IS DISABLED <« 137

that is, except Bruce. Bruce doesn’t trust JavaScript running in his browser
and has it turned off. And, with JavaScript disabled, all our fancy AJAX stops
working. When Bruce adds something to his cart, he sees something strange.
$("cart") .update("<hl>Your Cart</hl>\n\n\n \n <Ti

id=\"current_item\">\n\n 3 × Pragmatic Project

Automation\n</Ti>\n\n \n<form method=\"post\"
action=\"/store/empty_cart\" class=\"button-to...

Clearly this won’t do. We need to have our application work if our users have
disabled JavaScript in their browsers. That’ll be our next iteration.

9.5 Iteration D5: Degrading If Javascript Is Disabled

Remember, back on page 126, we arranged for the cart to appear in the side-
bar. We did this before we added a line of AJAX code to the application. If we
could fall back to this behavior when JavaScript is disabled in the browser,
then the application would work for Bruce as well as for our other co-workers.
This basically means that if the incoming request to add_to_cart doesn’t come
from JavaScript, we want to do what the original application did and redirect
to the index page. When the index displays, the updated cart will appear in
the sidebar.

If a user clicks the button inside a form_remote_tag, one of two things happens.
If JavaScript is disabled, the target action in the application is invoked using
a regular HTTP POST request—it acts just like a regular form. If, however,
JavaScript is enabled, it overrides this conventional POST and instead uses a
JavaScript object to establish a back channel with the server. This object is an
instance of class XmIHTTPRequest. Because that’s a mouthful, most folks (and
Rails) abbreviate it to xhr.

So, on the server, we can tell that we're talking to a JavaScript-enabled browser
by testing to see whether the incoming request was generated by an xhr object.
And the Rails request object, available inside controllers and views, makes it
easy to test for this condition: it provides an xhr? method. As a result, making
our application work regardless of whether JavaScript is enabled takes just a
single line of code in the add_to_cart action.

Download depot_o/app/controllers/store_controller.rb

def add_to_cart

begin
product = Product.find(params[:id])

rescue ActiveRecord: :RecordNotFound
Togger.error("Attempt to access invalid product #{params[:id]}")
redirect_to_index("Invalid product™)

else
@cart = find_cart
@current_item = @cart.add_product(product)

http://media.pragprog.com/titles/rails2/code/depot_o/app/controllers/store_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=137

WHAT WE JUST DID < 138

> redirect_to_index unless request.xhr?
end
end

9.6 What We Just Did
In this iteration we added AJAX support to our cart.

* We moved the shopping cart into the sidebar. We then arranged for the
add_to_cart action to redisplay the catalog page.

* We used form_remote_tag to invoke the add_to_cart action using AJAX.

* We then used an .fjs template to update the page with just the cart’s
HTML.

* To help the user see changes to the cart, we added a highlight effect,
again using the .rijs template.

* We wrote a helper method that hides the cart when it is empty and used
the .rjs template to reveal it when an item is added.

¢ Finally, we made our application work if the user’s browser has Java-
Script disabled by reverting to the behavior we implemented before start-
ing on the AJAX journey.

The key point to take away is the incremental style of AJAX development.
Start with a conventional application, and then add AJAX features, one by
one. AJAX can be hard to debug: by adding it slowly to an application, you
make it easier to track down what changed if your application stops working.
And, as we saw, starting with a conventional application makes it easier to
support both AJAX and non-AJAX behavior in the same codebase.

Finally, a couple of hints. First, if you plan to do a lot of AJAX development,
you’ll probably need to get familiar with your browser’s JavaScript debugging
facilities and with its DOM inspectors. Chapter 8 of Pragmatic Ajax: A Web 2.0
Primer [JGO6] has a lot of useful tips. And, second, I find it useful to run two
different browsers when I'm developing (I personally use Firefox and Safari on
my Mac). I have JavaScript enabled in one, disabled in the other. Then, as I
add some new feature, I poke at it with both browsers to make sure it works
regardless of the state of JavaScript.

Playtime
Here’s some stuff to try on your own.

® The cart is currently hidden when the user empties it by redrawing the
entire catalog. Can you change the application to use the Script.aculo.us
blind_up instead?

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=138

WHAT WE JUST DID <« 139

* Does the change you made work if the browser has JavaScript disabled?

¢ Experiment with other visual effects for new cart items. For example, can
you set their initial state to hidden and then have them grow into place?
Does this make it problematic to share the cart item partial between the
AJAX code and the initial page display?

* Add a link next to each item in the cart. When clicked it should invoke
an action to decrement the quantity of the item, deleting it from the cart
when the quantity reaches zero. Get it working without using AJAX first,
and then add the AJAX goodness.

(You'll find hints at http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime)

http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=139

In this chapter, we'll see

¢ linking tables with foreign keys

e using belongs_to and has_many

e creating forms based on models (form_for)
¢ linking forms, models, and views

Chapter 10

— TaskE:CheckOQutl

Let’s take stock. So far, we've put together a basic product administration sys-
tem, we've implemented a catalog, and we have a pretty spiffy-looking shop-
ping cart. So now we need to let the buyer actually purchase the contents of
that cart. Let’s implement the checkout function.

We're not going to go overboard here. For now, all we’ll do is capture the cus-
tomer’s contact details and payment option. Using these we’ll construct an
order in the database. Along the way we’ll be looking a bit more at models,
validation, and form handling.

10.1 Iteration E1l: Capturing an Order

An order is a set of line items, along with details of the purchase transaction.
We already have some semblance of the line items. Our cart contains cart
items, but we don’t currently have a database table for them. Nor do we have
a table to hold order information. However, based on the diagram on page 66,
combined with a brief chat with our customer, we can now generate the Rails
models and populate the migrations to create the corresponding tables.

First we create the two models.

depot> ruby script/generate model order

depot> ruby script/generate model Tine_item

Then we edit the two migration files created by the generator. First, fill in the
one that creates the orders table.

Download depot_p/db/migrate/005_create_orders.rb

class CreateOrders < ActiveRecord::Migration
def self.up
create_table :orders do |t]
t.column :name, :string
t.column :address, :text

http://media.pragprog.com/titles/rails2/code/depot_p/db/migrate/005_create_orders.rb

ITERATION E1: CAPTURING AN ORDER <« 141

t.column :email, :string
t.column :pay_type, :string, :limit => 10
end
end

def self.down
drop_table :orders
end
end

Then, fill in the migration for the line items.

Download depot_p/db/migrate/006_create_line_items.rb

class CreatelLineltems < ActiveRecord::Migration

def self.up
create_table :1ine_items do |t]|
t.column :product_id, :integer, :null => false
t.column :order_id, rinteger, :null => false
t.column :quantity, rinteger, :null => false
t.column :total_price, :decimal, :null => false, :precision => 8, :scale => 2
end

execute "alter table line_items add constraint fk_line_item_products
foreign key (product_id) references products(id)"

execute "alter table line_items add constraint fk_line_item_orders
foreign key (order_id) references orders(id)"
end

def self.down
drop_table :1ine_items
end
end

Notice that this table has two foreign keys. Each row in the line_items table is
associated both with an order and with a product. Unfortunately, Rails migra-
tions don’t provide a database-independent way to specify these foreign key
constraints, so we had to resort to executing native DDL statements (in this
case, those of MySQL).!

Now that we’ve created the two migrations, we can apply them.

depot> rake db:migrate

== CreateOrders: migrating

-- create_table(:orders)
-> 0.0066s

== CreateOrders: migrated (0.0096s)

1. Many Rails developers don't bother specifying database-level constraints such as foreign keys,
relying instead on the application code to make sure that everything knits together correctly. That’s
probably why Rails migrations don’t let you specify constraints. However, when it comes to database
integrity, I (Dave) think an ounce of extra checking can save pounds of late-night production system
debugging. You can find a plugin that automatically adds foreign key constraints to models at
http://www.redhillconsulting.com.au/rails_plugins.html.

http://media.pragprog.com/titles/rails2/code/depot_p/db/migrate/006_create_line_items.rb
http://www.redhillconsulting.com.au/rails_plugins.html
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=141

ITERATION E1: CAPTURING AN ORDER <« 142

4 N

\l/r{ Joe Asks...
"~ Where’s the Credit-Card Processing?

At this point, our tutorial application is going to diverge slightly from reality.
In the real world, we'd probably want our application to handle the com-
mercial side of checkout. We might even want to integrate credit-card pro-
cessing (possibly using the Payment module* or Tobias Lutke’s ActiveMer-
chant library). However, integrating with back-end payment-processing sys-
tems requires a fair amount of paperwork and jumping through hoops. And
this would distract from looking at Rails, so we're going to punt on this particu-
lar detail.

. http://rubyforge.org/projects/payment
t. http://home.leetsoft.com/am/

== CreatelLineltems: migrating

-- create_table(:1ine_items)
-> 0.0072s

-- execute("alter table Tine_items \n add constraint fk_line_...
-> 0.0134s

-- execute("alter table Tine_items \n add constraint fk_line_...
-> 0.0201s

== CreatelLineItems: migrated (0.0500s)

Because the database was currently at version 4, running the db:migrate task
applied both new migrations. We could, of course, have applied them sepa-
rately by running the migration task after creating the individual migrations.

Relationships between Models

The database now knows about the relationship between line items, orders,
and products. However, the Rails application does not. We need to add some
declarations to our model files that specify their inter-relationships. Open up
the newly created order.rb file in app/models and add a call to has_many.

class Order < ActiveRecord::Base

has_many :1ine_items
...

That has_many directive is fairly self-explanatory: an order (potentially) has
many associated line items. These are linked to the order because each line
item contains a reference to its order’s id.

Now, for completeness, we should add a has_many directive to our product
model. After all, if we have lots of orders, each product might have many line
items referencing it.

http://rubyforge.org/projects/payment
http://home.leetsoft.com/am/
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=142

ITERATION E1: CAPTURING AN ORDER <« 143

class Product < ActiveRecord::Base
has_many :1ine_items
...

end

Next, we’ll specify links in the opposite direction, from the line item to the
orders and products tables. To do this, we use the belongs_to declaration twice
in the line_item.rb file.
class Lineltem < ActiveRecord::Base

belongs_to :order

belongs_to :product
end

belongs_to tells Rails that rows in the line_items table are children of rows in the
orders and products tables: the line item cannot exist unless the corresponding
order and product rows exist. There’s an easy way to remember where to put
belongs_to declarations: if a table has foreign keys, the corresponding model
should have a belongs_to for each.

Just what do these various declarations do? Basically, they add navigation
capabilities to the model objects. Because we added the belongs_to declaration
to Lineltem, we can now retrieve its Order and display the customer’s name:

11 = LineItem.find(...)
puts "This Tine item was bought by #{1i.order.name}"

And because an Order is declared to have many line items, we can reference
them (as a collection) from an order object.

order = Order.find(...)
puts "This order has #{order.line_items.size} Tine items"

We’ll have more to say about intermodel relationships starting on page 327.

Creating the Order Capture Form

Now we have our tables and our models, we can start the checkout process.
First, we need to add a button to the shopping cart. We’ll link it back
to a checkout action in our store controller.

Download depot_p/app/views/store/_cart.rhtml

<div class="cart-title">Your Cart</div>
<table>
<%= render(:partial => "cart_item", :collection => cart.items) %>
<tr class="total-1ine">
<td colspan="2">Total</td>
<td class="total-cell"><%= number_to_currency(cart.total_price) %></td>

</tr>
</table>
<%= button_to "Checkout", :action => :checkout %>
<%= button_to "Empty cart", :action => :empty_cart %>

http://media.pragprog.com/titles/rails2/code/depot_p/app/views/store/_cart.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=143

ITERATION E1: CAPTURING AN ORDER <« 144

We want the checkout action to present our user with a form, prompting
them to enter the information in the orders table: their name, address, e-mail
address, and payment type. This means that at some point we’ll display a Rails
template containing a form. The input fields on this form will have to link to
the corresponding attributes in a Rails model object, so we’ll need to create
an empty model object in the checkout action to give these fields something
to work with.? (We also have to find the current cart, as it is displayed in the
layout. Finding the cart at the start of each action is starting to get tedious;
we’ll see how to remove this duplication later.)

Download depot_p/app/controllers/store_controller.rb

def checkout
@cart = find_cart
if @cart.items.empty?
redirect_to_index("Your cart is empty")
else
@order = Order.new
end
end

Notice how we check to make sure that there’s something in the cart. This
prevents people from navigating directly to the checkout option and creating
empty orders.

Now, for the template itself. To capture the user’s information, we’ll use a form.
As always with HTML forms, the trick is populating any initial values into the
form fields, and then extracting those values back out into our application
when the user hits the submit button.

In the controller, we set up the @order instance variable to reference a new
Order model object. We do this because the view populates the form from the
data in this object. As it stands, that’s not particularly interesting: because it’s
a new model, all the fields will be empty. However, consider the general case.
Maybe we want to edit an existing model. Or maybe the user has tried to enter
an order, but their data has failed validation. In these cases, we want any exist-
ing data in the model shown to the user when the form is displayed. Passing
in the empty model object at this stage makes all these cases consistent—the
view can always assume it has a model object available.

Then, when the user hits the submit button, we’'d like the new data from the
form to be extracted into a model object back in the controller.

Fortunately, Rails makes this relatively painless. It provides us with a bunch
of form helper methods. These helpers interact with the controller and with

2. Again, if you're following along, remember that actions must appear before the private keyword
in the controller.

http://media.pragprog.com/titles/rails2/code/depot_p/app/controllers/store_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=144

ITERATION E1: CAPTURING AN ORDER <« 145

controller: model obje
def edit — "Dave"

Order.find(...)
ena

:order,

-name,

Name: Dave

Figure 10.1: Names in form_for Map to Objects and Attributes
.

the models to implement an integrated solution for form handling. Before we
start on our final form, let’s look at a simple example:
Line 1 <% form_for :order, :url => { :action => :save_order } do |form| %>
<p>
<label for="order_name'">Name:</label>

- <%= form.text_field :name, :size => 40 %>

5 </p>

- <% end %>
There are two interesting things in this code. First, the form_for helper on line
1 sets up a standard HTML form. But it does more. The first parameter, :order,
tells the method that it’s dealing with an object in an instance variable named
@order. The helper uses this information when naming fields and when arrang-
ing for the field values to be passed back to the controller.

The :url parameter tells the helper what to do when the user hits the submit
button. In this case, we’ll generate an HTTP POST request that’ll end up getting
handled by the save_order action in the controller.

You'll see that form_for sets up a Ruby block environment (this block ends on
line 6). Within this block, you can put normal template stuff (such as the
<p> tag). But you can also use the block’s parameter (form in this case) to
reference a form context. We use this context on line 4 to add a text field to
the form. Because the text field is constructed in the context of the form_for, it
is automatically associated with the data in the @order object.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=145

ITERATION E1: CAPTURING AN ORDER <« 146

All these relationships can be confusing. It’s important to remember that Rails
needs to know both the names and the values to use for the fields associated
with a model. The combination of form_for and the various field-level helpers
(such as text_field) give it this information. Figure 10.1, on the preceding page,
shows this process.

Now we can create the template for the form that captures a customer’s details
for checkout. It’s invoked from the checkout action in the store controller, so
the template will be called checkout.rhtml in the directory app/views/store.

Rails has form helpers for all the different HTML-level form elements. In the
code that follows, we use text_field and text_area helpers to capture the cus-
tomer’s name, e-mail, and address.

Download depot_p/app/views/store/checkout.rhtml

<div class="depot-form">
<%= error_messages_for 'order' %>

<fieldset>
<legend>Please Enter Your Details</legend>

<% form_for :order, :url => { :action => :save_order } do |form| %>
<p>
<label for="order_name'">Name:</label>
<%= form.text_field :name, :size => 40 %>
</p>

<p>

<label for="order_address">Address:</Tabel>

<%= form.text_area :address, :rows => 3, :cols => 40 %>
</p>

<p>
<label for="order_email">E-Mail:</1abel>
<%= form.text_field :email, :size => 40 %>
</p>

<p>
<label for="order_pay_type">Pay with:</label>
<%=
form.select :pay_type,
Order: : PAYMENT_TYPES,
:prompt => "Select a payment method"
%>
</p>

<%= submit_tag "Place Order", :class => "submit" %>
<% end %>
</fieldset>
</div>

http://media.pragprog.com/titles/rails2/code/depot_p/app/views/store/checkout.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=146

ITERATION E1: CAPTURING AN ORDER <« 147

The only tricky thing in there is the code associated with the selection list.
We've assumed that the list of available payment options is an attribute of the
Order model—it will be an array of arrays in the model file. The first element of
each subarray is the string to be displayed as the option in the selection, and
the second value gets stored in the database.® We'd better define the option
array in the model orderrb before we forget.

Download depot_p/app/models/order.rb

class Order < ActiveRecord::Base
PAYMENT_TYPES = [

Displayed stored in db
["Check", "check" 7],
["Credit card", "cc" 1,
["Purchase order", "po" 1]

1

...

In the template, we pass this array of payment type options to the select helper.
We also pass the :prompt parameter, which adds a dummy selection containing
the prompt text.

Add a little CSS magic (see the listing in the appendix), and we're ready to play
with our form. Add some stuff to your cart, then click the button.
You should see something like Figure 10.2, on the next page.

Looking good! But, if you click the button, you'll be greeted with

Unknown action
No action responded to save_order

Before we move on to that new action, though, let’s finish off the checkout
action by adding some validation. We'll change the Order model to verify that
the customer enters data for all the fields (including the payment type drop-
down list). We also validate that the payment type is one of the accepted val-
ues.*5

3. If we anticipate that other non-Rails applications will update the orders table, we might want to
move the list of payment types into a separate lookup table and make the payment type column
a foreign key referencing that new table. Rails provides good support for generating selection lists
in this context too: you simply pass the select helper the result of doing a find(:all) on your lookup
table.

4. To get the list of valid payment types, we take our array of arrays and use the Ruby map method
to extract just the values.

5. Some folks might be wondering why we bother to validate the payment type, given that its value
comes from a drop-down list that contains only valid values. We do it because an application can’t
assume that it’s being fed values from the forms it creates. There’s nothing to stop a malicious
user from submitting form data directly to the application, bypassing our form. If the user set an
unknown payment type, they might conceivably get our products for free.

http://media.pragprog.com/titles/rails2/code/depot_p/app/models/order.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=147

ITERATION E1: CAPTURING AN ORDER <« 148

Contact

_8’66 Pragprog Books Online Store =
’ 4 b @ http: / /localhost:3000/store /checkout ~(a- Google T"I:J
Your Cart
13 Pragmatic Project Automation $29.95 Please Enter Your Details
Total $29.95
Name:
ErroRaTE Address:
Home
Questions ot
i E-Mail:

Pay with: | Select a payment method [3)

(" Place Order)

Figure 10.2: Our Checkout Screen

Download depot_p/app/models/order.rb

class Order < ActiveRecord::Base

PAYMENT_TYPES
Displayed
["Check",
["Credit card",

["Purchase order",

]

[

validates_presence_of

validates_inclusion_of :pay_type,

...

stored in db
"check" 7,
"__n 1,

cC
Hpou]

:name, :address, :email, :pay_type

:in => PAYMENT_TYPES.map {|disp, value| value}

Note that we already call the error_messages_for helper at the top of the page.
This will report validation failures (but only after we've written one more chunk

of code).

Capturing the Order Details

Let’s implement the save_order action in the controller. This method has to

1. Capture the values from the form to populate a new Order model object.

2. Add the line items from our cart to that order.

http://media.pragprog.com/titles/rails2/code/depot_p/app/models/order.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=148

ITERATION E1: CAPTURING AN ORDER <« 149

4 N

Vf Joe Asks...
.

"~ __Aren’t You Creating Duplicate Orders?

Joe is concerned to see our controller creating Order model objects in two
actions: checkout and save_order. He's wondering why this doesn’t lead to dupli-
cate orders in the database.

The answer is simple: the checkout action creates an Order object in mem-
ory simply to give the template code something to work with. Once the
response is sent to the browser, that particular object gets abandoned, and
it will eventually be reaped by Ruby’s garbage collector. It never gets close to
the database.

The save_order action also creates an Order object, populating it from the form
fields. This object does get saved in the database.

So, model objects perform two roles: they map data into and out of the
database, but they are also just regular objects that hold business data. They
affect the database only when you tell them to, typically by calling save.

3. Validate and save the order. If this fails, display the appropriate mes-
sages, and let the user correct any problems.

4. Once the order is successfully saved, redisplay the catalog page, includ-
ing a message confirming that the order has been placed.

The method ends up looking something like this.

Download depot_p/app/controllers/store_controller.rb

Line 1 def save_order
@cart = find_cart
@order = Order.new(params[:order])
@order.add_Tline_items_from_cart(@cart)
5 if @order.save
session[:cart] = nil
redirect_to_index("Thank you for your order™)
else
- render :action => :checkout
10 end
end

On line 3, we create a new Order object and initialize it from the form data.
In this case, we want all the form data related to order objects, so we select
the :order hash from the parameters (this is the name we passed as the first
parameter to form_for). The next line adds into this order the items that are
already stored in the cart—we’ll write the actual method to do this in a minute.

http://media.pragprog.com/titles/rails2/code/depot_p/app/controllers/store_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=149

ITERATION E1: CAPTURING AN ORDER <« 150

Next, on line 5, we tell the order object to save itself (and its children, the line
items) to the database. Along the way, the order object will perform validation
(but we’ll get to that in a minute). If the save succeeds, we do two things.
First, we ready ourselves for this customer’s next order by deleting the cart
from the session. Then, we redisplay the catalog using our redirect_to_index
method to display a cheerful message. If, instead, the save fails, we redisplay
the checkout form.

In the save_order action we assumed that the order object contains the method
add_line_items_from_cart, so let’s implement that method now.

Download depot_p/app/models/order.rb

Line 1 def add_line_items_from_cart(cart)
cart.items.each do |item|
11 = LineItem.from_cart_item(item)
Tine_items << 11
5 end
end

Notice that we didn’t have to do anything special with the various foreign key
fields, such as setting the order_id column in the line item rows to reference the
newly created order row. Rails does that knitting for us using the has_many and
belongs_to declarations we added to the Order and Lineltem models. Appending
each new line item to the line_items collection on line 4 hands the responsibility
for key management over to Rails.

This method in the Order model in turn relies on a simple helper in the line
item model that constructs a new line item given a cart item.

Download depot_p/app/models/line_item.rb

class Lineltem < ActiveRecord::Base
belongs_to :order
beTongs_to :product

def self.from_cart_item(cart_item)
T1i = self.new
Ti.product cart_item.product
Ti.quantity = cart_item.quantity
Ti.total_price cart_item.price
T4

end

end

So, as a first test of all of this, hit the button on the checkout
page without filling in any of the form fields. You should see the checkout page
redisplayed along with some error messages complaining about the empty
fields, as shown in Figure 10.3, on the following page. (If you're following
along at home and you get the message “No action responded to save_order,”
it’s possible that you added the save_order method after the private declaration
in the controller. Private methods cannot be called as actions.)

http://media.pragprog.com/titles/rails2/code/depot_p/app/models/order.rb
http://media.pragprog.com/titles/rails2/code/depot_p/app/models/line_item.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=150

ITERATION E1: CAPTURING AN ORDER <« 151

886 Pragprog Books Online Store =i

J'[E.) http:/ /localhost:3000/store/save_arder @ B Q~ Google)

PrAGMATIC BOOKSHELF

Your Cart
1 Pragmatic Project Automation $29.95
Total $29.95

5 ervors prohibited this order from being saved

There were problems with the following fields:
—Checkou:

Name can't be blank

Pay type is not included in the list
» Pay type can't be blank
Address cant be blank
Email can't be blank

Contact

Please Enter Y our Details

Name: I I
Address:
E-Mail: [|
| sl

Figure 10.3: Full House! Every Field Fails Validation

If we fill in some data as shown at the top of Figure 10.4, on the next page,
and click [Place Order|, we should get taken back to the catalog, as shown at
the bottom of the figure. But did it work? Let’s look in the database.

depot> mysql -u root depot_development
mysql> select = from orders;

et EELEE PRt e EE TR oo LT +
| id | name | address | email | pay_type |
et EELEE PRt e EE TR oo LT +
| 1 | Dave Thomas | 123 Main St | customer@pragprog.com | check |
et EELEE PRt e EE TR oo LT +

1 row in set (0.07 sec)

mysql> select = from 1ine_items;

et EELEE LRt e T e oo +
| id | product_id | order_id | quantity | total_price |
et EELEE LRt e T e oo +
| 1 1| 1| 1| 29.95 |
et EELEE LTt e et e e e +

1 row in set (0.17 sec)

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=151

ITERATION E1: CAPTURING AN ORDER <« 152

6 B 8 Pragprog Books Online Store {
~

[Z] . D A http:/ /localhost:3000/store /checkout @ 51 Q- Google]
PRAGMATIC BOOKSHELF

1x Pragmnhc Project Automation §20.95 Please Enter Your Details

Total §29.95

Name: pave Thomas

Address: [123 Main st

E-Mail: 'customer@pragprog.com

Pay with: | Check 14

| Place Order

Pragprog Books Online Store

© ~(Q- Google

Thank you for your order

Contact

Your Pragmatic Catalog

Pragmatic Project Automation

Pragmatic Project Automation shows you how to

- improve the consistency and repeatability of your
project's procedures using automation to reduce risk

and errors.

Simply put, we're going to put this ﬂ'nng called a oompmcr o
work for you doing the mundane

Figure 10.4: Our First Checkout

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=152

ITERATION E1: CAPTURING AN ORDER <« 153

One Last AJAX Change

After we accept an order, we redirect to the index page, displaying the cheery
flash message “Thank you for your order.” If the user continues to shop and
they have JavaScript enabled in their browser, we’ll fill the cart in their side-
bar without redrawing the main page. This means that the flash message will
continue to be displayed. We’d rather it went away after we add the first item
to the cart (as it does when JavaScript is disabled in the browser). Fortunately,
the fix is simple: we just hide the <div> that contains the flash message when
we add something to the cart. Except, nothing is really ever that simple.

A first attempt to hide the flash might involve adding the following line to
add_to_cart.rjs.

page[:notice].hide

rest as before...

However, this doesn’t work. If we come to the store for the first time, there’s
nothing in the flash, so the <div> with an id of notice is not displayed. And,
if there’s no <div> with the id of notice, the JavaScript generated by the rjs
template that tries to hide it bombs out, and the rest of the template never
gets run. As a result, you never see the cart update in the sidebar.

The solution is a little hack. We want to run the .hide only if the notice <div>
is present, but rjs doesn’t give us the ability to generate JavaScript that tests
for divs. It does, however, let us iterate over elements on the page that match
a certain CSS selector pattern. So let’s iterate over all <div> tags with an id of
notice. The loop will either find one, which we can hide, or none, in which case
the hide won’t get called.

Download depot_r/app/views/store/add_to_cart.rjs

P page.select("div#notice").each { |div| div.hide }
page.replace_html("cart", :partial => "cart", :object => @cart)
page[:cart].visual_effect :blind_down if @cart.total_items ==

page[:current_item].visual_effect :highlight,
:startcolor => "#88ff88",
:endcolor => "#114411"

The customer likes it. We've implemented product maintenance, a basic cata-
log, and a shopping cart, and now we have a simple ordering system. Obviously
we’ll also have to write some kind of fulfillment application, but that can wait
for a new iteration. (And that iteration is one that we’ll skip in this book: it
doesn’t have much new to say about Rails.)

http://media.pragprog.com/titles/rails2/code/depot_r/app/views/store/add_to_cart.rjs
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=153

ITERATION E1: CAPTURING AN ORDER <« 154

What We Just Did
In a fairly short amount of time, we did the following.

* We added orders and line_items tables (with the corresponding models) and
linked them together.

* We created a form to capture details for the order and linked it to the
order model.

* We added validation and used helper methods to display errors back to
the user.

Playtime
Here’s some stuff to try on your own.

® Trace the flow through the methods save_order, add_line_items_from_cart,
and from_cart_item. Do the controller, order model, and line item model
seem suitably decoupled from each other? (One way to tell is to look at
potential changes—if you change something, for example by adding a
new field to a cart item, does that change ripple through the code?) Can
you find a way to further reduce coupling?

* What happens if you click the button in the sidebar while the
checkout screen is already displayed? Can you find a way of disabling
the button in this circumstance? (Hint: variables set in the controller are
available in the layout as well as in the directly rendered template.)

¢ The list of possible payment types is currently stored as a constant in the
Order class. Can you move this list into a database table? Can you still
make validation work for the field?

(You'll find hints at http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime)

http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=154

11.1

In this chapter, we'll see

adding virtual attributes fo models
using more validations

coding forms without underlying models
implementing one-action form handling
adding authentication to a session
using script/console

using database fransactions

writing an Active Record hook Ch&pter 1 1

We have a happy customer—in a very short time we've jointly put together a
basic shopping cart that she can start showing to her users. There’s just one
more change that she’d like to see. Right now, anyone can access the adminis-
trative functions. She’d like us to add a basic user administration system that
would force you to log in to get into the administration parts of the site.

We're happy to do that, because it gives us a chance to look at virtual attributes
and filters, and it lets us tidy up the application somewhat.

Chatting with our customer, it seems as if we don't need a particularly sophis-
ticated security system for our application. We just need to recognize a number
of people based on user names and passwords. Once recognized, these folks
can use all of the administration functions.

Iteration F1: Adding Users

Let's start by creating a model and database table to hold the user names
and hashed passwords for our administrators. Rather than store passwords
in plain text, we’ll feed them through an SHA1 digest, resulting in a 160-bit
hash. We check a user’s password by digesting the value they give us and
comparing that hashed value with the one in the database. This system is
made even more secure by salting the password, which varies the seed used
when creating the hash by combining the password with a pseudorandom
string.!

depot> ruby script/generate model user

Let's create the migration and apply it to the database. Our user table has
columns for a name, the hashed password, and the salt value.

1. For other recipes on how to do this, see the Authentication and Role-Based Authentication sec-
tions in Chad Fowler’s Rails Recipes |].

ITERATION F1: ADDING USERS <« 156

Download depot_p/db/migrate/007_create_users.rb

class CreateUsers < ActiveRecord::Migration

def self.up
create_table :users do |t
t.column :name, :string
t.column :hashed_password, :string
t.column :salt, :string
end
end

def self.down
drop_table :users
end
end

Run the migration as usual.

depot> rake db:migrate

Now we have to flesh out the user model. This turns out to be fairly complex
because it has to work with the plain-text version of the password from the
application’s perspective but maintain a salt value and a hashed password in
the database. Let’s look at the model in sections. First, here’s the validation.

Download depot_p/app/models/user.rb

class User < ActiveRecord::Base

validates_presence_of :name
validates_uniqueness_of :name

attr_accessor :password_confirmation
validates_confirmation_of :password

def validate
errors.add_to_base("Missing password") if hashed_password.blank?
end
end

That’s a fair amount of validation for such a simple model. We check that the
name is present and unique (that is, no two users can have the same name in
the database). Then there’s the mysterious validates_confirmation_of declaration.

You know those forms that prompt you to enter a password and then make
you reenter it in a separate field so they can validate that you typed what
you thought you typed? Well, Rails can automatically validate that the two
passwords match. We’'ll see how that works in a minute. For now, we just have
to know that we need two password fields, one for the actual password and
the other for its confirmation.

Finally, we have a validation hook that checks that the password has been
set. But we don’t check the password attribute itself. Why? Because it doesn’t

http://media.pragprog.com/titles/rails2/code/depot_p/db/migrate/007_create_users.rb
http://media.pragprog.com/titles/rails2/code/depot_p/app/models/user.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=156

ITERATION F1: ADDING USERS <« 157

really exist—at least not in the database. Instead, we check for the presence
of its proxy, the hashed password. But to understand that, we have to look at
how we handle password storage.

First let’s see how to create a hashed password. The trick is to create a unique
salt value, combine it with the plain-text password into a single string, and
then run an SHA1 digest on the result, returning a 40-character string of hex
digits. We’ll write this as a private class method. (We'll also need to remember
to require the digest/shal library in our file. See the listing starting on page 159
to see where it goes.)

Download depot_p/app/models/user.rb

private

def self.encrypted_password(password, salt)
string_to_hash = password + "wibble" + salt # 'wibble' makes it harder to guess
Digest::SHAL.hexdigest(string_to_hash)

end

We'll create a salt string by concatenating a random number and the object
id of the user object. It doesn’t much matter what the salt is as long as it’s
unpredictable (using the time as a salt, for example, has lower entropy than
a random string). We store this new salt into the model object’s salt attribute.
Again, this is a private method, so place it after the private keyword in the
source.

Download depot_p/app/models/user.rb

def create_new_salt
self.salt = self.object_id.to_s + rand.to_s
end

There’s a subtlety in this code we haven't seen before. Note that we wrote
self.salf =.... This forces the assignment to use the salt= accessor method—we're
saying “call the method salt in the current object.” Without the self., Ruby would
have thought we were assigning to a local variable, and our code would have
no effect.

Now we need to write some code so that whenever a new plain-text password is
stored into a user object we automatically create a hashed version (which will
get stored in the database). We'll do that by making the plain-text password a
virtual attribute of the model—it looks like an attribute to our application, but
it isn’t persisted into the database.

If it wasn't for the need to create the hashed version, we could do this simply
using Ruby’s attr_accessor declaration.

attr_accessor : password

http://media.pragprog.com/titles/rails2/code/depot_p/app/models/user.rb
http://media.pragprog.com/titles/rails2/code/depot_p/app/models/user.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=157

ITERATION F1: ADDING USERS <« 158

Behind the scenes, affr_accessor generates two accessor methods: a reader
called password and a writer called password=. The fact that the writer method
name ends in an equals sign means that it can be assigned to. So, rather than
using standard accessors, we'll simply implement our own and have the writer
also create a new salt and set the hashed password.

Download depot_p/app/models/user.rb

def password
@password
end

def password=(pwd)

@password = pwd

return if pwd.blank?

create_new_salt

self.hashed_password = User.encrypted_password(self.password, self.salt)
end

And one last change. Let’s write a method that returns a user object if the
caller supplies the correct name and password. Because the incoming pass-
word is in plain text, we have to read the user record using the name as a key
then use the salt value in that record to construct the hashed password again.
We then return the user object if the hashed password matches. We can use
this method to authenticate a user.

Download depot_p/app/models/user.rb

def self.authenticate(name, password)
user = self.find_by_name(name)

if user
expected_password = encrypted_password(password, user.salt)
if user.hashed_password != expected_password

user = nil

end

end

user

end

This code uses a clever little Active Record trick. You see that the first line of
the method calls find_by_name. But we don’t define a method with that name.
However, Active Record notices the call to an undefined method and spots that
it starts with the string find_by and ends with the name of a column. It then
dynamically constructs a finder method for us, adding it to our class. We talk
more about these dynamic finders starting on page 309.

The user model contains a fair amount of code, but it shows how models can
carry a fair amount of business logic. Let’'s review the entire model before
moving on to the controller.

http://media.pragprog.com/titles/rails2/code/depot_p/app/models/user.rb
http://media.pragprog.com/titles/rails2/code/depot_p/app/models/user.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=158

ITERATION F1: ADDING USERS <« 159

Download depot_p/app/models/user.rb

require 'digest/shal’
class User < ActiveRecord::Base

validates_presence_of :name
validates_uniqueness_of :name

attr_accessor :password_confirmation
validates_confirmation_of :password

def validate
errors.add_to_base("Missing password") if hashed_password.blank?
end

def self.authenticate(name, password)
user = self.find_by_name(name)

if user
expected_password = encrypted_password(password, user.salt)
if user.hashed_password != expected_password

user = nil

end

end

user

end

'password' is a virtual attribute
def password

@password
end

def password=(pwd)

@password = pwd

return if pwd.blank?

create_new_salt

self.hashed_password = User.encrypted_password(self.password, self.salt)
end

private

def self.encrypted_password(password, salt)
string_to_hash = password + "wibble" + salt # 'wibble' makes it harder to guess
Digest::SHAl.hexdigest(string_to_hash)

end

def create_new_salt
self.salt = self.object_id.to_s + rand.to_s
end
end

http://media.pragprog.com/titles/rails2/code/depot_p/app/models/user.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=159

ITERATION F1: ADDING USERS <« 160

Administering Our Users

Now we have the model and table set up, we need some way to administer these
users. In fact, it’s likely that we’ll be adding a number of functions related to
users: login, list, delete, add, and so on. Let’s keep the code tidy by putting
these actions into their own controller.

At this point, we could invoke the same Rails scaffolding generator that we
used when we worked on product maintenance, but this time let’s do it by
hand. That way, we'll get to try out some new techniques. We'll start by gen-
erating our controller (Login) along with a method for each of the actions we
want. (I split this command onto two lines to make it fit. Don’t type the \ if
you're typing along at home.)
depot> ruby script/generate controller Login add_user login logout \
index delete_user Tist_users
exists app/controllers/
exists app/helpers/
create app/views/login
exists test/functional/
create app/controllers/login_controller.rb
create test/functional/login_controller_test.rb
create app/helpers/Togin_helper.rb
create app/views/login/add_user.rhtml
create app/views/login/login.rhtml
create app/views/login/logout.rhtml
create app/views/login/index.rhtml
create app/views/login/delete_user.rhtml
create app/views/login/list_users.rhtml

We know how to create new rows in a database table; we create an action, put
a form into a view, and have the action invoke the form. The form then calls
back to some kind of save action, which invokes the model to save data away.
But to make this chapter just a tad more interesting, let’s create users using
a slightly different style in the controller.

In the automatically generated scaffold code that we used to maintain the
products table, the edit action set up a form to edit product data. When the
user completed the form, it was routed back to a separate save action in the
controller. Two separate methods cooperated to get the job done. We used the
same technique when capturing the customer’s order.

In contrast, our user creation code will use just one action, add_user. Inside
this method we’ll detect whether we're being called to display the initial (empty)
form or whether we're being called to save away the data in a completed form.
We’ll do this by looking at the HTTP method of the incoming request. If it comes
from an link, we’ll see it as a GET request. If instead it contains
form data (which it will when the user hits the submit button), we’ll see a
POST. (For this reason, this style is sometimes called postback handling.)

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=160

ITERATION F1: ADDING USERS <« 161

Inside a Rails controller, the request information is available in the attribute
request. We can check the request type using methods such as get? and post?.
Here’s the code for the add_user action in the file login_controller.rb. (Note that we
added the admin layout to this new controller—let’s make the screen layouts
consistent across all administration functions.)

Download depot_p/app/controllers/login_controller.ro

tine1 class LoginController < ApplicationController
Tlayout "admin"
def add_user
@user = User.new(params[:user])

5 if request.post? and @user.save
flash.now[:notice] = "User #{@user.name} created"
@Quser = User.new
end
- end
10
.. .

First we create a new User object. If form data is present in the parameter
array, it will be used to initialize the object. If no data is present, an empty
user object will be created instead.

If the incoming request is a GET, we've finished with the action. It falls through
to the end and renders the template (which we haven’t written yet) associated
with add_user.

If the request is a POST, we're looking at something the user submitted, so we
try to save the data. If successful, we create a new user object and redisplay
the form (displaying a nice message in the flash). This lets the admin continue
entering more users. If the save failed, we also fall off the bottom of the action.
This time, we have both the (bad) data in the @user object and the reason for
the validation failures in the object’s errors structure. This means the user will
be given the opportunity to correct the error.

There’s an interesting twist to the handling of the flash in this code. We want
to use the normal flash mechanism to display the “user added” message.
However, we also don’t want the flash message to survive beyond the current
request. To deal with this, we use a variant, flash.now, which puts a message
in the flash only for the duration of the current request.

To get this action to do anything useful, we’ll need to create a view for it. This
is the template add_user.rhtml in app/views/login. Note that the form_for method
needs no parameters, because it defaults to submitting the form back to the
action and controller that rendered the template. The view listing is on the
next page.

http://media.pragprog.com/titles/rails2/code/depot_p/app/controllers/login_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=161

ITERATION F1: ADDING USERS

Download depot_p/app/views/login/add_user.rhtml

<div class="depot-form">
<%= error_messages_for 'user' %>

<fieldset>
<legend>Enter User Details</legend>

<% form_for :user do |form| %>
<p>
<label for="user_name">Name:</1abel>
<%= form.text_field :name, :size => 40 %>
</p>

<p>

<label for="user_password">Password:</1abel>

<%= form.password_field :password, :size => 40 %>
</p>

<p>

<label for="user_password_confirmation">Confirm:</1abel>

<%= form.password_field :password_confirmation, :size => 40 %>
</p>

<%= submit_tag "Add User", :class => "submit" %>

<% end %>
</fieldset>
</div>

That’s it: we can now add users to our database. Let’'s try it. Navigate to
http://localhost:3000/login/add_user, and you should see this stunning example
of page design.

MJ6 Admin: add_user —==
< » | @ hup//localhost:3000/loginfadd_i~ Q- Coogle |39

 —— —

Enter User Detalls

MName: dave

Password: sesess

Confirm: sessss

["Add User |

After clicking |Add User|, the page is redisplayed with a cheery flash notice. If we
look in our database, you'll see that we've stored the user details. (Of course,

http://media.pragprog.com/titles/rails2/code/depot_p/app/views/login/add_user.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=162

ITERATION F2: LOGGING IN < 163

the values in your row will be different, because the salt value is effectively

random.)

mysql> select * from users;

B et e T T B e e L B e e P +
| id | name | hashed_password | salt

B et e T T B e e L B e e e +
| 1 | dave | 2890ed2e4facd4...56e54606751ff | 32920.319242... |
B et e T T B e e L B e e e +

11.2 Iteration F2: Logging In
What does it mean to add login support for administrators of our store?

* We need to provide a form that allows them to enter their user name and

password.

* Once they are logged in, we need to record that fact somehow for the rest
of their session (or until they log out).

* We need to restrict access to the administrative parts of the application,
allowing only people who are logged in to administer the store.

We'll need a login action in the login controller, and it will need to record some-
thing in session to say that an administrator is logged in. Let’s have it store the
id of their User object using the key :user_id. The login code looks like this.

Download depot_p/app/controllers/login_controller.rb

def login
session[:user_id] = nil
if request.post?
user = User.authenticate(params[:name], params[:password])
if user
sessjon[:user_id] = user.id
redirect_to(:action => "index")
else
flash[:notice] = "Invalid user/password combination"

end
end
end
This uses the same trick that we used with the add_user method, handling
both the initial request and the response in the same method. But it also
does something new: it uses a form that isn’t directly associated with a model
object. To see how that works, let’s look at the template for the login action.

Download depot_p/app/views/login/login.rhtml

<div class="depot-form">
<fieldset>
<legend>Please Log In</legend>

http://media.pragprog.com/titles/rails2/code/depot_p/app/controllers/login_controller.rb
http://media.pragprog.com/titles/rails2/code/depot_p/app/views/login/login.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=163

ITERATION F2: LOGGING IN <« 164

<% form_tag do %>
<p>
<label for="name'">Name:</label>
<%= text_field_tag :name, params[:name] %>
</p>

<p>
<label for="password">Password:</Tabel>
<%= password_field_tag :password, params[:password] %>

</p>
<p>
<%= submit_tag "Login" %>
</p>
<% end %>
</fieldset>
</div>

This form is different from ones we've seen earlier. Rather than using form_for,
it uses form_tag, which simply builds a regular HTML <form>. Inside that
form, it uses text_field_tag and password_field_tag, two helpers that create HTML
<input> tags. Each helper takes two parameters. The first is the name to give
to the field, and the second is the value with which to populate the field. This
style of form allows us to associate values in the params structure directly
with form fields—no model object is required. In our case, we chose to use
the params object directly in the form. An alternative would be to have the
controller set instance variables.

The flow for this style of form is illustrated in Figure 11.1, on the following
page. Note how the value of the form field is communicated between the con-
troller and the view using the params hash: the view gets the value to display
in the field from params:name], and when the user submits the form, the new
field value is made available to the controller the same way.

If the user successfully logs in, we store the id of the user record in the session
data. We'll use the presence of that value in the session as a flag to indicate
that an admin user is logged in.

Finally, it’s about time to add the index page, the first screen that administra-
tors see when they log in. Let’s make it useful—we’ll have it display the total
number of orders in our store. Create the template in the file index.rhtml in the
directory app/views/login. (This template uses the pluralize helper, which in this
case generates the string order or orders depending on the cardinality of its
first parameter.)

Download depot_p/app/views/login/index.rhtml

<h1l>Welcome</hl>
It's <%= Time.now %>.
We have <%= pluralize(@total_orders, "order") %>.

http://media.pragprog.com/titles/rails2/code/depot_p/app/views/login/index.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=164

ITERATION F2: LOGGING IN <« 165

Template

<% form_tag do %>
Name:

<%= text_field_tag :name(params[:name] Yo>
<% end %> e
Controller
def login
name <(params[:name]
end ..
YO Admin: login = =
@ hitp:/ flocalhosts 0O + Admin: login
ehllp'//Io(alhos!?ﬂﬂﬁ/loginllogm a(Q- Google
Please Loq in
Name: ~
e Password: [eeeeee]
Login
E—

Figure 11.1: Parameters Flow between Controllers, Templates, and Browsers

The index action sets up the count.
Download depot_p/app/controllers/login_controller.rb

def index
@total_orders = Order.count
end

Now we can experience the joy of logging in as an administrator.

; i Admin: login — .
4 http:/ flocalhost: 3000 /login/login ~'Q- Google

L
Glalah Admin: index ==
- @ http://localhost:3000/login @ 7 Q- Google]

Welcome

User dave created

Please Log In

MName: dave

It's Tue Apr 18 15:37:11 CDT 2006. We have 2 orders.
Password: sessse

[Login)
i il

http://media.pragprog.com/titles/rails2/code/depot_p/app/controllers/login_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=165

ITERATION F3: LIMITING AcCESS <« 166

We show our customer where we are, but she points out that we still haven’t
controlled access to the administrative pages (which was, after all, the point of
this exercise).

11.3 Iteration F3: Limiting Access

We want to prevent people without an administrative login from accessing our
site’s admin pages. It turns out that it’s easy to implement using the Rails
Sfilter facility.

Rails filters allow you to intercept calls to action methods, adding your own
processing before they are invoked, after they return, or both. In our case, we’ll
use a before filter to intercept all calls to the actions in our admin controller.
The interceptor can check session[:user_id]. If set and if it corresponds to a user
in the database, the application knows an administrator is logged in, and the
call can proceed. If it’s not set, the interceptor can issue a redirect, in this case
to our login page.

Where should we put this method? It could sit directly in the admin con-
troller, but, for reasons that will become apparent shortly, let’s put it instead
in the ApplicationController, the parent class of all our controllers. This is in
the file application.rb in the directory app/controllers. Note too that we need to
restrict access to this method, because the methods in application.ro appear as
instance methods in all our controllers. Any public methods here are exposed
to end users as actions.

Download depot_qg/app/controllers/application.rb

class ApplicationController < ActionController::Base
private

def authorize
unless User.find_by_id(session[:user_id])

flash[:notice] = "Please Tlog in"
redirect_to(:controller => "login", :action => "Togin")
end
end
end

This authorization method can be invoked before any actions in the adminis-
tration controller by adding just one line.

Download depot_qg/app/controllers/admin_controller.ro

class AdminController < ApplicationController
before_filter :authorize

...,

http://media.pragprog.com/titles/rails2/code/depot_q/app/controllers/application.rb
http://media.pragprog.com/titles/rails2/code/depot_q/app/controllers/admin_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=166

ITERATION F3: LIMITING ACCESS <« 167

A Friendlier Login tem

As the code stands now, if an administrator tries to access a restricted page
before they are logged in, they are taken to the login page. When they then
log in, the standard status page is displayed—their original request is forgotten.
If you want, you can change the application to forward them to their originally
requested page once they log in.

First, in the authorize method, remember the incoming request’s URI in the ses-
sion if you need to log the user in.

def authorize
unless User.find_by_id(session[:user_id])

> session[:original_uri] = request.request_uri
flash[:notice] = "Please log in"
redirect_to(:controller => "login", :action => "login")
end
end

Once we log someone in, we can then check to see whether there’s a URI
stored in the session and redirect to it if so. We also need to clear down that
stored URI once used.

def Togin
session[:user_id] = nil
if request.post?
user = User.authenticate(params[:name], params[:password])
if user
session[:user_id] = user.id

> uri = session[:original_uri]
> session[:original_uri] = nil
> redirect_toCuri || { :action => "index" })

else

flash[:notice] = "Invalid user/password combination"
end
end
end

\ 7

We need to make a similar change to the login controller. Here, though, we
want to allow the login action to be invoked even if the user is not logged in, so
we exempt it from the check.

Download depot_qg/app/controllers/login_controller.rb

class LoginController < ApplicationController

before_filter :authorize, :except => :login
.

If you're following along, delete your session information (because in it we're
already logged in).

http://media.pragprog.com/titles/rails2/code/depot_q/app/controllers/login_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=167

ITERATION F4: A SIDEBAR, MORE ADMINISTRATION <« 168

depot> rake db:sessions:clear

Navigate to http://localhost:3000/admin/list. The filter method intercepts us on the
way to the product listing and shows us the login screen instead.

We show our customer and are rewarded with a big smile and a request: could
we add a sidebar and put links to the user and product administration stuff
in it? And while we're there, could we add the ability to list and delete admin-
istrative users? You betchal!

11.4 Iteration F4: A Sidebar, More Administration

Let’s start with the sidebar. We know from our experience with the order con-
troller that we need to create a layout. A layout for the admin controller would
be in the file admin.rhtml in the app/views/layouts directory.

Download depot_qg/app/views/layouts/admin.rhtml

<!DOCTYPE html1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">
<html>
<head>
<title>Administer the Bookstore</title>
<%= stylesheet_link_tag "scaffold", "depot", :media => "all" %>
</head>
<body id="admin">
<div id="banner">

<%= @page_title || "Pragmatic Bookshelf" %>
</div>
<div id="columns">
<div id="side">
<p>
<%= Tlink_to "Products", :controller => 'admin', :action => 'Tist' %>
</p>
<p>
<%= link_to "List users", :controller => 'login', :action => 'list_users' %>

<%= Tlink_to "Add user", :controller => 'login', :action => 'add_user' %>
</p>
<p>
<%= 1link_to "Logout", :controller => 'login', :action => 'logout' %>
</p>
</div>
<div id="main">
<% if flash[:notice] -%>
<div id="notice"><%= flash[:notice] %></div>
<% end -%>
<%= yield :Tayout %>
</div>
</div>
</body>
</htm1>

http://localhost:3000/admin/list
http://media.pragprog.com/titles/rails2/code/depot_q/app/views/layouts/admin.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=168

ITERATION F4: A SIDEBAR, MORE ADMINISTRATION < 169

We added links to the various administration functions to the sidebar in the
layout. Let’s implement them now.

Listing Users
Adding a user list to the login controller is easy. The controller action sets up
the list in an instance variable.

Download depot_q/app/controllers/login_controller.rb

def Tist_users
@all1_users = User.find(:all)
end

We display the list in the list_users.rhfml template. We add a link to the delete_user
action to each line—rather than have a delete screen that asks for a user name
and then deletes that user, we simply add a delete link next to each name in
the list of users.

Download depot_q/app/views/login/list_users.rhtml

<hl>Administrators</hl>

<% for user in @all_users %>
<1i><%= link_to "[X]", { # link_to options
:controller => 'login',
:action => 'delete_user',
:id => user},
{ # html options
:method => :post,
:confirm => "Really delete #{user.name}?"
} %>
<%= h(user.name) %>
</1i>
<% end %>

Would the Last Admin to Leave...
The code to delete a user is simple. The login controller’s delete_user action is
called with the user to delete identified by the id parameter. All it has to do is
something like
def delete_user
if request.post?
user = User.find(params[:id])
user.destroy
end

redirect_to(:action => :1ist_users)
end

(Why do we check for an HTTP POST request? It’s a good habit to get into.
Requests that change the server state should be sent using POST, not GET
requests. That's why we overrode the link_to defaults in the form and made

http://media.pragprog.com/titles/rails2/code/depot_q/app/controllers/login_controller.rb
http://media.pragprog.com/titles/rails2/code/depot_q/app/views/login/list_users.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=169

ITERATION F4: A SIDEBAR, MORE ADMINISTRATION <« 170

Administer the Bookstore i

Products

List users
Add user

Logout

Figure 11.2: Listing Our Users
.

it generate a POST. But that works only if the user has JavaScript enabled.
Adding a test to the controller finds this case and ignores the request.)

Let’s play with this. We bring up the list screen that looks something like
Figure 11.2 and click the X next to dave to delete that user. Sure enough,
our user is removed. But to our surprise, we're then presented with the login
screen instead. We just deleted the only administrative user from the system.
When the next request came in, the authentication failed, so the application
refused to let us in. We have to log in again before using any administrative
functions. But now we have an embarrassing problem: there are no adminis-
trative users in the database, so we can’t log in.

Fortunately, we can quickly add a user to the database from the command
line. If you invoke the command script/console, Rails invokes Ruby’s irb utility,
but it does so in the context of your Rails application. That means you can
interact with your application’s code by typing Ruby statements and looking
at the values they return. We can use this to invoke our user model directly,
having it add a user into the database for us.

depot> ruby script/console
Loading development environment.

>> User.create(:name => 'dave', :password => 'secret',
:password_confirmation => 'secret')

=> #<User:0x2933060 @attributes={...} ... >

>> User.count

= 1

The >> sequences are prompts: after the first we call the User class to create

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=170

ITERATION F4: A SIDEBAR, MORE ADMINISTRATION <« 171

a new user, and after the second we call it again to show that we do indeed
have a single user in our database. After each command we enter, script/console
displays the value returned by the code (in the first case, it's the model object,
and in the second case the count).

Panic over—we can now log back in to the application. But how can we stop
this from happening again? There are several ways. For example, we could
write code that prevents you from deleting your own user. That doesn’t quite
work—in theory A could delete B at just the same time that B deletes A.
Instead, let’s try a different approach. We'll delete the user inside a database
transaction. If after we've deleted the user there are then no users left in the
database, we'll roll the transaction back, restoring the user we just deleted.

To do this, we’ll use an Active Record hook method. We've already seen one of
these: the validate hook is called by Active Record to validate an object’s state.
It turns out that Active Record defines 20 or so hook methods, each called at a
particular point in an object’s life cycle. We'll use the after_destroy hook, which
is called after the SQL delete is executed. It is conveniently called in the same
transaction as the delete, so if it raises an exception, the transaction will be
rolled back. The hook method looks like this.

Download depot_qg/app/models/user.rb

def after_destroy
if User.count.zero?
raise "Can't delete last user"
end
end

The key concept here is the use of an exception to indicate an error when delet-
ing the user. This exception serves two purposes. First, because it is raised
inside a transaction, an exception causes an automatic rollback. By raising
the exception if the users table is empty after the deletion, we undo the delete
and restore that last user.

Second, the exception signals the error back to the controller, where we use a
begin/end block to handle it and report the error to the user in the flash.

Download depot_qg/app/controllers/login_controller.rb

def delete_user
if request.post?
user = User.find(params[:id])
begin
user.destroy
flash[:notice] = "User #{user.name} deleted"
rescue Exception => e
flash[:notice] = e.message
end
end
redirect_to(:action => :1ist_users)
end

http://media.pragprog.com/titles/rails2/code/depot_q/app/models/user.rb
http://media.pragprog.com/titles/rails2/code/depot_q/app/controllers/login_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=171

ITERATION F4: A SIDEBAR, MORE ADMINISTRATION <« 172

(In fact, this code still has a potential timing issue—it is still possible for two
administrators each to delete the last two users if their timing is right. Fixing
this would require more database wizardry than we have space for here.)

Logging Out
Our administration layout has a logout option in the sidebar menu. Its imple-
mentation in the login controller is trivial.

Download depot_qg/app/controllers/login_controller.rb

def logout
session[:user_id] = nil
flash[:notice] = "Logged out"
redirect_to(:action => "Togin")
end

We call our customer over one last time, and she plays with the store appli-
cation. She tries our new administration functions and checks out the buyer
experience. She tries to feed bad data in. The application holds up beautifully.
She smiles, and we're almost done.

We've finished adding functionality, but before we leave for the day we have
one last look through the code. We notice a slightly ugly piece of duplication in
the store controller. Every action apart from empty_cart has to find the user’s
cart in the session data. The line

@cart = find_cart
appears all over the controller. Now that we know about filters, we can fix

this. We’ll change the find_cart method to store its result directly into the @cart
instance variable.

Download depot_qg/app/controllers/store_controller.rb

def find_cart
@cart = (session[:cart] ||= Cart.new)
end

We'll then use a before filter to call this method on every action apart from
empty_cart.

Download depot_qg/app/controllers/store_controller.rb

before_filter :find_cart, :except => :empty_cart

This lets us remove the rest of the assignments to @cart in the action methods.
The final listing is shown starting on page 659.

What We Just Did

By the end of this iteration we've done the following.

http://media.pragprog.com/titles/rails2/code/depot_q/app/controllers/login_controller.rb
http://media.pragprog.com/titles/rails2/code/depot_q/app/controllers/store_controller.rb
http://media.pragprog.com/titles/rails2/code/depot_q/app/controllers/store_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=172

ITERATION F4: A SIDEBAR, MORE ADMINISTRATION <« 173

* Created a user model and database table, validating the attributes. It
uses a salted hash to store the password in the database. We created
a virtual attribute representing the plain-text password and coded it to
create the hashed version whenever the plain-text version is updated.

* Manually created a controller to administer users and investigated the
single-action update method (which takes different paths depending on
whether it is invoked with an HTTP GET or POST). We used the form_for
helper to render the form.

* We created a login action. This used a different style of form—one with-
out a corresponding model. We saw how parameters are communicated
between the view and the controller.

* We created an application-wide controller helper method in the Applica-
tionController class in the file application.ro in app/controllers.

* We controlled access to the administration functions using before filters
to invoke an authorize method.

* We saw how to use script/console to interact directly with a model (and dig
us out of a hole after we deleted the last user).

* We saw how a transaction can help prevent deleting the last user.

* We used another filter to set up a common environment for controller
actions.

Playtime
Here’s some stuff to try on your own.

¢ Adapt the checkout code from the previous chapter to use a single action,
rather than two.

* When the system is freshly installed on a new machine, there are no
administrators defined in the database, and hence no administrator can
log on. But, if no administrator can log on, then no one can create
an administrative user. Change the code so that if no administrator is
defined in the database, any user name works to log on (allowing you to
quickly create a real administrator).?

¢ Experiment with script/console. Try creating products, orders, and line
items. Watch for the return value when you save a model object—when
validation fails, you’'ll see false returned. Find out why by examining the
erTors:

2. Later, in Section 16.4, Data Migrations, on page 275, we'll see how to populate database tables
as part of a migration.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=173

ITERATION F4: A SIDEBAR, MORE ADMINISTRATION <« 174

>> prd = Product.new
=> #<Product:0x271c25c @new_record=true, @attributes={"image_url"=>niTl,
"price"=>#<BigDecimal:2719a48,'0.0',4(8)>,"title"=>nil,"description"=>ni1}>
>> prd.save
=> false
>> prd.errors.full_messages
=> ["Image url must be a URL for a GIF, JPG, or PNG image",
"Image url can't be blank™, "Price should be at least 0.01",
"Title can't be blank", "Description can't be blank"]

(You'll find hints at http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime)

http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=174

12.1

In this chapter, we'll see

using “has_many :through” join tables

creating a REST interface

generating XML using rxml templates
generating XML using to_xml on model objects
handling requests for different content types
creating application documentation

getting statistics on our application

Chapter 12

Over the days that followed our first few iterations, we added fulfillment func-
tionality to the shopping system and rolled it out. It was a great success,
and over the months that followed the Depot application became a core part
of the business. So much so, in fact, that the marketing people got inter-
ested. They want to send mass mailings to people who have bought partic-
ular books, telling them that new titles are available. They already have the
spam”H”"H"H"Hmailing system; it just needs an XML feed containing cus-
tomer names and e-mail addresses.

Generating the XML Feed

Let’'s set up a REST-style interface to our application. REST stands for REp-
resentational State Transfer, which is basically meaningless. What it really
means is that you use HTTP verbs (GET, POST, DELETE, and so on) to send
requests and responses between applications. In our case, we'll let the market-
ing system send us an HTTP GET request, asking for the details of customers
who've bought a particular product. Our application will respond with an XML
document.! We talk with the IT folks over in marketing, and they agree to a
simple request URL format.

http://my.store.com/info/who_bought/<product id>

So, we have two issues to address: we need to be able to find the customers
who bought a particular product, and we need to generate an XML feed from
that list. Let’s start by generating the list.

Navigating Through Tables
Figure 12.1, on the following page, shows how the orders side of our database
is currently structured. Every order has a number of line items, and each line

1. We could have used web services to implement this transfer—Rails has support for acting as
both a SOAP and XML-RPC client and server. However, this seems like overkill in this case.

GENERATING THE XML FEED <« 176

(orders) line_items) (products |

id id id

name \ product_id — | title

. order_id ...
——— quantity —

Figure 12.1: Database Structure

item is associated with a product. Our marketing folks want to navigate these
associations in the opposite direction, going from a particular product to all
the line items that reference that product and then from these line items to
the corresponding order.

As of Rails 1.1, we can do this using a :through relationship. We can add the
following declaration to the product model.

Download depot_qg/app/models/product.rb

class Product < ActiveRecord::Base
has_many :orders, :through => :line_items
.. .

Previously we used has_many to set up a parent/child relationship between
products and line items: we said that a product has many line items. Now,
we’re saying that a product is also associated with many orders but that there’s
no direct relationship between the two tables. Instead, Rails knows that to get
the orders for a product, it must first find the line items for the product and
then find the order associated with each line item.

Now this might sound fairly inefficient. And it would be, if Rails first fetched
the line items and then looped over each to load the orders. Fortunately, it's
smarter than that. As you’ll see if you look at the log files when we run the
code we're about to write, Rails generates an efficient SQL join between the
tables, allowing the database engine to optimize the query.

With the :through declaration in place, we can find the orders for a particular
product by referencing the orders attribute of that product.

product = Product.find(some_id)
orders = product.orders
Togger.info("Product #{some_id} has #{orders.count} orders")

http://media.pragprog.com/titles/rails2/code/depot_q/app/models/product.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=176

GENERATING THE XML FEED <« 177

Creating a REST Interface

Anticipating that this won’t be the last request that the marketing folks make,
we create a new controller to handle informational requests.
depot> ruby script/generate controller -info

exists app/controllers/

exists app/helpers/

create app/views/info

exists test/functional/

create app/controllers/info_controller.rb

create test/functional/info_controller_test.rb

create app/helpers/info_helper.rb

We'll add the who_bought action to the info controller. It simply loads up the list
of orders given a product id.
def who_bought

@product = Product.find(params[:id])

@orders = @product.orders
end

Now we need to implement the template that returns XML to our caller. We
could do this using the same rhtml templates we’'ve been using to render web
pages, but there are a couple of better ways. The first uses rxml templates,
designed to make it easy to create XML documents. Let’s look at the template
who_bought.ml, which we create in the app/views/info directory.

Download depot_qg/app/views/info/who_bought.rxml

xml.order_Tist(:for_product => @product.title) do
for o 1in @orders
xml.order do
xm1.name(o.name)
xml.email(o.email)
end
end
end

Believe it or not, this is just Ruby code. It uses Jim Weirich’s Builder library,
which generates a well-formed XML document as a side effect of executing a
program.

Within an rxml template, the variable xml represents the XML object being
constructed. When you invoke a method on this object (such as the call to
order_list on the first line in our template), the builder emits the corresponding
XML tag. If a hash is passed to one of these methods, it's used to construct
the attributes to the XML tag. If you pass a string, it is used as the tag’s value.

If you want to nest tags, pass a block to the outer builder method call. XML
elements created inside the block will be nested inside the outer element. We
use this in our example to embed a list of <order> tags inside an <order_list>
and then to embed a <name> and <email> tag inside each <order>.

http://media.pragprog.com/titles/rails2/code/depot_q/app/views/info/who_bought.rxml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=177

GENERATING THE XML FEED <« 178

a0 Maozilla Firefox (=]
Q:J- %‘ 11'1- @ hup:/ /localhost: 3000 /info/who_bought/ 2 v & 2
This XML file does not appear to have any style information associated with it. The
t trec is shown below. f & O O view-source: - Source of: http://localhost:3000/info/w... O
<order_list for_product="Pragmatic Project Automation">
. <order>
- <order_list for_product="Pragmatic| <name>Dave Thomas</name>
- <order> | <email>customer@pragprog.com</email>
<name>Dave Thomas</name>| : < ;: o
49111311-‘?6“510[!101‘@{”88191'0843013 <name>F & W Flintstone</name>
</order> <email>rock_crusher@bedrock.com</email>
- <order> </order>

<name>F & W Flintstone</nam| </order_list>

Figure 12.2: XML Returned by the who_bought Action

We can test this method using a browser or from the command line. If you
enter the URL into a browser, the XML will be returned. How it is displayed
depends on the browser: on my Mac, Safari renders the text and ignores the
tags, while Firefox shows a nicely highlighted representation of the XML (as
shown in Figure 12.2). In all browsers, the View — Source option should show
exactly what was sent from our application.

You can also query your application from the command line using a tool such
as curl or wget.

depot> curl http://localhost:3000/info/who_bought/1
<order_Tlist for_product="Pragmatic Project Automation'>
<order>
<name>Dave Thomas</name>
<email>customer@pragprog.com</email>
</order>
<order>
<name>F & W Flintstone</name>
<email>rock_crusher@bedrock.com</email>
</order>
</order_Tlist>

In fact, this leads to an interesting question: can we arrange our action so that
a user accessing it from a browser sees a nicely formatted list, while those
making a REST request get XML back?

Responding Appropriately
Requests come into a Rails application using HTTP. An HTTP message consists
of some headers and (optionally) some data (such as the POST data from a

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=178

GENERATING THE XML FEED <« 179

form). One such header is Accept:, which the client uses to tell the server the
types of content that may be returned. For example, a browser might send an
HTTP request containing the header

Accept: text/html, text/plain, application/xml

In theory, a server should respond only with content that matches one of these
three types.

We can use this to write actions that respond with appropriate content. For
example, we could write a who_bought action that uses the accept header. If the
client accepts only XML, then we could return an XML-format REST response.
If the client accepts HTML, then we can render an HTML page instead.

In Rails, we use the respond_to method to perform conditional processing based
on the Accepts header. First, let’s write a trivial template for the HTML view.
Download depot_r/app/views/info/who_bought.rhtml

<h3>People Who Bought <%= @product.title %></h3>

<% for order in @orders -%>
<1i>
<%= mail_to order.email, order.name %>
</1i>
<% end -%>

Now we’ll use respond_to to vector to the correct template depending on the
incoming request accept header.

Download depot_r/app/controllers/info_controller.rb

def who_bought
@product = Product.find(params[:id])
@orders = @product.orders
respond_to do |format|
format.html
format.xml
end
end

Inside the respond_to block, we list the content types we accept. You can think
of it being a bit like a case statement, but it has one big difference: it ignores
the order you list the options in and instead uses the order from the incoming
request (because the client gets to say which format it prefers).

Here we're using the default action for each type of content. For html, that
action is to invoke render. For xml, the action is to render the .r~xml template.
The net effect is that the client can select to receive either HTML or XML from
the same action.

http://media.pragprog.com/titles/rails2/code/depot_r/app/views/info/who_bought.rhtml
http://media.pragprog.com/titles/rails2/code/depot_r/app/controllers/info_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=179

GENERATING THE XML FEED <« 180

Unfortunately, this is hard to try with a browser. Instead, let’s use a command-
line client. Here we use curl (but tools such as wget work equally as well). The
-H option to curl lets us specify a request header. Let’'s ask for XML first.

depot> curl -H "Accept: application/xml1" \
http://localhost:3000/info/who_bought/1
<order_1list for_product="Pragmatic Project Automation">
<order>
<name>Dave Thomas</name>
<email>customer@pragprog.com</email>
</order>
<order>
<name>F & W Flintstone</name>
<email>crusher@bedrock.com</email>
</order>
</order_Tlist>

And then HTML.

depot> curl -H "Accept: text/html™ \
http://Tocalhost:3000/1info/who_bought/1
<h3>People Who Bought Pragmatic Project Automation</h3>

<1li>
Dave Thomas
</T1i>
<1li>
F & W Flintstone
</T1i>

Another Way of Requesting XML

Although using the Accept header is the “official” HTTP way of specifying the
content type you'd like to receive, it isn’'t always possible to set this header
from your client. Rails provides an alternative: we can set the preferred format
as part of the URL. If we want the response to our who_bought request to come
back as HTML, we can ask for /info/who_bought/1.html. If instead we want XML,
we can use /info/who_bought/1.xml. And this is extensible to any content type
(as long as we write the appropriate handler in our respond_to block).

To enable this behavior, we need to make a simple change to our routing
configuration. We’ll explain why this works on page 422—for now, just take it
on faith. Open up routes.rb in the config directory, and add the highlighted line.

Download depot_r/config/routes.rb

ActionController::Routing::Routes.draw do |map|
map.connect ':controller/service.wsdl', :action => 'wsdl'
map.connect ':controller/:action/:id’
g map.connect ':controller/:action/:id.:format’
end

http://media.pragprog.com/titles/rails2/code/depot_r/config/routes.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=180

GENERATING THE XML FEED <« 181

This extra route says that a URL may end with a file extension (.html, .xml, and
so on). If so, that extension will be stored in the variable format. And Rails uses
that variable to fake out the requested content type.

After making that change, restart your application, and then try requesting
a URL such as http://localhost:3000/info/who_bought/1.xml. Depending on your
browser, you might see a nicely formatted XML display, or you might see a
blank page. If you see the latter, use your browser’s View — Source function to
have a look at the response.

Autogenerating the XML

In the previous examples, we generated the XML responses by hand, using the
rxml template. That gives us control over the order of the elements returned.
But if that order isn’t important, we can let Rails generate the XML for a model
object for us by calling the model’s fo_xml method. In the code that follows,
we've overridden the default behavior for XML requests to use this.

def who_bought
@product = Product.find(params[:id])
@orders = @product.orders
respond_to do |accepts|
accepts.html
accepts.xml { render :xml => @product.to_xml(:include => :orders) }
end
end

The :xml option to render tells it to set the response content type to applica-
tion/xml. The result of the to_xml call is then sent back to the client. In this
case, we dump out the @product variable and any orders that reference that
product.

dept> curl http://localhost:3000/info/who_bought/1.xml
<?xm1 version="1.0" encoding="UTF-8"7>
<product>
<image-url>/images/auto.jpg</image-url>
<title>Pragmatic Project Automation</title>
<price type="1integer">2995</price>
<orders>
<order>
<name>Dave Thomas</name>
<id type="integer">1</id>
<pay-type>check</pay-type>
<address>123 The Street</address>
<email>customer@pragprog.com</email>
</order>
<order>
<name>F & W Flintstone</name>
<id type="integer">2</id>
<pay-type>check</pay-type>
<address>123 Bedrock</address>
<email>crusher@bedrock.com</email>

http://localhost:3000/info/who_bought/1.xml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=181

FINISHING Up <« 182

</order>

</orders>

<id type="integer">1l</id>

<description>&1t;p>
&Tt;em>Pragmatic Project Automation shows
you how to improve the consistency and repeatability of
your project's procedures using automation to reduce risk
and errors. &I1t;/p> &1t;p> Simply put, we're going
to put this thing called
a computer to work for you doing the mundane (but
important) project stuff. That means you'll have more time
and energy to do the really exciting---and
difficult---stuff, Tike writing quality code.
&1t;/p>

</description>

</product>

Note that by default to_xml dumps everything out. You can tell it to exclude
certain attributes, but that can quickly get messy. If you have to generate XML
that meets a particular schema or DTD, you're probably better off sticking with
rxml templates.

12.2 Finishing Up

The coding is over, but we can still do a little more tidying before we deploy the
application into production.

We might want to check out our application’s documentation. As we’'ve been

coding, we've been writing brief but elegant comments for all our classes and
methods. (We haven’t shown them in the code extracts in this book because

we wanted to save space.) Rails makes it easy to run Ruby’s RDoc utility on Rrooc

all the source files in an application to create good-looking programmer doc- page 014
umentation. But before we generate that documentation, we should probably

create a nice introductory page so that future generations of developers will

know what our application does. To do this, edit the file doc/README_FOR_APP,

and enter anything you think might be useful. This file will be processed using

RDoc, so you have a fair amount of formatting flexibility.

You can generate the documentation in HTML format using the rake command.
depot> rake doc:app

This generates documentation into the directory doc/app. Figure 12.3, on the
next page, shows the initial page of the output generated.

Finally, we might be interested to see how much code we've written. There’s
a Rake task for that, too. (Your numbers will be different from this, if for no
other reason than you probably won't have written tests yet. That's the subject
of the next chapter.)

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=182

FINISHING Up <« 183

f00 Rails Application Documentation N
Files m Classes w Methods m;
app/controllers/admin_cont™| | AdminController add_line_items_from_cart (Order)

app/controllers]application.‘;': AdminHelper add_product (Cart)
app/controllers/info_contro || ApplicationController 3 || add_to_cart (StoreController)

E =waTs || ApplicationHelper 'y || add_user (LoginController)
README_FOR_APP

4| »f

ETH doc/README_FOR_AFPP
Last Update: Tue Apr 1B 16:31:47 CDT 2006

The Depot Online Store

This application implements an online store, with a catalog, cart, and orders. L
It is divided into three main sections:

» The buyer’s side of the application manages the catalog, cart, and
checkout. It is implemented in StoreController and the associated
views.

* Only administrators can access stuff in the AdminController. This is
implemented by the LoginController, and is enforced by the
ApplicationController#authorize method.

There’s also a simple web service accessible via the InfoController.

4| »f

%

This code was produced as an example for the book Agile Web Development

sarith Daile Tk ehauld ant ha rin ae 2 rasl anlina ekara

Figure 12.3: Our Application’s Internal Documentation

depot> rake stats
(in /Users/dave/Work/depot)

oo - - - - LT e +---—- +-—-—-—- +
| Name | Lines | LOC | Classes | Methods | M/C | LOC/M |
oo - - - - LT e +---—- +-—-—-—- +
| Helpers | 17 | 15 | 0 | 1| 0 | 13 |
| Controllers | 229 | 154 | 5 | 23 | 4 | 4 |
| Components | 0 | 0 | 0 | 0 | 0 | 0 |
| Functional tests | 206 | 141 | 8 | 25 | 3 | 3 |
| Models | 261 | 130 | 6 | 18 | 3 5]
| Unit tests | 178 | 120 | 5 13 | 2 | 7 | |
| Libraries | 0 | 0 | 0 | 0 | 0 | 0 |
| Integration tests | 192 | 130 | 2 | 10 | 5] 11 |
L E P LR PR $o—m - 4 o i - el +
| Total | 1083 | 690 | 26 | 90 | 3| 5]
R L e P LR e $—m - 4= $omm 4 +-——— el +
Code LOC: 299 Test LOC: 391 Code to Test Ratio: 1:1.3

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=183

FINISHING Up <« 184

Playtime
Here’s some stuff to try on your own.

* Change the original catalog display (the index action in the store con-
troller) so that it returns an XML product catalog if the client requests
an XML response.

¢ Try using rxml templates to generate normal HTML (technically, XHTML)
responses. What are the advantages and disadvantages?

¢ If you like the programmatic generation of HTML responses, have a look
at Markaby.? It installs as a plugin, so you’'ll be trying stuff we haven't
talked about yet, but the instructions on the web site are clear.

® Add credit card and PayPal processing, fulfillment, couponing, RSS sup-
port, user accounts, content management, and so on, to the Depot appli-
cation. Sell the resulting application to a big-name web company. Retire
early, and do good deeds.

(You'll find hints at http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime)

2. http://redhanded.hobix.com/inspect/markabyForRails.html

http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime
http://redhanded.hobix.com/inspect/markabyForRails.html
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=184

13.1

This chapter was written by Mike Clark (http://clarkware.com). Mike is an independent
consultant, author;, and trainer. Most important, he’s a programmer. He helps teams build
better software faster using agile practices. With an extensive background in J2EE and
test-driven development, he’s currently putting his experience to work on Rails projects.

Chapter 13

In short order we've developed a respectable web-based shopping cart appli-
cation. Along the way, we got rapid feedback by writing a little code and then
punching buttons in a web browser (with our customer by our side) to see
whether the application behaved as we expected. This testing strategy works
for about the first hour you're developing a Rails application, but soon there-
after you've amassed enough features that manual testing just doesn’t scale.
Your fingers grow tired and your mind goes numb every time you have to
punch all the buttons, so you don'’t test very often, if ever.

Then one day you make a minor change and it breaks a few features, but you
don’t realize it until the customer phones up to say she’s no longer happy. If
that weren’t bad enough, it takes you hours to figure out exactly what went
wrong. You made an innocent change over here, but it broke stuff way over
there. By the time you've unraveled the mystery, the customer has found her-
self a new best programmer.

It doesn’t have to be this way. There’s a practical alternative to this madness:
write tests!

In this chapter, we’ll write automated tests for the application we all know
and love—the Depot application.! Ideally, we’d write these tests incrementally
to get little confidence boosts along the way. Thus, we're calling this Task T,
because we should be doing testing all the time. You'll find listings of the code
from this chapter starting on page 670.

Tests Baked Right In

With all the fast and loose coding we've been doing while building Depot, it
would be easy to assume that Rails treats testing as an afterthought. Nothing

1. We'll be testing the stock, vanilla version of Depot. If you've made modifications (perhaps by
trying some of the playtime exercises at the ends of the chapters), you might have to make adjust-
ments.

http://clarkware.com

UNIT TESTING OF MODELS <« 186

could be further from the truth. One of the real joys of the Rails framework is
that it has support for testing baked right in from the start of every project.
Indeed, from the moment you create a new application using the rails com-
mand, Rails starts generating a test infrastructure for you.

We haven’t written a lick of test code for the Depot application, but if you look
in the top-level directory of that project, you’ll notice a subdirectory called test.
Inside this directory you'll see five directories and a helper file.

depot> 1s -p test

fixtures/ integration/ test_helper.rb
functional/ mocks/ unit/

So our first decision—where to put tests—has already been made for us. The
rails command creates the full test directory structure.

By convention, Rails calls things that test models unit tests, things that test
a single action in a controller functional tests, and things that test the flow
through one or more controllers integration tests. Let’s take a peek inside the
unit and functional subdirectories to see what’s already there.

depot> 1s test/unit
order_test.rb Tine_item_test.rb product_test.rb user_test.rb

depot> 1s test/functional

admin_controller_test.rb login_controller_test.rb

info_controller_test.rb store_controller_test.rb

Look at that! Rails has already created files to hold the unit tests for the models
and the functional tests for the controllers we created earlier with the generate
script. This is a good start, but Rails can help us only so much. It puts us on
the right path, letting us focus on writing good tests. We’'ll start back where
the data lives and then move up closer to where the user lives.

13.2 Unit Testing of Models

The first model we created for the Depot application way back on page 68
was Product. Let’s see what kind of test goodies Rails generated inside the file
test/unit/product_test.ro when we generated that model.

Download depot_r/test/unit/product_test.rb
require File.dirname(__FILE_) + '/../test_helper'
class ProductTest < Test::Unit::TestCase
fixtures :products
def test_truth
assert true

end
end

http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/product_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=186

UNIT TESTING OF MODELS <« 187

OK, our second decision—how to write tests—has already been made for us.
The fact that ProductTest is a subclass of the Test:Unit:TestCase class tells us
that Rails generates tests based on the Test::Unit framework that comes pre-
installed with Ruby. This is good news because it means if we’'ve already been
testing our Ruby programs with Test::Unit tests (and why wouldn’t you want
to?), then we can build on that knowledge to test Rails applications. If you're
new to Test::Unit, don’t worry. We'll take it slow.

Now, what's with the generated code inside of the test case? Rails generated
two things for us. The first is the following line of code.

fixtures :products

There’s a lot of magic behind this line of code—it allows us to prepopulate our
database with just the right test data—and we’ll be talking about it in depth
in a minute.

The second thing Rails generated is the method test_truth. If you're familiar
with Test::Unit you’ll know all about this method. The fact that its name starts
with test means that it will run as a test by the testing framework. And the
assert line in there is an actual test. It isn’t much of one, though—all it does is
test that true is true. Clearly, this is a placeholder, but it’s an important one,
because it lets us see that all the testing infrastructure is in place. So, let’s try
to run this test class.

depot> ruby test/unit/product_test.rb

Loaded suite test/unit/product_test

Started

EE
Finished in 0.559942 seconds.

1) Error:
test_truth(ProductTest):
MysqlError: Unknown database 'depot_test'
. a whole bunch of tracing...
1 tests, 0 assertions, O failures, 2 errors

Guess it wasn’t the truth, after all. The test didn’t just fail, it exploded! Thank-
fully, it leaves us a clue—it couldn’t find a database called depot_test. Hmph.

A Database Just for Tests

Remember back on page 69 when we created the development database for
the Depot application? We called it depot_development. That’s because that’s
the default name Rails gave it in the database.yml file in the config directory. If
you look in that configuration file again, you’ll notice Rails actually created a
configuration for three separate databases.

* depot_development will be our development database. All of our program-
ming work will be done here.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=187

UNIT TESTING OF MODELS <« 188

* depot_test is a test database.

* depot_production is the production database. Our application will use this
when we put it online.

So far, we've been doing all our work in the development database. Now that
were running tests, though, Rails needs to use the test database, and we
haven't created one yet.

Let’s remedy that now. As we're using the MySQL database, we’ll again use
mysqgladmin to create the database.

depot> mysqladmin -u root create depot_test

Now let’s run the test again.

depot> ruby test/unit/product_test.rb
Loaded suite test/unit/product_test
Started

EE

Finished in 0.06429 seconds.

1) Error:

test_truth(ProductTest):

ActiveRecord: :StatementInvalid: MysqlError:

Table 'depot_test.products' doesn't exist: DELETE FROM products
1 tests, 0 assertions, 0 failures, 2 errors

Oh, dear! Not much better than last time. But the error is different. Now it’s
complaining that we don’t have a products table in our test database. And
indeed we don’t: right now all we have is an empty schema. Let’s populate the
test database schema to match that of our development database. We'll use
the db:test:prepare task to copy the schema across.

depot> rake db:test:prepare

Now we have a database containing a schema. Let’s try our unit test one more
time.

depot> ruby test/unit/product_test.rb
Loaded suite test/unit/product_test
Started

Finished in 0.085795 seconds.
1 tests, 1 assertions, 0 failures, 0 errors

OK, that looks better. See how having the stub test wasn’t really pointless? It
let us get our test environment all set up. Now that it is, let’s get on with some
real tests.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=188

UNIT TESTING OF MODELS <« 189

A Real Unit Test
We've added a fair amount of code to the Product model since Rails first gener-
ated it. Some of that code handles validation.

Download depot_r/app/models/product.rb

validates_presence_of :title, :description, :image_url
validates_numericality_of :price
validates_uniqueness_of :title
validates_format_of :image_url,

swith => %r{\.(gif|ipg|png)$}i,

:message => "must be a URL for a GIF, JPG, or PNG image"
protected

def validate
errors.add(:price, "should be at least 0.01") if price.nil? || price < 0.01
end

How do we know this validation is working? Let’s test it. First, if we create a
product with no attributes, set we’ll expect it to be invalid and for there to be
an error associated with each field. We can use the model’s valid? method to
see whether it validates, and we can use the invalid? method of the error list to
see if there’s an error associated with a particular attribute.

Now that we know what to test, we need to know how to tell the test framework
whether our code passes or fails. We do that using assertions. An assertion is
simply a method call that tells the framework what we expect to be true. The
simplest assertion is the method assert, which expects its argument to be true.
If it is, nothing special happens. However, if the argument to ossert is false, the
assertion fails. The framework will output a message and will stop executing
the test method containing the failure. In our case, we expect that an empty
Product model will not pass validation, so we can express that expectation by
asserting that it isn’t valid.

assert !product.valid?

Let’s write the full test.

Download depot_r/test/unit/product_test.rb

def test_invalid_with_empty_attributes
product = Product.new
assert !product.valid?
assert product.errors.invalid?(:title)
assert product.errors.invalid?(:description)
assert product.errors.invalid?(:price)
assert product.errors.invalid?(:image_url)
end

When we run the test case, we’lll now see two tests executed (the original
test_truth method and our new test method).

http://media.pragprog.com/titles/rails2/code/depot_r/app/models/product.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/product_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=189

UNIT TESTING OF MODELS < 190

depot> ruby test/unit/product_test.rb
Loaded suite test/unit/product_test
Started

Finished in 0.092314 seconds.
2 tests, 6 assertions, 0 failures, 0 errors

Sure enough, the validation kicked in, and all our assertions passed.

Clearly at this point we can dig deeper and exercise individual validations.
Let’s look at just three of the many possible tests. First, we’ll check that the
validation of the price works the way we expect.

Download depot_r/test/unit/product_test.rb

def test_positive_price

product = Product.new(:title => "My Book Title",
rdescription => "yyy",
:image_url => "zzz.jpg")
product.price = -1

assert !product.valid?
assert_equal "should be at Teast 0.01", product.errors.on(:price)

product.price = 0
assert !product.valid?
assert_equal "should be at Tleast 0.01", product.errors.on(:price)

product.price = 1
assert product.valid?
end

In this code we create a new product and then try setting its price to -1, O,
and +1, validating the product each time. If our model is working, the first two
should be invalid, and we verify the error message associated with the price
attribute is what we expect. The last price is acceptable, so we assert that the
model is now valid. (Some folks would put these three tests into three separate
test methods—that’s perfectly reasonable.)

Next, we’ll test that we're validating the image URL ends with one of .gif, .jpg,
or .png.
Download depot_r/test/unit/product_test.rb

def test_image_url
ok = %w{ fred.gif fred.jpg fred.png FRED.JPG FRED.Jpg
http://a.b.c/x/y/z/fred.qgif }
bad = %w{ fred.doc fred.gif/more fred.gif.more }

ok.each do |name]|

product = Product.new(:title => "My Book Title",
rdescription => "yyy",
rprice = 1,
rimage_url => name)
assert product.valid?, product.errors.full_messages
end

http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/product_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/product_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=190

UNIT TESTING OF MODELS <« 191

bad.each do |name]|
product = Product.new(:title => "My Book Title", :description => "yyy", :price => 1,
:image_url => name)
assert !product.valid?, "saving #{name}"
end
end

Here we've mixed things up a bit. Rather than write out the nine separate
tests, we've used a couple of loops, one to check the cases we expect to pass
validation, the second to try cases we expect to fail. You'll notice that we've
also added an extra parameter to our assert method calls. All of the testing
assertions accept an optional trailing parameter containing a string. This will
be written along with the error message if the assertion fails and can be useful
for diagnosing what went wrong.

Finally, our model contains a validation that checks that all the product titles
in the database are unique. To test this one, were going to need to store
product data in the database.

One way to do this would be to have a test create a product, save it, then
create another product with the same title, and try to save it too. This would
clearly work. But there’s a more idiomatic way—we can use Rails fixtures.

Test Fixtures

In the world of testing, a fixture is an environment in which you can run a
test. If you're testing a circuit board, for example, you might mount it in a test
fixture that provides it with the power and inputs needed to drive the function
to be tested.

In the world of Rails, a test fixture is simply a specification of the initial con-
tents of a model (or models) under test. If, for example, we want to ensure that
our products table starts off with known data at the start of every unit test, we
can specify those contents in a fixture, and Rails will take care of the rest.

You specify fixture data in files in the test/fixtures directory. These files contain
test data in either Comma-Separated Value (CSV) or YAML format. For our
tests we’ll use YAML, the preferred format. Each YAML fixture file contains the
data for a single model. The name of the fixture file is significant; the base
name of the file must match the name of a database table. Because we need
some data for a Product model, which is stored in the products table, we’ll add
it to the file called products.yml. Rails already created this fixture file when we
first created the model.
Read about fixtures at ...
first:

id: 1
another:

id: 2

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=191

UNIT TESTING OF MODELS <« 192

The fixture file contains an entry for each row that we want to insert into the
database. Each row is given a name. In the case of the Rails-generated fixture,
the rows are named first and another. This name has no significance as far
as the database is concerned—it is not inserted into the row data. Instead, as
we’ll see shortly, the name gives us a convenient way to reference test data
inside our test code.

Inside each entry you’ll see an indented list of attribute name/value pairs. In
the Rails-generated fixture only the id attribute is set. Although it isn’t obvious
in print, you must use spaces, not tabs, at the start of each of the data lines,
and all the lines for a row must have the same indentation. Finally, you need
to make sure the names of the columns are correct in each entry; a mismatch
with the database column names may cause a hard-to-track-down exception.

Let’s replace the dummy data in the fixture file with something we can use to
test our product model. We'll start with a single book.

Download depot_r/test/fixtures/products.yml

ruby_book:
id: 1
title: Programming Ruby
description: Dummy description
price: 1234
image_url: ruby.png

Now that we have a fixture file, we want Rails to load up the test data into the
products table when we run the unit test. And, in fact, Rails is already doing
this, thanks to the following line in ProductTest.

Download depot_r/test/unit/product_test.rb

fixtures :products

The fixtures directive ensures that the fixture data corresponding to the given
model name is loaded into the corresponding database table before each test
method in the test case is run. By convention, the name of the table is used,
which means that using :products will cause the products.yml fixture file to be
used.

Let’s say that again another way. In the case of our ProductTest class, adding
the fixtures directive means that the products table will be emptied out and then
populated with the single row for the Ruby book before each test method is
run. Each test method gets a freshly initialized table in the test database.

Using Fixture Data

Now we know how to get fixture data into the database, we need to find ways
of using it in our tests.

http://media.pragprog.com/titles/rails2/code/depot_r/test/fixtures/products.yml
http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/product_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=192

UNIT TESTING OF MODELS < 193

7 N

@ David Says...
—/ Pickin Fixture Names

Just like the names of variables in general, you want to keep the names of fix-
tures as self-explanatory as possible. This increases the readability of the tests
when you're asserting that product(:valid_order_for_fred) is indeed Fred’s valid
order. It also makes it a lot easier to remember which fixture you're supposed
to test against without having to look up p1 or orderd. The more fixtures you get,
the more important it is to pick good fixture names. So, starting early keeps you
happy later.

But what to do with fixtures that can’t easily get a self-explanatory name like
valid_order_for_fred? Pick natural names that you have an easier time associat-
ing to arole. For example, instead of using order1, use christmas_order. Instead of
customer1, use fred. Once you get into the habit of natural names, you'll soon
be weaving a nice liftle story about how fred is paying for his christmas_order with
his invalid_credit_card first, then paying his valid_credit_card, and finally choosing
to ship it all off to aunt_mary.

Association-based stories are key to remembering large worlds of fixtures with
ease.

Clearly, one way would be to use the finder methods in the model to read the
data. However, Rails makes it easier than that. For each fixture it loads into a
test, Rails defines a method with the same name as the fixture. You can use
this method to access preloaded model objects containing the fixture data:
simply pass it the name of the row as defined in the YAML fixture file, and it'll
return a model object containing that row’s data. In the case of our product
data, calling products:ruby_book) returns a Product model containing the data
we defined in the fixture. Let’s use that to test the validation of unique product
titles.

Download depot_r/test/unit/product_test.rb

def test_unique_title

product = Product.new(:title => products(:ruby_book).title,
rdescription => "yyy",
rprice =1

:image_url => "fred.gif")
assert !product.save
assert_equal "has already been taken", product.errors.on(:title)

end

The test assumes that the database already includes a row for the Ruby book.

http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/product_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=193

UNIT TESTING OF MODELS <« 194

It gets the title of that existing row using
products(:ruby_book).title
It then creates a new Product model, setting its title to that existing title. It

asserts that attempting to save this model fails and that the fitle attribute has
the correct error associated with it.

If you want to avoid using a hard-coded string for the Active Record error, you
can compare the response against its built-in error message table.

Download depot_r/test/unit/product_test.rb

def test_unique_titlel

product = Product.new(:title => products(:ruby_book).title,
rdescription => "yyy",
rprice =1

:image_url => "fred.gif")

assert !product.save
assert_equal ActiveRecord::Errors.default_error_messages[:taken],
product.errors.on(:title)
end

(To find a list of these built-in error messages, look for the file validations.ro
within the Active Record gem. Figure 13.1, on the next page contains a list of
the errors at the time this chapter was written, but it may well have changed
by the time you're reading it.)

Testing the Cart

Our Cart class contains some business logic. When we add a product to a cart,
it checks to see whether that product is already in the cart’s list of items. If
so, it increments the quantity of that item; if not, it adds a new item for that
product. Let’s write some tests for this functionality.

The Rails generate command created source files to hold the unit tests for
the database-backed models in our application. But what about the cart? We
created the Cart class by hand, and we don’t have a file in the unit test directory
corresponding to it. Nil desperandum! Let’s just create one. We’'ll simply copy
the boilerplate from another test file into a new cart_test.rb file (remembering to
rename the class to CartTest).

Download depot_r/test/unit/cart_test.rb

require File.dirname(__FILE_) + '/../test_helper'
class CartTest < Test::Unit::TestCase
fixtures :products

end

http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/product_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/cart_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=194

UNIT TESTING OF MODELS <« 195

@@default_error_messages = {

:inclusion => "is not included in the Tist",

:exclusion => "is reserved",

:invalid = "is invalid",

:confirmation => "doesn't match confirmation",

raccepted => "must be accepted",

rempty => "can't be empty",

:blank => "can't be blank",

:too_Tlong => "is too long (maximum is %d characters)",
:too_short => "is too short (minimum is %d characters)",
:wrong_length => "is the wrong length (should be %d characters)",
:taken => "has already been taken",

:not_a_number => "is not a number"

Figure 13.1: Standard Active Record Validation Messages
I

Notice that we've included the existing products fixture into this test. This
is common practice: we’ll often want to share test data among multiple test
cases. In this case the cart tests will need access to product data because we’ll
be adding products to the cart.

Because we’ll need to test adding different products to our cart, we’ll need to
add at least one more product to our products.yml fixture. The complete file now

looks like this.
Download depot_r/test/fixtures/products.yml
ruby_book:
id: 1
title: Programming Ruby
description: Dummy description
price: 1234
image_url: ruby.png

rails_book:

id: 2

title: Agile Web Development with Rails
description: Dummy description

price: 2345

image_url: rails.png

Let’s start by seeing what happens when we add a Ruby book and a Rails book
to our cart. We’d expect to end up with a cart containing two items. The total
price of items in the cart should be the Ruby book’s price plus the Rails book’s
price. The code is on the next page.

http://media.pragprog.com/titles/rails2/code/depot_r/test/fixtures/products.yml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=195

UNIT TESTING OF MODELS <« 196

Download depot_r/test/unit/cart_test.rb

def test_add_unique_products

cart = Cart.new

rails_book = products(:rails_book)

ruby_book = products(:ruby_book)

cart.add_product rails_book

cart.add_product ruby_book

assert_equal 2, cart.items.size

assert_equal rails_book.price + ruby_book.price, cart.total_price
end

Let’s run the test.

depot> ruby test/unit/cart_test.rb
Loaded suite test/unit/cart_test
Started

Finished in 0.12138 seconds.

1 tests, 2 assertions, 0 failures, 0 errors

So far, so good. Let’s write a second test, this time adding two Rails books to
the cart. Now we should see just one item in the cart, but with a quantity of 2.

Download depot_r/test/unit/cart_test.rb

def test_add_duplicate_product
cart = Cart.new
rails_book = products(:rails_book)
cart.add_product rails_book
cart.add_product rails_book
assert_equal 2+*rails_book.price, cart.total_price
assert_equal 1, cart.items.size
assert_equal 2, cart.items[0].quantity
end

We're starting to see a little bit of duplication creeping into these tests. Both
create a new cart, and both set up local variables as shortcuts for the fixture
data. Luckily, the Ruby unit testing framework gives us a convenient way of
setting up a common environment for each test method. If you add a method
named setup in a test case, it will be run before each test method—the setup
method sets up the environment for each test. We can therefore use it to set
up some instance variables to be used by the tests.

Download depot_r/test/unit/cart_test1.rb

require File.dirname(__FILE_) + '/../test_helper'
class CartTest < Test::Unit::TestCase
fixtures :products

def setup
@cart = Cart.new

http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/cart_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/cart_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/cart_test1.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=196

UNIT TESTING OF MODELS <« 197

@rails = products(:rails_book)
@ruby = products(:ruby_book)
end

def test_add_unique_products

@cart.add_product @rails

@cart.add_product @ruby

assert_equal 2, @cart.items.size

assert_equal @rails.price + @ruby.price, @cart.total_price
end

def test_add_duplicate_product
@cart.add_product @rails
@cart.add_product @rails
assert_equal 2x@rails.price, @cart.total_price
assert_equal 1, @cart.items.size
assert_equal 2, @cart.items[0].quantity

end

end

Is this kind of setup useful for this particular test? It could be argued either
way. But, as we’ll see when we look at functional testing, the setup method can
play a critical role in keeping tests consistent.

Unit Testing Support
As you write your unit tests, you’ll probably end up using most of the asser-
tions in the list that follows.

assert(boolean,message)
Fails if boolean is false or nil.

assert(User.find_by_name("dave"), "user 'dave' is missing™)

assert_equal(expected, actual.message)
assert_not_equal(expected, actual.message)

Fails unless expected and actual are/are not equal.

assert_equal(3, Product.count)
assert_not_equal (0, User.count, "no users in database™)

assert_nil(object,message)
assert_not_nil(object, message)
Fails unless object is/is not nil.

assert_nil(User.find_by_name("willard")
assert_not_nil(User.find_by_name("henry")

assert_in_delta(expected_float, actual_float, delta,message)
Fails unless the two floating-point numbers are within delta of each other.
Preferred over assert_equal because floats are inexact.

assert_in_delta(l1.33, line_item.discount, 0.005)

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=197

FUNCTIONAL TESTING OF CONTROLLERS <« 198

assert_raise(Exception, ...,message) { block... }
assert_nothing_raised(Exception, ...,message) { block... }

Fails unless the block raises/does not raise one of the listed exceptions.

assert_raise(ActiveRecord: :RecordNotFound) { Product.find(bad_id) }

assert_match(pattern, string.message)
assert_no_match(pattern, string,message)

Fails unless string is matched/not matched by the regular expression in
pattern. If pattern is a string, then it is interpreted literally—no regular
expression metacharacters are honored.

assert_match(/flower/i, user.town)
assert_match("bang=flash”, user.company_name)

assert_valid(activerecord_object)
Fails unless the supplied Active Record object is valid—that is, it passes
its validations. If validation fails, the errors are reported as part of the
assertion failure message.

user = Account.new(:name => "dave", :email => 'secret@ragprog.com')
assert_valid(user)

flunk(message)
Fails unconditionally.

unless user.valid? || account.valid?
flunk("One of user or account should be valid™)
end

Ruby’s unit testing framework provides even more assertions, but these tend
to be used infrequently when testing Rails applications, so we won’t discuss
them here. You'll find them in the documentation for Test::Unit.? Additionally,
Rails provides support for testing an application’s routing. We describe that
starting on page 423.

13.3 Functional Testing of Controllers

Controllers direct the show. They receive incoming web requests (typically user
input), interact with models to gather application state, and then respond by
causing the appropriate view to display something to the user. So when we’re
testing controllers, we’re making sure that a given request is answered with an
appropriate response. We still need models, but we already have them covered
with unit tests.

Rails calls something that tests a single controller a functional test. The Depot
application has four controllers, each with a number of actions. There’s a lot
here that we could test, but we’ll work our way through some of the high
points. Let’s start where the user starts—logging in.

2. At http://ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/Unit/Assertions.html, for example

http://ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/Unit/Assertions.html
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=198

FUNCTIONAL TESTING OF CONTROLLERS <« 199

Login

It wouldn’t be good if anybody could come along and administer the Depot.
Although we may not have a sophisticated security system, we’d like to make
sure that the login controller at least keeps out the riffraff.

Because the LoginController was created with the generate controller script, Rails
has a test stub waiting for us in the test/functional directory.

Download depot_r/test/functional/login_controller_test.rb

require File.dirname(__FILE_) + '/../test_helper'
require 'login_controller'

Re-raise errors caught by the controller.
class LoginController; def rescue_action(e) raise e end; end

class LoginControllerTest < Test::Unit::TestCase

def setup
@controller = LoginController.new
@request = ActionController::TestRequest.new
@response = ActionController::TestResponse.new
end

Replace this with your real tests.
def test_truth
assert true
end
end

The key to functional tests is the setup method. It initializes three instance
variables needed by every functional test.

e @controller contains an instance of the controller under test.

* @request contains a request object. In a running, live application, the
request object contains all the details and data from an incoming request.
It contains the HTTP header information, POST or GET data, and so on.
In a test environment, we use a special test version of the request object
that can be initialized without needing a real, incoming HTTP request.

® @response contains a response object. Although we haven’t seen response
objects as we've been writing our application, we've been using them.
Every time we send a request back to a browser, Rails is populating
a response object behind the scenes. Templates render their data into
a response object, the status codes we want to return are recorded in
response objects, and so on. After our application finishes processing a
request, Rails takes the information in the response object and uses it to
send a response back to the client.

The request and response objects are crucial to the operation of our functional
tests—using them means we don’t have to fire up a real web server to run

http://media.pragprog.com/titles/rails2/code/depot_r/test/functional/login_controller_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=199

FUNCTIONAL TESTING OF CONTROLLERS

controller tests. That is, functional tests don’t necessarily need a web server,
a network, or a client.

Index: For Admins Only
Great, now let’s write our first controller test—a test that simply “hits” the
index page.

Download depot_r/test/functional/login_controller_test.rb

def test_index
get :index
assert_response :success
end

The get method, a convenience method loaded by the test helper, simulates
a web request (think HTTP GET) to the index action of the LoginController and
captures the response. The assert_response method then checks whether the
response was successful.

OK, let’s see what happens when we run the test. We'll use the -n option to
specify the name of a particular test method that we want to run.

depot> ruby test/functional/login_controller_test.rb -n test_index

Loaded suite test/functional/Togin_controller_test

Started

F
Finished in 0.239281 seconds.

1) Failure:
test_index(LoginControllerTest) [test/functional/login_controller_test.rb:23]:
Expected response to be a <:success>, but was <302>

That seemed simple enough, so what happened? A response code of 302 means
the request was redirected, so it’s not considered a success. But why did it
redirect? Well, because that’s the way we designed the LoginController. It uses a
before filter to intercept calls to actions that aren’t available to users without
an administrative login.

Download depot_r/app/controllers/login_controller.rb

before_filter :authorize, :except => :login

The before filter makes sure that the authorize method is run before the index
action is run.

Download depot_r/app/controllers/application.rb

class ApplicationController < ActionController::Base
private

def authorize
unless User.find_by_id(session[:user_id])

http://media.pragprog.com/titles/rails2/code/depot_r/test/functional/login_controller_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/app/controllers/login_controller.rb
http://media.pragprog.com/titles/rails2/code/depot_r/app/controllers/application.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=200

FUNCTIONAL TESTING OF CONTROLLERS <« 201

flash[:notice] = "Please Tlog in"
redirect_to(:controller => "login", :action => "Togin")
end
end
end

Since we haven’t logged in, a valid user isn’t in the session, so the request gets
redirected to the login action. According to authorize, the resulting page should
include a flash notice telling us that we need to log in. OK, so let’s rewrite the
functional test to capture that flow.

Download depot_r/test/functional/login_controller_test.rb

def test_index_without_user
get :index
assert_redirected_to :action => "login"
assert_equal "Please Tlog in", flash[:notice]
end

This time when we request the index action, we expect to get redirected to the
login action and see a flash notice generated by the view.
depot> ruby test/functional/login_controller_test.rb

Loaded suite test/functional/Togin_controller_test
Started

Finished in 0.0604571 seconds.
1 tests, 3 assertions, 0 failures, 0 errors

Indeed, we get what we expect.® Now we know the administrator-only actions
are off limits until a user has logged in (the before filter is working). Let’s try
looking at the index page if we have a valid user.

Recall that the application stores the id of the currently logged in user into the
session, indexed by the :user_id key. So, to fake out a logged in user, we just
need to set a user id into the session before issuing the index request. Our only
problem now is knowing what to use for a user id.

We can't just stick a random number in there, because the application con-
troller’s authorize method fetches the user row from the database based on its
value. It looks as if we’ll need to populate the users table with something valid.
And that gives us an excuse to look at dynamic fixtures.

Dynamic Fixtures
We'll create a users.yml test fixture to add a row to the users table. We'll call the
user “dave.”

3. With one small exception. Our test method contains two assertions, but the console log shows
three assertions passed. That’s because the assert_redirected_to method uses two low-level asser-
tions internally.

http://media.pragprog.com/titles/rails2/code/depot_r/test/functional/login_controller_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=201

FUNCTIONAL TESTING OF CONTROLLERS <« 202

dave:
id: 1
name: dave
salt: NaCl
hashed_password: 7?77

All goes well until the hashed_password line. What should we use as a value? In
the real table, it is calculated using the encrypted_password method in the user
class. This takes a clear-text password and a salt value and creates an SHA1
hash value.

Now, one approach would be to crank up script/console and invoke that method
manually. We could then copy the value returned by the method, pasting it
into the fixture file. That'd work, but it’s a bit obscure, and our tests might
break if we change the password generation mechanism. Wouldn't it be nice if
we could use our application’s code to generate the hashed password as data
is loaded into the database? Well, have a look at the following.

Download depot_r/test/fixtures/users.yml

<% SALT = "NaCl" unless defined?(SALT) %>

dave:
id: 1
name: dave
salt: <%= SALT %>
hashed_password: <%= User.encrypted_password('secret', SALT) %>

The syntax on the hashed_password line should look familiar: the <%=...%> direc-
tive is the same one we use to substitute values into templates. It turns out
that Rails supports these substitutions in test fixtures. That's why we call
them dynamic.

Now we’re ready to test the index action again. We have to remember to add
the fixtures directive to the login controller test class.

fixtures :users

And then we write the test method.

Download depot_r/test/functional/login_controller_test.rb

def test_index_with_user
get :index, {}, { :user_id => users(:dave).id }
assert_response :success
assert_template "index"

end

The key concept here is the call to the get method. Notice that we added a
couple of new parameters after the action name. Parameter two is an empty
hash—this represents the HTTP parameters to be passed to the action. Param-
eter three is a hash that’s used to populate the session data. This is where we

http://media.pragprog.com/titles/rails2/code/depot_r/test/fixtures/users.yml
http://media.pragprog.com/titles/rails2/code/depot_r/test/functional/login_controller_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=202

FUNCTIONAL TESTING OF CONTROLLERS <« 203

use our user fixture, setting the session entry :user_id to be our test user’s id.
Our test then asserts that we had a successful response (not a redirection) and
that the action rendered the index template. (We'll look at all these assertions
in more depth shortly.)

Logging In

Now that we have a user in the test database, let’s see whether we can log in
as that user. If we were using a browser, we’d navigate to the login form, enter
our user name and password, and then submit the fields to the login action
of the login controller. We’d expect to get redirected to the index listing and to
have the session contain the id of our test user neatly tucked inside. Here’s
how we do this in a functional test.

Download depot_r/test/functional/login_controller_test.rb

def test_login
dave = users(:dave)
post :login, :name => dave.name, :password => 'secret'
assert_redirected_to :action => "index"
assert_equal dave.id, session[:user_id]
end

Here we used a post method to simulate entering form data and passed the
name and password form field values as parameters.

What happens if we try to log in with an invalid password?

Download depot_r/test/functional/login_controller_test.rb

def test_bad_password
dave = users(:dave)
post :login, :name => dave.name, :password => 'wrong'
assert_template "login"
assert_equal "Invalid user/password combination”, flash[:notice]
end

As expected, rather than getting redirected to the index listing, our test user
sees the login form with a flash message encouraging them to try again.

Functional Testing Conveniences

That was a brisk tour through how to write a functional test for a controller.
Along the way, we used a number of support methods and assertions included
with Rails that make your testing life easier. Before we go much further, let’s
look at some of the Rails-specific conveniences for testing controllers.

HTTP Request Methods

The methods get, post, put, delete, and head are used to simulate an incoming
HTTP request method of the same name. They invoke the given action and
make the response available to the test code.

http://media.pragprog.com/titles/rails2/code/depot_r/test/functional/login_controller_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/functional/login_controller_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=203

FUNCTIONAL TESTING OF CONTROLLERS <« 204

Each of these methods takes the same four parameters. Let’s take a look at
get, as an example.

get(action, parameters = nil, session = nil, flash = nil)
Executes an HTTP GET request for the given action. The @response object
will be set on return. The parameters are as follows.

¢ action: The action of the controller being requested
* parameters: An optional hash of request parameters
* session: An optional hash of session variables

¢ flash: An optional hash of flash messages

Examples:

get :index
get :add_to_cart, :id => products(:ruby_book).1id
get :add_to_cart, { :id => products(:ruby_book).id },
{ :session_key => 'session_value'}, { :message => "Success!" }

You'll often want to post form data within a function test. To do this, you’'ll
need to know that the data is returned as a hash nested inside the params
hash. The key for this subhash is the name given when you created the form.
Inside the subhash are key/value pairs corresponding to the fields in the form.
So, to post a form to the edit action containing User model data, where the data
contains a name and an age, you could use

post :edit, :user => { :name => "dave", :age => "24" }
You can simulate an xml_http_request using

xhr(method, action, parameters, session, flash)
xml_http_request(method, action, parameters, session, flash)

Simulates an xml_http_request from a JavaScript client to the server. The
first parameter will be :post or :get. The remaining parameters are identi-
cal to those passed to the get method described previously.

xhr(:get, :add_to_cart, :id => 11)

Assertions
In addition to the standard assertions we listed back on page 197, additional
functional test assertions are available after executing a request.

assert_dom_equal(expected_html, actual_html,message)
assert_dom_not_equal(expected_html, actual_html.message)

Compare two strings containing HTML, succeeding if the two are rep-
resented /not represented by the same document object model. Because
the assertion compares a normalized version of both strings, it is fragile
in the face of application changes. Consider using assert_select instead.

expected = "<html><body><hl>User Unknown</hl></body></html>"
assert_dom_equal(expected, @response.body)

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=204

FUNCTIONAL TESTING OF CONTROLLERS <« 205

assert_response(type, message)
Asserts that the response is a numeric HTTP status or one of the following
symbols. These symbols can cover a range of response codes (so :redirect
means a status of 300-399).

® :success

® redirect

® :missing

® :error
Examples:
assert_response :success

assert_response 200

assert_redirected_to(options,message)
Asserts that the redirection options passed in match those of the redirect
called in the last action. You can also pass a simple string, which is
compared to the URL generated by the redirection.
Examples:

assert_redirected_to :controller => 'login'
assert_redirected_to :controller => 'Togin', :action => 'index'
assert_redirected_to "http://my.host/index.html"

assert_template(expected.message)
Asserts that the request was rendered with the specified template file.

Examples:

assert_template 'store/index'

assert_select(...)
See Section 13.3, Testing Response Content, on page 207.

assert_tag(...)
Deprecated in favor of assert_select.

Rails has some additional assertions to test the routing component of your
controllers. We discuss these in Section 20.2, Testing Routing, on page 423.

Variables
After a request has been executed, functional tests can make assertions using
the values in the following variables.

assignskey=nil)
Instance variables that were assigned in the last action.

assert_not_nil assigns["items"]

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=205

FUNCTIONAL TESTING OF CONTROLLERS

The assigns hash must be given strings as index references. For example,
assigns[:items] will not work because the key is a symbol. To use symbols
as keys, use a method call instead of an index reference.

assert_not_nil assigns(:items)
We can test that a controller action found three orders with

assert_equal 3, assigns(:orders).size

session
A hash of objects in the session.

assert_equal 2, session[:cart].items.size

flash
A hash of flash objects currently in the session.
assert_equal "Danger!", flash[:notice]

cookies

A hash of cookies being sent to the user.

assert_equal "Fred", cookies[:name]

redirect_to_url
The full URL that the previous action redirected to.

assert_equal "http://test.host/login", redirect_to_url

Functional Testing Helpers
Rails provides the following helper methods in functional tests.

find_tag(conditions)
Finds a tag in the response, using the same conditions as assert_tag.
get :index
tag = find_tag :tag => "form",

:attributes => { :action => "/store/add_to_cart/993" }
assert_equal "post", tag.attributes["method"]

This is probably better written using assert_select.

find_all_tag(conditions)
Returns an array of tags meeting the given conditions.

follow_redirect
If the preceding action generated a redirect, this method follows it by
issuing a get request. Functional tests can follow redirects only to their
own controller.
post :add_to_cart, :id => 123
assert_redirect :action => :index

follow_redirect
assert_response :success

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=206

FUNCTIONAL TESTING OF CONTROLLERS <« 207

fixture_file_upload(path, mime_type)
Create the MIME-encoded content that would normally be uploaded by
a browser <input type="file"...> field. Use this to set the corresponding form
parameter in a post request.

post :report_bug,
:screenshot => fixture_file_upload("screen.png", "image/png")

Testing Response Content

Rails 1.2 introduced a new assertion, assert_select, which allows you to dig into
the structure and content of the responses returned by your application. (It
replaces assert_tag, which is now deprecated.) For example, a functional test
could verify that the response contained a title element containing the text
“Pragprog Books Online Store” with the assertion

assert_select "title", "Pragprog Books Online Store"

For the more adventurous, the following tests that the response contains a
<div> with the id cart. Within that <div> there must be a table containing
three rows. The last <td> in the row with the class fofal-ine must have the
content $57.70.

assert_select "div#cart" do

assert_select "table" do

assert_select "tr", :count => 3

assert_select "tr.total-line td:last-of-type", "$57.70"
end
end

This is clearly powerful stuff. Let’s spend some time looking at it.

assert_select is built around Assaf Arkin’s HTML::Selector library. This library
allows you to navigate a well-formed HTML document using a syntax drawn
heavily from Cascading Style Sheets selectors. On top of the selectors, Rails
layers the ability to perform a set of tests on the resulting nodesets. Let’s start
by looking at the selector syntax.

Selectors

Selector syntax is complex—probably more complex than regular expressions.
However, its similarity to CSS selector syntax means that you should be able
to find many examples on the Web if the brief summary that follows is too
condensed. In the description that follows, we’ll borrow the W3C terminology
for describing selectors.*

A full selector is called a selector chain. A selector chain is a combination of
one or more simple selectors. Let’s start by looking at the simple selectors.

4. http://www.w3.0rg/TR/REC-CSS2/selector.html

http://www.w3.org/TR/REC-CSS2/selector.html
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=207

FUNCTIONAL TESTING OF CONTROLLERS

Simple Selectors
A simple selector consists of an optional type selector, followed by any number

of class selectors, id selectors, attribute selectors, or pseudoclasses.

A type selector is simply the name of a tag in your document. For example, the
type selector

p

matches all <p> tags in your document. (It's worth emphasizing the word
all—selectors work with sets of document nodes.)

If you omit the type selector, all nodes in the document are selected.

A type selector may be qualified with class selectors, id selectors, attribute
selectors, or pseudoclasses. Each qualifier whittles down the set of nodes that
are selected. Class and ID selectors are easy.

p#some-id # selects the paragraph with id="some-id"

p.some-class # selects paragraph(s) with class="some-class"

Attribute selectors appear between square brackets. The syntax is

p[name] # paragraphs with an attribute name=
p[name=value] # paragraphs with an attribute name=value
p[nameA=string] # . hame=value, value starts with 'string'
p[name$=string] # . name=value, value ends with 'string'
p[name==string] # . hame=value, value must contain 'string'
p[name~=string] # ... name=value, value must contain 'string'

as a space-separated word

. name=value, value starts 'string'

followed by a space

p[name|=string]

Let’s look at some examples.

pL[class=warning] # all paragraphs with class="warning"
tr[id=total] # the table row with id="total"
tabTle[cellpadding] # all table tags with a cellpadding attribute

div[class*=error] # all div tags with a class attribute
containing the text error

p[secret][class=shh] # all p tags with both a secret attribute
and a class="shh" attribute

[cTass=error] # all tags with class="error"

The class and id selectors are shortcuts for class= and id=.

p#some-id # same as p[id=some-id]
p.some-class # same as p[class=some-class]

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=208

FUNCTIONAL TESTING OF CONTROLLERS < 209

Chained Selectors
You can combine multiple simple selectors to create chained selectors. These

allow you to describe the relationship between elements. In the descriptions
that follow, sel_1, sel 2, and so on, represent simple selectors.

sel 1 _ sel 2s
All sel 2s that have a sel_1 as an ancestor. (The selectors are separated
by one or more spaces.)

sel 1> sel 2s
All sel_2s that have sel 1 as a parent. Thus:
table td # will match all td tags inside table tags

table > td # won't match in well-formed HTML,
as td tags have tr tags as parents

sel 1+ sel 2s
Selects all sel_2s that immediately follow sel_Is. Note that “follow” means
that the two selectors describe peer nodes, not parent/child nodes.

td.price + td.total # select all td nodes with class="total"
that follow a <td class="price">

sel 1 ~ sel 2s
Selects all sel 2s that follow sel_1Is.

div#title ~ p # all the p tags that follow a
<div id="title">

sel 1, sel 2s
Selects all elements that are selected by sel 1 or sel 2.

p.warn, p.error # all paragraphs with a class of
warn or error

Pseudoclasses
Pseudo-classes typically allow you to select elements based on their position

(although there are some exceptions). They are all prefixed with a colon.

:root
Selects only the root element. Sometimes useful when testing an XML
respomnse.
order:root # only returns a selection if the
root of the response is <order>
sel:empty

Selects only if sel has neither children nor text content.

div#error:empty # selects the node <div id="error">
only if it is empty

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=209

FUNCTIONAL TESTING OF CONTROLLERS <« 210

sel 1 sel_2:.only-child
Selects the nodes that are the only children of sel_1 nodes.

div :only-child # select the child nodes of divs that
have only one child

sel 1 sel_2:first-child
Selects all sel_2 nodes that are the first children of sel_1 nodes.
table tr:first-child # the first row from each table

sel_1 sel_2:last-child
Selects all sel_2 nodes that are the last children of sel_1 nodes.
table tr:last-child # the last row from each table

sel 1 sel_2:nth-child(n)

Selects all sel 2 nodes that are the n'” child of sel 1 nodes, where n
counts from 1. Contrast this with nth-of-type, described later.

th

table tr:nth-child(2) # the second row of every table

div p:nth-child(2) # the second element of each div
if that element is a <p>

sel_1 sel_2:nth-last-child(n)
Selects all sel 2 nodes that are the n
from the end.

th child of sel_I nodes, counting

table tr:nth-Tast-child(2) # the second to last row in every table

sel_1 sel_2:only-of-type
Selects all sel_2 nodes that are the only children of sel_I nodes. (That is,
the sel_1 node may have multiple children but only one of type sel 2.)

div p:only-of-type # all the paragraphs in divs that
contain just one paragraph

sel_1 sel_2-first-of-type
Selects the first node of type sel 2 whose parents are sel_I nodes.
div.warn p:first-of-type # the first paragraph in <div class="warn">
sel 1 sel_Z2:last-of-type
Selects the last node of type sel 2 whose parents are sel_1 nodes.
div.warn p:last-of-type # the last paragraph in <div class="warn">
sel_1 sel_2:nth-of-type(n)

Selects all sel 2 nodes that are the n'" child of sel 1 nodes, but only
counting nodes whose type matches sel 2.

th

div p:nth-of-type(2) # the second paragraph of each div

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=210

FUNCTIONAL TESTING OF CONTROLLERS <« 211

sel_1 sel_2:nth-last-of-type(n)
Selects all sel 2 nodes that are the n*" child of sel 1 nodes, counting
from the end, but only counting nodes whose type matches sel 2.

th

div p:nth-last-of-type(2) # the second to last paragraph of each div
The numeric parameter to the nth-xxx selectors can be of the form:

d (a number)
Count d nodes.

an+d (nodes from groups)
Divide the child nodes into groups of a, and then select the d'" node from
each group.

divé#story p:nth-child(3n+1) # every third paragraph of
the div with id="story"

-an+d (nodes from groups)
Divide the child nodes into groups of a, and then select the first node of
up to d groups. (Yes, this is a strange syntax.)

divé#story p:nth-child(-n+2) # The first two paragraphs

odd (odd-numbered nodes)
even (even-numbered nodes)

Alternating child nodes.

div#story p:nth-child(odd) # paragraphs 1, 3, 5,
div#story p:nth-child(even) # paragraphs 2, 4, 6,

Finally, you can invert the sense of any selector.
:not(sel)
Selects all node that are not selected by sel.
div :not(p) # all the non-paragraph nodes of all divs

Now we know how to select nodes in the response, let’s see how to write asser-
tions to test the response’s content.

Response-Oriented Assertions

The assert_select assertion can be used within functional and integration tests.
At its simplest it takes a selector. The assertion passes if at least one node in
the response matches, and it fails if no nodes match.

assert_select "title" # does our response contain a <title> tag
and a <div class="cart"> with a

child <div id="cart-title">
assert_select "div.cart > div#cart-title"

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=211

FUNCTIONAL TESTING OF CONTROLLERS <« 212

As well as simply testing for the presence of selected nodes, you can compare
their content with a string or regular expression. The assertion passes only if
all selected nodes equal the string or match the regular expression.

assert_select "title", "Pragprog Online Book Store"
assert_select "title", /Online/

If instead you pass a number or a Ruby range, the assert passes if the number
of nodes is equal to the number or falls within the range.

assert_select "title", 1 # must be just one title element
assert_select "div#main div.entry", 1..10 # one to 10 entries on a page

Passing false as the second parameter is equivalent to passing zero: the asser-
tion succeeds if no nodes are selected.

You can also pass a hash after the selector, allowing you to test multiple con-
ditions. For example, to test that there is exactly one title node and that node
matches the regular expression /pragprog/, you could use

assert_select "title", :count => 1, :text => /pragprog/

The hash may contain the following keys:

text=>S | R Either a string or a regular expression, which must match the
contents of the node.
:count =>n Exactly n nodes must have been selected.

‘minimum =>n At least n nodes must have been selected.
‘maximum =>n At most n nodes must have been selected.

Nesting Select Assertions
Once assert_select has chosen a set of nodes and passed any tests associated

with those nodes, you may want to perform additional tests within that node-
set. For example, we started this section with a test that checked that the page
contained a <div> with an id of cart. This <div> should contain a table which
itself should contain exactly three rows. The last <td> in the row with class
total-line should have the content $57.70.

We could express this using a series of assertions.

assert_select "div#cart"
assert_select "div#cart table tr", 3
assert_select "div#cart table tr.total-line td:last-of-type", "$57.70"

By nesting selections inside blocks, we can tidy this up.

assert_select "div#cart" do
assert_select "table" do
assert_select "tr", :count => 3
assert_select "tr.total-line td:last-of-type", "$57.70"
end

end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=212

INTEGRATION TESTING OF APPLICATIONS <« 213

Addition Assertions

As well as assert_select, Rails provides similar selector-based assertions for val-
idating the HTML content of RJS update and insert operations (assert_select_rs),
the encoded HTML within an XML response (assert_selected_encoded), and the
HTML body of an e-mail (assert_select_email). Have a look at the Rails documen-
tation for details.

13.4 Integration Testing of Applications

The next level of testing is to exercise the flow through our application. In
many ways, this is like testing one of the stories that our customer gave us
when we first started to code the application. For example, we might have been
told: A user goes to the store index page. They select a product, adding it to their
cart. They then check out, filling in their details on the checkout form. When they
submit, an order is created in the database containing their information, along
with a single line item corresponding to the product they added to their cart.

This is ideal material for an integration test. Integration tests simulate a con-
tinuous session between one or more virtual users and our application. You
can use them to send in requests, monitor responses, follow redirects, and so
on.

When you create a model or controller, Rails creates the corresponding unit
and functional tests. Integration tests are not automatically created, however,
so you'll need to use a generator to create one.

depot> ruby script/generate integration_test user_stories

exists test/integration/
create test/integration/user_stories_test.rb

Notice that Rails automatically adds _test to the name of the test.

Let’s look at the generated file.
require "#{File.dirname(__FILE__)}/../test_helper"

class UserStoriesTest < ActionController::IntegrationTest
fixtures :your, :models

Replace this with your real tests.
def test_truth
assert true
end
end

This looks a bit like a functional test, but our test class inherits from Integro-
tionTest.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=213

INTEGRATION TESTING OF APPLICATIONS <« 214

Let’s launch straight in and implement the test of our story. Because we’ll be
buying something, we’ll need our products fixture, so we load it at the top of
the class.

fixtures :products

Just as with unit and functional tests, our test will be written in a method
whose name starts test_.
def test_buying_a_product

...
end

By the end of the test, we know we’ll want to have added an order to the orders
table and a line item to the line_items table, so let’s empty them out before we
start. And, because we’ll be using the Ruby book fixture data a lot, let’s load it
into a local variable.

Download depot_r/test/integration/user_stories_test.rb

LineItem.delete_all
Order.delete_all
ruby_book = products(:ruby_book)

Let’s attack the first sentence in the user story: A user goes to the store index
page.

Download depot_r/test/integration/user_stories_test.rb

get "/store/index"

assert_response :success
assert_template "index"

This almost looks like a functional test. The main difference is the get method:
in a functional test we check just one controller, so we specify just an action
when calling get. In an integration test, however, we can wander all over the
application, so we need to pass in a full (relative) URL for the controller and
action to be invoked.

The next sentence in the story goes They select a product, adding it to their cart.
We know that our application uses an AJAX request to add things to the cart,
so we’ll use the xml_http_request method to invoke the action. When it returns,
we'll check that the cart now contains the requested product.

Download depot_r/test/integration/user_stories_test.rb
xml_http_request "/store/add_to_cart", :id => ruby_book.id

assert_response :success

cart = session[:cart]
assert_equal 1, cart.items.size
assert_equal ruby_book, cart.items[0].product

http://media.pragprog.com/titles/rails2/code/depot_r/test/integration/user_stories_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/integration/user_stories_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/integration/user_stories_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=214

INTEGRATION TESTING OF APPLICATIONS

In a thrilling plot twist, the user story continues, They then check out.... That’s
easy in our test.

Download depot_r/test/integration/user_stories_test.rb

post "/store/checkout"
assert_response :success
assert_template "checkout"

At this point, the user has to fill in their details on the checkout form. Once
they do, and they post the data, our application creates the order and redi-
rects to the index page. Let’s start with the HTTP side of the world by post-
ing the form data to the save_order action and verifying we've been redirected
to the index. We'll also check that the cart is now empty. The test helper
method post_via_redirect generates the post request and then follows any redi-
rects returned until a regular 200 response is returned.

Download depot_r/test/integration/user_stories_test.rb

post_via_redirect "/store/save_order",

:order => { :name => "Dave Thomas",
:address => "123 The Street",
remail => "dave@pragprog.com",

:pay_type => "check" }
assert_response :success
assert_template "index"
assert_equal 0, session[:cart].items.size

Finally, we’ll wander into the database and make sure we've created an order
and corresponding line item and that the details they contain are correct.
Because we cleared out the orders table at the start of the test, we’ll simply
verify that it now contains just our new order.

Download depot_r/test/integration/user_stories_test.rb

orders = Order.find(:all)
assert_equal 1, orders.size
order = orders[0]

assert_equal "Dave Thomas", order.name
assert_equal "123 The Street", order.address
assert_equal "dave@pragprog.com", order.email
assert_equal "check", order.pay_type

assert_equal 1, order.Tline_items.size
Tine_item = order.Tline_items[0]
assert_equal ruby_book, Tine_item.product

And that’s it. The following page shows the full source of the integration test.

http://media.pragprog.com/titles/rails2/code/depot_r/test/integration/user_stories_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/integration/user_stories_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/integration/user_stories_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=215

INTEGRATION TESTING OF APPLICATIONS

Download depot_r/test/integration/user_stories_test.rb

require "#{File.dirname(__FILE__)}/../test_helper"

class UserStoriesTest < ActionController::IntegrationTest
fixtures :products

A user goes to the store index page. They select a product, adding
it to their cart. They then check out, filling in their details on
the checkout form. When they submit, an order 1is created in the

database containing their information, along with a single Tine

item corresponding to the product they added to their cart.

def test_buying_a_product
LineItem.delete_all
Order.delete_all
ruby_book = products(:ruby_book)

get "/store/index"
assert_response :success
assert_template "index"

xml_http_request "/store/add_to_cart", :id => ruby_book.id
assert_response :success

cart = session[:cart]
assert_equal 1, cart.items.size
assert_equal ruby_book, cart.items[0].product

post "/store/checkout"
assert_response :success

assert_template "checkout”

post_via_redirect "/store/save_order",

:order => { :name => "Dave Thomas",
:address => "123 The Street",
remail => "dave@pragprog.com",

rpay_type => "check" }
assert_response :success
assert_template "index"
assert_equal 0, session[:cart].items.size

orders = Order.find(:all)
assert_equal 1, orders.size
order = orders[0]

assert_equal "Dave Thomas", order.name
assert_equal "123 The Street", order.address
assert_equal "dave@pragprog.com", order.email
assert_equal "check", order.pay_type

assert_equal 1, order.Tline_items.size
Tline_item = order.Tline_items[0]
assert_equal ruby_book, Tine_item.product
end
end

http://media.pragprog.com/titles/rails2/code/depot_r/test/integration/user_stories_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=216

INTEGRATION TESTING OF APPLICATIONS <« 217

Even Higher-Level Tests
(This section contains advanced material that can safely be skipped.)

The integration test facility is very nice: we know of no other framework that
offers built-in testing at this high of a level. But we can take it even higher.
Imagine being able to give your QA people a minilanguage (sometimes called a
domain-specific language) for application testing. They could write our previ-
ous test with language like

Download depot_r/test/integration/dsl_user_stories_test.rb

def test_buying_a_product
dave = regular_user
dave.get "/store/index"
dave.is_viewing "index"
dave.buys_a @ruby_book
dave.has_a_cart_containing @ruby_book
dave.checks_out DAVES_DETAILS
dave.is_viewing "index"
check_for_order DAVES_DETAILS, @ruby_book
end

This code uses a hash, DAVES_DETAILS, defined inside the test class.
Download depot_r/test/integration/dsl_user_stories_test.rb

DAVES_DETAILS = {

:name => "Dave Thomas",
:address => "123 The Street",
remail => "dave@pragprog.com",

rpay_type => "check"
}

It might not be great literature, but it’s still pretty readable. So, how do we
provide them with this kind of functionality? It turns out to be fairly easy
using a neat Ruby facility called singleton methods.

If obj is a variable containing any Ruby object, we can define a method that
applies only to that object using the syntax

def obj.method_name
...
end

Once we've done this, we can call method_name on obj just like any other
method.

obj.method_name

That's how we’ll implement our testing language. We'll create a new testing
session using the open_session method and define all our helper methods on
this session. In our example, this is done in the regular_user method.

http://media.pragprog.com/titles/rails2/code/depot_r/test/integration/dsl_user_stories_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/integration/dsl_user_stories_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=217

INTEGRATION TESTING OF APPLICATIONS <« 218

Download depot_r/test/integration/dsl_user_stories_test.rb

def regular_user
open_session do |user|
def user.is_viewing(page)
assert_response :success
assert_template page
end

def user.buys_a(product)

xm1_http_request "/store/add_to_cart", :id => product.id
assert_response :success
end

def user.has_a_cart_containing(*products)
cart = session[:cart]
assert_equal products.size, cart.items.size
for item in cart.items
assert products.include?(item.product)
end
end

def user.checks_out(details)
post "/store/checkout"”
assert_response :success
assert_template "checkout"

post_via_redirect "/store/save_order",
rorder => {

:name => details[:name],
:address => details[:address],
remail => details[:email],

:pay_type => details[:pay_typel
}
assert_response :success
assert_template "index"
assert_equal 0, session[:cart].items.size
end
end
end

The regular_user method returns this enhanced session object, and the rest of
our script can then use it to run the tests.

Once we have this minilanguage defined, it’s easy to write more tests. For
example, here’s a test that verifies that there’s no interaction between two
users buying products at the same time. (We've indented the lines related to
Mike’s session to make it easier to see the flow.)

Download depot_r/test/integration/dsl_user_stories_test.rb

def test_two_people_buying
dave = regular_user
mike = regular_user

http://media.pragprog.com/titles/rails2/code/depot_r/test/integration/dsl_user_stories_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/integration/dsl_user_stories_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=218

INTEGRATION TESTING OF APPLICATIONS <« 219

dave.buys_a @ruby_book
mike.buys_a @rails_book
dave.has_a_cart_containing @ruby_book
dave.checks_out DAVES_DETAILS
mike.has_a_cart_containing @rails_book
check_for_order DAVES_DETAILS, @ruby_book
mike.checks_out MIKES_DETAILS
check_for_order MIKES_DETAILS, @rails_book
end

We show the full listing of the minilanguage version of the testing class starting
on page 674.

Integration Testing Support

Integration tests are deceptively similar to functional tests, and indeed all the
same assertions we've used in unit and functional testing work in integration
tests. However, some care is needed, because many of the helper methods are
subtly different.

Integration tests revolve around the idea of a session. The session represents a
user at a browser interacting with our application. Although similar in concept
to the session variable in controllers, the word session here means something
different.

When you start an integration test, you're given a default session (you can get
to it in the instance variable integration_session if you really need to). All of the
integration test methods (such as get) are actually methods on this session:
the test framework delegates these calls for you. However, you can also create
explicit sessions (using the open_session method) and invoke these methods on
it directly. This lets you simulate multiple users at the same time (or lets you
create sessions with different characteristics to be used sequentially in your
test). We saw an example of multiple sessions in the test on page 217.

Integration test sessions have the following attributes. Be careful to use an
explicit receiver when assigning to them in an integration test.

self.accept = "text/plain” # works
open_session do |sess|
sess.accept = "text/plain" # works
end
accept = "text/plain” # doesn't work--Tlocal variable

In the list that follows, sess stands for a session object.

accept
The accept header to send.

sess.accept = "text/xml,text/html"

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=219

INTEGRATION TESTING OF APPLICATIONS < 220

controller
A reference to the controller instance used by the last request.

cookies
A hash of the cookies. Set entries in this hash to send cookies with a
request, and read values from the hash to see what cookies were set in a
response.

headers
The headers returned by the last response as a hash.

host
Set this value to the host name to be associated with the next request.
Useful when you write applications whose behavior depends on the host
name.

sess.host = "fred.blog_per_user.com"

path
The URI of the last request.

remote_addr
The IP address to be associated with the next request. Possibly useful if
your application distinguishes between local and remote requests.

sess.remote_addr = "127.0.0.1"

request
The request object used by the last request.

response
The response object used by the last request.

status
The HTTP status code of the last request (200, 302, 404, and so on).

status_message
The status message that accompanied the status code of the last request
(OK, Not Found, and so on).

Integration Testing Convenience Methods
The following methods can be used within integration tests.

follow_redirect!()
If the last request to a controller resulted in a redirect, follow it.

get(path, params=nil, headers=nil)
post(path, params=nil, headers=nil)
xml_http_request(path, params=nil, headers=nil)
Performs a GET, POST, or XML_HTTP request with the given parameters.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=220

PERFORMANCE TESTING <« 221

Path should be a string containing the URI to be invoked. It need not have
a protocol or host component. If it does and if the protocol is HTTPS, an
HTTPS request will be simulated. If the params parameter is given, it
should be a hash of key/value pairs or a string containing encoded form
data.’

get "/store/index"

assert_response :success
get "/store/product_info", :id => 123, :format = "Tong"

get_via_redirect(path, args={})
post_via_redirect(path, args={})

Performs a get or post request. If the response is a redirect, follow it,
and any subsequent redirects, until a response that isn’'t a redirect is
returned.

host!(name)
Set the host name to use in the next request. Same as setting the host
attribute.

https!(use_https=true)
If passed true (or with no parameter), the subsequent requests will simu-
late using the HTTPS protocol.

https?
Return true if the HTTPS flag is set.

open_session { |sess| ... }
Creates a new session object. If a block is given, pass the session to the
block; otherwise return it.

redirect?()
Returns true if the last response was a redirect.

reset!Q
Resets the session, allowing a single test to reuse a session.

url_for(options)
Constructs a URL given a set of options. This can be used to generate the
parameter to get and post.

get url_for(:controller => "store", :action => "index'")

13.5 Performance Testing

Testing isn’t just about whether something does what it should. We might also
want to know whether it does it fast enough.

5. application/x-www-form-urlencoded or multipart/form-data

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=221

PERFORMANCE TESTING <« 222

Before we get too deep into this, here’s a warning. Most applications perform
just fine most of the time, and when they do start to get slow, it’s often in ways
we would never have anticipated. For this reason, it's normally a bad idea
to focus on performance early in development. Instead, we recommend using
performance testing in two scenarios, both late in the development process.

* When you're doing capacity planning, you’ll need data such as the num-
ber of boxes needed to handle your anticipated load. Performance testing
can help produce (and tune) these figures.

¢ When you've deployed and you notice things going slowly, performance
testing can help isolate the issue. And, once isolated, leaving the test in
place will help prevent the issue arising again.

A common example of this kind of problem is database-related perfor-
mance issues. An application might be running fine for months, and then
someone adds an index to the database. Although the index helps with
a particular problem, it has the unintended side effect of dramatically
slowing down some other part of the application.

In the old days (yes, that was last year), we used to recommend creating unit
tests to monitor performance issues. The idea was that these tests would give
you an early warning when performance started to exceed some preset limit:
you learn about this during testing, not after you deploy. And, indeed, we
still recommend doing that, as we’ll see next. However, this kind of isolated
performance testing isn’t the whole picture, and at the end of this section we’ll
have suggestions for other kinds of performance tests.

Let’s start out with a slightly artificial scenario. We need to know whether our
store controller can handle creating 100 orders within three seconds. We want
to do this against a database containing 1,000 products (as we suspect that
the number of products might be significant). How can we write a test for this?

To create all these products, let’s use a dynamic fixture.

Download depot_r/test/fixtures/performance/products.ymi

<% 1.upto(1000) do |i| %>
product_<%= 1 %>:
id: <%= 1 %>
title: Product Number <%= i %>
description: My description
image_url: product.gif
price: 1234
<% end %>

Notice that we've put this fixture file over in the performance subdirectory of
the fixtures directory. The name of a fixture file must match a database table
name, so we can’t have multiple fixtures for the products table in the same

http://media.pragprog.com/titles/rails2/code/depot_r/test/fixtures/performance/products.yml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=222

PERFORMANCE TESTING

directory. We'd like to reserve the regular fixtures directory for test data to be
used by conventional unit tests, so we’ll simply put another products.yml file in
a subdirectory.

Note that in the test, we loop from 1 to 1,000. It's initially tempting to use
1000.times do |i|..., but this doesn’t work. The times method generates numbers
from O to 999, and if we pass O as the id value to MySQL, it'll ignore it and use
an autogenerated key value. This might possibly result in a key collision.

Now we need to write a performance test. Again, we want to keep them sepa-
rate from the nonperformance tests, so we create a file called order_speed_test.ro
in the directory test/performance. As were testing a controller, we’ll base the
test on a standard functional test (and we’ll cheat by copying in the boilerplate
from store_controller_test.rb). After a superficial edit, it looks like this.

require File.dirname(__FILE_) + '/../test_helper'
require 'store_controller'

Reraise errors caught by the controller.
class StoreController; def rescue_action(e) raise e end; end

class OrderSpeedTest < Test::Unit::TestCase

def setup
@controller = StoreController.new
@request = ActionController::TestRequest.new
@response = ActionController::TestResponse.new
end
end

Let’s start by loading the product data. Because we’re using a fixture that isn’t
in the regular fixtures directory, we have to override the default Rails path.

Download depot_r/test/performance/order_speed_test.rb

self.fixture_path = File.join(File.dirname(__FILE_), "../fixtures/performance")
fixtures :products

We'll need some data for the order form; we’ll use the same hash of values we
used in the integration test. Finally we have the test method itself.

Download depot_r/test/performance/order_speed_test.rb

def test_100_orders
Order.delete_all
LineItem.delete_all

@controller.logger.silence do
elapsed_time = Benchmark.realtime do
100.downto(1l) do |prd_id|
cart = Cart.new
cart.add_product(Product.find(prd_id))
post :save_order,
{ :order => DAVES_DETAILS 1},

http://media.pragprog.com/titles/rails2/code/depot_r/test/performance/order_speed_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/performance/order_speed_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=223

PERFORMANCE TESTING < 224

{ :cart => cart }
assert_redirected_to :action => :index
end

end

assert_equal 100, Order.count

assert elapsed_time < 3.00

end
end

This code uses the Benchmark.realtime method, which is part of the standard
Ruby library. It runs a block of code and returns the elapsed time (as a
floating-point number of seconds). In our case, the block creates 100 orders
using 100 products from the 1,000 we created (in reverse order, just to add
some spice).

You'll notice the code has one other tricky feature.

Download depot_r/test/performance/order_speed_test.rb

@controller.logger.silence do
end

By default, Rails will trace out to the log file (test.log) all the work it is doing
processing our 100 orders. It turns out that this is quite an overhead, so we
silence the logging by placing it inside a block where logging is silenced. On my
G5, this reduces the time taken to execute the block by about 30%. As we’ll
see in a minute, there are better ways to silence logging in real production
code.

Let’s run the performance test.

depot> ruby test/performance/order_speed_test.rb

Finished in 3.840708 seconds.
1 tests, 102 assertions, 0 failures, 0 errors

It runs fine in the test environment. However, performance issues normally
rear their heads in production, and that’s where we’d like to be able to monitor
our application. Fortunately we have some options in that environment, too.

Profiling and Benchmarking

If you simply want to measure how a particular method (or statement) is
performing, you can use the script/profiler and script/benchmarker scripts that
Rails provides with each project. The benchmarker script tells you how long a
method takes, while the profiler tells you where each method spends its time.
The benchmarker gives relatively accurate elapsed times, while the profiler
adds a significant overhead—its absolute times aren’t that important, but the
relative times are.

http://media.pragprog.com/titles/rails2/code/depot_r/test/performance/order_speed_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=224

13.6

USING MOCK OBJECTS

Say (as a contrived example) we notice that the User.encrypted_password method
seems to be taking far too long. Let’s first find out if that’s the case.

depot> ruby script/performance/benchmarker 'User.encrypted_password('secret", "salt")'
user system total real
#1 1.650000 0.030000 1.680000 (1.761335)

Wow, 1.8 elapsed seconds to run one method seems high! Let’s run the profiler
to dig into this.

depot> ruby script/performance/profiler 'User.encrypted_password('secret", "salt")'
Loading Rails...
Using the standard Ruby profiler.

% cumulative self self total

time seconds seconds calls ms/call ms/call name

78.65 58.63 58.63 1 58630.00 74530.00 Integer#times

21.33 74.53 15.90 1000000 0.02 0.02 Math.sin

1.25 75.46 0.93 1 930.00 930.00 Profiler__.start_profile
0.01 75.47 0.01 12 0.83 0.83 Symbol#to_sym

0.00 75.48 0.00 1 0.00 0.00 Hash#update

That’s strange: the method seems to be spending most of its time in the times
and sin methods. Let’s look at the source:
def self.encrypted_password(password, salt)

1000000.times { Math.sin(1)}

string_to_hash = password + salt

Digest::SHAL.hexdigest(string_to_hash)
end

Oops! That loop at the top was added when I wanted to slow things down
during some manual testing, and I must have forgotten to remove it before I
deployed the application. Guess I lose the use of the red stapler for a week.

Finally, remember the log files. They're a gold mine of useful timing informa-
tion.

Using Mock Objects

At some point we’ll need to add code to the Depot application to actually
collect payment from our dear customers. So imagine that we've filled out
all the paperwork necessary to turn credit card numbers into real money
in our bank account. Then we created a PaymentGateway class in the file
lib/payment_gateway.rb that communicates with a credit-card processing gate-
way. And we've wired up the Depot application to handle credit cards by adding
the following code to the save_order action of the StoreConfroller.

gateway = PaymentGateway.new

response = gateway.collect(:login => 'username',
:password => 'password',

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=225

USING MOCK OBJECTS <« 226

ramount => @cart.total_price,
:card_number => @order.card_number,
rexpiration => @order.card_expiration,
:nhame => @order.name)

When the collect method is called, the information is sent out over the net-
work to the back-end credit-card processing system. This is good for our
pocketbook, but it’s bad for our functional test because the StoreController now
depends on a network connection with a real, live credit card processor on the
other end. And even if we had both of those available at all times, we still don’t
want to send credit card transactions every time we run the functional tests.

Instead, we simply want to test against a mock, or replacement, PaymentGate-
way object. Using a mock frees the tests from needing a network connection
and ensures more consistent results. Thankfully, Rails makes stubbing out
objects a breeze.

To stub out the collect method in the testing environment, all we need to do
is create a payment_gateway.rb file in the fest/mocks/test directory. Let’s look at
the details of naming here.

First, the filename must match the name of the file we're trying to replace.
We can stub out a model, controller, or library file: the only constraint is that
the filename must match. Second, look at the path of the stub file. We put it
in the test subdirectory of the test/mocks directory. This subdirectory holds all
the stub files that are used in the test environment. If we wanted to stub out
files while in the development environment, we’d have put our stubs in the
directory test/mocks/development.

Now let’s look at the file itself.

require 'lib/payment_gateway'

class PaymentGateway
I'm a stubbed out method
def collect(request)
true
end
end

Notice that the stub file actually loads the original PaymentGateway class (using
require). It then reopens the PaymentGateway class and overrides just the collect
method. That means we don’t have to stub out all the methods of PaymentGate-
way, just the methods we want to redefine for when the tests run. In this case,
the new collect method simply returns a fake response.

With this file in place, the StoreController will use the stub PaymentGateway
class. This happens because Rails arranges the search path to include the
mock path first—the file test/mocks/test/payment_gateway.rb is loaded instead of
lib/payment_gateway.rb.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=226

USING MOCK OBJECTS <« 227

That's all there is to it. By using stubs, we can streamline the tests and con-
centrate on testing what's most important. And Rails makes it painless.

Stubs vs. Mocks

You may have noticed that the previous section uses the term stub for these
fake classes and methods but that Rails places them in a subdirectory of
test/mocks. Rails is playing a bit fast and loose with its terminology here. What
it calls mocks are really just stubs: faked-out chunks of code that eliminate
the need for some resource.

However, if you really want mock objects—objects that test to see how they
are used and create errors if used improperly—then Rails has an answer. As
of 1.2, Rails includes Flex Mock,® Jim Weirich’s Ruby library for mock objects.
You can use it in any of your tests, but you’ll need to require it explicitly.

require "flexmock"

What We Just Did

We wrote some tests for the Depot application, but we didn’t test everything.
However, with what we now know, we could test everything. Indeed, Rails has
excellent support to help you write good tests. Test early and often—you’ll
catch bugs before they have a chance to run and hide, your designs will
improve, and your Rails application will thank you for it.

6. http://onestepback.org/software/flexmock/

http://onestepback.org/software/flexmock/
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=227

Part 111

The Rails Framework

14.1

14.2

Chapter 14

Having survived our Depot project, now seems like a good time to dig deeper
into Rails. For the rest of the book, we’ll go through Rails topic by topic (which
pretty much means module by module).

This chapter sets the scene. It talks about all the high-level stuff you need
to know to understand the rest: directory structures, configuration, environ-
ments, support classes, and debugging hints. But first, we have to ask an
important question....

So, Where's Rails?

One of the interesting aspects of Rails is how componentized it is. From a
developer’s perspective, you spend all your time dealing with high-level mod-
ules such as Active Record and Action View. There is a component called Rails,
but it sits below the other components, silently orchestrating what they do and
making them all work together seamlessly. Without the Rails component, not
much would happen. But at the same time, only a small part of this under-
lying infrastructure is relevant to developers in their day-to-day work. We'll
cover the parts that are relevant in the rest of this chapter.

Directory Structure

Rails assumes a certain runtime directory layout. Figure 14.1, on the fol-
lowing page, shows the top-level directories created if you run the command
rails my_app. Let’s look at what goes into each directory (although not neces-
sarily in order). The directories config and db require a little more discussion,
so each gets its own section.

The top-level directory also contains a Rakefile. You can use it to run tests, cre-
ate documentation, extract the current structure of your schema, and more.
Type rake --tasks at a prompt for the full list.

DIRECTORY STRUCTURE <« 230

%’dpp/
README Installation and usage information.
Rakefile Build script.
app/ Model, view, and controller files go here.
components/ Reusable components.
config/ Configuration and database connection parameters.
db/ Schema and migration information.
doc/ Autogenerated documentation.
lib/ Shared code.
log/ Log files produced by your application.
public/ Web-accessible directory. Your application runs from here.
script/ Utility scripts.
test/ Unit, functional, and integration tests, fixtures, and mocks.
tmp/ Runtime temporary files.
vendor/ Imported code.

Figure 14.1: Result of rails my_app Command
|

app/ and test/

Most of our work takes place in the app and test directories. The main code for
the application lives below the app directory, as shown in Figure 14.2, on the
next page. We'll talk more about the structure of the app directory as we look
at Active Record, Action Controller, and Action View in more detail later in the
book, and we already looked at test back in Chapter 13, Task T: Testing, on
page 18b5.

components/

In the glorious old days of Rails, the components directory was supposed to
contain reusable chunks of view code and controller code. They were a bit like
Java’s portlets. However, the Rails core team now thinks this style of develop-
ment has some major design holes and is gently deprecating components. We
won't talk about them more here.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=230

DIRECTORY STRUCTURE <« 231

app/

controllers/
_I application.rb
store_controller.rb

helpers/
application_helper.rb
store_helper.rb

models/
| product.rb

views/
layouts/

store/
_I add_to_cart.rjs
index.rhtml

Figure 14.2: The app Directory

doc/

The doc directory is used for application documentation. It is produced using
RDoc. If you run rake doc:app, you'll end up with HTML documentation in the
directory doc/app. You can create a special first page for this documentation
by editing the file doc/README_FOR_APP. Figure 12.3, on page 183, shows the
top-level documentation for our store application.

lib/

The lib directory holds application code that doesn't fit neatly into a model,
view, or controller. For example, you may have written a library that creates
PDF receipts that your store’s customers can download.! These receipts are
sent directly from the controller to the browser (using the send_data method).
The code that creates these PDF receipts will sit naturally in the lib directory.

The lib directory is also a good place to put code that’'s shared among models,
views, or controllers. Maybe you need a library that validates a credit card
number’s checksum, that performs some financial calculation, or that works
out the date of Easter. Anything that isn’t directly a model, view, or controller
should be slotted into lib.

1. Which we did in the new Pragmatic Programmer store

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=231

DIRECTORY STRUCTURE <« 232

Don't feel that you have to stick a bunch of files directly into the lib directory
itself. Most experienced Rails developers will create subdirectories to group
related functionality under lib. For example, in the Pragmatic Programmer
store, the code that generates receipts, customs documentation for shipping,
and other PDF-formatted documentation is all in the directory lib/pdf_stuff.

Once you have files in the lib directory, you use them in the rest of your appli-
cation. If the files contain classes or modules and the files are named using the
lowercase form of the class or module name, then Rails will load the file auto-
matically. For example, we might have a PDF receipt writer in the file receipt.ro
in the directory lio/pdf_stuff. As long as our class is named PdfStuff::Receipt, Rails
will be able to find and load it automatically.

For those times where a library cannot meet these automatic loading condi-
tions, you can use Ruby’s require mechanism. If the file is in the lio directory
itself, you require it directly by name. For example, if our Easter calculation
library is in the file lio/easterrb, we can include it in any model, view, or con-
troller using

< page 644

require "easter"

If the library is in a subdirectory of lio, remember to include that directory’s
name in the require statement. For example, to include a shipping calculation
for airmail, we might add the line

require "shipping/airmail”

Rake Tasks

You'll also find an empty tasks directory under lib. This is where you can write
your own Rake tasks, allowing you to add automation to your project. This
isn’'t a book about Rake, so we won't go into it deeply here, but here’s a simple
example. We'll write a Rake task that prints out the current version of our
development schema. These tasks are Ruby code, but they need to be placed
into files with the extension .rake. We'll call ours do_schema_version.rake.

Download depot_r/lib/tasks/db_schema_version.rake

namespace :db do
desc "Prints the migration version"
task :schema_version => :environment do
puts ActiveRecord::Base.connection.select_value('select version from schema_info')
end
end

We can run this from the command line just like any other Rake task.

depot> rake db:schema_version
(in /Users/dave/Work/...)
7

http://media.pragprog.com/titles/rails2/code/depot_r/lib/tasks/db_schema_version.rake
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=232

DIRECTORY STRUCTURE <« 233

Consult the Rake documentation at http://docs.rubyrake.org/ for more informa-
tion on writing Rake tasks.

log/

As Rails runs, it produces a bunch of useful logging information. This is stored
(by default) in the log directory. Here you'll find three main log files, called
development.log, testlog, and production.log. The logs contain more than just
simple trace lines; they also contain timing statistics, cache information, and
expansions of the database statements executed.

Which file is used depends on the environment in which your application is
running (and we’ll have more to say about environments when we talk about
the config directory).

public/

The public directory is the external face of your application. The web server
takes this directory as the base of the application. Much of the deployment
configuration takes place here, so we’ll defer talking about it until Chapter 27,
Deployment and Production, on page 614.

script/
The script directory holds programs that are useful for developers. Run most of
these scripts with no arguments to get usage information.

about
Displays the version numbers of Ruby and the Rails components being
used by your application, along with other configuration information.

breakpointer
A client that lets you interact with running Rails applications. We talk
about this starting on page 246.

console
Allows you to use irb to interact with your Rails application methods. irb
— page 642
destroy

Removes autogenerated files created by generate.

generate
A code generator. Out of the box, it will create controllers, mailers, mod-
els, scaffolds, and web services. You can also download additional gen-
erator modules from the Rails web site.?

2. http://wiki.rubyonrails.com/rails/show/AvailableGenerators

http://docs.rubyrake.org/
http://wiki.rubyonrails.com/rails/show/AvailableGenerators
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=233

DIRECTORY STRUCTURE <« 234

plugin
The plugin script helps you install and administer plugins—pieces of func-
tionality that extend the capabilities of Rails.

runner
Executes a method in your application outside the context of the Web.
You could use this to invoke cache expiry methods from a cron job or
handle incoming e-mail.

server
The server script runs your Rails application in a self-contained web
server, using mongrel, LightTPD (if either is available on your box), or
WEBTrick. We've been using this in our Depot application during develop-
ment.

The script directory contains two subdirectories, each holding more specialized
scripts. The directory script/process contains two scripts that help control a
deployed Rails application: we’ll discuss these in the chapter on deployment.
The directory script/performance contains two scripts that help you understand
the performance characteristics of your application.

benchmarker
Generates performance numbers on one or more methods in your appli-
cation.

profiler
Creates a runtime-profile summary of a chunk of code from your appli-
cation.

tmp/

It probably isn’t a surprise that Rails keeps its temporary files tucked up in
the tmp directory. You’'ll find subdirectories for cache contents, sessions, and
sockets in here.

vendor/
The vendor directory is where third-party code lives. Nowadays, this code will
typically come from two sources.

First, Rails installs plugins into the directories below vendor/plugins. Plugins
are ways of extending Rails functionality, both during development and at
runtime.

Second, you can ask Rails to install itself into the vendor directory. But why
would you want to do that?

Typically, you’ll develop your application using a system-wide copy of the Rails
code. The various libraries that make up Rails will be installed as gems some-

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=234

DIRECTORY STRUCTURE <« 235

(N\

Binding Your Application t m_Version

You can tell Rails to use a particular version of itself by adding a line like
RAILS_GEM_VERSION = "1.2"

at the very top of environment.rb in the config directory. When your application
starts, Rails will query the installed gems on your system and arrange to load
the correct one (1.2 in this case).

Although attractively simple, this approach has a major drawback: if you
deploy to a box that doesn’t include the specified version of Rails, your appli-
cation won’t run. For more robust deployments, you're better off freezing Rails
intfo your vendor directory.

where within your Ruby installation, and all your Rails applications will share
them.

However, as you near deployment, you may want to consider the impact of
changes in Rails on your application. Although your code works fine right
now, what happens if, six months from now, the core team makes a change
to Rails that is incompatible with your application? If you innocently upgrade
Rails on your production server, your application will suddenly stop working.
Or, maybe you have a number of applications on your development machine,
developed one after the other over a span of many months or years. Early ones
may only be compatible only with earlier versions of Rails, and later ones may
need features found only in later Rails releases.

The solution to these issues is to bind your application to a specific version of
Rails. One way of doing this, described in the sidebar on this page, assumes
that all the versions of Rails you need are installed globally as gems—it sim-
ply tells your applications to load the correct version of Rails. However, many
developers think it is safer to take the second route and freeze the Rails code
directly into their application’s directory tree. By doing this, the Rails libraries
are saved into the version control system alongside the corresponding applica-
tion code, guaranteeing that the right version of Rails will always be available.

It’s painless to do this. If you want to lock your application into the version of
Rails currently installed as a gem, simply enter the command

depot> rake rails:freeze:gems

Behind the scenes, this command copies off the most recent Rails libraries into

a directory tree beneath the directory vendor/rails. When Rails starts running
an application, it always looks in that directory for its own libraries before

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=235

DIRECTORY STRUCTURE <« 236

looking for system-wide versions, so, after freezing, your application becomes
bound to that version of Rails. Be aware that freezing the gems copies only the
Rails framework into your application: other Ruby libraries are still accessed
globally.

If you want to go back to using the system-wide version of Rails, you can either
delete the vendor/rails directory or run the command

depot> rake rails:unfreeze

Using Edge Rails

As well as freezing the current gem version of Rails into your application, you
can also link your application to a version of Rails from Rails’ own Subversion
repository (the one the Rails core developers check their code into). This is
called Edge Rails. You have a couple of options here. Both require that you
have a Subversion client installed on your local machine. The first additionally
requires that your own project is stored in a Subversion repository.

Linking Your Project to the Rails Repository

One way to link your code to the Rails development code is to use Subversion
externals. We'll link the rails subdirectory under vendor directly to the head
of the Rails development code in their repository. In the project’s top-level
directory, enter the command (all on one line, without the backslash)

depot> svn propset svn:externals \
"rails http://dev.rubyonrails.org/svn/rails/trunk” vendor

This tells Subversion that the directory vendor/rails is stored in a remote repos-
itory. Then type

depot> svn up vendor

and you’ll see Rails being installed into your application. From now on, every
time you run svn up you’ll update your application’s code, and you’ll also pick
up any changes to Rails. This is life on the Edge.

You can also live a little less dangerously by linking to the latest stable version
of Rails. In this case, set your svn:externals property to

http://dev.rubyonrails.org/svn/rails/branches/stable/

Freezing an Edge Version of Rails

The previous technique makes a live connection between your application and
the bleeding edge of the Rails libraries. An alternative is to take a version of
Rails from the development repository and freeze it into your application’s tree,

3. Ifyou see an error saying that “vendor is not a working copy,” it means that you don’t have your
application code stored under Subversion. You might want to use the second approach, freezing an
edge version of Rails, instead.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=236

DIRECTORY STRUCTURE <« 237

4 N

@ David Says...
—/ When Is Running on the E Idea?

Running on the Edge means getting all the latest improvements and tech-
nigues as soon as they emerge from extraction. This often includes major shifts
in the state of the art. RIS was available on the Rails edge for many months
before premiering in Rails 1.1. The latest drive for RESTful interfaces has been
similarly available for months ahead of the 1.2 release.

So, there are very real benefits to running on the Edge. There are also down-
sides. When major tectonic shifts in the Rails foundation occur, it often takes
a little while before all the aftershocks have disappeared. Thus, you might see
bugs or decreased performance while running on the Edge. And that’s the
trade-off you’ll have to deal with when deciding whether to use the Edge.

| recommmend that you start out not using the Edge while learning Rails. Get a
few applications under your belt first. Learn to cope with the panic attacks of
unexplained errors. Then, once you're ready to take it to the next level, make
the jump and start your next major development project on the Edge. Keep up
with the Trac Timeline,* subscribe to the rails-core mailing list,F and get involved.

Trade some safety for innovation. Even if a given revision is bad, you can always
freeze just one revision behind it. Or you can go for the big community pay-off
and help fix the issues as they emerge, thereby taking the step from being a
user to being a contributor.

*. http://dev.rubyonrails.org/timeline
t. http://groups.google.com/group/rubyonrails-core

just as we can freeze a version of Rails from gems. To do this, we use one of
the following three variants of a Rake task.
depot> rake rails:freeze:edge

depot> rake rails:freeze:edge TAG=rel_1-1-0
depot> rake rails:freeze:edge REVISION=<some number>

These Rake tasks take a version of Rails (the current one, a particular tag,
or a particular Subversion revision number) and freeze it into your vendor
directory. This is less risky than having your project dynamically update as
the core team make changes each day, but in exchange you'll need to unfreeze
and refreeze if you need to pick up some last-minute feature.

http://dev.rubyonrails.org/timeline
http://groups.google.com/group/rubyonrails-core
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=237

RAILS CONFIGURATION <« 238

14.3 Rails Configuration

Rails runtime configuration is controlled by files in the config directory. These
files work in tandem with the concept of runtime environments.

Runtime Environments

The needs of the developer are very different when writing code, testing code,
and running that code in production. When writing code, you want lots of
logging, convenient reloading of changed source files, in-your-face notification
of errors, and so on. In testing, you want a system that exists in isolation so
you can have repeatable results. In production, your system should be tuned
for performance, and users should be kept away from errors.

To support this, Rails has the concept of runtime environments. Each envi-
ronment comes with its own set of configuration parameters; run the same
application in different environments, and that application changes personal-
ity.

The switch that dictates the runtime environment is external to your applica-
tion. This means that no application code needs to be changed as you move
from development through testing to production. The way you specify the run-
time environment depends on how you run the application. If youre using
WEBrick with script/server, you use the -e option.

depot> ruby script/server -e development # the default if -e omitted

depot> ruby script/server -e test
depot> ruby script/server -e production

If you're using script/server and running LightTPD, you can edit the default
environment in the file lightfpd.conf in the config directory (but you have to run
script/server at least once beforehand in order to have that configuration file
created for you).

...

fastcgi.server = (".fcgi" => ("localhost" => (
"min-procs" = 1,
"max-procs" = 1,
"socket" => (WD + "/tmp/sockets/fcgi.socket",
"bin-path"” => CWD + "/public/dispatch.fcgi”,

| "bin-environment"” => ("RAILS_ENV" => "development")
D)
$...

If you're using Apache with Mongrel, use the -e production parameter when you
configure your Mongrel cluster. This is described on page 623.

If you have special requirements, you can create your own environments. You’'ll
need to add a new section to the database configuration file and a new file to
the config/environments directory. These are described next.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=238

RAILS CONFIGURATION < 239

Configuring Database Connections
The file config/database.yml configures your database connections. You'll find
it contains three sections, one for each of the runtime environments. Here’s
what one section looks like.
development:

adapter: mysql

database: depot_development

username: root

password:
host: Tocalhost

Each section must start with the environment name, followed by a colon. The
lines for that section should follow. Each will be indented and contain a key,
followed by a colon and the corresponding value. At a minimum, each sec-
tion has to identify the database adapter (MySQL, Postgres, and so on) and
the database to be used. Adapters have their own specific requirements for
additional parameters. A full list of these parameters is given in Section 17.4,
Connecting to the Database, on page 291.

If you need to run your application on different database servers, you have
a couple of configuration options. If the database connection is the only dif-
ference, you can create multiple sections in database.yml, each named for the
environment and the database. You can then use YAML'’s aliasing feature to
select a particular database.

Change the following Tline to point to the right database
development: development_sqlite

development_mysql:
adapter: mysql
database: depot_development

host: Tlocalhost
username: root
password:

development_sqlite:
adapter: sqlite
dbfile: my_db

If changing to a different database also changes other parameters in your
application’s configuration, you can create multiple environments (named, for
example, development-mysal, development-postgres, and so on) and create appro-
priate sections in the database.yml file. You’ll also need to add corresponding
files under the environments directory.

As we'll see on page 291, you can also reference sections in database.yml when
making connections manually.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=239

RAILS CONFIGURATION < 240

Environments

The runtime configuration of your application is performed by two files. One,
config/environment.rb, is environment independent—it is used regardless of the
setting of RAILS_ENV. The second file does depend on the environment: Rails
looks for a file named for the current environment in the config/environments
directory and loads it during the processing of environment.rb. The standard
three environments (development.ro, production.rb, and test.rb) are included by
default. You can add your own file if you've defined new environment types.

Environment files typically do three things.

¢ They set up the Ruby load path. This is how your application can find
components such as models and views when it’s running.

* They create resources used by your application (such as the logger).

* They set various configuration options, both for Rails and for your appli-
cation.

The first two of these are normally application-wide and so are done in environ-
ment.rb. The configuration options often vary depending on the environment
and so are likely to be set in the environment-specific files in the environments
directory.

The Load Path
The standard environment automatically includes the following directories
(relative to your application’s base directory) into your application’s load path.

¢ test/mocks/environment. Because these are first in the load path, classes
defined here override the real versions, enabling you to replace live func-
tionality with stub code during testing. This is described starting on
page 225.

* The app/controllers directory and its subdirectories.

¢ All directories whose names start with an underscore or a lowercase letter
under app/models and components.

* The directories app, app/models, app/controllers, app/helpers, app/services,
app/apis, components, config, lib, and vendor.

Each of these directories is added to the load path only if it exists.

In addition, Rails checks for the directory vendor/rails in your application. If
present, it arranges to load itself from there, rather from the shared library
code.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=240

NAMING CONVENTIONS <« 241

Configuration Parameters

You configure Rails by setting various options in the Rails modules. Typically
you’ll make these settings either at the end of environment.rb (if you want the
setting to apply in all environments) or in one of the environment-specific files
in the environments directory.

We provide a listing of all these configuration parameters in Appendix B, on
page 645.

14.4 Naming Conventions

Newcomers to Rails are sometimes puzzled by the way it automatically handles
the naming of things. They're surprised that they call a model class Person and
Rails somehow knows to go looking for a database table called people. This
section is intended to document how this implicit naming works.

The rules here are the default conventions used by Rails. You can override all
of these conventions using the appropriate declarations in your Rails classes.

Mixed Case, Underscores, and Plurals

We often name variables and classes using short phrases. In Ruby, the conven-
tion is to have variable names where the letters are all lowercase and words
are separated by underscores. Classes and modules are named differently:
there are no underscores, and each word in the phrase (including the first) is
capitalized. (We'll call this mixed case, for fairly obvious reasons.) These con-
ventions lead to variable names such as order_status and class names such as
Lineltem.

Rails takes this convention and extends it in two ways. First, it assumes that
database table names, like variable names, have lowercase letters and under-
scores between the words. Rails also assumes that table names are always
plural. This leads to table names such as orders and third_parties.

On another axis, Rails assumes that files are named in lowercase with under-
scores.

Rails uses this knowledge of naming conventions to convert names automati-
cally. For example, your application might contain a model class that handles
line items. You’d define the class using the Ruby naming convention, calling it
Lineltem. From this name, Rails would automatically deduce the following.

¢ That the corresponding database table will be called line_items. That’s the
class name, converted to lowercase, with underscores between the words
and pluralized.

e Rails would also know to look for the class definition in a file called
line_item.rb (in the app/models directory).

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=241

NAMING CONVENTIONS <« 242

Model Naming

line_items
app/models/line_item.rb
Lineltem

Controller Naming

http://.../storel/list
app/controllers/store_controller.rb
StoreController

list

app/views/layouts/store.rhtmi

http://.../store/list
app/views/store/list.rhtml (or .rxml, .rjs)
module StoreHelper
app/helpers/store_helper.rb

Figure 14.3: Naming Convention Summary
.

Rails controllers have additional naming conventions. If our application has a
store controller, then the following happens.

e Rails assumes the class is called StoreController and that it’s in a file
named store_controller.rb in the app/controllers directory.

¢ It also assumes there’s a helper module named StoreHelper in the file
store_helper.rb located in the app/helpers directory.

¢ It will look for view templates for this controller in the app/views/store
directory.

¢ It will by default take the output of these views and wrap them in the
layout template contained in the file store.rhtml or store.rxml in the directory
app/views/layouts.

All these conventions are shown in Figure 14.3.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=242

NAMING CONVENTIONS <« 243

4 N

@ David Says...
— Why Plurals for Tables?

Because it sounds good in conversation. Really. “Select a Product from prod-
ucts.” Just like “Order has_many :line_items.”

The intent is to bridge programming and conversation by creating a domain
language that can be shared by both. Having such a language means cut-
ting down on the mental franslation that otherwise confuses the discussion of a
product description with the client when it’s really implemented as merchan-
dise body. These communications gaps are bound to lead to errors.

Rails sweetens the deal by giving you most of the configuration for free if you
follow the standard conventions. Developers are thus rewarded for doing the
right thing, so it's less about giving up “your ways” and more about getting
productivity for free.

There’s one extra twist. In normal Ruby code you have to use the require key-
word to include Ruby source files before you reference the classes and modules
in those files. Because Rails knows the relationship between filenames and
class names, require is normally not necessary in a Rails application. Instead,
the first time you reference a class or module that isn’t known, Rails uses the
naming conventions to convert the class name to a filename and tries to load
that file behind the scenes. The net effect is that you can typically reference
(say) the name of a model class, and that model will be automatically loaded
into your application.

We said that require is not normally needed. You will have to use it to load in
Ruby source that Rails doesn’t explicitly manage. In particular, if you have
code in the lib directory or one of its subdirectories, you'll need to load it using
require.

require "my_Tlibrary"
require "pdf/invoice_writer"

Grouping Controllers into Modules

So far, all our controllers have lived in the app/controllers directory. It is some-
times convenient to add more structure to this arrangement. For example, our
store might end up with a number of controllers performing related but dis-
joint administration functions. Rather than pollute the top-level namespace,
we might choose to group them into a single admin namespace.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=243

LOGGING IN RAILS <« 244

Rails does this using a simple naming convention. If an incoming request has
a controller named (say) admin/book, Rails will look for the controller called
book_controller in the directory app/controllers/admin. That is, the final part of
the controller name will always resolve to a file called name_controller.ro, and
any leading path information will be used to navigate through subdirectories,
starting in the app/controllers directory.

Imagine that our program has two such groups of controllers (say, admin/xxx
and content/xxx) and that both groups define a book controller. There’d be
a file called book_controller.ro in both the admin and content subdirectories of
app/controllers. Both of these controller files would define a class named Book-
Controller. If Rails took no further steps, these two classes would clash.

To deal with this, Rails assumes that controllers in subdirectories of the direc-
tory app/controllers are in Ruby modules named after the subdirectory. Thus,
the book controller in the admin subdirectory would be declared as

class Admin::BookController < ApplicationController
...
end

The book controller in the content subdirectory would be in the Content mod-
ule.

class Content::BookController < ApplicationController
...
end

The two controllers are therefore kept separate inside your application.

The templates for these controllers appear in subdirectories of app/views. Thus,
the view template corresponding to the request

http://my.app/admin/book/edit/1234
will be in the file

app/views/admin/book/edit.rhtml

You'll be pleased to know that the controller generator understands the con-
cept of controllers in modules and lets you create them with commands such
as

myapp> ruby script/generate controller Admin::Book actionl action2 ...

This pattern of controller naming has ramifications when we start generating

URLSs to link actions together. We'll talk about this starting on page 408.
14.5 Logging in Rails

Rails has logging built right into the framework. Or, to be more accurate, Rails
exposes a Logger object to all the code in a Rails application.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=244

DEBUGGING HINTS <« 245

Logger is a simple logging framework that ships with recent versions of Ruby.
(You can get more information by typing ri Logger at a command prompt or by
looking in the standard library documentation in Programming Ruby [TFH05].)
For our purposes, it's enough to know that we can generate log messages at
the warning, info, error, and fatal levels. We can then decide (probably in an
environment file) which levels of logging to write to the log files.

Togger.warn("I don't think that's a good idea")

Togger.info("Dave's trying to do something bad")

Togger.error("Now he's gone and broken it")
Togger.fatal ("I give up")

In a Rails application, these messages are written to a file in the log directory.
The file used depends on the environment in which your application is run-
ning. A development application will log to log/development.log, an application
under test to fest.log, and a production app to production.log.

14.6 Debugging Hints

Bugs happen. Even in Rails applications. This section has some hints on track-
ing them down.

First and foremost, write tests! Rails makes it easy to write both unit tests and
functional tests (as we saw in Chapter 13, Task T: Testing, on page 185). Use
them, and you’ll find that your bug rate drops way down. You'll also decrease
the likelihood of bugs suddenly appearing in code that you wrote a month ago.
Tests are cheap insurance.

Tests tell you whether something works or not, and they help you isolate
the code that has a problem. Sometimes, though, the cause isn’'t immediately
apparent.

If the problem is in a model, you might be able to track it down by running
the offending class outside the context of a web application. The script/console
script lets you bring up part of a Rails application in an irb session, letting
you experiment with methods. Here’s a session where we use the console to
update the price of a product.

depot> ruby script/console

Loading development environment.

irb(main):001:0> pr = Product.find(:first)

=> #<Product:0x248acd0 @attributes={"image_url"=>"/old_images/sk..."
irb(main):002:0> pr.price

=> 29.95

irb(main):003:0> pr.price = 34.95

=> 34.95

irb(main) :004:0> pr.save

=> true

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=245

DEBUGGING HINTS <« 246

Logging and tracing are a great way of understanding the dynamics of complex
applications. You'll find a wealth of information in the development log file.
When something unexpected happens, this should probably be the first place
you look. It’s also worth inspecting the web server log for anomalies. If you use
WEBETrick in development, this will be scrolling by on the console you use to
issue the script/server command.

You can add your own messages to the log with the Logger object described in
the previous section. Sometimes the log files are so busy that it’s hard to find
the message you added. In those cases, and if you're using WEBrick, writing to
STDERR will cause your message to appear on the WEBTrick console, intermixed
with the normal WEBrick tracing.

If a page comes up displaying the wrong information, you might want to dump
out the objects being passed in from the controller. The debug helper method
is good for this. It formats objects nicely and makes sure that their contents
are valid HTML.

<h3>Your Order</h3>

<%= debug(@order) %>

<div id="ordersummary">

</div>

Finally, for those problems that just don’'t seem to want to get fixed, you can

roll out the big guns and point irb at your running application. This is normally
available only for applications in the development environment.

To use breakpoints:

1. Insert a call to the method breakpoint at the point in your code where you
want your application to first stop. You can pass this method a string if
you’'d like—this becomes an identifying message later.

2. On a convenient console, navigate to your application’s base directory,
and enter the command*
depot> ruby script/breakpointer
No connection to breakpoint service at

druby://localhost:42531 (DRb::DRbConnError)
Tries to connect will be made every 2 seconds...

Don’t worry about the “No connection” message—it just means that your
breakpoint hasn't hit yet.

4. Under OS X, you'll need an additional option unless you want to wait for about a minute for the
breakpointer to spring to life:
depot>ruby script/breakpointer -c druby://127.0.0.1:42531

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=246

WHAT'S NEXT < 247

3. Using a browser, prod your application to make it hit the breakpoint
method. When it does, the console where breakpointer is running will
burst into life—you’ll be in an irb session, talking to your running web
application. You can inspect variables, set values, add other breakpoints,
and generally have a good time. When you quit irb, your application will
continue running.

If you're expecting a full debugger at this point—well, sorry. At the time of
writing, all you can do with breakpointer is examine and change program
state when it hits a breakpoint.

By default, the breakpointer uses a local network connection to talk between
your application and the breakpointer client. You might be able to use the -
s option when you run breakpointer to connect to an application on another
machine, but you’ll need to make sure that there are no firewalls in the way.

14.7 What's Next

The chapter that follows looks at all the programmatic support you have while
writing a Rails application. This is followed by an in-depth look at Migrations.

If you're looking for information on Active Record, Rails’ object-relational map-
ping layer, you need Chapters 17 through 19. The first of these covers the
basics, the next looks at intertable relationships, and the third gets into some
of the more esoteric stuff. They’re long chapters—Active Record is the largest
component of Rails.

These are followed by two chapters about Action Controller, the brains behind
Rails applications. This is where requests are handled and business logic lives.
After that, Chapter 22, Action View describes how you get from application-
level data to browser pages.

But wait (as they say), there’s more! The new style of web-based application
makes use of JavaScript and XMLHttpRequest to provide a far more interactive
user experience. Chapter 23, The Web, V2.0, tells you how to spice up your
applications.

Rails can do more than talk to browsers. Chapter 24, Action Mailer, shows you
how to send and receive e-mail from a Rails application, and Chapter 25, Web
Services on Rails, on page 584, describes how you can let others access your
application programmatically using SOAP and XML-RPC.

We leave two of the most important chapters to the end. Chapter 26, Secur-
ing Your Rails Application, contains vital information if you want to sleep at
night after you expose your application to the big, bad world. And Chapter 27,
Deployment and Production, contains the nitty-gritty details of putting a Rails
application into production and scaling it as your user base grows.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=247

15.1

Chapter 15

Active Support is a set of libraries that are shared by all Rails components.
Much of what’s in there is intended for Rails’ internal use. However, Active
Support also extends some of Ruby’s built-in classes in interesting and useful
ways. In this section we’ll quickly list the most popular of these extensions.

We'll also end with a brief look at how Ruby and Rails can handle Unicode
strings, making it possible to create web sites that correctly handle interna-
tional text.

Generally Available Extensions

As we’ll see when we look at AJAX on page 522, it’s sometimes useful to be
able to convert Ruby objects into a neutral form to allow them to be sent to a
remote program (often JavaScript running in the user’s browser). Rails extends
Ruby objects with two methods, to_json and to_yaml. These convert objects into
JavaScript Object Notation (JSON) and YAML (the same notation used in Rails
configuration and fixture files).

For demo purposes, create a Ruby structure with two attributes
Rating = Struct.new(:name, :ratings)
rating = Rating.new("Rails"”, [10, 10, 9.5, 10 1)

and serialize an object of that structure two ways...
puts rating.to_json #=> ["Rails", [10, 10, 9.5, 10]]
puts rating.to_yaml #=> --- lruby/struct:Rating

name: Rails

ratings:

- 10

- 10

- 9.5

- 10

In addition, all Active Record objects, and all hashes, support a fo_xml method.
We saw this in Section 12.1, Autogenerating the XML, on page 181.

ENUMERATIONS AND ARRAYS <« 249

7 N

@ David Says...
Why Extending B I Doesn’t Lead to the A I

The awe that seeing 5.months + 30.minutes for the first time generates is usually
replaced by a state of panic shortly thereafter. If everyone can just change
how integers work, won’t that lead to an utterly unmaintainable spaghetti land
of hell? Yes, if everyone did that all the time, it would. But they don’t, so it
doesn’t.

Don’t think of Active Support as a collection of random extensions to the Ruby
language that invites everyone and their brother to add their own pet fea-
ture to the string class. Think of it as a dialect of Ruby spoken universally by
all Rails programmers. Because Active Support is a required part of Rails, you
can always rely on the fact that 5.months will work in any Rails application. That
negates the problem of having a thousand personal dialects of Ruby.

Active Support gives us the best of both worlds when it comes to language
extensions. It's conftextual standardization.

To make it easier to tell whether something has no content, Rails extends all
Ruby objects with the blank? method. It always returns true for nil and false, and
it always returns false for numbers and for frue. For all other objects, it returns
frue if that object is empty. (A string containing just spaces is considered to be
empty.)

puts [].bTank? #=> true
puts { 1 => 2}.blank? #=> false
puts " cat ".blank? #=> false
puts "".bTank? #=> true
puts " ".blank? #=> true
puts nil.bTank? #=> true

15.2 Enumerations and Arrays

Because our web applications spend a lot of time working with collections,
Rails adds some magic to Ruby’s Enumerable mixin.

The group_by method partitions a collection into sets of values. It does this by
calling a block once for each element in the collection and using the result
returned by the block as the partitioning key. The result is a hash where
each of the keys is associated with an array of elements from the original
collection that share a common partitioning key. For example, the following
splits a group of posts by author.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=249

STRING EXTENSIONS <« 250

groups = posts.group_by {|post| post.author_id}

The variable groups will reference a hash where the keys are the author ids and
the values are arrays of posts written by the corresponding author.

You could also write this as

groups = posts.group_by {|post| post.author}

The groupings will be the same in both cases, but in the second case entire
Author objects will be used as the hash keys (which means that the author
objects will be retrieved from the database for each post). Which form is correct
depends on your application.

Rails also extends Enumerable with two other methods. The index_by method
takes a collection and converts it into a hash where the values are the values
from the original collection. The key referencing each value is determined by
passing that element to the block.

us_states = State.find(:all)
state_lookup = us_states.index_by {|state| state.short_name}

The sum method sums a collection by passing each element to a block and
accumulating the total of the values returned by that block. It assumes the
initial value of the accumulator is the number O; you can override this by
passing a parameter to sum.

total_orders = Order.find(:all1).sum {|order| order.value }

Rails also extends arrays with a couple of convenience methods.

puts ["ant", "bat", "cat"].to_sentence #=> "ant, bat, and cat"

puts ["ant", "bat", "cat"].to_sentence(:connector => "and not forgetting")
#=> "ant, bat, and not forgetting cat"

puts ["ant", "bat", "cat"].to_sentence(:skip_last_comma => true)

#=> "ant, bat and cat"

[1,2,3,4,5,6,7].in_groups_of(3) {|slice| puts slice.inspect}
#=> [1, 2, 3]
[4, 5, 6]
[7, nil, nil]
[1,2,3,4,5,6,7].in_groups_of(3, "X") {|slice| puts slice.inspect}
#=> [1, 2, 3]
[4, 5, 6]
[z, "x", "X"]

15.3 String Extensions

Newcomers to Ruby are often surprised that indexing into a string using some-
thing like string[2] returns an integer, not a one-character string. Rails adds
some helper methods to strings that give some more natural behavior.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=250

STRING EXTENSIONS <« 251

string = "Now is the time"

puts string.at(2) #=> "w"

puts string.from(8) #=> "he time"
puts string.to(8) #=> "Now is th"
puts string.first #=> "N"

puts string.first(3) #=> "Now"

puts string.last #=> "e"

puts string.last(4) #=> "time"

puts string.starts_with?("No") #=> true
puts string.ends_with?("ME™) #=> false

count = Hash.new(0)

string.each_char {|ch| count[ch] += 1}

puts count.inspect #=> {" "=>3, "w"=>1, "m"=>1, "N"=>1, "o"=>1,
"e"=>2, "h"=>1, "s"=>1, "t"=>2, "i"=>2}

Active Support adds methods to all strings to support the way Rails itself
converts names from singular to plural, lowercase to mixed case, and so on. A
few of these might be useful in the average application.

puts "cat".pluralize #=> cats

puts "cats".pluralize #=> cats

puts "erratum".pluralize #=> errata

puts "cats".singularize #=> cat

puts "errata".singularize #=> erratum

puts "first_name".humanize #=> "First name"

puts "now is the time".titleize #=> "Now Is The Time"

Writing Your Rules for Inflections

Rails comes with a fairly decent set of rules for forming plurals for English
words, but it doesn’t (yet) know every single irregular form. For example, if
you're writing a farming application and have a table for geese, Rails might
not find it automatically.

depot> ruby script/console

Loading development environment.

>> "goose".pluralize
=> "gooses"

Seems to me that gooses is a verb, not a plural noun.

As with everything in Rails, if you don’t like the defaults, you can change
them. Changing the automatic inflections is easy. At the bottom of the file
environment.rb in the config directory you'll find a commented-out section that
configures the Inflector module. This lets us define new rules for forming the
plural and singular forms of words. We can tell it

The plural of a word or class of words given the singular form

The singular form of a word or class of words given the plural form
* Which words have irregular plurals
¢ Which words have no plurals

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=251

EXTENSIONS TO NUMBERS < 252

Our goose/geese pair are an irregular plural, so we could tell the inflector
about them using
Inflector.inflections do |inflect|

inflect.irregular "goose", "geese"
end

Now Rails gets it right.

depot> ruby script/console

Loading development environment.

>> "goose".pluralize #=> "geese"
>> "geese".singularize #=> "goose"

Perhaps surprisingly, defining an irregular plural actually defines plurals for
all words that end with the given pattern.

>> "canadagoose".pluralize #=> "canadageese"
>> "wildgeese".singularize #=> "wildgoose"

For families of plurals, define pattern-based rules for forming singular and
plural forms. For example, the plural of father-in-law is fathers-in-law, mother-
in-law becomes mothers-in-law, and so on. You can tell Rails about this by
defining the mappings using regular expressions. In this case, you have to tell
it both how to make the plural from the singular form and vice versa.
Inflector.inflections do |inflect|

inflect.plural(/-in-law$/, "s-in-Taw")

inflect.singular(/s-in-Taw$/, "-in-law")
end
>> "sister-in-Tlaw".pluralize #=> "sisters-in-law"
>> "brothers-in-law".singularize #=> "brother-in-Taw"

Some words are uncountable (like bugs in my programs). You tell the inflector
using the uncountable method.

Inflector.inflections do |inflect|

inflect.uncountable("air", "information", "water")
end
>> "water".pluralize #=> "water"
>> "water".singularize #=> "water"

In a Rails application, these changes can go in the file envionment.rb in the
config directory.

15.4 Extensions to Numbers

Integers gain the two instance methods even? and odd?. You can also get the
ordinal form of an integer using ordinalize.

puts 3.ordinalize #=> "3rd"
puts 321.ordinalize #=> "321st"

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=252

TIME AND DATE EXTENSIONS < 253

All numeric objects gain a set of scaling methods. Singular and plural forms
are supported.

puts 20.bytes #=> 20

puts 20.kilobytes #=> 20480

puts 20.megabytes #=> 20971520

puts 20.gigabytes #=> 21474836480

puts 20.terabytes #=> 21990232555520

puts 20.petabytes #=> 22517998136852480

puts 1.exabyte #=> 1152921504606846976

There are also time-based scaling methods. These convert their receiver into
the equivalent number of seconds. The months and years methods are not
accurate—months are assumed to be 30 days long, years 365 days long. How-
ever, the Time class has been extended with methods that give you accurate
relative dates (see the description in the section that follows this one). Again,
both singular and plural forms are supported.

puts 20.seconds #=> 20
puts 20.minutes #=> 1200

puts 20.hours #=> 72000
puts 20.days #=> 1728000
puts 20.weeks #=> 12096000
puts 20.fortnights #=> 24192000
puts 20.months #=> 51840000
puts 20.years #=> 630720000

You can also calculate times relative to some time (by default Time.now) using
the methods ago and from_now (or their aliases until and since, respectively).

puts Time.now #=> Thu May 18 23:29:14 CDT 2006
puts 20.minutes.ago #=> Thu May 18 23:09:14 CDT 2006
puts 20.hours.from_now #=> Fri May 19 19:29:14 CDT 2006
puts 20.weeks.from_now #=> Thu Oct 05 23:29:14 CDT 2006
puts 20.months.ago #=> Sat Sep 25 23:29:16 CDT 2004
puts 20.minutes.until("2006-12-25 12:00:00".to_time)

#=> Mon Dec 25 11:40:00 UTC 2006
puts 20.minutes.since("2006-12-25 12:00:00".to_time)

#=> Mon Dec 25 12:20:00 UTC 2006

How cool is that? And it gets even cooler....

15.5 Time and Date Extensions

The Time class gains a number of useful methods, helping you calculate relative
times and dates and format time strings. Many of these methods have aliases:
see the API documentation for details.

now = Time.now

puts now #=> Thu May 18 23:36:10 CDT 2006
puts now.to_date #=> 2006-05-18

puts now.to_s #=> Thu May 18 23:36:10 CDT 2006
puts now.to_s(:short) #=> 18 May 23:36

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=253

TIME AND DATE EXTENSIONS <« 254

puts now.to_s(:Tong) #=> May 18, 2006 23:36

puts now.to_s(:db) #=> 2006-05-18 23:36:10

puts now.to_s(:rfc822) #=> Thu, 18 May 2006 23:36:10 -0500
puts now.ago(3600) #=> Thu May 18 22:36:10 CDT 2006
puts now.at_beginning_of_day #=> Thu May 18 00:00:00 CDT 2006

puts now.at_beginning_of_month #=> Mon May 01 00:00:00 CDT 2006
puts now.at_beginning_of_week #=> Mon May 15 00:00:00 CDT 2006
puts now.at_beginning_of_quarter #=> Sat Apr 01 00:00:00 CST 2006
puts now.at_beginning_of_year #=> Sun Jan 01 00:00:00 CST 2006
puts now.at_midnight #=> Thu May 18 00:00:00 CDT 2006

puts now.change(:hour => 13)
puts now.last_month

puts now.last_year

puts now.midnight

puts now.monday

Thu May 18 13:00:00 CDT 2006
Tue Apr 18 23:36:10 CDT 2006
Wed May 18 23:36:10 CDT 2005
Thu May 18 00:00:00 CDT 2006
Mon May 15 00:00:00 CDT 2006

%%Tit:h::lt
V V.V V V

Sat Mar 18 23:36:10 CST 2006
Tue Jul 18 23:36:10 CDT 2006
Mon May 22 00:00:00 CDT 2006
Fri May 18 23:36:10 CDT 2007
84970.423472

puts now.months_ago(2)

puts now.months_since(2)

puts now.next_week

puts now.next_year

puts now.seconds_since_midnight

%%Tit:h:%t
V V.V VvV V

puts now.since(7200)
puts now.tomorrow

puts now.years_ago(2)
puts now.years_since(2)
puts now.yesterday

Fri May 19 01:36:10 CDT 2006
Fri May 19 23:36:10 CDT 2006
Tue May 18 23:36:10 CDT 2004
Sun May 18 23:36:10 CDT 2008
Wed May 17 23:36:10 CDT 2006

%%:Ilit:lt%
vV V. V V V

puts now.advance(:days => 30) #=> Sat Jun 17 23:36:10 CDT 2006
puts Time.days_in_month(2) #=> 28
puts Time.days_in_month(2, 2000) #=> 29

Date objects also pick up a few useful methods.

date = Date.today

puts date.to_s #=> "2006-05-18"

puts date.to_time #=> Thu May 18 00:00:00 CDT 2006
puts date.to_s(:short) #=> "18 May"

puts date.to_s(:long) #=> "May 18, 2006"

puts date.to_s(:db) #=> "2006-05-18"

The last of these converts a date into a string that’s acceptable to the default
database currently being used by your application. You may have noticed
that the Time class has a similar extension for formatting datetime fields in
a database-specific format.

You can add your own extensions to date and time formatting. For example,
your application may need to display ordinal dates (the number of days into a
year). The Ruby Date and Time libraries both support the strftime method for
formatting dates, so you could use something like

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=254

AN EXTENSION TO RUBY SYMBOLS <« 255

>> d = Date.today

=> #<Date: 4907769/2,0,2299161>
>> d.to_s

=> "2006-05-29"

>> d.strftime("%y-%j")

=> "06-149"

Instead, though, you might want to encapsulate this formatting by extending
the to_s method of dates. In your environment.rb file, add a line like the following.

ActiveSupport: :CoreExtensions: :Date: :Conversions: :DATE_FORMATS.merge! (
rordinal => "%Y-%j"

)

Now you can say

any_date.to_s(:ordinal) #=> "2006-149"

You can extend the Time class string formatting as well.

ActiveSupport: :CoreExtensions::Time: :Conversions: :DATE_FORMATS.merge! (
:chatty => "It's %I:%M¥%p on %A, %B %d, %Y"

)

Time.now.to_s(:chatty) #=> "It's 12:49PM on Monday, May 29, 2006"

There are also two useful time-related methods added to the String class. The
methods to_time and to_date return Time and Date objects, respectively.

puts "2006-12-25 12:34:56".to_time #=> Mon Dec 25 12:34:56 UTC 2006
puts "2006-12-25 12:34:56".to_date #=> 2006-12-25

Active Support also includes a TimeZone class. TimeZone objects encapsulate
the names and offset of a time zone. The class contains a list of the world’s
time zones. See the Active Support RDoc for details.

15.6 An Extension to Ruby Symbols

(This section describes an advanced feature of Ruby and can be safely skipped
on the first dozen or so readings....)

We often use iterators where all the block does is invoke a method on its
argument. We did this in our earlier group_by and index_by examples.

groups = posts.group_by {|post| post.author_id}

Rails has a shorthand notation for this. We could have written this code as
groups = posts.group_by(&:author_id)

Similarly, the code

us_states = State.find(:all)
state_lookup = us_states.index_by {|state| state.short_name}

could also be written

us_states = State.find(:all)
state_lookup = us_states.index_by(&:short_name)

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=255

WITH_OPTIONS

<« 256

How does this wizardry work? It relies on the fact that the & notation for
parameter passing expects a Proc object. If it doesn't get one, Ruby tries to
convert whatever it does get by invoking its to_proc method. Here we're passing
it a symbol (:author_id). And Rails has conveniently defined a to_proc method in
class Symbol. Here’s the implementation—figuring it out is left as an exercise
to the reader.
class Symbol

def to_proc

Proc.new { |obj, =args| obj.send(self, =args) }

end

end

15.7 with_options

Many Rails methods take a hash of options as their last parameter. You'll
sometimes find yourself calling several of these methods in a row, where each
call has one or more options in common. For example, you might be defining
some routes.

ActionController::Routing::Routes.draw do |map|

map.connect "/shop/summary"”, :controller => "store",
raction => "summary"

map.connect "/titles/buy/:id", :controller => "store",
raction => "add_to_cart"

map.connect "/cart", :controller => '"store",
raction => "display_cart"
end
The with_options method lets you specify these common options just once.

ActionController::Routing::Routes.draw do |map|

map.with_options(:controller => "store") do |store_map]|

store_map.connect "/shop/summary"”, :action => "summary"
store_map.connect "/titles/buy/:id", :action => "add_to_cart"
store_map.connect "/cart", :action => "display_cart"”

end

end

In this example, store_map acts just like a map object, but the option :controller
=> store will be added to its option list every time it is called.

The with_options method can be used with any API calls where the last param-
eter is a hash.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=256

UNICODE SUPPORT <« 257

15.8 Unicode Support

In the old days, characters were represented by sequences of 6, 7, or 8 bits.
Each computer manufacturer decided its own mapping between these bit pat-
terns and their character representations. Eventually, standards started to
emerge, and encodings such as ASCII and EBCDIC became common. However,
even in these standards, you couldn’t be sure that a given bit pattern would
display a particular character: the 7-bit ASCII character 0b0100011 would dis-
play as # on terminals in the United States and £ on those in the United Kin-
dom. Hacks such as code pages, which overlaid multiple characters onto the
same bit patterns, solve the problems locally but compounded them globally.

At the same time, it quickly became apparent that 8 bits just wasn’t enough to
encode the characters needed for many languages. The Unicode Consortium
was formed to address this issue.!

Unicode defines a number of different encoding schemes that allow for up to
32 bits for the representation of each character. Unicode is generally stored
using one of three encoding forms. In one of these, UTF-32, every character
(technically a code point) is represented as a 32-bit value. In the other two
(UTF-16 and UTF-8), characters are represented as one or more 16- or 8-bit
values. When Rails stores strings in Unicode, it uses UTF-8.

The Ruby language that underlies Rails originated in Japan. And it turns out
that historically Japanese programmers have had issues with the encoding of
their language into Unicode. This means that, although Ruby supports strings
encoded in Unicode, it doesn’t really support Unicode in its libraries. For exam-
ple, the UTF-8 representation of 0 is the 2-byte sequence c3 bc (we're now
using hex to show the binary values). But if you give Ruby a string contain-
ing 1, its library methods won’t know about the fact that 2 bytes are used to
represent a single character.

dave> 1irb

irb(main):001:0> name = "Ginter"

=> "G\303\274nter"

irb(main):002:0> name.length
= 7

Although Gunter has six characters, its representation uses 7 bytes, and that’s
the number Ruby reports.

However, Rails 1.2 includes a fix for this. It isn’t a replacement for Ruby’s
libraries, so there are still areas where unexpected things happen. But even so,
the new Rails Multibyte library, added to Active Support in September 2006,
goes a long way toward making Unicode processing easy in Rails applications.

1. http://www.unicode.org

http://www.unicode.org
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=257

UNICODE SUPPORT <« 258

Rather than replace the Ruby built-in string library methods with Unicode-
aware versions, the Multibyte library defines a new class, called Chars. This
class defines the same methods as the built-in String class, but those methods
are aware of the underlying encoding of the string.

The rule for using Multibyte strings is easy: whenever you need to work with
strings that are encoded using UTF-8, convert those strings into Chars objects
first. The library adds a chars method to all strings to make this easy.

Let’s play with this in script/console.

Line 1 dave> script/console

Loading development environment.
>> name = "G\303\274nter"
=> "Glnter"

5 >> name.length
= 7
>> name.chars.length
= 6

- >> name.reverse

10 => "retn\2747?G"

- >> name.chars.reverse
=> #<ActiveSupport::Multibyte::Chars:0x2c4cdf4 @string="retniG">

We start by storing a string containing UTF-8 characters into the variable
name.

On line 5 we ask Ruby for the length of the string. It returns 7, the number
of bytes in the representation. But then, on line 7, we use the chars method to
create a Chars object that wraps the underlying string. Asking that new object
for its length, we get 6, the number of characters in the string.

Similarly, reversing the raw string produces gibberish; it simply reverses the
order of the bytes. Reversing the Chars object, on the other hand, produces the
expected result.

In theory, all the Rails internal libraries are now Unicode clean, meaning that
(for example) validates_length_of will correctly check the length of UTF-8 strings
if you enable UTF-8 support in your application.

However, having string handling that honors encoding is not enough to ensure
your application works with Unicode characters. You'll need to make sure the
entire data path, from browser to database, agrees on a common encoding. To
explore this, let’s write a simple application that builds a list of names.

The Unicode Names Application

We're going to write a simple application that displays a list of names on a
page. An entry field on that same page lets you add new names to the list. The
full list of names is stored in a database table.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=258

UNICODE SUPPORT

We'll create a regular Rails application.

dave> rails namelist
dave> cd namelist
namelist> ruby script/server

We next need to create our database. However, we also need to ensure that
the default character set for this database is UTF-8. Just how you do this is
database dependent. Here’s what you do for MySQL.2

namelist> mysql -u root
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 85 to server version: 5.0.22

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> create database namelist_development character set utf8;
Query OK, 1 row affected (0.00 sec)

That told the database what character encoding to use. Perhaps surprisingly,
we also have to tell each MySQL connection what encoding it should use. We do
this with the encoding option in database.yml. (We show only the development
stanza here: you'll need to do the same for test and production.)

Download el/namelist/config/database.yml

development:
adapter: mysql
database: namelist_development
username: root
password:
host: Tlocalhost
> encoding: utf8

Now we'll create a model for our names.

namelist> script/generate model person

And we’ll populate the migration.

Download el/namelist/db/migrate/001_create_people.rb

class CreatePeople < ActiveRecord::Migration
def self.up
create_table :people do |t]
t.column :name, :string
end
end

def self.down
drop_table :people
end
end

2. Normally we’'d use mysgladmin to create databases. However, its --default-character-set option
doesn’t seem to work.

http://media.pragprog.com/titles/rails2/code/e1/namelist/config/database.yml
http://media.pragprog.com/titles/rails2/code/e1/namelist/db/migrate/001_create_people.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=259

UNICODE SUPPORT <« 260

Because we set the default character set of the whole database to UTF-8, we
don’'t need to do anything special in the migration file. If we hadn’t been able
to set this option at the database level, we could have instead done it on a
per-table basis in the migration.

create_table :people, :options => 'default charset=utf8' do |t|

t.column :name, :string
end

However, this makes the migration MySQL specific. As a result, the table
options will not be copied across into the test database unless you change
the default schema_format in environment.ro to :sgl. This hassle is a gentle sug-
gestion that making the character set choice at the database level is the way
to go.

Now we’ll write our controller and our view. We'll keep the controller simple by
using a single action.

Download el/namelist/app/controllers/people_controller.ro

class PeopleController < ApplicationController

def index
@person = Person.new(params[:person])
@person.save! if request.post?
@people = Person.find(:all)
end
end

We've made the database Unicode-aware. Now we just need to do the same
thing on the browser side.

As of Rails 1.2, the default content-type header is

Content-Type: text/html; charset=UTF-8

However, just to be sure, we'll also add a <meta> tag to the page header to
enforce this. This also means that if a user saves a page to a local file, it will
display correctly later. Our layout file is

Download el/namelist/app/views/layouts/people.rhtml

<!DOCTYPE html1 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtm11/DTD/xhtm11-transitional.dtd">
<html xmlns="http://waww.w3.0rg/1999/xhtm1" xml:lang="en" Tlang="en">
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8"></meta>
<title>My Name List</title>
</head>
<body>
<%= yield :layout %>
</body>
</htm1>

http://media.pragprog.com/titles/rails2/code/e1/namelist/app/controllers/people_controller.rb
http://media.pragprog.com/titles/rails2/code/e1/namelist/app/views/layouts/people.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=260

UNICODE SUPPORT <« 261

In our index view, we’ll show the full list of names in the database and provide
a simple form to let folks enter new ones. In the list, we’ll display the name
and its size in bytes and characters, and, just to show off, we’ll reverse it.

Download el/namelist/app/views/people/index.rhiml

<table border="1">
<tr>
<th>Name</th><th>bytes</th><th>chars</th><th>reversed</th>
</tr>
<% for person in @people %>
<tr>
<td><%= h(person.name) %>
<td><%= person.name.length %></td>
<td><%= person.name.chars.length %></td>
<td><%= h(person.name.chars.reverse) %></td>
</tr>
<% end %>
</table>

<% form_for :person do |form| %>
New name: <%= form.text_field :name %>
<%= submit_tag "Add" %>

<% end %>

When we point our browser at our people controller, we’ll see an empty table.
Let’s start by entering “Dave” in the name field.

||Name||bytes| |chars| |reversed||

New name: Dave

E

When we hit the button, we see that the string “Dave” contains both 4
bytes and 4 characters—normal ASCII characters take 1 byte in UTF-8.

Name| bytes| chars|reversed

Dave (|4 4 evaD

New name: Ginter

When we hit after typing Gunter, we see something different.

Name
Dave |4
Giinter||7 6

New name: ic-

http://media.pragprog.com/titles/rails2/code/e1/namelist/app/views/people/index.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=261

UNICODE SUPPORT < 262

Because the U1 character takes 2 bytes to represent in UTF-8, we see that
the string has a byte length of 7 and a character length of 6. Notice that the
reversed form displays correctly.

Finally, we’ll add some Japanese text.

| Name |[bytes|/chars|reversed|
|Davc ||4 ||4 ||evaD |
Giinter[7 |6 [[retniiG
= E|9 3 || Folc

New name: (Add)
——————————

Now the disparity between the byte and character lengths is even greater.
However, the string still reverses correctly, on a character-by-character basis.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=262

Chapter 16

Vi

Rails encourages an agile, iterative style of development. We don’t expect to
get everything right the first time. Instead we write tests and interact with our
customers to refine our understanding as we go.

For that to work, we need a supporting set of practices. We write tests to help
us design our interfaces and to act as a safety net when we change things,
and we use version control to store our application’s source files, allowing us
to undo mistakes and to monitor what changes day to day.

But there’s another area of the application that changes, an area that we can’t
directly manage using version control. The database schema in a Rails appli-
cation constantly evolves as we progress through the development: we add a
table here, rename a column there, and so on. The database changes in step
with the application’s code.

Historically, that has been a problem. Developers (or database administrators)
make schema changes as needed. However, if the application code is rolled
back to a previous version, it was hard to undo the database schema changes
to bring the database back in line with that prior application version—the
database itself has no versioning information.

Over the years, developers have come up with ways of dealing with this issue.
One scheme is to keep the Data Definition Language (DDL) statements that
define the schema in source form under version control. Whenever you change
the schema, you edit this file to reflect the changes. You then drop your devel-
opment database and re-create the schema from scratch by applying your
DDL. If you need to roll back a week, the application code and the DDL that
you check out from the version control system are in step: when you re-create
the schema from the DDL, your database will have gone back in time.

Except...because you drop the database every time you apply the DDL, you
lose any data in your development database. Wouldn'’t it be more convenient

CREATING AND RUNNING MIGRATIONS < 264

to be able to apply only those changes that are necessary to move a database
from version x to version y? This is exactly what Rails migrations let you do.

Let's start by looking at migrations at an abstract level. Imagine we have a
table of order data. One day, our customer comes in and asks us to add the
customer’s e-mail address to the data we capture in an order. This involves
a change to the application code and the database schema. To handle this,
we create a database migration that says “add an e-mail column to the orders
table.” This migration sits in a separate file, which we place under version
control alongside all our other application files. We then apply this migration
to our database, and the column gets added to the existing orders table.

Exactly how does a migration get applied to the database? It turns out that
every migration has a sequence number associated with it. These numbers
start at 1—each new migration gets the next available number. Rails remem-
bers the sequence number of the last migration applied to the database. Then,
when you ask it to update the schema by applying new migrations, it compares
the sequence number of the database schema with the sequence numbers of
the available migrations. If it finds migrations with sequence numbers higher
than the database schema it applies them, one at a time, and in order.

But how do we revert a schema to a previous version? We do it by making each
migration reversible. Each migration actually contains two sets of instructions.
One set tells Rails what changes to make to the database when applying the
migration and the other set tells Rails how to undo those changes. In our orders
table example, the apply part of the migration adds the e-mail column to the
table, and the undo part removes that column. Now, to revert a schema, we
simply tell Rails the sequence number that we’'d like the database schema to
be at. If the current database schema has a higher sequence number than this
target number, Rails takes the migration with the database’s current sequence
number and applies its undo action. This removes the migration’s change from
the schema, decrementing the database’s sequence number in the process. It
repeats this process until the database reaches the desired version.

16.1 Creating and Running Migrations

A migration is simply a Ruby source file in your application’s db/migrate direc-
tory. Each migration file’s name starts with (by default) three digits and an
underscore. Those digits are the key to migrations, because they define the
sequence in which the migrations are applied—they are the individual migra-
tion’s version number.

Here’s what the db/migrate directory of our Depot application looks like.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=264

CREATING AND RUNNING MIGRATIONS

depot> 1s db/migrate

001_create_products.rb 005_create_orders.rb
002_add_price.rb 006_create_Tline_items.rb
003_add_test_data.rb 007_create_users.rb

004_add_sessions.rb

Although you could create these migration files by hand, it’s easier (and less
error prone) to use a generator. As we saw when we created the Depot appli-
cation, there are actually two generators that create migration files.

* The model generator creates a migration to create the table associated
with the model (unless you specify the --skip-migration option). As the
example that follows shows, creating a model called discount also creates
a migration called ddd_create_discounts.rb.
depot> ruby script/generate model discount

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/discount.rb
create test/unit/discount_test.rb
create test/fixtures/discounts.yml

exists db/migrate
| create db/migrate/014_create_discounts.rb

* You can also generate a migration on its own.

depot> ruby script/generate migration add_price_column
exists db/migrate
> create db/migrate/015_add_price_column.rb

Later, starting in Anatomy of a Migration, we'll see what goes in the migration
files. But for now, let’s jump ahead a little in the workflow and see how to run
migrations.

Running Migrations
Migrations are run using the do:migrate Rake task.

depot> rake db:migrate
To see what happens next, let’s dive down into the internals of Rails.

The migration code maintains a table called schema_info inside every Rails
database. This table has just one column, called version, and it will only ever
have one row. The schema_info table is used to remember the current version
of the database.

When you run rake db:migrate, the task first looks for the schema_info table. If
it doesn’t yet exist, it will be created, and a version number of 0 will be stored
in it. If it does exist, the version number is read from it.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=265

ANATOMY OF A MIGRATION < 266

The migration code then looks at all the migration files in db/migrate. If any
have a sequence number (the leading digits in the filename) greater than the
current version of the database, then each is applied, in turn, to the database.
After each migration finishes, its version in the schema_info table is updated to
its sequence number.

If we were to run migrations again at this point, nothing much would happen.
The version number in the database would equal the sequence number of the
highest-numbered migration, so there’d be no migrations to apply.

However, if we subsequently create a new migration file, it will have a sequence
number one greater than the database version. If we then run migrations, this
new migration file will be executed.

You can force the database to a specific version by supplying the VERSION=
parameter to the rake db:migrate command.

depot> rake db:migrate VERSION=23

If the version you give is greater than the database version, migrations will be
applied starting at the database version and ending at the version number you

supply.

If, however, the version number on the command line is less than the current
database version, something different happens. In these circumstances, Rails
looks for the migration file whose number matches the database version and
undoes it. It then decrements the version, looks for the matching file, undoes
it, and so on, until the version number matches the version you specified on
the command line. That is, the migrations are unapplied in reverse order to
take the schema back to the version that you specify.

16.2 Anatomy of a Migration

Migrations are subclasses of the Rails class ActiveRecord::Migration. The class
you create should contain at least the two class methods up and down.
class SomeMeaningfulname < ActiveRecord::Migration

def self.up

...
end

def self.down
...
end
end

The up method is responsible for applying the schema changes for this migra-
tion while the down method undoes those changes. Let’s make this more con-
crete. Here’s a migration that adds an e_mail column to the orders table.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=266

ANATOMY OF A MIGRATION < 267

class AddEmailColumnToOrders < ActiveRecord::Migration
def self.up
add_column :orders, :e_mail, :string
end

def self.down
remove_column :orders, :e_mail
end
end

See how the down method undoes the effect of the up method?

Column Types

The third parameter to add_column specifies the type of the database column.
In the previous example we specified that the e_mail column has a type of :string.
But just what does this mean? Databases typically don’t have column types of
string.

Remember that Rails tries to make your application independent of the under-
lying database: you could develop using MySQL and deploy to Postgres if you
wanted. But different databases use different names for the types of columns.
If you used a MySQL column type in a migration, that migration might not
work if applied to a Postgres database. So Rails migrations insulate you from
the underlying database type systems by using logical types. If we’re migrating
a MySQL database, the :string type will create a column of type varchar(255). On
Postgres, the same migration adds a column with the type char varying(255).

The types supported by migrations are :binary, :boolean, :date, :datetime, :deci-
mal, :float, :integer, :string, :text, :time, and :timestamp. Figure 16.1, on the follow-
ing page, shows the default mappings of these types for the database adapters
in Rails. Using this figure, you could work out that a column declared to be
iinfeger in a migration would have the underlying type int(11) in MySQL and
number(38) in Oracle.

You can specify up to three options when defining most columns in a migra-
tion; decimal columns take an additional two options. Each of these options is
given as a key => value pair. The common options are

:null => true or false
If false, the underlying column has a not null constraint added (if the
database supports it).

limit => size
Sets a limit on the size of the field. This basically appends the string
(size) to the database column type definition.

:default => value
Sets the default value for the column. Note that the default is calculated

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=267

ANATOMY OF A MIGRATION <« 268

:binary
:boolean
:date
:datetime
:decimal
:float
:integer
:string
:text
:time

:timestamp

:binary
:boolean
:date
:datetime
:decimal
:float
:integer
:string
:text
:time

:timestamp

db2 mysq|l openbase oracle
blob(32768) blob object blob
decimal(1) tinyint(1) boolean number(1)
date date date date
timestamp datetime datetime date
decimal decimal decimal decimal
float float float number

int int(11) integer number(38)
varchar(255) varchar(255) char(4096) varchar2(255)
clob(32768) text text clob

time time time date
timestamp datetime timestamp date
postgresql sqlite sqlserver sybase
bytea blob image image
boolean boolean bit bit

date date datetime datetime
timestamp datetime datetime datetime
decimal decimal decimal decimal
float float float(8) float(8)
integer integer int int

(note 1) varchar(255) varchar(255) varchar(255)
text text text text

time datetime datetime time
timestamp datetime datetime timestamp

Note 1: character varying(256)

Figure 16.1: Migration and Database Column Types

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=268

ANATOMY OF A MIGRATION <« 269

once, at the point the migration is run, so the following code will set the
default column value to the date and time when the migration was run.!

add_column :orders, :placed_at, :datetime, :default => Time.now

In addition, decimal columns take the options :precision and :scale. The preci-
sion option specifies the number of significant digits that will be stored, and
the scale option determines where the decimal point will be located in these
digits (think of the scale as the number of digits after the decimal point). A
decimal number with a precision of 5 and a scale of O can store numbers from
-99,999 to +99,999. A decimal number with a precision of 5 and a scale of 2
can store the range -999.99 to +999.99.

The :precision and :scale parameters are optional for decimal columns. However,
incompatibilities between different databases lead us to strongly recommend
that you include the options for each decimal column.

Here are some column definitions using the migration types and options.

add_column :orders, :name, :string, :limit => 100, :null => false

add_column :orders, :age, :integer

add_column :orders, :ship_class, :string, :1limit => 15, :default => 'priority'
add_column :orders, :price, :decimal, :precision => 8, :scale => 2

add_column :meter, :reading, :decimal, :precision => 24, :scale => 0

Renaming Columns
When we refactor our code, we often change our variable names to make them
more meaningful. Rails migrations allow us to do this to database column
names, too. For example, a week after we first added it, we might decide that
e_mail isn’t the best name for the new column. We can create a migration to
rename it using the rename_column method.
class RenameEmailColumn < ActiveRecord::Migration

def self.up

rename_column :orders, :e_mail, :customer_email
end

def self.down
rename_column :orders, :customer_email, :e_mail
end
end

Note that the rename doesn’t destroy any existing data associated with the
column. Also be aware that renaming is not supported by all the adapters.

Changing Columns
Use the change_column method to change the type of a column or to alter the
options associated with a column. Use it the same way you’d use add_column,

1. If you want a column to default to having the date and time its row was inserted, simply make
it a datetime and name it created_at.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=269

MANAGING TABLES

but specify the name of an existing column. Let’s say that the order type col-
umn is currently an integer, but we need to change it to be a string. We want
to keep the existing data, so an order type of 123 will become the string "123".
Later, we’ll use noninteger values such as "'new" and "existing".

Changing from an integer column to a string is easy.

def self.up
change_column :orders, :order_type, :string, :null => false
end

However, the opposite transformation is problematic. We might be tempted to
write the obvious down migration.
def self.down

change_column :orders, :order_type, :integer
end

But if our application has taken to storing data like 'new" in this column,
the down method will lose it—'new" can’t be converted to an integer. If that’s
acceptable, then the migration is acceptable as it stands. If, however, we want
to create a one-way migration—one that cannot be reversed—you’ll want to
stop the down migration from being applied. In this case, Rails provides a
special exception that you can throw.

class ChangeOrderTypeToString < ActiveRecord::Migration

def self.up
change_column :orders, :order_type, :string, :null => false
end

def self.down
raise ActiveRecord::IrreversibleMigration
end
end

16.3 Managing Tables

So far we've been using migrations to manipulate the columns in existing
tables. Now let’s look at creating and dropping tables.

class CreateOrderHistories < ActiveRecord::Migration

def self.up
create_table :order_histories do |t|
t.column :order_id, rinteger, :null => false
t.column :created_at, :timestamp
t.column :notes, :text
end
end

def self.down
drop_table :order_histories
end
end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=270

MANAGING TABLES <« 271

create_table takes the name of a table (remember, table names are plural)
and a block. (It also takes some optional parameters that we’ll look at in a
minute.) The block is passed a table definition object, which we use to define
the columns in the table by calling its column method.

The calls to column should look familiar—they’re identical to the add_column
method we used previously except they don’t take the name of the table as the
first parameter.

Note that we don’t define the id column for our new table. Unless we say oth-
erwise, Rails migrations automatically add a primary key called id to all tables
it creates. For a deeper discussion of this, see Section 16.3, Primary Keys, on
page 274.

Options for Creating Tables
You can pass a hash of options as a second parameter to create_table.

If you specify :force => true, the migration will drop an existing table of the same
name before creating the new one. This is a useful option if you want to create
a migration that forces a database into a known state, but there’s clearly a
potential for data loss.

The :temporary => frue option creates a temporary table—one that goes away
when the application disconnects from the database. This is clearly pointless
in the context of a migration, but as we’ll see later, it does have its uses else-
where.

The :options => "xxxx" parameter lets you specify options to your underlying
database. These are added to the end of the CREATE TABLE statement, right after
the closing parenthesis. For example, some versions of MySQL allow you to
specify the initial value of the autoincrementing id column. We can pass this
in through a migration as follows.
create_table :tickets, :options => "auto_increment = 10000" do |t|

t.column :created_at, :timestamp

t.column :description, :text
end

Behind the scenes, migrations will generate the following DDL from this table
description.
create table tickets (

‘9d‘ int(11) default null auto_increment primary key,

‘created_at‘ datetime,

‘description‘ text
) auto_increment = 10000;

Be careful when using the :opfions parameter with MySQL. The Rails MySQL
database adapter sets a default option of ENGINE=InnoDB. This overrides any

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=271

MANAGING TABLES

local defaults you may have and forces migrations to use the InnoDB storage
engine for new tables. However, if you override :options, you’'ll lose this setting;
new tables will be created using whatever database engine is configured as
the default for your site. You may want to add an explicit ENGINE=InnoDB to the
options string to force the standard behavior in this case.?

Renaming Tables
If refactoring leads us to rename variables and columns, then it’s probably not
a surprise that we sometimes find ourselves renaming tables, too. Migrations
support the rename_table method.
class RenameOrderHistories < ActiveRecord::Migration

def self.up

rename_table :order_histories, :order_notes
end

def self.down
rename_table :order_notes, :order_histories
end
end

Note how the down method undoes the change by renaming the table back.

Problems with rename_table
There’s a subtle problem when you rename tables in migrations.

For example, let’s assume that in migration 4 you create the order_histories table
and populate it with some data.

def self.up
create_table :order_histories do |t]|
t.column :order_id, :integer, :null => false
t.column :created_at, :timestamp
t.column :notes, rtext
end

order = Order.find :first
OrderHistory.create(:order => order, :notes => "test")
end

Later, in migration 7, you rename the table order_histories to order_notes. At this
point you’ll also have renamed the model OrderHistory to OrderNote.

Now you decide to drop your development database and reapply all migra-
tions. When you do so, the migrations throw an exception in migration 4: your
application no longer contains a class called OrderHistory, so the migration fails.

2. You probably want to keep using InnoDB if you're using MySQL, because this engine gives you
transaction support. You might need transaction support in your application, and you’ll definitely
need it in your tests if you're using the default of transactional test fixtures.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=272

MANAGING TABLES

One solution, proposed by Tim Lucas, is to create local, dummy versions of the
model classes needed by a migration within the migration itself. For example,
the following version of the fourth migration will work even if the application
no longer has an OrderHistory class.

class CreateOrderHistories < ActiveRecord::Migration

> class Order < ActiveRecord::Base; end
> class OrderHistory < ActiveRecord::Base; end
def self.up
create_table :order_histories do |t|
t.column :order_id, rinteger, :null => false
t.column :created_at, :timestamp
t.column :notes, :text
end

order = Order.find :first
OrderHistory.create(:order = order, :notes => "test")
end

def self.down
drop_table :order_histories
end
end

This works as long as your model classes do not contain any additional func-
tionality that would have been used in the migration—all you're creating here
is a bare-bones version.

If renaming tables gets to be a problem for you, I recommend consolidat-
ing your migrations as described in Section 16.8, Managing Migrations, on
page 282.

Defining Indices
Migrations can (and probably should) define indices for tables. For example,
you might notice that once your application has a large number of orders in
the database, searching based on the customer’s name takes longer than you'd
like. Time to add an index using the appropriately named add_index method.
class AddCustomerNameIndexToOrders < ActiveRecord::Migration

def self.up

add_index :orders, :name
end

def self.down
remove_index :orders, :name
end
end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=273

MANAGING TABLES <« 274

If you give add_index the optional parameter :unique => true, a unique index will
be created, forcing values in the indexed column to be unique.

By default the index will be given the name table_column_index. You can over-
ride this using the :name => "somename" option. If you use the :name option
when adding an index, you’ll also need to specify it when removing the index.

You can create a composite index—an index on multiple columns—by passing
an array of column names to add_index. In this case only the first column name
will be used when naming the index.

Primary Keys

Rails assumes that every table has a numeric primary key (normally called id).
Rails ensures the value of this column is unique for each new row added to a
table.

Let me rephrase that.

Rails really doesn’t work too well unless each table has a numeric primary key.
It is less fussy about the name of the column.

So, for your average Rails application, my strong advice is to go with the flow
and let Rails have its id column.

If you decide to be adventurous, you can start by using a different name for
the primary key column (but keeping it as an incrementing integer). Do this
by specifying a :primary_key option on the create_table call.
create_table :tickets, :primary_key => :number do |t]

t.column :created_at, :timestamp

t.column :description, :text
end

This adds the number column to the table and sets it up as the primary key.

mysql> describe tickets;

oo - e +--—-—- +-———- +--— - Fommm - +
| Field | Type | Null | Key | Default | Extra |
oo - e +--—-—- +-———- +--— - Fommm - +
| number | int(11) | NO | PRI | NULL | auto_increment |
| created_at | datetime | YES | | NULL | |
| description | text | YES | | NULL |

oo - e +--—-—- +-———- - - Fommm - +
3 rows in set (0.34 sec)

The next step in the adventure might be to create a primary key that isn’'t an
integer. Here’s a clue that the Rails developers don’t think this is a good idea:
migrations don’t let you do this (at least not directly).

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=274

DATA MIGRATIONS <« 275

Tables with No Primary Key
Sometimes you may need to define a table that has no primary key. The most
common case in Rails is for join tables—tables with just two columns where
each column is a foreign key to another table. To create a join table using
migrations, you have to tell Rails not to automatically add an id column.
create_table :authors_books, :id => false do |t]|

t.column :author_id, :integer, :null => false

t.column :book_id, :integer, :null => false
end

In this case, you might want to investigate creating one or more indices on this
table to speed navigation between books and authors.

16.4 Data Migrations

Migrations are just Ruby code; they can do anything you want. And, because
they're also Rails code, they have full access to the code you've already writ-
ten in your application. In particular, migrations have access to your model
classes. This makes it easy to create migrations that manipulate the data in
your development database.

Let’s look at two different scenarios where it's useful to manipulate data in
migrations: loading development data and migrating data between versions of
your application.

Loading Data with Migrations

Most of our applications require a fair amount of background information to
be loaded into the database before we can meaningfully play with them, even
during development. If we're writing an online store, we’ll need product data.
We might also need information on shipping rates, user profile data, and so
on. In the old days, developers used to hack this data into their databases,
often by typing SQL insert statements by hand. This was hard to manage and
tended not to be repeatable. It also made it hard for developers joining the
project halfway through to come up to speed.

Migrations make this a lot easier. On virtually all my Rails projects, I find
myself creating data-only migrations—migrations that load data into an exist-
ing schema rather than changing the schema itself.

Note that we're talking here about creating data that’s a convenience for the
developer when they play with the application and for creating “fixed” data
such as lookup tables. You'll still want to create fixtures containing data spe-
cific to tests.

Here’s a typical data-only migration drawn from the Rails application for the
new Pragmatic Bookshelf store.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=275

DATA MIGRATIONS <« 276

class TestDiscounts < ActiveRecord::Migration
def self.up
down

Sku.find_by_sku("RAILS-B-00")
Sku.find_by_sku("RUBY-B-00")
Sku.find_by_sku("AUTO-B-00")

rails_book_sku
ruby_book_sku
auto_book_sku

discount = Discount.create(:name => "Rails + Ruby Paper",
raction => "DEDUCT_AMOUNT",
ramount => "15.00")
discount.skus = [rails_book_sku, ruby_book_sku]
discount.save!

discount = Discount.create(:name => "Automation Sale",
raction => "DEDUCT_PERCENT",
amount => "5.00")
discount.skus = [auto_book_sku]
discount.save!
end

def self.down
Discount.delete_all
end
end

Notice how this migration uses the full power of my existing Active Record
classes to find existing SKUs, create new discount objects, and knit the two
together. Also, notice the subtlety at the start of the up method—it initially
calls the down method, and the down method in turn deletes all rows from the
discounts table. This is a common pattern with data-only migrations.

Loading Data from Fixtures
Fixtures normally contain data to be used when running tests. However, with
a little extra plumbing, we can also use them to load data during a migration.

To illustrate the process, let’'s assume our database has a new users table. We’ll
define it with the following migration.

class AddUsers < ActiveRecord::Migration
def self.up
create_table :users do |t
t.column :name, :string
t.column :status, :string
end
end

def self.down
drop_table :users
end
end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=276

DATA MIGRATIONS <« 277

Let’s create a subdirectory under db/migrate to hold the data we’ll be loading
in to our development database. Let’s call that directory dev_data.

depot> mkdir db/migrate/dev_data

In that directory we’ll create a YAML file containing the data we want to load
into our users table. We’ll call that file users.yml.
dave:

name: Dave Thomas
status: admin

mike:
name: Mike Clark
status: admin

fred:
name: Fred Smith
status: audit

Now we’ll generate a migration to load the data from this fixture into our devel-
opment database.
depot> ruby script/generate migration load_users_data

exists db/migrate
create db/migrate/Oxx_load_users_data.rb

And finally we’ll write the code in the migration that loads data from the fix-
ture. This is slightly magical, because it relies on a backdoor interface into the
Rails fixture code.

require 'active_record/fixtures'

class LoadUserData < ActiveRecord::Migration
def self.up

down
directory = File.join(File.dirname(__FILE__), "dev_data")

Fixtures.create_fixtures(directory, "users")
end

def self.down
User.delete_all
end
end

The first parameter to create_fixtures is the path to the directory containing the
fixture data. We make it relative to the migration file’s path, because we store
the data in a subdirectory of migrations.

Be warned: the only data you should load in migrations is data that you'll also
want to see in production: lookup tables, predefined users, and the like. Do
not load test data into your application this way.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=277

ADVANCED MIGRATIONS <« 278

Migrating Data with Migrations

Sometimes a schema change also involves migrating data. For example, at the
start of a project you might have a schema that stores prices using a float.
However, if you later bump into rounding issues, you might want to change to
storing prices as an integer number of cents.

If you've been using migrations to load data into your database, then that’s
not a problem: just change the migration file so that rather than loading 12.34
into the price column, you instead load 1234. But if that’s not possible, you
might instead want to perform the conversion inside the migration.

One way is to multiply the existing column values by 100 before changing the
column type.
class ChangePriceToInteger < ActiveRecord::Migration
def self.up
Product.update_all1("price = price * 100™)
change_column :products, :price, :integer
end

def self.down
change_column :products, :price, :float
Product.update_all("price = price / 100.0")
end
end

Note how the down migration undoes the change by doing the division only
after the column is changed back.

16.5 Advanced Migrations

Most Rails developers use the basic facilities of migrations to create and main-
tain their database schemas. However, every now and then it’s useful to push
migrations just a bit further. This section covers some more advanced migra-
tion usage.

Using Native SQL

Migrations give you a database-independent way of maintaining your applica-
tion’s schema. However, if migrations don’t contain the methods you need to be
able to do what you need to do, you’ll need to drop down to database-specific
code. To do this, use the execute method.

A common example in my migrations is the addition of foreign key constraints
to a child table. We saw this when we created the line_items table.
Download depot_r/db/migrate/006_create_line_items.rb

class CreateLineItems < ActiveRecord::Migration

def self.up
create_table :1ine_items do |t]|
t.column :product_id, :integer, :null => false

http://media.pragprog.com/titles/rails2/code/depot_r/db/migrate/006_create_line_items.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=278

ADVANCED MIGRATIONS <« 279

t.column :order_id, :integer, :null => false

t.column :quantity, :integer, :null => false

t.column :total_price, :decimal, :null => false, :precision => 8, :scale => 2
end

execute "alter table Tine_items
add constraint fk_line_item_products
foreign key (product_id) references products(id)"

execute "alter table Tine_items
add constraint fk_Tline_item_orders
foreign key (order_id) references orders(id)"
end

def self.down
drop_table :1ine_items
end
end

When you use execute, you might well be tying your migration to a specific
database engine: SQL you pass as a parameter to execute uses your database’s
native syntax.

The execute method takes an optional second parameter. This is prepended to
the log message generated when the SQL is executed.

Extending Migrations

If you look at the line item migration in the preceding section, you might won-
der about the duplication between the two execute statements. It would be
nice to abstract the creation of foreign key constraints into a helper method.

We could do this by adding a method such as the following to our migration
source file.

def self.foreign_key(from_table, from_column, to_table)
constraint_name = "fk_#{from_table}_#{from_column}"

execute %{alter table #{from_table}
add constraint #{constraint_name}
foreign key (#{from_column}) references #{to_table}(id)}
end

(The self. is necessary because migrations run as class methods, and we need
to call foreign_key in this context.)

Within the up migration, we can call this new method using

def self.up
create_table ... do
end
foreign_key(:1ine_items, :product_id, :products)
foreign_key(:1ine_items, :order_id, :orders)
end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=279

WHEN MIGRATIONS GO BAD <« 280

However, we may want to go a step further and make our foreign_key method
available to all our migrations. To do this, create a module in the application’s
lib directory, and add the foreign_key method. This time, however, make it a
regular instance method, not a class method.

module MigrationHelpers

def foreign_key(from_table, from_column, to_table)
constraint_name = "fk_#{from_table}_#{from_column}"

execute %{alter table #{from_table}
add constraint #{constraint_name}
foreign key (#{from_column})
references #{to_table}(id)}
end
end

You can now add this to any migration by adding the following lines to the top
of your migration file.

P require "migration_helpers"
class CreateLineltems < ActiveRecord::Migration

> extend MigrationHelpers

The require line brings the module definition into the migration’s code, and the
extend line adds the methods in the MigrationHelpers module into the migra-
tion as class methods. You can use this technique to develop and share any
number of migration helpers.

(And, if you’d like to make your life even easier, someone has written a plugin®
that automatically handles adding foreign key constraints.)

16.6 When Migrations Go Bad

Migrations suffer from one serious problem. The underlying DDL statements
that update the database schema are not transactional. This isn’t a failing in
Rails—most databases just don’t support the rolling back of create table, alter
table, and other DDL statements.

Let’s look at a migration that tries to add two tables to a database.

class ExampleMigration < ActiveRecord::Migration
def self.up
create_table :one do ...
end
create_table :two do ...
end
end

3. http://www.redhillconsulting.com.au/rails_plugins.html

http://www.redhillconsulting.com.au/rails_plugins.html
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=280

SCHEMA MANIPULATION OUTSIDE MIGRATIONS <« 281

def self.down
drop_table :two
drop_table :one
end
end

In the normal course of events, the up method adds tables one and two, and
the down method removes them.

But what happens if there’s a problem creating the second table? We’ll end up
with a database containing table one but not table fwo. We can fix whatever
the problem is in the migration, but now we can’t apply it—if we try, it will fail
because table one already exists.

We could try to roll the migration back, but that won't work: because the
original migration failed, the schema version in the database wasn’t updated,
so Rails won't try to roll it back.

At this point, you could mess around and manually change the schema infor-
mation and drop table one. But it probably isn’t worth it. Our recommendation
in these circumstances is simply to drop the entire database, re-create it, and
apply migrations to bring it back up-to-date. You'll have lost nothing, and
you’ll know you have a consistent schema.

All this discussion suggests that migrations are dangerous to use on produc-
tion databases. I suggest that as a minimum you should back any production
database up before running a migration against it. You’ll need to research on
your own how to make a migration run in production—I'd rather not say here.

16.7 Schema Manipulation Outside Migrations

All of the migration methods described so far in this chapter are also available
as methods on Active Record connection objects and so are accessible within
the models, views, and controllers of a Rails application.

For example, you might have discovered that a particular long-running report
runs a lot faster if the orders table has an index on the city column. However,
that index isn’t needed during the day-to-day running of the application, and
tests have shown that maintaining it slows the application appreciably.

Let’s write a method that creates the index, runs a block of code, and then
drops the index. This could be a private method in the model or could be
implemented in a library.
def run_with_index(column)
connection.add_index(:orders, column)
begin
yield

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=281

MANAGING MIGRATIONS <« 282

ensure
connection.remove_index(:orders, column)
end
end

The statistics-gathering method in the model can use this as follows.

def get_city_statistics
run_with_index(:city) do
.. calculate stats
end
end

16.8 Managing Migrations

There’s a downside to migrations. Over time, your schema definition will be
spread across a number of separate migration files, with many files potentially
affecting the definition of each table in your schema. When this happens, it
becomes difficult to see exactly what each table contains. Here are some sug-
gestions for making life easier.

One answer is to look at the file db/schema.rb. After a migration is run, this file
will contain the entire database definition in Ruby form.

Alternatively, some teams don’'t use separate migrations to capture all the
versions of a schema. Instead, they keep a migration file per table and other
migration files to load development data into those tables. When they need
to change the schema (say to add a column to a table), they edit the existing
migration file for that table. They then drop and re-create the database and
reapply all the migrations. Following this approach, they can always see the
total definition of each table by looking at that table’s migration file.

To make this work in practice, each member of the team needs to keep an
eye on the files that are modified when updating their local source code from
the project’s repository. When a migration file changes, it's a sign that the
database schema needs to be re-created.

Although it seems like this scheme flies against the spirit of migrations, it
actually works well in practice.

Another approach is to use migrations the way we described earlier in the
chapter, creating a new migration for each change to the schema. To keep
track of the schema as it evolves, you can use the annotate_models plugin.
When run, this plugin looks at the current schema and adds a description of
each table to the top of the model file for that table.

Install the annotate_models plugin using the following command (which has
been split onto two lines to make it fit the page).

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=282

MANAGING MIGRATIONS

depot> ruby script/plugin install \
http://svn.pragprog.com/Public/plugins/annotate_models

Once installed, you can run it at any time using
depot> rake annotate_models

After this completes, each model source file will have a comment block that
documents the columns in the corresponding database table. For example, in
our Depot application, the file line_item.ro would start with

Schema as of June 12, 2006 15:45 (schema version 7)
#

Table name: Tine_items

#

dd rinteger(11) not null, primary key
product_id :integer(ll) default(0), not null

order_id rinteger(11) default(0), not null

quantity rinteger(11) default(0), not null

total_price :integer(ll) default(0), not null

#

class Lineltem < ActiveRecord::Base
...

If you subsequently change the schema, just rerun the Rake task: the com-
ment block will be updated to reflect the current state of the database.

<« 283

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=283

Chapter 17

]
'

Active Record Part I:
w
Active Record is the object-relational mapping (ORM) layer supplied with Rails.

In this chapter, we’ll look at the basics—connecting to databases, mapping
tables, and manipulating data. We’ll look at using Active Record to manage

table relationships in the next chapter and dig into the Active Record object
life cycle (including validation and filters) in the chapter after that.

Active Record closely follows the standard ORM model: tables map to classes,
rows to objects, and columns to object attributes. It differs from most other
ORM libraries in the way it is configured. By using a sensible set of defaults,
Active Record minimizes the amount of configuration that developers perform.
To illustrate this, here’s a stand-alone program that uses Active Record to
wrap a table of orders in a MySQL database. After finding the order with a
particular id, it modifies the purchaser’s name and saves the result back in
the database, updating the original row.!

require "rubygems"
require_gem "activerecord"

ActiveRecord: :Base.establish_connection(:adapter => "mysql",
:host => "localhost", :database => "railsdb")

class Order < ActiveRecord::Base
end

order = Order.find(123)
order.name = "Dave Thomas"
order.save

1. The examples in this chapter connect to various MySQL databases on the machines we used
while writing this book. You'll need to adjust the connection parameters to get them to work with
your database. We discuss connecting to a database in Section 17.4, Connecting to the Database,
on page 291.

TABLES AND CLASSES < 285

That’s all there is to it—in this case no configuration information (apart from
the database connection stuff) is required. Somehow Active Record figured out
what we needed and got it right. Let’s have a look at how this works.

17.1 Tables and Classes

When you create a subclass of ActiveRecord::Base, you're creating something
that wraps a database table. By default, Active Record assumes that the name
of the table is the plural form of the name of the class. If the class name con-
tains multiple capitalized words, the table name is assumed to have under-
scores between these words. Some irregular plurals are handled.

Class Name Table Name Class Name Table Name
Order orders Lineltem line_items
TaxAgency tax_agencies Person people
Batch batches Datum data
Diagnosis diagnoses Quantity quantities

These rules reflect DHH’s philosophy that class names should be singular
while the names of tables should be plural. If you don’t like this behavior, you
can change it using the set_table_name directive.

class Sheep < ActiveRecord::Base

set_table_name "sheep" # Not "sheeps"
end

class Order < ActiveRecord::Base
set_table_name "ord_rev99 x" # Wrap a legacy table...
end

If you don’t like methods called set_xxx, there’s also a more direct form.

class Sheep < ActiveRecord::Base
self.table_name = "sheep"
end

17.2 Columns and Attributes

Active Record objects correspond to rows in a database table. The objects have
attributes corresponding to the columns in the table. You probably noticed
that our definition of class Order didn’t mention any of the columns in the
orders table. That’s because Active Record determines them dynamically at
runtime. Active Record reflects on the schema inside the database to configure
the classes that wrap tables.?

2. This isn’t strictly true, because a model may have attributes that aren’t part of the schema.
We'll discuss attributes in more depth in the next chapter, starting on page 381.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=285

COLUMNS AND ATTRIBUTES <« 286

7 N

@ David Says...
Where Are My Attributes?

The notion of a database administrator (DBA) as a separate role from pro-
grammer has led some developers to see strict boundaries between code and
schema. Active Record blurs that distinction, and no other place is that more
apparent than in the lack of explicit attribute definitions in the model.

But fear not. Practice has shown that it makes little difference whether you're
looking at a database schema, a separate XML mapping file, or inline
attributes in the model. The composite view is similar to the separations already
happening in the Model-View-Control pattern—just on a smaller scale.

Once the discomfort of treatfing the table schema as part of the model def-
inition has dissipated, you'll start to realize the benefits of keeping DRY. When
you need to add an attribute to the model, you simply create a new migration
and reload the application.

Taking the “build” step out of schema evolution makes it just as agile as the rest
of the code. It becomes much easier to start with a small schema and extend
and change it as needed.

In the Depot application, our orders table is defined by the following migration.

Download depot_r/db/migrate/005_create_orders.rb

def self.up
create_table :orders do |t]
t.column :name, :string
t.column :address, :text
t.column :email, :string
t.column :pay_type, :string, :limit => 10
end

We've already written an Order model class as part of the Depot application.
Let’'s use the handy-dandy script/console command to play with it. First, we’ll
ask for a list of column names.

depot> ruby script/console

Loading development environment.

>> Order.column_names
=> ["id", "name", "address", "email", "pay_type"]

Then we’ll ask for the details of the pay_type column.

>> Order.columns_hash["pay_type"]
=> #<ActiveRecord: :ConnectionAdapters: :MysqlColumn:0x23d8b5c
@sql_type="varchar(10)", @default=nil, @name="pay_type",

http://media.pragprog.com/titles/rails2/code/depot_r/db/migrate/005_create_orders.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=286

COLUMNS AND ATTRIBUTES <« 287

SQL Type Ruby Class SQL Type Ruby Class
int, integer Fixnum float, double Float
decimal, numeric BigDecimal' char, varchar, string String
interval, date Date datetime, time Time

clob, blob, text String boolean see text

1 Decimal and numeric columns are mapped to integers when their scale is 0

Figure 17.1: Mapping SQL Types to Ruby Types

@number=false, @limit=10, @text=true, @type=:string, @null=true,
@primary=false>

Notice that Active Record has gleaned a fair amount of information about the
pay_type column. It knows that it’s a string of at most 10 characters, it has no
default value, it isn’t the primary key, and it may contain a null value. This
information was obtained by asking the underlying database the first time we
tried to use the Order class.

Figure 17.1 shows the mapping between SQL types and their Ruby representa-
tion. Decimal columns are slightly tricky: if the schema specifies columns with
no decimal places, they are mapped to integers; otherwise they are mapped to
Ruby BigDecimal objects, ensuring that no precision is lost.

Accessing Rows and Attributes

Active Record classes correspond to tables in a database. Instances of a class
correspond to the individual rows in a database table. Calling Order.find(1), for
instance, returns an instance of an Order class containing the data in the row
with the primary key of 1.

The attributes of an Active Record instance generally correspond to the data
in the corresponding row of the database table. For example, our orders table
might contain the following data.

depot> mysql -u root depot_development
mysql> select * from orders 1imit 1;

et EELEE PRt e EE TR oo LT +
| id | name | address | email | pay_type |
et EELEE PRt e EE TR oo LT +
| 1 | Dave Thomas | 123 Main St | customer@pragprog.com | check |
et EELEE PRt e EE TR oo LT +

1 row in set (0.00 sec)

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=287

COLUMNS AND ATTRIBUTES <« 288

If we fetched this row into an Active Record object, that object would have five
attributes. The id attribute would be 1 (a Fixnum), the name attribute the string
"'Dave Thomas', and so on.

You access these attributes using accessor methods. Rails automatically con-
structs both attribute readers and attribute writers when it reflects on the
schema.

o = Order.find(1)

puts o.name #=> "Dave Thomas"
o.name = "Fred Smith" # set the name

Setting the value of an attribute does not change anything in the database—
you must save the object for this change to become permanent.

The value returned by the attribute readers is cast by Active Record to an
appropriate Ruby type if possible (so, for example, if the database column is a
time stamp, a Time object will be returned). If you want to get the raw value of
an attribute, append _before_type_cast to its name, as shown in the following
code.

account.balance_before_type_cast #=> "123.4", a string
account.release_date_before_type_cast #=> "20050301"

Inside the code of the model, you can use the read_attribute and write_attribute
private methods. These take the attribute name as a string parameter.

Boolean Attributes

Some databases support a boolean column type, and others don’t. This makes
it hard for Active Record to create an abstraction for booleans. For exam-
ple, if the underlying database has no boolean type, some developers use a
char(1) column containing "t” or “f” to represent true or false. Others use inte-
ger columns, where O is false and 1 is true. Even if the database supports
boolean types directly (such as MySQL and its bool column type), they might
just be stored as O or 1 internally.

The problem is that in Ruby the number 0 and the string “f" are both inter-
preted as true values in conditions.® This means that if you use the value of
the column directly, your code will interpret the column as true when you
intended it to be false.

DON'T DO THIS

user = Users.find_by_name("Dave")

if user.superuser

grant_privileges
end

3. Ruby has a simple definition of truth. Any value that is not nil or the constant false is true.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=288

PRIMARY KEYS AND IDs <« 289

To query a column as a boolean value in a condition, you must append a
question mark to the column’s name.
INSTEAD, DO THIS
user = Users.find_by_name("Dave")
if user.superuser?
grant_privileges
end

This form of attribute accessor looks at the column’s value. It is interpreted
as false only if it is the number zero; one of the strings 0", 'f", "false’, or " (the
empty string); a nil; or the constant false. Otherwise it is interpreted as true.

If you work with legacy schemas or have databases in languages other than
English, the definition of truth in the previous paragraph may not hold. In
these cases, you can override the built-in definition of the predicate methods.
For example, in Dutch, the field might contain J or N (for Ja or Nee). In this
case, you could write
class User < ActiveRecord::Base

def superuser?

self.superuser == 'J'
end

.. .
end

17.3 Primary Keys and IDs

If you've been looking at the underlying database tables for the Depot applica-
tion, you’ll have noticed that each has an integer primary key column named
id. By default, a Rails migration adds this when you use the create_table
method. This is an Active Record convention.

“But wait!” you cry. “Shouldn’t the primary key of my orders table be the order
number or some other meaningful column? Why use an artificial primary key
such as id?”

The reason is largely a practical one—the format of external data may change
over time. For example, you might think that the ISBN of a book would make
a good primary key in a table of books. After all, ISBNs are unique. But as this
particular book is being written, the publishing industry in the United States
is gearing up for a major change as additional digits are added to all ISBNs.

If we'd used the ISBN as the primary key in a table of books, we’'d have to
update each row to reflect this change. But then we’d have another problem.
There’ll be other tables in the database that reference rows in the books table
via the primary key. We can’t change the key in the books table unless we first
go through and update all of these references. And that will involve dropping
foreign key constraints, updating tables, updating the books table, and finally
reestablishing the constraints. All in all, this is something of a pain.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=289

PRIMARY KEYS AND IDs <« 290

The problems go away if we use our own internal value as a primary key. No
third party can come along and arbitrarily tell us to change our schema—we
control our own keyspace. And if something such as the ISBN does need to
change, it can change without affecting any of the existing relationships in
the database. In effect, we've decoupled the knitting together of rows from the
external representation of data in those rows.

Now there’s nothing to say that we can’t expose the id value to our end users.
In the orders table, we could externally call it an order id and print it on all the
paperwork. But be careful doing this—at any time some regulator may come
along and mandate that order ids must follow an externally imposed format,
and you’d be back where you started.

If you're creating a new schema for a Rails application, you'll probably want to
go with the flow and let it add the id primary key column to all your tables.*
However, if you need to work with an existing schema, Active Record gives you
a simple way of overriding the default name of the primary key for a table.

For example, you may be working with an existing legacy schema that uses
the ISBN as the primary key for the books table. You specify this in your Active
Record model using something like the following.

class Book < ActiveRecord::Base

self.primary_key = "isbn"
end

Normally, Active Record takes care of creating new primary key values for
records that you create and add to the database—they’ll be ascending inte-
gers (possibly with some gaps in the sequence). However, if you override the
primary key column’s name, you also take on the responsibility of setting the
primary key to a unique value before you save a new row. Perhaps surpris-
ingly, you still set an attribute called id to do this. As far as Active Record is
concerned, the primary key attribute is always set using an attribute called id.
The primary_key= declaration sets the name of the column to use in the table.
In the following code, we use an attribute called id even though the primary
key in the database is isbn.

book = BadBook.new

book.id = "0-12345-6789"

book.title = "My Great American Novel"
book.save

...

book = BadBook.find("0-12345-6789")

puts book.title # => "My Great American Novel"

p book.attributes #=> {"isbn" =>"0-12345-6789",
"title"=>"My Great American Novel"}

4. As we'll see later, join tables are not included in this advice—they should not have an id column.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=290

CONNECTING TO THE DATABASE <« 291

Just to make life more confusing, the attributes of the model object have the
column names isbn and title—id doesn’t appear. When you need to set the pri-
mary key, use id. At all other times, use the actual column name.

Composite Primary Keys

A table that uses multiple columns to identify each row is said to have a com-
posite primary key. Rails does not support these tables, either when creating
them using migrations or when trying to use them with Active Record.

However, all is not lost. If you need composite primary keys to make Rails work
with a legacy schema, Google for some plugins. Folks are working on them.?

17.4 Connecting to the Database

Active Record abstracts the concept of a database connection, relieving the
application of dealing with the specifics of working with specific databases.
Instead, Active Record applications use generic calls, delegating the details
to a set of database-specific adapters. (This abstraction breaks down slightly
when code starts to make SQL-based queries, as we’ll see later.)

One way of specifying the connection is to use the establish_connection class
method.® For example, the following call creates a connection to a MySQL
database called railsdb on the server dbservercom using the given user name
and password. It will be the default connection used by all model classes.
ActiveRecord: :Base.establish_connection(

radapter => "mysql",

thost => "dbserver.com",

:database => "railsdb",

:username => '"railsuser",
:password => "railspw"

Adapter-Specific Information

Active Record comes with support for the DB2, Firebird, Frontbase, MySQL,
Openbase, Oracle, Postgres, SQLite, SQL Server, and Sybase databases (and
this list will grow). Each adapter takes a slightly different set of connection
parameters, which we’ll list in the following (very boring) sections. As always
with Rails, things are changing fast. I recommend you visit the Rails wiki at
http://wiki.rubyonrails.org/rails and check out the latest information on database
adapters.

5. Such as Nic Williams at htfp://compositekeys.rubyforge.org/
6. In full-blown Rails applications, there’s another way of specifying connections. We describe it
on page 239.

http://wiki.rubyonrails.org/rails
http://compositekeys.rubyforge.org/
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=291

CONNECTING TO THE DATABASE <« 292

DB2 Adapter

Requires: Ruby DB2 library. IBM alphaworks recently released a Starter Tool-
kit for Rails that includes a copy of DB2 Express, its Ruby driver (called
IBM DB2), and a Rails adapter. Alternatively, you can use Michael Neumann'’s
ruby-db2 driver, available as part of the DBI project on RubyForge.”

Connection parameters:

radapter => "db2", # (or ibm-db2 for the IBM adapter)
:database => "railsdb",
:username => "optional",
:password => "optional",
:schema => "optional"”

Firebird Adapter
Requires: the FireRuby library (version 0.4 or greater), installable using

depot> gem install fireruby

Connection parameters:
radapter => "firebird",
:database => "railsdb",
:username => "optional",
:password => "optional",
rhost => "optional"
rport => optional,
:service => "optional"”
:charset => "optional"”

Frontbase Adapter
Requires: ruby-frontbase (version 1.0 or later), installable using

depot> gem install ruby-frontbase

Connection parameters:

radapter => "frontbase",
:database = "railsdb",
:username => "optional",
:password => "optional",
iport => port,

rhost => "optional",
:dbpassword => "optional",

:session_name => "optional"

MySQL Adapter

Requires: technically, Rails needs no additional external library to talk to a
MySQL database, because it comes with its own Ruby library that connects to
a MySQL database. However, this library performs poorly, so we recommend
installing the low-level C binding to MySQL.

depot> gem install mysql

7. http://rubyforge.org/projects/ruby-dbi/

http://rubyforge.org/projects/ruby-dbi/
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=292

CONNECTING TO THE DATABASE <« 293

The :socket parameter seems to cause a lot of problems. This is a reflection of
some poor implementation decisions in MySQL itself. When you build MySQL,
you hardwire into it the location of a socket file that clients use to talk with the
server. If you've used different package management systems to install MySQL
over time, you may find that this socket will be configured to be in different
locations. If you build your Ruby libraries under one configuration and then
reinstall MySQL, those libraries may no longer work, because the socket may
have moved. The :socket parameter allows you to override the location built
into the Ruby libraries and point to the current location of the socket file.

You can determine the location of the socket file from the command line using
the command

depot> mysql_config --socket

Connection parameters:

:adapter => "mysql"”,
:database => "railsdb",

:username => "optional", # defaults to 'root'
:password => "optional",

:socket => "path to socket",

rport => optional

:encoding => "utf8", "latinl",

Use the following parameters to connect to a MySQL
server using a secure SSL connection. To use SSL with no
client certificate, set :sslca to "/dev/null”

:sslkey => "path to key file",

:sslcert => "path to certificate file"

:sslca => "path to certificate authority file"

:sslcapath => "directory containing trusted SSL CA certificates",
:sslcipher => "list of allowable ciphers"

Openbase Adapter

Requires: Ruby/OpenBase, from htfp://ruby-openbase.rubyforge.org/.

Connection parameters:
:adapter => "openbase",
:database => "railsdb",
:username => "optional",
:password => "optional",
:host => "optional"”

http://ruby-openbase.rubyforge.org/
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=293

CONNECTING TO THE DATABASE

Oracle Adapter
Requires: ruby-oci8, available from RubyForge.?

Connection parameters:

:adapter => "oracle", # used to be oci8
:database => "railsdb",
:username => "optional",
:password => "optional",

Postgres Adapter
Requires: The ruby-postgres gem, installed using

depot> gem install ruby-postgres

Connection parameters:
:adapter => "postgresql",
:database => "railsdb",
:username => "optional",
:password => "optional",

:port => 5432,
:host => "optional"”,
:min_messages => optional,

:schema_search_path => "optional" (aka :schema_order),
:allow_concurrency => true | false,
rencoding => "encoding",

SQ@Lite Adapter

Rails can use both SQLite2 and SQLite3 databases: use a connection adapter
of sqlite for the former, sqlite3 for the latter. You’ll need the corresponding Ruby
interface library.

depot> gem install sqlite-ruby # SQLite2

depot> gem install sqlite3-ruby # SQLite3

Connection parameters:

radapter => "sqglite", # or ‘'sqlite3"
:database => "railsdb"

SQ@L Server Adapter
Requires: Ruby’s DBI library, along with its support for either ADO or ODBC
database drivers.®

Connection parameters:

:adapter => "sqlserver",

:mode => "ado", # or "odbc"
:database => "required for ado",

:host => "localhost",

:dsn => "required for odbc"

8. http://rubyforge.org/projects/ruby-oci8/
9. http://rubyforge.org/projects/ruby-dbi/

http://rubyforge.org/projects/ruby-oci8/
http://rubyforge.org/projects/ruby-dbi/
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=294

CONNECTING TO THE DATABASE <« 295

:username => "optional",
:password => "optional",
rautocommit => true,

Sybase Adapter

Requires: sybase-ctlib library.!°

Connection parameters:

radapter => "sybase",
:database => "railsdb",
rhost => "host",
:username => "optional",
:password => "optional",
:numconvert => true

If the :numconvert parameter is true (the default), the adapter will not quote
values that look like valid integers.

Connections and Models

Connections are associated with model classes. Each class inherits the con-
nection of its parent. Because ActiveRecord::Base is the base class of all the
Active Record classes, setting a connection for it sets the default connection
for all the Active Record classes you define. However, you can override this
when you need to do so.

In the following example, most of our application’s tables are in a MySQL
database called online. For historical reasons (are there any other?), the cus-
tomers table is in the backend database. Because establish_connection is a class
method, we can invoke it directly within the definition of class Customer.

ActiveRecord: :Base.estabTlish_connection(
:adapter => "mysql",
:host => "dbserver.com",
:database => "online",
:username => "groucho",
:password => "swordfish")

class Lineltem < ActiveRecord::Base
...
end

class Order < ActiveRecord::Base
...
end

class Product < ActiveRecord::Base
...
end

10. http://raa.ruby-lang.org/project/sybase-ctlib/

http://raa.ruby-lang.org/project/sybase-ctlib/
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=295

CRUD—CREATE, READ, UPDATE, DELETE <« 296

class Customer < ActiveRecord::Base

establish_connection(
:adapter => "mysql"”,
:host => "dbserver.com",
:database => "backend",
:username => "chicho",
:password => "piano")

...
end

When we wrote the Depot application earlier in this book, we didn’t use the
establish_connection method. Instead, we specified the connection parameters
inside the file config/database.yml. For most Rails applications this is the pre-
ferred way of working. Not only does it keep all connection information out of
the code, it also works better with the Rails testing and deployment schemes.
All of the parameters listed previously for particular connection adapters can
also be used in the YAML file. See Section 14.3, Configuring Database Connec-
tions, on page 239 for details.

Finally, you can combine the two approaches. If you pass a symbol to estab-
lish_connection, Rails looks for a section in database.yml with that name and
bases the connection on the parameters found there. This way you can keep
all connection details out of your code.

17.5 CRUD—Create, Read, Update, Delete

Active Record makes it easy to implement the four basic database operations:
create, read, update, and delete.

In this section we’ll be working with our orders table in a MySQL database. The
following examples assume we have a basic Active Record model for this table.

class Order < ActiveRecord::Base
end

Creating New Rows

In the object-relational paradigm, tables are represented as classes, and rows
in the table correspond to objects of that class. It seems reasonable that we
create rows in a table by creating new objects of the appropriate class. We can
create new objects representing rows in our orders table by calling Order.new.
We can then fill in the values of the attributes (corresponding to columns in
the database). Finally, we call the object’s save method to store the order back
into the database. Without this call, the order would exist only in our local
memory.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=296

CRUD—CREATE, READ, UPDATE, DELETE €@ 297

Download el/ar/new_examples.rb

an_order = Order.new

an_order.name = "Dave Thomas"
an_order.email = "dave@pragprog.com"
an_order.address = "123 Main St"
an_order.pay_type = "check"

an_order.save

Active Record constructors take an optional block. If present, the block is
invoked with the newly created order as a parameter. This might be useful if
you wanted to create and save away an order without creating a new local
variable.

Download el/ar/new_examples.rb

Order.new do |o]
0.name = "Dave Thomas"
.
0.save

end

Finally, Active Record constructors accept a hash of attribute values as an
optional parameter. Each entry in this hash corresponds to the name and
value of an attribute to be set. As we’ll see later in the book, this is useful
when storing values from HTML forms into database rows.

Download el/ar/new_examples.rb

an_order = Order.new(
:name => "Dave Thomas",
remail => "dave@pragprog.com",
:address => "123 Main St",
rpay_type => "check™)
an_order.save

Note that in all of these examples we did not set the id attribute of the new
row. Because we used the Active Record default of an integer column for the
primary key, Active Record automatically creates a unique value and sets the id

attribute as the row is saved. We can subsequently find this value by querying
the attribute.

Download el/ar/new_examples.rb

an_order = Order.new

an_order.name = "Dave Thomas"

...

an_order.save

puts "The ID of this order is #{an_order.id}"

The new constructor creates a new Order object in memory; we have to remem-
ber to save it to the database at some point. Active Record has a convenience
method, create, that both instantiates the model object and stores it into the
database.

http://media.pragprog.com/titles/rails2/code/e1/ar/new_examples.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/new_examples.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/new_examples.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/new_examples.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=297

CRUD—CREATE, READ, UPDATE, DELETE

Download el/ar/new_examples.rb

an_order = Order.create(
:name => "Dave Thomas",
remail => "dave@pragprog.com",
:address => "123 Main St",
rpay_type => "check™)

You can pass create an array of attribute hashes; it'll create multiple rows in
the database and return an array of the corresponding model objects.

Download el/ar/new_examples.rb

orders = Order.create(

[{ :name => "Dave Thomas",
remail => "dave@pragprog.com",
:address => "123 Main St",
rpay_type => "check"

1,

{ :name => "Andy Hunt",
remail => "andy@pragprog.com",
:address => "456 Gentle Drive",
rpay_type => "po”

} 1O

The real reason that new and create take a hash of values is that you can
construct model objects directly from form parameters.

order = Order.new(params[:order])

Reading Existing Rows

Reading from a database involves first specifying which particular rows of data
you are interested in—you’ll give Active Record some kind of criteria, and it will
return objects containing data from the row(s) matching the criteria.

The simplest way of finding a row in a table is by specifying its primary key.
Every model class supports the find method, which takes one or more primary
key values. If given just one primary key, it returns an object containing data
for the corresponding row (or throws a RecordNotFound exception). If given mul-
tiple primary key values, find returns an array of the corresponding objects.
Note that in this case a RecordNotFound exception is returned if any of the ids
cannot be found (so if the method returns without raising an error, the length
of the resulting array will be equal to the number of ids passed as parameters).
an_order = Order.find(27) # find the order with id == 27

Get a list of product ids from a form, then

sum the total price

product_list = params[:product_ids]
total = Product.find(product_1list).sum(&:price)

http://media.pragprog.com/titles/rails2/code/e1/ar/new_examples.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/new_examples.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=298

CRUD—CREATE, READ, UPDATE, DELETE <« 299

4 N

@ David Says...
— 1o Raise, or Not to Raise?

When you use a finder driven by primary keys, you're looking for a particular
record. You expect it to exist. A call to Person.find(5) is based on our knowledge
of the person table. We want the row with an id of 5. If this call is unsuccessful—if
the record with the id of 5 has been destroyed—were in an exceptional situa-
tion. This mandates the raising of an exception, so Rails raises RecordNotFound.

On the other hand, finders that use criteria to search are looking for a match.
So. Person.find(first, :conditions=>"name="Dave™) is the equivalent of felling the
database (as a black box), “Give me the first person row that has the name
Dave.” This exhibits a distinctly different approach to retrieval; we're not cer-
tain up front that we’ll get a result. It's entirely possible the result set may be
empty. Thus, returning nil in the case of finders that search for one row and an
empty array for finders that search for many rows is the natural, nonexceptional
response.

Often, though, you need to read in rows based on criteria other than their
primary key value. Active Record provides a range of options for performing
these queries. We'll start by looking at the low-level find method and later move
on to higher-level dynamic finders.

So far we've just scratched the surface of find, using it to return one or more
rows based on ids that we pass in as a parameter. However, find has something
of a split personality. If you pass in one of the symbols first or :all as the first
parameter, humble old find blossoms into a powerful searching machine.

The :first variant of find returns the first row that matches a set of criteria, while
the :all form returns an array of matching rows. Both of these forms take a set
of keyword parameters that control what they do. But before we look at these,
we need to spend a page or two explaining how Active Record handles SQL.

S@L and Active Record

To illustrate how Active Record works with SQL, let’s look at the :conditions
parameter of the find(:all, :conditions =>...) method call. This :conditions parameter
determines which rows are returned by the find; it corresponds to an SQL where
clause. For example, to return a list of all orders for Dave with a payment type
of “po,” you could use

pos = Order.find(:all,
:conditions => "name = 'Dave' and pay_type = 'po'")

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=299

CRUD—CREATE, READ, UPDATE, DELETE < 300

The result will be an array of all the matching rows, each neatly wrapped in
an Order object. If no orders match the criteria, the array will be empty.

That’s fine if your condition is predefined, but how do you handle the situation
where the name of the customer is set externally (perhaps coming from a web
form)? One way is to substitute the value of that variable into the condition
string.

get the 1imit amount from the form

name = params[:name]

DON'T DO THIS!!!

pos = Order.find(:all,
:conditions => "name = '#{name}' and pay_type = 'po'")

As the comment suggests, this really isn’t a good idea. Why? It leaves your
database wide open to something called an SQL injection attack, which we
describe in more detail in Chapter 26, Securing Your Rails Application, on
page 600. For now, take it as a given that substituting a string from an exter-
nal source into an SQL statement is effectively the same as publishing your
entire database to the whole online world.

Instead, the safe way to generate dynamic SQL is to let Active Record handle
it. Wherever you can pass in a string containing SQL, you can also pass in
an array or a hash. Doing this allows Active Record to create properly escaped
SQ@QL, which is immune from SQL injection attacks. Let’s see how this works.

If you pass an array when Active Record is expecting SQL, it treats the first
element of that array as a template for the SQL to generate. Within this SQL
you can embed placeholders, which will be replaced at runtime by the values
in the rest of the array.

One way of specifying placeholders is to insert one or more question marks
in the SQL. The first question mark is replaced by the second element of the
array, the next question mark by the third, and so on. For example, we could
rewrite the previous query as

name = params[:name]

pos = Order.find(:all,
:conditions => ["name = ? and pay_type = 'po'", name])

You can also use named placeholders. Each placeholder is of the form :name,
and the corresponding values are supplied as a hash, where the keys corre-
spond to the names in the query.
name = params[:name]
pay_type = params[:pay_type]
pos = Order.find(:all,

:conditions => ["name = :name and pay_type = :pay_type",

{:pay_type => pay_type, :name => name}])

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=300

CRUD—CREATE, READ, UPDATE, DELETE <« 301

You can take this a step further. Because params is effectively a hash, you
can simply pass it all to the condition. If we have a form that can be used to
enter search criteria, we can use the hash of values returned from that form
directly.

pos = Order.find(:all,
:conditions => ["name = :name and pay_type = :pay_type", params[:order]])

As of Rails 1.2, you can take this even further. If you pass just a hash as the
condition, Rails generates a where clause where the hash keys are used as
column names and the hash values the values to match. Thus, we could have
written the previous code even more succinctly.

pos = Order.find(:all, :conditions => params[:order])

(Be careful with this latter form of condition: it takes all the key/value pairs
in the hash you pass in when constructing the condition.)

Regardless of which form of placeholder you use, Active Record takes great
care to quote and escape the values being substituted into the SQL. Use these
forms of dynamic SQL, and Active Record will keep you safe from injection
attacks.

Using Like Clauses
You might be tempted to do something like the following to use parameterized
like clauses in conditions:

Doesn't work
User.find(:all, :conditions => ["name Tike '?%'", params[:name]])

Rails doesn’t parse the SQL inside a condition and so doesn’t know that the
name is being substituted into a string. As a result, it will go ahead and add
extra quotes around the value of the name parameter. The correct way to do
this is to construct the full parameter to the like clause and pass that parameter
into the condition.

Works
User.find(:all, :conditions => ["name Tike ?", params[:name]+"%"1)

Power find()
Now that we know how to specify conditions, let’s turn our attention to the
various options supported by find(:first, ...) and findCall, ...).

It's important to understand that find(first, ...) generates an identical SQL query
to doing findC:all, ...) with the same conditions, except that the result set is
limited to a single row. We’ll describe the parameters for both methods in one
place and illustrate them using findC:all, ...). We’ll call find with a first parameter
of :first or :all the finder method.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=301

CRUD—CREATE, READ, UPDATE, DELETE <« 302

With no extra parameters, the finder effectively executes a select * from... state-
ment. The :all form returns all rows from the table, and :first returns one. The
order is not guaranteed (so Order.find(:first) will not necessarily return the first
order created by your application).

:conditions

As we saw in the previous section, the :conditions parameter lets you specify the
condition passed to the SQL where clause used by the find method. This condi-
tion can be a string containing SQL, an array containing SQL and substitution
values, or a hash. (From now on we won’t mention this explicitly—whenever
we talk about an SQL parameter, assume the method can accept either an
array or a string.)

daves_orders = Order.find(:all, :conditions => "name = 'Dave'")

name = params[:name]
other_orders = Order.find(:all, :conditions => ["name = ?", name])

yet_more = Order.find(:all,
:conditions => ["name = :name and pay_type = :pay_type",
params[:order]])
still_more = Order.find(:all, :conditions => :params[:order])

:order

SQL doesn’t guarantee that rows will be returned in any particular order
unless you explicitly add an order by clause to the query. The :order parameter
lets you specify the criteria you'd normally add after the order by keywords. For
example, the following query would return all of Dave’s orders, sorted first by
payment type and then by shipping date (the latter in descending order).
orders = Order.find(:all,

:conditions => "name = 'Dave'",
rorder => "pay_type, shipped_at DESC")

:limit

You can limit the number of rows returned by find(:all, ...) with the :limit parame-
ter. If you use the limit parameter, you'll probably also want to specify the sort
order to ensure consistent results. For example, the following returns the first
10 matching orders.

orders = Order.find(:all,

:conditions => "name = 'Dave'",
rorder => "pay_type, shipped_at DESC",
Timit = 10)

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=302

CRUD—CREATE, READ, UPDATE, DELETE <« 303

:offset

The :offset parameter goes hand in hand with the :limit parameter. It allows you
to specify the offset of the first row in the result set that will be returned by
find.

The view wants to display orders grouped into pages,
where each page shows page_size orders at a time.
This method returns the orders on page page_num (starting
at zero).
def Order.find_on_page(page_num, page_size)
find(:all,
:order => "id",
:1imit => page_size,
:offset => page_numxpage_size)
end

You can use :offset in conjunction with :limit to step through the results of a
query n rows at a time.

joins

’I.!he joins parameter to the finder method lets you specify a list of additional
tables to be joined to the default table. This parameter is inserted into the
SQL immediately after the name of the model’s table and before any condi-
tions specified by the first parameter. The join syntax is database-specific. The
following code returns a list of all line items for the book called Programming

Ruby.
LineItem.find(:all,
:conditions => "pr.title = 'Programming Ruby'",
:joins => "as 11 inner join products as pr on li.product_id = pr.id")

As we'll see in Chapter 18, Active Record: Relationships between Tables, on
page 324, you probably won’t use the :joins parameter of find very much—Active
Record handles most of the common intertable joins for you.

:select
By default, find fetches all the columns from the underlying database table—it

issues a select * from... to the database. Override this with the :select option,
which takes a string which will appear in place of the * in the select statement.

This option allows you to limit the values returned in cases where you need
only a subset of the data in a table. For example, your table of podcasts might
contain information on the title, speaker, and date and might also contain a
large blob containing the MP3 of the talk. If you just wanted to create a list of
talks, it would be inefficient to also load up the sound data for each row. The
:select option lets you choose which columns to load.

Tist = Talks.find(:all, :select => "title, speaker, recorded_on")

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=303

CRUD—CREATE, READ, UPDATE, DELETE < 304

The :select option also allows you to include columns from other tables. In
these so-called piggyback queries, your application can save itself the need
to perform multiple queries between parent and child tables. For example, a
blog table might contain a foreign key reference to a table containing author
information. If you wanted to list the blog entry titles and authors, you might
code something like the following. (This code, however, is incredibly bad Rails
code for a number of reasons. Please wipe it from your mind once you turn the
page.)

entries = Blog.find(:all)
entries.each do |entry|

author = Authors.find(entry.author_id)

puts "Title: #{entry.title} by: #{author.name}"
end

An alternative is to join the blogs and authors tables and to have the question
include the author name in the result set.
entries = Blog.find(:all,

:joins => "as b inner join authors as a on b.author_id = a.id")
:select => "#, a.name")

(Even better might be to use the :include option when you specify the relation-
ship between the model classes, but we haven’t talked about that yet.)

:readonly
If :readonly is set to true, Active Record objects returned by find cannot be stored
back into the database.

If you use the :joins or :select options, objects will automatically be marked
:readonly.

:from
The :from option lets you override the table name inserted into the select clause.

:group
The :group option adds a group by clause to the SQL generated by find.

summary = LineItem.find(:all,
:select => "sku, sum(amount) as amount"
rgroup => "sku'")

:lock

The :lock option takes either a string or the constant true. If you pass it a string,
it should be an SQL fragment in your database’s syntax that specifies a kind
of lock. With MySQL, for example, a share mode lock gives us the latest data

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=304

CRUD—CREATE, READ, UPDATE, DELETE <« 305

in a row and guarantees that no one else can alter that row while we hold the
lock. We could write code that debits an account only if there are sufficient
funds using something like the following.
Account.transaction do

ac = Account.find(id, :lock => "LOCK IN SHARE MODE™)

ac.balance -= amount if ac.balance > amount

ac.save
end

If you give :lock a value of true, the database’s default exclusive lock is obtained
(normally this will be 'for update'). You can often eliminate the need for this
kind of locking using transactions (discussed starting on page 384) and opti-
mistic locking (which starts on page 390).

There’s one additional parameter, :include, that kicks in only if you have asso-
ciations defined. We'll talk about it starting on page 361.

Finding Just One Row

The find(all, ...) method returns an array of model objects. If instead you want
just one object returned, use find(first, ...). This takes the same parameters as
the :all form, but the :limit parameter is forced to the value 1, so only one row
will be returned.

Download el/ar/find_examples.rb

return an arbitrary order
order = Order.find(:first)

return an order for Dave
order = Order.find(:first, :conditions => "name = 'Dave Thomas'")

return the Tlatest order for Dave

order = Order.find(:first,
:conditions => "name = 'Dave Thomas'",
:order => "id DESC")

If the criteria given to find(first, ...) result in multiple rows being selected from
the table, the first of these is returned. If no rows are selected, nil is returned.

Writing Your Own SQL

The find method constructs the full SQL query string for you. The method
find_by_sql lets your application take full control. It accepts a single parameter
containing an SQL select statement (or an array containing SQL and place-
holder values, as for find) and returns a (potentially empty) array of model
objects from the result set. The attributes in these models will be set from the

http://media.pragprog.com/titles/rails2/code/e1/ar/find_examples.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=305

CRUD—CREATE, READ, UPDATE, DELETE < 306

columns returned by the query. You'd normally use the select * form to return
all columns for a table, but this isn’t required.!!

Download el/ar/find_examples.rb

"

orders = Lineltem.find_by_sql("select Tine_items.* from line_items, orders +
" where order_id = orders.id +
and orders.name = 'Dave Thomas' ")

Only those attributes returned by a query will be available in the resulting
model objects. You can determine the attributes available in a model object
using the attributes, attribute_names, and attribute_present? methods. The first
returns a hash of attribute name/value pairs, the second an array of names,
and the third returns true if a named attribute is available in this model object.

Download el/ar/find_examples.rb

orders = Order.find_by_sql("select name, pay_type from orders')
first = orders[0]

p first.attributes

p first.attribute_names
p first.attribute_present?("address")

This code produces

{"name"=>"Dave Thomas", "pay_type"=>"check"}
["name”, "pay type"]
false

find_by_sql can also be used to create model objects containing derived column
data. If you use the as xxx SQL syntax to give derived columns a name in the
result set, this name will be used as the name of the attribute.

Download el/ar/find_examples.rb

items = LineItem.find_by_sql("select =,
" quantity*unit_price as total_price,
products.title as title
from 1ine_items, products
where Tine_items.product_id = products.id ")

+ + + +

11 = items[0]
puts "#{l1i.title}: #{li.quantity}x#{1i.unit_price} => #{11i.total_price}"

As with conditions, you can also pass an array to find_by_sqgl, where the first
element is a string containing placeholders. The rest of the array can be either
a hash or a list of values to be substituted.

Order.find_by_sql(["select =* from orders where amount > ?",
params[:amount]])

11. But if you fail to fetch the primary key column in your query, you won’t be able to write updated
data from the model back into the database. See Section 17.7, The Case of the Missing ID, on
page 322.

http://media.pragprog.com/titles/rails2/code/e1/ar/find_examples.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/find_examples.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/find_examples.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=306

CRUD—CREATE, READ, UPDATE, DELETE <« 307

4 N

Q David Says. ..

U But Isn’t SQL Dirty?

Ever since developers first wrapped relational databases with an object-
oriented layer, they’ve debated the question of how deep to run the abstrac-
tion. Some object-relational mappers seek to eliminate the use of SQL entirely,
hoping for object-oriented purity by forcing all queries through an OO layer.

Active Record does not. It was built on the notion that SQL is neither dirty nor
bad, just verbose in the trivial cases. The focus is on removing the need to deal
with the verbosity in those trivial cases (writing a 10-attribute insert by hand will
leave any programmer ftired) but keeping the expressiveness around for the
hard queries—the type SQL was created to deal with elegantly.

Therefore, you shouldn’t feel guilty when you use find_by_sqgl to handle either
performance bottlenecks or hard queries. Start out using the object-oriented
interface for productivity and pleasure, and then dip beneath the surface for
a close-to-the-metal experience when you need to do so.

In the old days of Rails, people frequently resorted to using find_by_sql. Since
then, all the options added to the basic find method mean that you can avoid
resorting to this low-level method.

Getting Column Statistics
Rails 1.1 adds the ability to perform statistics on the values in a column. For
example, given a table of orders, we can calculate

average = Order.average(:amount) # average amount of orders
max Order.maximum(:amount)

min = Order.minimum(:amount)
total = Order.sum(:amount)
number = Order.count

These all correspond to aggregate functions in the underlying database, but
they work in a database-independent manner. If you want to access database-
specific functions, you can use the more general-purpose calculate method. For
example, the MySQL std function returns the population standard deviation of
an expression. We can apply this to our amount column.

std_dev = Order.calculate(:std, :amount)

All the aggregation functions take a hash of options, very similar to the hash
that can be passed to find. (The count function is anomalous—we’ll look at it
separately.)

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=307

CRUD—CREATE, READ, UPDATE, DELETE <« 308

:conditions
Limits the function to the matched rows. Conditions can be specified in
the same format as for the find method.

;joins
Specifies joins to additional tables.

limit
Restricts the result set to the given number of rows. Useful only when
grouping results (which we’ll talk about shortly).

:order
Orders the result set (useful only with :group).

:having
Specifies the SQL HAVING ... clause.

:select
Nominates a column to be used in the aggregation (but this can simply
be specified as the first parameter to the aggregation functions).

«distinct (for count only)
Counts only distinct values in the column.

These options may be combined.

Order.minimum :amount
Order.minimum :amount, :conditions => "amount > 20"

These functions aggregate values. By default, they return a single result, pro-
ducing, for example, the minimum order amount for orders meeting some con-
dition. However, if you include the :group clause, the functions instead produce
a series of results, one result for each set of records where the grouping expres-
sion has the same value. For example, the following calculates the maximum
sale amount for each state.

result = Order.maximum :amount, :group => "state"
puts result #=> [["TX", 12345], ["NC", 3456], ...]

This code returns an ordered hash. You index it using the grouping element
('TX", "NC", ... in our example). You can also iterate over the entries in order
using each. The value of each entry is the value of the aggregation function.

The :order and :limit parameters come into their own when using groups. For
example, the following returns the three states with the highest orders, sorted
by the order amount.
result = Order.maximum :amount,

:group => "state",

Timit = 3,

:order => "max(amount) desc"

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=308

CRUD—CREATE, READ, UPDATE, DELETE <« 309

This code is no longer database independent—in order to sort on the aggre-
gated column, we had to use the MySQL syntax for the aggregation function
(moax, in this case).

Counting

We said that counting rows is treated somewhat differently. For historical rea-
sons, there are several forms of the count function—it takes zero, one, or two
parameters.

With no parameters, it returns the number of rows in the underlying table.

order_count = Order.count

If called with one or two parameters, Rails first determines whether either is
a hash. If not, it treats the first parameter as a condition to determine which
rows are counted.

result = Order.count "amount > 10"
resultl = Order.count ["amount > ?", minimum_purchase]

With two nonhash parameters, the second is treated as join conditions (just
like the :join parameter to find).

result = Order.count "amount > 10 and Tline_items.name Tlike 'rails%'",
"left join Tine_items on order_id = orders.id"

However, if count is passed a hash as a parameter, that hash is interpreted
just like the hash argument to the other aggregation functions.

Order.count :conditions => "amount > 10",
:group => "state"

You can optionally pass a column name before the hash parameter. This col-
umn name is passed to the database’s count function so that only rows with a
non-NULL value in that column will be counted.

Finally, Active Record defines the method count_by_sqgl that returns a single
number generated by an SQL statement (that statement will normally be a
select count(*) from...).

count = LineItem.count_by_sql("select count(*) "oy
" from line_items, orders "ot
" where Tline_items.order_id = orders.id " +
" and orders.name = 'Dave Thomas' ")

As with find_by_sql, count_by_sql is falling into disuse as the basic count function
becomes more sophisticated.

Dynamic Finders
Probably the most common search performed on databases is to return the
row or rows where a column matches a given value. A query might be return all

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=309

CRUD—CREATE, READ, UPDATE, DELETE <« 310

the orders for Dave, or get all the blog postings with a subject of “Rails Rocks.”
In many other languages and frameworks, you'd construct SQL queries to
perform these searches. Active Record uses Ruby’s dynamic power to do this
for you.

For example, our Order model has attributes such as name, email, and address.
We can use these names in finder methods to return rows where the corre-
sponding columns match some value.

Download el/ar/find_examples.rb

order = Order.find_by_name("Dave Thomas")
orders Order.find_al1_by_name("Dave Thomas")
order Order.find_al1_by_email(params['email'])

If you invoke a model’s class method where the method name starts find_by_ or
find_all_by_, Active Record converts it to a finder, using the rest of the method’s
name to determine the column to be checked. Thus the call to

order = Order.find_by_name("Dave Thomas", other args...)

is (effectively) converted by Active Record into

order = Order.find(:first,
:conditions => ["name = ?", "Dave Thomas"],
other_args...)

Similarly, calls to find_all_by_xxx are converted into matching find:all, ...) calls.

The magic doesn’t stop there. Active Record will also create finders that search
on multiple columns. For example, you could write

user = User.find_by_name_and_password(name, pw)

This is equivalent to

user = User.find(:first,
:conditions => ["name = ? and password = ?", name, pw])

To determine the names of the columns to check, Active Record simply splits
the name that follows the find_by_ or find_all_by_ around the string _and_. This
is good enough most of the time but breaks down if you ever have a column
name such as tax_and_shipping. In these cases, you’ll have to use conventional
finder methods.

Dynamic finders accept an optional hash of finder parameters, just like those
that can be passed to the conventional find method. If you specify :conditions
in this hash, these conditions are added to the underlying dynamic finder
condition.
five_texan_daves = User.find_all_by_name('dave',

:Timit => 5,

:conditions => "state = 'TX''")

http://media.pragprog.com/titles/rails2/code/e1/ar/find_examples.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=310

CRUD—CREATE, READ, UPDATE, DELETE <« 311

There are times when you want to ensure you always have a model object to
work with. If there isn’t one in the database, you want to create one. Dynamic
finders can handle this. Calling a method whose name starts find_or_initialize_by_
or find_or_create_by_ will call either new or create on the model class if the finder
would otherwise return nil. The new model object will be initialized so that its
attributes corresponding to the finder criteria have the values passed to the
finder method, and it will have been saved to the database if the create variant
is used.

cart = Cart.find_or_initialize_by_user_id(user.id)

cart.items << new_item
cart.save

And, no, there isn’'t a find_by_ form that lets you use _or_ rather than _and_
between column names.

Reloading Data

In an application where the database is potentially being accessed by multiple
processes (or by multiple applications), there’s always the possibility that a
fetched model object has become stale—someone may have written a more
recent copy to the database.

To some extent, this issue is addressed by transactional support (which we
describe on page 384). However, there’ll still be times where you need to refresh
a model object manually. Active Record makes this easy—simply call its reload
method, and the object’s attributes will be refreshed from the database.
stock = Market.find_by_ticker("RUBY")
Toop do

puts "Price = #{stock.price}"

sleep 60

stock.reload
end

In practice, reload is rarely used outside the context of unit tests.

Updating Existing Rows
After such a long discussion of finder methods, you'll be pleased to know that
there’s not much to say about updating records with Active Record.

If you have an Active Record object (perhaps representing a row from our orders
table), you can write it to the database by calling its save method. If this object
had previously been read from the database, this save will update the existing
row; otherwise, the save will insert a new row.

If an existing row is updated, Active Record will use its primary key column
to match it with the in-memory object. The attributes contained in the Active
Record object determine the columns that will be updated—a column will be

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=311

CRUD—CREATE, READ, UPDATE, DELETE <« 312

updated in the database even if its value has not changed. In the following
example, all the values in the row for order 123 will be updated in the database

table.
order = Order.find(123)
order.name = "Fred"

order.save

However, in the following example the Active Record object contains just the
attributes id, name, and paytype—only these columns will be updated when
the object is saved. (Note that you have to include the id column if you intend
to save a row fetched using find_by_sql.)

orders = Order.find_by_sql("select id, name, pay_type from orders where id=123")
first = orders[0]

first.name = "Wilma"
first.save

In addition to the save method, Active Record lets you change the values of
attributes and save a model object in a single call to update_attribute.

order = Order.find(123)
order.update_attribute(:name, "Barney")

order = Order.find(321)
order.update_attributes(:name => "Barney",
:email => "barney@bedrock.com")

The update_atftributes method is most commonly used in controller actions
where it merges data from a form into an existing database row.
def save_after_edit
order = Order.find(params[:id])
if order.update_attributes(params[:order])
redirect_to :action => :index
else
render :action => :edit
end
end

We can combine the functions of reading a row and updating it using the
class methods update and update_all. The update method takes an id parameter
and a set of attributes. It fetches the corresponding row, updates the given
attributes, saves the result to the database, and returns the model object.

order = Order.update(12, :name => "Barney", :email => "barney@bedrock.com")

You can pass update an array of ids and an array of attribute value hashes,
and it will update all the corresponding rows in the database, returning an
array of model objects.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=312

CRUD—CREATE, READ, UPDATE, DELETE <« 313

Finally, the update_all class method allows you to specify the set and where
clauses of the SQL update statement. For example, the following increases the
prices of all products with Java in their title by 10%.

result = Product.update_all("price = 1.1#price"”, "title 1like '%Java%'")

The return value of update_all depends on the database adapter; most (but not
Oracle) return the number of rows that were changed in the database.

save, save!, create, and create!
It turns out that there are two versions of the save and create methods. The
variants differ in the way they report errors.

¢ save returns true if the record was saved; nil otherwise.

¢ save! returns true if the save was successful; raises an exception other-
wise.

* create returns the Active Record object regardless of whether it was suc-
cessfully saved. You'll need to check the object for validation errors if you
want to determine whether the data was written.

¢ create! returns the Active Record object on success; raises an exception
otherwise.

Let’s look at this in a bit more detail.

Plain old save returns true if the model object is valid and can be saved.

if order.save

all oK
else

validation failed
end

It's up to you to check on each call to save that it did what you expected.
The reason Active Record is so lenient is that it assumes that save is called
in the context of a controller’s action method and that the view code will be
presenting any errors back to the end user. And for many applications, that’s
the case.

However, if you need to save a model object in a context where you want to
make sure that all errors are handled programmatically, you should use save!.
This method raises a Recordinvalid exception if the object could not be saved.
begin

order.save!
rescue RecordInvalid => error

validation failed
end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=313

AGGREGATION AND STRUCTURED DATA <« 314

Deleting Rows

Active Record supports two styles of row deletion. First, it has two class-level
methods, delete and delete_all, that operate at the database level. The delete
method takes a single id or an array of ids and deletes the corresponding row(s)
in the underlying table. delete_all deletes rows matching a given condition (or
all rows if no condition is specified). The return values from both calls depend
on the adapter but are typically the number of rows affected. An exception is
not thrown if the row doesn’t exist prior to the call.

Order.delete(123)

User.delete([2,3,4,5])
Product.delete_all1(["price > ?", @expensive_price])

The various destroy methods are the second form of row deletion provided by
Active Record. These methods all work via Active Record model objects.

The destroy instance method deletes from the database the row correspond-
ing to a particular model object. It then freezes the contents of that object,
preventing future changes to the attributes.

order = Order.find_by_name("Dave™)

order.destroy
... order is now frozen

There are two class-level destruction methods, destroy (which takes an id or
an array of ids) and destroy_all (which takes a condition). Both read the corre-
sponding rows in the database table into model objects and call the instance-
level destroy method of that object. Neither method returns anything meaning-

ful.
30.days.ago
Order.destroy_all(["shipped_at < ?", 30.days.ago]) — page 253

Why do we need both the delete and the destroy class methods? The delete
methods bypass the various Active Record callback and validation functions,
while the destroy methods ensure that they are all invoked. (We talk about call-
backs starting on page 374.) In general it is better to use the destroy methods if
you want to ensure that your database is consistent according to the business
rules defined in your model classes.

17.6 Aggregation and Structured Data

(This section contains material you can safely skip on first reading.)
Storing Structured Data
It is sometimes helpful to store attributes containing arbitrary Ruby objects

directly into database tables. One way that Active Record supports this is by
serializing the Ruby object into a string (in YAML format) and storing that

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=314

AGGREGATION AND STRUCTURED DATA <« 315

string in the database column corresponding to the attribute. In the schema,
this column must be defined as type text.

Because Active Record normally maps a character or text column to a plain
Ruby string, you need to tell Active Record to use serialization if you want to
take advantage of this functionality. For example, we might want to record the
last five purchases made by our customers. We'll create a table containing a
text column to hold this information.

Download el/ar/dump_serialize_table.rb

create_table :purchases, :force => true do |t|
t.column :name, :string
t.column :last_five, :text

end

In the Active Record class that wraps this table, we’ll use the serialize declara-
tion to tell Active Record to marshal objects into and out of this column.

Download el/ar/dump_serialize_table.rb

class Purchase < ActiveRecord::Base
serialize :last_five
...

end

When we create new Purchase objects, we can assign any Ruby object to the
last_five column. In this case, we set it to an array of strings.

purchase = Purchase.new

purchase.name = "Dave Thomas"

purchase.last_five = ['shoes', 'shirt', 'socks', 'ski mask', 'shorts']
purchase.save

When we later read it in, the attribute is set back to an array.

purchase = Purchase.find_by_name("Dave Thomas")
pp purchase.last_five
pp purchase.last_five[3]

This code outputs

["shoes", "shirt", "socks", "ski mask", "shorts"]
"ski mask"

Although powerful and convenient, this approach is problematic if you ever
need to be able to use the information in the serialized columns outside a
Ruby application. Unless that application understands the YAML format, the
column contents will be opaque to it. In particular, it will be difficult to use
the structure inside these columns in SQL queries. For these reasons object
aggregation using composition is normally the better approach to use.

http://media.pragprog.com/titles/rails2/code/e1/ar/dump_serialize_table.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/dump_serialize_table.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=315

AGGREGATION AND STRUCTURED DATA <« 316

Composing Data with Aggregations

Database columns have a limited set of types: integers, strings, dates, and so
on. Typically, our applications are richer—we define classes to represent the
abstractions of our code. It would be nice if we could somehow map some of
the column information in the database into our higher-level abstractions in
just the same way that we encapsulate the row data itself in model objects.

For example, a table of customer data might include columns used to store the
customer’s name—{first name, middle initials, and surname, perhaps. Inside
our program, we’'d like to wrap these name-related columns into a single Name
object; the three columns get mapped to a single Ruby object, contained within
the customer model along with all the other customer fields. And, when we
come to write the model back out, we’d want the data to be extracted out
of the Name object and put back into the appropriate three columns in the
database.

customers I

id Customer

credit_limit id
first_name credit_limit
initials } \ Name name
last_name first — last_purchase
last_purchase initials purchase_count

h t
purchase_coun last Model

This facility is called aggregation (although some folks call it composition—it
depends on whether you look at it from the top down or the bottom up). Not
surprisingly, Active Record makes it easy to do. You define a class to hold
the data, and you add a declaration to the model class telling it to map the
database column(s) to and from objects of the dataholder class.

The class that holds the composed data (the Name class in this example) must
meet two criteria. First, it must have a constructor that will accept the data
as it appears in the database columns, one parameter per column. Second, it
must provide attributes that return this data, again one attribute per column.
Internally, it can store the data in any form it needs to use, just as long as it
can map the column data in and out.

For our name example, we’ll define a simple class that holds the three compo-
nents as instance variables. We'll also define a to_s method to format the full
name as a string.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=316

AGGREGATION AND STRUCTURED DATA <« 317

Download el/ar/aggregation.rb

class Name
attr_reader :first, :initials, :last

def initialize(first, initials, Tast)
@first = first
@initials = initials
@last = last

end

def to_s
[@first, @initials, @last].compact.join(" ")
end
end

Now we have to tell our Customer model class that the three database columns
first_name, initials, and last_name should be mapped into Name objects. We do
this using the composed_of declaration.

Although composed_of can be called with just one parameter, it's easiest to
describe first the full form of the declaration and show how various fields can
be defaulted.

composed_of :attr_name, :class_name => SomeClass, :mapping => mapping

The attr_name parameter specifies the name that the composite attribute will
be given in the model class. If we defined our customer as
class Customer < ActiveRecord::Base

composed_of :name,
end

we could access the composite object using the name attribute of customer
objects.

customer = Customer.find(123)
puts customer.name.first

The :class_name option specifies the name of the class holding the composite
data. The value of the option can be a class constant, or a string or symbol
containing the class name. In our case, the class is Name, so we could specify
class Customer < ActiveRecord::Base

composed_of :name, :class_name => Name,
end

If the class name is simply the mixed-case form of the attribute name (which
it is in our example), it can be omitted.

The :mapping parameter tells Active Record how the columns in the table
map to the attributes and constructor parameters in the composite object.
The parameter to :mapping is either a two-element array or an array of two-

http://media.pragprog.com/titles/rails2/code/e1/ar/aggregation.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=317

AGGREGATION AND STRUCTURED DATA <« 318

. class Name
<— S 3 N
customers i:lgrsn pa rﬁgtlveﬂecord Base attr_reader -first, :initials, :last
id _of :
created_at ‘class_name —>{Name.) def initialize(first, initials, last)
credit_limit 'ma??'“? = @first = first
first_name ﬂ :.Ir.s._name, ._.Ir_s_]]/' @initials = initials
nitials - fl:initials, linitials|?; @last = last
[l:last_name,|[last |[]
\ ’ end
last_name] end
last_purchase end
purChase_Count e —
e _________________&

Figure 17.2: How Mappings Relate to Tables and Classes

element arrays. The first element of each two-element array is the name of a
database column. The second element is the name of the corresponding acces-
sor in the composite attribute. The order that elements appear in the mapping
parameter defines the order in which database column contents are passed as
parameters to the composite object’s initialize method. Figure 17.2 shows how
the mapping option works. If this option is omitted, Active Record assumes
that both the database column and the composite object attribute are named
the same as the model attribute.

For our Name class, we need to map three database columns into the compos-
ite object. The customers table definition looks like this.

Download el/ar/aggregation.rb

create_table :customers, :force => true do |t|

t.column :created_at, :datetime

t.column :credit_Tlimit, :decimal, :precision => 10, :scale => 2, :default => 100
t.column :first_name, :string

t.column :initials, :string

t.column :last_name, :string

t.column :last_purchase, :datetime

t.column :purchase_count, :integer, :default => 0

The columns first_name, initials, and last_name should be mapped to the first,
initials, and last attributes in the Name class.!? To specify this to Active Record,
we’d use the following declaration.

12. In a real application, we’'d prefer to see the names of the attributes be the same as the name of
the column. Using different names here helps us show what the parameters to the :mapping option
do.

http://media.pragprog.com/titles/rails2/code/e1/ar/aggregation.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=318

AGGREGATION AND STRUCTURED DATA <« 319

Download el/ar/aggregation.rb
class Customer < ActiveRecord::Base
composed_of :name,

:class_name => Name,
:mapping =>

[# database ruby
[:first_name, :first],
[:initials, initials 7,
[:Tast_name, :Tast]

1

end

Although we've taken a while to describe the options, in reality it takes very
little effort to create these mappings. Once done, they're easy to use: the com-
posite attribute in the model object will be an instance of the composite class
that you defined.

Download el/ar/aggregation.rb

name = Name.new("Dwight", "D", "Eisenhower™)
Customer.create(:credit_Tlimit => 1000, :name => name)

customer = Customer.find(:first)

puts customer.name.first #=> Dwight
puts customer.name.last #=> Eisenhower
puts customer.name.to_s #=> Dwight D Eisenhower

customer.name = Name.new('"Harry", nil, "Truman")
customer.save

This code creates a new row in the customers table with the columns first_name,
initials, and last_name initialized from the attributes first, initials, and lost in the
new Name object. It fetches this row from the database and accesses the fields
through the composite object. Finally, it updates the row. Note that you cannot
change the fields in the composite. Instead you must pass in a new object.

The composite object does not necessarily have to map multiple columns in the
database into a single object; it’s often useful to take a single column and map
it into a type other than integers, floats, strings, or dates and times. A common
example is a database column representing money: rather than hold the data
in native floats, you might want to create special Money objects that have the
properties (such as rounding behavior) that you need in your application.

We can store structured data in the database using the composed_of declara-
tion. Instead of using YAML to serialize data into a database column, we can
instead use a composite object to do its own serialization. As an example let’s
revisit the way we store the last five purchases made by a customer. Previ-
ously, we held the list as a Ruby array and serialized it into the database as a
YAML string. Now let’s wrap the information in an object and have that object

http://media.pragprog.com/titles/rails2/code/e1/ar/aggregation.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/aggregation.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=319

AGGREGATION AND STRUCTURED DATA < 320

save the data in its own format. In this case, we’ll save the list of products as
a set of comma-separated values in a regular string.

First, we’ll create the class LastFive to wrap the list. Because the database stores
the list in a simple string, its constructor will also take a string, and we’ll need
an attribute that returns the contents as a string. Internally, though, we’ll
store the list in a Ruby array.

Download el/ar/aggregation.rb

class LastFive

attr_reader :1ist

" "

Takes a string containing "a,b,c" and

stores ['a', 'b', 'c']

def initialize(list_as_string)
@list = Tist_as_string.split(/,/)

end

Returns our contents as a
comma delimited string
def last_five
@list.join(', ")
end
end

We can declare that our LastFive class wraps the lost_five database column.

Download el/ar/aggregation.rb

class Purchase < ActiveRecord::Base
composed_of :Tast_five
end

When we run this, we can see that the lost_five attribute contains an array of
values.
Download el/ar/aggregation.rb

Purchase.create(:last_five => LastFive.new("3,4,5"))
purchase = Purchase.find(:first)

puts purchase.last_five.list[1] #=> 4

Composite Objects Are Value Objects

A value object is an object whose state may not be changed after it has been
created—it is effectively frozen. The philosophy of aggregation in Active Record
is that the composite objects are value objects: you should never change their
internal state.

http://media.pragprog.com/titles/rails2/code/e1/ar/aggregation.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/aggregation.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/aggregation.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=320

MISCELLANY <« 321

This is not always directly enforceable by Active Record or Ruby—you could,
for example, use the replace method of the String class to change the value of
one of the attributes of a composite object. However, should you do this, Active
Record will ignore the change if you subsequently save the model object.

The correct way to change the value of the columns associated with a compos-
ite attribute is to assign a new composite object to that attribute.

customer = Customer.find(123)

old_name = customer.name

customer.name = Name.new(old_name.first, old_name.initials, "Smith'")
customer.save

17.7 Miscellany

This section contains various Active Record-related topics that just didn’t
seem to fit anywhere else.

Object Identity

Model objects redefine the Ruby id and hash methods to reference the model’s
primary key. This means that model objects with valid ids may be used as
hash keys. It also means that unsaved model objects cannot reliably be used
as hash keys (because they won't yet have a valid id).

Two model objects are considered equal (using ==) if they are instances of the
same class and have the same primary key. This means that unsaved model
objects may compare as equal even if they have different attribute data. If you
find yourself comparing unsaved model objects (which is not a particularly
frequent operation), you might need to override the == method.

Using the Raw Connection

You can execute SQL statements using the underlying Active Record connec-
tion adapter. This is useful for those (rare) circumstances when you need to
interact with the database outside the context of an Active Record model class.

At the lowest level, you can call execute to run a (database-dependent) SQL
statement. The return value depends on the database adapter being used. For
MySQL, for example, it returns a Mysqgl::Result object. If you really need to work
down at this low level, you’d probably need to read the details of this call
from the code itself. Fortunately, you shouldn’t have to, because the database
adapter layer provides a higher-level abstraction.

The select_all method executes a query and returns an array of attribute hashes
corresponding to the result set.

res = Order.connection.select_all("select id, quantity=unit_price as total " +
from Tine_items'")
p res

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=321

MISCELLANY < 322

This produces something like

[{"total"=>"29.95", "id"=>"91"},

{"total"=>"59.90", "id"=>"92"},

{"total"=>"44.95", "id"=>"93"}]
The select_one method returns a single hash, derived from the first row in the
result set.

Have a look at the Rails API documentation for AbstractAdapter for a full list of
the low-level connection methods available.

The Case of the Missing ID
There’s a hidden danger when you use your own finder SQL to retrieve rows
into Active Record objects.

Active Record uses a row’s id column to keep track of where data belongs. If
you don'’t fetch the id with the column data when you use find_by_sal, you won’t
be able to store the result in the database. Unfortunately, Active Record still
tries and fails silently. The following code, for example, will not update the
database.
result = LineItem.find_by_sql("select quantity from Tline_items")
result.each do |11]

Ti.quantity += 2

Ti.save
end

Perhaps one day Active Record will detect the fact that the id is missing and
throw an exception in these circumstances. In the meantime, the moral is
clear: always fetch the primary key column if you intend to save an Active
Record object into the database. In fact, unless you have a particular reason
not to, it’s probably safest to do a select * in custom queries.

Magic Column Names
A number of column names that have special significance to Active Record.
Here’s a summary.

created_at, created_on, updated_at, updated_on
Automatically updated with the time stamp of a row’s creation or last
update (page 376). Make sure the underlying database column is capable
of receiving a date, datetime, or string. Rails applications conventionally
use the _on suffix for date columns and the _af suffix for columns that
include a time.

lock_version
Rails will track row version numbers and perform optimistic locking if a
table contains lock_version (page 390).

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=322

MISCELLANY < 323

type
Used by single-table inheritance to track the type of a row (page 344).

id
Default name of a table’s primary key column (page 289).
xxx_id
Default name of a foreign key reference to table named with the plural
form of xxx (page 324).
xxx_count
Maintains a counter cache for the child table xxx (page 362).
position
The position of this row in a list if acts_as_list is used (page 355).
parent_id

A reference to the id of this row’s parent if acts_as_tree is used (page 357).

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=323

Chapter 18
Active Record Part II:

Most applications work with multiple tables in the database, and normally
there’ll be relationships between some of these tables. Orders will have multi-
ple line items. A line item will reference a particular product. A product may
belong to many different product categories, and the categories may each have
a number of different products.

Within the database schema, these relationships are expressed by linking
tables based on primary key values.! If a line item references a product, the
line_items table will include a column that holds the primary key value of the
corresponding row in the products table. In database parlance, the line_items
table is said to have a foreign key reference to the products table.

But that’s all pretty low level. In our application, we want to deal with model
objects and their relationships, not database rows and key columns. If an
order has a number of line items, we'd like some way of iterating over them.
If a line item refers to a product, we’d like to be able to say something simple,
such as

price = line_item.product.price
rather than

product_id = Tine_item.product_id
product = Product.find(product_id)
price product.price

1. There’s another style of relationship between model objects in which one model is a subclass of
another. We discuss this in Section 18.4, Single-Table Inheritance, on page 344.

CREATING FOREIGN KEYs <« 325

Active Record to the rescue. Part of its ORM magic is that it converts the
low-level foreign key relationships in the database into high-level interobject
mappings. It handles the three basic cases.

* One row in table A is associated with zero or one rows in table B.

* One row in table A is associated with an arbitrary number of rows in
table B.

* An arbitrary number of rows in table A are associated with an arbitrary
number of rows in table B.

We have to give Active Record a little help when it comes to intertable rela-
tionships. This isn’t really Active Record’s fault—it isn’t possible to deduce
from the schema what kind of intertable relationships the developer intended.
However, the amount of help we have to supply is minimal.

18.1 Creating Foreign Keys

As we discussed earlier, two tables are related when one table contains a for-
eign key reference to the primary key of another. In the following migrations,
the table line_items contains foreign key references to the products and orders
tables.

def self.up
create_table :products do |t]
t.column :title, :string
...
end

create_table :orders do |t|
t.column :name, :string
...

end

create_table :line_items do |t]|

> t.column :product_id, :integer
> t.column :order_id, :integer
t.column :quantity, :integer,
t.column :unit_price, :decimal, :precision => 8, :scale => 2
end
end

It’s worth noting that this migration doesn’t define any foreign key constraints.
The intertable relationships are set up simply because the developer will pop-
ulate the columns product_id and order_id with key values from the products and
orders tables. You can also choose to establish these constraints in your migra-
tions (and I personally recommend that you do), but the foreign key support
in Rails doesn’t need them.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=325

CREATING FOREIGN KEYs < 326

Looking at this migration, we can see why it’'s hard for Active Record to divine
the relationships between tables automatically. The order_id and product_id for-
eign key references in the line_items table look identical. However, the product_id
column is used to associate a line item with exactly one product. The order_id
column is used to associate multiple line items with a single order. The line
item is part of the order but references the product.

This example also shows the standard Active Record naming convention. The
foreign key column should be named after the class of the target table, con-
verted to lowercase, with _id appended. Note that between the pluralization
and _id appending conventions, the assumed foreign key name will be consis-
tently different from the name of the referenced table. If you have an Active
Record model called Person, it will map to the database table people. A foreign
key reference from some other table to the people table will have the column
name person_id.

The other type of relationship is where some number of one item is related to
some number of another item (such as products belonging to multiple cate-
gories and categories containing multiple products). The SQL convention for
handling this uses a third table, called a join table. The join table contains
a foreign key for each of the tables it’s linking, so each row in the join table
represents a linkage between the two other tables. Here’s another migration.
def self.up
create_table :products do |t]
t.column :title, :string

...
end

create_table :categories do |t]
t.column :name, :string
...

end

create_table :categories_products, :id => false do |t|

t.column :product_id, :integer
t.column :category_id, :integer
end

Indexes are important for performance if join tables grow big
add_index :categories_products, [:product_id, :category_id]
add_index :categories_products, :category_id

end

Rails assumes that a join table is named after the two tables it joins (with the
names in alphabetical order). Rails will automatically find the join table cat-
egories_products linking categories and products. If you used some other name,
you’ll need to add a declaration so Rails can find it.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=326

SPECIFYING RELATIONSHIPS IN MODELS < 327

Note that our join table does not need an id column for a primary key, because
the combination of product and category id is unique. We stopped the migra-
tion from automatically adding the id column by specifying :id => false. We then
created two indices on the join table. The first, composite index actually serves
two purposes: it creates an index that can be searched on both foreign key
columns, and with most databases it also creates an index that enables fast
lookup by the product id. The second index then completes the picture, allow-
ing fast lookup on category id.

18.2 Specifying Relationships in Models

Active Record supports three types of relationship between tables: one-to-one,
one-to-many, and many-to-many. You indicate these relationships by adding
declarations to your models: has_one, has_many, belongs_to, and the wonder -
fully named has_and_belongs_to_many.

One-to-One Relationships

A one-to-one association (or, more accurately, a one-to-zero-or-one relation-
ship) is implemented using a foreign key in one row in one table to reference
at most a single row in another table. A one-to-one relationship might exist
between orders and invoices: for each order there’s at most one invoice.

invoices I orders I
id |—> id
Order_id name
class Invoice < ActiveRecord::Base class Order < ActiveRecord::Base
belongs_to :order has_one :invoice
#... #...
end end

As the example shows, we declare this in Rails by adding a has_one declaration
to the Order model and by adding a belongs_to declaration to the Invoice model.

There’s an important rule illustrated here: the model for the table that contains
the foreign key always has the belongs_to declaration.

One-to-Many Relationships

A one-to-many association allows you to represent a collection of objects. For
example, an order might have any number of associated line items. In the
database, all the line item rows for a particular order contain a foreign key
column referring to that order.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=327

SPECIFYING RELATIONSHIPS IN MODELS < 328

line_items | orders]
i — | id
order_id name
class Lineltem < ActiveRecord::Base class Order < ActiveRecord:Base
belongs_to :order has_many :line_items
#... #...
end end

In Active Record, the parent object (the one that logically contains a collection
of child objects) uses has_many to declare its relationship to the child table,
and the child table uses belongs_to to indicate its parent. In our example, class
Lineltem belongs_to :order and the orders table has_many :line_items.

Note that again, because the line item contains the foreign key, it has the
belongs_to declaration.

Many-to-Many Relationships

Finally, we might categorize our products. A product can belong to many cat-
egories, and each category may contain multiple products. This is an example
of a many-to-many relationship. It’s as if each side of the relationship contains
a collection of items on the other side.

categories | (categories_products] products |
id ~—— | category_id —,—> id

name product_id name

class Category< ActiveRecord::Base class Product< ActiveRecord::Base
has_and_belongs_to_many :products has_and_belongs_to_many :categories
#... #...

end end

In Rails we express this by adding the has_and_belongs_to_many declaration to
both models. From here on in, we’ll abbreviate this declaration to habtm.

Many-to-many associations are symmetrical—both of the joined tables declare
their association with each other using habtm.

Within the database, many-to-many associations are implemented using an
intermediate join table. This contains foreign key pairs linking the two target
tables. Active Record assumes that this join table’s name is the concatenation
of the two target table names in alphabetical order. In our example, we joined
the table categories to the table products, so Active Record will look for a join
table named categories_products.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=328

BELONGS_TO AND HAS_XXX DECLARATIONS <« 329

18.3 belongs_to and has_xxx Declarations

The various linkage declarations (belongs_tfo, has_one, and so on) do more than
specify the relationships between tables. They each add a number of methods
to the model to help navigate between linked objects. Let’s look at these in
more detail. (If you'd like to skip to the short version, we summarize what'’s
going on in Figure 18.3, on page 353.)

The belongs_to Declaration

belongs_to declares that the given class has a parent relationship to the class
containing the declaration. Although belongs to might not be the first phrase
that springs to mind when thinking about this relationship, the Active Record
convention is that the table that contains the foreign key belongs to the table
it is referencing. If it helps, while you're coding you can think references but
type belongs_to.

The parent class name is assumed to be the mixed-case singular form of the
attribute name, and the foreign key field is the singular form of the parent
class name with _id appended. Here are a couple of belongs_to declarations,
along with the associated foreign key fields and the target class and table
names.

class LineItem < ActiveRecord::Base

belongs_to :product
belongs_to :invoice_item

end

Declaration Foreign Key Target Class Target Table
belongs_to :product product_id Product products
belongs_to :invoice_item invoice_item_id Invoiceltem invoice_items

Active Record links line items to the classes Product and Invoiceltem. In the
underlying schema, it uses the foreign keys product_id and invoice_item_id to
reference the id columns in the tables products and invoice_items, respectively.

You can override these and other assumptions by passing belongs_to a hash of
options after the association name.
class Lineltem < ActiveRecord::Base
belongs_to :paid_order,
:class_name => "Order",
:foreign_key => "order_id",
:conditions => "paid_on is not null"
end

In this example we've created an association called paid_order, which is a ref-
erence to the Order class (and hence the orders table). The link is established
via the order_id foreign key, but it is further qualified by the condition that it
will find an order only if the paid_on column in the target row is not null. In

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=329

BELONGS_TO AND HAS_XXX DECLARATIONS < 330

this case our association does not have a direct mapping to a single column
in the underlying line_items table. belongs_to takes a number of other options:
we'll look at these when we cover more advanced topics.

The belongs_to method creates a number of instance methods for managing
the association. The names of these methods all include the name of the asso-
ciation. Let’s look at the Lineltem class.

class LineItem < ActiveRecord::Base

belongs_to :product
end

In this case, the following methods will be defined for line items and for the
products to which they belong.

product(force_reload=false)
Return the associated product (or nil if no associated product exists). The
result is cached, and the database will not be queried again when this
association is subsequently used unless frue is passed as a parameter.

Most commonly this method is called as if it were a simple attribute of
(say) a line item object:

1i = LineItem.find(1)
puts "The product name 1is #{1i.product.name}"

product=0bj
Associate this line item with the given product, setting the product_id
column in this line item to the product’s primary key. If the product has
not been saved, it will be when the line item is saved, and the keys will
be linked at that time.

build_product(attributes={})
Construct a new product object, initialized using the given attributes.
This line item will be linked to it. The product will not yet have been
saved.

create_product(attributes={})
Build a new product object, link this line item to it, and save the product.

Let’s see some of these automatically created methods in use. We have the
following models.

Download el/ar/associations.rb

class Product < ActiveRecord::Base
has_many :1ine_items
end

class LineItem < ActiveRecord::Base

belongs_to :product
end

http://media.pragprog.com/titles/rails2/code/e1/ar/associations.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=330

BELONGS_TO AND HAS_XXX DECLARATIONS < 331

Assuming the database already has some line items and products in it, let’s
run the following code.

Download el/ar/associations.rb

item = LineItem.find(2)

item.product is the associated Product object

puts "Current product is #{item.product.id}"
puts item.product.title

item.product = Product.new(:title => "Rails for Java Developers",
:description = "...",
rimage_url = "http://....jpg",
iprice => 34.95,
:available_at => Time.now)
item.save!

puts "New product is #{item.product.id}"
puts item.product.title

If we run this (with an appropriate database connection), we might see output
such as

Current product is 1

Programming Ruby

New product is 2
Rails for Java Developers

We used the methods product and product= that we generated in the Lineltem
class to access and update the product object associated with a line item
object. Behind the scenes, Active Record kept the database in step. It auto-
matically saved the new product we created when we saved the corresponding
line item, and it linked the line item to that new product’s id.

We could also have used the automatically generated create_product method to
create a new product and associate it with our line item.

Download el/ar/associations.rb

item.create_product(:title => "Rails Recipes”,
:description = "...",
:image_url = "http://....jpg",
iprice => 32.95,
:available_at => Time.now)

We used create_, rather than build_, so there’s no need to save the product.

The has one Declaration

has_one declares that a given class (by default the mixed-case singular form of
the attribute name) is a child of this class. This means that the table corre-
sponding to the child class will have a foreign key reference back to the class

http://media.pragprog.com/titles/rails2/code/e1/ar/associations.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/associations.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=331

BELONGS_TO AND HAS_XXX DECLARATIONS <« 332

containing the declaration. The following code declares the invoices table to be
a child of the orders table.

class Order < ActiveRecord::Base
has_one :invoice

end
Declaration Foreign Key Target Class Target Table
has_one :invoice order_id Invoice invoices

(in invoices table)

The has_one declaration defines the same set of methods in the model object
as belongs_fo, so given the previous class definition, we could write
order = Order.new(... attributes ...)

invoice = Invoice.new(... attributes ...)
order.invoice = invoice

If no child row exists for a parent row, the has_one association will be set to nil
(which in Ruby is treated as false). This lets you write code such as
if order.invoice

print_invoice(order.invoice)
end

If there is already an existing child object when you assign a new object to a
has_one association, that existing object will be updated to remove its foreign
key association with the parent row (the foreign key will be set to null). This is
shown in Figure 18.1, on the next page.

Options for has_one

You can modify the defaults associated with has_one by passing it a hash of
options. As well as the :class_name, :foreign_key, and :conditions options we saw
for belongs_to, has_one has many more options. Most we’ll look at later, but one
Wwe can cover now.

The :dependent option tells Active Record what to do to child rows when you
destroy a row in the parent table. It has five possible values.

:dependent => :destroy (or frue)
The child row is destroyed at the time the parent row is destroyed.

:dependent => :nullify
The child row is orphaned at the time the parent row is destroyed. This
is done by setting the child row’s foreign key to null.

:dependent => false (or nil)
The child row is not updated or deleted when the parent is destroyed. If
you have defined foreign key constraints between the child and parent
tables, using this option might lead to a constraint being violated when
the parent row is deleted.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=332

BELONGS_TO AND HAS_XXX DECLARATIONS < 333

orders | invoices |

id name id order_id
300 Dave 123 300

order = Order.find(300)

order.invoice = Invoice.new(...)

\4

Existing invoice invoices |
iS Orphaned \ id °rder7id
123 NULL

124 300

Figure 18.1: Adding to a has_one Relationship

The has_many Declaration
has_many defines an attribute that behaves like a collection of the child objects.

class Order < ActiveRecord::Base
has_many :1ine_items

end
Declaration Foreign Key Target Class Target Table
has_many :line_items order_id Lineltem line_items

(in line_items)

You can access the children as an array, find particular children, and add new
children. For example, the following code adds some line items to an order.
order = Order.new
params[:products_to_buy].each do |prd_id, qty|

product = Product.find(prd_id)

order.line_items << LineItem.new(:product => product,

rquantity => qty)

end
order.save

The append operator (<<) does more than just append an object to a list within
the order. It also arranges to link the line items back to this order by setting
their foreign key to this order’s id and for the line items to be saved automati-
cally when the parent order is saved.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=333

BELONGS_TO AND HAS_XXX DECLARATIONS <« 334

We can iterate over the children of a has_many relationship—the attribute acts
as an array.

order = Order.find(123)
total = 0.0

order.line_items.each do |1i]
total += Tli.quantity * 1i.unit_price
end

As with has_one, you can modify Active Record’s defaults by providing a hash of
options to has_many. The options :class_name, :foreign_key, and :conditions, work
the same way as they do with the has_one method.

The :dependent option can take the values :destroy, :nullify, and false—these
mean the same as with has_one, except they apply to all the child rows. The
has_many version of :dependent takes one additional value, :delete_all. As with
the :destroy option, this removes the child rows if a parent row is destroyed.
Let’s see how the two options differ.

:dependent => :destroy works by traversing the child table, calling destroy on
each row with a foreign key referencing the row being deleted in the parent
table.

However, if the child table is used only by the parent table (that is, it has no
other dependencies) and if it has no hook methods that it uses to perform any
actions on deletion, you can use :dependent => :delete_all instead. This option
causes the child rows to be deleted in a single SQL statement (which will be
faster).

You can override the SQL that Active Record uses to fetch and count the
child rows by setting the :finder_sqgl and :counter_sqgl options. This is useful in
cases where simply adding to the where clause using the :condition option isn’t
enough. For example, you can create a collection of all the line items for a
particular product.
class Order < ActiveRecord::Base
has_many :rails_line_items,
:class_name => "LineItem",
:finder_sql => "select 1.% from 1ine_items 1, products p " +
" where 1.product_id = p.id " +
" and p.title like '%rails%'"
end

The :counter_sqgl option is used to override the query Active Record uses when
counting rows. If :finder_sql is specified and :counter_sqgl is not, Active Record
synthesizes the counter SQL by replacing the select part of the finder SQL with
select count(®).

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=334

BELONGS_TO AND HAS_XXX DECLARATIONS <« 335

If you need the collection to be in a particular order when you traverse it, you
need to specify the :order option. The SQL fragment you give is simply the text
that will appear after an order by clause in a select statement. It consists of a
list of one or more column names. The collection will be sorted based on the
first column in the list. If two rows have the same value in this column, the
sort will use the second entry in the list to decide their order, and so on. The
default sort order for each column is ascending—put the keyword DESC after a
column name to reverse this.

The following code might be used to specify that the line items for an order are
to be sorted in order of quantity (smallest quantity first).
class Order < ActiveRecord::Base

has_many :1line_items,

rorder => "quantity, unit_price DESC"
end

If two line items have the same quantity, the one with the highest unit price
will come first.

Back when we talked about has_one, we mentioned that it also supports an
:order option. That might seem strange—if a parent is associated with just one
child, what’s the point of specifying an order when fetching that child?

It turns out that Active Record can create has_one relationships where none
exists in the underlying database. For example, a customer may have many
orders: this is a has_many relationship. But that customer will have just one
most recent order. We can express this using has_one combined with the :order
option.
class Customer < ActiveRecord::Base

has_many :orders

has_one :most_recent_order,

:class_name => 'Order',

rorder => 'created_at DESC'
end

This code creates a new attribute, most_recent_order in the customer model. It
will reference the order with the latest created_at time stamp. We could use
this attribute to find a customer’s most recent order.

cust = Customer.find_by_name("Dave Thomas")
puts "Dave last ordered on #{cust.most_recent_order.created_at}"

This works because Active Record actually fetches the data for the has_one
association using SQL like

SELECT » FROM orders

WHERE customer_id = ?

ORDER BY created_at DESC
LIMIT 1

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=335

BELONGS_TO AND HAS_XXX DECLARATIONS <« 336

The limit clause means that only one row will be returned, satisfying the “one”
part of the has_one declaration. The order by clause ensures that the row will
be the most recent.

We'll cover a number of other options supported by has_many when we look at
more advanced Active Record topics.

Methods Added by has_many/()

Just like belongs_to and has_one, has_many adds a number of attribute-related
methods to its host class. Again, these methods have names that start with
the name of the attribute. In the descriptions that follow, we’ll list the methods
added by the declaration

class Customer < ActiveRecord::Base

has_many :orders
end

orders(force_reload=false)
Returns an array of orders associated with this customer (which may be
empty if there is none). The result is cached, and the database will not be
queried again if orders had previously been fetched unless true is passed
as a parameter.

orders <<order
Adds order to the list of orders associated with this customer.

orders.push(orderl, ...)
Adds one or more order objects to the list of orders associated with this
customer. concat is an alias for this method.

orders.replace(orderl, ...)
Replaces the set of orders associated with this customer with the new
set. Detects the differences between the current set of children and the
new set, optimizing the database changes accordingly.

orders.delete(orderl, ...)
Removes one or more order objects from the list of orders associated
with this customer. If the association is flagged as :dependent => :destroy
or :delete_all, each child is destroyed. Otherwise it sets their customer_id
foreign keys to null, breaking their association.

orders.delete_all
Invokes the association’s delete method on all the child rows.

orders.destroy_all
Invokes the association’s destroy method on all the child rows.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=336

BELONGS_TO AND HAS_XXX DECLARATIONS <« 337

orders.clear
Disassociates all orders from this customer. Like delete, this breaks the
association but deletes the orders from the database only if they were
marked as :dependent.

orders.find(options...)
Issues a regular find call, but the results are constrained to return only
orders associated with this customer. Works with the id, the :all, and the
first forms.

orders.count(options...)
Returns the count of children. If you specified custom finder or count
SQL, that SQL is used. Otherwise a standard Active Record count is
used, constrained to child rows with an appropriate foreign key. Any of
the optional arguments to count can be supplied.

orders.size
If you've already loaded the association (by accessing it), returns the size
of that collection. Otherwise returns a count by querying the database.
Unlike count, the size method honors any :limit option passed to has_many
and doesn’t use finder_sql.

orders.length
Forces the association to be reloaded and then returns its size.

orders.empty?
Equivalent to orders.size.zero?.

orders.sum(options...)
Equivalent to calling the regular Active Record sum method (documented
on page 307) on the rows in the association. Note that this works using
SQL functions on rows in the database and not by iterating over the
in-memory collection.

orders.uniq
Returns an array of the children with unique ids.

orders.build(attributes=({})
Constructs a new order object, initialized using the given attributes and
linked to the customer. It is not saved.

orders.create(attributes={})
Constructs and saves a new order object, initialized using the given
attributes and linked to the customer.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=337

BELONGS_TO AND HAS_XXX DECLARATIONS <« 338

(N\

Yes, It’ nfusing...

You may have noticed that there’s a fair amsnount of duplication (or near dupli-
cation) in the methods added to your Active Record class by has_many. The
differences between, for example, count, size, and length, or between clear,
destroy_all, and delete_all, are subtle. This is largely due to the gradual accumu-
lation of features within Active Record over time. As new options were added,
existing methods weren’t necessarily brought up-to-date. My guess is that af
some point this will be resolved and these methods will be unified. It's worth
studying the online Rails APl documentation, because Rails may well have
changed after this book was published.

The has_and_belongs_to_many Declaration

has_and_belongs_to_many (hereafter habtm to save my poor fingers) acts in many
ways like has_many. habtm creates an attribute that is essentially a collection.
This attribute supports the same methods as has_many. In addition, habtm
allows you to add information to the join table when you associate two objects
(although, as we’ll see, that capability is falling out of favor).

Let’'s look at something other than our store application to illustrate habtm.
Perhaps we're using Rails to write a community site where users can read
articles. There are many users and many articles, and any user can read any
article. For tracking purposes, we’'d like to know the people who read each
article and the articles read by each person. We’d also like to know the last
time that a user looked at a particular article. We’ll do that with a simple join
table. In Rails, the join table name is the concatenation of the names of the
two tables being joined, in alphabetical order.

articles | articles_users] users |
id ~—| article_id —,—> id

title user_id name

We'll set up our two model classes so that they are interlinked via this table.

class Article < ActiveRecord::Base
has_and_belongs_to_many :users
...

end

class User < ActiveRecord::Base
has_and_belongs_to_many :articles
...

end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=338

BELONGS_TO AND HAS_XXX DECLARATIONS < 339

This allows us to do things such as listing all the users who have read article
123 and all the articles read by pragdave.
Who has read article 1237

article = Article.find(123)
readers = article.users

What has Dave read?
dave = User.find_by_name("pragdave")
articles_that_dave_read = dave.articles

How many times has each user read article 123
counts = Article.find(123).users.count(:group => "users.name")

When our application notices that someone has read an article, it links their
user record with the article. We’ll do that using an instance method in the User
class.

class User < ActiveRecord::Base
has_and_belongs_to_many :articles

This user just read the given article
def just_read(article)

articles << article
end

...
end

What do we do if we wanted to record more information along with the asso-
ciation between the user and the article, for example recording when the
user read the article? In the old days (late 2005), we’d have used the method
push_with_aftributes. This does all the same work of linking the two models that
the << method does, but it also adds the given values to the join table row that
it creates every time someone reads an article.

However, push_with_attributes has been deprecated in favor of a far more pow-
erful technique, where regular Active Record models are used as join tables
(remember that with habtm, the join table is not an Active Record object). We’ll
discuss this scheme in the next section.

As with the other relationship methods, habtm supports a range of options that
override Active Record’s defaults. :class_name, :foreign_key, and :conditions work
the same way as they do in the other has_ methods (the :foreign_key option sets
the name of the foreign key column for this table in the join table). In addition,
habtm supports options to override the name of the join table, the names of
the foreign key columns in the join table, and the SQL used to find, insert,
and delete the links between the two models. Refer to the API documentation
for details.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=339

BELONGS_TO AND HAS_XXX DECLARATIONS <« 340

Using Models as Join Tables

Current Rails thinking is to keep join tables pure—a join table should contain
only a pair of foreign key columns. Whenever you feel the need to add more
data to this kind of table, what you're really doing is creating a new model—
the join table changes from a simple linkage mechanism into a fully fledged
participant in the business of your application. Let’s look back at the previous
example with articles and users.

In the simple habtm implementation, the join table records the fact that an
article was read by a user. Rows in the join table have no independent exis-
tence. But pretty soon we find ourselves wanting to add information to this
table: we want to record when the reader read the article and how many stars
they gave it when finished. The join table suddenly has a life of its own and
deserves its own Active Record model. Let’s call it a Reading. The schema looks
like this.

articles | readings] users |

id <—|_ id id
title article_id name

user_id

read_at

rating

Using the Rails facilities we've seen so far in this chapter, we could model this
using the following.

class Article < ActiveRecord::Base
has_many :readings
end

class User < ActiveRecord::Base
has_many :readings
end

class Reading < ActiveRecord::Base
belongs_to :article
belongs_to :user

end

When a user reads an article, we can record the fact.

reading = Reading.new
reading.rating = params[:rating]
reading.read_at = Time.now
reading.article = current_article
reading.user = session[:user]
reading.save

However, we've lost something compared to the habtm solution. We can no
longer easily ask an article who its readers are or ask a user which articles

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=340

BELONGS_TO AND HAS_XXX DECLARATIONS <« 341

they’ve read. That's where the :through option comes in. Let’s update our article
and user models.
class Article < ActiveRecord::Base

has_many :readings

> has_many :users, :through => :readings
end

class User < ActiveRecord::Base
has_many :readings
> has_many :articles, :through => :readings
end

The :through option on the two new has_many declarations tells Rails that the
readings table can be used to navigate from (say) an article to a number of
users who've read that article. Now we can write code such as

readers = an_article.users

Behind the scenes, Rails constructs the necessary SQL to return all the user
rows referenced from the readers table where the readers rows reference the
original article. (Whew!)

The :through parameter nominates the association to navigate through in the
original model class. Thus, when we say
class Article < ActiveRecord::Base

has_many :readings

has_many :users, :through => :readings
end

the :through => :readings parameter tells Active Record to use the has_many :read-
ings association to find a model called Reading.

The name we give to the association (tusers in this case) then tells Active Record
which attribute to use to look up the users (the user_id). You can change this
by adding a :source parameter to the has_many declaration. For example, so
far we've called the people who'd read an article users, simply because that
was the name of the association in the Reading model. However, it’s easy to
call them readers instead—we just have to override the name of the association
used.

class Article < ActiveRecord: :Base

has_many :readings

has_many :readers, :through => :readings, :source => :user
end

In fact, we can go even further. This is still a has_many declaration and so it will
accept all the has_many parameters. For example, let’s create an association
that returns all the users who rated our articles with four or more stars.

class Article < ActiveRecord::Base
has_many :readings

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=341

BELONGS_TO AND HAS_XXX DECLARATIONS <« 342

has_many :readers, :through => :readings, :source => :user

> has_many :happy_users, :through => :readings, :source => :user,

> :conditions => 'readings.rating >= 4'
end
Removing Duplicates
The collections returned by has_many :through are simply the result of following
the underlying join relationship. If a user has read a particular article three
times, then asking that article for its list of users will return three copies of the
user model for that person (along with those for other readers of the article).
There are two ways of removing these duplicates.
First, you can add the qualifier :unique => frue to the has_many declaration.
class Article < ActiveRecord::Base

has_many :readings

> has_many :users, :through => :readings, :unique => true
end
This is implemented totally within Active Record: a full set of rows is returned
by the database, and Active Record then processes it and eliminates any dupli-
cate objects.
There’s also a hack that lets you perform the deduping in the database. You
can override the select part of the SQL generated by Active Record, adding the
distinct qualifier. You have to remember to add the table name, because the
generated SQL statement has a join in it.
class Article < ActiveRecord::Base

has_many :readings
> has_many :users, :through => :readings, :select => "distinct users.=*"

end
You can create new :through associations using the << method (aliased as push).
Both ends of the association must have been previously saved for this to work.

class Article < ActiveRecord::Base
has_many :readings
has_many :users, :through => :readings
end

user = User.create(:name => "dave')
article = Article.create(:name => "Join Models'")

article.users << user

You can also use the create! method to create a row at the far end of an asso-
ciation. This code is equivalent to the previous example.

article = Article.create(:name => "Join Models™)
article.users.create! (:name => "dave')

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=342

BELONGS_TO AND HAS_XXX DECLARATIONS <« 343

Note that it isn’'t possible to set attributes in the intermediate table using this
approach.

Extending Associations

An association declaration (belongs_to, has_xxx) makes a statement about the
business relationship between your model objects. Quite often, there’s addi-
tional business logic associated with that particular association. In the pre-
vious example, we defined a relationship between articles and their readers
called Reading. This relationship incorporated the user’s rating of the article
they’d just read. Given a user, how can we get a list of all the articles they've
rated with three stars or higher? four or higher? And so on.

We've already seen one way: we can construct new associations where the
result set meets some additional criteria. We did that with the happy_users asso-
ciation on page 341. However, this method is constrained—we can’t parame-
terize the query, letting our caller determine the rating that counts as being

“happy.”

An alternative is to have the code that uses our model add their own conditions
to the query.

user = User.find(some_id)
user.articles.find(:all, :conditions => ['rating >= ?', 3])

This works but gently breaks encapsulation: we’d really like to keep the idea
of finding articles based on their rating wrapped inside the arficles association
itself. Rails lets us do this by adding a block to any has_many declaration. Any
methods defined in this block become methods of the association itself.

The following code adds the finder method rated_at_or_above to the articles asso-
ciation in the user model.
class User < ActiveRecord::Base
has_many :readings
has_many :articles, :through => :readings do
def rated_at_or_above(rating)
find :all, :conditions => ['rating >= ?', rating]
end
end
end

Given a user model object, we can now call this method to retrieve a list of the
articles they've rated highly.

user = User.find(some_id)
good_articles = user.articles.rated_at_or_above(4)

Although we've illustrated it here with a :through option to has_many, this ability
to extend an association with your own methods applies to all the association
declarations.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=343

JOINING TO MULTIPLE TABLES < 344

Sharing Association Extensions

You’ll sometimes want to apply the same set of extensions to a number of
associations. You can do this by putting your extension methods in a Ruby
module and passing that module to the association declaration with the :extend
parameter.

has_many :articles, :extend => RatingFinder

You can extend an association with multiple modules by passing :extend an
array.

has_many :articles, :extend => [RatingFinder, DateRangeFinder]

18.4 Joining to Multiple Tables

Relational databases allow us to set up joins between tables: a row in our
orders table is associated with a number of rows in the line items table, for
example. The relationship is statically defined. However, sometimes that isn’t
convenient.

You could get around this with some clever coding, but fortunately you don’t
have to do so. Rails provides two mechanisms for mapping a relational model
into a more complex object-oriented one: single-table inheritance and polymor-
phic associations. Let’s look at each in turn.

Single-Table Inheritance

When we program with objects and classes, we sometimes use inheritance
to express the relationship between abstractions. Our application might deal
with people in various roles: customers, employees, managers, and so on. All
roles will have some properties in common and other properties that are role
specific. We might model this by saying that class Employee and class Customer
are both subclasses of class Person and that Manager is in turn a subclass
of Employee. The subclasses inherit the properties and responsibilities of their
parent class.?

In the relational database world, we don’t have the concept of inheritance:
relationships are expressed primarily in terms of associations. But single-table
inheritance, described by Martin Fowler in Patterns of Enterprise Application
Architecture [Fow03], lets us map all the classes in the inheritance hierarchy
into a single database table. This table contains a column for each of the
attributes of all the classes in the hierarchy. It additionally includes a column,
by convention called type, that identifies which particular class of object is

2. Of course, inheritance is a much-abused construct in programming. Before going down this
road, ask yourself whether you truly do have an is-a relationship. For example, an employee might
also be a customer, which is hard to model given a static inheritance tree. Consider alternatives
(such as tagging or role-based taxonomies) in these cases.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=344

JOINING TO MULTIPLE TABLES < 345

represented by any particular row. This is illustrated in Figure 18.2, on the
following page.

Using single-table inheritance in Active Record is straightforward. Define the
inheritance hierarchy you need in your model classes, and ensure that the
table corresponding to the base class of the hierarchy contains a column for
each of the attributes of all the classes in that hierarchy. The table must addi-
tionally include a type column, used to discriminate the class of the corre-
sponding model objects.

When defining the table, remember that the attributes of subclasses will be
present only in the table rows corresponding to those subclasses; an employee
doesn’t have a balance attribute, for example. As a result, you must define the
table to allow null values for any column that doesn’t appear in all subclasses.
The following is the migration that creates the table illustrated in Figure 18.2,
on the next page.

Download el/ar/sti.rb
create_table :people, :force => true do |t]

t.column :type, :string

common attributes
t.column :name, :string
t.column :email, :string

attributes for type=Customer
t.column :balance, :decimal, :precision => 10, :scale => 2

attributes for type=Employee
t.column :reports_to, :integer
t.column :dept, rinteger

attributes for type=Manager
- none -
end

We can define our hierarchy of model objects.

Download el/ar/sti.rb
class Person < ActiveRecord::Base

end

class Customer < Person
end

class Employee < Person
belongs_to :boss, :class_name => "Employee", :foreign_key => :reports_to

end

class Manager < Employee
end

http://media.pragprog.com/titles/rails2/code/e1/ar/sti.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/sti.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=345

JOINING TO MULTIPLE TABLES < 346

Person class Person < ActiveRecord::Base
name # ..
email end
| | class Customer < Person
Customer Employee # ...
balance reports_to end
dept
class Employee < Person
T i
Manager end
class Manager < Employee
#...
end
f people]
id type name email balance reports_to dept
1 Customer John Doe john@doe.com 78.29
2 Manager Wilma Flint wilma@here.com 23
3 Customer Bert Public b@public.net 12.45
4 Employee Barney Rub barney@here.com 2 23
5 Employee Betty Rub betty@here.com 2 23
6 Customer Ira Buyer ira9652@aol.com -66.76
7 Employee Dino Dogg dino@dig.prg 2 23

Figure 18.2: Single-Table Inheritance: A Hierarchy of Four Classes Mapped

into One Table

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=346

JOINING TO MULTIPLE TABLES < 347

Then we create a couple of rows and read them back.

Download el/ar/sti.rb

Customer.create(:name => 'John Doe', :email => "john@doe.com",
:balance => 78.29)

wilma = Manager.create(:name => 'Wilma Flint', :email => "wilma@here.com",
:dept => 23)
Customer.create(:name => 'Bert Public', :email => "b@public.net",

:balance => 12.45)

barney = Employee.new(:name => 'Barney Rub', :email => "barney@here.com",
:dept => 23)

barney.boss = wilma

barney.save!

manager = Person.find_by_name("Wilma Flint")

puts manager.class #=> Manager
puts manager.email #=> wilma@here.com
puts manager.dept #=> 23

customer = Person.find_by_name("Bert Public")
puts customer.class #=> Customer

puts customer.email #=> b@public.net

puts customer.balance #=> 12.45

Notice how we ask the base class, Person, to find a row, but the class of the
object returned is Manager in one instance and Customer in the next; Active
Record determined the type by examining the type column of the row and
created the appropriate object.

Notice also a small trick we used in the Employee class. We used belongs_to
to create an attribute named boss. This attribute uses the reports_to column,
which points back into the people table. That's what lets us say barney.boss =
wilma.

There’s one fairly obvious constraint when using single-table inheritance. Two
subclasses can’t have attributes with the same name but with different types,
because the two attributes would map to the same column in the underlying
schema.

There’s also a less obvious constraint. The attribute type is also the name of a
built-in Ruby method, so accessing it directly to set or change the type of a row
may result in strange Ruby messages. Instead, access it implicitly by creating
objects of the appropriate class, or access it via the model object’s indexing
interface, using something such as

person[:type] = 'Manager'

http://media.pragprog.com/titles/rails2/code/e1/ar/sti.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=347

JOINING TO MULTIPLE TABLES < 348

v/

7 Joe Asks...
J
T What If | Want Straight Inherit 2
Single-Table Inheritance is clever—it turns on automatically whenever you sub-
class an Active Record class. But what if you want real inheritance-you want

to define some behavior to be shared among a set of Active Record classes
by defining an abstract base class and a set of subclasses?

The answer is to define a class method called abstract_class? in your abstract
base class. The method should return true. This has two effects. First, Active
Record will never try to find a database table corresponding to this abstract
class. Second, all subclasses of this class will be tfreated as independent Active
Record classes—each will map to its own database table.

Of course, a better way of doing this is probably to use a Ruby module con-
taining the shared functionality, and mix this module into Active Record classes
that need that behavior.

»

@ David Says...
— ' ' in STI?

Yes, but it’s not as big of a problem as you think it would be. As long as the sub-
classes are more similar than not, you can safely ignore the reports_to attribute
when dealing with a customer. You simply just don’t use that attribute.

We're trading the purity of the customer model for speed (selecting just from
the people table is much faster than fetching from a join of people and customers
tables) and for ease of implementation.

This works in a lot of cases, but not all. It doesn’t work too well for abstract relo-
tionships with very little overlap between the subclasses. For example, a con-
tent management system could declare a Content base class and have sub-
classes such as Article, Image, Page, and so forth. But these subclasses are likely
to be wildly different, which will lead to an overly large base table because it
has to encompass all the attributes from all the subclasses. In this case, it would
be better to use polymorphic associations, which we describe next.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=348

JOINING TO MULTIPLE TABLES < 349

Polymorphic Associations

One major downside of STI is that there’s a single underlying table that con-
tains all the attributes for all the subclasses in our inheritance tree. We can
overcome this using Rails’ second form of heterogeneous aggregation, polymor-
phic associations.

Polymorphic associations rely on the fact that a foreign key column is simply
an integer. Although there’s a convention that a foreign key named user_id
references the id column in the users table, there’s no law that enforces this.?

In computer science, polymorphism is a mechanism that lets you abstract the
essence of something’s interface regardless of its underlying implementation.
The addition method, for example, is polymorphic, because it works with inte-
gers, floats, and even strings.

In Rails, a polymorphic association is an association that links to objects of
different types. The assumption is that these objects all share some common
characteristics but that they’ll have different representations.

To make this concrete, let’'s look at a simple asset management system. We
index our assets in a simple catalog. Each catalog entry contains a name, the
acquisition date, and a reference to the actual resource: an article, an image,
a sound, and so on. Each of the different resource types corresponds to a
different database table and to a different Active Record model, but they are
all assets, and they are all cataloged.

Let’s start with the three tables that contain the three types of resource.
Download el/ar/polymorphic.rb

create_table :articles, :force => true do |t]
t.column :content, :text
end

create_table :sounds, :force => true do |t]|
t.column :content, :binary
end

create_table :images, :force => true do |t]|
t.column :content, :binary
end

Now, let’s think about the three models that wrap these tables. We’d like to be
able to write something like

THIS DOESN'T WORK

class Article < ActiveRecord::Base
has_one :catalog_entry

end

3. If you specify that your database should enforce foreign key constraints, polymorphic associa-
tions won’t work.

http://media.pragprog.com/titles/rails2/code/e1/ar/polymorphic.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=349

JOINING TO MULTIPLE TABLES < 350

class Sound < ActiveRecord: :Base
has_one :catalog_entry
end

class Image < ActiveRecord::Base
has_one :catalog_entry
end

Unfortunately, this can’t work. When we say has_one :catalog_entry in a model,
it means that the catalog_entries table has a foreign key reference back to our
table. But here we have three tables each claiming to have_one catalog entry:
we can’t possibly arrange to have the foreign key in the catalog entry point
back to all three tables...

...unless we use polymorphic associations. The trick is to use two columns in
our catalog entry for the foreign key. One column holds the id of the target
row, and the second column tells Active Record which model that key is in. If
we call the foreign key for our catalog entries resource, we’ll need to create two
columns, resource_id and resource_type. Here’s the migration that creates the
full catalog entry.

Download el/ar/polymorphic.rb

create_table :catalog_entries, :force => true do |t|
t.column :name, :string
t.column :acquired_at, :datetime
t.column :resource_id, :integer
t.column :resource_type, :string

Now we can create the Active Record model for a catalog entry. We have to tell
it that we're creating a polymorphic association through our resource_id and
resource_type columns.

Download el/ar/polymorphic.rb

class CatalogEntry < ActiveRecord::Base
belongs_to :resource, :polymorphic => true
end

Now that we have the plumbing in place, we can define the final versions of
the Active Record models for our three asset types.

Download el/ar/polymorphic.rb

class Article < ActiveRecord::Base
has_one :catalog_entry, :as => :resource
end

class Sound < ActiveRecord::Base

has_one :catalog_entry, :as => :resource
end

http://media.pragprog.com/titles/rails2/code/e1/ar/polymorphic.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/polymorphic.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/polymorphic.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=350

JOINING TO MULTIPLE TABLES < 351

class Image < ActiveRecord::Base
has_one :catalog_entry, :as => :resource
end

The key here is the :as options to has_one. It specifies that the linkage between
a catalog entry and the assets is polymorphic, using the resource attribute in
the catalog entry. Let’s try it.

Download el/ar/polymorphic.rb

a = Article.new(:content => "This is my new article")

c = CatalogEntry.new(:name => 'Article One', :acquired_at => Time.now)
c.resource = a

c.save!

Let's see what happened inside the database. There’s nothing special about
the article.
mysql> select * from articles;

1 row in set (0.00 sec)

The catalog entry has the foreign key reference to the article and also records
the type of Active Record object it refers to (an Article).

mysql> select = from catalog_entries;

______________________________________ o e
| did | name | acquired_at | resource_id | resource_type |
e e e Rttt

| 1 | Article One | 2006-07-18 16:48:29 | 1 | Article

e Bt o ittt o +

1 row in set (0.00 sec)

We can access data from both sides of the relationship.
Download el/ar/polymorphic.rb

article = Article.find(1)
p article.catalog_entry.name #=> "Article One"

cat = CatalogEntry.find(1)

resource = cat.resource

p resource #=> #<Article:0x640d80 @attributes={"id"=>"1",
"content"=>"This 1is my new article"}>

The clever part here is the line resource = cat.resource. We're asking the catalog
entry for its resource, and it returns an Article object. It correctly determined
the Active Record class, read from the appropriate database table (articles), and
returned the right class of object.

Let's make it more interesting. Let’s clear out our database and then add
assets of all three types.

http://media.pragprog.com/titles/rails2/code/e1/ar/polymorphic.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/polymorphic.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=351

JOINING TO MULTIPLE TABLES < 352

Download el/ar/polymorphic.rb

c = CatalogEntry.new(:name => 'Article One', :acquired_at => Time.now)
c.resource = Article.new(:content => "This is my new article")

c.save!

c = CatalogEntry.new(:name => 'Image One', :acquired_at => Time.now)
c.resource = Image.new(:content => "some binary data")

c.save!

c = CatalogEntry.new(:name => 'Sound One', :acquired_at => Time.now)
c.resource = Sound.new(:content => "more binary data")

c.save!

Now our database looks more interesting.

mysql> select = from articles;

A e
| 1 | This is my new article |
____________________________ 4
mysql> select * from images;
______________________ ¥
| id | content |
s e +
| 1 | some binary data |
e T et
mysql> select * from sounds;
Y g 2D Tz I T 2t
| id | content
e T L +
| 1 | more binary data |
s +
mysql> select * from catalog_entries;
B Tttt i e BT L et SEEEEEEEEEE e +
| id | name | acquired_at | resource_id | resource_type |
s e e e et e
| 1 | Article One | 2006-07-18 17:02:05 | 1 | Article
| 2 | Image One | 2006-07-18 17:02:05 | 1 | Image |
| 3 | Sound One | 2006-07-18 17:02:05 | 1 | Sound
ke L EE SRR Frmm e R EE BT e EE RS +

Notice how all three foreign keys in the catalog have an id of 1—they are dis-
tinguished by their type column.

Now we can retrieve all three assets by iterating over the catalog.

Download el/ar/polymorphic.rb

CatalogEntry.find(:al1).each do |c]|
puts "#{c.name}: #{c.resource.class}"
end

This produces

Article One: Article
Image One: Image
Sound One: Sound

http://media.pragprog.com/titles/rails2/code/e1/ar/polymorphic.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/polymorphic.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=352

JOINING TO MULTIPLE TABLES <« 353

has_one :other belongs_to :other

other(reload=false) v v
other= v v
create_other(...) v v
build_other(...) v v/
replace v v
updated? v/
others v

others=

other_ids=

others.<<

others.build(...)
others.clear(...)
others.concat(...)
others.count
others.create(...)
others.delete(...)
others.delete_all
others.destroy_all
others.empty?
others.find(...)
others.length
others.push(...)
others.replace(...)
others.reset
others.size
others.sum(...)
others.to_ary
others.uniq
push_with_attributes(...)

SN NSNS SSSSSNSSS S S S SS S SSsS S

v/
v
v/
4
v/
4
4
4
v/
4
v/
v/
v/
v
4
4
4
4
v/
4
v
4
v/

[deprecated]

Figure 18.3: Methods Created by Relationship Declarations
I

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=353

SELF-REFERENTIAL JOINS <« 354

18.5 Self-referential Joins

It’s possible for a row in a table to reference back to another row in that same
table. For example, every employee in a company might have both a manager
and a mentor, both of whom are also employees. You could model this in Rails
using the following Employee class.

Download el/ar/self_association.rb

class Employee < ActiveRecord::Base
belongs_to :manager,
:class_name => "Employee",
:foreign_key => "manager_id"

belongs_to :mentor,
:class_name => "Employee",
:foreign_key => "mentor_id"

has_many :mentored_employees,
:class_name => "Employee",
:foreign_key => "mentor_id"

has_many :managed_employees,
:class_name => "Employee",
:foreign_key => "manager_id"
end

Let’s load up some data. Clem and Dawn each have a manager and a mentor.

Download el/ar/self_association.rb

Employee.delete_all

adam Employee.create(:id => 1, :name => "Adam")
beth = Employee.create(:id => 2, :name => "Beth")

clem = Employee.new(:name => "Clem")
clem.manager = adam

clem.mentor = beth

clem.save!

dawn = Employee.new(:name => "Dawn')
dawn.manager = adam

dawn.mentor = clem

dawn.save!

Then we can traverse the relationships, answering questions such as “who is
the mentor of X?” and “which employees does Y manage?”

Download el/ar/self_association.rb

p adam.managed_employees.map {|e| e.name} # => ["Clem", "Dawn"]
p adam.mentored_employees # => []
p dawn.mentor.name # => "Clem"

You might also want to look at the various acts as relationships.

http://media.pragprog.com/titles/rails2/code/e1/ar/self_association.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/self_association.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/self_association.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=354

Acts As €@ 355

18.6 Acts As

We’ve seen how has_one, has_many, and has_and_belongs_to_many allow us to
represent the standard relational database structures of one-to-one, one-to-
many, and many-to-many mappings. But sometimes we need to build more
on top of these basics.

For example, an order may have a list of invoice items. So far, we've repre-
sented these successfully using has_many. But as our application grows, it’s
possible that we might need to add more list-like behavior to the line items,
letting us place line items in a certain order and move line items around in
that ordering.

Or perhaps we want to manage our product categories in a tree-like data struc-
ture, where categories have subcategories and those subcategories in turn
have their own subcategories.

Active Record comes with support for adding this functionality on top of the
existing has_ relationships. It calls this support acts as, because it makes a
model object act as if it were something else.*

Acts As List

Use the acts_as_list declaration in a child to give that child list-like behavior
from the parent’s point of view. The parent will be able to traverse children,
move children around in the list, and remove a child from the list.

Lists are implemented by assigning each child a position number. This means
that the child table must have a column to record this. If we call that column
position, Rails will use it automatically. If not, we’ll need to tell it the name. For
our example, we'll create a new child table (called children) along with a parent
table.

Download el/ar/acts_as_list.rb
create_table :parents, :force => true do |t|

end

create_table :children, :force => true do |t]|
t.column :parent_id, :integer

t.column :name, :string
t.column :position, :integer
end

Next we’ll create the model classes. Note that in the Parent class we order our
children based on the value in the position column. This ensures that the array
fetched from the database is in the correct list order.

4. Rails ships with three acts as extensions: acts_as_list, acts_as_tree, and acts_as_nested_set. I've
chosen to document just the first two of these; as this book was being finalized, the nested set
variant still has some serious problems that prevent us from verifying its use with working code.

http://media.pragprog.com/titles/rails2/code/e1/ar/acts_as_list.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=355

Acts As < 356

Download el/ar/acts_as_list.rb

class Parent < ActiveRecord::Base
has_many :children, :order => :position
end

class Child < ActiveRecord: :Base
belongs_to :parent
acts_as_list :scope => :parent_id
end

In the Child class, we have the conventional belongs_to declaration, establishing
the connection with the parent. We also have an acts_as_list declaration. We
qualify this with a :scope option, specifying that the list is per parent record.
Without this scope operator, there’d be one global list for all the entries in the
children table.

Now we can set up some test data: we’ll create four children for a particular
parent, calling them One, Two, Three, and Four.

Download el/ar/acts_as_list.rb

parent = Parent.new

%w{ One Two Three Four}.each do |name|
parent.children.create(:name => name)

end

parent.save

We’'ll write a method to let us examine the contents of the list. There’s a sub-
tlety here—notice that we pass true to the children association. That forces it to
be reloaded every time we access it. That’s because the various move_ meth-
ods update the child items in the database, but because they operate on the
children directly, the parent will not know about the change immediately. The
reload forces them to be brought into memory.

Download el/ar/acts_as_list.rb

def display_children(parent)
puts parent.children(true).map {|child| child.name }.join(", ™)
end

And finally we’ll play around with our list. The comments show the output
produced by display_children.

Download el/ar/acts_as_list.rb

display_children(parent) #=> One, Two, Three, Four
puts parent.children[0].first? #=> true

two = parent.children[1]

puts two.Tower_item.name #=> Three
puts two.higher_item.name #=> One

http://media.pragprog.com/titles/rails2/code/e1/ar/acts_as_list.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/acts_as_list.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/acts_as_list.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/acts_as_list.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=356

Acts As <« 357

parent.children[0] .move_Tlower
display_children(parent) #=> Two, One, Three, Four

parent.children[2] .move_to_top
display_children(parent) #=> Three, Two, One, Four

parent.children[2].destroy
display_children(parent) #=> Three, Two, Four

The list library uses the terminology lower and higher to refer to the rela-
tive positions of elements. Higher means closer to the front of the list; lower
means closer to the end. The top of the list is therefore the same as the front,
and the bottom of the list is the end. The methods move_higher, move_lower,
move_to_bottom, and move_to_top move a particular item around in the list,
automatically adjusting the position of the other elements.

higher_item and lower_item return the next and previous elements from the cur-
rent one, and first? and last? return true if the current element is at the front or
end of the list.

Newly created children are automatically added to the end of the list. When a
child row is destroyed, the children after it in the list are moved up to fill the

gap.

Acts As Tree

Active Record provides support for organizing the rows of a table into a hierar-
chical, or tree, structure. This is useful for creating structures where entries
have subentries and those subentries may have their own subentries. Category
listings often have this structure, as do descriptions of permissions, directory
listings, and so on.

This tree-like structure is achieved by adding a single column (by default called
parent_id) to the table. This column is a foreign key reference back into the
same table, linking child rows to their parent row. This is illustrated in Fig-
ure 18.4, on the following page.

To show how trees work, let’s create a simple category table, where each top-
level category may have subcategories and each subcategory may have addi-
tional levels of subcategories. Note the foreign key pointing back into the same
table.

Download el/ar/acts_as_tree.rb

create_table :categories, :force => true do |t|
t.column :name, :string
t.column :parent_id, :integer

end

http://media.pragprog.com/titles/rails2/code/e1/ar/acts_as_tree.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=357

Acts As <« 358

(categories]

id parent_id rest of data

1 null
1

Olo|N]|Jo|JOa|ld|w]N

[0 >N ISR IO B OO I

Figure 18.4: Representing a Tree Using Parent Links in a Table

The corresponding model uses the method with the tribal name acts_as_tree to
specify the relationship. The :order parameter means that when we look at the
children of a particular node, we’ll see them arranged by their name column.

Download el/ar/acts_as_tree.rb

class Category < ActiveRecord::Base
acts_as_tree :order => "name"
end

Normally you’d have some end-user functionality to create and maintain the
category hierarchy. Here, we’ll just create it using code. Note how we manipu-
late the children of any node using the children attribute.

Download el/ar/acts_as_tree.rb

root = Category.create(:name => "Books")
fiction = root.children.create(:name => "Fiction")
non_fiction = root.children.create(:name => "Non Fiction")

non_fiction.children.create(:name => "Computers")
non_fiction.children.create(:name => "Science'")
non_fiction.children.create(:name => "Art History'")

fiction.children.create(:name => "Mystery")
fiction.children.create(:name => "Romance'")
fiction.children.create(:name => "Science Fiction™)

Now that we're all set up, we can play with the tree structure. We’ll use the
same display_children method we wrote for the acts as list code. The listing
appears on the next page.

http://media.pragprog.com/titles/rails2/code/e1/ar/acts_as_tree.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/acts_as_tree.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=358

WHEN THINGS GET SAVED <« 359

Download el/ar/acts_as_tree.rb

display_children(root) # Fiction, Non Fiction

sub_category = root.children.first

puts sub_category.children.size #=> 3

display_children(sub_category) #=> Mystery, Romance, Science Fiction
non_fiction = root.children.find(:first, :conditions => "name = 'Non Fiction'")
display_children(non_fiction) #=> Art History, Computers, Science

puts non_fiction.parent.name #=> Books

The various methods we use to manipulate the children should look familar:
they're the same as those provided by has_many. In fact, if we look at the
implementation of acts_as_tree, we’ll see that all it does is establish both a
belongs_to and a has_many attribute, each pointing back into the same table.
It's as if we’d written

class Category < ActiveRecord::Base

belongs_to :parent,
:class_name => "Category"

has_many :children,
:class_name => "Category",
:foreign_key => "parent_id",
:order => "name",
:dependent => :destroy
end

If you need to optimize the performance of children.size, you can use a counter

cache (just as you can with has_many). Add the option :counter_cache => true to
the acts_as_free declaration, and add the column catgories_count to your table.

18.7 When Things Get Saved

Let’s look again at invoices and orders.

Download el/ar/one_to_one.rb

class Order < ActiveRecord::Base
has_one :invoice
end

class Invoice < ActiveRecord::Base
belongs_to :order
end

You can associate an invoice with an order from either side of the relationship:
you can tell an order that it has an invoice associated with it, or you can tell
the invoice that it's associated with an order. The two are almost equivalent.
The difference is in the way they save (or don’t save) objects to the database.

http://media.pragprog.com/titles/rails2/code/e1/ar/acts_as_tree.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/one_to_one.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=359

WHEN THINGS GET SAVED <« 360

4 N

Q David Says. ..

UWh Things in A iation t Saved When They D

It might seem inconsistent that assigning an order to the invoice will not save
the association immediately, but the reverse will. This is because the invoices
table is the only one that holds the information about the relationship. Hence,
when you associate orders and invoices, it’s always the invoice rows that hold
the information. When you assign an order to an invoice, you can easily make
this part of a larger update to the invoice row that might also include the
billing date. It’s therefore possible to fold what would otherwise have been
two database updates intfo one. In an ORM, it's generally the rule that fewer
database calls is better.

When an order object has an invoice assigned to it, it still needs to update the
invoice row. So, there’s no additional benefit in postponing that association
until the order is saved. In fact, it would take considerably more software to do
50. And Rails is all about less software.

If you assign an object to a has_one association in an existing object, that
associated object will be automatically saved.
order = Order.find(some_id)

an_invoice = Invoice.new(...)
order.invoice = an_invoice # invoice gets saved

If instead you assign a new object to a belongs_to association, it will never be
automatically saved.
order = Order.new(...)

an_invoice.order = order # Order will not be saved here
an_invoice.save # both the invoice and the order get saved

Finally, there’s a danger here. If the child row cannot be saved (for example,
because it fails validation), Active Record will not complain—you’ll get no indi-
cation that the row was not added to the database. For this reason, we strongly
recommend that instead of the previous code, you write

invoice = Invoice.new

fi1l in the invoice

invoice.save!
an_order.invoice = invoice

The save! method throws an exception on failure, so at least you'll know that
something went wrong.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=360

PRELOADING CHILD Rows < 361

Saving and Collections

The rules for when objects get saved when collections are involved (that is,
when you have a model containing a has_many or has_and_belongs_to_many dec-
laration) are basically the same.

¢ If the parent object exists in the database, then adding a child object
to a collection automatically saves that child. If the parent is not in the
database, then the child is held in memory and is saved once the parent
has been saved.

¢ If the saving of a child object fails, the method used to add that child to
the collection returns false.

As with has_one, assigning an object to the belongs_to side of an association
does not save it.

18.8 Preloading Child Rows

Normally Active Record will defer loading child rows from the database until
you reference them. For example, drawing from the example in the RDoc,
assume that a blogging application had a model that looked like this.
class Post < ActiveRecord::Base

belongs_to :author

has_many :comments, :order => 'created on DESC'
end

If we iterate over the posts, accessing both the author and the comment
attributes, we’ll use one SQL query to return the n rows in the posts table
and n queries each to get rows from the authors and comments tables, a total of
2n+1 queries.

for post in Post.find(:all)

puts "Post: #{post.title}"

puts "Written by: #{post.author.name}"

puts "Last comment on: #{post.comments.first.created_on}"
end

This performance problem is sometimes fixed using the :include option to the
find method. It lists the associations that are to be preloaded when the find is
performed. Active Record does this in a fairly smart way, such that the whole
wad of data (for both the main table and all associated tables) is fetched in a
single SQL query. If there are 100 posts, the following code will eliminate 100
queries compared with the previous example.

for post in Post.find(:all, :include => :author)

puts "Post: #{post.title}"

puts "Written by: #{post.author.name}"

puts "Last comment on: #{post.comments.first.created_on}"
end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=361

COUNTERS €@ 362

And this example will bring it all down to just one query.

for post in Post.find(:all, :include => [:author, :comments])

puts "Post: #{post.title}"

puts "Written by: #{post.author.name}"

puts "Last comment on: #{post.comments.first.created_on}"
end

This preloading is not guaranteed to improve performance.® Under the covers,
it joins all the tables in the query together and so can end up returning a
lot of data to be converted into Active Record objects. And if your application
doesn’t use the extra information, you've incurred a cost for no benefit. You
might also have problems if the parent table contains a large number of rows—
compared with the row-by-row lazy loading of data, the preloading technique
will consume a lot more server memory.

If you use :include, you'll need to disambiguate all column names used in other
parameters to find—prefix each with the name of the table that contains it. In
the following example, the title column in the condition needs the table name
prefix for the query to succeed.
for post in Post.find(:all, :conditions => "posts.title like '%ruby%'",
:include => [:author, :comments])

...

end

18.9 Counters

The has_many relationship defines an attribute that is a collection. It seems
reasonable to be able to ask for the size of this collection: how many line items
does this order have? And indeed you'll find that the aggregation has a size
method that returns the number of objects in the association. This method
goes to the database and performs a select count(*) on the child table, counting
the number of rows where the foreign key references the parent table row.

This works and is reliable. However, if you're writing a site where you fre-
quently need to know the counts of child items, this extra SQL might be an
overhead you’'d rather avoid. Active Record can help using a technique called
counter caching. In the belongs_to declaration in the child model you can ask
Active Record to maintain a count of the number of associated children in the
parent table rows. This count will be automatically maintained—if you add a
child row, the count in the parent row will be incremented, and if you delete a
child row, it will be decremented.

To activate this feature, you need to take two simple steps. First, add the
option :counter_cache to the belongs_to declaration in the child table.

5. In fact, it might not work at all! If your database doesn’t support left outer joins, you can’t use
the feature. Oracle 8 users, for instance, will need to upgrade to version 9 to use preloading.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=362

COUNTERS <« 363

Download el/ar/counters.rb

class Lineltem < ActiveRecord::Base
belongs_to :product, :counter_cache => true
end

Second, in the definition of the parent table (products in this example) you
need to add an integer column whose name is the name of the child table with
_count appended.

Download el/ar/counters.rb

create_table :products, :force => true do |t]|
t.column :title, :string
t.column :description, :text
...
t.column :Tine_items_count, :integer, :default => 0
end

There’s an important point in this DDL. The column must be declared with a
default value of zero (or you must do the equivalent and set the value to zero
when parent rows are created). If this isn’t done, you’ll end up with null values
for the count regardless of the number of child rows.

Once you've taken these steps, you'll find that the counter column in the par-
ent row automatically tracks the number of child rows.

There is an issue with counter caching. The count is maintained by the object
that contains the collection and is updated correctly if entries are added via
that object. However, you can also associate children with a parent by setting
the link directly in the child. In this case the counter doesn’t get updated.

The following shows the wrong way to add items to an association. Here we
link the child to the parent manually. Notice how the size attribute is incorrect
until we force the parent class to refresh the collection.

Download el/ar/counters.rb

product = Product.create(:title => "Programming Ruby",
:description => " ... ")
Tine_item = LineItem.new
Tine_item.product = product
Tine_item.save
puts "In memory size = #{product.line_items.size}" #=> 0
puts "Refreshed size = #{product.line_items(:refresh).size}" #=> 1

The correct approach is to add the child to the parent.
Download el/ar/counters.rb

product = Product.create(:title => "Programming Ruby",

:description => " ... ")
product.line_items.create
puts "In memory size = #{product.line_items.size}" #=> 1
puts "Refreshed size = #{product.line_items(:refresh).size}" #=> 1

http://media.pragprog.com/titles/rails2/code/e1/ar/counters.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/counters.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/counters.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/counters.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=363

19.1

Chapter 19
Active Record Part III;

So far we've looked at how to connect to Active Record, access data and
attributes, and link together tables. This chapter rounds off our description
of Active Record. It looks at the life cycle of Active Record objects: the valida-
tions and hooks that you can define affect how they are processed.

Validation

Active Record can validate the contents of a model object. This validation can
be performed automatically when an object is saved. You can also program-
matically request validation of the current state of a model. If validation fails
when you're saving an object, the object will not be written to the database; it
will be left in memory in its invalid state. This allows you (for example) to pass
the object back to a form so the user can correct the bad data.

Active Record distinguishes between models that correspond to an existing
row in the database and those that don’t. The latter are called new records
(the new_record? method will return frue for them). When you call the save
method, Active Record will perform an SQL insert operation for new records
and an update for existing ones.

This distinction is reflected in Active Record’s validation workflow—you can
specify validations that are performed on all save operations and other valida-
tions that are performed only on creates or updates.

At the lowest level you specify validations by implementing one or more of
the methods validate, validate_on_create, and validate_on_update. The validate
method is invoked on every save operation. One of the other two is invoked

VALIDATION < 365

depending on whether the record is new or whether it was previously read
from the database.

You can also run validation at any time without saving the model object to the
database by calling the valid? method. This invokes the same two validation
methods that would be invoked if save had been called.

For example, the following code ensures that the user name column is always
set to something valid and that the name is unique for new User objects. (We’ll
see later how these types of constraints can be specified more simply.)

class User < ActiveRecord::Base

def validate

unless name && name =~ /A\w+$/
errors.add(:name, "is missing or invalid")
end
end

def validate_on_create
if User.find_by_name(name)
errors.add(:name, "is already being used")
end
end
end

When a validate method finds a problem, it adds a message to the list of errors
for this model object using errors.add. The first parameter is the name of the
offending attribute, and the second is an error message. If you need to add an
error message that applies to the model object as a whole, use the add_fo_base
method instead. (Note that this code uses the support method blank?, which
returns frue if its receiver is nil or an empty string.)

def validate

if name.blank? && email.blank?
errors.add_to_base("You must specify a name or an email address™)

end
end

As we’ll see on page 494, Rails views can use this list of errors when dis-
playing forms to end users—the fields that have errors will be automatically
highlighted, and it’s easy to add a pretty box with an error list to the top of the
form.

You can get the errors for a particular attribute using errors.on(:name) (aliased
to errors[:name]), and you can clear the full list of errors using errors.clear. If you
look at the API documentation for ActiveRecord::Errors, you'll find a number of
other methods. Most of these have been superseded by higher-level validation
helper methods.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=365

VALIDATION < 366

Validation Helpers

Some validations are common: this attribute must not be empty, that other
attribute must be between 18 and 65, and so on. Active Record has a set of
standard helper methods that will add these validations to your model. Each
is a class-level method, and all have names that start validates_. Each method
takes a list of attribute names optionally followed by a hash of configuration
options for the validation.

For example, we could have written the previous validation as

class User < ActiveRecord::Base
validates_format_of :name,
:with = /N\w+$/,
:message => "is missing or invalid"

validates_uniqueness_of :name,
ron => :create,
:message => "is already being used"
end

The majority of the validates_ methods accept :on and :message options. The :on
option determines when the validation is applied and takes one of the values
:save (the default), :create, or :update. The :message parameter can be used to
override the generated error message.

When validation fails, the helpers add an error object to the Active Record
model object. This will be associated with the field being validated. After vali-
dation, you can access the list of errors by looking at the errors attribute of the
model object. When Active Record is used as part of a Rails application, this
checking is often done in two steps.

1. The controller attempts to save an Active Record object, but the save fails
because of validation problems (returning false). The controller redisplays
the form containing the bad data.

2. The view template uses the error_messages_for method to display the error
list for the model object, and the user has the opportunity to fix the fields.

We cover the interactions of forms and models in Section 22.5, Error Handling
and Model Objects, on page 494.

The pages that follow contain a list of the validation helpers you can use in
model objects.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=366

VALIDATION

validates_acceptance_of

Validates that a checkbox has been checked.
validates_acceptance_of attr... [options...]

Many forms have a checkbox that users must select in order to accept some terms or
conditions. This validation simply verifies that this box has been checked by validating
that the value of the attribute is the string 1 (or the value of the :accept parameter).
The attribute itself doesn’t have to be stored in the database (although there’s nothing
to stop you storing it if you want to record the confirmation explicitly).

class Order < ActiveRecord::Base

validates_acceptance_of :terms,
:message => "Please accept the terms to proceed"

end

Options:

:accept value The value that signifies acceptance (defaults to 1)
:allow_nil boolean If true, nil attributes are considered valid

:if code See discussion on page 373

‘message fext Default is “must be accepted”

Helg save, :create, or :update

validates_associated

Performs validation on associated objects.
validates_associated name... [options...]

Performs validation on the given attributes, which are assumed to be Active Record
models. For each attribute where the associated validation fails, a single message will
be added to the errors for that attribute (that is, the individual detailed reasons for
failure will not appear in this model’s errors).

Be careful not to include a validates_associated call in models that refer to each other:
the first will try to validate the second, which in turn will validate the first, and so on,
until you run out of stack.

class Order < ActiveRecord::Base
has_many :1ine_items
belongs_to :user

validates_associated :1ine_items,

:message => "are messed up"
validates_associated :user

end

Options:

:allow_nil boolean If true, nil attributes are considered valid
:if code See discussion on page 373

‘message fext Default is “is invalid”

:on save, :create, or :update

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=367

VALIDATION

validates_confirmation_of

Validates that a field and its doppelganger have the same content.
validates_confirmation_of attr... [options...]

Many forms require a user to enter some piece of information twice, the second copy
acting as a confirmation that the first was not mistyped. If you use the naming conven-
tion that the second field has the name of the attribute with _confirmation appended, you
can use validates_confirmation_of to check that the two fields have the same value. The
second field need not be stored in the database.

For example, a view might contain

<%= password_field "user", "password" %>

<%= password_field "user", "password_confirmation" %>

Within the User model, you can validate that the two passwords are the same using

class User < ActiveRecord::Base
validates_confirmation_of :password

end

Options:

:allow_nil boolean If true, nil attributes are considered valid
:if code See discussion on page 373

‘message fext Default is “doesn’t match confirmation”
:on save, :create, or :update

validates_each

Validates one or more attributes using a block.
validates_each attr... [options...] { |model, attr, value| ... }

Invokes the block for each attribute (skipping those that are nil if :allow_nil is true). Passes
in the model being validated, the name of the attribute, and the attribute’s value. As the

following example shows, the block should add to the model’s error list if a validation
fails.

class User < ActiveRecord::Base
validates_each :name, :email do |model, attr, value|

if value =~ /groucho|harpo|chico/i
model.errors.add(attr, "You can't be serious, #{value}')
end
end
end
Options:

:allow_nil boolean If :allow_nil is true, attributes with values of nil will not be passed into the
block. By default they will.

:if code See discussion on page 373.

:on save, :creatfe, or :update.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=368

VALIDATION

validates_exclusion_of

Validates that attributes are not in a set of values.
validates_exclusion_of attr..., :in => enum [options...]

Validates that none of the attributes occurs in enum (any object that supports the
include? predicate).

class User < ActiveRecord::Base
validates_exclusion_of :genre,
:in => %w{ polka twostep foxtrot 1},
:message => "no wild music allowed"
validates_exclusion_of :age,
in => 13..19,
:message => '"cannot be a teenager"

end

Options:

:allow_nil boolean If true, nil attributes are considered valid
:if code See discussion on page 373

in (or:within) enumerable An enumerable object

‘message text Default is “is not included in the list.”
:on save, :create, or :update

validates_format_of

Validates attributes against a pattern.
validates_format_of attr..., :with => regexp [options...]
Validates each of the attributes by matching its value against regexp.

class User < ActiveRecord::Base

validates_format_of :length, :with => /A\d+(in|cm)/

end

Options:

:allow_nil boolean If true, nil attributes are considered valid
:if code See discussion on page 373

‘message fext Default is “is invalid”

:on save, :create, or :update

with The regular expression used to validate the attributes

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=369

VALIDATION

validates_inclusion_of

Validates that attributes belong to a set of values.
validates_inclusion_of attr..., :in => enum [options...]

Validates that the value of each of the attributes occurs in enum (any object that sup-
ports the include? predicate).

class User < ActiveRecord::Base
validates_inclusion_of :gender,
:in => %w{ male female },
:message => "should be 'male' or 'female'"
validates_inclusion_of :age,
:in => 0..130,
:message => "should be between 0 and 130"

end

Options:

:allow_nil boolean If true, nil attributes are considered valid
:if code See discussion on page 373

in (or:within) enumerable An enumerable object

‘message text Default is “is not included in the list”

:on save, :create, or :update

validates_length_of
Validates the length of attribute values.

validates_length_of attr..., [options...]

Validates that the length of the value of each of the attributes meets some constraint:
at least a given length, at most a given length, between two lengths, or exactly a given
length. Rather than having a single :message option, this validator allows separate mes-
sages for different validation failures, although :message may still be used. In all options,
the lengths may not be negative.

class User < ActiveRecord::Base

validates_Tlength_of :name, :maximum => 50
validates_Tlength_of :password, :in => 6..20
validates_length_of :address, :minimum => 10,

:message => "seems too short"
end

continued over...

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=370

VALIDATION

Options (for validates_length_of):

:allow_nil boolean If true, nil attributes are considered valid.

:if code See discussion on page 373.

;in (or :within) range The length of value must be in range.

is integer Value must be integer characters long.

:minimum integer Value may not be less than the integer characters long.

:maximum integer Value may not be greater than integer characters long.

‘message text The default message depends on the test being performed. The mes-

sage may contain a single %d sequence, which will be replaced by the
maximum, minimum, or exact length required.

:on 'save, :create, or :update.

‘foo_long text A synonym for :message when :maximum is being used.
‘tfoo_short text A synonym for :message when :minimum is being used.
'wrong_length fext A synonym for :message when :is is being used.

validates_numericality_of

Validates that attributes are valid numbers.
validates_numericality_of attr... [options...]

Validates that each of the attributes is a valid number. With the :only_integer option, the
attributes must consist of an optional sign followed by one or more digits. Without the
option (or if the option is not true), any floating-point format accepted by the Ruby Float
method is allowed.

class User < ActiveRecord::Base
validates_numericality_of :height_in_meters
validates_numericality_of :age, :only_integer => true

end

Options:

:allow_nil boolean If true, nil attributes are considered valid

:if code See discussion on page 373

‘message text Default is “is not a number”

:on save, :create, or :update

:only_integer If true, the attributes must be strings that contain an optional sign

followed only by digits

validates_presence_of
Validates that attributes are not empty.

validates_presence_of attr... [options...]

Validates that each of the attributes is neither nil nor empty.

class User < ActiveRecord::Base
validates_presence_of :name, :address
end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=371

VALIDATION

Options:

:allow_nil boolean If true, nil attributes are considered valid
:if code See discussion on the following page
‘message fext Default is “can’t be empty”

:on save, :create, or :update

validates_size_of
Validates the length of an attribute.

validates_size_of attr..., [options...]

Alias for validates_length_of.

validates_uniqueness_of

Validates that attributes are unique.
validates_uniqueness_of attr... [options...]

For each attribute, validates that no other row in the database currently has the same
value in that given column. When the model object comes from an existing database
row, that row is ignored when performing the check. The optional :scope parameter can
be used to filter the rows tested to those having the same value in the :scope column as
the current record.

This code ensures that user names are unique across the database.

class User < ActiveRecord::Base
validates_uniqueness_of :name
end

This code ensures that user names are unique within a group.

class User < ActiveRecord::Base
validates_uniqueness_of :name, :scope => "group_id"
end

Except...despite its name, validates_uniqueness_of doesn’t really guarantee that column
values will be unique. All it can do is verify that no column has the same value as that
in the record being validated at the time the validation is performed. It’s possible for two
records to be created at the same time, each with the same value for a column that
should be unique, and for both records to pass validation. The most reliable way to
enforce uniqueness is with a database-level constraint.

continued over...

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=372

VALIDATION < 373

Options:

:allow_nil boolean If true, nil attributes are considered valid.

:case_sensitive boolean If true (the default), an attempt is made to force the test to be case
sensitive; otherwise case is ignored. This option works onlyif your
database is configured to support case-sensitive comparisons in con-

ditions.
:if code See discussion on the current page.
:message text Default is “has already been taken.”
:on save, :creatfe, or :update.
scope aftr Limits the check to rows having the same value in the column as the

row being checked.

Conditional Validation
All validation declarations take an optional :if parameter that identifies some
code to be run. The parameter may be

* A symbol, in which case the corresponding method is called, passing it
the current Active Record object

* A string, which is evaluated (by calling eval)

* A Proc object, which will be called, passing it the current Active Record
object

If the code returns false, this particular validation is skipped.

The :if option is commonly used with a Ruby proc, because these allow you
to write code whose execution is deferred until the validation is performed.
For example, you might want to check that a password was specified and
that it matches its confirmation (the duplication password you ask users to
enter). However, you don’t want to perform the confirmation check if the first
validation would fail. You achieve this by running the confirmation check only
if the password isn’t blank.

validates_presence_of :password

validates_confirmation_of :password,
:message => "must match confirm password",
:if => Proc.new { |u| !u.password.blank? }

Validation Error Messages

The default error messages returned by validation are built into Active Record.
You can, however, change them programmatically. The messages are stored in
a hash, keyed on a symbol. It can be accessed as

ActiveRecord: :Errors.default_error_messages

The values at the time of writing are

raccepted => "must be accepted"
:blank => "can't be blank"

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=373

CALLBACKS <« 374

:confirmation => "doesn't match confirmation"

rempty => "can't be empty"

:exclusion => "is reserved"

:inclusion => "is not included in the Tist"

rinvalid => "is invalid"

:not_a_number => "is not a number"

:taken => "has already been taken"

:too_Tong => "is too Tong (maximum 1is %d characters)"
:too_short => "is too short (minimum 1is %d characters)"

:wrong_length => "is the wrong length (should be %d characters)"

To change the message returned if the uniqueness validation fails, you could
code something like

ActiveRecord: :Errors.default_error_messages[:taken] = "is in use"

You’'ll probably want to put this in the environment.rb file in your application’s
config directory.

19.2 Callbacks

Active Record controls the life cycle of model objects—it creates them, monitors
them as they are modified, saves and updates them, and watches sadly as they
are destroyed. Using callbacks, Active Record lets our code participate in this
monitoring process. We can write code that gets invoked at any significant
event in the life of an object. With these callbacks we can perform complex
validation, map column values as they pass in and out of the database, and
even prevent certain operations from completing.

Active Record defines 20 callbacks. Eighteen of these form before/after pairs
and bracket some operation on an Active Record object. For example, the
before_destroy callback will be invoked just before the destroy method is called,
and aoffer_destroy will be invoked after. The two exceptions are after_find and
affer_initialize, which have no corresponding before_xxx callback. (These two
callbacks are different in other ways, too, as we’ll see later.)

Figure 19.1, on the following page, shows how the 18 paired callbacks are
wrapped around the basic create, update, and destroy operations on model
objects. Perhaps surprisingly, the before and after validation calls are not
strictly nested.

In addition to these 18 calls, the affer_find callback is invoked after any find
operation, and affer_initiclize is invoked after an Active Record model object is
created.

To have your code execute during a callback, you need to write a handler and
associate it with the appropriate callback.

There are two basic ways of implementing callbacks.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=374

CALLBACKS

model.save() model.destroy()

new record existing record
before_validation before_validation
before_validation_on_create before_validation_on_update
after_validation after_validation
after_validation_on_create after_validation_on_update
before_save before_save
before_create before_update before_destroy
insert operation update operation delete operation
after_create after_update after_destroy
after_save after_save

Figure 19.1: Sequence of Active Record Callbacks

First, you can define the callback instance method directly. If you want to
handle the before save event, for example, you could write
class Order < ActiveRecord::Base
..
def before_save
self.payment_due ||= Time.now + 30.days

end
end

The second basic way to define a callback is to declare handlers. A handler can
be either a method or a block.! You associate a handler with a particular event
using class methods named after the event. To associate a method, declare
it as private or protected, and specify its name as a symbol to the handler
declaration. To specify a block, simply add it after the declaration. This block
receives the model object as a parameter.

class Order < ActiveRecord::Base
before_validation :normalize_credit_card_number
after_create do |order|
logger.info "Order #{order.id} created"

end

protected

1. A handler can also be a string containing code to be evaled, but this is deprecated.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=375

CALLBACKS <« 376

def normalize_credit_card_number
self.cc_number.gsub!(/-\w/, ''")
end
end

You can specify multiple handlers for the same callback. They will generally
be invoked in the order they are specified unless a handler returns false (and
it must be the actual value false), in which case the callback chain is broken
early.

Because of a performance optimization, the only way to define callbacks for
the after_find and aofter_initialize events is to define them as methods. If you try
declaring them as handlers using the second technique, they’ll be silently
ignored. (Sometimes folks ask why this was done. Rails has to use reflec-
tion to determine whether there are callbacks to be invoked. When doing real
database operations, the cost of doing this is normally not significant com-
pared to the database overhead. However, a single database select statement
could return hundreds of rows, and both callbacks would have to be invoked
for each. This slows the query down significantly. The Rails team decided that
performance trumps consistency in this case.)

Time-Stamping Records
One potential use of the before_create and before_update callbacks is time-
stamping rows.
class Order < ActiveRecord::Base
def before_create
self.order_created ||= Time.now
end
def before_update
self.order_modified = Time.now
end
end

However, Active Record can save you the trouble of doing this. If your database
table has a column named created_at or created_on, it will automatically be
set to the time stamp of the row’s creation time. Similarly, a column named
updated_at or updated_on will be set to the time stamp of the latest modifica-
tion. These time stamps will by default be in local time; to make them UTC
(also known as GMT), include the following line in your code (either inline for
stand-alone Active Record applications or in an environment file for a full Rails
application).

ActiveRecord: :Base.default_timezone = :utc

To disable this behavior altogether, use

ActiveRecord: :Base.record_timestamps = false

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=376

CALLBACKS <« 377

Callback Objects

As a variant to specifying callback handlers directly in the model class, you
can create separate handler classes that encapsulate all the callback methods.
These handlers can be shared between multiple models. A handler class is
simply a class that defines callback methods (before_save, after_create, and so
on). Create the source files for these handler classes in app/models.

In the model object that uses the handler, you create an instance of this han-
dler class and pass that instance to the various callback declarations. A couple
of examples will make this clearer.

If our application uses credit cards in multiple places, we might want to share
our normalize_credit_card_number method across multiple methods. To do that,
we’'d extract the method into its own class and name it after the event we want
it to handle. This method will receive a single parameter, the model object that
generated the callback.

class CreditCardCallbacks

Normalize the credit card number
def before_validation(model)
model.cc_number.gsub! (/-\w/, '")
end
end

Now, in our model classes, we can arrange for this shared callback to be
invoked.
class Order < ActiveRecord::Base

before_validation CreditCardCallbacks.new

...
end

class Subscription < ActiveRecord: :Base
before_validation CreditCardCallbacks.new
...

end

In this example, the handler class assumes that the credit card number is
held in a model attribute named cc_number; both Order and Subscription would
have an attribute with that name. But we can generalize the idea, making the
handler class less dependent on the implementation details of the classes that
use it.

For example, we could create a generalized encryption and decryption han-
dler. This could be used to encrypt named fields before they are stored in the
database and to decrypt them when the row is read back. You could include it
as a callback handler in any model that needed the facility.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=377

CALLBACKS <« 378

The handler needs to encrypt? a given set of attributes in a model just before
that model's data is written to the database. Because our application needs
to deal with the plain-text versions of these attributes, it arranges to decrypt
them again after the save is complete. It also needs to decrypt the data when a
row is read from the database into a model object. These requirements mean
we have to handle the before_save, after_save, and after_find events. Because we
need to decrypt the database row both after saving and when we find a new
row, we can save code by aliasing the aofter_find method to after_save—the same
method will have two names.

Download el/ar/encrypt.rb

class Encrypter

We're passed a list of attributes that should

be stored encrypted in the database

def initialize(attrs_to_manage)
@attrs_to_manage = attrs_to_manage

end

Before saving or updating, encrypt the fields using the NSA and
DHS approved Shift Cipher
def before_save(model)
@attrs_to_manage.each do |field|
model[field].tr!("a-z", "b-za")
end
end

After saving, decrypt them back
def after_save(model)
@attrs_to_manage.each do |field|
model[field].tr!("b-za", "a-z'")
end
end

Do the same after finding an existing record
alias_method :after_find, :after_save
end

We can now arrange for the Encrypter class to be invoked from inside our orders
model.

require "encrypter"

class Order < ActiveRecord::Base
encrypter = Encrypter.new(:name, :email)

before_save encrypter
after_save encrypter
after_find encrypter

2. Our example here uses trivial encryption—you might want to beef it up before using this class
for real.

http://media.pragprog.com/titles/rails2/code/e1/ar/encrypt.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=378

CALLBACKS <« 379

protected
def after_find
end

end

We create a new Encrypter object and hook it up to the events before_save,
after_save, and affer_find. This way, just before an order is saved, the method
before_save in the encrypter will be invoked, and so on.

So, why do we define an empty affer_find method? Remember that we said that
for performance reasons after_find and after_initialize are treated specially. One of
the consequences of this special treatment is that Active Record won’t know to
call an aofter_find handler unless it sees an actual ofter_find method in the model
class. We have to define an empty placeholder to get after_find processing to
take place.

This is all very well, but every model class that wants to use our encryption
handler would need to include some eight lines of code, just as we did with
our Order class. We can do better than that. We'll define a helper method that
does all the work and make that helper available to all Active Record models.
To do that, we’ll add it to the ActiveRecord::Base class.

Download el/ar/encrypt.rb

class ActiveRecord: :Base
def self.encrypt(+attr_names)
encrypter = Encrypter.new(attr_names)

before_save encrypter
after_save encrypter
after_find encrypter

define_method(:after_find) { }
end
end
Given this, we can now add encryption to any model class’s attributes using a
single call.

Download el/ar/encrypt.rb

class Order < ActiveRecord::Base
encrypt(:name, :email)
end

A simple driver program lets us experiment with this.

Download el/ar/encrypt.rb

= Order.new

.name = "Dave Thomas"

.address = "123 The Street"
.email = "dave@pragprog.com"

(o]
(o]
(o]
(o]

http://media.pragprog.com/titles/rails2/code/e1/ar/encrypt.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/encrypt.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/encrypt.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=379

CALLBACKS <« 380

0.Save
puts o.name

0 = Order.find(o.id)
puts o.name

On the console, we see our customer’s name (in plain text) in the model object.

ar> ruby encrypt.rb

Dave Thomas

Dave Thomas

In the database, however, the name and e-mail address are obscured by our
industrial-strength encryption.

ar> mysql -urailsuser -prailspw railsdb
mysql> select * from orders;

s SELEEEEEEL R oo oo o ommm - +
| id | name | email | address | pay_type | when_shipped |
s SELEEEEEEL R oo oo o ommm - +
| 1 | Dbwf Tipnbt | ebwf@qsbhgsph.dpn | 123 The Street | | NULL |
s SELEEEEEEL R oo oo o ommm - +

1 row in set (0.00 sec)

Observers

Callbacks are a fine technique, but they can sometimes result in a model class
taking on responsibilities that aren’t really related to the nature of the model.
For example, on page 375 we created a callback that generated a log message
when an order was created. That functionality isn’t really part of the basic
Order class—we put it there because that’s where the callback executed.

Active Record observers overcome that limitation. An observer transparently
links itself into a model class, registering itself for callbacks as if it were part
of the model but without requiring any changes in the model itself. Here’s our
previous logging example written using an observer.

Download el/ar/observer.rb

class OrderObserver < ActiveRecord::0bserver
def after_save(an_order)
an_order.logger.info("Order #{an_order.id} created")
end
end

OrderObserver.instance

When ActiveRecord::Observer is subclassed, it looks at the name of the new
class, strips the word Observer from the end, and assumes that what is left
is the name of the model class to be observed. In our example, we called our
observer class OrderObserver, so it automatically hooked itself into the model
Order.

http://media.pragprog.com/titles/rails2/code/e1/ar/observer.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=380

ADVANCED ATTRIBUTES <« 381

Sometimes this convention breaks down. When it does, the observer class can
explicitly list the model or models it wants to observe using the observe method.

Download el/ar/observerrb

class AuditObserver < ActiveRecord::Observer
observe Order, Payment, Refund

def after_save(model)
model.Togger.info("#{model.class.name} #{model.id} created")
end
end

AuditObserver.instance

In both these examples we’ve had to create an instance of the observer—merely
defining the observer’s class does not enable that observer. For stand-alone
Active Record applications, you’ll need to call the instance method at some con-
venient place during initialization. If you're writing a Rails application, you’ll
instead use the observer directive in your controller.

class StoreController < ApplicationController
observer :stock_control_observer
...
By convention, observer source files live in app/models.

In a way, observers bring to Rails much of the benefits of first-generation
aspect-oriented programming in languages such as Java. They allow you to
inject behavior into model classes without changing any of the code in those
classes.

19.3 Advanced Attributes

Back when we first introduced Active Record, we said that an Active Record
object has attributes that correspond to the columns in the database table it
wraps. We went on to say that this wasn’t strictly true. Here’s the rest of the
story.

When Active Record first uses a particular model, it goes to the database and
determines the column set of the corresponding table. From there it constructs
a set of Column objects. These objects are accessible using the columns class
method, and the Column object for a named column can be retrieved using the
columns_hash method. The Column objects encode the database column’s name,
type, and default value.

When Active Record reads information from the database, it constructs an
SQL select statement. When executed, the select statement returns zero or

http://media.pragprog.com/titles/rails2/code/e1/ar/observer.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=381

ADVANCED ATTRIBUTES <« 382

more rows of data. Active Record constructs a new model object for each of
these rows, loading the row data into a hash, which it calls the attribute data.
Each entry in the hash corresponds to an item in the original query. The key
value used is the same as the name of the item in the result set.

Most of the time we’ll use a standard Active Record finder method to retrieve
data from the database. These methods return all the columns for the selected
rows. As a result, the attributes hash in each returned model object will con-
tain an entry for each column, where the key is the column name and the
value is the column data.

result = LineItem.find(:first)
p result.attributes

{"order_id"=>13,
"quantity"=>1,
"product_id"=>27,
"id"=>34,
"unit_price"=>29.95}

Normally, we don’t access this data via the attributes hash. Instead, we use
attribute methods.

result = LineItem.find(:first)
p result.quantity #=> 1
p result.unit_price #=> 29.95

But what happens if we run a query that returns values that don’t correspond
to columns in the table? For example, we might want to run the following
query as part of our application.

select quantity, quantityxunit_price from Tine_items;

If we manually run this query against our database, we might see something
like the following.

mysql> select quantity, quantity+unit_price from 1ine_items;

oo mm - e e +
| quantity | quantityxunit_price |
oo mm - e e +
| 1 29.95 |
| 2 | 59.90 |
| 1

44.95 |

Notice that the column headings of the result set reflect the terms we gave
to the select statement. These column headings are used by Active Record
when populating the attributes hash. We can run the same query using Active
Record’s find_by_sgl method and look at the resulting attributes hash.
result = LineItem.find_by_sql("select quantity, quantity=unit_price " +

"from Tine_items")
p result[0].attributes

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=382

ADVANCED ATTRIBUTES <« 383

The output shows that the column headings have been used as the keys in the
attributes hash.

{"quantity*unit_price"=>"29.95",
"quantity"=>1}

Note that the value for the calculated column is a string. Active Record knows
the types of the columns in our table, but many databases do not return type
information for calculated columns. In this case we're using MySQL, which
doesn’t provide type information, so Active Record leaves the value as a string.
Had we been using Oracle, we’d have received a Float back, because the OCI
interface can extract type information for all columns in a result set.

It isn’t particularly convenient to access the calculated attribute using the key
quantity*price, so you'd normally rename the column in the result set using the
as qualifier.

result = LineItem.find_by_sql("select quantity,

quantity=unit_price as total_price " +
from Tine_items')

p result[0].attributes

This produces

{"total_price"=>"29.95",
"quantity"=>1}

The attribute total_price is easier to work with.

result.each do |line_item|
puts "Line item #{line_item.id}: #{line_item.total_price}"
end

Remember, though, that the values of these calculated columns will be stored
in the attributes hash as strings. You'll get an unexpected result if you try
something like
TAX_RATE = 0.07

...
sales_tax = line_item.total_price * TAX_RATE

Perhaps surprisingly, the code in the previous example sets sales_fax to an
empty string. The value of total_price is a string, and the * operator for strings
duplicates their contents. Because TAX_RATE is less than 1, the contents are
duplicated zero times, resulting in an empty string.

All is not lost! We can override the default Active Record attribute accessor
methods and perform the required type conversion for our calculated field.

class LineItem < ActiveRecord::Base
def total_price
Float(read_attribute("total_price"))
end
end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=383

TRANSACTIONS < 384

Note that we accessed the internal value of our attribute using the method
read_aftribute, rather than by going to the attribute hash directly. The method
read_aftribute knows about database column types (including columns contain-
ing serialized Ruby data) and performs type conversion if required. This isn’t
particularly useful in our current example but becomes more so when we look
at ways of providing facade columns.

Facade Columns

Sometimes we use a schema where some columns are not in the most conve-
nient format. For some reason (perhaps because we're working with a legacy
database or because other applications rely on the format), we cannot just
change the schema. Instead our application just has to deal with it somehow.
It would be nice if we could somehow put up a facade and pretend that the
column data is the way we wanted it to be.

It turns out that we can do this by overriding the default attribute accessor
methods provided by Active Record. For example, let’'s imagine that our appli-
cation uses a legacy product_data table—a table so old that product dimensions
are stored in cubits.® In our application we’d rather deal with inches,* so let’s
define some accessor methods that perform the necessary conversions.
class ProductData < ActiveRecord::Base
CUBITS_TO_INCHES = 18
def length
read_attribute("Tength") = CUBITS_TO_INCHES
end
def length=(inches)
write_attribute("Tength", Float(inches) / CUBITS_TO_INCHES)

end
end

19.4 Transactions

A database transaction groups a series of changes together in such a way that
either all the changes are applied or none of the changes are applied. The
classic example of the need for transactions (and one used in Active Record’s
own documentation) is transferring money between two bank accounts. The
basic logic is simple.

accountl.deposit(100)

account2.withdraw(100)

3. A cubit is defined as the distance from your elbow to the tip of your longest finger. Because this
is clearly subjective, the Egyptians standardized on the royal cubit, based on the king currently
ruling. They even had a standards body, with a master cubit measured and marked on a granite
stone (http://www.ncsli.org/misc/cubit.cfm).

4. Inches, of course, are also a legacy unit of measure, but let’s not fight that battle here.

http://www.ncsli.org/misc/cubit.cfm
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=384

TRANSACTIONS < 385

However, we have to be careful. What happens if the deposit succeeds but
for some reason the withdrawal fails (perhaps the customer is overdrawn)?
We'll have added $100 to the balance in accountl without a corresponding
deduction from account?. In effect we’ll have created $100 out of thin air.

Transactions to the rescue. A transaction is something like the Three Mus-
keteers with their motto “All for one and one for all.” Within the scope of a
transaction, either every SQL statement succeeds or they all have no effect.
Putting that another way, if any statement fails, the entire transaction has no
effect on the database.?

In Active Record we use the transaction method to execute a block in the con-
text of a particular database transaction. At the end of the block, the transac-
tion is committed, updating the database, unless an exception is raised within
the block, in which case all changes are rolled back and the database is left
untouched. Because transactions exist in the context of a database connec-
tion, we have to invoke them with an Active Record class as a receiver. Thus
we could write
Account.transaction do

accountl.deposit(100)

account2.withdraw(100)
end

Let’'s experiment with transactions. We'll start by creating a new database
table. (Make sure your database supports transactions, or this code won’t
work for you.)

Download el/ar/transactions.rb

create_table :accounts, :force => true do |t]

t.column :number, :string

t.column :balance, :decimal, :precision => 10, :scale => 2, :default => 0
end

Next, we’ll define a simple bank account class. This class defines instance
methods to deposit money to and withdraw money from the account. It also

provides some basic validation—for this particular type of account, the balance
can never be negative.

Download el/ar/transactions.rb
class Account < ActiveRecord::Base
def withdraw(amount)

adjust_balance_and_save(-amount)
end

5. Transactions are actually more subtle than that. They exhibit the so-called ACID properties:
they're Atomic, they ensure Consistency, they work in Isolation, and their effects are Durable (they
are made permanent when the transaction is committed). It’s worth finding a good database book
and reading up on transactions if you plan to take a database application live.

http://media.pragprog.com/titles/rails2/code/e1/ar/transactions.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/transactions.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=385

TRANSACTIONS < 386

def deposit(amount)
adjust_balance_and_save(amount)
end

private

def adjust_balance_and_save(amount)
self.balance += amount

save!
end
def validate # validation is called by Active Record
errors.add(:balance, "is negative") if balance < 0
end

end

Let’s look at the helper method, adjust_balance_and_save. The first line simply
updates the balance field. The method then calls save! to save the model data.
(Remember that save! raises an exception if the object cannot be saved—we
use the exception to signal to the transaction that something has gone wrong.)

So now let’s write the code to transfer money between two accounts. It’s pretty
straightforward.
Download el/ar/transactions.rb

peter = Account.create(:balance => 100, :number => "12345")
paul = Account.create(:balance => 200, :number => "54321")

Download el/ar/transactions.rb

Account.transaction do
paul.deposit(10)
peter.withdraw(10)

end

We check the database, and, sure enough, the money got transferred.

mysql> select * from accounts;

et EEE LT e +
| id | number | balance |
et EEE LT e +
| 5| 12345 | 90.00 |
| 6 | 54321 | 210.00 |
et EEE LT e +

Now let’s get radical. If we start again but this time try to transfer $350, we’ll
run Peter into the red, which isn’t allowed by the validation rule. Let’s try it.

Download el/ar/transactions.rb

peter = Account.create(:balance => 100, :number => "12345")
paul = Account.create(:balance => 200, :number => "54321")

http://media.pragprog.com/titles/rails2/code/e1/ar/transactions.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/transactions.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/transactions.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=386

TRANSACTIONS < 387

Download el/ar/transactions.rb

Account.transaction do
paul.deposit(350)
peter.withdraw(350)

end

When we run this, we get an exception reported on the console.

.../validations.rb:736:in ‘save!': Validation failed: Balance is negative
from transactions.rb:46:in ‘adjust_balance_and_save'

from transactions.rb:80

Looking in the database, we can see that the data remains unchanged.

mysql> select * from accounts;

et EEE LT e +
| id | number | balance |
et EEE T e +
| 7 | 12345 | 100.00 |
| 8 | 54321 | 200.00 |
R et tom—m - +

However, there’s a trap waiting for you here. The transaction protected the
database from becoming inconsistent, but what about our model objects? To
see what happened to them, we have to arrange to intercept the exception to
allow the program to continue running.

Download el/ar/transactions.rb

peter = Account.create(:balance => 100, :number => "12345")
paul Account.create(:balance => 200, :number => "54321")

Download el/ar/transactions.rb

begin
Account.transaction do
paul.deposit(350)
peter.withdraw(350)
end
rescue
puts "Transfer aborted"
end

puts "Paul has #{paul.balance}"
puts "Peter has #{peter.balance}"
What we see is a little surprising.

Transfer aborted
Paul has 550.0
Peter has -250.0

Although the database was left unscathed, our model objects were updated
anyway. This is because Active Record wasn't keeping track of the before and
after states of the various objects—in fact it couldn’t, because it had no easy

http://media.pragprog.com/titles/rails2/code/e1/ar/transactions.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/transactions.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/transactions.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=387

TRANSACTIONS < 388

way of knowing just which models were involved in the transactions. We can
rectify this by listing them explicitly as parameters to the transaction method.

Download el/ar/transactions.rb

peter = Account.create(:balance => 100, :number => "12345")
paul = Account.create(:balance => 200, :number => "54321")

Download el/ar/transactions.rb

begin
Account.transaction(peter, paul) do
paul.deposit(350)
peter.withdraw(350)
end
rescue
puts "Transfer aborted"
end

puts "Paul has #{paul.balance}"
puts "Peter has #{peter.balance}"

This time we see the models are unchanged at the end.

Transfer aborted
Paul has 200.0
Peter has 100.0

We can tidy this code a little by moving the transfer functionality into the
Account class. Because a transfer involves two separate accounts, and isn’t
driven by either of them, we’ll make it a class method that takes two account
objects as parameters. Notice how we can simply call the tfransaction method
inside the class method.

Download el/ar/transactions.rb

class Account < ActiveRecord::Base
def self.transfer(from, to, amount)
transaction(from, to) do
from.withdraw(amount)
to.deposit(amount)
end
end
end

With this method defined, our transfers are a lot tidier.
Download el/ar/transactions.rb

peter = Account.create(:balance => 100, :number => "12345")
paul = Account.create(:balance => 200, :number => "54321")

Download el/ar/transactions.rb

Account.transfer(peter, paul, 350) rescue puts "Transfer aborted"

puts "Paul has #{paul.balance}"
puts "Peter has #{peter.balance}"

http://media.pragprog.com/titles/rails2/code/e1/ar/transactions.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/transactions.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/transactions.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/transactions.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/transactions.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=388

TRANSACTIONS < 389

Transfer aborted
Paul has 200.0
Peter has 100.0

There’s a downside to having the transaction code recover the state of objects
automatically—you can't get to any error information added during validation.
Invalid objects won't be saved, and the transaction will roll everything back,
but there’s no easy way of knowing what went wrong.

Built-in Transactions

When we discussed parent and child tables, we said that Active Record takes
care of saving all the dependent child rows when you save a parent row. This
takes multiple SQL statement executions (one for the parent and one each
for any changed or new children). Clearly this change should be atomic, but
until now we haven’t been using transactions when saving these interrelated
objects. Have we been negligent?

Fortunately not. Active Record is smart enough to wrap all of the updates and
inserts related to a particular save (and also the deletes related to a destroy) in
a transaction; either they all succeed or no data is written permanently to the
database. You need explicit transactions only when you manage multiple SQL
statements yourself.

Multidatabase Transactions
How do you go about synchronizing transactions across a number of different
databases in Rails?

The current answer is that you can’t. Rails doesn’t support distributed two-
phase commits (which is the jargon term for the protocol that lets databases
synchronize with each other).

However, you can (almost) simulate the effect by nesting transactions. Remem-
ber that transactions are associated with database connections, and connec-
tions are associated with models. So, if the accounts table is in one database
and users is in another, you could simulate a transaction spanning the two
using something such as
User.transaction(user) do
Account.transaction(account) do

account.calculate_fees

user.date_fees_Tlast_calculated = Time.now

user.save

account.save

end
end

This is only an approximation to a solution. It is possible that the commit in
the users database might fail (perhaps the disk is full), but by then the commit

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=389

TRANSACTIONS < 390

o | id 123 123 123
@ | name Dave Fred Dave
:8 pay_type | check check po
8 ete... \\ .
c \ X /
.f-j process 1 0 = Order.find(123) o.name= 'Fred'
i
a
g— process 2 0 = Order.find(123) 0.pay_type = 'po'
—‘ 0.save
T ——

Figure 19.2: Race Condition: Second Update Overwrites First
I

in the accounts database has completed and the table has been updated. This
would leave the overall transaction in an inconsistent state. It is possible (if not
pleasant) to code around these issues for each individual set of circumstances,
but for now, you probably shouldn't be relying on Active Record if you are
writing applications that update multiple databases concurrently.

Optimistic Locking

In an application where multiple processes access the same database, it's
possible for the data held by one process to become stale if another process
updates the underlying database row.

For example, two processes may fetch the row corresponding to a particular
account. Over the space of several seconds, both go to update that balance.
Each loads an Active Record model object with the initial row contents. At dif-
ferent times they each use their local copy of the model to update the under-
lying row. The result is a race condition in which the last person to update the
row wins and the first person’s change is lost. This is shown in Figure 19.2.

One solution to the problem is to lock the tables or rows being updated. By pre-
venting others from accessing or updating them, locking overcomes concur-
rency issues, but it’s a fairly brute-force solution. It assumes that something
will go wrong and locks just in case. For this reason, the approach is often
called pessimistic locking. Pessimistic locking is unworkable for web applica-
tions if you need to ensure consistency across multiple user requests, because

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=390

TRANSACTIONS <« 391

it is very hard to manage the locks in such a way that the database doesn’t
grind to a halt.

Optimistic locking doesn’t take explicit locks. Instead, just before it writes
updated data back to a row, it checks to make sure that no one else has
already changed that row. In the Rails implementation, each row contains a
version number. Whenever a row is updated, the version number is incre-
mented. When you come to do an update from within your application, Active
Record checks the version number of the row in the table against the version
number of the model doing the updating. If the two don’t match, it abandons
the update and throws an exception.

Optimistic locking is enabled by default on any table that contains an integer
column called lock_version. You should arrange for this column to be initialized
to zero for new rows, but otherwise you should leave it alone—Active Record
manages the details for you.

Let’s see optimistic locking in action. We’ll create a table called counters con-
taining a simple count field along with the lock_version column. (Note the :default
setting on the lock_version column.)

Download el/ar/optimistic.rb

create_table :counters, :force => true do |t]

t.column :count, rinteger
t.column :lock_version, :integer, :default => 0
end

Then we’ll create a row in the table, read that row into two separate model
objects, and try to update it from each.

Download el/ar/optimistic.rb

class Counter < ActiveRecord::Base

end

Counter.delete_all
Counter.create(:count => 0)

Counter.find(:first)
Counter.find(:first)

countl
count2

countl.count += 3
countl.save

count2.count += 4
count2.save

When we run this, we see an exception. Rails aborted the update of count2
because the values it held were stale.

http://media.pragprog.com/titles/rails2/code/e1/ar/optimistic.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/optimistic.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=391

TRANSACTIONS

/opt/local/1ib/ruby/gems/1.8/gems/activerecord-1.14.2/Tib/active_record/locking.rb:47:
in ‘update_without_callbacks': Attempted to update a stale object
(ActiveRecord: :StaleObjectError)

If you use optimistic locking, you'll need to catch these exceptions in your
application.

You can disable optimistic locking with

ActiveRecord: :Base.lock_optimistically = false

You can change the name of the column used to keep track of the version
number on a per-model basis.

class Change < ActiveRecord::Base
set_Tocking_column("generation_number™)
...

end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=392

20.1

Chapter 20

Action Pack lies at the heart of Rails applications. It consists of two Ruby mod-
ules, ActionController and ActionView. Together, they provide support for pro-
cessing incoming requests and generating outgoing responses. In this chapter
and the next, we’ll look at ActionController and how it works within Rails. In the
chapter that follows these two, we’ll take on ActionView.

When we looked at Active Record, we treated it as a freestanding library; you
can use Active Record as a part of a nonweb Ruby application. Action Pack is
different. Although it is possible to use it directly as a framework, you probably
won't. Instead, you’ll take advantage of the tight integration offered by Rails.
Components such as Action Controller, Action View, and Active Record han-
dle the processing of requests, and the Rails environment knits them together
into a coherent (and easy-to-use) whole. For that reason, we’ll describe Action
Controller in the context of Rails. Let’s start by looking at how Rails applica-
tions handle requests. We'll then dive down into the details of routing and URL
handling. Chapter 21, Action Controller and Rails, then looks at how you write
code in a controller.

The Basics

At its simplest, a web application accepts an incoming request from a browser,
processes it, and sends a response.

The first question that springs to mind is, how does the application know
what to do with the incoming request? A shopping cart application will receive
requests to display a catalog, add items to a cart, check out, and so on. How
does it route these requests to the appropriate code?

Rails encodes this information in the request URL and uses a subsystem called
routing to determine what should be done with that request. The actual pro-
cess is very flexible, but at the end of it Rails has determined the name of the

ROUTING REQUESTS <« 394

controller that handles this particular request, along with a list of any other
request parameters. Typically one of these additional parameters identifies the
action to be invoked in the target controller.

For example, an incoming request to our shopping cart application might look
like http://my.shop.com/store/show_product/123. This is interpreted by the appli-
cation as a request to invoke the show_product method in class StoreController,
requesting that it display details of the product with the id 123 to our cart.

You don’t have to use the controller/action/id style of URL. A blogging applica-
tion could be configured so that article dates could be encoded in the request
URLs. Access it at http://my.blog.com/blog/2005/07/04, for example, and it might
invoke the display action of the Articles controller to show the articles for July
4, 2005. We'll describe just how this kind of magic mapping occurs shortly.

Once the controller is identified, a new instance is created, and its process
method is called, passing in the request details and a response object. The
controller then calls a method with the same name as the action (or a method
called method_missing, if a method named for the action can’t be found). This
is the dispatching mechanism we first saw in Figure 4.3, on page 48. The
action method orchestrates the processing of the request. If the action method
returns without explicitly rendering something, the controller attempts to ren-
der a template named after the action. If the controller can’t find an action
method to call, it immediately tries to render the template—you don’t need an
action method in order to display a template.

20.2 Routing Requests

So far in this book we haven’t worried about how Rails maps a request such
as store/add_to_cart/123 to a particular controller and action. Let’s dig into that
now.

The rails command generates the initial set of files for an application. One of
these files is config/routes.ro. It contains the routing information for that appli-
cation. If you look at the default contents of the file, ignoring comments, you'll
see the following.

ActionController::Routing::Routes.draw do |map|

map.connect ':controller/service.wsdl', :action => 'wsdl'
map.connect ':controller/:action/:id’
end

The Routing component draws a map that lets Rails connect external URLs to
the internals of the application. Each map.connect declaration specifies a route
connecting external URLs and internal program code. Let’s look at the second
map.connect line. The string “:controller/:action/:id” acts as a pattern, matching
against the path portion of the request URL. In this case the pattern will match

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=394

ROUTING REQUESTS <« 395

any URL containing three components in the path. (This isn’t actually true,
but we’ll clear that up in a minute.) The first component will be assigned to
the parameter :confroller, the second to :action, and the third to :id. Feed this
pattern the URL with the path store/add_to_cart/123, and you’ll end up with the

parameters

@params = { :controller => 'store',
:action => 'add_to_cart',
:id => 123 }

Based on this, Rails will invoke the add_to_cart method in the store controller.
The :id parameter will have a value of 123.

Playing with Routes

Initially, routes can be somewhat intimidating. As you start to define more and
more complex routes, you'll start to encounter a problem—how do you know
that your routes work the way you expect?

Clearly, one approach is to fire up your application and enter URLs into a
browser. However, we can do better than that. For ad hoc experimentation with
routes we can use the script/console command. (For more formal verification we
can write unit tests, as we’ll see starting on page 423.) We're going to look at
how to play with routes now, because it'll come in handy when we look at all
the features of routing later.

The routing definition for an application is loaded into a RouteSet object in the
ActionConftroller:Routing module. Somewhat confusingly, we can access this via
the Routes constant (which turns out not to be that constant). In particular, we
can get to the routing definition using script/console, which lets us play with
them interactively. To save ourselves some typing, we’ll assign a reference to
this RouteSet object to a new local variable, rs.

depot> ruby script/console

>> rs = ActionController::Routing::Routes
=> #<ActionController::Routing: :RouteSet:0x13cfb70....

Ignore the many lines of output that will be displayed—the RouteSet is a fairly
complex object. Fortunately it has a simple (and powerful) interface. Let’s start
by examining the routes that are defined for our application. We do that by
asking the route set to convert each of its routes to a string, which formats
them nicely. By using puts to display the result, we’ll have each route displayed
on a separate line.

>> puts rs.routes

ANY /:controller/service.wsdl/ {:action=>"wsd1"}
ANY /:controller/:action/:id/ {}
=> nil

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=395

ROUTING REQUESTS < 396

The lines starting ANY show the two default routes that come with any new
Rails application (including Depot). The final line, => nil, is the script/console
command showing the return value of the puts method.

Each displayed route has three components. The first tells routing what HTTP
verb this routing applies to. The default, ANY, means that the routing will
be applied regardless of the verb. We’'ll see later how we can create different
routing for GET, POST, HEAD, and so on.

The next element is the pattern matched by the route. It corresponds to the
string we passed to the map.connect call in our routes.rb file.

The last element shows the optional parameters that modify the behavior of
the route. We'll be talking about these parameters shortly.

Use the recognize_path method to see how routing would parse a particular
incoming path.

>> rs.recognize_path "/store"
=> {:action=>"index", :controller=>"store"}

>> rs.recognize_path "/store/add_to_cart/1"
=> {:action=>"add_to_cart", :controller=>"store", :id=>"1"}

>> rs.recognize_path "/store/service.wsdl"
=> {:action=>"wsd1", :controller=>"store"}

You can also use the generate method to see what URL routing will create for
a particular set of parameters. This is like using the url_for method inside your
application.!

>> rs.generate :controller => :store

=> "/store"

>> rs.generate :controller => :store, :id => 123
=> "/store/index/123"

All of these examples used your application’s routing and relied on your appli-
cation having implemented all the controllers referenced in the request path—
routing checks that the controller is valid and so won't parse a request for
a controller it can’t find. For example, our Depot application doesn’t have a
coupon controller. If we try to parse an incoming route that uses this con-
troller, the path won’t be recognized.

>> rs.recognize_path "/coupon/show/1"

ActionController::RoutingError: no route found to match
"/coupon/show/1" with {}

1. It's worth stressing this point. Inside an application, you’ll use methods such as url_for and
link_fo to generate route-based URLs. The only reason we're using the generate method here is that
it works in the context of a console session.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=396

ROUTING REQUESTS <« 397

You can tell routing to pretend that your application contains controllers that
have not yet been written with the use_confrollers method.

>> ActionController::Routing.use_controllers! ["store", "admin", "coupon"]
=> ["store", "admin", "coupon"]

However, for this change to take effect, you need to reload the definition of the
routes.

>> Toad "config/routes.rb"

=> true
>> rs.recognize_path "/coupon/show/1"
=> {:action=>"show", :controller=>"coupon", :id=>"1"}

You can use this trick to test routing schemes that are not yet part of your
application: create a new Ruby source file containing the Routes.draw block
that would normally be in your routes.ro configuration file, and load this new
file using load.

Defining Routes with map.connect
The patterns accepted by map.connect are simple but powerful.

¢ Components are separated by forward slash characters and periods.
Each component in the pattern matches one or more components in the
URL. Components in the pattern match in order against the URL.

* A pattern component of the form :name sets the parameter name to what-
ever value is in the corresponding position in the URL.

¢ A pattern component of the form *name accepts all remaining compo-
nents in the incoming URL. The parameter name will reference an array
containing their values. Because it swallows all remaining components
of the URL, *name must appear at the end of the pattern.

¢ Anything else as a pattern component matches exactly itself in the corre-
sponding position in the URL. For example, a routing pattern containing
store/:controller/buy/:id would map if the URL contains the text store at the
front and the text buy as the third component of the path.

map.connect accepts additional parameters.

:defaults => { :name => "value’, ...}
Sets default values for the named parameters in the pattern. Trailing
components in the pattern that have default values can be omitted in
the incoming URL, and their default values will be used when setting
the parameters. Parameters with a default of nil will not be added to the
params hash if they do not appear in the URL. If you don’t specify other-
wise, routing will automatically supply the following defaults.

defaults => { :action => "index", :id => nil }

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=397

ROUTING REQUESTS <« 398

This explains the parsing of the default route, specified in routes.rb as
map.connect ':controller/:action/:id’
Because the action defaults to 'index" and the id may be omitted (because

it defaults to nil), routing recognizes the following styles of incoming URL
for the default Rails application.

>> rs.recognize_path "/store"

=> {:action=>"index", :controller=>"store"}

>> rs.recognize_path "/store/show"

=> {:action=>"show", :controller=>"store"}

>> rs.recognize_path "/store/show/1"

=> {:action=>"show", :controller=>"store", :id=>"1"}

requirements => { :name =>/regexp/, ...}
Specifies that the given components, if present in the URL, must each
match the specified regular expressions in order for the map as a whole
to match. In other words, if any component does not match, this map
will not be used.

:conditions => { :-name =>/regexp/orstring, ...}
New in Rails 1.2, :conditions allows you to specify that routes are matched
only in certain circumstances. The set of conditions that may be tested
may be extended by plugins—out of the box, routing supports a single
condition. This allows you to write routes that are conditional on the
HTTP verb used to submit the incoming request.

In the following example, Rails will invoke the display_checkout_form action
when it receives a GET request to /store/checkout, but it will call the action
save_checkout_form if it sees a POST request to that same URL.

Download el/routing/config/routes_with_conditions.rb

ActionController::Routing::Routes.draw do |map|
map.connect 'store/checkout',
:conditions => { :method => :get },
:controller => "store",
raction => "display_checkout_form"

map.connect 'store/checkout',
:conditions => { :method => :post },
:controller => "store",
raction => "save_checkout_form"
end

:name => value
Sets a default value for the component :name. Unlike the values set using
:defaults, the name need not appear in the pattern itself. This allows you
to add arbitrary parameter values to incoming requests. The value will
typically be a string or nil.

http://media.pragprog.com/titles/rails2/code/e1/routing/config/routes_with_conditions.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=398

ROUTING REQUESTS < 399

:name => /regexp/
Equivalent to using :requirements to set a constraint on the value of :name.

There’s one more rule: routing tries to match an incoming URL against each
rule in routes.rb in turn. The first match that succeeds is used. If no match
succeeds, an error is raised.

Now let’s look at a more complex example. In your blog application, you’'d like
all URLs to start with the word blog. If no additional parameters are given,
you’ll display an index page. If the URL looks like blog/show/nnn, you’ll display
article nnn. If the URL contains a date (which may be year, year/month, or
year/month/day), you'll display articles for that date. Otherwise, the URL will
contain a controller and action name, allowing you to edit articles and other-
wise administer the blog. Finally, if you receive an unrecognized URL pattern,
you’ll handle that with a special action.

The routing for this contains a line for each individual case.

Download el/routing/config/routes_for_blog.rb

ActionController::Routing::Routes.draw do |map|

Straight 'http://my.app/blog/' displays the index
map.connect "blog/",

:controller => "blog",

raction => "index"

Return articles for a year, year/month, or year/month/day
map.connect "blog/:year/:month/:day",
:controller => "blog",
:action => "show_date",
:requirements => { :year => /(19|20)\d\d/,
:month => /[01]?\d/,
:day => /[0-317\d/},
:day => nil,
:month => nil

Show an article identified by an id
map.connect "blog/show/:id",
:controller => "blog",
:action => "show",
1id = /\d+/

Regular Rails routing for admin stuff
map.connect "blog/:controller/:action/:id"

Catchall so we can gracefully handle badly formed requests
map.connect "wanything",
:controller => "blog",
raction => "unknown_request"
end

http://media.pragprog.com/titles/rails2/code/e1/routing/config/routes_for_blog.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=399

ROUTING REQUESTS < 400

Note two things in this code. First, we constrained the date-matching rule to
look for reasonable-looking year, month, and day values. Without this, the
rule would also match regular controller/action/id URLs. Second, notice how
we put the catchall rule ("“anything’) at the end of the list. Because this rule
matches any request, putting it earlier would stop subsequent rules from being
examined.

We can see how these rules handle some request URLs.

>> ActionController::Routing.use_controllers! ["article", "blog"]
=> ["article", "blog"]

>> Toad "config/routes_for_blog.rb"

= []

>> rs.recognize_path "/blog"
=> {:controller=>"blog", :action=>"index"}

>> rs.recognize_path "/blog/show/123"
=> {:controller=>"blog", :action=>"show", :id=>"123"}

>> rs.recognize_path "/blog/2004"
=> {:year=>"2004", :controller=>"blog", :action=>"show_date"}

>> rs.recognize_path "/blog/2004/12"
=> {:month=>"12", :year=>"2004", :controller=>"blog", :action=>"show_date"}

>> rs.recognize_path "/blog/2004/12/25"
=> {:month=>"12", :year=>"2004", :controller=>"blog", :day=>"25",
raction=>"show_date"}

>> rs.recognize_path "/blog/article/edit/123"
=> {:controller=>"article", :action=>"edit", :id=>"123"}

>> rs.recognize_path "/blog/article/show_stats"
=> {:controller=>"article", :action=>"show_stats"}

>> rs.recognize_path "/blog/wibble"
=> {:controller=>"blog", :anything=>["blog", "wibble"], :action=>"unknown_request"}

>> rs.recognize_path "/junk"
=> {:Controller=>"blog", :anything=>["junk"], :action=>"unknown_request"}

We're not quite done with specifying routes yet, but before we look at creating
named routes, let’s first see the other side of the coin—generating a URL from
within our application.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=400

ROUTING REQUESTS <« 401

URL Generation

Routing takes an incoming URL and decodes it into a set of parameters that are
used by Rails to dispatch to the appropriate controller and action (potentially
setting additional parameters along the way). But that’s only half the story.
Our application also needs to create URLs that refer back to itself. Every time
it displays a form, for example, that form needs to link back to a controller and
action. But the application code doesn’t necessarily know the format of the
URLs that encode this information; all it sees are the parameters it receives
once routing has done its work.

We could hard-code all the URLs into the application, but sprinkling knowl-
edge about the format of requests in multiple places would make our code
more brittle. This is a violation of the DRY principle;? change the application’s
location or the format of URLs, and we’d have to change all those strings.

Fortunately, we don’t have to worry about this, because Rails also abstracts
the generation of URLs using the url_for method (and a number of higher-level
friends that use it). To illustrate this, let’s go back to a simple mapping.

map.connect ":controller/:action/:id"

The url_for method generates URLs by applying its parameters to a mapping. It
works in controllers and in views. Let’s try it.

@link = url_for(:controller => "store", :action => "display"”, :id => 123)

This code will set @link to something like
http://pragprog.com/store/display/123

The url_for method took our parameters and mapped them into a request that
is compatible with our own routing. If the user selects a link that has this URL,
it will invoke the expected action in our application.

The rewriting behind url_for is fairly clever. It knows about default parameters
and generates the minimal URL that will do what you want. And, as you might
have suspected, we can play with it from within script/console. We can’t call
url_for directly, because it is available only inside controllers and views. We
can, however, do the next best thing and call the generate method inside rout-
ings. Again, we'll use the route set that we used previously. Let’s look at some
examples.

No action or 1id, the rewrite uses the defaults

>> rs.generate :controller => "store"
= "/store"

If the action 1is missing, the rewrite inserts the default (index) in the URL
>> rs.generate :controller => "store", :id => 123
=> "/store/index/123"

2. DRY stands for Don’t Repeat Yourself, an acronym coined in The Pragmatic Programmer [HTO00].

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=401

ROUTING REQUESTS <« 402

The id 1is optional
>> rs.generate :controller => "store", :action => :list
=> "/store/list"

A complete request
>> rs.generate :controller
=> "/store/list/123"

> "store", :action => :Tist, :id => 123

Additional parameters are added to the end of the URL
>> rs.generate :controller => "store", :action => :list, :id => 123, :extra => "wibble"
=> "/store/list/123?extra=wibble"

The defaulting mechanism uses values from the current request if it can. This
is most commonly used to fill in the current controller’s name if the :controller
parameter is omitted. We can demonstrate this inside script/console by using
the optional second parameter to generate. This parameter gives the options
that were parsed from the currently active request. So, if the current request
is to /store/index and we generate a new URL giving just an action of show, we’ll
still see the store part included in the URL'’s path.

>> rs.generate({:action => "show"}, {:controller => "store", :action => "index"})
=> "/store/show"

To make this more concrete, we can see what would happen if we used url_for
in (say) a view in these circumstances.

url_for(:action => "status')
#=> http://pragprog.com/store/status

URL generation works for more complex routings as well. For example, the
routing for our blog includes the following mappings.

Download el/routing/config/routes_for_blog.rb

Return articles for a year, year/month, or year/month/day
map.connect "blog/:year/:month/:day",
:controller => "blog",
raction => "show_date",
rrequirements => { :year => /(19|20)\d\d/,
:month => /[01]?\d/,
:day => /[0-3]17\d/},
:day => nil,
:month => nil

Show an article identified by an id
map.connect "blog/show/:id",
:controller => "blog",
:action => "show",
id => /\d+/

Regular Rails routing for admin stuff
map.connect "blog/:controller/:action/:id"

http://media.pragprog.com/titles/rails2/code/e1/routing/config/routes_for_blog.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=402

ROUTING REQUESTS < 403

Imagine the incoming request was http://pragprog.com/blog/2006/07/28. This will
have been mapped to the show_date action of the Blog controller by the first
rule.

>> ActionController::Routing.use_controllers! ["blog"]

=> ["blog"]

>> load "config/routes_for_blog.rb"

=> true

>> Tlast_request = rs.recognize_path "/blog/2006/07/28"

=> {:month=>"07", :year=>"2006", :controller=>"blog", :day=>"28", :action=>"show_date"}

Let’s see what various url_for calls will generate in these circumstances.

If we ask for a URL for a different day, the mapping call will take the values
from the incoming request as defaults, changing just the day parameter.

>> rs.generate({:day => 25}, last_request)
=> "/blog/2006/07/25"

Now let’s see what happens if we instead give it just a year.

>> rs.generate({:year => 2005}, Tast_request)
=> "/blog/2005"

That’s pretty smart. The mapping code assumes that URLs represent a hier-
archy of values.®> Once we change something away from the default at one
level in that hierarchy, it stops supplying defaults for the lower levels. This is
reasonable: the lower-level parameters really make sense only in the context
of the higher-level ones, so changing away from the default invalidates the
lower-level ones. By overriding the year in this example we implicitly tell the
mapping code that we don’t need a month and day.

Note also that the mapping code chose the first rule that could reasonably be
used to render the URL. Let’s see what happens if we give it values that can’t
be matched by the first, date-based rule.

>> rs.generate({:action => "edit", :id => 123}, Tlast_request)
=> "/blog/blog/edit/123"

Here the first blog is the fixed text, the second blog is the name of the controller,
and edit is the action name—the mapping code applied the third rule. If we’d
specified an action of show, it would use the second mapping.

>> rs.generate({:action => "show", :id => 123}, Tlast_request)
=> "/blog/show/123"

Most of the time the mapping code does just what you want. However, it is
sometimes too smart. Say you wanted to generate the URL to view the blog
entries for 2006. You could write

>> rs.generate({:year => 2006}, last_request)

3. This is natural on the Web, where static content is stored within folders (directories), which
themselves may be within folders, and so on.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=403

ROUTING REQUESTS <« 404

You might be surprised when the mapping code spat out a URL that included
the month and day as well.

=> "/blog/2006/07/28"

The year value you supplied was the same as that in the current request.
Because this parameter hadn’t changed, the mapping carried on using default
values for the month and day to complete the rest of the URL. To get around
this, set the month parameter to nil.

>> rs.generate({:year => 2006, :month => nil}, Tlast_request)
=> "/blog/2006"

In general, if you want to generate a partial URL, it's a good idea to set the
first of the unused parameters to nil; doing so prevents parameters from the
incoming request leaking into the outgoing URL.

Sometimes you want to do the opposite, changing the value of a parameter
higher in the hierarchy and forcing the routing code to continue to use values
at lower levels. In our example, this would be like specifying a different year
and having it add the existing default month and day values after it in the
URL. To do this, we can fake out the routing code—we use the :overwrite_params
option to tell url_for that the original request parameters contained the new year
that we want to use. Because it thinks that the year hasn’t changed, it con-
tinues to use the rest of the defaults. (Note that this option doesn’t work down
within the routing API, so we can’t demonstrate it directly in script/console.)

url_for(:year => "2002") #=> http://pragprog.com/blog/2002
url_for(:overwrite_params => {:year => "2002"}) #=> http://pragprog.com/blog/2002/4/15

One last gotcha. Say a mapping has a requirement such as

map.connect "blog/:year/:month/:day",
:controller => "blog",
raction => "show_date",
rrequirements => { :year => /(19|20)\d\d/,
:month => /[01]\d/,
:day => /[0-3]\d/},
Note that the :day parameter is required to match /[0-3]\d/; it must be two
digits long. This means that if you pass in a Fixnum value less than 10 when
creating a URL, this rule will not be used.

url_for(:year => 2005, :month => 12, :day => 8)
Because the number 8 converts to the string "8" and that string isn’t two digits
long, the mapping won't fire. The fix is either to relax the rule (making the

leading zero optional in the requirement with [0-3]?\d) or to make sure you
pass in two-digit numbers.

url_for(:year=>year, :month=>sprintf("%02d", month), :day=>sprintf("%02d", day))

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=404

ROUTING REQUESTS <« 405

The url_for Method

Now that we've looked at how mappings are used to generate URLs, we can
look at the url_for method in all its glory.

url_for

Create a URL that references this application
url_for(option => value, ...)

Creates a URL that references a controller in this application. The options hash supplies
parameter names and their values that are used to fill in the URL (based on a mapping).
The parameter values must match any constraints imposed by the mapping that is
used. Certain parameter names, listed in the Options: section that follows, are reserved
and are used to fill in the nonpath part of the URL. If you use an Active Record model
object as a value in url_for (or any related method), that object’s database id will be used.
The two redirect calls in the following code fragment have an identical effect.

user = User.find_by_name("dave thomas")
redirect_to(:action => 'delete', :id => user.id)

can be written as
redirect_to(:action => 'delete', :id => user)

url_for also accepts a single string or symbol as a parameter. Rails uses this internally.

You can override the default values for the parameters in the following table by imple-
menting the method default_url_options in your controller. This should return a hash of
parameters that could be passed to url_for.

Options:

:anchor string An anchor name to be appended to the URL. Rails automati-
cally prepends the # character.

:host string Sets the host name and port in the URL. Use a string such as
store.pragprog.com or helper.pragprog.com:8080. Defaults to the
host in the incoming request.

:only_path boolean Only the path component of the URL is generated; the protocol,
host name, and port are omitted.

:protocol string Sets the protocol part of the URL. Use a string such as "https://".
Defaults to the protocol of the incoming request.

:overwrite_params hash The options in hash are used to create the URL, but no default

values are taken from the current request.

:skip_relatfive_url_root boolean If true, the relative URL root is not prepended to the gener-
ated URL. See Section 20.2, Rooted URLs, on page 408 for more
details.

‘frailing_slash boolean Appends a slash to the generated URL. Use :trailing_slash with
caution if you also use page or action caching (described start-
ing on page 456). The extra slash reportedly confuses the
caching algorithm.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=405

ROUTING REQUESTS

Named Routes

So far we've been using anonymous routes, created using map.connect in the
routes.rb file. Often this is enough; Rails does a good job of picking the URL to
generate given the parameters we pass to url_for and its friends. However, we
can make our application easier to understand by giving the routes names.
This doesn’t change the parsing of incoming URLs, but it lets us be explicit
about generating URLs using specific routes in our code.

You create a named route simply by using a name other than connect in the
routing definition. The name you use becomes the name of that particular
route. For example, we might recode our blog routing as follows:

Download el/routing/config/routes_with_names.rb

ActionController::Routing::Routes.draw do |map|

Straight 'http://my.app/blog/' displays the index
map.index "blog/",

:controller => "blog",

raction => "index"

Return articles for a year, year/month, or year/month/day
map.date "blog/:year/:month/:day",
:controller => "blog",
:action => "show_date",
rrequirements => { :year => /(19]20)\d\d/,
:month => /[01]?\d/,
iday => /[0-3]17\d/},
:day => nil,
:month => nil

Show an article identified by an id
map.show_article "blog/show/:id",
:controller => "blog",
:action => "show",
id = /\d+/

Regular Rails routing for admin stuff
map.blog_admin "blog/:controller/:action/:id"

Catchall so we can gracefully handle badly formed requests
map.catch_all "=anything",
:controller => "blog",
raction => "unknown_request"
end

Here we've named the route that displays the index as index, the route that
accepts dates is called date, and so on. We can use these to generate URLs by
appending _url to their names and using them in the same way we’d otherwise
use url_for. Thus, to generate the URL for the blog’s index, we could use

@link = index_url

http://media.pragprog.com/titles/rails2/code/e1/routing/config/routes_with_names.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=406

ROUTING REQUESTS <« 407

This will construct a URL using the first routing, resulting in the following:
http://pragprog.com/blog/

You can pass additional parameters as a hash to these named routes. The
parameters will be added into the defaults for the particular route. This is
illustrated by the following examples.

index_url

#=> http://pragprog.com/blog

date_url(:year => 2005)
#=> http://pragprog.com/blog/2005

date_url(:year => 2003, :month => 2)
#=> http://pragprog.com/blog/2003/2

show_article_url(:id => 123)
H#=> http://pragprog.com/blog/show/123

You can use an xxx_url method wherever Rails expects URL parameters. Thus
you could redirect to the index page with the following code.
redirect_to(index_url)

In a view template, you could create a hyperlink to the index using

<%= Tink_to("Index", index_url) %>

As well as the xxx_url methods, Rails also creates xxx_path forms. These con-
struct just the path portion of the URL (ignoring the protocol, host, and port).

Finally, if the only parameters to a named URL generation method are used to
fill in values for named fields in the URL, you can pass them as regular param-
eters, rather than as a hash. For example, our sample routes.rb file defined a
named URL for blog administration.

Download el/routing/config/routes_with_names.rb

map.blog_admin "blog/:controller/:action/:id"

We've already seen how we could link to the list users action with a named
URL generator.

blog_admin_url :controller => 'users', :action => 'list'

As we’re using options only to give the named parameters values, we could
also have used

bTog_admin_url 'users', 'list'

Perhaps surprisingly, this form is less efficient than passing a hash of values.

http://media.pragprog.com/titles/rails2/code/e1/routing/config/routes_with_names.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=407

ROUTING REQUESTS <« 408

Controller Naming

Back on page 243 we said that controllers could be grouped into modules and
that incoming URLs identified these controllers using a path-like convention.
An incoming URL of http://my.app/admin/book/edit/123 would invoke the edit
action of BookController in the Admin module.

This mapping also affects URL generation.

¢ If you don’t pass a :controller parameter to url_for, it uses the current con-
troller.

¢ If you pass a controller name starting with /, then that name is absolute.

e All other controller names are relative to the module of the controller
issuing the request.

To illustrate this, let's assume an incoming request of
http://my.app/admin/book/edit/123

url_for(:action => "edit", :id => 123)
#=> http://my.app/admin/book/edit/123

url_for(:controller => "catalog", :action => "show", :id => 123)
#=> http://my.app/admin/catalog/show/123

url_for(:controller => "/store", :action => "purchase", :id => 123)
#=> http://my.app/store/purchase/123

url_for(:controller => "/archive/book", :action => "record", :id => 123)
#=> http://my.app/archive/book/record/123

Rooted URLs

Sometimes you want to run multiple copies of the same application. Perhaps
you're running a service bureau and have multiple customers. Or maybe you
want to run both staging and production versions of your application.

If possible, the easiest way of doing this is to run multiple (sub)domains with
an application instance in each. However, if this is not possible, you can also
use a prefix in your URL path to distinguish your application instances. For
example, you might run multiple users’ blogs on URLs such as
http://megablogworld.com/dave/blog

http://megablogworld.com/joe/blog
http://megablogworld.com/sue/bTlog

In these cases, the prefixes dave, joe, and sue identify the application instance:
the application’s routing starts after this. You can tell Rails to ignore this part
of the path on URLs it receives, and to prepend it on URLSs it generates, by set-
ting the environment variable RAILS_RELATIVE_URL_ROOT. If your Rails application
is running on Apache, this feature is automatically enabled.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=408

ROUTING REQUESTS < 409

Resource-Based Routing

Rails routes support the mapping between URLs and actions based on the
contents of the URL and on the HTTP method used to invoke the request.
We've seen how to do this on a URL-by-URL basis using anonymous or named
routes. Rails also supports a higher-level way of creating groups of related
routes. To understand the motivation for this, we need to take a little diversion
into the world of Representational State Transfer.

REST: Representational State Transfer

REST is a way of thinking about the architecture of distributed hypermedia
systems. This is relevant to us because many web applications can be catego-
rized this way.

The ideas behind REST were formalized in Chapter 5 of Roy Fielding’s 2000
PhD dissertation.* In a REST approach, servers communicate with clients
using stateless connections: all the information about the state of the inter-
action between the two is encoded into the requests and responses between
them. Long-term state is kept on the server as a set of identifiable resources.
Clients access these resources using a well-defined (and severely constrained)
set of resource identifiers (URLs in our context). REST distinguishes the con-
tent of resources from the presentation of that content. REST is designed to
support highly scalable computing while constraining application architec-
tures to be decoupled by nature.

There’s a lot of abstract stuff in this description. What does REST mean in
practice?

First, the formalities of a RESTful approach mean that network designers
know when and where they can cache responses to requests. This enables load
to be pushed out through the network, increasing performance and resilience
while reducing latency.

Second, the constraints imposed by REST can lead to easier-to-write (and
maintain) applications. RESTful applications don’t worry about implement-
ing remotely accessible services. Instead, they provide a regular (and simple)
interface to a set of resources. Your application implements a way of listing,
creating, editing, and deleting each resource, and your clients do the rest.

Let’s make this more concrete. In REST, we use a simple set of verbs to operate
on arich set of nouns. If we're using HTTP, the verbs correspond to HTTP meth-
ods (GET, PUT, POST, and DELETE, typically). The nouns are the resources in
our application. We name those resources using URLs.

4. http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=409

ROUTING REQUESTS < 410

A content management system might contain a set of articles. There are implic-
itly two resources here. First, there are the individual articles. Each consti-
tutes a resource. There’s also a second resource: the collection of articles.

To fetch a list of all the articles, we could issue an HTTP GET request against
this collection, say on the path /articles. To fetch the contents of an individual
resource, we have to identify it. The Rails way would be to give its primary
key value (that is, its id). Again we’d issue a GET request, this time against
the URL /articles/1. So far, this is all looking quite familiar. But what happens
when we want to add an article to our collection?

In non-RESTful applications, we’d probably invent some action with a verb
phrase as a name: articles/add_article/1. In the world of REST, we're not sup-
posed to do this: we're supposed to tell resources what to do using a standard
set of verbs. To create a new article in our collection using REST, we’d use an
HTTP POST request directed at the /articles path, with the post data containing
the article to add. Yes, that’s the same path we used to get a list of articles:
if you issue a GET to it, it responds with a list, and if you do a POST to it, it
adds a new article to the collection.

Take this a step further. We've already seen you can retrieve the content of an
article, issue a GET request against the path /articles/1. To update that article,
you'd issue an HTTP PUT request against the same URL. And, to delete it, you
could issue an HTTP DELETE request, again using the same URL.

Take this further. Maybe our system also tracks users. Again, we have a set of
resources to deal with. REST tells us to use the same set of verbs (GET, POST,
PUT, and DELETE) against a similar-looking set of URLS (/users, /user/1, ...).

Now we see some of the power of the constraints imposed by REST. We're
already familiar with the way Rails constrains us to structure our applications
a certain way. Now the REST philosophy tells us to structure the interface to
our applications too. Suddenly our world gets a lot simpler.

REST and Rails

Rails 1.2 adds direct support for this type of interface; it adds a kind of macro
route facility, called resources. Let’s create a set of RESTful routes for our
articles example.

ActionController::Routing::Routes.draw do |map|

> map.resources :articles
end

The map.resources line has added seven new routes and four new route helpers
to our application. Along the way, it assumed that the application will have a
controller named ArticlesController containing seven actions with given names.
It’s up to us to write that controller.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=410

ROUTING REQUESTS < 411

Before we do, have a look at the routes that were generated for us.

Method URL path Action Helper

GET /articles index articles_url

POST /articles create articles_url

GET /articles/new new new_article_url

GET /articles/ 1 show article_url(:id => 1)
PUT /articles/ 1 update article_url(:id => 1)
GET /articles/1;edit edit edit_article_url(:id => 1)
DELETE /articles/1 destroy article_url(:id => 1)

Let’s look at the seven controller actions that these routes reference. Although
we created our routes to manage the articles in our application, let’s broaden
this out in these descriptions and talk about resources—after all, the same
seven methods will be required for all resource-based routes.

index
Return a list of the resources.

create
Create a new resource from the data in the POST request, adding it to
the collection.

new
Construct a new resource, and pass it to the client. This resource will
not have been saved on the server. You can think of the new action as
creating an empty form for the client to fill in.

show
Return the contents of the resource identified by paramsf:id].

update
Update the contents of the resource identified by params[:id] with the data
associated with the request.

edit
Return the contents of the resource identified by params[:id] in a form
suitable for editing.

destroy
Destroy the resource identified by params:id].

You can see that these seven actions contain the four basic CRUD operations
(create, read, update, and delete). They also contain an action to list resources
and two auxiliary actions that return new and existing resources in a form
suitable for editing on the client.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=411

ROUTING REQUESTS

Let's create a simple application to play with this. By now, you know the
drill, so we’ll take it quickly. We’ll create an application called restful, make
its database.

work> rails restful
work> mysqladmin -u root create restful_development

“restful_development,” eh? I'm liking this already.

So now we’ll start creating our model, controller, views, and so on. We could
do this manually, but Rails comes with a version of scaffolding that uses the
new resource-based routing, so let’s save ourselves some typing. The gener-
ator takes the name of the model (the resource) and optionally a list of field
names and types. In our case, the article model has three attributes: a title, a
summary, and the content.

restful> ruby script/generate scaffold_resource article \
title:string summary:text content:text

exists app/models/

exists app/controllers/

exists app/helpers/

create app/views/articles

exists test/functional/

exists test/unit/

create app/views/articles/index.rhtml

create app/views/articles/show.rhtml

create app/views/articles/new.rhtml

create app/views/articles/edit.rhtml

create app/models/article.rb

create app/controllers/articles_controller.rb

create test/functional/articles_controller_test.rb

create app/helpers/articles_helper.rb

create test/unit/article_test.rb

create test/fixtures/articles.yml

create db/migrate

create db/migrate/001_create_articles.rb
route map.resources :articles

Have a look at the last line of the output of this command. It’s telling us
that the generator has automatically added the appropriate mapping to our
applications routes. Let’s have a look at what it did. Look at the top of the file
routes.rb in the config/ directory.

Download restful/config/routes.rb

ActionController::Routing::Routes.draw do |map|
map.resources :articles

Existing routes and comments...

end

http://media.pragprog.com/titles/rails2/code/restful/config/routes.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=412

ROUTING REQUESTS < 413

The migration file was automatically created and populated with the informa-
tion we gave the generator.

Download restful/db/migrate/001_create_articles.rb

class CreateArticles < ActiveRecord::Migration
def self.up
create_table :articles do |t]
t.column :title, :string
t.column :summary, :text
t.column :content, :text
end
end

def self.down
drop_table :articles
end
end

So all we have to do is run the migration.

restful> rake db:migrate

Now we can start the application (by running script/server) and play. You'll find
that it doesn’t initially feel any different to a regular scaffolded Rails appli-
cation. The index page lists existing articles; you can add an article, edit an
existing article and so on. But, as you're playing, have a look at the URLs that
are generated. You should see that we're using the RESTful versions.

Let’s have a look at the controller code.
Download restful/app/controllers/articles_controller.rb

class ArticlesController < ApplicationController
GET /articles
GET /articles.xml
def index
@articles = Article.find(:all)

respond_to do |format|
format.html # index.rhtml
format.xml { render :xml => @articles.to_xml }
end
end

GET /articles/1
GET /articles/1l.xml
def show
@article = Article.find(params[:id])

respond_to do |format|
format.html # show.rhtml
format.xm1 { render :xml => @article.to_xml }
end
end

http://media.pragprog.com/titles/rails2/code/restful/db/migrate/001_create_articles.rb
http://media.pragprog.com/titles/rails2/code/restful/app/controllers/articles_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=413

ROUTING REQUESTS < 414

GET /articles/new
def new

@article = Article.new
end

GET /articles/l;edit
def edit

@article = Article.find(params[:id])
end

POST /articles
POST /articles.xml
def create
@article = Article.new(params[:article])

respond_to do |format|
if @article.save
flash[:notice] = 'Article was successfully created.'

format.html { redirect_to article_url(@article) }
format.xml do
headers["Location"] = article_url(@article)
render :nothing => true, :status => "201 Created"
end
else
format.html { render :action => "new" }
format.xml { render :xml => @article.errors.to_xml }
end
end
end

PUT /articles/1
PUT /articles/1l.xml
def update
@article = Article.find(params[:id])

respond_to do |format|
if @article.update_attributes(params[:article])
format.html { redirect_to article_url(@article) }
format.xm1 { render :nothing => true }
else
format.html { render :action => "edit" }
format.xm1l { render :xml => @article.errors.to_xml }
end
end
end

DELETE /articles/1

DELETE /articles/1.xml

def destroy
@article = Article.find(params[:id])
@article.destroy

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=414

ROUTING REQUESTS < 415

respond_to do |format|
format.htm1l { redirect_to articles_url }
format.xm1l { render :nothing => true }
end
end
end

Notice how we have one action for each of the RESTful actions. The comment
before each shows the format of the URL that invokes it.

Notice also that many of the actions contain a respond_to block. As we saw
back on page 178, Rails uses this to determine the type of content to send in
a response. The resource-based scaffold generator automatically creates code
that will respond appropriately to requests for HTML or XML content. We’'ll
play with that in a little while.

The views created by the generator are fairly straightforward. The only tricky
thing is the need to use the correct HTTP method to send requests to the
server. For example, the view for the index action looks like this.

Download restful/app/views/articles/index.rhtml

<hl>Listing articles</hl>

<table>
<tr>
<th>Title</th>
<th>Summary</th>
<th>Content</th>
</tr>

<% for article in @articles %>
<tr>
<td><%=h article.title %></td>
<td><%=h article.summary %></td>
<td><%=h article.content %></td>
<td><%= 1link_to 'Show', article_path(article) %></td>
<td><%= link_to 'Edit', edit_article_path(article) %></td>
<td><%= 1link_to 'Destroy', article_path(article),
:confirm => 'Are you sure?', :method => :delete %></td>
</tr>
<% end %>
</table>

<%= Tlink_to 'New article', new_article_path %>

The links to the actions that edit an article and add a new article should
both use regular GET methods, so a standard link_to works fine.’> However, the

5. Note how were using named routes as the parameters to these calls. Once you go RESTful,
named routes are de rigueur.

http://media.pragprog.com/titles/rails2/code/restful/app/views/articles/index.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=415

ROUTING REQUESTS < 416

request to destroy an article must issue an HTTP DELETE, so the call includes
the :method => :delete option to link_to.®

For completeness, here are the other views.
Download restful/app/views/articles/edit.rhtml

<hl>Editing article</hl>

<% form_for(:article, :url => article_path(@article),
thtml => { :method => :put }) do |f| %

<p>Title
 <%= f.text_field :title %></p>
<p>Summary
 <%= f.text_area :summary %></p>
<p>Content
 <%= f.text_area :content %></p>

<p><%= submit_tag "Update" %></p>
<% end %>

<%= link_to 'Show', article_path(@article) %> |
<%= link_to 'Back', articles_path %>
Download restful/app/views/articles/new.rhtml

<h1l>New article</hl>
<% form_for(:article, :url => articles_path) do |f| %>

<p>Title
 <%= f.text_field :title %></p>
<p>Summary
 <%= f.text_area :summary %></p>
<p>Content
 <%= f.text_area :content %></p>

<p><¥%= submit_tag "Create" %></p>
<% end %>
<%= Tlink_to 'Back', articles_path %>
Download restful/app/views/articles/show.rhtml

<p>Title:<%=h @article.title %></p>
<p>Summary:<%=h @article.summary %></p>
<p>Content:<%=h @article.content %></p>

<%= link_to 'Edit', edit_article_path(@article) %> |
<%= link_to 'Back', articles_path %>

6. And here the implementation gets messy. Browsers cannot issue HTTP DELETE requests, so
Rails fakes it out. If you look at the generated HTML, you’ll see that Rails uses JavaScript to
generate a dynamic form. The form will post to the action you specify. But it also contains an extra
hidden field named _method whose value is delete. When a Rails application receives an _method
parameter, it ignores the real HTTP method and pretends the parameter’s value (delete in this case)
was used.

http://media.pragprog.com/titles/rails2/code/restful/app/views/articles/edit.rhtml
http://media.pragprog.com/titles/rails2/code/restful/app/views/articles/new.rhtml
http://media.pragprog.com/titles/rails2/code/restful/app/views/articles/show.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=416

ROUTING REQUESTS < 417

Adding Your Own Actions

In an ideal world you’d use a consistent set of actions across all your appli-
cation’s resources, but this isn’'t always practical. You sometimes need to add
special processing to a resource. For example, we may need to create an inter-
face to allow people to fetch just recent articles. To do that with Rails, we use
an extension to the map.resources call.

ActionController::Routing::Routes.draw do |map|

map.resources :articles, :collection => { :recent => :get }
end

That syntax takes a bit of getting used to. It says “we want to add a new
action named recent, invoked via an HTTP GET. It applies to the collection of
resources—in this case all the articles.”

The :collection option adds the following routing to the standard set added by
map.resources.

Method URL path Action Helper
GET /articles;recent recent recent_articles_url

In fact, we've already seen this technique of appending special actions to a
URL using a semicolon—the edit action uses the same mechanism.

You can also create special actions for individual resources; just use :member
instead of :collection. For example, we could create actions that mark an article
as embargoed or released—an embargoed article is invisible until released.
ActionController::Routing::Routes.draw do |map|

map.resources :articles, :member => { :embargo => :put,
:release => :put }

end

This adds the following routes to the standard set added by map.resources.

Method URL path Action Helper
PUT /articles/1;embargo embargo embargo_article_url(:id => 1)
PUT /articles/ 1;release release release_article_url(:id => 1)

It's also possible to create special actions that create new resources; use :new,
passing it the same hash of :action => :method we used with :collection and
:member. For example, we might have a need to create articles with just a title
and a body—the summary is omitted. We could create a special shortform action
for this.

ActionController::Routing::Routes.draw do |map|

map.resources :articles, :new => { :shortform => :post }
end

This adds the following routes to the standard set added by map.resources.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=417

ROUTING REQUESTS < 418

Method URL path Action Helper
POST /articles/new;shortform shortform shortform_new_article_url

Nested Resources

Often our resources themselves contain additional collections of resources.
For example, we may want to allow folks to comment on our articles. In this
case, each comment would be a resource, and collections of comments would
be associated with each article resource.

Rails provides a convenient and intuitive way of declaring the routes for this
type of situation:

Download restful2/config/routes.rb

ActionController::Routing::Routes.draw do |map|
map.resources :articles do |article]|
article.resources :comments
end
end

This routing defines the top-level set of article routes and additionally cre-
ates a set of subroutes for comments. Because the comment resources appear
inside the articles block, a comment resource must be qualified by an article
resource. This means that the path to a comment must always be prefixed by
the path to a particular article. To fetch the comment with id 4 for the article
with an id of 99, you’d use a path of /articles/99/comments/4.

Figure 20.1, on the next page, shows the full set of routes generated by our
configuration.

We can extend our previous articles application to support these new routes.
This time, we’ll do it manually, rather than using scaffolding. First, we’ll create
a model for comments and add a migration.

restful> ruby script/generate model comment
Download restful2/db/migrate/002_create_comments.rb

class CreateComments < ActiveRecord::Migration

def self.up
create_table :comments do |t]|
t.column :comment, Ttext

t.column :updated_at, :datetime
t.column :article_id, :integer
end
end

def self.down
drop_table :comments
end
end

http://media.pragprog.com/titles/rails2/code/restful2/config/routes.rb
http://media.pragprog.com/titles/rails2/code/restful2/db/migrate/002_create_comments.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=418

ROUTING REQUESTS < 419

HTTP URL path/ Action

method Helper method

Actions in ArticlesController

GET /articles index
articles_url

POST /articles create
articles_url

GET /articles/new new
new_article_url

GET /articles/1 show
article_urlCid => 1)

PUT /articles/1 update
article_urlCid => 1)

GET /articles/1;edit edit
edit_article_url(:id => 1)

DELETE /articles/1 destroy
article_urlCid => 1)

Actions in CommentsController

GET /articles/1/comments index
comments_urlCarticle_id => 1)

POST /articles/1/comments create
comments_url:article_id => 1)

GET /articles/1/comments/new new
new_comment_urlCarticle_id => 1)

GET /articles/1/comments/99 show
comment_urlCarticle_id => 1, :id => 99)

PUT /articles/1/comments/99 update
comment_urlCarticle_id => 1, :id => 99)

GET /articles/1/comments/99;edit edit
edit_comment_urlC:article_id => 1, :id => 99)

DELETE /articles/1/comments/99 destroy

comment_urlCarticle_id => 1, :id => 99)

Figure 20.1: Nested Resources

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=419

ROUTING REQUESTS <« 420

Second, we’ll need to tell the article model that it now has associated com-
ments. We'll also add a link back to articles from comments.

Download restful2/app/models/article.rb

class Article < ActiveRecord::Base
has_many :comments
end

Download restful2/app/models/comment.rb

class Comment < ActiveRecord::Base
belongs_to :article
end

We’'ll update the show template for articles to display any comments, and we’ll
add a link to allow a new comment to be posted.

Download restful2/app/views/articles/show.rhtml

<p>Title: <%=h @article.title %></p>
<p>Summary: <%=h @article.summary %></p>
<p>Content: <%=h @article.content %></p>

<% unless @article.comments.empty? %>
<%= render :partial => "/comments/comment', :collection => @article.comments %>
<% end %>

<%= link_to "Add comment"”, new_comment_url(@article) %> |
<%= link_to 'Edit', edit_article_path(@article) %> |
<%= Tlink_to 'Back', articles_path %>

This code illustrates a couple of interesting techniques. We use a partial tem-
plate to display the comments, but that template is located in the directory
app/views/comments. We tell Rails to look there by putting a leading / and the
relative path in the render call.

The code also uses the fact that routing helpers accept positional parameters.
Rather than writing

new_comment_url(:article_id => @article.id)

we can use the fact that the :arficle field is the first in the route, and write
new_comment_url(@article)

We'll create a CommentsController to manage the comments resource. We'll give
it the same actions as the scaffold-generated articles controller, except we’ll

omit index and show, because comments are displayed only in the context of
an article.

restful> ruby script/generate controller comments new edit create update destroy

However, the actions have a slightly different form; because comments are
accessed only in the context of an article, we fetch the article before working on

http://media.pragprog.com/titles/rails2/code/restful2/app/models/article.rb
http://media.pragprog.com/titles/rails2/code/restful2/app/models/comment.rb
http://media.pragprog.com/titles/rails2/code/restful2/app/views/articles/show.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=420

ROUTING REQUESTS < 421

the comment itself. We also use the collection methods declared by has_many
to double-check that we work only with comments belonging to the current
article.

Download restful2/app/controllers/comments_controller.rb

class CommentsController < ApplicationController
before_filter :find_article
def new

@comment = Comment.new
end

def edit
@comment = @article.comments.find(params[:id])
end

def create
@comment = Comment.new(params[:comment])
if (@article.comments << @comment)
redirect_to article_url(@article)
else
render :action => :new
end
end

def update
@comment = @article.comments.find(params[:id])
if @comment.update_attributes(params[:comment])
redirect_to article_url(@article)
else
render :action => :edit
end
end

def destroy
comment = @article.comments.find(params[:id].to_1i)
@article.comments.delete(comment)
redirect_to article_url(@article)

end

private

def find_article
@article_id = params[:article_id]
redirect_to articles_url unless @article_id
@article = Article.find(@article_id)

end

end

The full source code for this application, showing the additional views for com-
ments, is available online.

http://media.pragprog.com/titles/rails2/code/restful2/app/controllers/comments_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=421

ROUTING REQUESTS <« 422

Selecting a Data Representation

One of the goals of a REST architecture is to decouple data from its represen-
tation. If a human user uses the URL path /articles to fetch some articles, they
should see a nicely formatted HTML. If an application asks for the same URL,
it could elect to receive the results in a code-friendly format (YAML, JSON, or
XML, perhaps).

We've already seen how Rails can use the HTTP Accept header in a respond_to
block in the controller. However, it isn’t always easy (and sometimes it’s plain
impossible) to set the Accept header. To deal with this, Rails 1.2 allows you
to pass the format of response you’d like as part of the URL. To do this, set a
format parameter in your routes to the file extension of the mime type you'd
like returned. The easiest way to do this is by adding a field called :format to
your route definitions.

map.store "/store/:action/:id.:format", :id => nil, :format => nil

Because a full stop (period) is a separator character in route definitions, :format
is treated as just another field. Because we give it a nil default value, it’s an
optional field.

Having done this, we can use a respond_to block in our controllers to select our
response type depending on the requested format.
def show
respond_to do |format|
format.html
format.xml { render :xml => @product.to_xml }
format.yaml { render :text => @product.to_yaml }
end
end

Given this, a request to /store/show/1 or /store/show/1.html will return HTML con-
tent, while /store/show/1.xml will return XML and /store/show/1.yaml will return
YAML. You can also pass the format in as an HTTP request parameter:

GET HTTP://pragprog.com/store/show/123?format=xml
The routes defined by map.resources have this facility enabled by default.

Handling different response formats is an area of Rails where people are still
finding their way. Although the idea of having a single controller that responds
with different content types seems appealing, the reality is tricky. In particular,
it turns out that error handling can be tough. Although it’s acceptable on error
to redirect a user to a form, showing them a nice flash message, you have
to adopt a different strategy when you serve XML. Consider your application
architecture carefully before deciding to bundle all your processing into single
controllers.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=422

ROUTING REQUESTS <« 423

Resource-based routing is gaining a lot of mindshare among Rails developers.
Many claim it greatly simplifies the coding of their applications. However, it
is just one way of creating applications and isn’t always appropriate. I recom-
mend trying it for new applications, but don't feel compelled to use it if you
can't find a way of making it work.

Testing Routing

So far we've experimented with routes by poking at them manually using
script/console. When it comes time to roll out an application, though, we might
want to be a little more formal and include unit tests that verify our routes
work as expected. Rails includes a number of test helpers that make this easy.

assert_generates(path, options, defaults={}, extras={}, message=nil)
Verifies that the given set of options generates the specified path.

Download el/routing/test/unit/routing_test.ro

def test_generates

assert_generates("/store", :controller => "store", :action => "index")
assert_generates("/store/1ist", :controller => "store", :action => "Tist")
assert_generates("/store/add_to_cart/1",
{ :controller => "store", :action => "add_to_cart",
:id = "1", :name => '"dave" },

{ :name => '"dave"})
end

The extras parameter is used to tell the request the names and values
of additional request parameters (in the third assertion in the previous
code, this would be ?name=dave). The test framework does not add these
as strings to the generated URL; instead it tests that the values it would
have added appears in the extras hash.

The default parameter is unused.

assert_recognizes(options, path, extras={}, message=nil)
Verifies that routing returns a specific set of options given a path.

Download el/routing/test/unit/routing_test.ro

def test_recognizes
Check the default index action gets generated
assert_recognizes({"controller" => "store", "action" => "index"}, "/store")

Check routing to an action
assert_recognizes({"controller" => "store", "action" => "list"},
"/store/Tlist™)

And routing with a parameter
assert_recognizes({ "controller" => "store",
"action" => "add_to_cart",
"id" = "1" },
"/store/add_to_cart/1")

http://media.pragprog.com/titles/rails2/code/e1/routing/test/unit/routing_test.rb
http://media.pragprog.com/titles/rails2/code/e1/routing/test/unit/routing_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=423

ROUTING REQUESTS < 424

And routing with a parameter
assert_recognizes({ "controller" => "store",
"action" => "add_to_cart",
"id" = "1",
"name" => '"dave" },
"/store/add_to_cart/1",
{ "name" => "dave" }) # T1ike having ?name=dave after the URL

Make it a post request
assert_recognizes({ "controller" => "store",
"action" => "add_to_cart",
"id" = "1" },
{ :path => "/store/add_to_cart/1", :method => :post })
end

The :conditions parameter lets you specify routes that are conditional on
the HTTP verb of the request. You can test these by passing a hash, rather
than a string, as the second parameter to assert_recognizes. The hash

should contain two elements: :path will contain the incoming request
path, and :method will contain the HTTP verb to be used.

Download el/routing/test/unit/routing_conditions_test.rb

def test_method_specific_routes

assert_recognizes({"controller" => "store", "action" => "display_checkout_form"},
:path => "/store/checkout”, :method => :get)
assert_recognizes({"controller" => "store", "action" => "save_checkout_form"},
:path => "/store/checkout”, :method => :post)
end

The extras parameter again contains the additional URL parameters. In
the fourth assertion in the preceding code example, we use the extras
parameter to verify that, had the URL ended ?name=dave, the resulting
params hash would contain the appropriate values.”

assert_routing(options, path, defaults={}, extras={}, message=nil)
Combines the previous two assertions, verifying that the path generates
the options and then that the options generates the path.

Download el/routing/test/unit/routing_test.ro

def test_routing

assert_routing("/store”, :controller => "store", :action => "index")
assert_routing("/store/1ist", :controller => "store", :action => "Tist")
assert_routing("/store/add_to_cart/1",
:controller => "store", :action => "add to_cart", :id => "1")
end

It's important to use symbols as the keys and use strings as the values in
the options hash. If you don’t, asserts that compare your options with those
returned by routing will fail.

7. Yes, it is strange that you can’t just put ?name=dave on the URL itself.

http://media.pragprog.com/titles/rails2/code/e1/routing/test/unit/routing_conditions_test.rb
http://media.pragprog.com/titles/rails2/code/e1/routing/test/unit/routing_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=424

Chapter 21

ction Cagtualer aud Rl

In the previous chapter we worked out how Action Controller routes an incom-
ing request to the appropriate code in your application. Now let’s see what
happens inside that code.

21.1 Action Methods

When a controller object processes a request, it looks for a public instance
method with the same name as the incoming action. If it finds one, that method
is invoked. If not, but the controller implements method_missing, that method
is called, passing in the action name as the first parameter and an empty
argument list as the second. If no method can be called, the controller looks
for a template named after the current controller and action. If found, this
template is rendered directly. If none of these things happen, an “Unknown
Action” error is generated.

By default, any public method in a controller may be invoked as an action
method. You can prevent particular methods from being accessible as actions
by making them protected or private. If for some reason you must make a
method in a controller public but don’t want it to be accessible as an action,
hide it using hide_action.

class OrderController < ApplicationController

def create_order
order = Order.new(params[:order])
if check_credit(order)
order.save
else
...
end
end

hide_action :check_credit

ACTION METHODS <« 426

def check_credit(order)
...
end
end

If you find yourself using hide_action because you want to share the nonaction
methods in one controller with another, consider moving these methods into
separate libraries—your controllers may contain too much application logic.

Controller Environment

The controller sets up the environment for actions (and, by extension, for the
views that they invoke). In the old days, this environment was established in
instance variables (@params, @request, and so on). This has now been officially
deprecated—you should use the accessor methods listed here.

action_name
The name of the action currently being processed.

cookies
The cookies associated with the request. Setting values into this object
stores cookies on the browser when the response is sent. We discuss
cookies on page 436.

headers
A hash of HTTP headers that will be used in the response. By default,
Cache-Control is set to no-cache. You might want to set Content-Type head-
ers for special-purpose applications. Note that you shouldn’t set cookie
values in the header directly—use the cookie API to do this.

params
A hash-like object containing request parameters (along with pseudo-
parameters generated during routing). It's hash-like because you can
index entries using either a symbol or a string—params:id] and params|‘id’]
return the same value. Idiomatic Rails applications use the symbol form.

request
The incoming request object. It includes the attributes

* domain, which returns the last two components of the domain name
of the request.

* remote_ip, which returns the remote IP address as a string. The
string may have more than one address in it if the client is behind a
proxy.

* env, the environment of the request. You can use this to access val-
ues set by the browser, such as

request.env['"HTTP_ACCEPT_LANGUAGE']

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=426

ACTION METHODS <« 427

* method returns the request method, one of :delete, :get, :head, :post,
or :put.

* delete?, get?, head?, post?, and put? return true or false based on the
request method.

¢ xml_http_request? and xhr? return true if this request was issued by
one of the AJAX helpers. Note that this parameter is independent of
the method parameter.
class BlogController < ApplicationController
def add_user
if request.get?
@user = User.new
else
@user = User.new(params[:user])
@user.created_from_ip = request.env["REMOTE_HOST"]
if @user.save
redirect_to_index("User #{@user.name} created™)
end
end
end
end

See the documentation of ActionController::AbstractRequest for full details.

response
The response object, filled in during the handling of the request. Nor-
mally, this object is managed for you by Rails. As we’ll see when we look
at filters on page 450, we sometimes access the internals for specialized
processing.

session
A hash-like object representing the current session data. We describe
this on page 438.

In addition, a logger is available throughout Action Pack. We describe this on
page 244.

Responding to the User
Part of the controller’s job is to respond to the user. There are basically four
ways of doing this.

¢ The most common way is to render a template. In terms of the MVC
paradigm, the template is the view, taking information provided by the
controller and using it to generate a response to the browser.

* The controller can return a string directly to the browser without invok-
ing a view. This is fairly rare but can be used to send error notifications.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=427

ACTION METHODS <« 428

* The controller can return nothing to the browser.! This is sometimes
used when responding to an AJAX request.

¢ The controller can send other data to the client (something other than
HTML). This is typically a download of some kind (perhaps a PDF docu-
ment or a file’s contents).

We'll look at these in more detail shortly.

A controller always responds to the user exactly one time per request. This
means that you should have just one call to a render, redirect_to, or send_xxx
method in the processing of any request. (A DoubleRenderError exception is
thrown on the second render.) The undocumented method erase_render_results
discards the effect of a previous render in the current request, permitting a
second render to take place. Use at your own risk.

Because the controller must respond exactly once, it checks to see whether a
response has been generated just before it finishes handling a request. If not,
the controller looks for a template named after the controller and action and
automatically renders it. This is the most common way that rendering takes
place. You may have noticed that in most of the actions in our shopping cart
tutorial we never explicitly rendered anything. Instead, our action methods set
up the context for the view and return. The controller notices that no rendering
has taken place and automatically invokes the appropriate template.

You can have multiple templates with the same name but with different exten-
sions (.rhtml, .rxml, and .rijs). If you don’t specify an extension in a render request
(or if Rails issues a render request on your behalf), it searches for the templates
in the order given here (so if you have an .rhfml template and an .fjs template,
a render call will find the .rhtml version unless you explicitly say render(:file =>
xxx.hs'y.2

Rendering Templates

A template is a file that defines the content of a response for our application.
Rails supports three template formats out of the box: rhtml, which is HTML
with embedded Ruby code; builder, a more programmatic way of construct-
ing XML content; and rjs, which generates JavaScript. We'll talk about the
contents of these files starting on page 466.

By convention, the template for action action of controller control will be in
the file app/views/control/action.xxx (where xxx is one of rhtml, rxml, or rjs). The

1. In fact, the controller returns a set of HTTP headers, because some kind of response is expected.
2. There’s an obscure exception to this. Once Rails finds a template, it caches it. If you're in
development mode and you change the type of a template, Rails may not find it, because it will give
preference to the previously cached name. You'll have to restart your application to get the new
template invoked.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=428

ACTION METHODS <« 429

app/views part of the name is the default. It may be overridden for an entire
application by setting

ActionController::Base.template_root =dir_path

The render method is the heart of all rendering in Rails. It takes a hash of
options that tell it what to render and how to render it.

It is tempting to write code in our controllers that looks like this.

DO NOT DO THIS
def update

@user = User.find(params[:id])

if @user.update_attributes(params[:user])

render :action => show

end

render :template => "fix_user_errors"
end

It seems somehow natural that the act of calling render (and redirect_to) should
somehow terminate the processing of an action. This is not the case. The pre-
vious code will generate an error (because render is called twice) in the case
where update_attributes succeeds.

Let’s look at the render options used in the controller here (we’ll look separately
at rendering in the view starting on page 510).

render()
With no overriding parameter, the render method renders the default tem-
plate for the current controller and action. The following code will render
the template app/views/blog/index.
class BlogController < ApplicationController
def index
render

end
end

So will the following (as the default action of a controller is to call render
if the action doesn’t).
class BlogController < ApplicationController

def index

end
end

And so will this (as the controller will call a template directly if no action
method is defined).

class BlogController < ApplicationController
end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=429

ACTION METHODS <« 430

render(:text =>sfring)
Sends the given string to the client. No template interpretation or HTML
escaping is performed.
class HappyController < ApplicationController
def index
render(:text => "Hello there!™)

end
end

u| "

renderCinline =>string, [:type =>"rhtml'|'rxml’|"rjs"], [:locals =>hash])
Interprets string as the source to a template of the given type, rendering
the results back to the client. If the :locals hash is given, the contents are
used to set the values of local variables in the template.

The following code adds method_missing to a controller if the application is
running in development mode. If the controller is called with an invalid
action, this renders an inline template to display the action’s name and
a formatted version of the request parameters.

class SomeController < ApplicationController

if RAILS_ENV == "development"
def method_missing(name, =args)
render(:inline => %{
<h2>Unknown action: #{name}</h2>
Here are the request parameters:

<%= debug(params) %> })
end
end
end

render(:action =>action_name)
Renders the template for a given action in this controller. Sometimes
folks use the :action form of render when they should use redirects—see
the discussion starting on page 433 for why this is a bad idea.
def display_cart
if @cart.empty?
render(:action => :index)
else
...

end
end

Note that calling render(:action...) does not call the action method; it sim-
ply displays the template. If the template needs instance variables, these
must be set up by the method that calls the render.

Let’s repeat this, because this is a mistake that beginners often make:
calling render(action...) does not invoke the action method—it simply ren-
ders that action’s default template.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=430

ACTION METHODS <« 431

render(:file =>path, [:use_full_path =>frue|false], [:locals =>hash)

Renders the template in the given path (which must include a file exten-
sion). By default this should be an absolute path to the template, but
if the :use_full_path option is true, the view will prepend the value of the
template base path to the path you pass in. The template base path is
set in the configuration for your application (described on page 238). If
specified, the values in the :locals hash are used to set local variables in
the template.

render(:template =>name)

Renders a template and arranges for the resulting text to be sent back
to the client. The :template value must contain both the controller and
action parts of the new name, separated by a forward slash. The following
code will render the template app/views/blog/short_list.

class BlogController < ApplicationController

def index
render(:template => "blog/short_list")

end
end

render(:partial =>name, ...)
Renders a partial template. We talk about partial templates in depth on
page 510.

render(:nothing => frue)
Returns nothing—sends an empty body to the browser.

render(:xml =>stuff)
Renders stuff as text, forcing the content type to be application/xml.

render(:update) do |page| ... end
Renders the block as an rjs template, passing in the page object.

render(:update) do |page|

page[:cart].replace_html :partial => 'cart', :object => @cart
page[:cart].visual_effect :blind_down if @cart.total_items == 1
end

All forms of render take optional :status, :layout, and :content_type parameters.
The :status parameter is used to set the status header in the HTTP response. It
defaults to "200 OK"'. Do not use render with a 3xx status to do redirects; Rails
has a redirect method for this purpose.

The :layout parameter determines whether the result of the rendering will be
wrapped by a layout (we first came across layouts on page 98, and we’ll look
at them in depth starting on page 506). If the parameter is false, no layout
will be applied. If set to nil or true, a layout will be applied only if there is one
associated with the current action. If the :layout parameter has a string as a

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=431

ACTION METHODS <« 432

value, it will be taken as the name of the layout to use when rendering. A
layout is never applied when the :nothing option is in effect.

The :content_type parameter lets you specify a value that will be passed to the
browser in the Content-Type HTTP header.

Sometimes it is useful to be able to capture what would otherwise be sent to
the browser in a string. The render_to_string method takes the same parameters
as render but returns the result of rendering as a string—the rendering is not
stored in the response object and so will not be sent to the user unless you take
some additional steps. Calling render_to_string does not count as a real render:
you can invoke the real render method later without getting a DoubleRender
error.

Sending Files and Other Data

We've looked at rendering templates and sending strings in the controller. The
third type of response is to send data (typically, but not necessarily, file con-
tents) to the client.

send_data

Send a string containing binary data to the client.
send_data(data, options...)

Sends a data stream to the client. Typically the browser will use a combination of the
content type and the disposition, both set in the options, to determine what to do with
this data.

def sales_graph

png_data = Sales.plot_for(Date.today.month)

send_data(png_data, :type => "image/png", :disposition => "inline")
end

Options:
disposition sfring Suggests to the browser that the file should be displayed inline (option inline)
or downloaded and saved (option attachment, the default)

filename string A suggestion to the browser of the default filename to use when saving this
data
:status string The status code (defaults to "200 OK")

type string The content type, defaulting to application/octet-stream

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=432

ACTION METHODS <« 433

send_file

Send the contents of a file to the client.
send_file(path, options...)

Sends the given file to the client. The method sets the Content-Length, Content-Type,
Content-Disposition, and Content-Transfer-Encoding headers.

Options:

‘buffer_size number The amount sent to the browser in each write if streaming is enabled
(:stream is true).

:disposition string Suggests to the browser that the file should be displayed inline (option
inline) or downloaded and saved (option atfachment, the default).

filename string A suggestion to the browser of the default filename to use when saving
the file. If not set, defaults to the filename part of path.

:status string The status code (defaults to "200 OK").

:stream true or false If false, the entire file is read into server memory and sent to the
client. Otherwise, the file is read and written to the client in :buffer_size
chunks.

‘type string The content type, defaulting to application/octet-stream.

You can set additional headers for either send_ method using the headers
attribute in the controller.
def send_secret_file

send_file("/files/secret_list")

headers["Content-Description”] = "Top secret”
end

We show how to upload files starting on page 502.

Redirects

An HTTP redirect is sent from a server to a client in response to a request. In
effect it says, “I can’t handle this request, but here’s some URL that can.” The
redirect response includes a URL that the client should try next along with
some status information saying whether this redirection is permanent (status
code 301) or temporary (307). Redirects are sometimes used when web pages
are reorganized; clients accessing pages in the old locations will get referred to
the page’s new home. More commonly, Rails applications use redirects to pass
the processing of a request off to some other action.

Redirects are handled behind the scenes by web browsers. Normally, the only
way you’ll know that you've been redirected is a slight delay and the fact
that the URL of the page you're viewing will have changed from the one you
requested. This last point is important—as far as the browser is concerned, a
redirect from a server acts pretty much the same as having an end user enter
the new destination URL manually.

Redirects turn out to be important when writing well-behaved web applica-
tions.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=433

ACTION METHODS <« 434

Let’'s look at a simple blogging application that supports comment posting.
After a user has posted a comment, our application should redisplay the arti-
cle, presumably with the new comment at the end. It’s tempting to code this
using logic such as the following.

class BlogController
def display
@article = Article.find(params[:id])
end

def add_comment
@article = Article.find(params[:id])
comment = Comment.new(params[:comment])
@article.comments << comment
if @article.save

flash[:note] = "Thank you for your valuable comment"
else
flash[:note] = "We threw your worthless comment away"

end
DON'T DO THIS
render(:action => 'display')
end
end

The intent here was clearly to display the article after a comment has been
posted. To do this, the developer ended the add_comment method with a call
to render(:action=>'display"). This renders the display view, showing the updated
article to the end user. But think of this from the browser’s point of view.
It sends a URL ending in blog/add_comment and gets back an index listing.
As far as the browser is concerned, the current URL is still the one that ends
blog/add_comment. This means that if the user hits Refresh or Reload (perhaps
to see whether anyone else has posted a comment), the add_comment URL will
be sent again to the application. The user intended to refresh the display, but
the application sees a request to add another comment. In a blog application
this kind of unintentional double entry is inconvenient. In an online store it
can get expensive.

In these circumstances, the correct way to show the added comment in the
index listing is to redirect the browser to the display action. We do this using
the Rails redirect_to method. If the user subsequently hits Refresh, it will simply
reinvoke the display action and not add another comment.

def add_comment
@article = Article.find(params[:id])
comment = Comment.new(params[:comment])
@article.comments << comment
if @article.save
flash[:note] = "Thank you for your valuable comment"
else
flash[:note]

"We threw your worthless comment away"

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=434

ACTION METHODS

end
redirect_to(:action => 'display')
end

Rails has a simple yet powerful redirection mechanism. It can redirect to an
action in a given controller (passing parameters), to a URL (on or off the current
server), or to the previous page. Let’s look at these three forms in turn.

redirect_to

Redirects to an action
redirect_to(:action => ..., options...)

Sends a temporary redirection to the browser based on the values in the options hash.
The target URL is generated using url_for, so this form of redirect_to has all the smarts
of Rails routing code behind it. See Section 20.2, Routing Requests, on page 394 for a
description.

redirect_to
Redirect to a URL.

redirect_to(path)

Redirects to the given path. If the path does not start with a protocol (such as http://),
the protocol and port of the current request will be prepended. This method does not
perform any rewriting on the URL, so it should not be used to create paths that are
intended to link to actions in the application (unless you generate the path using url_for
or a named route URL generator).

def save
order = Order.new(params[:order])
if order.save
redirect_to :action => "display"”
else
session[:error_count] ||= 0
session[:error_count] += 1
if session[:error_count] < 4
flash[:notice] = "Please try again”
else
Give up -- user is clearly struggling
redirect_to("/help/order_entry.html")
end
end
end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=435

COOKIES AND SESSIONS 4@ 436

redirect_to

Redirect to the referrer.
redirect_to(:back)

Redirects to the URL given by the HTTP_REFERER header in the current request.

def save_details
unless params[:are_you_sure] == "Y'
redirect_to(:back)
else

end
end

By default all redirections are flagged as temporary (they will affect only the
current request). When redirecting to a URL, it’s possible you might want to
make the redirection permanent. In that case, set the status in the response
header accordingly.

headers["Status"] = "301 Moved Permanently"
redirect_to("http://my.new.home")

Because redirect methods send responses to the browser, the same rules apply
as for the rendering methods—you can issue only one per request.

21.2 Cookies and Sessions

Cookies allow web applications to get hash-like functionality from browser
sessions: you can store named strings on the client browser that are sent
back to your application on subsequent requests.

This is significant because HTTP, the protocol used between browsers and web
servers, is stateless. Cookies provide a means for overcoming this limitation,
allowing web applications to maintain data between requests.

Rails abstracts cookies behind a convenient and simple interface. The con-
troller attribute cookies is a hash-like object that wraps the cookie protocol.
When a request is received, the cookies object will be initialized to the cookie
names and values sent from the browser to the application. At any time the
application can add new key/value pairs to the cookies object. These will be
sent to the browser when the request finishes processing. These new values
will be available to the application on subsequent requests (subject to various
limitations, described in a moment).

Here’s a simple Rails controller that stores a cookie in the user’s browser and
redirects to another action. Remember that the redirect involves a round-trip
to the browser and that the subsequent call into the application will create a
new controller object. The new action recovers the value of the cookie sent up
from the browser and displays it.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=436

COOKIES AND SESSIONS <« 437

Download el/cookies/cookiel/app/controllers/cookies_controller.rb

class CookiesController < ApplicationController
def action_one
cookies[:the_time] = Time.now.to_s
redirect_to :action => "action_two"
end

def action_two
cookie_value = cookies[:the_time]
render(:text => "The cookie says it is #{cookie_value}")
end
end

You must pass a string as the cookie value—no implicit conversion is per-
formed. You'll probably get an obscure error containing private method ‘gsub’
called... if you pass something else.

Browsers store a small set of options with each cookie: the expiry date and
time, the paths that are relevant to the cookie, and the domain to which the
cookie will be sent. If you create a cookie by assigning a value to cookies[name],
you get a default set of these options: the cookie will apply to the whole site, it
will expire when the browser is closed, and it will apply to the domain of the
host doing the setting. However, these options can be overridden by passing
in a hash of values, rather than a single string. (In this example, we use the
groovy #days.from_now extension to Fixnum. This is described in Chapter 15,
Active Support, on page 248.)

cookies[:marsupial] = { :value => "wombat",
rexpires => 30.days.from_now,
:path = "/store" }

The valid options are :domain, :expires, :path, :secure, and :value. The :domain and
:path options determine the relevance of a cookie—a browser will send a cookie
back to the server if the cookie path matches the leading part of the request
path and if the cookie’s domain matches the tail of the request’s domain. The
:expires option sets a time limit for the life of the cookie. It can be an absolute
time, in which case the browser will store the cookie on disk and delete it when
that time passes,® or an empty string, in which case the browser will store it
in memory and delete it at the end of the browsing session. If no expiry time is
given, it is treated as if it were an empty string. Finally, the :secure option tells
the browser to send back the cookie only if the request uses https://.

The problem with using cookies is that some users don't like them and disable
cookie support in their browser. You'll need to design your application to be

3. This time is absolute and is set when the cookie is created. If your application needs to set a
cookie that expires so many minutes after the user last sent a request, you either need to reset the
cookie on each request or (better yet) keep the session expiry time in session data in the server and
update it there.

http://media.pragprog.com/titles/rails2/code/e1/cookies/cookie1/app/controllers/cookies_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=437

COOKIES AND SESSIONS <« 438

robust in the face of missing cookies. (It needn’t be fully functional; it just
needs to be able to cope with missing data.)

Cookies are fine for storing small strings on a user’s browser but don’t work so
well for larger amounts of more structured data. For that, you need sessions.

Rails Sessions

A Rails session is a hash-like structure that persists across requests. Unlike

raw cookies, sessions can hold any objects (as long as those objects can be
marshaled), which makes them ideal for holding state information in web marshal
applications. For example, in our store application, we used a session to hold ~ " o
the shopping cart object between requests. The Cart object could be used in

our application just like any other object. But Rails arranged things such that

the cart was saved at the end of handling each request and, more important,

that the correct cart for an incoming request was restored when Rails started

to handle that request. Using sessions, we can pretend that our application

stays around between requests.

There are two parts to this. First, Rails has to keep track of sessions. It does
this by creating (by default) a 32 hex character key (which means there are
163? possible combinations). This key is called the session id, and it’s effec-
tively random. Rails arranges to store this session id as a cookie (with the
key _session_id) on the user’s browser. As subsequent requests come into the
application from this browser, Rails can recover the session id.

Second, Rails keeps a persistent store of session data on the server, indexed
by the session id. When a request comes in, Rails looks up the data store
using the session id. The data that it finds there is a serialized Ruby object.
It deserializes this and stores the result in the controller’s session attribute,
where the data is available to our application code. The application can add to
and modify this data to its heart’s content. When it finishes processing each
request, Rails writes the session data back into the data store. There it sits
until the next request from this browser comes along.

What should you store in a session? You can store anything you want, subject
to a few restrictions and caveats.

* There are some restrictions on what kinds of object you can store in a
session. The details depend on the storage mechanism you choose (which
we’ll look at shortly). In the general case, objects in a session must be
serializable (using Ruby’s Marshal functions). This means, for example, seriaize
that you cannot store an I/O object in a session. T page 042

¢ If you store any Rails model objects in a session, you’ll have to add model
declarations for them. This causes Rails to preload the model class so
that its definition is available when Ruby comes to deserialize it from the

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=438

COOKIES AND SESSIONS <« 439

session store. If the use of the session is restricted to just one controller,
this declaration can go at the top of that controller.

class BlogController < ApplicationController
model :user_preferences
...

However, if the session might get read by another controller (which is
likely in any application with multiple controllers), you’ll probably want
to add the declaration to application_controller.ro in app/controllers.

* You probably don’'t want to store massive objects in session data—put
them in the database, and reference them from the session.

® You probably don’t want to store volatile objects in session data. For
example, you might want to keep a tally of the number of articles in a
blog and store that in the session for performance reasons. But, if you
do that, the count won't get updated if some other user adds an article.

It is tempting to store objects representing the current logged-in user
in session data. This might not be wise if your application needs to be
able to invalidate users. Even if a user is disabled in the database, their
session data will still reflect a valid status.

Store volatile data in the database, and reference it from the session
instead.

* You probably don’t want to store critical information solely in session
data. For example, if your application generates an order confirmation
number in one request and stores it in session data so that it can be
saved to the database when the next request is handled, you risk losing
that number if the user deletes the cookie from their browser. Critical
information needs to be in the database.

There’s one more caveat, and it's a big one. If you store an object in session
data, then the next time you come back to that browser your application will
end up retrieving that object. However, if in the meantime you've updated
your application, the object in session data may not agree with the definition
of that object’s class in your application, and the application will fail while
processing the request. There are three options here. One is to store the object
in the database using conventional models and keep just the id of the row
in the session. Model objects are far more forgiving of schema changes than
the Ruby marshaling library. The second option is to manually delete all the
session data stored on your server whenever you change the definition of a
class stored in that data.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=439

COOKIES AND SESSIONS <« 440

The third option is slightly more complex. If you add a version number to your
session keys and change that number whenever you update the stored data,
you’ll only ever load data that corresponds with the current version of the
application. You can potentially version the classes whose objects are stored
in the session and use the appropriate classes depending on the session keys
associated with each request. This last idea can be a lot of work, so you’ll need
to decide whether it’s worth the effort.

Because the session store is hash-like, you can save multiple objects in it,
each with its own key. In the following code, we store the id of the logged-in
user in the session. We use this later in the index action to create a customized
menu for that user. We also record the id of the last menu item selected and
use that id to highlight the selection on the index page. When the user logs
off, we reset all session data.

Download el/cookies/cookiel/app/controllers/session_controller.rb

class SessionController < ApplicationController
def login
user = User.find_by_name_and_password(params[:user], params[:password])
if user
sessjon[:user_id] = user.id
redirect_to :action => "index"
else
reset_session
flash[:note] = "Invalid user name/password"
end
end

def index
@menu = create_menu_for(session[:user_id])
@menu.highlight(session[:Tlast_selection])
end

def select_item
@item = Item.find(params[:id])
session[:last_selection] = params[:id]
end

def Togout
reset_session
end
end

As is usual with Rails, session defaults are convenient, but we can override
them if necessary. In the case of sessions, the options are global, so you’ll
typically set them in your environment files (config/environment.rb or one of the
files in config/environments). You access the session options in the hash Action-
Controller::Base.session_options. For example, if you want to change the cookie

4. There’s one exception to this—you can’t set the session expiry time this way.

http://media.pragprog.com/titles/rails2/code/e1/cookies/cookie1/app/controllers/session_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=440

COOKIES AND SESSIONS <« 441

name used by your application (which is pretty much mandatory if you plan
on running more than one Rails application from the same host), you could
add the following to the environment file.

ActionController::Base.session_options[:session_key] = 'my_app'
The available session options are

:session_domain
The domain of the cookie used to store the session id on the browser.
Defaults to the application’s host name.

:session_id
Overrides the default session id. If not set, new sessions automatically
have a 32-character id created for them. This id is then used in subse-
quent requests.

:session_key
The name of the cookie used to store the session id. You’'ll want to over-
ride this in your application, as shown previously.

:session_path
The request path to which this session applies (it's actually the path
of the cookie). The default is /, so it applies to all applications in this
domain.

:session_secure
If true, sessions will be enabled only over https://. The default is false.

:new_session
Directly maps to the underlying cookie’s new_session option. However,
this option is unlikely to work the way you need it to under Rails, and
we’ll discuss an alternative in Section 21.5, Time-Based Expiry of Cached
Pages, on page 462.

:session_expires
The absolute time of the expiry of this session. Like :new_session, this
option should probably not be used under Rails.

Session Storage

Rails has a number of options when it comes to storing your session data.
Each has good and bad points. We'll start by listing the options and then
compare them at the end.

The session_store attribute of ActiveRecord::Base determines the session storage
mechanism—set this attribute to a class that implements the storage strategy.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=441

COOKIES AND SESSIONS <« 442

This class must be defined in the CGl::Session module.® With the exception of
PStore, you use symbols to name the session storage strategy; the symbol is
converted into a CamelCase class name.

session_store = CGl::Session::PStore
This is the default session storage mechanism used by Rails. Data for
each session is stored in a flat file in PStore format. This format keeps
objects in their marshaled form, which allows any serializable data to be
stored in sessions. This mechanism supports the additional configura-
tion options :prefix and :tmpdir. The following code in the file environment.ro
in the config directory might be used to configure PStore sessions.

Rails::Initializer.run do |config]|
config.action_controller.session_store = CGI::Session::PStore

config.action_controller.session_options[:tmpdir] = "/Users/dave/tmp"
config.action_controller.session_options[:prefix] = "myapp_session_"
...

session_store = :active_record_store
You can store your session data in your application’s database using
ActiveRecordStore. You can generate a migration that creates the sessions
table using Rake.

depot> rake db:sessions:create
Run rake db:migrate to create the actual table.

If you look at the migration file, you’'ll see that Rails creates an index on
the session_id column, because it is used to look up session data. Rails
also defines a column called updated_at so Active Record will automati-
cally time stamp the rows in the session table—we’ll see later why this is
a good idea.

session_store = :drb_store

DRb is a protocol that allows Ruby processes to share objects over a
network connection. Using the DRbStore database manager, Rails stores
session data on a DRb server (which you manage outside the web appli-
cation). Multiple instances of your application, potentially running on
distributed servers, can access the same DRb store. A simple DRb server
that works with Rails is included in the Rails source.® DRb uses Marshal
to serialize objects.

5. You'll probably use one of Rails built-in session storage strategies, but you can implement your
own storage mechanism if your circumstances require it. The interface for doing this is beyond
the scope of this book—have a look at the various Rails implementations in the directory action-
pack/lib/actioncontroller/session of the Rails source.

6. If you install from gems, youll find it in {RUBYBASE}/lib/ruby/gems/1.8/gems/actionpack-
x.y/lib/action_controller/session/drb_server.rb.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=442

COOKIES AND SESSIONS <« 443

session_sfore = :mem_cache_store
memcached is a freely available, distributed object caching system from
Danga Interactive.” The Rails MemCacheStore uses Michael Granger’s
Ruby interface® to memcached to store sessions. memcached is more
complex to use than the other alternatives and is probably interesting
only if you are already using it for other reasons at your site.

:session_store = :memory_store
This option stores the session data locally in the application’s memory.
As no serialization is involved, any object can be stored in an in-memory
session. As we’ll see in a minute, this generally is not a good idea for
Rails applications.

:database_manager => CGl::Session::FileStore
Session data is stored in flat files. It’s pretty much useless for Rails appli-
cations, because the contents must be strings. This mechanism supports
the additional configuration options :prefix, :suffix, and :tmpdir.

You can enable or disable session storage for your entire application, for a
particular controller, or for certain actions. This is done with the session decla-
ration.

To disable sessions for an entire application, add the following line to your
application.rb file in the app/controllers directory.
class ApplicationController < ActionController::Base

session :off
...

If you put the same declaration inside a particular controller, you localize the
effect to that controller.
class RssController < ActionController::Base

session :off
...

Finally, the session declaration supports the :only, :except, and :if options. The
first two take the name or an action or an array containing action names.
The last takes a block that is called to determine whether the session directive
should be honored. Here are some examples of session directives you could
put in a controller.

Disable sessions for the rss action
session :off, :only => :rss

Disable sessions for the show and Tist actions
session :off, :only => [:show, :Tist]

7. http://www.danga.com/memcached
8. Available from http://www.deveiate.org/projects/RMemCache

http://www.danga.com/memcached
http://www.deveiate.org/projects/RMemCache
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=443

COOKIES AND SESSIONS <« 444

Enable sessions for all actions except show and Tist
session :except => [:show, :1list]

Disable sessions on Sundays :)
session :off, :if => proc { Time.now.wday == 0 }

Comparing Session Storage Options
With all these session options to choose from, which should you use in your
application? As always, the answer is “It depends.”

If we rule out memory store as being too simplistic, file store as too restrictive,
and memcached as overkill, the choice boils down to PStore, Active Record
store, and DRb-based storage. We can compare performance and functionality
across these options.

Scott Barron has performed a fascinating analysis of the performance of these
storage options.® His findings are somewhat surprising. For low numbers of
sessions, PStore and DRb are roughly equal. As the number of sessions rises,
PStore performance starts to drop. This is probably because the host operating
system struggles to maintain a directory that contains tens of thousands of
session data files. DRb performance stays relatively flat. Performance using
Active Record as the backing storage is lower but stays flat as the number of
sessions rises.

What does this mean for you? Reviewer Bill Katz summed it up in the following
paragraph.

If you expect to be a large web site, the big issue is scalability, and you can
address it either by “scaling up” (enhancing your existing servers with addi-
tional CPUs, memory, etc.) or “scaling out” (adding new servers). The current
philosophy, popularized by companies such as Google, is scaling out by adding
cheap, commodity servers. Ideally, each of these servers should be able to han-
dle any incoming request. Because the requests in a single session might be
handled on multiple servers, we need our session storage to be accessible
across the whole server farm. The session storage option you choose should
reflect your plans for optimizing the whole system of servers. Given the wealth
of possibilities in hardware and software, you could optimize along any num-
ber of axes that impacts your session storage choice. For example, you could
use the new MySQL cluster database with extremely fast in-memory transac-
tions; this would work quite nicely with an Active Record approach. You could
also have a high-performance storage area network that might work well with
PStore. memcached approaches are used behind high-traffic web sites such
as LiveJournal, Slashdot, and Wikipedia. Optimization works best when you

9. Mirrored at http://media.pragprog.com/ror/sessions

http://media.pragprog.com/ror/sessions
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=444

COOKIES AND SESSIONS <« 445

analyze the specific application you're trying to scale and run benchmarks to
tune your approach. In short, “It depends.”

There are few absolutes when it comes to performance, and everyone’s context
is different. Your hardware, network latencies, database choices, and possibly
even the weather will impact how all the components of session storage inter-
act. Our best advice is to start with the simplest workable solution and then
monitor it. If it starts to slow you down, find out why before jumping out of the

frying pan.

We recommend you start with an Active Record solution. If, as your application
grows, you find this becoming a bottleneck, you can migrate to a DRb-based
solution.

Session Expiry and Cleanup

One problem with all the solutions is that session data is stored on the server.
Each new session adds something to the session store. You'll eventually need
to do some housekeeping, or you'll run out of server resources.

There’s another reason to tidy up sessions. Many applications don’'t want a
session to last forever. Once a user has logged in from a particular browser,
the application might want to enforce a rule that the user stays logged in only
as long as they are active; when they log out, or some fixed time after they last
use the application, their session should be terminated.

You can sometimes achieve this effect by expiring the cookie holding the ses-
sion id. However, this is open to end-user abuse. Worse, it is hard to synchro-
nize the expiry of a cookie on the browser with the tidying up of the session
data on the server.

We therefore suggest that you expire sessions by simply removing their server-
side session data. Should a browser request subsequently arrive containing a
session id for data that has been deleted, the application will receive no session
data; the session will effectively not be there.

Implementing this expiration depends on the storage mechanism being used.

For PStore-based sessions, the easiest approach is to run a sweeper task peri-
odically (for example using cron(1) under Unix-like systems). This task should
inspect the last modification times of the files in the session data directory,
deleting those older than a given time.

For Active Record-based session storage, use the updated_at columns in the
sessions table. You can delete all sessions that have not been modified in the
last hour (ignoring daylight saving time changes) by having your sweeper task
issue SQL such as

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=445

FLASH—COMMUNICATING BETWEEN ACTIONS <« 446

delete from sessions
where now() - updated_at > 3600;

For DRb-based solutions, expiry takes place within the DRb server process.
You'll probably want to record time stamps alongside the entries in the session
data hash. You can run a separate thread (or even a separate process) that
periodically deletes the entries in this hash.

In all cases, your application can help this process by calling reset_session to
delete sessions when they are no longer needed (for example, when a user logs
out).

21.3 Flash—Communicating between Actions

When we use redirect_to to transfer control to another action, the browser gen-
erates a separate request to invoke that action. That request will be handled
by our application in a fresh instance of a controller object—instance variables
that were set in the original action are not available to the code handling the
redirected action. But sometimes we need to communicate between these two
instances. We can do this using a facility called the flash.

The flash is a temporary scratchpad for values. It is organized like a hash
and stored in the session data, so you can store values associated with keys
and later retrieve them. It has one special property. By default, values stored
into the flash during the processing of a request will be available during the
processing of the immediately following request. Once that second request has
been processed, those values are removed from the flash.!®

Probably the most common use of the flash is to pass error and informational
strings from one action to the next. The intent here is that the first action
notices some condition, creates a message describing that condition, and redi-
rects to a separate action. By storing the message in the flash, the second
action is able to access the message text and use it in a view.

class BlogController
def display
@article = Article.find(params[:id])
end

def add_comment
@article = Article.find(params[:id])
comment = Comment.new(params[:comment])
@article.comments << comment
if @article.save
flash[:notice] = "Thank you for your valuable comment"

10. If you read the RDoc for the flash functionality, you'll see that it talks about values being made
available just to the next action. This isn’t strictly accurate: the flash is cleared out at the end of
handling the next request, not on an action-by-action basis.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=446

FLASH—COMMUNICATING BETWEEN ACTIONS <« 447

else
flash[:notice] = "We threw your worthless comment away"
end
redirect_to :action => 'display’
end

In this example, the add_comment method stores one of two different messages
in the flash using the key :nofice. It redirects to the display action.

The display action doesn’t seem to make use of this information. To see what’s
going on, we’ll have to dig deeper and look at the template file that defines
the layout for the blog controller. This will be in the file blog.rhtml in the
app/views/layouts directory.
<head>
<title>My Blog</title>
<%= stylesheet_link_tag("blog") %>
</head>
<body>
<div id="main">
<% if flash[:notice] -%>
<div id="notice"><%= flash[:notice] %></div>
<% end -%>

<%= yield :Tayout %>
</div>
</body>
</htm1>

In this example, our layout generated the appropriate <div> if the flash con-
tained a :nofice key.

It is sometimes convenient to use the flash as a way of passing messages into
a template in the current action. For example, our display method might want
to output a cheery banner if there isn’t another, more pressing note. It doesn’t
need that message to be passed to the next action—it’s for use in the current
request only. To do this, it could use flash.now, which updates the flash but
does not add to the session data.

class BlogController
def display

flash.now[:notice] = "Welcome to my blog" unless flash[:notice]
@article = Article.find(params[:id])
end

end

While flash.now creates a transient flash entry, flash.keep does the opposite,
making entries that are currently in the flash stick around for another request
cycle.

class SillyController

def one
flash[:notice] = "Hello"

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=447

FILTERS AND VERIFICATION < 448

flash[:error] = "Boom!"
redirect_to :action => "two"
end
def two

flash.keep(:notice)
flash[:warning] = "Mewl"
redirect_to :action => "three"

end
def three
At this point,
flash[:notice] => "Hello"

flash[:warning] => "Mewl"
and flash[:error] is unset
render
end
end

If you pass no parameters to flash.keep, all the flash contents are preserved.

Flashes can store more than just text messages—you can use them to pass all
kinds of information between actions. Obviously for longer-term information
you'd want to use the session (probably in conjunction with your database) to
store the data, but the flash is great if you want to pass parameters from one
request to the next.

Because the flash data is stored in the session, all the usual rules apply. In
particular, every object must be serializable, and if you store models, you need
a model declaration in your controller.

21.4 Filters and Verification

Filters enable you to write code in your controllers that wrap the processing
performed by actions—you can write a chunk of code once and have it be
called before or after any number of actions in your controller (or your con-
troller’s subclasses). This turns out to be a powerful facility. Using filters, we
can implement authentication schemes, logging, response compression, and
even response customization.

Rails supports three types of filter: before, after, and around. Filters are called
just prior to and/or just after the execution of actions. Depending on how you
define them, they either run as methods inside the controller or are passed
the controller object when they are run. Either way, they get access to details
of the request and response objects, along with the other controller attributes.

Before and After Filters
As their names suggest, before and after filters are invoked before or after
an action. Rails maintains two chains of filters for each controller. When a

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=448

FILTERS AND VERIFICATION < 449

controller is about to run an action, it executes all the filters on the before
chain. It executes the action before running the filters on the after chain.

Filters can be passive, monitoring activity performed by a controller. They can
also take a more active part in request handling. If a before filter returns false,
processing of the filter chain terminates, and the action is not run. A filter may
also render output or redirect requests, in which case the original action never
gets invoked.

We saw an example of using filters for authorization in the administration part
of our store example on page 166. We defined an authorization method that
redirected to a login screen if the current session didn’t have a logged-in user.

Download depot_r/app/controllers/application.rb

class ApplicationController < ActionController::Base
private

def authorize
unless User.find_by_id(session[:user_id])

flash[:notice] = "Please Tlog in"
redirect_to(:controller => "login", :action => "Togin")
end
end

end
We then made this method a before filter for all the actions in the administra-
tion controller.

Download depot_r/app/controllers/admin_controller.rb

class AdminController < ApplicationController
before_filter :authorize
...,

This is an example of having a method act as a filter; we passed the name
of the method as a symbol to before_filter. The filter declarations also accept
blocks and the names of classes. If a block is specified, it will be called with
the current controller as a parameter. If a class is given, its filter class method
will be called with the controller as a parameter.

class AuditFilter

def self.filter(controller)
AuditlLog.create(:action => controller.action_name)

end
end

...

http://media.pragprog.com/titles/rails2/code/depot_r/app/controllers/application.rb
http://media.pragprog.com/titles/rails2/code/depot_r/app/controllers/admin_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=449

FILTERS AND VERIFICATION < 450

class SomeController < ApplicationController

before_filter do |controller|
Togger.info("Processing #{controller.action_name}")
end

after_filter AuditFilter

...
end

By default, filters apply to all actions in a controller (and any subclasses of
that controller). You can modify this with the :only option, which takes one or
more actions to be filtered, and the :except option, which lists actions to be
excluded from filtering.

class BlogController < ApplicationController
before_filter :authorize, :only => [:delete, :edit_comment]
after_filter :log_access, :except => :rss
...

The before_filter and after_filter declarations append to the controller’s chain of
filters. Use the variants prepend_before_filter and prepend_after_filter to put filters
at the front of the chain.

After Filters and Response Munging

After filters can be used to modify the outbound response, changing the head-
ers and content if required. Some applications use this technique to perform
global replacements in the content generated by the controller’s templates (for
example, substituting a customer’s name for the string <customer/> in the
response body). Another use might be compressing the response if the user’s
browser supports it.

The following code is an example of how this might work.!! The controller
declares the compress method as an after filter. The method looks at the request
header to see whether the browser accepts compressed responses. If so, it uses
the Zlib library to compress the response body into a string.'? If the result is
shorter than the original body, it substitutes in the compressed version and
updates the response’s encoding type.

11. This code is not a complete implementation of compression. In particular, it won't compress
streamed data downloaded to the client using send_file.

12. Note that the Zlib Ruby extension might not be available on your platform—it relies on the
presence of the underlying libzlib.a library.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=450

FILTERS AND VERIFICATION <« 451

Download el/filter/app/controllers/compress_controller.rb

require 'zI1ib'
require 'stringio'

class CompressController < ApplicationController
after_filter :compress

def index
render(:text => "<pre>" + File.read("/etc/motd") + "</pre>")
end

protected

def compress
accepts = request.env['HTTP_ACCEPT_ENCODING']
return unless accepts && accepts =~ /(x-gzip|gzip)/
encoding = $1

output = StringI0.new

def output.close # Zlib does a close. Bad Zlib...
rewind

end

gz = Zlib::GzipWriter.new(output)
gz.write(response.body)
gz.close

if output.length < response.body.length
response.body = output.string
response.headers['Content-encoding'] = encoding
end
end
end

Around Filters

Around filters wrap the execution of actions. You can write an around filter in
two different styles. In the first, the filter is a single chunk of code. That code
is called before the action is executed. If the filter code invokes yield, the action
is executed. When the action completes, the filter code continues executing.
Thus, the code before the yield is like a before filter, and the code after the
vield is the after filter. If the filter code never invokes vyield, the action is not
run—this is the same as having a before filter return false.

The benefit of around filters is that they can retain context across the invoca-
tion of the action. For example, the listing on the next page is a simple around
filter that logs how long an action takes to execute.

http://media.pragprog.com/titles/rails2/code/e1/filter/app/controllers/compress_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=451

FILTERS AND VERIFICATION < 452

Download el/filter/app/controllers/blog_controller.rb

Line 1 class BlogController < ApplicationController
around_filter :time_an_action

5 def index
...
render :text => "hello"
end

10 def bye
- # ...
render :text => "goodbye"
end

15 private

def time_an_action
started = Time.now

yield
20 elapsed = Time.now - started
logger.info("#{action_name} took #{elapsed} seconds")
end

end

We pass the around_fiter declaration the name of a method, time_an_action.
Whenever an action is about to be invoked in this controller, this filter method
is called. It records the time, and then the yield statement on line 19 invokes
the original action. When this returns, it calculates and logs the time spent in
the action.

As well as passing around_filter the name of a method, you can pass it a block
or a filter class.

If you use a block as a filter, it will be passed two parameters: the controller
object and a proxy for the action. Use call on this second parameter to invoke
the original action. For example, the following is the block version of the pre-
vious filter.

Download el/filter/app/controllers/blog_controller.rb

around_filter do |controller, action|
started = Time.now
action.call
elapsed = Time.now - started
controller.logger.info("#{controller.action_name} took #{elapsed} seconds")
end

A third form allows you to pass an object as a filter. This object should imple-
ment a method called filter. This method will be passed the controller object. It

http://media.pragprog.com/titles/rails2/code/e1/filter/app/controllers/blog_controller.rb
http://media.pragprog.com/titles/rails2/code/e1/filter/app/controllers/blog_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=452

FILTERS AND VERIFICATION <« 453

yields to invoke the action. For example, the following implements our timing
filter as a class.

Download el/filter/app/controllers/blog_controller.rb

class BlogController < ApplicationController

class TimingFilter
def filter(controller)
started = Time.now
yield
elapsed = Time.now - started
controller.logger.info("#{controller.action_name} took #{elapsed} seconds")
end
end

around_filter TimingFilter.new
end

There is an alternative form of around filter where you pass an object that
implements the methods before and aofter. This form is mildly deprecated.

Like before and after filters, around filters take :only and :except parameters.

Around filters are (by default) added to the filter chain differently: the first
around filter added executes first. Subsequently added around filters will be
nested within existing around filters.'3 Thus given

around_filter :one, :two

def one
Togger.info("start one")
yield
Togger.info("end one")
end

def two
logger.info("start two")
yield
logger.info("end two")
end

the sequence of log messages will be
start one

start two

end two

end one

13. Note that at the time of writing the Rails API documentation is incorrect when describing this
sequencing.

http://media.pragprog.com/titles/rails2/code/e1/filter/app/controllers/blog_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=453

FILTERS AND VERIFICATION <« 454

Filter inheritance

If you subclass a controller containing filters, the filters will be run on the
child objects as well as in the parent. However, filters defined in the children
will not run in the parent.

If you don’t want a particular filter to run in a child controller, you can override
the default processing with the skip_before_fitter and skip_after_filter declarations.
These accept the :only and :except parameters.

You can use skip_filter to skip any filter (before, after, and around). However, it
works only for filters that were specified as the (symbol) name of a method.

For example, we might enforce authentication globally by adding the following
to our application controller.

class ApplicationController < ActionController::Base
before_filter :validate_user

private
def validate_user
...
end
end

We don’t want this filter run for the login action.

class UserController < ApplicationController
skip_before_filter :validate_user, :only => :login

def login
...
end
end

Verification

A common use of before filters is verifying that certain conditions are met
before an action is attempted. The Rails verify mechanism is an abstraction
that might help you express these preconditions more concisely than you
could in explicit filter code.

For example, we might require that the session contains a valid user before our
blog allows comments to be posted. We could express this using a verification
such as

class BlogController < ApplicationController
verify :only => :post_comment,
:session => :user_id,

radd_flash => { :note => "You must log in to comment"},
rredirect_to => :index

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=454

FILTERS AND VERIFICATION <« 455

This declaration applies the verification to the post_comment action. If the ses-
sion does not contain the key :user_id, a note is added to the flash and the
request is redirected to the index action.

The parameters to verify can be split into three categories.

Applicability
These options select which actions have the verification applied.

:only =>:name or [:name, ...]
Verify only the listed action or actions.

:except =>:name or [:name, ...]
Verify all actions except those listed.

Tests

These options describe the tests to be performed on the request. If more than
one of these is given, all must be true for the verification to succeed.

flash =>:key or | key, ...]
The flash must include the given key or keys.

:method =>:symbol or [:symbol, ... |
The request method (:get, :post, :head, or :delete) must match one of the
given symbols.
params =>:key or [:key, ...]
The request parameters must include the given key or keys.
:session =>:key or [key, ...]
The session must include the given key or keys.

xhr => frueorfalse
The request must (must not) come from an AJAX call.

Actions

These options describe what should happen if a verification fails. If no actions

are specified, the verification returns an empty response to the browser on
failure.

:add_flash =>hash

Merges the given hash of key/value pairs into the flash. This can be used
to generate error responses to users.

:add_headers =>hash
Merges the given hash of key/value pairs into the response headers.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=455

CACHING, PART ONE <« 456

redirect_to =>params
Redirects using the given parameter hash.

render =>params
Renders using the given parameter hash.

21.5 Caching, Part One

Many applications seem to spend a lot of their time doing the same task over
and over. A blog application renders the list of current articles for every visi-
tor. A store application will display the same page of product information for
everyone who requests it.

All this repetition costs us resources and time on the server. Rendering the blog
page may require half a dozen database queries, and it may end up running
through a number of Ruby methods and Rails templates. It isn’'t a big deal
for an individual request, but multiply that by many a thousand hits an hour,
and suddenly your server is starting to glow a dull red. Your users will see this
as slower response times.

In situations such as these, we can use caching to greatly reduce the load on
our servers and increase the responsiveness of our applications. Rather than
generate the same old content from scratch, time after time, we create it once
and remember the result. The next time a request arrives for that same page,
we deliver it from the cache, rather than create it.

Rails offers three approaches to caching. In this chapter, we’ll describe two
of them, page caching and action caching. We'll look at the third, fragment
caching, on page 514 in the Action View chapter.

Page caching is the simplest and most efficient form of Rails caching. The
first time a user requests a particular URL, our application gets invoked and
generates a page of HTML. The contents of this page are stored in the cache.
The next time a request containing that URL is received, the HTML of the page
is delivered straight from the cache. Your application never sees the request.
In fact, Rails is not involved at all: the request is handled entirely within the
web server, which makes page caching very, very efficient. Your application
delivers these pages at the same speed that the server can deliver any other
static content.

Sometimes, though, our application needs to be at least partially involved in
handling these requests. For example, your store might display details of cer-
tain products only to a subset of users (perhaps premium customers get earlier
access to new products). In this case, the page you display will have the same
content, but you don’t want to display it to just anyone—you need to filter
access to the cached content. Rails provides action caching for this purpose.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=456

CACHING, PART ONE

With action caching, your application controller is still invoked, and its before
filters are run. However, the action itself is not called if there’s an existing
cached page.

Let’s look at this in the context of a site that has public content and premium,
members-only, content. We have two controllers, a login controller that verifies
that someone is a member and a content controller with actions to show both
public and premium content. The public content consists of a single page with
links to premium articles. If someone requests premium content and they’re
not a member, we redirect them to an action in the login controller that signs
them up.

Ignoring caching for a minute, we can implement the content side of this appli-
cation using a before filter to verify the user’s status and a couple of action
methods for the two kinds of content.

Download el/cookies/cookiel/app/controllers/content_controller.rb

class ContentController < ApplicationController
before_filter :verify_premium_user, :except => :public_content

def public_content
@articles = Article.list_public
end

def premium_content
@articles = Article.list_premium
end

private

def verify_premium_user
user = session[:user_id]
user User.find(user) 1if user
unless user &R user.active?

redirect_to :controller => "login", :action => "signup_new"

end

end

end

Because the content pages are fixed, they can be cached. We can cache the
public content at the page level, but we have to restrict access to the cached
premium content to members, so we need to use action-level caching for it. To
enable caching, we simply add two declarations to our class.

Download el/cookies/cookiel/app/controllers/content_controller.rb

class ContentController < ApplicationController
before_filter :verify_premium_user, :except => :public_content

caches_page :public_content
caches_action :premium_content

http://media.pragprog.com/titles/rails2/code/e1/cookies/cookie1/app/controllers/content_controller.rb
http://media.pragprog.com/titles/rails2/code/e1/cookies/cookie1/app/controllers/content_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=457

CACHING, PART ONE <« 458

The caches_page directive tells Rails to cache the output of public_content the
first time it is produced. Thereafter, this page will be delivered directly from
the web server.

The second directive, caches_action, tells Rails to cache the results of execut-
ing premium_content but still to execute the filters. This means that we’ll still
validate that the person requesting the page is allowed to do so, but we won’t
actually execute the action more than once.!*

Caching is, by default, enabled only in production environments. You can turn
it on or off manually by setting

ActionController::Base.perform_caching = true | false

You can make this change in your application’s environment files (in con-
fig/environments), although the preferred syntax is slightly different there.

config.action_controller.perform_caching = true

What to Cache

Rails action and page caching is strictly URL based. A page is cached according
to the content of the URL that first generated it, and subsequent requests to
that same URL will return the saved content.

This means that dynamic pages that depend on information not in the URL
are poor candidates for caching. These include the following.

* Pages where the content is time based (although see Section 21.5, Time-
Based Expiry of Cached Pages, on page 462).

* Pages whose content depends on session information. For example, if
you customize pages for each of your users, you're unlikely to be able to
cache them (although you might be able to take advantage of fragment
caching, described starting on page 514).

* Pages generated from data that you don’t control. For example, a page
displaying information from our database might not be cachable if non-
Rails applications can update that database too. Our cached page would
become out-of-date without our application knowing.

However, caching can cope with pages generated from volatile content that’s
under your control. As we’ll see in the next section, it’s simply a question of
removing the cached pages when they become outdated.

14. Action caching is a good example of an around filter, described on page 451. The before part
of the filter checks to see whether the cached item exists. If it does, it renders it directly back to
the user, preventing the real action from running. The after part of the filter saves the results of
running the action in the cache.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=458

CACHING, PART ONE <« 459

Expiring Pages

Creating cached pages is only one half of the equation. If the content initially
used to create these pages changes, the cached versions will become out-of-
date, and we’ll need a way of expiring them.

The trick is to code the application to notice when the data used to create a
dynamic page has changed and then to remove the cached version. The next
time a request comes through for that URL, the cached page will be regener-
ated based on the new content.

Expiring Pages Explicitly

The low-level way to remove cached pages is with the methods expire_page and
expire_action. These take the same parameters as url_for and expire the cached
page that matches the generated URL.

For example, our content controller might have an action that allows us to
create an article and another action that updates an existing article. When we
create an article, the list of articles on the public page will become obsolete, so
we call expire_page, passing in the action name that displays the public page.
When we update an existing article, the public index page remains unchanged
(at least, it does in our application), but any cached version of this particular
article should be deleted. Because this cache was created using caches_action,
we need to expire the page using expire_action, passing in the action name and
the article id.

Download el/cookies/cookiel/app/controllers/content_controller.rb

def create_article
article = Article.new(params[:article])
if article.save
expire_page raction => "public_content"
else
...
end
end

def update_article
article = Article.new(params[:article])
if article.save
expire_action :action => "premium_content”, :id => article
else
...
end
end

The method that deletes an article does a bit more work—it has to both inval-
idate the public index page and remove the specific article page.

http://media.pragprog.com/titles/rails2/code/e1/cookies/cookie1/app/controllers/content_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=459

CACHING, PART ONE <« 460

Download el/cookies/cookiel/app/controllers/content_controller.rb

def delete_article
Article.destroy(params[:id])

expire_page raction => "public_content”
expire_action :action => "premium_content”, :id => params[:id]
end

Picking a Caching Store Strategy

Caching, like sessions, features a number of storage options. You can keep the
fragments in files, in a database, in a DRb server, or in memcached servers.
But whereas sessions usually contain small amounts of data and require only
one row per user, fragment caching can easily create sizeable amounts of data,
and you can have many per user. This makes database storage a poor fit.

For many setups, it’s easiest to keep cache files on the filesystem. But you
can’t keep these cached files locally on each server, because expiring a cache
on one server would not expire it on the rest. You therefore need to set up a
network drive that all the servers can share for their caching.

As with session configuration, you can configure a file-based caching store
globally in environment.rb or in a specific environment’s file.

ActionController::Base.fragment_cache_store =
ActionController::Caching::Fragments::FileStore.new("#{RAILS_ROOT}/cache")

This configuration assumes that a directory named cache is available in the
root of the application and that the web server has full read and write access
to it. This directory can easily be symlinked to the path on the server that
represents the network drive.

Regardless of which store you pick for caching fragments, you should be aware
that network bottlenecks can quickly become a problem. If your site depends
heavily on fragment caching, every request will need a lot of data transferring
from the network drive to the specific server before it’s again sent on to the
user. In order to use this on a high-profile site, you really need to have a high-
bandwidth internal network between your servers or you will see slowdown.

The caching store system is available only for caching actions and fragments.
Full-page caches need to be kept on the filesystem in the public directory.
In this case, you will have to go the network drive route if you want to use
page caching across multiple web servers. You can then symlink either the
entire public directory (but that will also cause your images, stylesheets, and
JavaScript to be passed over the network, which may be a problem) or just the
individual directories that are needed for your page caches. In the latter case,
you would, for example, symlink public/products to your network drive to keep
page caches for your products controller.

http://media.pragprog.com/titles/rails2/code/e1/cookies/cookie1/app/controllers/content_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=460

CACHING, PART ONE <« 461

Expiring Pages Implicitly

The expire_xxx methods work well, but they also couple the caching function to
the code in your controllers. Every time you change something in the database,
you also have to work out which cached pages this might affect. Although
this is easy for smaller applications, this gets more difficult as the application
grows. A change made in one controller might affect pages cached in another.
Business logic in helper methods, which really shouldn’t have to know about
HTML pages, now needs to worry about expiring cached pages.

Fortunately, Rails sweepers can simplify some of this coupling. A sweeper is
a special kind of observer on your model objects. When something significant
happens in the model, the sweeper expires the cached pages that depend on
that model’s data.

Your application can have as many sweepers as it needs. You'll typically cre-
ate a separate sweeper to manage the caching for each controller. Put your
sweeper code in app/models.

Download el/cookies/cookiel/app/sweepers/article_sweeper.rb

class ArticleSweeper < ActionController::Caching::Sweeper
observe Article

If we create a new article, the public 1ist of articles must be regenerated
def after_create(article)

expire_public_page
end

If we update an existing article, the cached version of that article 1is stale
def after_update(article)

expire_article_page(article.id)
end

Deleting a page means we update the public Tist and blow away the cached article
def after_destroy(article)

expire_public_page

expire_article_page(article.id)
end

private

def expire_public_page
expire_page(:controller => "content", :action => 'public_content')
end

def expire_article_page(article_id)
expire_action(:controller => "content",
raction => "premium_content",
sid => article_id)
end
end

http://media.pragprog.com/titles/rails2/code/e1/cookies/cookie1/app/sweepers/article_sweeper.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=461

CACHING, PART ONE < 462

The flow through the sweeper is somewhat convoluted.

¢ The sweeper is defined as an observer on one or more Active Record
classes. In our example case it observes the Article model. (We first talked
about observers back on page 380.) The sweeper uses hook methods
(such as aoffer_update) to expire cached pages if appropriate.

* The sweeper is also declared to be active in a controller using the directive
cache_sweeper.

class ContentController < ApplicationController

before_filter :verify_premium_user, :except => :public_content
caches_page :public_content
caches_action :premium_content

cache_sweeper :article_sweeper,
:only => [:create_article,
:update_article,
:delete_article]
...

¢ If a request comes in that invokes one of the actions that the sweeper
is filtering, the sweeper is activated. If any of the Active Record observer
methods fires, the page and action expiry methods will be called. If the
Active Record observer gets invoked but the current action is not selected
as a cache sweeper, the expire calls in the sweeper are ignored. Other-
wise, the expiry takes place.

Time-Based Expiry of Cached Pages

Consider a site that shows fairly volatile information such as stock quotes or
news headlines. If we did the style of caching where we expired a page when-
ever the underlying information changed, we’'d be expiring pages constantly.
The cache would rarely get used, and we’d lose the benefit of having it.

In these circumstances, you might want to consider switching to time-based
caching, where you build the cached pages exactly as we did previously but
don’t expire them when their content becomes obsolete.

You run a separate background process that periodically goes into the cache
directory and deletes the cache files. You choose how this deletion occurs—you
could simply remove all files, the files created more than so many minutes ago,
or the files whose names match some pattern. That part is application-specific.

The next time a request comes in for one of these pages, it won't be satisfied
from the cache and the application will handle it. In the process, itll auto-
matically repopulate that particular page in the cache, lightening the load for
subsequent fetches of this page.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=462

THE PROBLEM WITH GET REQUESTS <« 463

Where do you find the cache files to delete? Not surprisingly, this is config-
urable. Page cache files are by default stored in the public directory of your
application. They’ll be named after the URL they are caching, with an .html
extension. For example, the page cache file for content/show/1 will be in

app/public/content/show/1.html

This naming scheme is no coincidence; it allows the web server to find the
cache files automatically. You can, however, override the defaults using

config.action_controller.page_cache_directory = "dir/name"
config.action_controller.page_cache_extension = ".html"

Action cache files are not by default stored in the regular filesystem directory
structure and cannot be expired using this technique.

21.6 The Problem with GET Requests

At the time this book was written, there’s a debate raging about the way web
applications use links to trigger actions.

Here’s the issue. Almost since HTTP was invented, it was recognized that there
is a fundamental difference between HTTP GET and HTTP POST requests.
Tim Berners-Lee wrote about it back in 1996.!% Use GET requests to retrieve
information from the server, and use POST requests to request a change of
state on the server.

The problem is that this rule has been widely ignored by web developers. Every
time you see an application with an Add To Cart link, you're seeing a violation,
because clicking that link generates a GET request that changes the state of
the application (it adds something to the cart in this example). Up until now,
we've gotten away with it.

This changed in the spring of 2005 when Google released its Google Web Accel-
erator (GWA), a piece of client-side code that sped up end users’ browsing. It
did this in part by precaching pages. While the user reads the current page,
the accelerator software scans it for links and arranges for the corresponding
pages to be read and cached in the background.

Now imagine that youre looking at an online store containing Add To Cart
links. While you're deciding between the maroon hot pants and the purple
tank top, the accelerator is busy following links. Each link followed adds a
new item to your cart.

The problem has always been there. Search engines and other spiders con-
stantly follow links on public web pages. Normally, though, these links that
invoke state-changing actions in applications (such as our Add To Cart link)

15. http://www.w3.org/Designlssues/Axioms

http://www.w3.org/DesignIssues/Axioms
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=463

THE PROBLEM WITH GET REQUESTS <« 464

are not exposed until the user has started some kind of transaction, so the
spider won'’t see or follow them. The fact that the GWA runs on the client side
of the equation suddenly exposed all these links.

In an ideal world, every request that has a side effect would be a POST,!®
not a GET. Rather than using links, web pages would use forms and buttons
whenever they want the server to do something active. The world, though,
isn’t ideal, and there are thousands (millions?) of pages out there that break
the rules when it comes to GET requests.

The default link_fo method in Rails generates a regular link, which when clicked
creates a GET request. But this certainly isn’t a Rails-specific problem. Many
large and successful sites do the same.

Is this really a problem? As always, the answer is “It depends.” If you code
applications with dangerous links (such as Delete Order, Fire Employee, or
Fire Missile), there’s the risk that these links will be followed unintentionally
and your application will dutifully perform the requested action.

Fixing the GET Problem

Following a simple rule can effectively eliminate the risk associated with dan-
gerous links. The underlying axiom is straightforward: never allow a straight
<a href="..." link that does something dangerous to be followed without some
kind of human intervention. Here are some techniques for making this work
in practice.

* Use forms and buttons, rather than hyperlinks, to perform actions that
change state on the server. Forms are submitted using POST requests,
which means that they will not be submitted by spiders following links,
and browsers will warn you if you reload a page.

Within Rails, this means using the button_tfo helper to point to danger-
ous actions. However, you’ll need to design your web pages with care.
HTML does not allow forms to be nested, so you can’t use button_to within
another form.

* Use confirmation pages. For cases where you can’t use a form, create a
link that references a page that asks for confirmation. This confirmation
should be triggered by the submit button of a form; hence, the destruc-
tive action won't be triggered automatically.

Some folks also use the following techniques, hoping they’ll prevent the prob-
lem. They don’t work.

* Don’t think your actions are protected just because you've installed a
JavaScript confirmation box on the link. For example, Rails lets you write

16. Or a rarer PUT or DELETE request

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=464

THE PROBLEM WITH GET REQUESTS <« 465

Tink_to(:action => :delete, :confirm => "Are you sure?")

This will stop users from accidentally doing damage by clicking the link,
but only if they have JavaScript enabled in their browsers. It also does
nothing to prevent spiders and automated tools from blindly following
the link anyway.

* Don’t think your actions are protected if they appear only in a portion
of your web site that requires users to log in. Although this does pre-
vent global spiders (such as those employed by the search engines) from
getting to them, it does not stop client-side technologies (such as Google
Web Accelerator).

* Don't think your actions are protected if you use a robots.txt file to con-
trol which pages are spidered. This will not protect you from client-side
technologies.

All this might sound fairly bleak. The real situation isn’t that bad. Just follow
one simple rule when you design your site, and you’ll avoid all these issues.

sl Put All Destructive Actions

Health

baie Behind a POST Request

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=465

Chapter 22

ction Vi

We've seen how the routing component determines which controller to use and
how the controller chooses an action. We've also seen how the controller and
action between them decide what to render to the user. Normally that render-
ing takes place at the end of the action, and typically it involves a template.
That's what this chapter is all about. The ActfionView module encapsulates
all the functionality needed to render templates, most commonly generating
HTML, XML, or JavaScript back to the user. As its name suggests, ActionView
is the view part of our MVC trilogy.

22.1 Templates

When you write a view, you're writing a template: something that will get
expanded to generate the final result. To understand how these templates
work, we need to look at three areas

* Where the templates go
¢ The environment they run in
* What goes inside them

Where Templates Go

The render method expects to find templates under the directory defined by the
global template_root configuration option. By default, this is set to the directory
app/views of the current application. Within this directory, the convention is
to have a separate subdirectory for the views of each controller. Our Depot
application, for instance, includes admin and store controllers. As a result, we
have templates in app/views/admin and app/views/store. Each directory typically
contains templates named after the actions in the corresponding controller.

You can also have templates that aren’t named after actions. These can be
rendered from the controller using calls such as

TEMPLATES <« 467

render(:action => 'fake_action_name')
render(:template => 'controller/name')
render(:file => 'dir/template')

The last of these allows you to store templates anywhere on your filesystem.
This is useful if you want to share templates across applications.

The Template Environment

Templates contain a mixture of fixed text and code. The code is used to add
dynamic content to the template. That code runs in an environment that gives
it access to the information set up by the controller.

¢ All instance variables of the controller are also available in the template.
This is how actions communicate data to the templates.

* The controller object’s flash, headers, logger, params, request, response, and
session are available as accessor methods in the view. Apart from the
flash, view code probably shouldn’t use these directly, because responsi-
bility for handling them should rest with the controller. However, we do
find this useful when debugging. For example, the following rhtml tem-
plate uses the debug method to display the contents of the session, the
details of the parameters, and the current response.
<h4>Session</h4> <%= debug(session) %>

<h4>Params</h4> <%= debug(params) %>
<h4>Response</h4> <%= debug(response) %>

¢ The current controller object is accessible using the attribute named con-
froller. This allows the template to call any public method in the controller
(including the methods in ActionConfroller).

¢ The path to the base directory of the templates is stored in the attribute
base_path.

What Goes in a Template
Out of the box, Rails supports three types of template.

¢ rxml templates use the Builder library to construct XML responses.

* rhtml templates are a mixture of HTML and embedded Ruby. They are
typically used to generate HTML pages.

* 1js templates create JavaScript to be executed in the browser and are
typically used to interact with AJAXified web pages.

We'll talk briefly about Builder next and then look at rhtml. We'll look at rjs
templates in Chapter 23, The Web, V2.0, on page 522.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=467

TEMPLATES <« 468

Builder Templates

Builder is a freestanding library that lets you express structured text (such as
XML) in code.! A Builder template (in a file with an .rxml extension) contains
Ruby code that uses the Builder library to generate XML.

Here’s a simple Builder template that outputs a list of product names and
prices in XML.

Download erb/builder.rb

xml.div(:class => "productlist") do
xm1.timestamp(Time.now)

@products.each do |product]
xml1.product do
xm1.productname(product.title)
xml.price(product.price, :currency => "USD")
end
end
end

With an appropriate collection of products (passed in from the controller), the
template might produce something such as
<div class="productlist">
<timestamp>Sun Oct 01 09:13:04 EDT 2006</timestamp>
<product>
<productname>Pragmatic Programmer</productname>
<price currency="USD">12.34</price>
</product>
<product>
<productname>Rails Recipes</productname>
<price currency="USD">23.45</price>
</product>
</div>

Notice how Builder has taken the names of methods and converted them to
XML tags; when we said xml.price, it created a tag called <price> whose con-
tents were the first parameter and whose attributes were set from the subse-
quent hash. If the name of the tag you want to use conflicts with an existing
method name, you’ll need to use the tag! method to generate the tag.

xml.tag!("id", product.id)
Builder can generate just about any XML you need: it supports namespaces,

entities, processing instructions, and even XML comments. Have a look at the
Builder documentation for details.

1. Builder is available on RubyForge (http://builder.rubyforge.org/) and via RubyGems. Rails comes
packaged with its own copy of Builder, so you won’t have to download anything to get started.

http://media.pragprog.com/titles/rails2/code/erb/builder.rb
http://builder.rubyforge.org/
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=468

TEMPLATES <« 469

RHTML Templates

At its simplest, an rhtml template is just a regular HTML file. If a template
contains no dynamic content, it is simply sent as is to the user’s browser. The
following is a perfectly valid rhtml template.

<hl>Hello, Dave!</hl>
<p>

How are you, today?
</p>

However, applications that just render static templates tend to be a bit boring
to use. We can spice them up using dynamic content.

<hl>Hello, Dave!</hl>
<p>

It's <%= Time.now %>
</p>

If you're a JSP programmer, you’'ll recognize this as an inline expression: any
code between <%= and %> is evaluated, the result is converted to a string using
fo_s, and that string is substituted into the resulting page. The expression
inside the tags can be arbitrary code.

<hl>Hello, Dave!</hl>
<p>
It's <%= require 'date'
DAY_NAMES = %w{ Sunday Monday Tuesday Wednesday
Thursday Friday Saturday }
today = Date.today
DAY_NAMES[today.wday]
%>

</p>

Putting lots of business logic into a template is generally considered to be a
Very Bad Thing, and you’ll risk incurring the wrath of the coding police should
you get caught. We'll look at a better way of handling this when we discuss
helpers on page 472.

Sometimes you need code in a template that doesn't directly generate any out-
put. If you leave the equals sign off the opening tag, the contents are executed,
but nothing is inserted into the template. We could have written the previous
example as

<% require 'date'
DAY_NAMES = %w{ Sunday Monday Tuesday Wednesday
Thursday Friday Saturday }
today = Date.today
%>
<hl>Hello, Dave!</hl>
<p>
It's <%= DAY_NAMES[today.wday] %>.
Tomorrow is <%= DAY_NAMES[(today + 1).wday] %>.
</p>

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=469

TEMPLATES <« 470

In the JSP world, this is called a scriptlet. Again, many folks will chastise
you if they discover you adding code to templates. Ignore them—they’re falling
prey to dogma. There’s nothing wrong with putting code in a template. Just
don’t put too much code in there (and especially don’t put business logic in a
template). We'll see later how we could have done the previous example better
using a helper method.

You can think of the HTML text between code fragments as if each line were
being written by a Ruby program. The <%..%> fragments are added to that
same program. The HTML is interwoven with the explicit code that you write.
As a result, code between <% and %> can affect the output of HTML in the rest
of the template.

For example, consider the template

<% 3.times do %>
Ho!

<% end %>

Internally, the templating code translates this into something like the follow-
ing.
3.times do

concat("Ho!
", binding)
end

The concat method appends its first argument to the generated page. (The
second argument to concat tells it the context in which to evaluate variables.)
The result? You'll see the phrase Ho! written three times to your browser.

Finally, you might have noticed example code in this book where the ERb
chunks ended with -%>. The minus sign tells ERb not to include the newline
that follows in the resulting HTML file. In the following example, there will not
be a gap between line 1 and line 2 in the output.

The time

<% @time = Time.now -%>

is <%= @time %>

You can modify the default behavior by setting the value of the erb_trim_mode
property in your application’s configuration. For example, if you add the fol-
lowing line to environment.rb in the config directory

config.action_view.erb_trim_mode = ">
trailing newlines will be stripped from all <%...%> sequences.

As a curiosity, if the trim mode contains a percent character, you can write
your templates slightly differently. As well as enclosing Ruby code in <%...%>,
you can also write Ruby on lines that start with a single percent sign. For
example, if your environment.ro file contains

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=470

TEMPLATES < 471

config.action_view.erb_trim_mode = "%"

you could write something like

% 5.downto(1l) do |i]
<%= 1 %>...

% end

See the ERb documentation for more possible values for the trim mode.

Escaping Substituted Values
There’s one critical danger with rhtml templates. When you insert a value using
<%=...%>, it goes directly into the output stream. Take the following case.

The value of name is <%= params[:name] %>

In the normal course of things, this will substitute in the value of the request
parameter name. But what if our user entered the following URL?

http://x.y.com/myapp?name=Hel10%20%3cb%3ethere%3c/b%3e

The strange sequence %3cb%3ethere%3c/b%3e is a URL-encoded version of the
HTML there. Our template will substitute this in, and the page will be
displayed with the word there in bold.

This might not seem like a big deal, but at best it leaves your pages open to
defacement. At worst, as we’ll see in Chapter 26, Securing Your Rails Applica-
tion, on page 600, it's a gaping security hole that makes your site vulnerable
to attack and data loss.

Fortunately, the solution is simple. Always escape any text that you substitute
into templates that isn’t meant to be HTML. Rails comes with a method to do
just that. Its long name is html_escape, but most people just call it h.

The value of name is <%= h(params[:name]) %>
Get into the habit of typing h(immediately after you type <%=.

You can’t use the h method if the text you're substituting contains HTML that
you want to be interpreted, because the HTML tags will be escaped—if you cre-
ate a string containing hello and then substitute it into a template
using the h method, the user will see hello rather than hello.

The sanitize method offers some protection. It takes a string containing HTML
and cleans up dangerous elements: <form> and <script> tags are escaped,
and on= attributes and links starting javascript: are removed.

The product descriptions in our Depot application were rendered as HTML
(that is, they were not escaped using the h method). This allowed us to embed
formatting information in them. If we allowed people outside our organization
to enter these descriptions, it would be prudent to use the sanitize method to
reduce the risk of our site being attacked successfully.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=471

USING HELPERS < 472

22.2 Using Helpers

Earlier we said that it’s OK to put code in templates. Now we're going to modify
that statement. It’s perfectly acceptable to put some code in templates—that’s
what makes them dynamic. However, it’s poor style to put too much code in
templates.

There are three main reasons for this. First, the more code you put in the
view side of your application, the easier it is to let discipline slip and start
adding application-level functionality to the template code. This is definitely
poor form; you want to put application stuff in the controller and model layers
so that it is available everywhere. This will pay off when you add new ways of
viewing the application.

The second reason is that rhtml is basically HTML. When you edit it, you're
editing an HTML file. If you have the luxury of having professional designers
create your layouts, they’ll want to work with HTML. Putting a bunch of Ruby
code in there just makes it hard to work with.

The final reason is that code embedded in views is hard to test, whereas code
split out into helper modules can be isolated and tested as individual units.

Rails provides a nice compromise in the form of helpers. A helper is simply
a module containing methods that assist a view. Helper methods are output-
centric. They exist to generate HTML (or XML, or JavaScript)—a helper extends
the behavior of a template.

By default, each controller gets its own helper module. It won’t be surprising
to learn that Rails makes certain assumptions to help link the helpers into
the controller and its views. If a controller is named BlogController, it will auto-
matically look for a helper module called BlogHelper in the file blog_helper.rb in
the app/helpers directory. You don’t have to remember all these details—the
generate controller script creates a stub helper module automatically.

For example, the views for our store controller might set the title of generated
pages from the instance variable @page_title (which presumably gets set by the
controller). If @page_title isn’t set, the template uses the text “Pragmatic Store.”
The top of each view template might look like

<h3><%= @page_title || "Pragmatic Store" %></h3>

e

We'd like to remove the duplication between templates: if the default name of
the store changes, we don’t want to edit each view. So let’s move the code that
works out the page title into a helper method. As we're in the store controller,
we edit the file store_helperrb in app/helpers (as shown on the next page).

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=472

USING HELPERS < 473

module StoreHelper
def page_title
@page_title || "Pragmatic Store"
end
end

Now the view code simply calls the helper method.
<h3><%= page_title %></h3>

<l-- ... -

(We might want to eliminate even more duplication by moving the rendering of
the entire title into a separate partial template, shared by all the controller’s
views, but we don’t talk about them until Section 22.9, Partial Page Templates,
on page 510.)

Sharing Helpers

Sometimes a helper is just so good that you have to share it among all your
controllers. Perhaps you have a spiffy date-formatting helper that you want to
use in views called from all of your controllers. You have two options.

First, you could add the helper method to the file application_helper.ro in the
directory app/helpers. As its name suggests, this helper is global to the entire
application, and hence its methods are available to all views.

Alternatively, you can tell controllers to include additional helper modules
using the helper declaration. For example, if our date-formatting helper was
in the file date_format_helper.rb in app/helpers, we could load it and mix it into
a particular controller’s set of views using

class ParticularController < ApplicationController
helper :date_format
...

You can include an already-loaded class as a helper by giving its name to the
helper declaration.

class ParticularController < ApplicationController
helper DateFormat
...

You can add controller methods into the template using helper_method. Think
hard before doing this—you risk mixing business and presentation logic. See
the documentation for helper_method for details.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=473

HELPERS FOR FORMATTING, LINKING, AND PAGINATION <« 474

22.3 Helpers for Formatting, Linking, and Pagination

Rails comes with a bunch of built-in helper methods, available to all views. In
this section we’ll touch on the highlights, but you’ll probably want to look at
the Action View RDoc for the specifics—there’s a lot of functionality in there.

Formatting Helpers
One set of helper methods deals with dates, numbers, and text.

<%= distance_of_time_in_words(Time.now, Time.local(2005, 12, 25)) %>
248 days

<%= distance_of_time_in_words(Time.now, Time.now + 33, false) %>
1 minute

<%= distance_of_time_in_words(Time.now, Time.now + 33, frue) %>
half a minute

<%= time_ago_in_words(Time.local(2004, 12, 25)) %>
116 days

<%= number_to_currency(123.45) %>
$123.45

<%= number_to_currency(234.56, :unit => "CANS", :precision => Q) %>
CAN$235.

<%= number_to_human_size(123_456) %>
120.6 KB

<%= number_to_percentage(66.66666) %>
66.667%

<%= number_to_percentage(66.66666, :precision => 1) %>
66.7%

<%= number_to_phone(2125551212) %>
212-555-1212

<%= number_to_phone(2125551212, :area_code => frue, :delimiter =>"") %>
(212) 555 1212

<%= number_with_delimiter(12345678) %>
12,345,678

<%= number_with_delimiter(12345678, "_") %>
12_345 678

<%= number_with_precision(60.0/3) %>
16.667

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=474

HELPERS FOR FORMATTING, LINKING, AND PAGINATION <« 475

The debug method dumps out its parameter using YAML and escapes the
result so it can be displayed in an HTML page. This can help when trying
to look at the values in model objects or request parameters.

<%= debug(params) %>

--- l!ruby/hash:HashWithIndifferentAccess
name: Dave

Tanguage: Ruby

action: objects

controller: test

Yet another set of helpers deal with text. There are methods to truncate strings
and highlight words in a string (useful to show search results perhaps).

<%= simple_format(@trees) %>
Formats a string, honoring line and paragraph breaks. You could give
it the plain text of the Joyce Kilmer poem Trees, and it would add the
HTML to format it as follows.

<p> I think that I shall never see

A poem lovely as a tree.</p>

<p>A tree whose hungry mouth is prest

Against the sweet earth’s flowing breast;

</p>

<%= excerpt(@trees, "lovely", 8) %>
...A poem lovely as a tre...

<%= highlight(@trees, "tree") %>
I think that I shall never see
A poem lovely as a <strong class="highlight">tree.

A <strong class="highlight">tree whose hungry mouth is prest
Against the sweet earth’s flowing breast;

<%= truncate(@trees, 20) %>
I think that I sh...

There’s a method to pluralize nouns.

<%= pluralize(1, "person") %> but <%= pluralize(2, "person") %>
1 person but 2 people

If you'd like to do what the fancy web sites do and automatically hyperlink
URLSs and e-mail addresses, there are helpers to do that. There’s another that
strips hyperlinks from text.

Back on page 91 we saw how the cycle helper can be used to return the suc-
cessive values from a sequence each time it’s called, repeating the sequence

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=475

HELPERS FOR FORMATTING, LINKING, AND PAGINATION <« 476

as necessary. This is often used to create alternating styles for the rows in a
table or list.

Finally, if you're writing something like a blog site, or you're allowing users
to add comments to your store, you could offer them the ability to create
their text in Markdown (BlueCloth)? or Textile (RedCloth)® format. These are
simple formatters that take text with very simple, human-friendly markup and
convert it into HTML. If you have the appropriate libraries installed on your
system,* this text can be rendered into views using the markdown and textilize
helper methods.

Linking to Other Pages and Resources

The ActionView::Helpers::AssetTagHelper and ActionView::Helpers::UrlHelper modules
contain a number of methods that let you reference resources external to the
current template. Of these, the most commonly used is link_to, which creates a
hyperlink to another action in your application.

<%= Tink_to "Add Comment", :action => "add _comment" %>

The first parameter to link_to is the text displayed for the link. The next is a
hash specifying the link’s target. This uses the same format as the controller
url_for method, which we discussed back on page 401.

A third parameter may be used to set HTML attributes on the generated link.

<%= link_to "Delete", { :action => "delete", :id => @product},
{ :class => "dangerous" }
%>

This third parameter supports three additional options that modify the behav-
ior of the link. Each requires JavaScript to be enabled in the browser. The
:confirm option takes a short message. If present, JavaScript will be generated
to display the message and get the user’s confirmation before the link is fol-
lowed.
<%= link_to "Delete", { :action => "delete", :id => @product},

{ :class => "dangerous",

:confirm => "Are you sure?" }
%>

The :popup option takes either the value frue or a two-element array of win-
dow creation options (the first element is the window name passed to the
JavaScript window.open method; the second element is the option string). The
response to the request will be displayed in this pop-up window.

2. http://bluecloth.rubyforge.org/

3. http://www.whytheluckystiff.net/ruby/redcloth/

4. If you use RubyGems to install the libraries, you’ll need to add an appropriate require_gem to
your environment.rb.

http://bluecloth.rubyforge.org/
http://www.whytheluckystiff.net/ruby/redcloth/
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=476

HELPERS FOR FORMATTING, LINKING, AND PAGINATION <« 477

<%= link_to "Help", { :action => "help" },
:popup => ['Help', 'width=200,height=150"]

%>
The :method option is a hack—it allows you to make the link look to the appli-
cation as if the request were created by a POST, PUT, or DELETE, rather than
the normal GET method. This is done by creating a chunk of JavaScript that
submits the request when the link is clicked—if JavaScript is disabled in the
browser, a GET will be generated.
<%= Tlink_to "Delete", { :controller => 'articles',

:id => @article },

:method => :delete
%>

The button_to method works the same as link_to but generates a button in a
self-contained form, rather than a straight hyperlink. As we discussed in Sec-
tion 21.6, The Problem with GET Requests, on page 463, this is the preferred
method of linking to actions that have side effects. However, these buttons live
in their own forms, which imposes a couple of restrictions: they cannot appear
inline, and they cannot appear inside other forms.

Rails has conditional linking methods that generate hyperlinks if some con-
dition is met and just return the link text otherwise. link_to_if and link_to_unless
take a condition parameter, followed by the regular parameters to link_to. If the
condition is frue (for link_to_if) or false (for link_to_unless) a regular link will be cre-
ated using the remaining parameters. If not, the name will be added as plain
text (with no hyperlink).

The link_to_unless_current helper is used to create menus in sidebars where the
current page name is shown as plain text and the other entries are hyperlinks.

<% %w{ create Tist edit save logout }.each do |action| -%>
<1i>
<%= 1ink_to_unless_current(action.capitalize, :action => action) %>
</1i>
<% end -%>

As with url_for, link_to and friends also support absolute URLs.
<%= Tlink_to("Help", "http://my.site/help/index.htm1") %>
The image_tag helper can be used to create tags. The image size may be

specified using a single :size parameter (of the form widthxheight) or by explictly
giving the width and height as separate parameters.

<%= image_tag("/images/dave.png", :class => "bevel", :size => "80x120") %>
<%= image_tag("/images/andy.png", :class => "bevel",
:width => "80", :height => "120") %>

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=477

HELPERS FOR FORMATTING, LINKING, AND PAGINATION <« 478

If you don’t give an :alt option, Rails synthesizes one for you using the image’s
filename.

If the image path doesn’t start with a / character, Rails assumes that it lives
under the /images directory. If it doesn’t have a file extension, Rails currently
assumes .png, but this will be an error in Rails 2.0.

You can make images into links by combining link_to and image_tag.

<%= link_to(image_tag("delete.png", :size => "50x22"),
{ :controller => "admin",

:action => "delete",
1id => @product},
{ :confirm => "Are you sure?" })

%>

The mail_to helper creates a mailto: hyperlink that, when clicked, normally loads
the client’s e-mail application. It takes an e-mail address, the name of the
link, and a set of HTML options. Within these options, you can also use :bcc,
:cc, :body, and :subject to initialize the corresponding e-mail fields. Finally, the
magic option :encode=>"javascript' uses client-side JavaScript to obscure the
generated link, making it harder for spiders to harvest e-mail addresses from
your site.®

<%= mail_to("support@oragprog.com", "Contact Support",

:subject => "Support question from #{@user.name}",
:encode => "javascript") %>

As a weaker form of obfuscation, you can use the :replace_at and :replace_dot
options to replace the at sign and dots in the displayed name with other
strings. This is unlikely to fool harvesters.

The AssetTagHelper module also includes helpers that make it easy to link to
stylesheets and JavaScript code from your pages and to create autodiscovery
RSS or Atom feed links. We created a stylesheet link in the layouts for the
Depot application, where we used stylesheet_link_tag in the head.

Download depot_r/app/views/layouts/store.rhtml

<%= stylesheet_Tlink_tag "depot”, :media => "all" %>

The javascript_include_tag method takes a list of JavaScript filenames (assumed
to live in public/javascripts) and creates the HTML to load these into a page. As
a shortcut you can pass it the parameter :defaults, in which case it loads the
files prototype.js, effects.s, dragdrop.js, and controls.js, along with application.js if
it exists. Use the latter file to add your own JavaScript to your application’s
pages.®

5. But it also means your users won't see the e-mail link if they have JavaScript disabled in their
browsers.

6. Writers of plugins can arrange for their own JavaScript files to be loaded when an application
specifies :defaulfs, but that’s beyond the scope of this book.

http://media.pragprog.com/titles/rails2/code/depot_r/app/views/layouts/store.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=478

HELPERS FOR FORMATTING, LINKING, AND PAGINATION < 479

An RSS or Atom link is a header field that points to a URL in our application.
When that URL is accessed, the application should return the appropriate RSS
or Atom XML.
<html>

<head>

<%= auto_discovery_Tlink_tag(:rss, :action => 'rss_feed') %>
</head>

Finally, the JavaScriptHelper module defines a number of helpers for working
with JavaScript. These create JavaScript snippets that run in the browser to
generate special effects and to have the page dynamically interact with our
application. That’s the subject of a separate chapter, Chapter 23, The Web,
V2.0, on page 522.

By default, image and stylesheet assets are assumed to live in the images
and stylesheets directories relative to the application’s public directory. If the
path given to an asset tag method includes a forward slash, then the path is
assumed to be absolute, and no prefix is applied. Sometimes it makes sense
to move this static content onto a separate box or to different locations on the
current box. Do this by setting the configuration variable asset_host.

ActionController::Base.asset_host = "http://media.my.url/assets"

Pagination Helpers

A community site might have thousands of registered users. We might want to
create an administration action to list these, but dumping thousands of names
to a single page is somewhat rude. Instead, we’d like to divide the output into
pages and allow the user to scroll back and forth in these.

Rails uses pagination to do this. Pagination works at the controller level and
at the view level. In the controller, it controls which rows are fetched from
the database. In the view, it displays the links necessary to navigate between
different pages.

Let’s start in the controller. We've decided to use pagination when displaying
the list of users. In the controller, we declare a paginator for the users table.

Download el/views/app/controllers/pager_controller.rb

def user_list
@user_pages, @users = paginate(:users, :order => 'name')
end

The declaration returns two objects. @user_pages is a paginator. It divides the
user model objects into pages, each containing by default 10 rows. It also
fetches a pageful of users into the @users variable. This can be used by our view
to display the users, 10 at a time. The paginator knows which set of users to

http://media.pragprog.com/titles/rails2/code/e1/views/app/controllers/pager_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=479

HELPERS FOR FORMATTING, LINKING, AND PAGINATION < 480

show by looking for a request parameter, by default called page. If a request
comes in with no page parameter, or with page=1, the paginator sets @users
to the first 10 users in the table. If page=2, the 11'" through 20" users are
returned. (If you want to use some parameter other than page to determine
the page number, you can override it. See the Rails API documentation for
more information.)

Over in the view file user_list.rhtml, we display the users using a conventional
loop, iterating over the @users collection created by the paginator. We use the
pagination_links helper method to construct a nice set of links to other pages. By
default, these links show the two page numbers on either side of the current
page, along with the first and last page numbers.

Download el/views/app/views/pager/user_list.rhtml

<table>
<tr><th>Name</th></tr>
<% for user in @users %>
<tr><td><%= user.name %></td></tr>
<% end %>
</table>

<hr>
<%= pagination_Tlinks(@user_pages) %>
<hr>

Navigate to the user_list action, and you’ll see the first page of names. Click
the number 2 in the pagination links at the bottom, and the second page will

appear.
OO http://localhost:3000/ pager/user_list?page=1 S
. - @ D hitp:/ /localhost:3000 /pager fuser_ I|;t71Jage 1 Q "
Name B OO hip://localhost: 3000/pager/user_list?page=2 -
Adam Keys | @ @ D A http:/ /localhost: 3000/ pager /user_| Ilsl?page 2 Q‘} w
Andy Hunt
Brian Marick Name
Brian McCallister Esther Derby
Chad Fowler Greg Wilson
Chris Pine James Gray
Daniel Berger Jeffrey Fredrick
Dave Thomas Johanna Rothman
David Heinemeier Hans | Juliet Thomas
Eric Hodel Maik Schmidt
——— | Marcel Molina
123..19 Mike Clark
— | Mike Gunderloy
1234..79

This example represents the middle-of-the-road pagination: we define the pag-
ination explicitly in our user_list action. We could also have defined pagination

http://media.pragprog.com/titles/rails2/code/e1/views/app/views/pager/user_list.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=480

How FORMS WORK <« 481

implicitly for every action in our controller using the paginate declaration at
the class level. Or, we could go to the other extreme, manually creating Pagi-
nator objects and populating the current page array ourselves. These different
uses are all covered in the API documentation.

Pagination is not a complete solution for breaking up the display of large sets
of data. Although it is often useful, as you become more experienced with Rails
you may well find yourself abandoning built-in pagination support and rolling
your own. There are rumors that pagination might be split off into a plugin for
Rails 2.0.

22.4 How Forms Work

Rails features a fully integrated web stack. This is most apparent in the way
that the model, controller, and view components interoperate to support cre-
ating and editing information in database tables.

Figure 22.1, on the next page, shows how the various attributes in the model
pass through the controller to the view, on to the HTML page, and back again
into the model. The model object has attributes such as name, country, and
password. The template uses helper methods (which we’ll discuss shortly) to
construct an HTML form to let the user edit the data in the model. Note how
the form fields are named. The country attribute, for example, is mapped to an
HTML input field with the name user[country].

When the user submits the form, the raw POST data is sent back to our appli-
cation. Rails extracts the fields from the form and constructs the params hash.
Simple values (such as the id field, extracted by routing from the form action)
are stored as scalars in the hash. But, if a parameter name has brackets in it,
Rails assumes that it is part of more structured data and constructs a hash to
hold the values. Inside this hash, the string inside the brackets is used as the
key. This process can repeat if a parameter name has multiple sets of brackets

in it.

Form parameters params

id=123 {:id=>"123"}

userlname]=Dave { :user =>{ :name => "Dave" }}
user[address][city]=Wien | {:user =>{ :address => { :city => "Wien" }}}

In the final part of the integrated whole, model objects can accept new attribute
values from hashes, which allows us to say

user.update_attributes(params[:user])

Rails integration goes deeper than this. Looking at the .rhtml file in Figure 22.1,
you can see that the template uses a set of helper methods to create the form’s
HTML, methods such as form_for and text_field.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=481

myapp_controller.rb
def edit

How FORMS WORK

@user = User.find(paramsl:id]) \

end

o The application receives a request
to edit a user. It reads the data into
a new User model object.

0 The edit.rhtml template is called. It
uses the information in the user
object to generate...

0 the HTML is sent to the browser.
When the response is received...

o the parameters are extracted into a
nested hash.

@ The save action uses the
parameters to find the user record
and update it.

6 def save
user = User.find(params:id])

if user.update_attributes(params[:user])

end
end

0 edit.rhtml

<% form_for :user,
:url => { :action => 'save', :id => @user } do Ifl %>
<%= f.text_field 'name' Y%></p>
<%= f.text_field ‘country' %></p>
<%= f.password_field 'password' %></p>

<% end %>

0 <form action="/myapp/save/1234">
<input name="user[name]" ... >
<input name="user[country]" ... >
<input name="user[password]" ... >

</form>

0 @params ={
lid => 1234,
user => {
name =>"...",
:country =>" ... ",
;password =>" ..."

Figure 22.1: Models, Controllers, and Views Work Together

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=482

FORMS THAT WRAP MODEL OBJECTS <« 483

In fact, Rails’ form support has something of a split personality. When you're
writing forms that map to database resources, you'll likely use the form_for
style of form. When you're writing forms that don’t map easily to database
tables, you’ll probably use the lower-level form_tag style. (In fact, this naming
is consistent across most of the Rails form helper methods: a name ending
_tag is generally lower level than the corresponding name without _tag).

Let’s start by looking at the high-level, resource-centric form_for type of form.

22.5 Forms That Wrap Model Objects
A form that wraps a single Active Record module should be created using the
form_for helper. (Note that form_for goes inside a <%...%> construct, not <%=...%>.)

<% form_for :user do |form| %>
<% end %>

The first parameter does double duty: it tells Rails the name of the object being
manipulated (iuser in this case) and also the name of the instance variable
that holds a reference to that object (@user). Thus, in a controller action that
rendered the template containing this form, you might write

def new
@Quser = User.new
end

The action that receives the form data back would use the name to select that
data from the request parameters.

def create
@user = User.new(params[:user])

end

If for some reason the variable containing the model object is not named after
the model’s class, you can give the variable as an optional second argument to
form_for.

<% form_for :user, @account_holder do |form| %>
<% end %>

People first using form_for are often tripped up by the fact that it should not be
used in an ERb substitution block: you should write

<% form_for :user, @account_holder do |form| %>

and not the variant with the equals sign shown next.

<%= form_for :user, @account_holder do |form| %><!-- DON'T DO THIS -->

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=483

FORMS THAT WRAP MODEL OBJECTS

form_for takes a hash of options. The two most commonly used options are :url
and :html. The :url option takes the same fields that you can use in the url_for and
link_to methods. It specifies the URL to be invoked when the form is submitted.

<% form_for :user, :url => { :action => :create } %>

It also works with named routes (and this should probably be the way you use
it as Rails moves in a RESTful direction).”

If you don’t specify a :url option, form_for posts the form data back to the origi-
nating action.

<% form_for :user, :url => users_url %>

The :html option lets you add HTML attributes to the generated form tag.

<% form_for :product,
:url => { :action => :create, :id => @product 1},
thtml => { :class => "my _form" } do |form| %>

As a special case, if the :html hash contains :multipart => true, the form will return
multipart form data, allowing it to be used for file uploads (see Section 22.8,
Uploading Files to Rails Applications, on page 502).

You can use the :method parameter in the :html options to simulate using some-
thing other than POST to send the form data.
<% form_for :product,

:url => { :action => :create, :id => @product 1},
thtml => { :class => "my_form"”, :method => :put } do |form| %>

Field Helpers and form_for

form_for takes a block (the code between it and the <% end %>). It passes this
block a form builder object. Inside the block you can use all the normal mixture
of HTML and ERb available anywhere in a template. But, you can also use the
form builder object to add form elements. As an example, here’s a simple form
that captures new product information.

Download el/views/app/views/form_for/new.rhtml

<% form_for :product, :url => { raction => :create } do |form| %>
<p>Title: <%= form.text_field :title, :size => 30 %></p>
<p>Description: <%= form.text_area :description, :rows => 3 %></p>
<p>Image URL: <%= form.text_field :image_url %></p>
<p>Price: <%= form.text_field :price, :size => 10 %></p>
<%= form.select :title, %w{ one two three } %>
<p><¥%= submit_tag %></p>

<% end %>

7. As this book is being finalized, a plugin called Simply Helpful is being worked on. This plugin
makes it even easier to integrate models, REST, and form_for. The plugin might end up in core Rails.

http://media.pragprog.com/titles/rails2/code/e1/views/app/views/form_for/new.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=484

FORMS THAT WRAP MODEL OBJECTS <« 485

The significant thing here is the use of form builder helpers to construct the
HTML <input> tags on the form. When we create a template containing some-

thing like
<% form_for :product, :url => { :action => :create } do |form| %>
<p>
Title: <%= form.text_field :title, :size => 30 %
</p>

Rails will generate HTML like
<form action="/form_for/create"” method="post">
<p>
Title: <input id="product_title" name="product[title]"
size="30" type="text" />
</p>

Notice how Rails has automatically named the input field after both the name
of the model object (product) and the name of the field (title).

Rails provides helper support for text fields (regular, hidden, password, and
text areas), radio buttons, and checkboxes. (It also supports <input> tags
with type="file", but we’ll discuss these in Section 22.8, Uploading Files to Rails
Applications, on page 502.)

All form builder helper methods take at least one parameter: the name of the
attribute in the model to be queried when setting the field value. When we say
<% form_for :product, :url => { :action => :create } do |form| %>
<p>
Title: <%= form.text_field :title, :size => 30 %>
</p>

Rails will populate the <input> tag with the value from @product title.

The name parameter may be a string or a symbol; idiomatic Rails uses sym-
bols.

All helpers also take an options hash, typically used to set the class of the
HTML tag. This is normally the optional second parameter; for radio buttons,
it’s the third. However, keep reading before you go off designing a complicated
scheme for using classes and CSS to flag invalid fields. As we’ll see later, Rails
makes that easy.

Text Fields

form.text_field(:attribute, options)
form.hidden_field(:attribute, options)
form.password_field(:attribute, options)

Construct an <input> tag of type text, hidden, or password, respectively. The
default contents will be taken from @variable.affribute. Common options include
isize =>"nn" and :maxlength=>"nn".

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=485

FORMS THAT WRAP MODEL OBJECTS <« 486

Text Areas

form.text_area(:attribute, options)

Construct a two-dimensional text area (using the HTML < textarea> tag). Com-
mon options include :cols=>"nn" and :rows=>"nn".

Radio Buttons

form.radio_button(:attribute, tag_value, options)

Create a radio button. Normally there will be multiple radio buttons for a given
attribute, each with a different tag value. The one whose tag value matches the
current value of the attribute will be selected when the buttons are displayed.
If the user selects a different radio button, the value of its tag will be stored in
the field.

Checkboxes

form.check_box(:attribute, options, on_value, off_value)

Create a checkbox tied to the given attribute. It will be checked if the attribute
value is true or if the attribute value when converted to an integer is nonzero.

The value subsequently returned to the application is set by the third and
fourth parameters. The default values set the attribute to "1" if the checkbox is
checked; "0" otherwise.

Selection Lists

Selection lists are those drop-down list boxes with the built-in artificial intel-
ligence that guarantees the choice you want can be reached only by scrolling
past everyone else’s choice.

Selection lists contain a set of choices. Each choice has a display string and
an optional value attribute. The display string is what the user sees, and the
value attribute is what is sent back to the application if that choice is selected.
For regular selection lists, one choice may be marked as being selected; its
display string will be the default shown to the user. For multiselect lists, more
than one choice may be selected, in which case all of their values will be sent
to the application.

A basic selection list is created using the select helper method.

form.select(:attribute, choices, options, html_options)

The choices parameter populates the selection list. The parameter can be any
enumerable object (so arrays, hashes, and the results of database queries are
all acceptable).

The simplest form of choices is an array of strings. Each string becomes a
choice in the drop-down list, and if one of them matches the current value of

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=486

FORMS THAT WRAP MODEL OBJECTS

@variable.attribute, it will be selected. (These examples assume that @user.name
is set to Dave.)

Download el/views/app/views/test/select.rhtml

<% form_for :user do |form| %>
<%= form.select(:name, %w{ Andy Bert Chas Dave Eric Fred }) %>
<% end %>

This generates the following HTML.

<select id="user_name" name="user[name]">
<option value="Andy">Andy</option>
<option value="Bert">Bert</option>
<option value="Chas'">Chas</option>
<option value="Dave" selected="selected">Dave</option>
<option value="Eric">Eric</option>
<option value="Fred">Fred</option>
</select>

If the elements in the choices argument each respond to first and last (which will
be the case if each element is itself an array), the selection will use the first
value as the display text and the last value as the internal key.

Download el/views/app/views/test/select.rhtml

<%= form.select(:id, [['Andy', 1],

['Bert', 2],
['Chas', 3],
['Dave', 4],
['Eric', 5],
['Fred', 611)

%>

The list displayed by this example will be identical to that of the first, but the
values it communicates back to the application will be 1, or 2, or 3, or ...,
rather than Andy, Bert, or Chas. The HTML generated is
<select id="user_id" name="user[id]">

<option value="1">Andy</option>

<option value="2">Bert</option>

<option value="3">Chas</option>

<option value="4" selected="selected">Dave</option>

<option value="5">Eric</option>

<option value="6">Fred</option>
</select>

Finally, if you pass a hash as the choices parameter, the keys will be used as
the display text and the values as the internal keys. Because it’s a hash, you
can’t control the order of the entries in the generated list.

Applications commonly need to construct selection boxes based on informa-
tion stored in a database table. One way of doing this is by having the model’s
find method populate the choices parameter. Although we show the find call

http://media.pragprog.com/titles/rails2/code/e1/views/app/views/test/select.rhtml
http://media.pragprog.com/titles/rails2/code/e1/views/app/views/test/select.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=487

FORMS THAT WRAP MODEL OBJECTS <« 488

Shipping: | Ground Parcel F—B

SLOW

¥ Ground Parcel

Media Mail
MEDIUM

Airmail

Certified Mail
FAST

Priority

Express

Figure 22.2: Select List with Grouped Options

adjacent to the select in this code fragment, in reality the find would probably
be either in the controller or in a helper module.

Download el/views/app/views/test/select.rhtml

<%=

@users = User.find(:all, :order => "name").map {|u| [u.name, u.id] }
form.select(:name, Q@users)

%>

Note how we take the result set and convert it into an array of arrays, where
each subarray contains the name and the id.

A higher-level way of achieving the same effect is to use collection_select. This
takes a collection, where each member has attributes that return the display
string and key for the options. In this example, the collection is a list of user
model objects, and we build our select list using those models’ id and name
attributes.

Download el/views/app/views/test/select.rhtml

<%=

@users = User.find(:all, :order => "name'")
form.collection_select(:name, Q@users, :id, :name)
%>

Grouped Selection Lists

Groups are a rarely used but powerful feature of selection lists. You can use
them to give headings to entries in the list. Figure 22.2 shows a selection list
with three groups.

The full selection list is represented as an array of groups. Each group is
an object that has a name and a collection of suboptions. In the following
example, we’ll set up a list containing shipping options, grouped by speed of
delivery. We'll create a nondatabase model called Shipping that encapsulates

http://media.pragprog.com/titles/rails2/code/e1/views/app/views/test/select.rhtml
http://media.pragprog.com/titles/rails2/code/e1/views/app/views/test/select.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=488

FORMS THAT WRAP MODEL OBJECTS <« 489

the shipping options. In it we’ll define a structure to hold each shipping option
and a class that defines a group of options. We'll initialize this statically (in a
real application you'd probably drag the data in from a table).

Download el/views/app/models/shipping.rb

class Shipping
ShippingOption = Struct.new(:id, :name)

class ShippingType
attr_reader :type_name, :options
def initialize(name)
@type_name = name
@options = []
end
def <<(option)
@options << option
end
end

ground = ShippingType.new("SLOW™)
ground << ShippingOption.new(100, "Ground Parcel")
ground << ShippingOption.new(101, "Media Mail")

regular = ShippingType.new("MEDIUM")
regular << ShippingOption.new(200, "Airmail")
regular << ShippingOption.new(201, "Certified Mail")

priority = ShippingType.new("FAST")
priority << ShippingOption.new(300, "Priority")
priority << ShippingOption.new(301, "Express")

OPTIONS = [ground, regular, priority]
end

In the view we’ll create the selection control to display the list. There isn’'t a
high-level wrapper that both creates the <select> tag and populates a grouped
set of options, and there isn’t a form builder helper, so we have to use the
(amazingly named) option_groups_from_collection_for_select method. This takes
the collection of groups, the names of the accessors to use to find the groups
and items, and the current value from the model. We put this inside a <select>
tag that’s named for the model and attribute.

Download el/views/app/views/test/select.rhiml

<label for="order_shipping_option">Shipping: </label>

<select name="order[shipping_option]" id="order_shipping_option">

<%=

option_groups_from_collection_for_select(Shipping::OPTIONS,

roptions, :type_name, # <- groups
:id, :name, # <- items
@order.shipping_option)

%>

</select>

http://media.pragprog.com/titles/rails2/code/e1/views/app/models/shipping.rb
http://media.pragprog.com/titles/rails2/code/e1/views/app/views/test/select.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=489

FORMS THAT WRAP MODEL OBJECTS <« 490

Finally, some high-level helpers make it easy to create selection lists for coun-
tries and time zones. See the Rails API documentation for details.

Date and Time Fields
form.date_select(:attribute, options)
form.datetime_select(:attribute, options)

select_date(date = Date.today, options)
select_day(date, options)
select_month(date, options)
select_year(date, options)

select_datetime(date = Time.now, options)
select_hour(time, options)
select_minute(time, options)
select_second(time, options)
select_time(time, options)

There are two sets of date selection widgets. The first set, date_select and date-
time_select, work with date and datetime attributes of Active Record models.
The second set, the select_xxx variants, also works well without Active Record
support. The image below shows some of these methods in action.

form.date_select({:created_on, rorder => [:day, :month, ryear)
['3 4] [October 3] [2006 %)

form.datetime_select(:created _on, :discard_minute => true, :start_year=> 1990)
(2006 %) [October 4] [3 13 — [14 73)

select_datetime(Time.now, sinclude_blank == true, :add_month_rumbers == 1)
(2006 %) [16-0cober (4] [3 18] [1474) [20 14)

select_year(2015, :prefix => "year", :discard _type => true)
2015 3!

The select_xxx widgets are by default given the names date[xxx], so in the con-
troller you could access the minutes selection as params[:date][:minute]. You
can change the prefix from date using the :prefix option, and you can disable
adding the field type in square brackets using the :discard_type option. The
iinclude_blank option adds an empty option to the list.

The select_minute method supports the :minute_step =>nn option. Setting it to 15,
for example, would list just the options 0, 15, 30, and 45.

The select_month method normally lists month names. To show month num-
bers as well, set the option :add_month_numbers=>true. To display only the
numbers, set :use_month_numbers =>tfrue.

The select_year method by default lists from five years before to five years
after the current year. This can be changed using the :start_year=>yyyy and
:end_year=>yyyy options.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=490

FORMS THAT WRAP MODEL OBJECTS <« 491

date_select and datetime_select create widgets to allow the user to set a date
(or datetime) in Active Record models using selection lists. The date stored
in @variable.aftribute is used as the default value. The display includes sep-
arate selection lists for the year, month, day (and hour, minute, second).
Select lists for particular fields can be removed from the display by setting
the options :discard_month=>1, :discard_day=>1, and so on. Only one discard
option is required—all lower-level units are automatically removed. The order
of field display for date_select can be set using the :order=>(symbols....) option,
where the symbols are :year, :month, and :day. In addition, all the options from
the select_xxx widgets are supported.

Field Helpers without Using form_for

So far we've seen the input field helpers used in the context of a form_for block:
each is called on the instance of a form builder object passed to the block.
However, each has an alternate form that can be called without a form builder.
This form of the helpers takes the name of the model object as a mandatory
first parameter. So, for example, if an action set up a user object like this

def edit

@user = User.find(params[:id])
end

you could use form_for like this.

<% form_for :user do |form| %>
Name: <%= form.text_field :name %>

The version using the alternate helper syntax would be

<% form_for :user do |form| %>
Name: <%= text_field :user, :name %>

These style of helpers are going out of fashion for general forms. However, you
may still need them when you construct forms that map to multiple Active
Record objects.

Multiple Models in a Form
So far, we've used form_for to create forms for a single model. How can it be
used to capture information for two or more models on a single web form?

One problem is that form_for does two things. First, it creates a context (the
Ruby block) in which the form builder helpers can associate HTML tags with
model attributes. Second, it creates the necessary <form> tag and associated
attributes. This latter behavior means we can’t use form_for to manage two
model objects, because that would mean there were two independent forms
on the browser page.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=491

FORMS THAT WRAP MODEL OBJECTS <« 492

Enter the fields_for helper. This creates the context to use form builder helpers,
associating them with some model object, but it does not create a separate
form context. Using this, we can embed fields for one object within the form
for another.

For example, a product might have ancillary information associated with it,
information that we wouldn’t typically use when displaying the catalog. Rather
than clutter the products table, we’ll keep it in an ancilliary details table.

Download el/views/db/migrate/004_create_details.rb

class CreateDetails < ActiveRecord::Migration

def self.up
create_table :details do |t
t.column :product_id, rinteger
t.column :sku, :string
t.column :manufacturer, :string
end
end

def self.down
drop_table :details
end
end

The model is equally trivial.
Download el/views/app/models/detail.rb

class Detail < ActiveRecord::Base
beTongs_to :product
validates_presence_of :sku

end

The view uses form_for to capture the fields for the product model and uses a

fields_for call within that form to capture the details model data.

Download el/views/app/views/products/new.rhtml

<% form_for :product, :url => { :action => :create } do |form| %>
<%= error_messages_for :product %>

Title: <%= form.text_field :title %>

Description: <%= form.text_area :description, :rows => 3 %>

Image url: <%=form.text_field :image_url %>

<fieldset>

<legend>Details...</legend>
<%= error_messages_for :details %>
<% fields_for :details do |detail| %>
SKU: <%= detail.text_field :sku %>

Manufacturer: <%= detail.text_field :manufacturer %>
<% end %>
</fieldset>
<%= submit_tag %>
<% end %>

http://media.pragprog.com/titles/rails2/code/e1/views/db/migrate/004_create_details.rb
http://media.pragprog.com/titles/rails2/code/e1/views/app/models/detail.rb
http://media.pragprog.com/titles/rails2/code/e1/views/app/views/products/new.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=492

FORMS THAT WRAP MODEL OBJECTS

We can look at the generated HTML to see this in action.

<form action="/products/create" method="post">
Title:
<input id="product_title" name="product[title]" size="30" type="text" />

Description:
<textarea cols="40" id="product_description”
name="product[description]" rows="3"></textarea>

Image url:
<input id="product_image_url" name="product[image_url]"
size="30" type="text" />

<fieldset>
<legend>Details...</legend>
SKU:
<input id="details_sku" name="details[sku]"
size="30" type="text" />

Manufacturer:
<input id="details_manufacturer"
name="details[manufacturer]"
size="30" type="text" />
</fieldset>

<input name="commit" type="submit" value="Save changes" />
</form>

Note how the fields for the details model are named appropriately, ensuring
their data will be returned in the correct subhash of params.

The new action, called to render this form initially, simply creates two new
model objects.
Download el/views/app/controllers/products_controller.ro

def new
@product = Product.new
@details = Detail.new
end

The create action is responsible for receiving the form data and saving the
models back into the database. It is considerably more complex than a single
model save. This is because it has to take into account two factors.

¢ If either model contains invalid data, neither model should be saved.

¢ If both models contain validation errors, we want to display the messages
from both—that is, we don’t want to stop checking for errors if we find
problems in one model.

Our solution uses transactions and an exception handler.

Download el/views/app/controllers/products_controller.ro

def create
@product = Product.new(params[:product])

http://media.pragprog.com/titles/rails2/code/e1/views/app/controllers/products_controller.rb
http://media.pragprog.com/titles/rails2/code/e1/views/app/controllers/products_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=493

FORMS THAT WRAP MODEL OBJECTS <« 494

@details = Detail.new(params[:details])

Product.transaction do

@details.product = @product

@product.save!

@details.save!

redirect_to :action => :show, :id => @product
end

rescue ActiveRecord::RecordInvalid => e
@details.valid? # force checking of errors even if products failed
render :action => :new

end

Error Handling and Model Objects

The various helper widgets we've seen so far in this chapter know about Active
Record models. They can extract the data they need from the attributes of
model objects, and they name their parameters in such a way that models can
extract them from request parameters.

The helper objects interact with models in another important way; they are
aware of the erors structure held within each model and will use it to flag
attributes that have failed validation.

When constructing the HTML for each field in a model, the helper methods
invoke that model’s errors.on(field) method. If any errors are returned, the gen-
erated HTML will be wrapped in <div> tags with class="fieldWithErrors'. If you
apply the appropriate stylesheet to your pages (we say how on page 478), you
can highlight any field in error. For example, the following CSS snippet, taken
from the stylesheet used by the scaffolding autogenerated code, puts a red
border around fields that fail validation.

.fieldwithErrors {

padding: 2px;
background-color: red;
display: table;

}

As well as highlighting fields in error, you'll probably also want to display
the text of error messages. Action View has two helper methods for this.
error_message_on returns the error text associated with a particular field.

<%= error_message_on(:product, :title) %>
The scaffold-generated code uses a different pattern; it highlights the fields in
error and displays a single box at the top of the form showing all errors in the

form. It does this using error_messages_for, which takes the model object as a
parameter.

<%= error_messages_for(:product) %>

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=494

CusTOoM FORM BUILDERS <« 495

By default this uses the CSS style errorExplanation; you can borrow the defi-
nition from scaffold.css, write your own definition, or override the style in the
generated code.

22.6 Custom Form Builders

The form_for helper creates a form builder object and passes it to the block
of code that constructs the form. By default, this builder is an instance of
the Rails class FormBuilder (defined in the file form_helper.rb in the Action View
source). However, we can also define our own form builders, letting us reduce
duplication, both within and between our forms.

For example, the template for a simple product entry form might look like the
following:
<% form_for :product, :url => { :action => :save } do |form| %>
<p>
<label for="product_title">Title</label>

<%= form.text_field 'title' %>
</p>

<p>
<label for="product_description">Description</label>

<%= form.text_area 'description' %>

</p>

<p>
<label for="product_image_url">Image url</label>

<%= form.text_field 'image_url' %>
</p>
<%= submit_tag %>
<% end %>

There’s a lot of duplication in there: the stanza for each field looks about the
same, and the labels for the fields duplicates the field names. If we had intelli-
gent defaults, we could really reduce the body of our form down to something
like the following.

<%= form.text_field 'title' %>

<%= form.text_area ‘'description' %>

<%= form.text_field 'image_url' %>
<%= submit_tag %>

Clearly, we need to change the HTML produced by the text_field and text_area
helpers. We could do this by patching the built-in FormBuilder class, but that’s
fragile. Instead, we’ll write our own subclass. Let’s call it TaggedBuilder. We'll
put it in a file called tagged_builder.rb in the app/helpers directory. Let’s start by
rewriting the text_field method. We want it to create a label and an input area,
all wrapped in a paragraph tag. It could look something like this.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=495

CusTOM FORM BUILDERS

class TaggedBuilder < ActionView::Helpers::FormBuilder

Generate something Tike:

<p>

<label for="product_description">Description</label>

<%= form.text_area 'description' %>

</p>

def text_field(label, =args)

@template.content_tag("p",

@template.content_tag("Tabel” ,
label.to_s.humanize,
:for => "#{@object_name}_#{label}") +

"
" +

super)

end
end

This code uses a couple of instance variables that are set up by the base class,
FormBuilder. The instance variable @template gives us access to existing helper
methods. We use it to invoke content_tag, a helper that creates a tag pair con-
taining content. We also use the parent class’s instance variable @object_name,
which is the name of the Active Record object passed to form_for. Also notice
that at the end we call super. This invokes the original version of the text_field
method, which in turn returns the <input> tag for this field.

The result of all this is a string containing the HTML for a single field. For the
title attribute of a product object, it would look something like the following
(which has been reformatted to fit the page).

<p><label for="product_title">Title</label>

<input id="product_title" name="product[title]" size="30"
type="text" />

</p>

Now we have to define text_area.

def text_area(label, =args)
@template.content_tag("p",
@template.content_tag("label" ,
label.to_s.humanize,
:for => "#{@object_name}_#{label}") +
"
" +
super)
end

Hmmm.... Apart from the method name, it’s identical to the text_field code.
Let’s eliminate that duplication. First, we’ll write a class method in Tagged-
Builder that uses the Ruby define_method function to dynamically create new
tag helper methods.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=496

CusTOM FORM BUILDERS <« 497

Download el/views/app/helpers/tagged_builder.rb

def self.create_tagged_field(method_name)
define_method(method_name) do |label, =args|
@template.content_tag("p",
@template.content_tag("Tabel” ,
label.to_s.humanize,
:for => "#{@object_name}_#{1abel}") +
"
" +
super)
end
end

We could then call this method twice in our class definition, once to create a
text_field helper and again to create a text_area helper.

create_tagged_field(:text_field)
create_tagged_field(:text_area)

But even this contains duplication. We could use a loop instead.

[:text_field, :text_area].each do |name|
create_tagged_field(name)
end

We can do even better. The base FormBuilder class defines a collection called
field_helpers—a list of the names of all the helpers it defines. Using this our
final helper class looks like this.

Download el/views/app/helpers/tagged_builder.rb

class TaggedBuilder < ActionView::Helpers::FormBuilder

<p>

<label for="product_description">Description</Tabel>

<%= form.text_area 'description' %>

#</p>

def self.create_tagged_field(method_name)
define_method(method_name) do |label, =args|
@template.content_tag("p",
@template.content_tag("Tlabel" ,
label.to_s.humanize,
:for => "#{@object_name}_#{1abel}") +
"
" +
super)
end
end

field_helpers.each do |name|
create_tagged_field(name)

end

end

http://media.pragprog.com/titles/rails2/code/e1/views/app/helpers/tagged_builder.rb
http://media.pragprog.com/titles/rails2/code/e1/views/app/helpers/tagged_builder.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=497

CusTOM FORM BUILDERS <« 498

How do we get Rails to use our shiny new form builder? We simply add a
:builder parameter to form_for.

Download el/views/app/views/builder/new.rhiml

<% form_for :product, :url => { :action => :save }, :builder => TaggedBuilder do |form| %>
<%= form.text_field 'title' %>
<%= form.text_area ‘'description' %>
<%= form.text_field 'image_url' %>
<%= submit_tag %>
<% end %>

If we're planning to use our new builder in multiple forms, we might want
to define a helper method that does the same as form_for but that adds the
builder parameter automatically. Because it's a regular helper, we can put
it in helpers/application_helper.ro (if we want to make it global) or in a specific
controller’s helper file.

Ideally, the helper would look like this.

DOES NOT WORK

def tagged_form_for(name, options, &block)
options = options.merge(:builder => TaggedBuilder)
form_for(name, options, &block)

end

However, form_for has a variable-length parameter list—it takes an optional
second argument containing the model object. We need to account for this,
making our final helper somewhat more complex.

Download el/views/app/helpers/builder_helper.rb

module BuilderHelper
def tagged_form_for(name, =*args, &block)
options = args.last.is_a?(Hash) ? args.pop : {}
options = options.merge(:builder => TaggedBuilder)
args = (args << options)
form_for(name, =args, &block)
end
end

Our final view file is now pretty elegant.

Download el/views/app/views/builder/new_with_helper.rhtml

<% tagged_form_for :product, :url => { :action => :save } do |form| %>
<%= form.text_field 'title' %>
<%= form.text_area 'description' %>
<%= form.text_field 'image_url' %>
<%= submit_tag %>
<% end %>

Form builders are one of the unsung heroes of Rails: you can use them to
establish a consistent and DRY look and feel across your application, and you
can share them between applications to impose a company-wide standard for

http://media.pragprog.com/titles/rails2/code/e1/views/app/views/builder/new.rhtml
http://media.pragprog.com/titles/rails2/code/e1/views/app/helpers/builder_helper.rb
http://media.pragprog.com/titles/rails2/code/e1/views/app/views/builder/new_with_helper.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=498

WORKING WITH NONMODEL FIELDS <« 499

(N\

Forms Containing Collections

If you need to edit multiple objects from the same model on one form, add
open and closed brackets to the name of the instance variable you pass to
the form helpers. This tells Rails to include the object’s id as part of the field
name. For example, the following template lets a user alter one or more image
URLs associated with a list of products.

Download el/views/app/views/array/edit.rhtml

<% form_tag do %>
<% for @product in @products %>
<%= text_field("product[]", 'image_url') %>

<% end %>
<%= submit_tag %>
<% end %>

When the form is submitted to the controller, params[:product] will be a hash of
hashes, where each key is the id of a model object and the corresponding
value are the values from the form for that object. In the controller, this could
be used to update all product rows with something like

Download el/views/app/controllers/array_controller.rb

Product.update(params[:product].keys, params[:product].values)

your user interactions. They will also help when you need to follow accessibility
guidelines for your applications. I recommend using form builders for all your
Rails forms.

22.7 Working with Nonmodel Fields

So far we've focused on the integration between models, controllers, and views
in Rails. But Rails also provides support for creating fields that have no corre-
sponding model. These helper methods, documented in FormTagHelper, all take
a simple field name, rather than a model object and attribute. The contents of
the field will be stored under that name in the params hash when the form is
submitted to the controller. These nonmodel helper methods all have names
ending in _tag.

We need to create a form in which to use these field helpers. So far we've
been using form_for to do this, but this assumes we're building a form around
a model object, and this isn’t necessarily the case when using the low-level
helpers.

We could just hard-code a <form> tag into our HTML, but Rails has a better
way: create a form using the form_tag helper. Like form_for, a form_tag should

http://media.pragprog.com/titles/rails2/code/e1/views/app/views/array/edit.rhtml
http://media.pragprog.com/titles/rails2/code/e1/views/app/controllers/array_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=499

WORKING WITH NONMODEL FIELDS

appear within <%...%> sequences and should take a block containing the form
contents.®

<% form_tag :action => 'save', :id => @product do %>
Quantity: <%= text_field_tag :quantity, '0' %>
<% end %>

The first parameter to form_tag is a hash identifying the action to be invoked
when the form is submitted. This hash takes the same options as url_for (see
page 405). An optional second parameter is another hash, letting you set
attributes on the HTML form tag itself. (Note that the parameter list to a Ruby
method must be in parentheses if it contains two literal hashes.)

<% form_tag({ :action => :save }, { :class => "compact” }) do ...%>
We can illustrate nonmodel forms with a simple calculator. It prompts us for

two numbers, lets us select an operator, and displays the result.

©® OO http://localhost:3000/test/calculate

[Z] @ - 3 http://localhost:3000/test /calculate Q

3.14285714285714

The file calculate.rhtml in app/views/test uses text_field_tag to display the two
number fields and select_tag to display the list of operators. Note how we had
to initialize a default value for all three fields using the values currently in the
params hash. We also need to display a list of any errors found while processing
the form data in the controller and show the result of the calculation.

Download el/views/app/views/test/calculate.rhtml

<% unless @errors.blank? %>

<% for error in @errors %>
<p><%= h(error) %></p></1i>
<% end %>

<% end %>

<% form_tag(:action => :calculate) do %>
<%= text_field_tag(:argl, params[:argl], :size => 3) %>
<%= select_tag(:operator,
options_for_select(%w{ + - = / },
params[:operator])) %>
<%= text_field_tag(:arg2, params[:arg2], :size => 3) %>
<% end %>
<%= @result %>

8. This is a change in Rails 1.2.

http://media.pragprog.com/titles/rails2/code/e1/views/app/views/test/calculate.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=500

WORKING WITH NONMODEL FIELDS < 501

Without error checking, the controller code would be trivial.

def calculate
if request.post?
@result = Float(params[:argl]).send(params[:operator], params[:arg2])
end
end

However, running a web page without error checking is a luxury we can’t
afford, so we’ll have to go with the longer version.

Download el/views/app/controllers/test_controller.ro

def calculate
if request.post?
@errors = []

argl = convert_float(:argl)
arg2 = convert_float(:arg2)
op = convert_operator(:operator)

if @errors.empty?
begin
@result = op.call(argl, arg2)
rescue Exception => err
@result = err.message
end
end
end
end

private

def convert_float(name)
if params[name].bTank?
@errors << "#{name} missing"
else
begin
Float(params[name])
rescue Exception => err
@errors << "#{name}: #{err.message}"
nil
end
end
end

def convert_operator(name)
case params[name]
"on

when "+" then proc {|a,b| a+b}
when "-" then proc {|a,b| a-b}

when "=" then proc {|a,b| axb}
when "/" then proc {|a,b| a/b}
else
@errors << "Missing or invalid operator"”
nil
end
end

http://media.pragprog.com/titles/rails2/code/e1/views/app/controllers/test_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=501

UPLOADING FILES TO RAILS APPLICATIONS < 502

It’s interesting to note that most of this code would evaporate if we were using
Rails model objects, where much of this housekeeping is built in.

Old-Style form_tag

Prior to Rails 1.2, form_tag did not take a block. Instead, it generated the
<form> element as a string. You call it using something like

<%= form_tag :action => :save %>

. form contents ...
<%= end_form_tag %>

You can still use form_tag this way in Rails 1.2, but this use is disapproved
of unless you have a compelling need to avoid the block form. (And it’s hard
to come up with a real-world need that can’t be handled by the block form—
perhaps a template when the form starts in one file and ends in another?)

To drive home the fact that this use of form_tag is frowned upon, Rails has
deprecated the end_form_tag helper: you’ll now have to resort to
<%= form_tag :action => :save %>

. form contents ...
</form>

The ugliness of this is supposed to make you stop and think....

22.8 Uploading Files to Rails Applications

Your application may allow users to upload files. For example, a bug-reporting
system might let users attach log files and code samples to a problem ticket,
or a blogging application could let its users upload a small image to appear
next to their articles.

In HTTP, files are uploaded as a multipart/form-data POST message. As the
name suggests, this type of message is generated by a form. Within that
form, you’ll use one or more <input> tags with type='file'. When rendered by
a browser, this tag allows the user to select a file by name. When the form is
subsequently submitted, the file or files will be sent back along with the rest
of the form data.

To illustrate the file upload process, we’'ll show some code that allows a user
to upload an image and display that image alongside a comment. To do this,
we first need a pictures table to store the data.

Download el/views/db/migrate/003_create_pictures.rb

class CreatePictures < ActiveRecord::Migration

def self.up
create_table :pictures do |t]
t.column :comment, :string
t.column :name, :string

http://media.pragprog.com/titles/rails2/code/e1/views/db/migrate/003_create_pictures.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=502

UPLOADING FILES TO RAILS APPLICATIONS

t.column :content_type, :string
If using MySQL, blobs default to 64k, so we have to give
an explicit size to extend them
t.column :data, :binary, :Timit => 1l.megabyte
end
end

def self.down
drop_table :pictures
end
end

We'll create a somewhat artificial upload controller just to demonstrate the
process. The get action is pretty conventional; it simply creates a new picture
object and renders a form.

Download el/views/app/controllers/upload_controller.rb

class UploadController < ApplicationController
def get
@picture = Picture.new
end
.
end

The get template contains the form that uploads the picture (along with a

comment). Note how we override the encoding type to allow data to be sent
back with the response.

Download el/views/app/views/upload/get.rhtml
<%= error_messages_for("picture") %>
<% form_for(:picture,

:url => {:action => 'save'},
thtml => { :multipart => true }) do |form| %>

Comment: <%= form.text_field("comment") %>

Upload your picture: <%= form.file_field("uploaded picture™) %>

<%= submit_tag("Upload file") %>
<% end %>

The form has one other subtlety. The picture is uploaded into an attribute
called uploaded_picture. However, the database table doesn’t contain a column
of that name. That means that there must be some magic happening in the
model.

Download el/views/app/models/picture.rb

class Picture < ActiveRecord::Base

validates_format_of :content_type,
:with => /Aimage/,

"

:message => "-- you can only upload pictures"

http://media.pragprog.com/titles/rails2/code/e1/views/app/controllers/upload_controller.rb
http://media.pragprog.com/titles/rails2/code/e1/views/app/views/upload/get.rhtml
http://media.pragprog.com/titles/rails2/code/e1/views/app/models/picture.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=503

UPLOADING FILES TO RAILS APPLICATIONS < 504

def uploaded_picture=(picture_field)

self.name = base_part_of(picture_field.original_filename)
self.content_type = picture_field.content_type.chomp
self.data = picture_field.read

end

def base_part_of(file_name)
File.basename(file_name).gsub(/[A\w._-1/, '")
end
end

We define an accessor called uploaded_picture= to receive the file uploaded by
the form. The object returned by the form is an interesting hybrid. It is file-
like, so we can read its contents with the read method; that's how we get
the image data into the data column. It also has the attributes content_type
and original_flename, which let us get at the uploaded file’s metadata. All this
picking apart is performed by our accessor method: a single object is stored
as separate attributes in the database.

Note that we also add a simple validation to check that the content type is of
the form image/xxx. We don’t want someone uploading JavaScript.

The save action in the controller is totally conventional.

Download el/views/app/controllers/upload_controller.rb

def save
@picture = Picture.new(params[:picture])
if @picture.save

redirect_to(:action => 'show', :id => @picture.id)
else

render(:action => :get)
end

end

So, now that we have an image in the database, how do we display it? One way
is to give it its own URL and simply link to that URL from an image tag. For
example, we could use a URL such as upload/picture/123 to return the image
for picture 123. This would use send_data to return the image to the browser.
Note how we set the content type and filename—this lets browsers interpret the
data and supplies a default name should the user choose to save the image.

Download el/views/app/controllers/upload_controller.rb

def picture
@picture = Picture.find(params[:id])
send_data(@picture.data,
:filename => @picture.name,
:type => @picture.content_type,
:disposition => "inline")
end

http://media.pragprog.com/titles/rails2/code/e1/views/app/controllers/upload_controller.rb
http://media.pragprog.com/titles/rails2/code/e1/views/app/controllers/upload_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=504

UPLOADING FILES TO RAILS APPLICATIONS < 505

©® O O hitp://localhost:3000/ upload/get =
x’ http:/ /localhost:3000/upload/get i

Comment: [joe the Developer ’668 http://localhost:3000/ upload/show/2 =
Upload your picture: ,‘ http://localhost:3000/upload/show/2 o fl
(Choose File) ¥ joe.png — - — =)
(Upload file) Joe the Developer

5SS

Figure 22.3: Uploading a File

Finally, we can implement the show action, which displays the comment and
the image. The action simply loads up the picture model object.

Download el/views/app/controllers/upload_controller.rb

def show
@picture = Picture.find(params[:id])
end

In the template, the image tag links back to the action that returns the picture
content. Figure 22.3 shows the get and show actions in all their glory.

Download el/views/app/views/upload/show.rhtml

<h3><%= @picture.comment %></h3>
<img src="<%= url_for(:action => 'picture', :id => @picture.id) %"/>

You can optimize the performance of this technique by caching the picture
action. (We discuss caching starting on page 456.)

If you'd like an easier way of dealing with uploading and storing images, have a
look at Rick Olson’s Acts as Attachment plugin.® Create a database table that
includes a given set of columns (documented on Rick’s site) and the plugin
will automatically manage storing both the uploaded data and the upload’s
metadata. Unlike our previous approach, it handles storing the uploads in
both your filesystem or a database table.

And, if you're uploading large files, you might want to show your users the
status of the upload as it progresses. Have a look at the upload_progress plugin,
which adds a new form_with_upload_progress helper to Rails.

9. http://technoweenie stikipad.com/plugins/show/Acts+as+Attachment

http://media.pragprog.com/titles/rails2/code/e1/views/app/controllers/upload_controller.rb
http://media.pragprog.com/titles/rails2/code/e1/views/app/views/upload/show.rhtml
http://technoweenie.stikipad.com/plugins/show/Acts+as+Attachment
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=505

LAYOUTS AND COMPONENTS <« 506

22.9 Layouts and Components

So far in this chapter we've looked at templates as isolated chunks of code and
HTML. But one of the driving ideas behind Rails is honoring the DRY principle
and eliminating the need for duplication. The average web site, though, has
lots of duplication.

* Many pages share the same tops, tails, and sidebars.

¢ Multiple pages may contain the same snippets of rendered HTML (a blog
site, for example, may have multiple places where an article is displayed).

¢ The same functionality may appear in multiple places. Many sites have
a standard search component, or a polling component, that appears in
most of the sites’ sidebars.

Rails has layouts, partials, and components that reduce the need for duplica-
tion in these three situations.

Layouts

Rails allows you to render pages that are nested inside other rendered pages.
Typically this feature is used to put the content from an action within a stan-
dard site-wide page frame (title, footer, and sidebar). In fact, if you've been
using the generate script to create scaffold-based applications, then you've
been using these layouts all along.

When Rails honors a request to render a template from within a controller,
it actually renders two templates. Obviously it renders the one you ask for
(or the default template named after the action if you don’t explicitly render
anything). But Rails also tries to find and render a layout template (we’ll talk
about how it finds the layout in a second). If it finds the layout, it inserts the
action-specific output into the HTML produced by the layout.

Let’s look at a layout template.

<html>
<head>
<title>Form: <%= controller.action_name %></title>
<%= stylesheet_Tlink_tag 'scaffold' %>
</head>
<body>

<%= yield :layout %>

</body>
</htm1>

The layout sets out a standard HTML page, with the head and body sections.
It uses the current action name as the page title and includes a CSS file. In
the body, there’s a call to yield. This is where the magic takes place. When

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=506

LAYOUTS AND COMPONENTS <« 507

the template for the action was rendered, Rails stored its content, labeling it
layout. Inside the layout template, calling yield retrieves this text.!0-!1 If the
my_action.rhtml template contained

<hl><%= @msg %></hl>

the browser would see the following HTML.

<html>
<head>
<title>Form: my_action</title>
<link href="/stylesheets/scaffold.css" media="screen"
rel="Stylesheet" type="text/css" />
</head>
<body>

<hl>Hello, World!</hl>

</body>
</htm1>

Locating Layout Files

As you've probably come to expect, Rails does a good job of providing defaults
for layout file locations, but you can override the defaults if you need some-
thing different.

Layouts are controller-specific. If the current request is being handled by a
controller called store, Rails will by default look for a layout called store (with
the usual .rhfml or .xml extension) in the app/views/layouts directory. If you
create a layout called application in the layouts directory, it will be applied to all
controllers that don’t otherwise have a layout defined for them.

You can override this using the layout declaration inside a controller. At its
simplest, the declaration takes the name of a layout as a string. The following
declaration will make the template in the file standard.rhtml or standard.rxml the
layout for all actions in the store controller. The layout file will be looked for in
the app/views/layouts directory.

class StoreController < ApplicationController
layout "standard"

...
end

You can qualify which actions will have the layout applied to them using the
:only and :except qualifiers.

10. In fact, :layout is the default content returned when rendering, so you can write yield instead of
yield layout. I personally prefer the slightly more explicit version.
11. You can write <%= @content_for_layout %> in place for yield :layout.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=507

LAYOUTS AND COMPONENTS <« 508

class StoreController < ApplicationController
layout "standard", :except => [:rss, :atom]

...
end

Specifying a layout of nil turns off layouts for a controller.

There are times when you need to change the appearance of a set of pages at
runtime. For example, a blogging site might offer a different-looking side menu
if the user is logged in, or a store site might have different-looking pages if the
site is down for maintenance. Rails supports this need with dynamic layouts.
If the parameter to the layout declaration is a symbol, it’s taken to be the name
of a controller instance method that returns the name of the layout to be used.

class StoreController < ApplicationController
Tlayout :determine_Tlayout
...
private

def determine_layout
if Store.is_closed?
"store_down"
else
"standard"
end
end
end

Subclasses of a controller will use the parent’s layout unless they override it
using the layout directive.

Finally, individual actions can choose to render using a specific layout (or with
no layout at all) by passing render the :layout option.
def rss

render(:layout => false) # never use a layout
end

def checkout
render(:layout => "layouts/simple")
end

Passing Data to Layouts

Layouts have access to all the same data that’s available to conventional tem-
plates. In addition, any instance variables set in the normal template will be
available in the layout (because the regular template is rendered before the

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=508

LAYOUTS AND COMPONENTS <« 509

layout is invoked). This might be used to parameterize headings or menus in
the layout. For example, the layout might contain

<html>
<head>
<title><%= @title %></title>
<%= stylesheet_link_tag 'scaffold' %>
</head>
<body>
<hl><%= @title %></hl>
<%= yield :layout %>

</body>
</htm1>

An individual template could set the title by assigning to the @tfitle variable.
<% @title = "My Wonderful Life" %>
<p>
Dear Diary:
</p>
<p>
Yesterday I had pizza for dinner. It was nice.
</p>

In fact, you can take this further. The same mechanism that lets you use
yield :layout to embed the rendering of a template into the layout also lets you
generate arbitrary content in a template, which can then be embedded into
any other template.

For example, different templates may need to add their own template-specific
items to the standard page sidebar. We'll use the content_for mechanism in
those template to define content and then use yield in the layout to embed this
content into the sidebar.

In each regular template, use a content_for to give a name to the content ren-
dered inside a block. This content will be stored inside Rails and will not con-
tribute to the output generated by the template.

<h1l>Regular Template</hl>

<% content_for(:sidebar) do %>

<1li>this text will be rendered</1i>
and saved for Tlater</T1i>
<1i>it may contain <%= "dynamic" %> stuff</1i>

<% end %>

<p>
Here's the regular stuff that will appear on
the page rendered by this template.

</p>

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=509

LAYOUTS AND COMPONENTS <« 510

Then, in the layout, you use yield sidebar to include this block into the page’s
sidebar.
<!DOCTYPE >
<html>
<body>
<div class="sidebar">
<p>
Regular sidebar stuff
</p>
<div class="page-specific-sidebar">
> <%= yield :sidebar %>
</div>
</div>
</body>
</htm1>

This same technique can be used to add page-specific JavaScript functions
into the <head> section of a layout, create specialized menu bars, and so on.

Partial Page Templates

Web applications commonly display information about the same application
object or objects on multiple pages. A shopping cart might display an order
line item on the shopping cart page and again on the order summary page.
A blog application might display the contents of an article on the main index
page and again at the top of a page soliciting comments. Typically this would
involve copying snippets of code between the different template pages.

Rails, however, eliminates this duplication with the partial page templates
(more frequently called partials). You can think of a partial as a kind of subrou-
tine: you invoke it one or more times from within another template, potentially
passing it objects to render as parameters. When the partial template finishes
rendering, it returns control to the calling template.

Internally, a partial template looks like any other template. Externally, there’s
a slight difference. The name of the file containing the template code must start
with an underscore character, differentiating the source of partial templates
from their more complete brothers and sisters.

For example, the partial to render a blog entry might be stored in the file
_article.rhtml in the normal views directory app/views/blog.

<div class="article">
<div class="articleheader">
<h3><%= article.title %></h3>
</div>
<div class="articlebody">
<%= h(article.body) %>
</div>
</div>

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=510

LAYOUTS AND COMPONENTS <« 511

Other templates use the render(partial=>) method to invoke this.

<%= render(:partial => "article", :object => @an_article) %>
<h3>Add Comment</h3>

The :partial parameter to render is the name of the template to render (but
without the leading underscore). This name must be both a valid filename and
a valid Ruby identifier (so a-b and 20042501 are not valid names for partials).
The :object parameter identifies an object to be passed into the partial. This
object will be available within the template via a local variable with the same
name as the template. In this example, the @an_article object will be passed
to the template, and the template can access it using the local variable article.
That's why we could write things such as article fitle in the partial.

Idiomatic Rails developers use a variable named after the template (article in
this instance). In fact, it’s normal to take this a step further. If the object to be
passed to the partial is in a controller instance variable with the same name
as the partial, you can omit the :object parameter. If, in the previous example,
our controller had set up the article in the instance variable @article, the view
could have rendered the partial using just

<%= render(:partial => "article") %>
<h3>Add Comment</h3>

You can set additional local variables in the template by passing render a :locals
parameter. This takes a hash where the entries represent the names and val-
ues of the local variables to set.
render(:partial => 'article',

:object => @an_article,

:locals => { :authorized_by => session[:user_name],
:from_ip => @request.remote_ip })

Partials and Collections

Applications commonly need to display collections of formatted entries. A blog
might show a series of articles, each with text, author, date, and so on. A store
might display entries in a catalog, where each has an image, a description,
and a price.

The :collection parameter to render can be used in conjunction with the :partial
parameter. The :partial parameter lets us use a partial to define the format of
an individual entry, and the :collection parameter applies this template to each
member of the collection. To display a list of article model objects using our
previously defined _article.rhtml partial, we could write

<%= render(:partial => "article", :collection => @article_list) %>

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=511

LAYOUTS AND COMPONENTS <« 512

Inside the partial, the local variable article will be set to the current article
from the collection—the variable is named after the template. In addition, the
variable article_counter will be set to the index of the current article in the
collection.

The optional :spacer_template parameter lets you specify a template that will be
rendered between each of the elements in the collection. For example, a view
might contain

Download el/views/app/views/partial/list.rhtml

<%= render(:partial => "animal",
:collection => %w{ ant bee cat dog elk },
:spacer_template => "spacer™)
%>
This uses _animal.rhiml to render each animal in the given list, rendering the
partial _spacerrhtml between each. If _animal.rhfml contains

Download el/views/app/views/partial/_animal.rhtml

<p>The animal 1is <%= animal %></p>

and _spacerrhtml contains
Download el/views/app/views/partial/_spacer.rhtml

<hr />

your users would see a list of animal names with a line between each.

Shared Partial Page Templates

If the :partial parameter to a render call is a simple name, Rails assumes that
the target template is in the current controller’s view directory. However, if the
name contains one or more / characters, Rails assumes that the part up to the
last slash is a directory name and the rest is the template name. The directory
is assumed to be under app/views. This makes it easy to share partials across
controllers.

The convention among Rails applications is to store these shared partials in
a subdirectory of app/views called shared. These can be rendered using some-
thing such as

<%= render(:partial => "shared/post", :object => @article) %>

In this previous example, the @article object will be assigned to the local vari-
able post within the template.

Partials and Controllers
It isn’t just view templates that use partials. Controllers also get in on the act.
Partials give controllers the ability to generate fragments from a page using the

http://media.pragprog.com/titles/rails2/code/e1/views/app/views/partial/list.rhtml
http://media.pragprog.com/titles/rails2/code/e1/views/app/views/partial/_animal.rhtml
http://media.pragprog.com/titles/rails2/code/e1/views/app/views/partial/_spacer.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=512

LAYOUTS AND COMPONENTS <« 513

same partial template as the view itself. This is particularly important when
you use AJAX support to update just part of a page from the controller—use
partials, and you know your formatting for the table row or line item that
you're updating will be compatible with that used to generate its brethren
initially. We talk about the use of partials with AJAX in Chapter 23, The Web,
V2.0, on page 522.

Components
Although partials let you package up rendering chores into self-contained
chunks, they do not give you a way of including significant business logic.
After all, a partial is a view construct, and views are not supposed to contain
business code.

When Rails was initially released, it came with a system for creating compo-
nents. These were a packaging of both controller logic and rendering—a view
could call the helper render_component, and a controller action would be called
to render some fragment to be inserted into that view. Effectively, Rails could
recursively invoke itself.

Unfortunately, the implementation of components left a lot to be desired: per-
formance was poor, and there were unanticipated side effects. As a result,
components are being phased out.

Instead, the common wisdom now is to synthesize component-like functional-
ity using a combination of before filters and partials. Use the before filter to set
up the context for the partial, and then render the fragment you want using
a regular render :partial call. This is exactly the approach we took in the Depot
application. We had a before filter find the cart object, and then we called
render :partial=>... in the layout to display that cart.

)
D

The Case against Components

Components in Rails serve as a shining example of what happens when eager-
ness overtakes prudence. It’s the first (and we hope, last) example of a major
feature that wasn’'t extracted from real use but invented on behalf of others.
It’s the result of overenthusiasm.

But why are those components so heinous? Besides being relatively slow,
they create an illusion of separation and often work against building a strong
domain model.

Take the example of a shopping cart on an e-commerce site. This sounds like
the perfect example for a component. It's supposedly self-contained, right?
Well, not really. The notion of a shopping cart is part of the founding context
of a shop. It's not just about display (the view); it’s just as much about the
actions (the controller).

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=513

CACHING, PART TWOo <« 514

Here’s how this controller can use a filter to set the cart into the context of
each action.

class ShopController < ActionController::Base
before_filter :set_cart

def index
@products = Product.find(:all)
end

def buy
@cart << Product.find(1)
redirect_to :action => "index"
end

private
def set_cart
@cart = Cart.find(session[:cart_id])
end
end

And here’s the index.rhtml view:

<h1>My Magic Shop!</hl>

<div id="products">
<%= render :partial => "product"”, :collection => @products %>
</div>

<div id="cart">

<%= render :partial => "cart" %>
</div>
This shows how the cart is used in the act of buying, solely through the con-
troller, and also how the index view can rely on the @cart being available for
partial showing. The great thing about separating partial and context is that
you can manipulate one without the other. So the partial for the cart can be
used with any kind of cart—perhaps for use in an administration interface
that inspects active carts.

Components are scheduled to become a plugin with Rails 2.0. So if you've
already built your application using components, you won'’t be left out in the
cold. But it should send a strong signal that components are not encouraged
for everyday use.

22.10 Caching, Part Two

We looked at the page caching support in Action Controller starting back on
page 456. We said that Rails also allows you to cache parts of a page. This
turns out to be remarkably useful in dynamic sites. Perhaps you customize
the greeting and the sidebar on your blog application for each individual user.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=514

CACHING, PART TWo <« 515

In this case you can't use page caching, because the overall page is different for
each user. But because the list of articles doesn’t change between users, you
can use fragment caching—you construct the HTML that displays the articles
just once and include it in customized pages delivered to individual users.

Just to illustrate fragment caching, let’'s set up a pretend blog application.
Here’s the controller. It sets up @dynamic_content, representing content that
should change each time the page is viewed. For our fake blog, we use the
current time as this content.

Download el/views/app/controllers/blog_controller.rb

class BlogController < ApplicationController
def Tist
@dynamic_content = Time.now.to_s
end
end

Here’s our mock Arficle class. It simulates a model class that in normal cir-
cumstances would fetch articles from the database. We've arranged for the
first article in our list to display the time at which it was created.

Download el/views/app/models/article.rb

class Article
attr_reader :body

def initialize(body)
@body = body
end

def self.find_recent
[new("It is now #{Time.now.to_s}"),
new("Today I had pizza"),
new("Yesterday I watched Spongebob"),
new("Did nothing on Saturday") 1]
end
end

Now we’d like to set up a template that uses a cached version of the rendered
articles but still updates the dynamic data. It turns out to be trivial.

Download el/views/app/views/blog/list.rhtml

<%= @dynamic_content %> <!- Here's dynamic content. ->

<% cache do %> <!- Here's the content we cache ->

<% for article in Article.find_recent -%>
<p><%= h(article.body) %></p></1i>
<% end -%>

<% end %> <!- End of cached content ->

<%= @dynamic_content %> <!- More dynamic content. ->

http://media.pragprog.com/titles/rails2/code/e1/views/app/controllers/blog_controller.rb
http://media.pragprog.com/titles/rails2/code/e1/views/app/models/article.rb
http://media.pragprog.com/titles/rails2/code/e1/views/app/views/blog/list.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=515

CACHING, PART TWO <« 516

GXela) http:/ /localhost:3000/blog/list i
'@ @ http://localhost:3000/blog ———
eno http://localhost:3000/blog /list
Tue Apr 26 17:12:34 CDT 2005 < »>lc] @ hitp:/ /localhost:3000/blog) list i
o Itis now Tue Apr 26 17:06:48 CDT 2005 | Tue Apr 26 17:13:01 CDT 2005
e Today I had pizza o Itis now Tue Apr 26 17:06:48 CDT 2005
* Yesterday I watched Sponge Bob e Today I had pizza
e Did nothing on Saturday o Yesterday I watched Sponge Bob
Tue Apr 26 17:12:34 CDT 2005 e Did nothing on Saturday

Tue Apr 26 17:13:01 CDT 2005

Refresh page —

Figure 22.4: Refreshing a Page with Cached and Noncached Data

The magic is the cache method. All output generated in the block associated
with this method will be cached. The next time this page is accessed, the
dynamic content will still be rendered, but the stuff inside the block will come
straight from the cache—it won’t be regenerated. We can see this if we bring
up our skeletal application and hit Refresh after a few seconds, as shown in
Figure 22.4. The times at the top and bottom of the page—the dynamic portion
of our data—change on the refresh. However, the time in the center section
remains the same: it is being served from the cache. (If you're trying this at
home and you see all three time strings change, chances are you're running
your application in development mode. Caching is enabled by default only in
production mode. If you're testing using WEBrick, the -e production option will
do the trick.)

The key concept here is that the stuff that’s cached is the fragment generated
in the view. If we’d constructed the article list in the controller and then passed
that list to the view, the future access to the page would not have to rerender
the list, but the database would still be accessed on every request. Moving the
database request into the view means it won’'t be called once the output is
cached.

OK, you say, but that just broke the rule about putting application-level code
into view templates. Can’t we avoid that somehow? We can, but it means mak-
ing caching just a little less transparent than it would otherwise be. The trick is
to have the action test for the presence of a cached fragment. If one exists, the
action bypasses the expensive database operation, knowing that the fragment
will be used.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=516

CACHING, PART TWOo <« 517

Download el/views/app/controllers/blogl_controller.rb

class BloglController < ApplicationController

def Tist
@dynamic_content = Time.now.to_s
unless read_fragment(:action => 'Tist')
logger.info("Creating fragment")
@articles = Article.find_recent
end
end

end

The action uses the read_fragment method to see whether a fragment exists for
this action. If not, it loads the list of articles from the (fake) database. The view
then uses this list to create the fragment.

Download el/views/app/views/blog1/list.rhtml

<%= @dynamic_content %> <!- Here's dynamic content. ->

<% cache do %> <!- Here's the content we cache ->

<% for article in @articles -%>
<p><%= h(article.body) %></p></11i>
<% end -%>

<% end %> <!- End of the cached content ->

<%= @dynamic_content %> <!- More dynamic content. ->

Expiring Cached Fragments

Now that we have a cached version of the article list, our Rails application will
be able to serve it whenever this page is referenced. If the articles are updated,
however, the cached version will be out-of-date and should be expired. We do
this with the expire_fragment method. By default, fragments are cached using
the name of the controller and action that rendered the page (blog and list in our
first case). To expire the fragment (for example, when the article list changes),
the controller could call

Download el/views/app/controllers/blog_controller.rb

expire_fragment(:controller => 'blog', :action => 'list')

Clearly, this naming scheme works only if there’s just one fragment on the
page. Fortunately, if you need more, you can override the names associated

with fragments by adding parameters (using url_for conventions) to the cache
method.

http://media.pragprog.com/titles/rails2/code/e1/views/app/controllers/blog1_controller.rb
http://media.pragprog.com/titles/rails2/code/e1/views/app/views/blog1/list.rhtml
http://media.pragprog.com/titles/rails2/code/e1/views/app/controllers/blog_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=517

CACHING, PART TWO

Download el/views/app/views/blog2/list.rhtml

<% cache(:action => 'list', :part => 'articles') do %>

<% for article in @articles -%>
<p><%= h(article.body) %></p></11i>
<% end -%>

<% end %>

<% cache(:action => 'list', :part => 'counts') do %>
<p>
There are a total of <%= @article_count %> articles.
</p>

<% end %>

In this example two fragments are cached. The first is saved with the additional
part parameter set to articles, the second with it set to counts.

Within the controller, we can pass the same parameters to expire_fragment to
delete particular fragments. For example, when we edit an article, we have
to expire the article list, but the count is still valid. If instead we delete an
article, we need to expire both fragments. The controller looks like this (we
don’t have any code that actually does anything to the articles in it—just look
at the caching).

Download el/views/app/controllers/blog2_controller.rb
class Blog2Controller < ApplicationController
def Tist

@dynamic_content = Time.now.to_s
@articles = Article.find_recent

@article_count = @articles.size

end

def edit
do the article editing
expire_fragment(:action => 'list', :part => 'articles')
redirect_to(:action => 'Tist')

end

def delete
do the deleting
expire_fragment(:action => 'list', :part => 'articles')
expire_fragment(:action => 'list', :part => 'counts')
redirect_to(:action => 'Tist'")

end

end

The expire_fragment method can also take a single regular expression as a
parameter, allowing us to expire all fragments whose names match.

expire_fragment(%r{/blog2/1ist.=})

http://media.pragprog.com/titles/rails2/code/e1/views/app/views/blog2/list.rhtml
http://media.pragprog.com/titles/rails2/code/e1/views/app/controllers/blog2_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=518

ADDING NEW TEMPLATING SYSTEMS < 519

Fragment Cache Storage Options

As with sessions, Rails has a number of options when it comes to storing your
fragments. And, as with sessions, the choice of caching mechanism can be
deferred until your application nears (or is in) deployment. In fact, we’ll defer
most of the discussion of caching strategies to the Deployment and Production
chapter starting on page 460.

The mechanism used for storage is set in your environment using

ActionController: :Base.fragment_cache_store = <one of the following>
The available caching storage mechanisms are

ActionController::Caching::Fragments::MemoryStore.new
Page fragments are kept in memory. This is not a particularly scalable
solution.

ActionController::Caching::Fragments::FileStore.new(path)
Keeps cached fragments in the directory path.

ActionController::Caching::Fragments::DRbStore.new(url
Stores cached fragments in an external DRb server.

ActionController::Caching::Fragments::MemCachedStore.new(host)
Stores fragments in a memcached server.

22.11 Adding New Templating Systems

At the start of this chapter we explained that Rails comes with two templating
systems, but that it’s easy to add your own. This is more advanced stuff, and
you can safely skip to the start of the next chapter without losing your Rails
merit badge.

A template handler is simply a class that meets two criteria.
¢ [ts constructor must take a single parameter, the view object.

¢ It implements a single method, render, that takes the text of the template
and a hash of local variable values and returns the result of rendering
that template.

Let's start with a trivial template. The RDoc system, used to produce doc-
umentation from Ruby comments, includes a formatter that takes text in a
fairly straightforward plain-text layout and converts it to HTML. Let’s use it
to format template pages. We'll create these templates with the file extension
.rdoc.

The template handler is a simple class with the two methods described previ-
ously. We'll put it in the file rdoc_template.rb in the lib directory.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=519

ADDING NEW TEMPLATING SYSTEMS < 520

Download el/views/lib/rdoc_template.rb

require 'rdoc/markup/simple_markup'
require 'rdoc/markup/simple_markup/inline’
require 'rdoc/markup/simple_markup/to_html'

class RDocTemplate

def initialize(view)
@Qview = view
end

def render(template, assigns)
markup = SM::SimpleMarkup.new
generator = SM::ToHtml.new
markup.convert(template, generator)
end
end

Now we need to register the handler. This can go in your environment file, or
you can set it up in application.ro in the app/controllers directory.

Download el/views/app/controllers/application.rb
require "rdoc_template"
ActionView: :Base.register_template_handler("rdoc”, RDocTemplate)

The registration call says that any template file whose name ends with .rdoc
will be handled by the RDocTemplate class. We can test this by creating a tem-
plate called example.rdoc and accessing it via a freshly generated test con-

troller.
/ RDocTemplate ~
® O O hitp://localhost:3000/test/example
~ Greetings from RDoc [« » | [¢][+] @nupriocaihost:3000/test/example |

Let's see if we're doing Greetillgs from RDoc

real formatting...

* This should be Let’s see if we're doing real formatting...

* A bullet Tist « This should be
all nicely formatted A bullet list all nicely formatted

Making Dynamic Templates

The rhtml and rxml templates share their environment with the controller—they
have access to the controller instance variables. They can also get passed local
variables if they're invoked as partials. We can give our own templates the
same privileges. Just how you achieve this depends on what you want your
template to do. Here we’ll construct something fairly artificial: a reval template
that contains lines of Ruby code. When rendered, each line is displayed, along
with its value. The code on the next page shows a template called test.reval.

http://media.pragprog.com/titles/rails2/code/e1/views/lib/rdoc_template.rb
http://media.pragprog.com/titles/rails2/code/e1/views/app/controllers/application.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=520

ADDING NEW TEMPLATING SYSTEMS

a=1
3+ a
@request.path

This might produce the output

a=1 =1
3+a =4
@request.path => /text/examplel

Note how the template has access to the @request variable. We achieve this
piece of magic by creating a Ruby binding (basically a scope for variable values)
and populating it with the values of instance and local variables set into the
view by the controller. Note that the renderer also sets the response content
type to text/plain; we don’t want our result interpreted as HTML. We could
also have defined an accessor method called request, which would make our
template handler more like Rails’ built-in ones.

Download el/views/lib/eval_template.rb

class EvalTemplate

def initialize(view)
@Qview = view
end

def render(template, assigns)
create an anonymous object and get its binding
env = Object.new
bind = env.send(:binding)

Add in the instance variables from the view
@view.assigns.each do |key, value|

env.instance_variable_set("@#{key}", value)
end

and local variables if we're a partial
assigns.each do |key, value|

eval ("#{key} = #{value}", bind)
end

@view.controller.headers["Content-Type"] ||= 'text/plain’

evaluate each 1ine and show the original alongside
its value
template.split(/\n/).map do |line]|
Tine + " => " + eval(line, bind).to_s
end.join("\n")
end
end

http://media.pragprog.com/titles/rails2/code/e1/views/lib/eval_template.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=521

23.1

This chapter was written by Justin Gehtland (http://relevancellc.com), a software devel-
oper, speaker, and writer living in Durham, North Carolina. He is a _founder of the Stream-
lined project for advanced CRUD applications on Rails (http://streamlinedframework.org). It
is based on work he and Stuart Halloway, also of Relevance, wrote for RailsConf '06.

Chapter 23

— TheWeb V20

We've looked at how Action View is used to render templates to the browser.
We've seen how to create pages out of combinations of layouts and partials;
the majority of the time, our actions have been returning entire pages to the
browser, forcing the browser to refresh the current screen. This is a core
foundational principle of the Web: requests to the server return entire pages,
which the browser must display in their entirety. This chapter is about break-
ing that core principle of the Web and allowing your applications to deal in
smaller units of granularity, shipping data, partial pages, and code between
the browser and the server to provide a more responsive and interactive user
experience.

Rails’ AJAX support can be broken into three general areas.

* Prototype support for DOM interaction and remote object invocation
¢ Script.aculo.us support for visual effects
¢ RJS templates for code-centric AJAX

For the first two, we’ll have to remember everything we learned about helpers,
since almost all of the support for Prototype and Script.aculo.us are found
in ActionPack::Helpers::PrototypeHelper and ActionPack::Helpers::ScriptaculousHelper.
RJS templates, on the other hand, are an entirely different beast, combining a
little bit of Action View templates and a whole new way to call render.

Prototype

Prototype, an open source JavaScript framework written by Sam Stephenson,
exists primarily to simplify two tasks in JavaScript.

¢ Using XMLHttpRequest (and friends) to make AJAX calls
¢ Interacting with the page DOM

AJAX is about going behind the browser’s back. Browsers are just trained
monkeys: make a request, reload the page. Post a form, reload the page. If you

http://relevancellc.com
http://streamlinedframework.org

PROTOTYPE <« 523

cause the browser to send an HTTP request, its only response is to refresh the
page with whatever it receives.

Back in the 90s, Microsoft released an ActiveX Control with its XML libraries
called XMLHTTP. You could create it using JavaScript and use it to send XML
to the server without modifying the address bar or forcing a standard request.
The XMLHTTP object would receive (and parse) the HTTP response from the
server, and then call back into your JavaScript via a callback function. At
that point, you could use the response. Several years later, the Mozilla team
created an open version of the object called XMLHttpRequest. Using XMLHttpRe-
quest (XHR for short), you can send a request to the server and then decide
for yourself what to do with the response. Even better, the request can be sent
asynchronously, which means that while the request is being processed, the
rest of the page is still available for use by and interaction with your users.

Writing the JavaScript code to utilize XHR to make asynchronous requests is
not terribly difficult, but it is repetitive, boring, and prone to simple (but costly)
mistakes. The Prototype library provides a wrapper around XHR that makes
it much easier to use and much more foolproof. Prototype is still a JavaScript
library, though. One of the key features of Rails is the integrated development
stack, which lets you use Ruby from top to bottom of your web application. If
you have to switch over to JavaScript, that breaks the clean integration.

The answer, of course, is to use helpers, specifically the PrototypeHelper class (in
ActionPack::Helpers). These helpers wrap the generation of complex JavaScript
with a simple Ruby method. The hardest part about the helpers is the wide
array of options they accept as parameters.

The Search Example

Let’s use Rails’ Prototype helpers to quickly add AJAX to an existing scaffold.
The code that follows shows a standard-looking scaffold wrapped around a
table called users. This table stores a list of programmers and their favorite
languages. The standard, static version of the page uses an RHTML template
and an RHTML partial to create the page.

Download pragforms/app/views/user/list.rhtml

<hl>Listing users</hl>
<%= render :partial => "search"%>

Download pragforms/app/views/user/_search.rhtml

<table>
<tr>
<th>Username</th>
<th>Favorite Language</th>
</tr>

http://media.pragprog.com/titles/rails2/code/pragforms/app/views/user/list.rhtml
http://media.pragprog.com/titles/rails2/code/pragforms/app/views/user/_search.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=523

PROTOTYPE <« 524

<% for user in @users %>
<tr>
<td><%=h user.username %></td>
<td><%=h user.favorite_language %></td>

<td><%= Tink_to 'Show', :action => 'show', :id => user %></td>
<td><%= Tink_to 'Edit', :action => 'edit', :id => user %></td>
<td><%= Tink_to 'Destroy', { :action => 'destroy', :id => user },
:confirm => 'Are you sure?', :method => :post %></td>
</tr>
<% end %>
</table>

<%= link_to 'Previous page',

{ :page => @Quser_pages.current.previous } if @user_pages.current.previous %>
<%= link_to 'Next page',

{ :page => @user_pages.current.next } if @user_pages.current.next %>

<%= Tink_to 'New user', :action => 'new' %>

We want to allow our users to filter the current list by typing in a text field. The
application should watch the field for changes, submit the value of the field
to the server, and update the list to show only those programmers that match
the current filter.

Just as with a non-AJAX page, the first step is to add a form to collect the
user’s input. However, instead of a standard form, we’ll add what’s referred
to as a no-op form; this is a form that cannot, by itself, be submitted to the
server. The old way to do this was to create a form whose action attribute was
set to #. This prevented a request from being posted to the server, but it had
the unfortunate side effect of munging the URL in the address bar by adding
the # character at the end of the URL. The modern approach is to set action to
javascript:void(0).

Download pragforms/app/views/user/search_demo.rhtml
<% form_tag('javascript:void(0)') do %>
Second, we need to wrap the rendered partial in a named element so that we

can easily replace it with the updated data. In our case, we add a simple <div>
tag with id="ojaxWrapper’ to give us a place to put the new data.

Download pragforms/app/views/user/search_demo.rhtml

<div id="ajaxWrapper's>
<%= render :partial=>'search' %>
</div>

The third step is to add the JavaScript that watches the text field for changes,
posts the value to the server, harvests the response from the server, and

http://media.pragprog.com/titles/rails2/code/pragforms/app/views/user/search_demo.rhtml
http://media.pragprog.com/titles/rails2/code/pragforms/app/views/user/search_demo.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=524

PROTOTYPE <« 525

(N\

Input Elements and Forms

According to the W3C HIML 4.01 Specification, input elements do noft strictly
need to exist within a <form> element. In fact, the specification clearly states
that for the purposes of building a user interface using “infrinsic events” (onclick,
onchange, etc.), a <form> is not necessary. The purpose of the <form> element
is fo allow the browser to bundle the contained input values into a request to
POST to the server.

However, it is a pretty good practice to wrap your inputs in a <form> any-
way. The <form> provides a named scope for the related input fields, allowing
you to work with them as a group (say, to enable or disable them all). They
also allow you to provide fallback behavior for your pages when the user has
JavaScript disabled.

updates some portion of the page to reflect the new data. We can accomplish
all this with the observe_field helper method.

Download pragforms/app/views/user/search_demo.rhtml

Line 1 <%= observe_field :search,
:frequency => 0.5,
:update => 'ajaxWrapper',
:before => "Element.show('spinner')",
5 :complete => "Element.hide('spinner')",
rurl => {:action=>'search', :only_path => false},
:with => "'search=" + encodeURIComponent(value)" %>

On line 1, we call the helper method, passing in the id of the text field we’ll
be observing. None of the observer helpers takes more than one field id; if you
want to observe multiple fields, you can either observe a whole form or create
multiple observers. Notice that, as with any good Rails library, we can use the
symbol version of the id as the parameter value.

On line 2, we set the frequency of the observation. This is how often (in sec-
onds) to check the target field for changes and submit them. A value of O means
that changes to the field are posted immediately. This may seem like the most
responsive way to go, but you have to take into account bandwidth usage.
Posting the data on every twitch of the field would cause a mini-Slashdot-effect
if your user base is at all respectable. In our example, we chose 0.5 seconds,
which prevents too much posting without making the users wait around for
something to happen.

On line 3, we tell the helper which element on the page will be updated with
the data returned from the server. Given this id, Prototype will set the innerHTML
value of the element to the response text. If you needed to do something more

http://media.pragprog.com/titles/rails2/code/pragforms/app/views/user/search_demo.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=525

PROTOTYPE <« 526

complex with the returned data, you could alternatively register a callback
function that could process the data in any way you desired. In our case, the
server will return a table containing the users who match the filter term, and
we'll just want to display that data inside an element called ajaxWrapper.

On lines 4 and 5, we overcome one of AJAX’s primary problems. Users can
be twitchy. If they click a link or submit a form, or what have you, the only
thing keeping them from mindlessly banging away at the link or button is the
fire-breathing lizard or spinning globe in the northeast corner of the browser
window. This tells the user that something useful is going on and to wait for it
to finish. It is a feature built into every browser, and users expect this kind of
notification of an otherwise transparent process.

When using XHR, you have to provide your own progress indicator. The before
option takes a JavaScript function to call prior to sending the request to the
server. In this case, we use Prototype’s Element.show to reveal a graphic that
was already loaded on the page at initialization time (but whose style attribute
was set to display:none). The complete callback likewise fires when the response
has been fully received. In this case, we hide the progress indicator again using
Element.hide. There are other potential hooks for callback functions, which we’ll
discuss Section 23.1, Callbacks, on page 531. (Where is this spinner? We'll see
in a moment.)

Finally, on lines 6 and 7, we define the server endpoint that the AJAX call will
target and what data to send to it. On line 6, we specify the url parameter and
tell it to call the search action of the current controller. The options sent to url
are the same as for the url_for helper method.

On line 7, we provided the data that will be sent to the server using the with
parameter. The value of this parameter is a string containing one or more
name/value pairs. Look carefully at the string literal provided.

"'search=" + encodeURIComponent(value)"

The string is an executable piece of JavaScript code that will be run when
the value of the target field has changed. encodeURIComponent is a JavaScript
method that takes a value and escapes certain characters with their UTF-8
counterpart to make a valid URL component. value, in this case, will be the
current value of the target field, and the result is a name/value pair, where
the name is search and the value is the UTF-8 encoded value of the target field.

Remember the spinner we used as a progress indicator? We haven't yet written
the code to display it. Normally you'd put it directly on the page that contains
the field that references it. It turns out that in our example code we’ll be using
it all over the place, so rather than including it on every page, we’ll instead add
in once, to the layout.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=526

PROTOTYPE <« 527

Download pragforms/app/views/layouts/user.rhtml

<html>
<head>
<title>User: <%= controller.action_name %></title>
<%= stylesheet_link_tag 'scaffold' %>
<%= javascript_include_tag :defaults %>
</head>
<body>
<p style="color: green"><%= flash[:notice] %></p>
<%= image_tag 'loading.gif', :id=>'spinner', :style=>"display:none; float:right;" %>
<%= yield :layout %>
</body>
</htm1>

When this template is rendered to the browser, the result will be a combina-
tion of static HTML and JavaScript code. Here is the actual output that was
generated by using the observe_field helper.

<input id="search" name="search" type="text" value="" />
<script type="text/javascript">
//<!'[CDATA [
new Form.Element.Observer('search', 0.5, function(element, value) {
ETement.show('spinner');
new AJAX.Updater('ajaxWrapper',
'/user/search’,
{ onCompTlete: function(request){ Element.hide('spinner'); },
parameters: 'search=" + encodeURIComponent(value)
1))
b
//1 1>

Now, as the user types into the text field, the value of the field will be sent to
the User controller’s search action. Bear in mind that, because we provided the
update parameter, the JavaScript code is going to take what the server returns
and set it as the value of the target element’s innerHTML attribute. So what does
search do?

Download pragforms/app/controllers/user_controller.ro

def search
unless params[:search].blank?
@Quser_pages, @users = paginate :users,
iper_page = 10,
:order => order_from_params,
:conditions => User.conditions_by_Tlike(params[:search])
Togger.info @users.size
else
Tist
end
render :partial=>'search', :layout=>false
end

If the search parameter is passed to the search action, the action will perform
a pagination based on a query to the database, looking for items that match

http://media.pragprog.com/titles/rails2/code/pragforms/app/views/layouts/user.rhtml
http://media.pragprog.com/titles/rails2/code/pragforms/app/controllers/user_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=527

PROTOTYPE <« 528

4 N

litions__by_ il

The method User.conditions_by_like(params[:search]) is not part of Active Record. It
is actually code lifted from the Streamlined framework. It provides a quick way
to search across dll fields in a model. Here is the full implementation:

Download pragforms/vendor/plugins/relevance_extensions/lib/active_record_extensions.rb

def conditions_by_Tlike(value, =columns)
columns = self.user_columns 1if columns.size==
columns = columns[0] if columns[0].kind_of?(Array)
conditions = columns.map {|c|
c = c.name if c.kind_of? ActiveRecord::ConnectionAdapters::Column
"‘#{c}* LIKE " + ActiveRecord::Base.connection.quote("%#{value}%")
}.join(" OR ")
end

the search value. Otherwise, the action calls the list action, which populates
the @users and @user_pages values using the full table set. Finally, the action
renders the partial _search.rhiml, which returns just the table of values, just
as it did for the non-AJAX version. Note that we've explicitly disabled any lay-
out during the rendering of the partial. This prevents recursive layout-within-
layout problems.

Using Prototype Helpers

Rails provides an entire library of Prototype helper methods that provide a
wide variety of AJAX solutions for your applications. All of them require you
to include the prototype js file in your pages. Some version of this file ships
with Rails, and you can include it in your pages using the javascript_include_tag
helper.

<%= javascript_include_tag "prototype" %>

Many applications include Prototype in the default layout; if you are using
AJAX liberally throughout your application, this makes sense. If you are more
concerned about bandwidth limitations, you might choose to be more judi-
cious about including it only in pages where it is needed. If you follow the
standard Rails generator style, your application.rhtml file will include the follow-
ing declaration:

<%= javascript_include_tag :defaults %>
This will include Prototype, Script.aculo.us, and the generated application.js file
for application-specific JavaScript. In either case, once your page has Proto-

type included, you can use any of the various Prototype helpers to add AJAX
to the page.

http://media.pragprog.com/titles/rails2/code/pragforms/vendor/plugins/relevance_extensions/lib/active_record_extensions.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=528

PROTOTYPE <« 529

Common Options

Before we examine the different helpers and what they are for, let’s take a
minute to understand some of the common options we can pass to the many
helpers. Since most of the helpers generate code that eventually makes a call
to the server using XHR, they share a lot of options for controlling how that
call is made and what to do before, during and after the call is made.

Synchronicity
Most of the time, you will want your AJAX calls to be made asynchronously.
This means that users can continue to interact with your page, and the Java-
Script in your page can continue to take action, while the request is being
transmitted and processed. From time to time, you might discover that you
need synchronous AJAX calls (though we heartily recommend against it). If
so, you can pass the :type option, which has two possible values: :asynchronous
(the default) and :synchronous.
<%= Tlink_to_remote "Wait for it...",

:url => {:action => 'synchronous_action'},

:update => 'results_div',
:type => :synchronous %>

Updating the Page
AJAX calls can result in several different kinds of responses. The server could
send back

¢ nothing: There is no content in the server response, just HTTP headers
e HTML: An HTML snippet to be injected into the page

® data: Structured data (JSON, XML, YAML, CSV, etc.) to be processed
with JavaScript

* JavaScript: Code to be executed by the browser

If your AJAX return HTML snippets from the server, you can instruct most
of the Prototype helpers to inject this HTML directly into the page using the
:update option. The possible values you can send are

* a DOM id: the id of an element on the page; the JavaScript will reset its
innerHTML property using the returned value.
<%= 1ink_to_remote "Show me the money!",

:url => {:action => 'get_the_money'},
:update => 'the-money' %>

* a hash: the ids of DOM elements associated with the success or failure
of the call. Prototype recognizes two states: success and failure, with failure
defined as any response with an HTTP status other than "200 Ok'. Use

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=529

PROTOTYPE <« 530

this to update a target element upon successful completion, but send a
warning to another element in case of error.
<%= link_to_remote "Careful, that's dynamite...",

:url => {:action => 'replace_dynamite_in_fridge'},
:update => {:success => 'happy', :failure => 'boom'} %>

Once you have designated the target receiving element, you can optionally
provide details about exactly how to update the target. By default, the entire
innerHTML will be replaced with the server’s response. If you pass the :position
option, though, you can tell the JavaScript to insert the response relative to
the existing content. Possible values are

‘position => :before
insert the server response just before the opening tag of the target ele-
ment

:position => :top
insert the response just after the opening tag of the target element

:position => :bottom
insert the response just before the closing tag of the target element

:position => :after
insert the response just after the closing tag of the target element

For example, if you wanted to make a call to add an item to the bottom of a
list, you might use
<% form_remote_tag(:url => {:action => 'add _todo'},

:update => 'Tist’,

rposition => :bottom) do %>
Using the :position option, you can add items to lists or inject them into columns
of existing data without having to rerender what was originally there. This can
drastically simplify the server-side code when you are managing lists.

JavaScript Filters
Sometimes, you will want to wrap the AJAX call with some conditional behav-

ior. The Prototype helpers accept four different wrapper options:

:confirm => msg
pops up a JavaScript confirmation dialog box before firing XHR call, the
text of which is the string value assigned to this option; if user clicks OK,
call proceeds; otherwise the call is cancelled.

:condition => expression
expression should be a JavaScript snippet expression that evaluates to a
boolean; if true, the XHR call proceeds; otherwise, it is cancelled.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=530

PROTOTYPE <« 531

‘before => expression
evaluate the JavaScript expression just prior to making the XHR call;
commonly used to show a progress indicator.

.after => expression
evaluate the JavaScript expression just after launching the XHR call, but
before it has completed; commonly used to either show progress indica-
tion or disable a form or field to prevent its modification while the call is
in process.

For example, perhaps you have provided a rich-text editor field on a page and
want to give your user the option to save it via AJAX. However, the operation is
slow and potentially destructive; you want to make sure your user really wants
to save the data, and you want to show a progress notifier while it saves. In
addition, you want to make sure your user can't save an empty editor buffer.
Your form might look like

<% form_remote_tag(:url => {:action => 'save _file'},

:confirm => "Are you sure you want to save this file?",

:before => "Element.show('spinner');",
:condition => "$§('text_file').value != "'";") do %>

Callbacks
Finally, you may want to associate JavaScript functions with callback notifi-

cations in the XHR call process. While the XHR call is proceeding, there are six
possible points where a callback might be fired. You can attach a JavaScript
function or an arbitrary JavaScript snippet to any or all of these points. They
are

loading => expression
XHR is now receiving data from the server, but the document is not ready
for use.

loaded => expression
XHR has finished receiving the data from the server.

.interactive => expression
XHR has finished receiving all the data from the server and is parsing
the results.

:success => expression
XHR has finished receiving and processing the data, and the HTTP status
of the response was "200 Ok'".

‘failure => expression
XHR has finished receiving and processing the data, and the HTTP status
of the response was not "200 Ok".

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=531

PROTOTYPE <« 532

4 N

The R tate 3 Problem

One extra little fun trap to watch out for: sometimes, servers can establish
what’s known as a persistent connection. If both the server and the client can
understand HTTP 1.1 and the server sends a Keep-Alive header to the client, as
long as the client does not specifically deny the request, the server will establish
a connection that does not terminate; without the server severing the connec-
tion or the client sommehow interrupting it, the readystate will hover at 3 forever.

There is no real workaround for this other than to ensure that your web
server does not ever attempt to send the Keep-Alive header. If you are
not the overlord of your web server, then you just have to hope you don’t
run info this issue. See http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html
for more about HTIP 1.1 and persistent connections, and see
http://www.scottandrew.com/blog/archives/2002/12/readystate.html for more about
their interference with AJAX.

:complete => expression
XHR has finished receiving and processing the data and has called either
:success or :failure.

Generally, you use :success, :failure, and :complete as a kind of try/catch/finally for
your AJAX calls. The others are rarely used. The :interactive state is supposed
to allow you to begin using the data before it has been fully received but is not
always available for that purpose, especially in early versions of the XMLHTTP
ActiveX control.

In this example, we’ll use :success, :failure, and :complete to implement an AJAX
call that shows a spinner before starting the request, assigns valid returns to a
function that shows them on the page, calls an error-handling function in the
case of an error on the server, and ensures that the spinner is hidden again
by the time the call completes.
<% form_remote_tag(:url => {:action => 'iffy_function'},

:before => "Element.show('spinner');",

:success => "show_results(xhr);",

:failure => "show_error(xhr);",
:complete => "Element.hide('spinner');") do %>

The :loading, :loaded, and :interactive options are rarely used. If they are, it is
almost always to provide dynamic progress updates to the user.

You can think of :success,:failure and :complete as the Prototype helper equiv-
alent of begin, rescue, and ensure. The main path is to execute the JavaScript
registered with :success. If there was a problem on the server side, the :fail-
ure callback is invoked instead. Then, regardless of the success or failure of

http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html
http://www.scottandrew.com/blog/archives/2002/12/readystate.html
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=532

PROTOTYPE <« 533

the server-side call, the :complete callback is fired (if defined). This gives you
a great place to turn off progress indicators, reenable forms and fields, and
generally put the page back into its ready state.

link to remote

One of the most common AJAX uses allows the user to request a new piece
of information to add to the current page. For example, you want to provide
a link that allows the user to fetch the current status of their inbox, compute
the current balance in their account, or perform some other computationally
intense or time-sensitive action that you otherwise didn’t want to perform at
page initialization.

Because users of web applications are trained to use hyperlinks as the main
point of interaction with your application, it makes sense to use a hyperlink to
provide this behavior. Generally, your initialized page will render the link and
also render an empty or invisible container element (often a <div>, but it can
be any element with an id.)

Taking the example of letting a user check their inbox status, you might pro-
vide an empty <div> to hold the data and a link to gather the data and update
the page.

<div id="inbox_status">Unknown</div>

<%= Tlink_to_remote 'Check Status...',

:url => {:action => 'get_inbox_status', :user_id => @user.id},
:update => 'inbox_status' %>

In the example, the text of the link will be “Check Status...,” which will call
the get_inbox_status method of the current controller, passing along the current
user’s id. The results will be injected into the inbox_status <div>.

All of the common options we covered earlier are available for link_to_remote.
Look at this more detailed example.

<div id="inbox_status">Unknown</div>
<%= Tink_to_remote 'Check Status...',

:url => {:action => 'get_inbox_status', :user_id => @user.id},
:update => 'inbox_status',
:condition => "$('inbox_status').innerHTML == 'Unknown'",

:before => "Element.show('progress_indicator')",
:complete => "Element.hide('progress_indicator')" %>

This version will fire the XHR request only if the current value of the target
element is "Unknown’, thus preventing the user from requesting the data twice.
It uses the :before and :complete options to turn on and off progress indication.

periodically_call remote
Instead of relying on the user to make the remote call, you might want to call
the server at regular intervals to check for changes. For example, in a web-

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=533

PROTOTYPE <« 534

Updating innerHTML in |E

You can use AJAX to update the contents of almost any element in a page.
The major exceptions to this rule are any table-related elements in Infer-
net Explorer. The problem is that the table elements are nonstandard in IE
and don’t support the innertHTML property. Specifying the id of a <fr>, <td>,
<tbody>, or <thead> as the :update value in IE will result in either a JavaScript
error, undefined (and unacceptable) behavior like dropping the new content
at the bottom of the page, or, worst of all, nothing at all.

There are three ways around this. First, you can eschew tables altogether. This is
unacceptable for many people, since tables are the premier way to represent
data in an application. Second, you can add other named elements inside
your table elements. For example:

<table>
<tr>
<td>Username</td>
<td><div id="replace_me_with_ajax">Unknown</div></td>
</tr>
</table>

This second approach works as long as the target element is fully contained
within the outer element and doesn’t include any other table elements. For
example, although the previous code works, the following will not.

<table>
<tbody>
<div id="ajax_rows">
</div>
</tbody>
</table>

The table rows you render into agjox_rows will appear on the page but may or
may not be contained within the supposed parent table.

Your third option is to use the latest version of Prototype. This version checks
to see whether the current browser is I[E and whether the target element is a
<tbody>, <thead>, <tr>, or <td>. If so, it strips the table down and rebuilds it
dynamically, thus giving you the appearance of having updated the table in
place.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=534

PROTOTYPE <« 535

based chat application, you would want to ask the server every few seconds
whether a new chat message had arrived. This is a common way to supply
distributed status checking, and is a stand-in for a real “push” communication
technology.

The periodically_call_remote method takes care of this for you. It works almost

exactly like link_to_remote except, instead of taking a string value to use as the

link text, it takes an interval value that tells it how long to go between posts to

the server. Let’s modify the previous example to show the user’s inbox status

every 60 seconds.

<div id="inbox_status">Unknown</div>

<%= periodically_call_remote :url => {:action => 'get_inbox_status', :user_id => @user.id},
:update => 'inbox_status',
:frequency => 60,
:condition => "$('inbox_status').innerHTML == 'Unknown'",

:before => "Element.show('progress_indicator')",
:complete => "Element.hide('progress_indicator')" %>

periodically_call_remote takes the same options as link_to_remote (as well as the
option :frequency). This means that you could provide a value for the :confirm
option. Be very careful here. Not only will a modal dialog box pop up asking
the user to approve an otherwise completely transparent event, but while the
dialog box is on-screen, the timer managing periodically_call_remote is still tick-
ing and firing off the confirmation requests. This means that you could easily
get in a situation where the confirmation dialogs are piling up, and every time
you click Ok or Cancel, the dialog disappears only to be immediately replaced
with another.

link to_function

Although not technically a Prototype helper, link_to_function is a commonly used
AJAX enabling helper from the standard Rails helper libraries. It lets you pro-
vide the link text and a snippet of JavaScript to execute when the link is
clicked. It does not accept all the fancy options we looked at earlier; instead,
you can pass any of the various HTML options accepted by the more standard
link_to helper.

link_to_function lets you create arbitrary links to invoke client-side functions.
The JavaScript need not be relegated to client-side activity only, though. You
can provide a JavaScript snippet that invokes XHR as well. This helper (and
its act-a-like cousin butfon_to_function) are for creating more customized inter-
action models than can be expressed through the common Prototype helpers
and options.

For example, you may be using the excellent Prototype Window Class frame-
work by Sébastien Gruhier (http://prototype-window.xilinus.com/). Built on top of
Prototype and Script.aculo.us, this framework lets you create JavaScript-only

http://prototype-window.xilinus.com/
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=535

PROTOTYPE <« 536

windows inside your application. You might want to create a link that launches
a Prototype Window to display the About information for your application.
<%= Tink_to_function "About...",

"Dialog.alert({url: 'about.html', options: {method: 'get'}},

{windowParameters: {className: 'default'},
okLabel: 'Close'});" %>

remote_function

It turns out that the Prototype helpers described previously all use another
Prototype helper, remote_function, to actually generate the XHR call. You can
use this helper yourself if you want to embed XHR calls in other contexts
besides links and periodical executors.

Let’s say that your users have checked the status of their inbox and want to
look at the messages. A standard interface might be to display a list of message
subjects and then allow the user to select one to view. However, you know your
users are used to thick-client mail interfaces, and the standard interaction is
to double-click the e-mail subject to view the message. You want to provide the
same functionality, but you need to make an XHR call to the server to fetch
the specific e-mail. This example is the partial you might use to render the list.
<table>

<% for email in @emails %>

<tr ondblcTlick="<%= remote_function(:update => 'email_body",

:url => {:action => 'get_email',
id = email})">
<td><%= email.id %></td><td><%= email.body %></td>
</tr>
<% end %>

</table>
<div id="email_body" />

This injects the JavaScript code needed to make the XHR call, harvest the

response, and replace the contents of email_body. remote_function accepts all
the standard options described earlier.

observe_field

The first example in this chapter shows the use of observe_field. In general, this
helper binds a remote_function to the onchange event of a target field, with all
the same implications and options for other types of remote functions.

observe form

Sometimes, you aren’t just interested in changes to one specific field. Instead,
you're monitoring changes in any of a group of related fields. The best way to
handle this is not to invoke individual observe_field helpers for each field but
instead to wrap those fields in a <form> and observe the form as a whole. The

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=536

PROTOTYPE <« 537

observe_form helper then binds an observer to the change event of all the fields
in the form.

Unlike observe_field, though, you do not need to specify the :with option for
observe_form. The default value of :with is the serialized version of the <form>
being observed. Prototype comes with a helper function (Form.serialize) that
walks through all the fields contained in the form and creates the same col-
lection of name/value pairs that the browser would have created had the form
been posted directly.

form_remote_tag and remote_form_for

Most of the time, if you are using a form to gather user input but want to
post it to the server using AJAX, you won't be using observe_form. The more
ways a user has to interact with a form, the less likely you will want to use
the observer to post changes because you will cause bandwidth and usability
problems. Instead, you want a form that collects the user input and then uses
AJAX to send it to the server instead of the standard POST.

form_remote_tag creates a standard form tag but adds a handler for the onsub-
mit method. The onsubmit handler overrides the default submit behavior and
replaces it with a remote function call instead. The helper accepts all the stan-
dard options but also accepts the :html option, which lets you specify an alter-
nate URL to use if AJAX (read: JavaScript) is not available. This is an easy path
to providing a degradable experience, which we’ll discuss more in Section 23.1,
Degradability and Server-Side Structure, on page 539.

Here’s a simple remote form that allows the user to create an e-mail message:
the from, to, and body fields are provided. When the user submits the form,
the e-mail data is sent to the server and the form is replaced in the UI with a
status message returned by the server.

<div id="email_form">
<% form_remote_tag(:url => {:action => 'send_email'}, :update => 'email_form') do %>

To: <%= text_field 'email', 'to' %>

From: <%= text_field 'email', 'from' %>

Body: <%= text_area ‘'email', 'body' %>

<%= submit_tag 'Send Email' %>
<% end %>
</div>

Here’s the generated page.

<div id="email_form">
<form action="/user/send_email" method="post"
onsubmit="new AJAX.Updater('email_form',
'/user/send_email',
{asynchronous:true, evalScripts:true,
parameters:Form.serialize(this)});
return false;">

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=537

PROTOTYPE <« 538

To: <input id="email_to" name="email[to]" size="30" type="text" />

From: <input id="email_from" name="email[from]" size="30" type="text" />

Body: <textarea cols="40" 1id="email_body" name="email[body]" rows="20"></textarea>

<input name="commit" type="submit" value="Send Email" />
</form>
</div>

Notice that the value of onsubmit is actually two JavaScript commands. The
first creates the AJAX.Updater that sends the XHR request and updates the
page with the response. The second returns false from the handler. This is
what prevents the form from being submitted via a non-AJAX POST. Without
this return value, the form would be posted both through the AJAX call and
through a regular POST, which would cause two identical e-mails to reach
the recipient, which could have disastrous consequences if the body of the
message was “Please deduct $1000.00 from my account.”

The helper remote_form_for works just like form_remote_tag except it allows you
to use the newer form_for syntax for defining the form elements. You can read
more about this alternate syntax in Section 22.5, Forms That Wrap Model
Objects, on page 483.

submit to remote

Finally, you may be faced with a generated form that, for some reason or
another, you can’t modify into a remote form. Maybe some other department
or team is in charge of that code and you don’t have the authority to change
it, or maybe you absolutely cannot bind JavaScript to the onsubmit event. In
these cases, the alternate strategy is to add a submit_to_remote to the form.

This helper creates a button inside the form that, when clicked, serializes the
form data and posts it to the target specified via the helper’s options. It does
not affect the containing form, and it doesn’t interfere with any <submit>
buttons already associated with form. Instead, it creates a child <button> of
the form and binds a remote call to the onclick handler, which serializes the
containing form and uses that as the :with option for the remote function.

Here, we rewrite the e-mail submission form using submit_to_remote. The first
two parameters are the name and value attributes of the button.

<div id="email_form">
<% form_tag :action => 'send_email_without_ajax' do %>

To: <%= text_field 'email', 'to' %>

From: <%= text_field 'email', 'from' %>

Body: <%= text_area 'email', 'body' %>

<%= submit_to_remote 'Send Email', 'send',

:url => {:action => 'send_email'},
:update => 'email_form' %>
<% end %>
</div>

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=538

PROTOTYPE <« 539

And this is the generated HTML.

<div id="email_form">
<form action="/user/send_email_without_ajax" method="post">
To: <input id="email_to" name="email[to]" size="30" type="text" />

From: <input id="email_from" name="email[from]" size="30" type="text" />

Body: <textarea cols="40" 1id="email_body" name="email[body]" rows="20"></textarea>

<input name="Send Email" type="button" value="send"
onclick="new AJAX.Updater('email_form', '/user/send_email',
{asynchronous:true, evalScripts:true,
parameters:Form.serialize(this.form)});
return false;" />
</form>
</div>

Be forewarned: the previous example is not consistent across browsers. For
example, in Firefox 1.5, the only way to submit that form is to click the AJAX
submitter button. In Safari, however, if the focus is on either of the two regular
text inputs (email_to and email_from), pressing the Enter key will actually submit
the form the old-fashioned way. If you really want to ensure that the form can
be submitted by a regular POST only when JavaScript is disabled, you would
have to add an onsubmit handler that just returns false.

<div id="email_form">
<% form_tag :action => 'send_email_without_ajax', {:onsubmit => 'return false;'} do %>

To: <%= text_field 'email', 'to' %>

From: <%= text_field 'email', 'from' %>

Body: <%= text_area 'email', 'body' %>

<%= submit_to_remote 'Send Email', 'send',

:url => {:action => 'send_email'},
:update => 'email_form' %>
<% end %>
</div>

Degradability and Server-Side Structure
As you start layering AJAX into your application, you have to be cognizant of
the same painful facts that have plagued web developers for years.

¢ By and large, browsers suck as runtime platforms.

* Even when they don't suck, the good features aren’t standard across all
browsers.

¢ Even if they were, 20% of your users can’t use them because of corporate
policies.

We all know these truths deep in our bones by now. Most browsers use a cus-
tom, nonstandard JavaScript interpreter whose feature set overlaps the others’
feature sets in unpredictable (but exciting) ways. The DOM implementations
differ wildly, and the rules about element placement can be as confusing as
watching Dune for the first time. Perhaps most agonizing of all, a measurable

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=539

PROTOTYPE <« 540

portion of your user base will have JavaScript disabled, whether through fear,
fiat, or force majeure.

If you are building a new application that includes AJAX functionality from
the start, you might not have a problem. But for many developers, AJAX is
something that is slowly being added to existing applications, with existing
user bases. When this is true, you really have two possible paths.

* Put up a page for the non-JavaScript users that says, “Your kind not
welcome—come back when you discover fire.”

* Go out of your way to tell them that “You aren’t getting the full benefit of
the application, but we like your money, so welcome aboard.”

If you choose the latter strategy, you must provide for useful degradation of
the AJAX features to non-AJAX styles. The good news is that Rails gives you a
great deal of help in this regard. In particular, the form_remote_tag actually does
something quite useful. Here’s the generated output from our earlier example.
<form action="/user/send_email"
method="post"
onsubmit="new AJAX.Updater('email_form',
'/user/send_email',
{asynchronous:true, evalScripts:true,

parameters:Form.serialize(this)});
return false;">

Earlier, we said that the return false; statement was really important, because
that is what prevents the form from being submitted twice (once via AJAX and
once via standard POST). What happens to this form if rendered in a browser
with JavaScript disabled? Well, the onsubmit attribute is ignored. This means
that, when submitted, the form will send its contents to the /user/send_mail
action of your server. Hey, that’s great! All by itself, the form supports your
JavaScript-deprived customers, without you lifting a finger.

But wait; remember what UserController.send_email does? It returns a partial
HTML snippet containing just the status message associated with that partic-
ular e-mail. That snippet is meant to be injected into the current page, replac-
ing the form itself. If the form is POSTed through the non-AJAX method, the
browser will be forced to render the status message as the entire page. Yuck.

So the other shoe drops: not only do you have to have a degradation strategy
on the client, but you have to have one on the server as well. There are two
approaches you can take: you can use the same actions for both AJAX and
non-AJAX calls, or you can send your AJAX calls to a second set of actions
built specifically for them. Either way you go, you need one path that returns
the partial HTML snippet for injection into the page and a second path that

/user/send_mail
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=540

PROTOTYPE <« 541

returns the partial HTML snippet in a full page context so the browser has
something reasonable to render.

Degrade to Different URLs
If you choose to degrade to different URLs, you have to provide two sets of
endpoints for your actions. When using form_remote_tag, this is very easy.

<% form_remote_tag(:url => {:action => 'send_email'}, :update => 'email_form',
:html => {:action => url_for(:action => 'send_email_no_ajax')} do %>

That call generates this HTML:

<form action="/user/send_email_no_ajax" method="post"
onsubmit="new AJAX.Updater('email_form', '/user/send_email',
{asynchronous:true, evalScripts:true, parameters:Form.serialize(this)});
return false;"
>

If JavaScript is enabled, the onsubmit code is executed, sending the serialized
form data to /user/send_email and cancelling the normal POSTing of the form. If
JavaScript is disabled, the form will POST to /user/send_email_no_ajox instead.
The former action will use render :partial to return just the piece of HTML that is
needed. The latter action will render an entire .rhtml template, including layout.

Degrading to different URLs can be good because it allows your server side
actions to be very clean; each action can render only one template, and you
can create different access rules or filter strategies for your AJAX vs. non-
AJAX methods. The downside is that you might end up with either a lot of
repetitive code (two different methods that send an e-mail) or a lot of clutter
(two methods that both call a helper method to send an e-mail and are just
shims otherwise).

after_filter :gzip_compress, :only => [:send_email_no_ajax]

def send_email
actually_send_email params[:email]
render :text => 'Email sent.'

end

def send_email_no_ajax
acutally_send_email params[:email]

flash[:notice]l = 'Email sent.'
render :template => 'Tist_emails'
end
private

def actually_send_email(email)
send the email
end

/user/send_email
/user/send_email_no_ajax
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=541

PROTOTYPE <« 542

Incoming 1,
Request
ActionController
xhr? == true (Ajax
Response)
Rails Layout
Page I xhr? == false

Reponse | | Falls Partal |

Figure 23.1: Degrading to the Same URL

Degrade to the Same URL

Alternatively, you can degrade the call to the same URL. When you do this,
there has to be some piece of data that accompanies the request to distinguish
between an AJAX call and a non-AJAX call. With that piece of data, your con-
troller can make a decision between rendering a partial, rendering an entire
layout, or doing something else entirely. There is no industry-standard way to
do this yet. Prototype provides a solution that Rails integrates with directly.
Whenever you use Prototype to fire an XHR request, Prototype embeds a pro-
prietary HTTP header in the request.

HTTP_X_REQUESTED_WITH=XMLHttpRequest

Rails queries the inbound headers for this value and uses its existence (or
lack thereof] to set the value returned by the xhr? method or the Rails request
object. When the header is present, the call returns frue. With this facility in
hand, you can decide how to render content based on the type of request being
made.

def send_email
actually_send_email params[:email]
if request.xhr?
render :text => 'Email sent.'
else
flash[:notice] => 'Email sent.'
render :template => 'list_emails'
end
end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=542

SCRIPT.ACULO.US <« 543

In the win column, your controllers are much more compact without a lot
of redirecting to helper methods or mostly duplicated though slightly different
method names. The downside is that you cannot preferentially assign filters
to just one type of request or the other. If you want gzip compression of the
non-AJAX response, for example, you'd have to deal with it in the method
itself. This could lead to redundant code if you needed gzip compression across
several different methods, all supporting both kinds of requests.

23.2 Script.aculo.us

Technically, AJAX is about asynchronous methods for sending data to and
retrieving data from a server. Its original definition (Asynchronous JavaScript
and XML) is pretty explicit in this regard. Purists will tell you that all the fancy
Ul tricks in the world aren’t really AJAX; they're just DHTML gussied up for a
new century.

Though this is certainly true, it also misses the point. Fancy Ul effects might
not be AJAX, but they are certainly Web 2.0, and they are every bit as impor-
tant to modern Internet applications as the asynchronous data transfer is.
That’s because your users can’'t see TCP/IP traffic popping out of the back
of their machines, and they can’t see asynchronicity. But they can see grad-
ual fades, attention-getting highlights, pop-over graphics, and the other things
that make a web application feel, well, less like a web application and more
like an application.

Frankly, without interesting Ul effects, AJAX might so confuse users that they
stop using your application at all. The reason is that we've trained browser
users to expect their pages to act a certain way; data isn’t going to just ran-
domly plop into a part of the page that has been sitting empty all this time,
we’re not causing round-trips to the server by mousing over a picture, the back
button is just like undo, and so on. When we start using AJAX and break these
expectations, we must take pains to make the changes obvious. It doesn’t hurt
if they are also pretty, but obvious is much more important.

Script.aculo.us (http://script.aculo.us) is an open source framework by Thomas
Fuchs of wollzelle Media Design und Webservices GmbH. It is a JavaScript
library that provides a powerful, yet simple to use, effects library for HTML
applications. It is built on top of Prototype and, like Prototype, is heavily inte-
grated with Rails. Rails provides a library of helpers that make Script.aculo.us
as easy to include in your application as Prototype, and as worth it.

In this section, we’ll look at the Script.aculo.us helpers and other helpers that
provide Ul effects. Specifically, we’ll see Script.aculo.us helpers for a wide
array of visual effects and for drag-and-drop support. We'll also see helpers
for autocompleting text fields and in-place editing. Each helper provides an
all-Ruby way to create complex, client-side, JavaScript-based behavior.

http://script.aculo.us
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=543

SCRIPT.ACULO.US <« 544

Autocompletion

Google Suggest was the first major Internet application to provide a type-
ahead find feature. Essentially, using type-ahead find, text fields on a web
form became clairvoyant: as you type, they guess the possible values you are
trying to type and start suggesting them for you. When you see this behavior,
you normally see a list of possible matches presented in a select box either
above or beneath the field in question. The user can either click their choice
using the mouse or, if they don’t like moving their hand away from the key-
board, they can use the up and down arrow keys to move the selection around
and pressing Enter will then copy the current selection to the textbox and
close the list.

The first time a user experiences this, the reaction is often mild surprise and
delight. The first time a web programmer experiences this, the reaction is often
“That’s got to be a lot of JavaScript.” It turns out to not really be all that much
JavaScript to start with, and Rails provides helpers that obviate even that.

A working autocomplete field is a complex mix of four moving parts. To create
one, you need to define

¢ A text field for the user to type in
* A <div> to hold the selections
¢ A chunk of JavaScript to do the work, which:

1. observes the text field
2. sends its value to the server
3. places the server’s response in the <div>

¢ A server endpoint to turn the value into a list of choices

In addition to the four active parts, you will probably want a stylesheet that
makes the <div> containing the choices look pretty.

In this example, the user can edit a programmer’s favorite language. As they
enter a language, the application will suggest possible matches based on what
they have typed so far, drawn from a unique set of languages already on the
server. Let’s look at the RHTML template to generate the Ul:

Download pragforms/app/views/user/autocomplete_demo.rhtml

Line 1 <p><label for="user_favorite_language">Favorite Tlanguage</label>

<%= text_field 'user', 'favorite_language' %></p>
<div class="auto_complete"
id="user_favorite_language_auto_complete"></div>
5 <%= auto_complete_field :user_favorite_language,
:url=>{:action=>"autocomplete_favorite_language'}, :tokens => ',' %>

http://media.pragprog.com/titles/rails2/code/pragforms/app/views/user/autocomplete_demo.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=544

SCRIPT.ACULO.US <« 545

Editing user

Username
guido gosling

Favorite language
5|

Scheme
Smalltalk
Sgueak

Figure 23.2: Autocomplete in Action

On line 2 we create the text field using the standard text field helper. There is
nothing special about it; its value will be included with the other form fields
when its containing form is submitted. Just beneath the text field we create
the <div> to hold the list. By convention, its id should be the id of the text field
suffixed with _auto_complete and it should have a CSS class of auto_complete.

Finally, on line 5, we invoke the helper that creates the JavaScript. Assuming
we followed the conventions for naming the text field and <div>, the only
options we need to pass are the id of the text field and the server endpoint,
which receives the current value of the field. The helper will automatically
discover the associated <div> and place the server results therein. Here’s the
generated code.

<input id="user_favorite_language"
name="user[favorite_Tlanguage]"
size="30" type="text" value="C++"/>
<div class="auto_complete"
id="user_favorite_language_auto_complete"></div>
<script type="text/javascript'>
//<![CDATAL
var user_favorite_language_auto_completer =
new AJAX.Autocompleter('user_favorite_language',
'user_favorite_language_auto_complete',
'/user/autocomplete_favorite_language', {})
//11>

</script>

The AJAX Autocompleter is provided by the Script.aculo.us library and does the
work of periodically executing the filter.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=545

SCRIPT.ACULO.US <« 546

auto_complete_field options
You might not like the default options. If not, the auto_complete_field helper
provides a slew of other options to choose from.

If your autocomplete list field can’t have an id that follows the convention, you
can override that with the :update option, which contains the DOM ID of the
target <div>. You can also override the default server endpoint by specifying
the :url option, which takes either a literal URL or the same options you can
pass to url_for.
<%= auto_complete_field :user_favorite_language,

:update => 'pick_a_Tlanguage',

:url => {:action => 'pick_language'} %>
<div class="auto_complete" id="pick_a_language"/>

You can set the :frequency of the observer of the field to adjust how responsive
the autocomplete field is. Similarly, you can also specify the minimum number
of characters a user has to enter before the autocomplete is fired. Combining
these two options gives you fairly fine-grained control over how responsive the
field appears to the user and how much traffic it generates to the server.

<%= auto_complete_field :user_favorite_language,

:frequency => 0.5,
:min_chars =>

w ol

%>

Autocomplete is just another server-side callback. As we've learned already,
it is important to notify your users when these asynchronous calls are being
made on their behalf. You can use the :indicator option to specify the DOM id
of a graphic to toggle on at the start of the call and toggle off upon completion.
<%= text_field :user, :language %>

<div class="auto_complete" id="user_language_auto_complete" />

<%= auto_complete_field :user_language,
:indicator => 'language_spinner' %>

If the user needs to enter more than one value per autocompleting text field,
you can specify one or more tokens that can be used to reset the behavior as
they type. For example, we could allow the user to choose multiple favorite
languages for the programmer by using a comma to separate the values.

<%= text_field :user, :Tanguages %>

<div class="auto_complete" id="user_languages_auto_complete" />

<%= auto_complete_field :user_languages,
:tokens => "',' %>

As the user starts to enter a value, they’ll get the list of choices as shown in
Figure 23.3, on the next page. Then, if they make a selection and type in one
of the tokens (in this case, a comma), the list will show again and they can
pick a second item, as shown in Figure 23.4, on the following page.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=546

SCRIPT.ACULO.US <« 547

Editing user

Username
guido gosling

Favorite language

Figure 23.3: Choosing the First Item

Editing user

Username
guido gosling

Favorite language
C,e

Emacs Lisp
k|

Show | Back

Figure 23.4: Choosing the Second Item
.

Finally, you can specify a JavaScript expression to be called when the target
<div> is either shown or hidden (:on_show, :on_hide) or after the text field has
been updated by the user’s selection (:affer_update_element). These callbacks
allow you to specify other visual effects or even server-side actions in response
to the user’s interaction with the autocomplete field.

On the server, you will want to write an action that can turn a partial value into
a list of potential matches and return them as an HTML snippet containing
just elements. Our example uses a regular expression match to find the
partial value anywhere in the language name, not just at the start of the name.
It then renders them using a partial, taking care not to render using any
layout.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=547

SCRIPT.ACULO.US <« 548

Download pragforms/app/controllers/user_controller.ro

def autocomplete_favorite_language
re = Regexp.new("A#{params[:user][:favorite_language]}", "i")
@languages= LANGUAGES.find_all do |1]
T.match re
end
render :Tlayout=>false
end

Download pragforms/app/views/user/autocomplete_favorite_language.rhtml

<ul class="autocomplete_Tlist">
<% @languages.each do |1| %>
<11 class="autocomplete_item"><%= 1 %></1i>
<% end %>

In this case, LANGUAGES is a predefined list of possible choices, defined in a
separate module.
Download pragforms/app/helpers/favorite_language.rb

module FavoritelLanguage

LANGUAGES = %w{ Ada Basic C C++ Delphi Emacs\ Lisp Forth
Fortran Haskell Java JavaScript Lisp Perl Python
Ruby Scheme Smalltalk Squeak}
end

It is equally (or even more) likely that you will want to pull the selection list
from the database table itself. If so, you could easily change the code to per-
form a lookup on the table using a conditional find and then to render them
appropriately. It turns out that if that is your expected behavior, there is a
module included in Action Controller that allows you to specify that your con-
troller supports autocomplete for a certain field of a certain class.

class UserController < ApplicationController

auto_complete_for :user, :language
end

With that declaration in place, your controller now has an endpoint (called
auto_complete_for_user_language in this case) that does the conditional find and
formats the results as a collection of s. By default, it returns the first
10 results in a list sorted in ascending order. You can always override these
defaults by passing in some parameters.

auto_complete_for :user, :language,
:Timit => 20, :order => 'name DESC'

Likewise, if you like the default style and behavior of the autocomplete field,
you can use a different helper in the view to render the standard arrangement
for you.

<%= text_field_with_auto_complete :user, :language %>

http://media.pragprog.com/titles/rails2/code/pragforms/app/controllers/user_controller.rb
http://media.pragprog.com/titles/rails2/code/pragforms/app/views/user/autocomplete_favorite_language.rhtml
http://media.pragprog.com/titles/rails2/code/pragforms/app/helpers/favorite_language.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=548

SCRIPT.ACULO.US <« 549

Finally, you can style the list of choices any way you desire. Rails provides a
default style for you that is used by the auto_complete_for helper automatically,
but you can embed it yourself if needed. This stylesheet turns a standard
unordered list into something that looks and acts like a select box.
div.auto_complete {

width: 350px;

background: #fff;
}

div.auto_complete ul {
border:1px solid #888;
margin:0;
padding:0;
width:100%;
Tist-style-type:none;

}

div.auto_complete ul 1i {
margin:0;
padding:3px;

}

div.auto_complete ul 1i.selected {
background-color: #ffb;

3
div.auto_complete ul strong.highlight {

color: #800;

margin:0;

padding:0;
3
It is worth highlighting that there is no JavaScript to enable the arrow-up,
arrow-down, highlight behavior of the list. It is enough to provide the stylesheet
shown previously; all tags support that behavior (in relatively modern
browsers) and just need styles to show off the changing state.

Drag and Drop and Sortable Elements

The point of all this AJAX and Web 2.0 stuff is to make your web applications
more interactive—to make them more like desktop applications. There may be
no more impressive example of this than drag-and-drop behavior.

There are two distinct styles of drag-and-drop behavior: moving items around
within a list (sorting) and moving items around between lists (categorizing). In
either case, you want to be able to specify three types of actors.

¢ The original container list

¢ The target container list (wWhen sorting, it will be the same as the original)

¢ The elements that can be dragged

Additionally, you will need to specify the following behaviors.
¢ What to do when an item is dragged
¢ What to do when an item is dropped
* What information to send to the server upon completion

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=549

SCRIPT.ACULO.US <« 550

Todo list for anders gosling
Pending

Find Waldo

Completed

Compose a Symphony
Solve NP-Complete problem
Run a marathon

Figure 23.5: Drag-and-Drop To-do Lists

Let’s look at dragging and dropping between lists to start with, and then we can
see how much simpler sorting operations are. In this example, we’ll manage
the to-do list for a programmer. There are two categories of todo items: pending
and completed. We want to be able to drag items between the two lists and
update the server whenever an item is moved.

First, let’s set up the visual portion of the page. We need to create a couple
of visual spaces, one labeled “Pending” and the other labeled “Completed,” so
that the user can see where to drag items.

Download pragforms/app/views/user/drag_demo.rhtml

<h2>Pending</h2>
<div 1id="pending_todos">

<%= render :partial=>"pending_todos" %>
</div>

<h2>CompTleted</h2>
<div id="completed_todos">

<%= render :partial=>"completed_todos" %>
</div>

Each of our target <div>s has an id attribute that we’ll need later to bind
behavior to the targets. Each is filled by rendering a partial; the contents of
the <div>s will be s with their own ids. Here is the partial that renders
the pending items.

Download pragforms/app/views/user/_pending_todos.rhtml

<ul id="pending_todo_1list'>
<% @pending_todos.each do |item| %>
<% domid = "todo_#{item.id}" %>
<11 class="pending_todo" id='<%= domid %>'><%= item.name %></11i>
<%= draggable_element(domid, :ghosting=>true, :revert=>true) %>
<% end %>

http://media.pragprog.com/titles/rails2/code/pragforms/app/views/user/drag_demo.rhtml
http://media.pragprog.com/titles/rails2/code/pragforms/app/views/user/_pending_todos.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=550

SCRIPT.ACULO.US <« 551

The partial creates a list of elements, each with an id and of a
certain class, in this case, pending_todo. You'll see the first use of a drag-and-
drop-related helper here, as well. For each <Ii> element, we also employ the
draggable_element helper. This helper requires you to pass in the id of the
element to be made draggable and allows several options.

* ghosting: Renders the item in 50% opacity during the drag (false means
100% opacity during drag)

¢ revert: Snaps the item back to its original location after drop (false means
leave the item where dropped)

Back on the main page, we’ll have to identify the two drop targets. We'll use
the drop_receiving_element helper for that.

Download pragforms/app/views/user/drag_demo.rhtml

<%= drop_receiving_element('pending_todos',
raccept => 'completed_todo',
:complete => "$('spinner').hide();",
:before > "$('spinner').show();",
:hoverclass => 'hover',
:with => "'todo=' + encodeURIComponent(element.id.split('_"').last())",
turl => {:action=>:todo_pending, :id=>Quser})%>

<%= drop_receiving_element('completed_todos"',

raccept => 'pending_todo',

:complete => "$('spinner').hide();",

:before => "$('spinner').show();",

:hoverclass => 'hover',

:with => "'todo=' + encodeURIComponent(element.id.split('_"').last())",
rurl => {:action=>:todo_completed, :id=>@user})%>

This helper defines a target DOM element to receive dropped items and further
defines the application behavior based on those events. In addition to the id of
the target, the following options are available.

:accept => string
the CSS class of the items that can be dropped on this container

‘before => snippet
a JavaScript snippet to execute prior to firing the server-side call

:complete => snippet
a JavaScript snippet to execute just after completing the XHR call

:hoverclass => string
applies this CSS class to the drop target whenever a candidate item is
hovering over it

http://media.pragprog.com/titles/rails2/code/pragforms/app/views/user/drag_demo.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=551

SCRIPT.ACULO.US <« 552

\with => snippet
a JavaScript snippet that executes to create the query string parameters
to send to the server

wurl => url
either the literal URL of the server endpoint or an url_for construct

:update => string
the DOM element to update as a result of the XHR call (in our example,
we’re using RJS to update the page, which we will see in Section 23.3,
RJS Templates, on page 559)

In general, the Script.aculo.us helpers take all the same options as the Proto-
type helpers, since the former is built on top of the latter.

In our example, we specified that the pending_todos container accepts only
completed_todo items, and vice versa. That’s because the purpose of the drag-
and-drop behavior is to recategorize the items. We want to fire the XHR request
to the server only if an item is moved to the other category, not if it is returned
to its original location. By specifying the revert attribute on the individual drag-
gable items, they will snap back to their original location if dropped somewhere
other than a configured receiving target, and no extra round-trip to the server
will be caused.

We're also constructing our query string by parsing out the draggable item’s
database id from its DOM id. Look at that JavaScript snippet.

"'"todo=" + encodeURIComponent(element.id.split('_"').Tlast()"

The with parameter takes a snippet and feeds it the actual DOM element that
was dropped as a variable called element. In our partial, we defined the ids
of those elements as todo_database id, so when we want to send the server
information on which item was dropped, we split the todo back off and send
only the database id.

We've also defined a simple style for the drop targets and draggable elements.

Download pragforms/app/views/user/drag_demo.rhtml

<style>

.hover {
background-color: #888888;

}

#pending_todos ul 11, #completed_todos ul 1i {
Tist-style: none;
cursor: -moz-grab;

}

#pending_todos, #completed_todos {
border: 1px solid gray;

}

</style>

http://media.pragprog.com/titles/rails2/code/pragforms/app/views/user/drag_demo.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=552

SCRIPT.ACULO.US <« 553

The hover class causes the drop target to highlight when a draggable item is
poised on top of it. The second rule specifies that any <Ii> elements within the
pending_fodos or competed_todos will use the -moz-grab cursor, the grasping
hand icon, in order to provide a visual cue to the user that the item has a
special property (draggability). The last rule just draws a border around our
drop targets to make them obvious.

What if you wanted to create a sortable list instead of two or more categories
of items? Sorting usually involves a single list whose order you want sent back
to the server whenever it is changed. To create one, you need only to be able
to create an HTML list and then specify what to do when the order changes.
The helper takes care of the rest.
<ul 1id="priority_todos">

<% for todo in @todos %>

<14 id="todo_<%= todo.id %>"><%= todo.name %></1i>

<% end %>

<%= sortable_element 'priority_todos',

:url => {:action => 'sort_todos'} %>

The sortable_element helper can take any of the standard Prototype options for
controlling what happens before, during and after the XHR call to the server.
In many cases, there isn’t anything to do in the browser since the list is already
in order. Here is the output of the previous code.
<ul 1id="priority_todos">
<14 id="todo_421">Climb Baldwin Auditorium</T1i>
<11 1id="todo_359">Find Waldo</1i>

<script type="text/javascript'>
//<![CDATA[
Sortable.create("priority_todos", {onUpdate:function(){
new AJAX.Request('/user/sort_todos',
{asynchronous:true, evalScripts:true,
parameters:Sortable.serialize("priority_todos")})}})

//11>

</script>

Script.aculo.us provides a helper JavaScript method called Sortable serialize. It
takes a list and creates a JSON dump of the ids of its contained elements in
their current order, which is sent back to the server. Here are the parameters
the action receives on re-order.

Processing UserController#sort_todos (for 127.0.0.1 at 2006-09-15 07:32:16) [POST]

Session ID: 00dd9070b55b89aa8ca7c0507030139d
Parameters: {"action"=>"sort_todos", "controller"=>"user", "priority_todos"=>["359", "421"]}

Notice that the priority_todos parameter contains an array of database ids, not
the DOM ids from the list (which were formatted as todo_421, not 421). The
Sortable.serialize helper automatically uses the underscore as a delimiter to

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=553

SCRIPT.ACULO.US <« 554

parse out the actual database id, leaving you less work to do on the server.
There is a problem with this behavior, however. The default is to eliminate
everything before and including the first underscore character in the DOM
id. If your DOM is formatted as priority_todo_database id, then the serializer
will send "priority_todos'=>["todo_359", "todo_421"] to the server. To override that,
you have to provide the format option to the helper, which is just one of many
sortable-specific options. In addition, you can pass any of the options that we
have seen previously.

format => regexp
a regular expression to determine what to send as the serialized id to the
server (the default is /A[*_]*_(.)$/)

:constraint => value
whether to constrain the dragging to either :horizontal or :vertical (or false
to make it unconstrained)

.overlap => value
calculate the item overlap in the :horizontal or :vertical direction

'tfag => string
which children of the container element to treat as sortable (default is LI)

:containment => target
takes an element or array of elements to treat as potential drop targets
(defaults to the original target element)

:only => string
a CSS class name or array of class names used to filter out child elements
as candidates

:scroll => boolean
determines whether to scroll the list during drag operations if the list
runs past the visual border

:free => boolean
determines whether to treat nested lists as part of the main sortable list.
This means that you can create multi-layer lists, and not only sort items
at the same level, but drag and sort items between levels

For example, if your list uses DOM ids that look like priority_todo_database_id
but also has items in it that couldn’t be sorted, your declaration might look
like
<%= sortable_element 'priority_todos',

:url => {:action => 'sort_todos'},

:only => 'sortable',

:format => '/Apriority_todo_(.*)$/' %>

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=554

SCRIPT.ACULO.US <« 555

In-place Editing

In-place editing is a convenience feature when you don’t want to create a full-
fledged edit screen for every little piece of data on the page. Sometimes, there
are only one or two items on a screen that need to be editable; instead of
rendering them as an ugly and style-killing input field, you can render them
as styled text but provide your users with a way to quickly switch them to an
editable version and then switch back after the edit is complete.

Script.aculo.us provides helper methods for both the view and the controller
to aid in creating the in-place editor. Let’s look first at how the page should
act. Here’s the edit page for a user using in-place fields in normal mode.

Username: anders gosling
Favorite language: Rails

di

M
=

| Back

The user mouses over the name field, getting an indication that the field is
editable.

Username: anders gosling

Favorite language: |Click to edit

m

dit | Back

And here’s what the page looks like in full edit mode for the name field.

Username:

‘anders gosling | ok cancel

Favorite language: Rails

Edit | Back

If you stick with the default settings, this is incredibly easy to create. In your
controller, specify the name of the model class and column names you want
your controller to support in-place editing for.
class UserController < ApplicationController

in_place_edit_for :user, :username

in_place_edit_for :user, :favorite_language
...

These helper methods actually create methods called set_user_username and
set_user_favorite_language in your controller that the form will interact with to
update the field data. These generated methods will update the current model
instance with the new data and return the newly saved value.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=555

SCRIPT.ACULO.US <« 556

Use the in_place_editor_field helper to create the control. In our example, we
just iterate over all the columns on the model and create one for each.

Download pragforms/app/views/user/inplace_demo.rhiml

<% for column 1in User.user_columns %>
<p>
<%= column.human_name %>:
<%= 1in_place_editor_field "user", column.name, {}, {
:load_text_url=> url_for(:action=>"get_user_#{column.name}", :id=>@Quser)
} %>
</p>
<% end %>

<%= link_to 'Edit', :action => 'edit', :id => Quser %> |

<%= Tink_to 'Back', :action => 'Tist' %>

That’s all you need to create the default version. There are plenty of options
you can specify to alter the default behavior, however.

:rows => number
number of rows of text to allow in the live editing field. If the value is
more than 1, the control switches to be a <textarea>

:cols => number
number of columns of text to allow

:cancel_text => "cancel”
the displayed text of the link that allows the user to cancel the editing
action

:save_text => “ol”
the displayed text of the button that allows the user to save the edits

loading_text => "Loading...”
the text to display while the edits are being saved to the server; this is
the equivalent of the progress indicators we used elsewhere

:external_control => string
the DOM id of a control that is used to turn on edit mode. Use this to
override the default behavior of having to click the field itself to edit it

load_text_url => string
a URL to send an XHR request to retrieve the current value of the field.
When not specified, the control uses the innerfext of the display field as
the value

For example, with the form we have shown so far, if the user edits the user-
name field and sets it to nothing, when they save the value, the field is no
longer editable. This is because the default behavior is to make the user click
the field itself to edit it, and if the field is blank, there is nothing to click. Let’s
provide an external control to click instead of the field itself.

http://media.pragprog.com/titles/rails2/code/pragforms/app/views/user/inplace_demo.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=556

SCRIPT.ACULO.US <« 557

<% for column in User.user_columns %>

<p>
<input type="button" id="edit_<%= column.name %>" value="edit"/>
<%= column.human_name %>:
<%= in_place_editor_field "user", column.name, {},

{:external_control => "edit_#{column.name}"} %>
</p>
<% end %>

This looks like the following.

(edit) Username: anders gosling
(‘edit) Favorite language: Rails

Edit | Back

Further, in the case of the blank value, you might want to provide some kind
of default text in the editor field when the user goes to edit mode. To provide
that, you have to create a server-side action that the editor can call to ask for
the value of the field and then provide that in the load_text_url option. Here’s
an example of creating your own helper method, much like in_place_edit_for to
provide a default value.

class UserController < ApplicationController

def self.in_place_loader_for(object, attribute, options = {})

define_method("get_#{object}_#{attribute}") do
@item = object.to_s.camelize.constantize.find(params[:id])

render :text => @item.send(attribute) || "[No Value]"
end
end
in_place_edit_for :user, :username
in_place_loader_for :user, :username
in_place_edit_for :user, :favorite_language

in_place_loader_for :user, :favorite_language

In the view, you just pass the appropriate option.

<% for column in User.user_columns %>
<p>
<input type="button" id="edit_<%= column.name %>" value="edit"/>
<%= column.human_name %>:
<%= in_place_editor_field "user", column.name, {},
{:external_control => "edit_#{column.name}",

:Toad_text_url=> url_for(:action=>"get_user_#{column.name}", :id=>@user) } %>
</p>
<% end %>
It looks like this.
Username:
[No Name] @ cancel

edit | Favorite language: Rails

| m———

Edit | Back

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=557

SCRIPT.ACULO.US <« 558

Notice that the editor field has [No Value] in the text field since no value was
retrieved from the database. Also, you can see that the in-place editor takes
care of hiding the external button control when in edit mode.

Visual Effects

Script.aculo.us also provides a bevy of visual effects you can apply to your
DOM elements. The effects can be roughly categorized as effects that show an
element, effects that hide an element, and effects that highlight an element.
Conveniently, they mostly share the same optional parameters and they can
be combined either serially or in parallel to create more complex events.

The Script.aculo.us helper method visual_effect is used to generate the Java-
Script equivalent. It is primarily used to assign the value to one of the life cycle
callbacks of the standard Prototype helpers (complete, success, failure, etc).

For a full list of all the available effects, visit http://script.aculo.us. Instead of
doing an exhaustive reference, we're going to look at applying some in practice.

Think back to the drag-and-drop example. Let’'s say you wanted to also high-
light the drop target after its elements have been updated. We are already
bound to the complete callback to turn off the progress indicator.

<%= drop_receiving_element('pending_todos', :accept=>'completed_todo',
:complete=>"$("spinner').hide();",
:before=>"$("'spinner').show();",
:hoverclass=>"'hover',
:with=>""todo=" + encodeURIComponent(element.id.split('_"').last())",
:url=>{:action=>:todo_pending, :id=>@user})%>

To add a visual highlight effect, we just append it to the complete option:

<%= drop_receiving_element('pending_todos', :accept=>'completed_todo',
:complete=>"$('spinner').hide();" + visual_effect(:highlight, 'pending_todos"'),
:before=>"$("'spinner').show();",
:hoverclass=>"hover',
:with=>""todo="' + encodeURIComponent(element.id.split('_"').last())",
:url=>{:action=>:todo_pending, :id=>@user})%>

You can use the appear/disappear effects to fade the progress indicator in and

out as well.

<%= drop_receiving_element('pending_todos', :accept=>'completed_todo',
:complete=>visual_effect(:fade, 'spinner', :duration => 0.5),
:before=>visual_effect(:appear, 'spinner', :duration => 0.5),

:hoverclass=>"hover',
:with=>""todo=" + encodeURIComponent(element.id.split('_"').last())",
:url=>{:action=>:todo_pending, :id=>@user})%>

There are three visual effects that let you specify them as toggle effects. These
are reversible pairs of effects that let you show/hide an element. If you specify

http://script.aculo.us
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=558

RJS TEMPLATES <« 559

a toggle effect, the generated JavaScript will take care of alternating between
the states. The available togglers are

toggle_appear: toggles using appear and fade
toggle_slide: toggles using slide_down and slide_up
toggle_blind: toggles using blind_down and blind_up

You can use the visual_effect helper pretty much anywhere you could provide a
snippet of JavaScript.

23.3 RJS Templates

So far we've covered Prototype and Script.aculo.us almost strictly from the
point of view of returning HTML from the server during XHR calls. This HTML
is almost always used to update the innerHTML property of some DOM element
in order to change the state of the page. It turns out that there is another
powerful technique you can use that can often solve problems that otherwise
require a great deal of complex JavaScript on the client: your XHR calls can
return JavaScript to execute in the browser.

In fact, this pattern became so prevalent in 2005 that the Rails team came up
with a way to codify it on the server the same way they use .rhtml files to deal
with HTML output. That technique was called RJS templates. As people began
to use the RJS templates, though, they realized that they wanted to have the
same abilities that the templates provided but be able to do it inline within a
controller. Thus was born the render :update construct.

What is an RJS template? It is simply a file, stored in the app/views hierar-
chy, with an .rjs extension. It contains commands that emit JavaScript to the
browser for execution. The template itself is resolved the same way that .rhtml
templates are: when an action request is received, the dispatcher tries to find
a matching .rhtml template. If the request came in from XHR, the dispatcher
will preferentially look for an .fjs template. The template is parsed, JavaScript
is generated and returned to the browser, where it is finally executed.

RJS templates can be used to provide standard interactive behavior across
multiple pages or to minimize the amount of custom JavaScript code embed-
ded on a given page. One of the primary usage patterns of RJS is to cause
multiple client-side effects to occur as the result of a single action.

Let’s go back and revisit the drag-and-drop example from earlier. When the
user drags a to-do item from one list to the other, that item’s id is sent to the
server. The server has to recategorize that particular item by removing it from
its original list and adding it to the new list. That means the server must then
update both lists back on the view. However, the server can return only one
response as a result of a given request.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=559

RJS TEMPLATES < 560

This means that you could

® Structure the page so that both drop targets are contained in a larger
element, and update the entirety of that parent element on update

* Return structure data to a complex client-side JavaScript function that
parses the data and divvies it up amongst the two drop targets

* Use RJS to execute several JavaScript calls on the client, one to update
each drop target and then one to reset the sortability of the new lists

Here is the server-side code for the todo_pending and todo_completed meth-
ods on the server. When the user completes an item, it has a completed date
assigned to it. When the user moves it back out of completed, the completed
date is set to nil.

Download pragforms/app/controllers/user_controller.ro

def todo_completed
update_todo_completed_date Time.now
end

def todo_pending
update_todo_completed_date nil
end

private

def update_todo_completed_date(newval)
@user = User.find(params[:id])
@todo = @user.todos.find(params[:todo])
@todo.completed = newval
@todo.save!
@compTleted_todos = @user.completed_todos
@pending_todos = @user.pending_todos
render :update do |page]|
page.replace_html 'pending_todos', :partial => 'pending_todos'
page.replace_html 'completed_todos', :partial => 'completed_todos'
page.sortable "pending_todo_Tlist",
:url=>{:action=>:sort_pending_todos, :id=>@user}
end
end

After performing the standard CRUD operations that most controllers contain,
you can see the new render :update do |page| section. When you call render
:update, it generates an instance of JavaScriptGenerator, which is used to create
the code you’ll send back to the browser. You pass in a block, which uses the
generator to do the work.

In our case, we are making three calls to the generator: two to update the drop
target lists on the page and one to reset the sortability of the pending todos. We
have to perform the last step because when we overwrite the original version,

http://media.pragprog.com/titles/rails2/code/pragforms/app/controllers/user_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=560

RJS TEMPLATES <« 561

any behavior bound to it disappears, and we have to re-create it if we want the
updated version to act the same way.

The calls to page.replace_html take two parameters: the id (or an array of ids)
of elements to update and a hash of options that define what to render. That
second hash of options can be anything you can pass in a normal render call.
Here, we are rendering partials.

The call to page.sortable also takes the id of the element to make sortable,
followed by all of the possible options to the original sortable_element helper.

Here is the resulting response from the server as passed back across to the
browser (reformatted slightly to make it fit).

try {

ETement.update("pending_todos", "<ul 1id='pending_todo_Tlist'>
<11 class=\"pending_todo\" id='todo_38'>Build a house</Ti>
<script type=\"text/javascript\">\n//<![CDATA[\nnew Draggable(\"todo_38\",
{ghosting:true, revert:true})\n//\n</script>
<1i class=\"pending_todo\" id='todo_39'>Read the Hugo Award Winners</Ti>
<script type=\"text/javascript\">\n//<![CDATA[\nnew Draggable(\"todo_39\",
{ghosting:true, revert:true})\n//]]>\n</script>\n \n\n");

// ...

Sortable.create(\ "pending_todo_Tlist\",
{onUpdate: function() {new AJAX.Request(\'/user/sort_pending_todos/10\"',
{asynchronous:true, evalScripts:true,
parameters:Sortable.serialize(\"pending_todo_Tist\")})}});'); throw e }

11>

The response is pure JavaScript; the Prototype helper methods on the client
must be set to execute JavaScripts, or nothing will happen on the client. It
updates the drop targets with new HTML, which was rendered back on the
server into string format. It then creates the new sortable element on top of
the pending to-dos. The code is wrapped in a try/catch block. If something goes
wrong on the client, a JavaScript alert box will pop up and attempt to describe
the problem.

If you don’t like the inline style of render :update, you can use the original
version, an .fs template. If you switch to the template style, the action code
would reduce to

def update_todo_completed_date(newval)
@user = User.find(params[:id])
@todo = @user.todos.find(params[:todo])
@todo.completed = newval
@todo.save!
@compTleted_todos = @user.completed_todos
@pending_todos = @user.pending_todos

end

Then, add a file called todo_completed.rjs in app/views/user/ that contains

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=561

RJS TEMPLATES <« 562

page.replace_html 'pending_todos', :partial => 'pending_todos'

page.replace_html 'completed_todos', :partial => 'completed_todos'

page.sortable "pending_todo_Tlist",
:url=>{:action=>:sort_pending_todos, :id=>@user}

Rails will autodiscover the file, create an instance of JavaScriptGenerator called
page, and pass it in. The results will be rendered back to the client, just as
with the inline version.

Let’s take a categorized look at the available RJS helper methods.

Editing Data

You might have several elements on a page whose data needs to be updated as
aresult of an XHR call. If you need to replace only the data inside the element,
you will use replace_html. If you need to replace the entire element, including
its tag, you need replace.

Both methods take an id and a hash of options. Those options are the same
as you would use in any normal render call to render text back to the client.
However, replace_html merely sets the innerHTML of the specified element to the
rendered text, while replace first deletes the original element and then inserts
the rendered text in its place.

In this example, our controller mixes using RJS to update the page upon suc-
cessful edit or redraws the form with a standard render if not.

def edit_user
@user = User.find(params[:id])
if @Quser.update_attributes(params[:user])
render :update do |page]

page.replace_html "user #{@user.id}", :partial => "_user"”
end
else
render :action => 'edit'
end

end

Inserting Data

Use the insert_html method to insert data. This method takes three parameters:
the position of the insert, the id of a target element, and the options for render-
ing the text to be inserted. The position parameter can be any of the positional
options accepted by the update Prototype helper (before, :top, :bottom, and
.affer).

Here is an example of adding an item to a todo list. The form might look like

<ul id="todo_Tlist">
<% for item in @todos %>
<%= item.name %></1i>
<% end %>

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=562

RJS TEMPLATES <« 563

<% form_remote_tag :url => {:action => 'add_todo'} do %>
<%= text_field 'todo', 'name' %>
<%= submit_tag 'Add...' %>

<% end %>

On the server, you would store the to-do item and then add the new value into
the existing list at the bottom.
def add_todo
todo = Todo.new(params[:todo])
if todo.save
render :update do |page]
page.insert_html :bottom, 'todo_Tlist', "#{todo.name}</T1i>"
end
end
end

Showing/Hiding Data

You'll often need to toggle the visibility of DOM elements after the completion
of an XHR call. Showing and hiding progress indicators are a good example;
toggling between an Edit button and a Save button is another. There are three
major methods you can use to handle these states: show, hide, and foggle. Each
takes a single id or an array of ids to modify.

For example, when using AJAX calls instead of standard HTML requests, the
standard Rails pattern of assigning a value to flash[:notice] doesn’t do anything
because the code to display the flash is executed only the first time the page is
rendered. Instead, you can use RJS to show and hide the notification.

def add_todo
todo = Todo.new(params[:todo])
if todo.save
render :update do |page]
page.insert_html :bottom, 'todo_Tlist',
"#{todo.name}</Ti>"

page.replace_html 'flash_notice', "Todo added: #{todo.name}"
page.show 'flash_notice'
end
end

end

Alternatively, you can choose to delete an element from the page entirely by
calling remove. Successful execution of remove means that the node or nodes
specified will be removed from the page entirely. This does not mean just hid-
den; the element is removed from the DOM and cannot be retrieved.

Here’s an example of our to-do list again, but now the individual items have
an id and a Delete button. Delete will make an XHR call to remove the item
from the database, and the controller will respond by issuing a call to delete
the individual list item.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=563

RJS TEMPLATES <« 564

<ul id="todo_Tlist">
<% for item in @todos %>
<17 id="todo_<%= item.id %>'><%= item.name %>
<%= Tink_to_remote 'Delete',
:url => {:action => 'delete_todo’,
id => item} %>
</1i>
<% end %>

<% form_remote_tag :url => {:action => 'add_todo'} do %>
<%= text_field 'todo', 'name' %>
<%= submit_tag 'Add...' %>
<% end %>

def delete_todo
if Todo.destroy(params[:id])
render :update do |page]
page.remove "todo_#{params[:id]}"
end
end
end

Selecting Elements

If you need to access page elements directly, you can select one or more of
them to call methods on. The simplest method is to look them up by id. You
can use the [] syntax to do that; it takes a single id and returns a proxy to the
underlying element. You can then call any method that exists on the returned
instance. This is functionally equivalent to using the Prototype $ method in
the client.

In conjunction with the fact that the newest versions of Prototype allow you to
chain almost any call to an object, the [] syntax turns out to be a very powerful
way to interact with the elements on a page. Here’s an alternate way to show
the flash notification upon successfully adding a to-do item.
def add_todo

todo = Todo.new(params[:todo])

if todo.save
render :update do |page]

page.insert_html :bottom, 'todo_Tlist', "#{todo.name}</Ti>"
page['flash_notice'].update("Added todo: #{todo.name}") .show
end
end
end

Another option is to select all the elements that utilize some CSS class(es).
Pass one or more CSS classes into select; all DOM elements that have one or
more of the classes in the class list will be returned in an array. You can then
manipulate the array directly or pass in a block that will handle the iteration
for you.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=564

RJS TEMPLATES <« 565

Direct JavaScript Interaction
If you need to render raw JavaScript that you create, instead of using the
helper syntax described here, you can do that with the << method. This sim-
ply appends whatever value you give it to the response; it will be evaluated
immediately along with the rest of the response. If the string you provide is
not executable JavaScript, the user will get the RJS error dialog box.
render :update do |page]

page << "cur_todo = #{todo.id};"

page << "show_todo(#{todo.id});"
end

If, instead of rendering raw JavaScript, you need to call an existing JavaScript
function, use the call method. call takes the name of a JavaScript function
(that must already exist in page scope in the browser) and an optional array
of arguments to pass to it. The function call will be executed as the response
is parsed. Likewise, if you just need to assign a value to a variable, use assign,
which takes the name of the variable and the value to assign to it.

render :update do |page]

page.assign 'cur_todo', todo.id

page.call 'show_todo', todo.id
end

There is a special shortcut version of call for one of the most common cases,
calling the JavaScript alert function. Using the RJS alert method, you pass a
message that will be immediately rendered in the (always annoying) JavaScript
alert dialog. There is a similar shortcut version of assign called redirect fo.
This method takes a URL and merely assigns it to the standard property win-
dow.location.href.

Finally, you can create a timer in the browser to pause or delay the execution of
any script you send. Using the delay method, you pass in a number of seconds
to pause and a block to execute. The rendered JavaScript will create a timer to
wait that many seconds before executing a function wrapped around the block
you passed in. In this example, we will show the notification of an added to-do
item, wait three seconds, and then remove the message from the <div> and
hide it.

def add_todo
todo = Todo.new(params[:todo])
if todo.save
render :update do |page]
page.insert_html :bottom, 'todo_Tlist',
"#{todo.name}</11i>"
page.replace_html 'flash_notice', "Todo added: #{todo.name}"
page.show 'flash_notice'
page.delay(3) do
page.replace_html 'flash_notice',
page.hide 'flash_notice'

rr

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=565

CONCLUSION <« 566

end
end
end
end

Script.aculo.us Helpers

In addition to all the Prototype and raw JavaScript helpers, RJS also provides
support for most of the functions of Script.aculo.us. By far the most common is
the visual_effect method. This is a straightforward wrapper around the different
visual effects supplied by Script.aculo.us. You pass in the name of the visual
effect desired, the DOM id of the element to perform the effect on, and a hash
containing the standard effect options.

In this example, we add a pulsate effect to the flash notice after we show it
and then fade it away to remove it.

def add_todo
todo = Todo.new(params[:todo])
if todo.save
render :update do |page]
page.insert_html :bottom, 'todo_Tlist',
"#{todo.name}</1i>"
page.replace_html 'flash_notice', "Todo added: #{todo.name}"
page.show 'flash_notice'
page.visual_effect :pulsate, 'flash_notice'
page.delay(3) do
page.replace_html 'flash_notice',
page.visual_effect :fade, 'flash_notice'
end
end
end
end

rr

You can also manipulate the sort and drag-and-drop characteristics of items
on your page. To create a sortable list, use the sortable method, and pass in the
id of the list to be sortable and a hash of all the options you need. draggable
creates an element that can be moved, and drop_receiving creates a drop target
element.

23.4 Conclusion

AJAX is all about making web applications feel more like interactive client
applications and less like a physics white paper: it is about breaking the hege-
mony of the page and replacing it with the glorious new era of data. That data
doesn’t have to stream back and forth on the wire as XML (no matter what
Jesse James Garrett said back in February 2005). It just means that users get
to interact with their data in appropriate-sized chunks, not in the arbitrary
notion of a page.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=566

CONCLUSION <« 567

Rails does a great job of integrating AJAX into the regular development flow. It
is no harder to make an AJAX link than a regular one, thanks to the wonders
of the helpers. What is hard, and will remain hard for a very long time, is
making AJAX work efficiently and safely. So although it is great to be able to
rely on the Rails helpers to hide the bulk of the JavaScript from you, it is also
great to know what is actually being done on your behalf.

And remember: use AJAX to benefit your users! Your motto should be the
same as a doctor’s: first, do no harm. Use AJAX where it makes your users’
lives better, not where it just confuses them or makes it harder to get things
done. Follow that simple rule, and AJAX on Rails can be wonderful.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=567

Chapter 24

——

Action Mailer is a simple Rails component that allows your applications to
send and receive e-mail. Using Action Mailer, your online store could send out
order confirmations, and your incident-tracking system could automatically
log problems submitted to a particular e-mail address.

24.1 Sending E-mail

Before you start sending e-mail, you'll need to configure Action Mailer. Its
default configuration works on some hosts, but you’ll want to create your own
configuration anyway, just to make it an explicit part of your application.

E-mail Configuration

E-mail configuration is part of a Rails application’s environment. If you want to
use the same configuration for development, testing, and production, add the
configuration to environment.ro in the config directory; otherwise, add different
configurations to the appropriate files in the config/environments directory.

You first have to decide how you want mail delivered.

config.action_mailer.delivery_method = :smtp | :sendmail | :test

The :smfp and :sendmail options are used when you want Action Mailer to
attempt to deliver e-mail. You'll clearly want to use one of these methods in
production.

The :test setting is great for unit and functional testing. E-mail will not be
delivered but instead will be appended to an array (accessible via the attribute
ActionMailer::Base.deliveries). This is the default delivery method in the test envi-
ronment. Interestingly, though, the default in development mode is :smtp. If
you want your development code to deliver e-mail, this is good. If you'd rather
disable e-mail delivery in development mode, edit the file development.rb in the
directory config/environments, and add the line

SENDING E-MAIL < 569

config.action_mailer.delivery_method = :test

The :sendmail setting delegates mail delivery to your local system’s sendmail
program, which is assumed to be in /usr/sbin. This delivery mechanism is not
particularly portable, because sendmail is not always installed in this directory
on different operating systems. It also relies on your local sendmail supporting
the -i and -t command options.

You achieve more portability by leaving this option at its default value of :smtp.
If you do so, though, you’ll need also to specify some additional configuration
to tell Action Mailer where to find an SMTP server to handle your outgoing
e-mail. This may be the machine running your web application, or it may be
a separate box (perhaps at your ISP if you're running Rails in a noncorporate
environment). Your system administrator will be able to give you the settings
for these parameters. You may also be able to determine them from your own
mail client’s configuration.

config.action_mailer.server_settings = {

:address => "domain.of.smtp.host.net",
rport = 25,
:domain => "domain.of.sender.net",

rauthentication => :login,
:user_name => '"dave",
:password => "secret"

}

:address => and :port =>
Determines the address and port of the SMTP server you’ll be using.
These default to localhost and 25, respectively.

:domain =>
The domain that the mailer should use when identifying itself to the
server. This is called the HELO domain (because HELO is the command the
client sends to the server to initiate a connection). You should normally
use the top-level domain name of the machine sending the e-mail, but
this depends on the settings of your SMTP server (some don’t check, and
some check to try to reduce spam and so-called open-relay issues).

:authentication =>
One of :plain, :login, or :cram_md5. Your server administrator will help
choose the right option. There is currently no way of using TLS (SSL)
to connect to a mail server from Rails. This parameter should be omitted
if your server does not require authentication. If you do omit this param-
eter, also omit (or comment out) the :user_name and :password options.

:user_name => and :password =>
Required if :authentication is set.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=569

SENDING E-MAIL < 570

Other configuration options apply to all delivery mechanisms.

config.action_mailer.perform_deliveries = true | false

If perform_deliveries is true (the default), mail will be delivered normally. If false,
requests to deliver mail will be silently ignored. This might be useful to disable
e-mail while testing.

config.action_mailer.raise_delivery errors = true | false

If raise_delivery_errors is true (the default), any errors that occur when initially
sending the e-mail will raise an exception back to your application. If false,
errors will be ignored. Remember that not all e-mail errors are immediate—an
e-mail might bounce three days after you send it, and your application will
(you hope) have moved on by then.

Set the character set used for new e-mail with

config.action_mailer.default_charset = "utf-8"

As with all configuration changes, you’ll need to restart your application if you
make changes to any of the environment files.

Sending E-mail
Now that we've got everything configured, let’s write some code to send e-mails.

By now you shouldn’t be surprised that Rails has a generator script to create
mailers. What might be surprising is where it creates them. In Rails, a mailer
is a class that’s stored in the app/models directory. It contains one or more
methods, each method corresponding to an e-mail template. To create the
body of the e-mail, these methods in turn use views (in just the same way that
controller actions use views to create HTML and XML). So, let’s create a mailer
for our store application. We’'ll use it to send two different types of e-mail: one
when an order is placed and a second when the order ships. The generate
mailer script takes the name of the mailer class, along with the names of the
e-mail action methods.
depot> ruby script/generate mailer OrderMailer confirm sent

exists app/models/

exists app/views/order_mailer

exists test/unit/

create test/fixtures/order_mailer

create app/models/order_mailer.rb

create test/unit/order_mailer_test.rb

create app/views/order_mailer/confirm.rhtml

create test/fixtures/order_mailer/confirm

create app/views/order_mailer/sent.rhtml
create test/fixtures/order_mailer/sent

Notice that we've created an OrderMailer class in app/models and two template
files, one for each e-mail type, in app/views/order_mailer. (We also created a

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=570

SENDING E-MAIL < 571

bunch of test-related files—we’ll look into these later in Section 24.3, Testing
E-mail, on page 580.)

Each method in the mailer class is responsible for setting up the environment
for sending a particular e-mail. It does this by setting up instance variables
containing data for the e-mail’'s header and body. Let’s look at an example
before going into the details. Here’s the code that was generated for our Order-
Mailer class.

class OrderMailer < ActionMailer::Base

def confirm(sent_at = Time.now)

@subject = 'OrderMailer#confirm'
@body = {}
@recipients = "'
@from ="'
@sent_on = sent_at
@headers = {}
end

def sent(sent_at = Time.now)

@subject = 'OrderMailer#sent'
... same as above ...
end
end

Apart from @body, which we’ll discuss in a second, the instance variables all
set up the envelope and header of the e-mail that’s to be created:

@bcc = array or string
Blind-copy recipients, using the same format as @recipients.

@cc = array or string
Carbon-copy recipients, using the same format as @recipients.

@charset = sfring
The character set used in the e-mail’'s Content-Type header. Defaults to
the default_charset attribute in server_settings, or "utf-8".

@from = array or string
One or more e-mail addresses to appear on the From: line, using the same
format as @recipients. You'll probably want to use the same domain name
in these addresses as the domain you configured in server_settings.

@headers = hash
A hash of header name/value pairs, used to add arbitrary header lines
to the e-mail.

@headers["Organization"] = "Pragmatic Programmers, LLC"

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=571

SENDING E-MAIL < 572

@recipients = array or sfring
One or more recipient e-mail addresses. These may be simple addresses,
such as dave@pragprog.com, or some identifying phrase followed by the
e-mail address in angle brackets.

@recipients = ["andy@ragprog.com", "Dave Thomas <dave@pragprog.com>" 1]

@sent_on = time
A Time object that sets the e-mail’s Dafe: header. If not specified, the
current date and time will be used.

@subject = sfring
The subject line for the e-mail.

The @body is a hash, used to pass values to the template that contains the
e-mail. We'll see how that works shortly.

E-mail Templates

The generate script created two e-mail templates in app/views/order_mailer, one
for each action in the OrderMailer class. These are regular ERb rhtml files. We'll
use them to create plain-text e-mails (we’ll see later how to create HTML e-
mail). As with the templates we use to create our application’s web pages,
the files contain a combination of static text and dynamic content. We can
customize the template in confirm.rhtml; this is the e-mail that is sent to confirm
an order.

Download el/mailer/app/views/order_mailer/confirm.rhtml

Dear <%= @order.name %>

Thank you for your recent order from The Pragmatic Store.

You ordered the following items:

<%= render(:partial => "./Tine_item", :collection => @order.line_items) %>
We'll send you a separate e-mail when your order ships.

There’s one small wrinkle in this template. We have to give render the explicit
path to the template (the leading ./) because we're not invoking the view from
areal controller and Rails can’t guess the default location.

The partial template that renders a line item formats a single line with the
item quantity and the title. Because we're in a template, all the regular helper
methods, such as fruncate, are available.

Download el/mailer/app/views/order_mailer/_line_item.rhtml

<%= sprintf("%2d x %s",
Tine_item.quantity,
truncate(line_item.product.title, 50)) %>

http://media.pragprog.com/titles/rails2/code/e1/mailer/app/views/order_mailer/confirm.rhtml
http://media.pragprog.com/titles/rails2/code/e1/mailer/app/views/order_mailer/_line_item.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=572

SENDING E-MAIL < 573

We now have to go back and fill in the confirm method in the OrderMailer class.

Download el/mailer/app/models/order_mailer.rb

class OrderMailer < ActionMailer::Base
def confirm(order)

@subject = "Pragmatic Store Order Confirmation"
@recipients = order.email
@from = 'orders@pragprog.com'
@sent_on = Time.now
@body["order"] = order
end

end

Now we get to see what the @body hash does: values set into it are available as
instance variables in the template. In this case, the order object will be stored
into @order.

Generating E-mails

Now that we have our template set up and our mailer method defined, we can
use them in our regular controllers to create and/or send e-mails. However,
we don’t call the method directly. That’s because there are two different ways
you can create e-mail from within Rails: you can create an e-mail as an object,
or you can deliver an e-mail to its recipients. To access these functions, we
call class methods called create_xxx and deliver_xxx, where xxx is the name of
the instance method we wrote in OrderMailer. We pass to these class methods
the parameter(s) that we’d like our instance methods to receive. To send an
order confirmation e-mail, for example, we could call

OrderMailer.deliver_confirm(order)

To experiment with this without actually sending any e-mails, we can write
a simple action that creates an e-mail and displays its contents in a browser
window.

Download el/mailer/app/controllers/test_controller.rb

class TestController < ApplicationController
def create_order
order = Order.find_by_name("Dave Thomas™)
email = OrderMailer.create_confirm(order)
render(:text => "<pre>" + email.encoded + "</pre>")
end
end

The create_confirm call invokes our confirm instance method to set up the
details of an e-mail. Our template is used to generate the body text. The
body, along with the header information, gets added to a new e-mail object,
which create_confirm returns. The object is an instance of class TMail::Mail.! The

1. TMail is Minero Aoki’s excellent e-mail library; a version ships with Rails.

http://media.pragprog.com/titles/rails2/code/e1/mailer/app/models/order_mailer.rb
http://media.pragprog.com/titles/rails2/code/e1/mailer/app/controllers/test_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=573

SENDING E-MAIL < 574

email.encoded call returns the text of the e-mail we just created: our browser
will show something like

Date: Thu, 12 Oct 2006 12:17:36 -0500

From: orders@pragprog.com

To: dave@pragprog.com

Subject: Pragmatic Store Order Confirmation

Mime-Version: 1.0
Content-Type: text/plain; charset=utf-8

Dear Dave Thomas
Thank you for your recent order from The Pragmatic Store.
You ordered the following items:

1 x Programming Ruby, 2nd Edition
1 x Pragmatic Project Automation

We'll send you a separate e-mail when your order ships.

If we’d wanted to send the e-mail, rather than just create an e-mail object, we
could have called OrderMailer.deliver_confirm(order).

Delivering HTML-Format E-mail

One way of creating HTML e-mail is to create a template that generates HTML
for the e-mail body and then set the content type on the TMail::Mail object to
text/html before delivering the message.

We'll start by implementing the sent method in OrderMailer. (In reality, there’s
so much commonality between this method and the original confirm method
that we’d probably refactor both to use a shared helper.)

Download el/mailer/app/models/order_mailer.rb

class OrderMailer < ActionMailer::Base
def sent(order)

@subject = "Pragmatic Order Shipped"
@recipients = order.email
@from = 'orders@pragprog.com'
@sent_on = Time.now
@body["order"] = order

end

end

Next, we’ll write the sent.rhtml template.
Download el/mailer/app/views/order_mailer/sent.rhtml

<h3>Pragmatic Order Shipped</h3>
<p>

This is just to let you know that we've shipped your recent order:
</p>

http://media.pragprog.com/titles/rails2/code/e1/mailer/app/models/order_mailer.rb
http://media.pragprog.com/titles/rails2/code/e1/mailer/app/views/order_mailer/sent.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=574

SENDING E-MAIL < 575

<table>

<tr><th colspan="2">Qty</th><th>Description</th></tr>

<%= render(:partial => "./html_line_item", :collection => @order.line_items) %>
</table>

We'll need a new partial template that generates table rows. This goes in the
file _html_line_item.rhtml.

Download el/mailer/app/views/order_mailer/_html_line_item.rhtml

<tr>

<td><%= htm1_Tline_item.quantity %></td>
<td>×</td>

<td><%= htm1_Tline_item.product.title %></td>
</tr>

And finally we’ll test this using an action method that renders the e-mail, sets
the content type to text/html, and calls the mailer to deliver it.

Download el/mailer/app/controllers/test_controller.rb

class TestController < ApplicationController
def ship_order
order = Order.find_by_name("Dave Thomas™)
email = OrderMailer.create_sent(order)
email.set_content_type("text/html")
OrderMailer.deliver(email)
render(:text => "Thank you...")
end
end

The resulting e-mail will look something like Figure 24.1, on the next page.

Delivering Multiple Content Types

Some people prefer receiving e-mail in plain-text format, while others like the
look of an HTML e-mail. Rails makes it easy to send e-mail messages that
contain alternative content formats, allowing the user (or their e-mail client)
to decide what they’d prefer to view.

In the preceding section, we created an HTML e-mail by generating HTML
content and then setting the content type to text/html. It turns out that Rails
has a convention that will do all this, and more, automatically.

The view file for our sent action was called sent.rhtml. This is the standard Rails
naming convention. But, for e-mail templates, there’s a little bit more naming
magic. If you name a template file

name.content.type.rhtml

Rails will automatically set the content type of the e-mail to the content type
in the filename. For our previous example, we could have set the view file-
name to sent.text.htmlrhtml, and Rails would have sent it as an HTML e-mail
automatically. But there’s more. If you create multiple templates with the

http://media.pragprog.com/titles/rails2/code/e1/mailer/app/views/order_mailer/_html_line_item.rhtml
http://media.pragprog.com/titles/rails2/code/e1/mailer/app/controllers/test_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=575

SENDING E-MAIL €@ 576

O M ™ Pragmatic Order Shipped — Inbox (&)
oy E‘_ " R - '1';7

From: Pragmatic Orders
Subject: Pragmatic Order Shipped
Date: October 12, 2006 12:54:55 PM CDT
To: Dave Thomas

Pragmatic Order Shipped
This is just to let you know that we've shipped your recent order:

Gty Description
1 x Programming Ruby, 2nd Edition
1 % Pragmatic Project Automation

Figure 24.1: An HTML-Format E-mail

same name but with different content types embedded in their filenames, Rails
will send all of them in one e-mail, arranging the content so that the e-mail
client will be able to distinguish each. Thus by creating sent.text.plain.rhtml and
sent.text.html.rtml templates, we could give the user the option of viewing our
e-mail as either text or HTML.

Let’s try this. We'll set up a new action.