

Mastering Oracle
SQL and SQL*Plus

LEX DE HAAN

Mastering Oracle SQL and SQL*Plus

Copyright © 2005 by Lex de Haan

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-448-7

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Tony Davis
Technical Reviewers: Cary Millsap and Joakim Treugut
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, John Franklin,

Jason Gilmore, Chris Mills, Dominic Shakeshaft, Jim Sumser
Project Manager: Beckie Stones
Copy Edit Manager: Nicole LeClerc
Copy Editor: Marilyn Smith
Production Manager: Kari Brooks-Copony
Production Editor: Kelly Winquist
Compositor: Dina Quan
Proofreader: Liz Welch
Indexer: Michael Brinkman
Artist: Kinetic Publishing
Cover Designer: Kurt Krames
Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233 Spring Street,
6th Floor, New York, NY 10013, and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, e-mail orders@springer.de,
or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads section,
and also on the author’s web site, at http://www.naturaljoin.nl.

Contents at a Glance

Foreword. ix

About the Author . xi

About the Technical Reviewers. xiii

Acknowledgments . xv

Introduction . xvii

CHAPTER 1 Relational Database Systems and Oracle . 1

CHAPTER 2 Introduction to SQL, iSQL*Plus, and SQL*Plus 25

CHAPTER 3 Data Definition, Part I . 65

CHAPTER 4 Retrieval: The Basics . 77

CHAPTER 5 Retrieval: Functions . 113

CHAPTER 6 Data Manipulation . 141

CHAPTER 7 Data Definition, Part II . 159

CHAPTER 8 Retrieval: Multiple Tables and Aggregation . 191

CHAPTER 9 Retrieval: Some Advanced Features . 233

CHAPTER 10 Views . 265

CHAPTER 11 SQL*Plus and iSQL*Plus . 289

CHAPTER 12 Object-Relational Features . 327

APPENDIX A Quick Reference to SQL and SQL*Plus . 349

APPENDIX B Data Dictionary Overview . 373

APPENDIX C The Seven Case Tables . 381

APPENDIX D Answers to the Exercises . 393

APPENDIX E Oracle Documentation, Web Sites, and Bibliography 443

INDEX . 449

iii

Contents

Foreword. ix

About the Author . xi

About the Technical Reviewers. xiii

Acknowledgments . xv

Introduction . xvii

■CHAPTER 1 Relational Database Systems and Oracle 1

1.1 Information Needs and Information Systems . 1

1.2 Database Design . 2

1.3 Database Management Systems . 8

1.4 Relational Database Management Systems . 10

1.5 Relational Data Structures . 11

1.6 Relational Operators . 15

1.7 How Relational Is My DBMS? . 16

1.8 The Oracle Software Environment . 18

1.9 Case Tables . 19

■CHAPTER 2 Introduction to SQL, iSQL*Plus, and SQL*Plus 25

2.1 Overview of SQL . 25

2.2 Basic SQL Concepts and Terminology . 32

2.3 Introduction to iSQL*Plus . 39

2.4 Introduction to SQL*Plus . 43

■CHAPTER 3 Data Definition, Part I . 65

3.1 Schemas and Users . 65

3.2 Table Creation . 66

3.3 Datatypes . 67

3.4 Commands for Creating the Case Tables . 69

3.5 The Data Dictionary . 71

v

■CONTENTSvi

■CHAPTER 4 Retrieval: The Basics . 77

4.1 Overview of the SELECT Command . 77

4.2 The SELECT Clause . 79

4.3 The WHERE Clause . 85

4.4 The ORDER BY Clause . 86

4.5 AND, OR, and NOT . 89

4.6 BETWEEN, IN, and LIKE . 93

4.7 CASE Expressions . 97

4.8 Subqueries . 100

4.9 Null Values . 105

4.10 Truth Tables . 110

4.11 Exercises . 111

■CHAPTER 5 Retrieval: Functions . 113

5.1 Overview of Functions . 113

5.2 Arithmetic Functions . 115

5.3 Text Functions . 117

5.4 Regular Expressions . 121

5.5 Date Functions . 127

5.6 General Functions . 130

5.7 Conversion Functions . 132

5.8 Stored Functions . 137

5.9 Exercises . 139

■CHAPTER 6 Data Manipulation . 141

6.1 The INSERT Command . 141

6.2 The UPDATE Command . 145

6.3 The DELETE Command . 147

6.4 The MERGE Command . 149

6.5 Transaction Processing . 151

6.6 Locking and Read Consistency . 154

■CHAPTER 7 Data Definition, Part II . 159

7.1 The CREATE TABLE Command . 159

7.2 More on Datatypes . 161

7.3 The ALTER TABLE and RENAME Commands . 163

7.4 Constraints . 166

7.5 Indexes . 174

7.6 Performance Monitoring with SQL*Plus AUTOTRACE 178

7.7 Sequences . 181

7.8 Synonyms . 183

7.9 The CURRENT_SCHEMA Setting . 185

7.10 The DROP TABLE Command . 186

7.11 The TRUNCATE Command . 188

7.12 The COMMENT Command . 188

7.13 Exercises . 189

■CHAPTER 8 Retrieval: Multiple Tables and Aggregation 191

8.1 Tuple Variables . 192

8.2 Joins . 194

8.3 Alternative ANSI/ISO Standard Join Syntax . 199

8.4 Outer Joins . 202

8.5 The GROUP BY Component . 206

8.6 Group Functions . 209

8.7 The HAVING Clause . 215

8.8 Advanced GROUP BY Features . 220

8.9 Partitioned Outer Joins . 225

8.10 Set Operators . 227

8.11 Exercises . 231

■CHAPTER 9 Retrieval: Some Advanced Features . 233

9.1 Subqueries Continued . 233

9.2 Subqueries in the SELECT Clause . 241

9.3 Subqueries in the FROM Clause . 242

9.4 The WITH Clause . 244

9.5 Hierarchical Queries . 245

9.6 Analytical Functions and Windows . 251

9.7 Flashback Features . 257

9.8 Exercises . 262

■CHAPTER 10 Views . 265

10.1 What Are Views? . 265

10.2 View Creation . 266

10.3 What Can You Do with Views? . 271

10.4 Data Manipulation via Views . 274

10.5 Data Manipulation via Inline Views . 282

■CONTENTS vii

■CONTENTSviii

10.6 Views and Performance . 283

10.7 Materialized Views . 284

10.8 Exercises . 286

■CHAPTER 11 SQL*Plus and iSQL*Plus . 289

11.1 SQL*Plus Variables . 290

11.2 Bind Variables . 300

11.3 SQL*Plus Scripts . 303

11.4 Report Generation with SQL*Plus . 308

11.5 HTML in SQL*Plus and iSQL*Plus . 320

11.6 Exercises . 325

■CHAPTER 12 Object-Relational Features . 327

12.1 More Datatypes . 327

12.2 Varrays . 329

12.3 Nested Tables . 334

12.4 User-Defined Types . 338

12.5 Multiset Operators . 340

12.6 Exercises . 346

■APPENDIX A Quick Reference to SQL and SQL*Plus 349

■APPENDIX B Data Dictionary Overview . 373

■APPENDIX C The Seven Case Tables . 381

■APPENDIX D Answers to the Exercises . 393

■APPENDIX E Oracle Documentation, Web Sites,
and Bibliography . 443

■INDEX . 449

Foreword

It is a true honor to be asked to write an introduction to a book by Lex de Haan. I just hope I
can give Lex the credit he deserves for his friendship, knowledge, enthusiasm, carpentry . . .
and sheer energy in the many years we’ve been doing things in the Oracle world.

Lex spent 14 years in Oracle, starting as an instructor in Oracle Netherlands, becoming
initiator and coordinator of Oracle’s excellent Technical Seminar business, and finally ending
up in Oracle’s Curriculum Development division as a manager for a bunch of very excellent
course developers. He is never afraid to start up something new, to enter new and untried
waters… a personal trait he shares with about 0.00001% of the global population.

Then, finally, Lex started up for himself, and, of course, the company name had to reflect
his twisted, funny way of thinking: Natural Join. Who else can get away with it, looking stone-
faced and with just the slightest twinkle in his eyes, if you look really carefully?

Since then Lex, as always, hasn’t looked back but has worked nonstop as instructor all
over Europe and the Middle East, and as writer. The book in front of you is, in fact, an update
of a book he wrote many moons ago, and which has served as a textbook in various Dutch
schools. The upgrade (and translation into English) has been done in an incredibly short time,
and as the first one ever, he has kept his deadlines with editor Tony Davis from Apress. Of
course. Nothing less should be expected from Lex.

Lex is one of the original members of the OakTable Network, and the man behind the idea
of Mini Oak Tables (MOTs), which he produces in his loft, where he has a fair selection of tools
to handle most things you’d ever want to do to wood. Lately, he has also produced a bathroom
table for me with the universal dimensions 42×4×42 centimeters. After all, 42 is the answer
according to the Hitchhiker’s Guide to the Galaxy. And he has started producing bottle open-
ers in oak. They work.

Before writing this, I had the pleasure of reading the comments made by Cary Millsap and
Joakim Treugut (both Oakies as well) on the contents of this book, and they must be the most
consistently positive remarks I’ve seen from those two for a very, very long time.

I think Lex has done it again. At Oracle, he had to excel. As a bass singer, he had to be not
just good, but very good. As a carpenter, he has to deliver absolutely perfect MOTs, 42 tables,
and bottle openers. As a writer, he has to deliver a standard-setting book. It’s really rather irri-
tating to be around him. If, that is, it wasn’t for his very nice wife Juliette, who is, I suspect,
very much responsible for the energy and good mood always emanating from Lex.

I look forward to many more meetings and late nights with my friend Lex, who shares
with several of us a deep affection for the Monty Pythonesque aspects of this world.

Oh, and if you haven’t seen Lex in person, I should tell you that he is built exactly like the
typical, Dutch house he lives in: tall and narrow, with a lot of good stuff on the upper floor.

Mogens Nørgaard
Technical Director
Miracle A/S

ix

About the Author

■LEX DE HAAN studied applied mathematics at the Technical University in
Delft, The Netherlands. His experience with Oracle goes back to the mid-
1980s, version 4. He worked for Oracle Corporation from 1990 until 2004, in
various education-related roles, ending up in Server Technologies (product
development) as senior curriculum manager for the advanced DBA
curriculum. In that role, he was involved in the development of Oracle9i
and Oracle Database 10g. In March 2004, he decided to go independent

and founded Natural Join B.V. (http://www.naturaljoin.nl). Since 1999, he has been involved
in the ISO SQL language standardization process, as a member of the Dutch national body.

xi

About the Technical
Reviewers

■CARY MILLSAP is the principal author of Optimizing Oracle Performance,
and the lead designer and developer of the Hotsos PD101 course. Prior to
cofounding Hotsos in 1999, he served for ten years at Oracle Corporation
as one of the company’s leading system performance experts. At Oracle,
he also founded and served as vice president of the 80-person System
Performance Group. He has educated thousands of Oracle consultants,
support analysts, developers, and customers in the optimal use of Oracle

technology through commitment to writing, teaching, and speaking at public events.

■JOCKE TREUGUT started to work with databases at the Stockholm Stock
Exchange in 1985. In 1993, he began to use Oracle, and he became very
interested in its internals and performance. After attending a wonderful
workshop, “How to get information rather than data from the V$ views,”
by Dave Ensor at the EOUG 1996, Jocke understood that the optimizer and
optimization should be his area. In 1997, he started to work for Oracle
Support (Sweden) and became their performance expert, remaining there

for five years. He then moved to New Zealand, where he worked for Synergy International and
created the Oracle Unleashed service; and his presentation about performance tuning at
NZOUG 2003 was voted as the best one. He is now working for Aircom International, where
he troubleshoots and optimizes database systems around the world. He would like to thank
Nancy Yip, Åke Hörnell, Stefan Sundberg, Janne Fälldin, Göran Forsström, Rikard Hedberg,
Oracle Support (Sweden), the OakTable Network, and Aircom for their support in fulfilling
his dream.

xiii

Acknowledgments

Iwant to thank many friends who contributed to the quality of this book by reviewing it and
providing their feedback. Cary Millsap and Jocke Treugut, two good friends and members of the
OakTable network, were my main reviewers. Cary helped me with his constant focus on “doing
things right” from the very beginning, and Jocke helped me find the right balance between the-
ory and practice. Martin Jensen, one of my good old friends inside Oracle and an Oakie as well,
provided precisely the feedback I needed from his impressive Oracle consulting background.
Stephen Cannan, my colleague in the Dutch national body for the SQL Standardization and the
convenor of the international ISO/IEC/JTC1/SC32/WG3 committee, commented on my draft
chapters based on his vast experience in the SQL standardization area.

Kristina Youso, a former colleague and good friend from my years in Global Curriculum
Development in Oracle and one of the best content editors I have ever worked with, was so
kind to check and improve my English language.

Last, but not least, I must mention the professionalism and enthusiasm of all the Apress
folks involved in the production of this book: Tony Davis, Beckie Stones, Marilyn Smith, and
Kelly Winquist. Thanks folks . . .

My two daughters are too old to be mentioned here, the cat was not involved in any way,
and I leave it up to Mogens Nørgaard to say something nice about my wife, Juliette.

Reactions to this book are more than welcome; send your feedback or questions to the
publisher, or via e-mail to the author.

Lex de Haan
http://www.naturaljoin.nl
E-mail: lex.de.haan@naturaljoin.nl

xv

Introduction

This book is a translation and enhancement of the third edition of a book I wrote about SQL
in Dutch. The first edition was published in February 1993, the second edition in April 1998,
and I finished the third edition to reflect Oracle Database 10g in the summer of 2004. I always
thought that there were more than enough books in English about the SQL language out there
already, but finally, some good friends convinced me to publish an English version of my book.

I hate thick books. I start reading them, put them aside on a certain pile on my desk, from
where they are purged every now and then (if the pile becomes too high), without being read
to the end. Therefore, in my own book, I have tried to be as concise as possible.

About This Book
This is not a book about advanced SQL. It is not a book about the Oracle optimizer and diagnos-
tic tools. And it is not a book about relational calculus, predicate logic, or set theory. This book is
a SQL primer. It is meant to help you learn Oracle SQL by yourself. It is ideal for self-study, but it
can also be used as a guide for SQL workshops and instructor-led classroom training.

This is a practical book; therefore, you need access to an Oracle environment for hands-
on exercises. All the software that you need to install Oracle Database 10g on Microsoft
Windows and to create an Oracle database is available from the CD-ROM included with this
book. This book is based on the following Oracle release:

• Oracle Database 10g for Windows (or Red Hat Linux) Release 10.1.0.x

Although this book assumes an Oracle Database 10g environment, you can also use it
with Oracle9i or even with Oracle8i. However, Oracle is adding new SQL syntax with every
new release; therefore, some SQL syntax examples could fail when issued against these earlier
releases. You can check this yourself by querying the online Oracle documentation. Oracle
SQL Reference offers a section titled “Oracle Database 10g New Features in the SQL Reference”
at the end of the introduction, preceding Chapter 1.

I follow the ANSI/ISO standard (SQL:2003) as much as possible. Only in cases of useful
Oracle-specific SQL extensions do I deviate from this international standard. Therefore, most
SQL examples given in this book are probably also valid for other database management sys-
tem (DBMS) implementations supporting the SQL language. By the way, Oracle SQL Reference
contains an Appendix B, “Oracle and Standard SQL,” discussing the differences between the
ANSI/ISO SQL standard and the Oracle SQL implementation.

xvii

The SQL and SQL*Plus commands are explained with concrete examples. The examples
are presented clearly in a listing format, as in the example shown here.

Listing I-1. A SQL SELECT Command

SQL> select 'Hello world!'
2 from dual;

I focus on the main points, avoiding peripheral issues and technical details as much as
possible.

This book does not intend (nor pretend) to be complete; the SQL language is too volumi-
nous and the Oracle environment is much too complex. Oracle SQL Reference contains about
1,800 pages these days, and even Oracle SQL Quick Reference is not really a small document,
with its 170 pages. Moreover, the current ANSI/ISO SQL standard documentation has grown
to a size that simply is not printable anymore.

The main objective of this book is the combination of usability and affordability. The offi-
cial Oracle documentation offers detailed information in case you need it. Therefore, it is a
good idea to have the Oracle manuals available while working through the examples and exer-
cises in this book. The Oracle documentation is available online on the Oracle Technology
Network (http://www.oracle.com/technology/documentation) and can be downloaded from
there (if you don’t want to keep an Internet connection open all the time).

The focus of this book is using SQL for data retrieval. Data definition and data manipulation
are covered in less detail. Security, authorization, and database administration are mentioned
only for the sake of completeness in the SQL overview section in Chapter 2.

Throughout the book, we use a case consisting of seven tables. These seven tables contain
information about employees, departments, and courses. As Chris Date, a well-known guru in
the professional database world (see Appendix E for references to some of the great books he
wrote), said during one of his seminars, “There are only three databases: employees and
departments, orders and line items, and suppliers and shipments.”

The cardinality of the case tables is deliberately kept low. This enables you to check the
results of your SQL commands manually, which is nice while you’re learning to master the SQL
language. In general, checking your results manually is impossible in real information systems,
due to the volume of data in such systems. It is not the data volume or query response time that
matters in this book. What’s important is the database structure complexity and SQL statement
correctness. By the way, the two case tables EMPLOYEES and DEPARTMENTS show a striking resem-
blance to good old SCOTT.EMP and SCOTT.DEPT, two of the Oracle demo tables that have been
shipped with Oracle pretty much from the very beginning.

About the Chapters of This Book
Chapter 1 provides a concise introduction to the theoretical background of information sys-
tems and some popular database terminology, and then continues with a global overview of
the Oracle software and an introduction to the seven case tables. If you really don’t like theory
and you want to get started with SQL as soon as possible, you could skip this chapter almost

■INTRODUCTIONxviii

entirely and start reading about the case tables in Section 1.9. However, I think Chapter 1 con-
tains a lot of important and useful information. If you skip it, you might want to revisit it later.

Chapter 2 starts with a high-level overview of the SQL language, followed by an introduc-
tion to SQL*Plus and iSQL*Plus, the two most obvious environments to execute SQL
statements interactively. In Chapter 11, we revisit SQL*Plus. That chapter covers some more
advanced SQL*Plus features, such as using substitution variables, stored scripts, reporting,
and working with HTML.

Data definition is covered in two nonconsecutive chapters: Chapter 3 and Chapter 7. This
is done to allow you to start with SQL retrieval as soon as possible. Therefore, Chapter 3 covers
only the most basic data-definition concepts (tables, datatypes, and the data dictionary).

Retrieval is also spread over multiple chapters—four chapters, to be precise. Chapter 4
focuses on the SELECT, WHERE, and ORDER BY clauses of the SELECT statement. The most impor-
tant SQL functions are covered in Chapter 5, which also covers null values and subqueries. In
Chapter 8, we start accessing multiple tables at the same time (joining tables) and aggregating
query results; in other words, the FROM, the GROUP BY, and the HAVING clauses get our attention
in that chapter. To finish the coverage of data retrieval with SQL, Chapter 9 revisits subqueries
to show some more advanced subquery constructs. That chapter also introduces windows
and analytical functions, hierarchical queries, and flashback features.

■Note From Chapter 4 onwards, all chapters except Chapter 6 end with a set of exercises. The answers to
these exercises are in Appendix D.

Chapter 6 discusses data manipulation with SQL. The commands INSERT, UPDATE, DELETE,
and MERGE are introduced. This chapter also pays attention to some topics related to data
manipulation: transaction processing, read consistency, and locking.

In Chapter 7, we revisit data definition, to drill down into constraints, indexes, sequences,
and performance. Synonyms are explained in the same chapter. Chapters 8 and 9 continue
coverage of data retrieval with SQL.

Chapter 10 introduces views. What are views, when should you use them, and what are
their restrictions? This chapter explores the possibilities of data manipulation via views, dis-
cusses views and performance, and introduces materialized views.

Chapter 11 is a continuation of Chapter 2, covering more advanced SQL*Plus and
iSQL*Plus features.

Oracle is an object-relational database management system. Since Oracle8, many object-
oriented features have been added to the SQL language. As an introduction to these features,
Chapter 12 provides a high-level overview of user-defined datatypes, arrays, nested tables,
and multiset operators.

The five appendices at the end of this book offer a SQL*Plus and SQL quick reference, an
overview of the Oracle data dictionary, a description of the structure and contents of the seven
case tables, the answers to the exercises, and references to other sources of information.

■INTRODUCTION xix

About the CD-ROM
The CD-ROM included with this book contains a Developer License for Oracle Database 10g,
allowing you to install the Oracle software on a Windows machine and to create a database.
The scripts to set up the schema and to create the seven case tables, all examples and answers
to the exercises, and various tips about how to set up the right database environment for this
book are available from my web site at http://www.naturaljoin.nl, or via the Downloads sec-
tion of the publisher’s web site, http://www.apress.com.

Oracle Technology Network (OTN)
The full Oracle documentation is available online via OTN, the Oracle Technology Network, at
http://www.oracle.com/technology/documentation. If you want to install Oracle Database 10g
on a different operating system, you can download the Oracle software for various platforms
from OTN at http://www.oracle.com/technology/software/products/database/oracle10g.

■INTRODUCTIONxx

Relational Database Systems
and Oracle

The focus of this book is writing SQL in Oracle, which is a relational database management
system. This first chapter provides a brief introduction to relational database systems in
general, followed by an introduction to the Oracle software environment. The main objective
of this chapter is to help you find your way in the relational database jungle and to get
acquainted with the most important database terminology.

The first three sections discuss the main reasons for automating information systems
using databases, what needs to be done to design and build relational database systems, and
the various components of a relational database management system. The following sections
go into more depth about the theoretical foundation of relational database management
systems.

This chapter also gives a brief overview of the Oracle software environment: the compo-
nents of such an environment, the characteristics of those components, and what can you do
with those components.

The last section of this chapter introduces seven sample tables, which are used in the
examples and exercises throughout this book to help you develop your SQL skills. In order to
be able to formulate and execute the correct SQL statements, you’ll need to understand the
structures and relationships of these tables.

This chapter does not cover any object-relational database features. Chapter 12 discusses
the various Oracle features in that area.

1.1 Information Needs and Information Systems
Organizations have business objectives. In order to realize those business objectives, many
decisions must be made on a daily basis. Typically, a lot of information is needed to make the
right decisions; however, this information is not always available in the appropriate format.
Therefore, organizations need formal systems that will allow them to produce the required
information, in the right format, at the right time. Such systems are called information
systems. An information system is a simplified reflection (a model) of the real world within
the organization.

Information systems don’t necessarily need to be automated—the data might reside in
card files, cabinets, or other physical storage mechanisms. This data can be converted into the
desired information using certain procedures or actions. In general, there are two main rea-
sons to automate information systems: 1

C H A P T E R 1

■ ■ ■

• Complexity: The data structures or the data processing procedures become too
complicated.

• Volume: The volume of the data to be administered becomes too large.

If an organization decides to automate an information system because of complexity or
volume (or both), it typically will need to use some database technology.

The main advantages of using database technology are the following:

• Accessibility: Ad hoc data-retrieval functionality, data-entry and data-reporting
facilities, and concurrency handling in a multiuser environment

• Availability: Recovery facilities in case of system crashes and human errors

• Security: Data access control, privileges, and auditing

• Manageability: Utilities to efficiently manage large volumes of data

When specifying or modeling information needs, it is a good idea to maintain a clear sep-
aration between information and application. In other words, we separate the following two
aspects:

• What: The information content needed. This is the logical level.

• How: The desired format of the information, the way that the results can be derived
from the data stored in the information system, the minimum performance require-
ments, and so on. This is the physical level.

Database systems such as Oracle enable us to maintain this separation between the
“what” and the “how” aspects, allowing us to concentrate on the first one. This is because
their implementation is based on the relational model. The relational model is explained
later in this chapter, in Sections 1.4 through 1.7.

1.2 Database Design
One of the problems with using traditional third-generation programming languages (such as
COBOL, Pascal, Fortran, and C) is the ongoing maintenance of existing code, because these
languages don’t separate the “what” and the “how” aspects of information needs. That’s why
programmers using those languages sometimes spend more than 75% of their precious time
on maintenance of existing programs, leaving little time for them to build new programs.

When using database technology, organizations usually need many database applications
to process the data residing in the database. These database applications are typically devel-
oped using fourth- or fifth-generation application development environments, which
significantly enhance productivity by enabling users to develop database applications faster
while producing applications with lower maintenance costs. However, in order to be success-
ful using these fourth- and fifth-generation application development tools, developers must
start thinking about the structure of their data first.

CHAPTER 1 ■ RELATIONAL DATABASE SYSTEMS AND ORACLE2

CHAPTER 1 ■ RELATIONAL DATABASE SYSTEMS AND ORACLE 3

It is very important to spend enough time on designing the data model before you start
coding your applications. Data model mistakes discovered in a later stage, when the system is
already in production, are very difficult and expensive to fix.

Entities and Attributes
In a database, we store facts about certain objects. In database jargon, such objects are com-
monly referred to as entities. For each entity, we are typically interested in a set of observable
and relevant properties, commonly referred to as attributes.

When designing a data model for your information system, you begin with two questions:

1. Which entities are relevant for the information system?

2. Which attributes are relevant for each entity, and which values are allowed for those
attributes?

We’ll add a third question to this list before the end of this chapter, to make the list
complete.

For example, consider a company in the information technology training business.
Examples of relevant entities for the information system of this company could be course
attendee, classroom, instructor, registration, confirmation, invoice, course, and so on. An
example of a partial list of relevant attributes for the entity ATTENDEE could be the following:

• Registration number

• Name

• Address

• City

• Date of birth

• Blood group

• Age

• Gender

For the COURSE entity, the attribute list could look as follows:

• Title

• Duration (in days)

• Price

• Frequency

• Maximum number of attendees

■Note There are many different terminology conventions for entities and attributes, such as objects,
object types, types, object occurrences, and so on. The terminology itself is not important, but once you have
made a choice, you should use it consistently.

Generic vs. Specific
The difference between generic versus specific is very important in database design. For exam-
ple, common words in natural languages such as book and course have both generic and
specific meanings. In spoken language, the precise meaning of these words is normally obvi-
ous from the context in which they are used.

When designing data models, you must be very careful about the distinction between
generic and specific meanings of the same word. For example, a course has a title and a dura-
tion (generic), while a specific course offering has a location, a certain number of attendees,
and an instructor. A specific book on the shelf might have your name and purchase date on
the cover page, and it might be full of your personal annotations. A generic book has a title,
an author, a publisher, and an ISBN code. This means that you should be careful when using
words like course and book for database entities, because they could be confusing and suggest
the wrong meaning.

Moreover, we must maintain a clear separation between an entity itself at the generic
level and a specific occurrence of that entity. Along the same lines, there is a difference
between an entity attribute (at the generic level) and a specific attribute value for a particular
entity occurrence.

Redundancy
There are two types of data: base data and derivable data. Base data is data that cannot be
derived in any way from other data residing in the information system. It is crucial that base
data is stored in the database. Derivable data can be deduced (for example, with a formula)
from other data. For example, if we store both the age and the date of birth of each course
attendee in our database, these two attributes are mutually derivable—assuming that the
current date is available at any moment.

Actually, every question issued against a database results in derived data. In other words,
it is both undesirable and impossible to store all derivable data in an information system.
Storage of derivable data is referred to as redundancy. Another way of defining redundancy is
storage of the same data more than once.

Sometimes, it makes sense to store redundant data in a database; for example, in cases
where response time is crucial and in cases where repeated computation or derivation of the
desired data would be too time-consuming. But typically, storage of redundant data in a data-
base should be avoided. First of all, it is a waste of storage capacity. However, that’s not the
biggest problem, since gigabytes of disk capacity can be bought for relatively low prices these
days. The challenge with redundant data storage lies in its ongoing maintenance.

With redundant data in your database, it is difficult to process data manipulation cor-
rectly under all circumstances. In case something goes wrong, you could end up with an

CHAPTER 1 ■ RELATIONAL DATABASE SYSTEMS AND ORACLE4

information system containing internal contradictions. In other words, you would have
inconsistent data. Therefore, redundancy in an information system results in ongoing consis-
tency problems.

When considering the storage of redundant data in an information system, it is important
to distinguish two types of information systems:

• Online transaction processing (OLTP) systems, which typically have a high volume of
continuous data changes

• Decision support (DSS) systems, which are mainly, or even exclusively, used for data
retrieval and reporting, and are loaded or refreshed at certain frequencies with data
from OLTP systems

In DSS systems, it is common practice to store a lot of redundant data to improve system
response times. Retrieval of stored data is always faster than data derivation, and the risk of
inconsistency is nonexistent because most DSS systems are read-only.

Consistency, Integrity, and Integrity Constraints
Obviously, consistency is a first requirement for any information system, ensuring that you
can retrieve reliable information from that system. In other words, you don’t want any
contradictions in your information system.

For example, suppose we derive the following information from our training business
information system:

• Attendee 6749 was born on February 13, 2093.

• The same attendee 6749 appears to have gender Z.

• There is another, different attendee with the same number 6749.

• We see a course registration for attendee 8462, but this number does not appear in the
administration records where we maintain a list of all persons.

In none of the above four cases is the consistency at stake; the information system is
unambiguous in its statements. Nevertheless, there is something wrong because these state-
ments do not conform to common sense.

This brings us to the second requirement for an information system: data integrity.
We would consider it more in accordance with our perception of reality if the following were
true of our information system:

• For any course attendee, the date of birth does not lie in the future.

• The gender attribute for any person has the value M or F.

• Every course attendee (or person in general) has a unique number.

• We have registration information only for existing attendees—that is, attendees known
to the information system.

CHAPTER 1 ■ RELATIONAL DATABASE SYSTEMS AND ORACLE 5

These rules concerning database contents are called constraints. You should translate all
your business rules into formal integrity constraints. The third example—a unique number
for each person—is a primary key constraint, and it implements entity integrity. The fourth
example—information for only persons known to the system—is a foreign key constraint,
implementing referential integrity. We will revisit these concepts later in this chapter, in
Section 1.5.

Constraints are often classified based on the lowest level at which they can be checked.
The following are four constraint types, each illustrated with an example:

• Attribute constraints: Checks attributes; for example, “Gender must be M or F.”

• Row constraints: Checks at the row level; for example, “For salesmen, commission is a
mandatory attribute.”

• Table constraints: Checks at the table level; for example, “Each employee has a unique
e-mail address.”

• Database constraints: Checks at the database level; for example, “Each employee
works for an existing department.”

In Chapter 7, we’ll revisit integrity constraints to see how you can formally specify them in
the SQL language.

At the beginning of this section, you learned that information needs can be formalized by
identifying which entities are relevant for the information system, and then deciding which
attributes are relevant for each entity. Now we can add a third step to the information analysis
list of steps to produce a formal data model:

1. Which entities are relevant for the information system?

2. Which attributes are relevant for each entity?

3. Which integrity constraints should be enforced by the system?

Data Modeling Approach, Methods, and Techniques
Designing appropriate data models is not a sinecure, and it is typically a task for IT specialists.
On the other hand, it is almost impossible to design data models without the active participa-
tion of the future end users of the system. End users usually have the most expertise in their
professional area, and they are also involved in the final system acceptance tests.

Over the years, many methods have been developed to support the system development
process itself, to generate system documentation, to communicate with project participants,
and to manage projects to control time and costs. Traditional methods typically show a strict
phasing of the development process and a description of what needs to be done in which
order. That’s why these methods are also referred to as waterfall methods. Roughly formu-
lated, these methods distinguish the following four phases in the system development
process:

CHAPTER 1 ■ RELATIONAL DATABASE SYSTEMS AND ORACLE6

1. Analysis: Describing the information needs and determining the information system
boundaries

2. Logical design: Getting answers to the three questions about entities, attributes, and
constraints, which were presented in the previous section

3. Physical design: Translating the logical design into a real database structure

4. Build phase: Building database applications

Within the development methods, you can use various techniques to support your activi-
ties. For example, you can use diagram techniques to represent data models graphically. Some
well-known examples of such diagram techniques are Entity Relationship Modeling (ERM)
and Unified Modeling Language (UML). In the last section of this chapter, which introduces
the sample tables used throughout this book, you will see an ERM diagram that corresponds
with those tables.

Another example of a well-known technique is normalization, which allows you to
remove redundancy from a database design by following some strict rules.

Prototyping is also a quite popular technique. Using prototyping, you produce “quick and
dirty” pieces of functionality to simulate parts of a system, with the intention of evoking reac-
tions from the end users. This might result in time-savings during the analysis phase of the
development process, and more important, better-quality results, thus increasing the proba-
bility of system acceptance at the end of the development process.

Rapid application development (RAD) is also a well-known term associated with data mod-
eling. Instead of the waterfall approach described earlier, you employ an iterative approach.

Some methods and techniques are supported by corresponding computer programs,
which are referred to as computer-aided systems engineering (CASE) tools. For example,
Oracle offers complete and integral support for system development, from analysis to system
generation, with the Oracle Designer software.

Semantics
If you want to use information systems correctly, you must be aware of the semantics (the
meaning of things) of the underlying data model. A careful choice for table names and col-
umn names is a good starting point, followed by applying those names as consistently as
possible. For example, the attribute “address” can have many different meanings: home
address, work address, mailing address, and so on. The meaning of attributes that might lead
to this type of confusion can be stored explicitly in an additional semantic explanation to the
data model. Although such a semantic explanation is not part of the formal data model itself,
you can store it in a data dictionary—a term explained in the next section.

Information Systems Terms Review
In this section, the following terms were introduced:

• Entities and attributes

• Generic versus specific

• Occurrences and attribute values

CHAPTER 1 ■ RELATIONAL DATABASE SYSTEMS AND ORACLE 7

• Base data and derivable data

• Redundancy and consistency

• Integrity and constraints

• Data modeling

• Methods and techniques

• Logical and physical design

• Normalization

• Prototyping and RAD

• CASE tools

• Semantics

1.3 Database Management Systems
The preceding two sections defined the formal concept of an information system. You learned
that if an organization decides to automate an information system, it typically uses some
database technology. The term database can be defined as follows:

■Definition A database is a set of data, needed to derive the desired information from an information
system and maintained by a separate software program.

This separate software program is called the database management system (DBMS). There
are many types of database management systems available, varying in terms of the following
characteristics:

• Price

• Ability to implement complex information systems

• Supported hardware environment

• Flexibility for application developers

• Flexibility for end users

• Ability to set up connections with other programs

• Speed

• Ongoing operational costs

• User-friendliness

CHAPTER 1 ■ RELATIONAL DATABASE SYSTEMS AND ORACLE8

DBMS Components
A DBMS has many components, including a kernel, data dictionary, query language, and tools.

Kernel
The core of any DBMS consists of the code that handles physical data storage, data transport
(input and output) between external and internal memory, integrity checking, and so on. This
crucial part of the DBMS is commonly referred to as the kernel.

Data Dictionary
Another important task of the DBMS is the maintenance of a data dictionary, containing all
data about the data (the metadata). Here are some examples of information maintained in
a data dictionary:

• Overview of all entities and attributes in the database

• Constraints (integrity)

• Access rights to the data

• Additional semantic explanations

• Database user authorization data

• Application data

Query Languages
Each DBMS vendor supports one or more languages to allow access to the data stored in the
database. These languages are commonly referred to as query languages, although this name
is rather confusing. SQL, the language this book is all about, has been the de facto market
standard for many years.

DBMS Tools
Most DBMS vendors supply many secondary programs around their DBMS software. I refer to
all these programs with the generic term tools. These tools allow users to perform tasks such
as the following:

• Generate reports

• Build standard data-entry and data-retrieval screens

• Process database data in text documents or in spreadsheets

• Administer the database

CHAPTER 1 ■ RELATIONAL DATABASE SYSTEMS AND ORACLE 9

Database Applications
Database applications are application programs that use an underlying database to store
their data. Examples of such database applications are screen- and menu-driven data-entry
programs, spreadsheets, report generators, and so on.

Database applications are often developed using development tools from the DBMS
vendor. In fact, most of these development tools can be considered to be database applica-
tions themselves, because they typically use the database not only to store regular data, but
also to store their application specifications. For example, consider tools such as Oracle
Developer and Oracle Designer. With these examples we are entering the relational world,
which is introduced in the next section.

DBMS Terms Review
In this section, the following terms were introduced:

• Database

• Database management system (DBMS)

• Kernel

• Data dictionary

• Query language

• Tool

• Database application

1.4 Relational Database Management Systems
The theoretical foundation for a relational database management system (RDBMS) was laid
out in 1970 by Ted Codd in his famous article “A Relational Model of Data for Large Shared
Data Banks” (Codd, 1970). He derived his revolutionary ideas from classical components of
mathematics: set theory, relational calculus, and relational algebra.

■Tip In general, it certainly is helpful to have some mathematical skills while trying to solve nontrivial
problems in SQL.

About ten years after Ted Codd published his article, around 1980, the first RDBMS
systems (Relational DBMS systems) aiming to translate Ted Codd’s ideas into real products
became commercially available. Among the first pioneering RDBMS vendors were Oracle
and Ingres, followed a few years later by IBM with SQL/DS and DB2.

CHAPTER 1 ■ RELATIONAL DATABASE SYSTEMS AND ORACLE10

We won’t go into great detail about this formal foundation for relational databases, but we
do need to review the basics in order to explain the term relational. The essence of Ted Codd’s
ideas was two main requirements:

• Clearly distinguish the logical task (the what) from the physical task (the how) both
while designing, developing, and using databases.

• Make sure that an RDBMS implementation fully takes care of the physical task, so the
system users need to worry only about executing the logical task.

These ideas, regardless of how evident they seem to be nowadays, were quite revolution-
ary in the early 1970s. Most DBMS implementations in those days did not separate the logical
and physical tasks at all; did not have a solid theoretical foundation of any kind; and offered
their users many surprises, ad hoc solutions, and exceptions. Ted Codd’s article started a revo-
lution and radically changed the way people think about databases.

What makes a DBMS a relational DBMS? In other words: how can we determine how rela-
tional a DBMS is? To answer this question, we must visit the theoretical foundation of the
relational model. The following two sections discuss two important aspects of the relational
model: relational data structures and relational operators. After these two sections, we will
address another question: how relational is my DBMS?

1.5 Relational Data Structures
This section introduces the most important relational data structures and concepts:

• Tables, columns, and rows

• The information principle

• Datatypes

• Keys

• Missing information and null values

Tables, Columns, and Rows
The central concept in relational data structures is the table or relation (from which the rela-
tional model derives its name). A table is defined as a set of rows, or tuples. The rows of a table
share the same set of attributes; a row consists of a set of (attribute name; attribute value)
pairs. All data in a relational database is represented as column values within table rows.

In summary, the basic relational data structures are as follows:

• A database, which is a set of tables

• A table, which is a set of rows

• A row, which is a set of column values

CHAPTER 1 ■ RELATIONAL DATABASE SYSTEMS AND ORACLE 11

The definition of a row is a little sloppy. A row is not just a set of column values. A more
precise definition would be as follows:

A row is a set of ordered pairs, where each ordered pair consists of an attribute name with
an associated attribute value.

For example, the following is a formal and precise way to represent a row from the
DEPARTMENTS table:

{(deptno;40),(dname;HR),(location;Boston),(mgr;7839)}

This row represents department 40: the HR department in Boston, managed by employee
7839. It would become irritating to represent rows like this; therefore, this book will use less
formal notations as much as possible. After all, the concept of tables, rows, and columns is
rather intuitive.

In most cases, there is a rather straightforward one-to-one mapping between the
entities of the data model and the tables in a relational database. The rows represent the
occurrences of the corresponding entity, and the column headings of the table correspond
with the attributes of that entity.

The Information Principle
The only way you can associate data in a relational database is by comparing column values.
This principle, known as the information principle, is applied very strictly, and it is at the heart
of the term relational.

An important property of sets is the fact that the order of their elements is meaningless.
Therefore, the order of the rows in any relational table is meaningless, too, and the order of
columns is also meaningless.

Because this is both very fundamental and important, let’s rephrase this in another way:
in a relational database, there are no pointers to represent relationships. For example, the fact
that an employee works for a specific department can be derived only from the two corre-
sponding tables by comparing column values in the two department number columns. In
other words, for every retrieval command, you must explicitly specify which columns must be
compared. As a consequence, the flexibility to formulate ad hoc queries in a relational data-
base has no limits. The flip side of the coin is the risk of (mental) errors and the problem of the
correctness of your results. Nearly every SQL query will return a result (as long as you don’t
make syntax errors), but is it really the answer to the question you had in mind?

Datatypes
One of the tasks during data modeling is also to decide which values are allowed for each
attribute. As a minimum, you could allow only numbers in a certain column, or allow only
dates or text. You can impose additional restrictions, such as by allowing only positive integers
or text of a certain maximum length.

A set of allowed attribute values is sometimes referred to as a domain. Another common
term is datatype (or just type). Each attribute is defined on a certain type. This can be a stan-
dard (built-in) type or a user-defined type.

CHAPTER 1 ■ RELATIONAL DATABASE SYSTEMS AND ORACLE12

Keys
Each relational table must have at least one candidate key. A candidate key is an attribute (or
attribute combination) that uniquely identifies each row in that table, with one additional
important property: as soon as you remove any attribute from this candidate key attribute
combination, the property of unique identification is gone. In other words, a table cannot
contain two rows with the same candidate key values at any time.

For example, the attribute combination course code and start date is a candidate key for a
table containing information about course offerings. If you remove the start date attribute, the
remaining course code attribute is not a candidate key anymore; otherwise, you could offer
courses only once. If you remove the course code attribute, the remaining start date attribute
is not a candidate key anymore; otherwise, you would never be able to schedule two different
courses to start on the same day.

In case a table has multiple candidate keys, it is normal practice to select one of them to
become the primary key. All components (attributes) of a primary key are mandatory; you
must specify attribute values for all of them. Primary keys enforce a very important table
constraint: entity integrity.

Sometimes, the set of candidate keys doesn’t offer a convenient primary key. In such
cases, you may choose a surrogate key by adding a meaningless attribute with the sole pur-
pose of being the primary key.

■Note Using surrogate keys comes with advantages and disadvantages, and fierce debates between
database experts. This section is intended to only explain the terminology, without offering an opinion on
the use of surrogate keys.

A relational table can also have one or more foreign keys. Foreign key constraints are
subset requirements; the foreign key values must always be a subset of a corresponding set of
primary key values. Some typical examples of foreign key constraints are that an employee
can work for only an existing department and can report to only an existing manager. Foreign
keys implement referential integrity in a relational database.

Missing Information and Null Values
A relational DBMS is supposed to treat missing information in a systematic and context-
insensitive manner. If a value is missing for a specific attribute of a row, it is not always
possible to decide whether a certain condition evaluates to true or false. Missing information
is represented by null values in the relational world.

The term null value is actually misleading, because it does not represent a value; it repre-
sents the fact that a value is missing. For example, null marker would be more appropriate.
However, null value is the term most commonly used, so this book uses that terminology.

Null values imply the need for a three-valued logic, such as implemented (more or less) in
the SQL language. The third logical value is unknown.

CHAPTER 1 ■ RELATIONAL DATABASE SYSTEMS AND ORACLE 13

■Note Null values have had strong opponents and defenders. For example, Chris Date is a well-known
opponent of null values and three-valued logic. His articles about this subject are highly readable, enter-
taining, and clarifying. See Appendix E of this book for some suggested reading.

Constraint Checking
Although most RDBMS vendors support integrity constraint checking in the database these
days (Oracle implemented this feature about ten years ago), it is sometimes also desirable to
implement constraint checking in client-side database applications. Suppose you have a
network between a client-side data-entry application and the database, and the network con-
nection is a bottleneck. In that case, client-side constraint checking probably results in much
better response times, because there is no need to access the database each time to check the
constraints. Code-generating tools (like Oracle Designer) typically allow you to specify whether
constraints should be enforced at the database side, the client side, or both sides.

■Caution If you implement certain constraints in your client-side applications only, you risk database
users bypassing the corresponding constraint checks by using alternative ways to connect to the database.
Client-side constraints are also more difficult to manage.

Predicates and Propositions
To finish this section about relational data structures, there is another interesting way to look
at tables and rows in a relational database from a completely different angle, as introduced by
Hugh Darwen. This approach is more advanced than the other topics addressed in this chap-
ter, so you might want to revisit this section later.

You can associate each relational table with a table predicate and all rows of a table with
corresponding propositions. Predicates are logical expressions, typically containing free vari-
ables, which evaluate to true or false. For example, this is a predicate:

• There is a course with title T and duration D, price P, frequency F, and a maximum
number of attendees M.

If we replace the five variables in this predicate (T, D, P, F, and M) with actual values, the
result is a proposition. In logic, a proposition is a predicate without free variables; in other
words, a proposition is always true or false. This means that you can consider the rows of a
relational table as the set of all propositions that evaluate to true.

Relational Data Structure Terms Review
In this section, the following terms were introduced:

• Tables (or relations)

• Rows (or tuples)

CHAPTER 1 ■ RELATIONAL DATABASE SYSTEMS AND ORACLE14

• Columns and domains

• Candidate, primary, and foreign keys

• Integrity checking at the database level

• Missing information, null values, and three-valued logic

• Predicates and propositions

1.6 Relational Operators
To manipulate data, you need operators that can be applied to that data. Multiplication and
addition are typical examples of operators in mathematics; you specify two numbers as input,
and the operator produces one output value as a result. Multiplication and addition are
examples of closed operators, because they produce “things” of the same type you provided as
input (numbers). For example, for integers, addition is closed. Add any two integers, and you
get another integer. Try it—you can’t find two integers that add up to a noninteger. However,
division over the integers is not closed; for example, 1 divided by 2 is not an integer. Closure is
a nice operator property, because it allows you to (re)use the operator results as input for a
next operator.

In a database environment, you need operators to derive information from the data
stored in the database. In an RDBMS environment, all operators should operate at a high
logical level. This means, among other things, that they should not operate on individual
rows, but rather on tables, and that the results of these operators should be tables, too.

Because tables are defined as sets of rows, relational operators should operate on sets.
That’s why some operators from the classical set theory—such as the union, the difference,
and the intersection—also show up as relational operators. See Figure 1-1 for an illustration
of these three set operators.

Figure 1-1. The three most common set operators

CHAPTER 1 ■ RELATIONAL DATABASE SYSTEMS AND ORACLE 15

Along with these generic operators from set theory that can be applied to any sets, there
are some additional relational operators specifically meant to operate on tables. You can
define as many relational operators as you like, but, in general, most of these operators can be
reduced to (or built with) a limited number of basic relational operators. The most common
relational operators are the following:

• Restriction: This operator results in a subset of the rows of the input table, based on a
specified restriction condition. This operator is also referred to as selection.

• Projection: This operator results in a table with fewer columns, based on a specified
set of attributes you want to see in the result. In other words, the result is a vertical
subset of the input table.

• Union: This operator merges the rows of two input tables into a single output table;
the result contains all rows that occur in at least one of the input tables.

• Intersection: This operator also accepts two input tables; the result consists of all rows
that occur in both input tables.

• Minus: Again, based on two input tables, this operator produces a result that consists
of those rows that occur in the first table but do not occur in the second table. Note that
this operator is not symmetric; A MINUS B is not the same as B MINUS A. This operator is
also referred to as difference.

• (Cartesian) product: From two input tables, all possible combinations are generated by
concatenating a row from the first table with a row from the second table.

• (Natural) Join: From two input tables, one result table is produced. The rows in the
result consist of all combinations of a row from the first table with a row from the sec-
ond table, provided both rows have identical values for the common attributes.

The natural join is an example of an operator that is not strictly necessary, because the
effect of this operator can also be achieved by applying the combination of a Cartesian prod-
uct, followed by a restriction (to check for identical values on the common attributes), and
then followed by a projection to remove the duplicate columns.

1.7 How Relational Is My DBMS?
The term relational is used (and abused) by many DBMS vendors these days. If you want to
determine whether these vendors speak the truth, you are faced with the problem that rela-
tional is a theoretical concept. There is no simple litmus test to check whether or not a DBMS
is relational. Actually, to be honest, there are no pure relational DBMS implementations.
That’s why it is better to investigate the relational degree of a certain DBMS implementation.

This problem was identified by Ted Codd, too; that’s why he published 12 rules (actually,
there are 13 rules, if you count rule zero, too) for relational DBMS systems in 1986. Since then,
these rules have been an important yardstick for RDBMS vendors. Without going into too
much detail, Codd’s rules are listed here, with brief explanations:

CHAPTER 1 ■ RELATIONAL DATABASE SYSTEMS AND ORACLE16

0. Rule Zero: For any DBMS that claims to be relational, that system must be able to
manage databases entirely through its relational capabilities.

1. The Information Rule: All information in a relational database is represented explic-
itly at the logical level and in exactly one way: by values in tables.

2. Guaranteed Access Rule: All data stored in a relational database is guaranteed to be
logically accessible by resorting to a combination of a table name, primary key value,
and column name.

3. Systematic Treatment of Missing Information: Null values (distinct from the empty
string, blanks, and zero) are supported for representing missing information and
inapplicable information in a systematic way, independent of the datatype.

4. Dynamic Online Catalog: The database description is represented at the logical level
in the same way as ordinary data, so that authorized users can apply the same rela-
tional language to its interrogation as they apply to the regular data.

5. Comprehensive Data Sublanguage: There must be at least support for one language
whose statements are expressible by some well-defined syntax and comprehensive in
supporting all of the following: data definition, view definition, data manipulation,
integrity constraints, authorization, and transaction boundaries handling.

6. Updatable Views: All views that are theoretically updatable are also updatable by the
system.

7. High-Level Insert, Update, and Delete: The capability of handling a table or a view as
a single operand applies not only to the retrieval of data, but also to the insertion,
updating, and deletion of data.

8. Physical Data Independence: Application programs remain logically unimpaired
whenever any changes are made in either storage representations or access methods.

9. Logical Data Independence: Application programs remain logically unimpaired when
information-preserving changes that theoretically permit unimpairment are made to
the base tables.

10. Integrity Independence: Integrity constraints must be definable in the relational data
sublanguage and storable in the catalog, not in the application programs.

11. Distribution Independence: Application programs remain logically unimpaired when
data distribution is first introduced or when data is redistributed.

12. The Nonsubversion Rule: If a relational system also supports a low-level language,
that low-level language cannot be used to subvert or bypass the integrity rules and
constraints expressed in the higher-level language.

Rule 5 refers to transactions. Without going into too much detail here, a transaction is
defined as a number of changes that should be treated by the DBMS as a single unit of work;
a transaction should always succeed or fail completely. For further reading, please refer to
Oracle Insights: Tales of the Oak Table (Apress, 2004), especially Chapter 1 by Dave Ensor.

CHAPTER 1 ■ RELATIONAL DATABASE SYSTEMS AND ORACLE 17

1.8 The Oracle Software Environment
Oracle Corporation has its headquarters in Redwood Shores, California. It was founded in
1977, and it was (in 1979) the first vendor to offer a commercial RDBMS.

The Oracle software environment is available for many different platforms, ranging
from personal computers (PCs) to large mainframes and massive parallel processing (MPP)
systems. This is one of the unique selling points of Oracle: it guarantees a high degree of inde-
pendence from hardware vendors, as well as various system growth scenarios, without losing
the benefits of earlier investments, and it offers extensive transport and communication
possibilities in heterogeneous environments.

The Oracle software environment has many components and bundling options. The
core component is the DBMS itself: the kernel. The kernel has many important tasks, such as
handling all physical data transport between memory and external storage, managing concur-
rency, and providing transaction isolation. Moreover, the kernel ensures that all stored data is
represented at the logical level as relational tables. An important component of the kernel is
the optimizer, which decides how to access the physical data structures in a time-efficient way
and which algorithms to use to produce the results of your SQL commands.

Application programs and users can communicate with the kernel by using the SQL lan-
guage, the main topic of this book. Oracle SQL is an almost fully complete implementation of
the ANSI/ISO/IEC SQL:2003 standard. Oracle plays an important role in the SQL standardiza-
tion process and has done that for many years.

Oracle also provides many tools with its DBMS, to render working with the DBMS more
efficient and pleasurable. Figure 1-2 illustrates the cooperation of these tools with the Oracle
database, clearly showing the central role of the SQL language as the communication layer
between the kernel and the tools, regardless of which tool is chosen.

Figure 1-2. Tools, SQL, and the Oracle database

CHAPTER 1 ■ RELATIONAL DATABASE SYSTEMS AND ORACLE18

■Note Besides tools enabling you to build (or generate) application programs, Oracle also sells many
ready-to-use application programs, such as the Oracle eBusiness Suite and the Oracle Collaboration Suite.

The following are examples of Oracle software components:

• SQL*Plus and iSQL*Plus: These two tools stay the closest to the SQL language and are
ideal for interactive, ad hoc SQL statement execution and database access. These are
the tools we will mainly use in this book. iSQL*Plus is a special version of SQL*Plus that
runs in a browser such as Mozilla or Microsoft Internet Explorer.

■Note Don’t confuse SQL with SQL*Plus. SQL is a language, and SQL*Plus is a tool.

• Oracle Developer Suite 10g: This is an integrated set of development tools, with the
main components Oracle JDeveloper, Oracle Forms, and Oracle Reports.

• Oracle Enterprise Manager: This graphical user interface (GUI), which runs in a
browser environment, supports Oracle database administrators in their daily work.
Regular tasks like startup, shutdown, backup, recovery, maintenance, and performance
management can be done with Enterprise Manager.

1.9 Case Tables
This section introduces the seven case tables used throughout this book for all examples and
exercises. Appendix C provides a complete description of the tables and also contains some
helpful diagrams and reports of the table contents. Chapters 3 and 7 contain the SQL com-
mands to create the case tables (without and with constraints, respectively).

You need some understanding of the structure of the case tables to be able to write SQL
statements against the contents of those tables. Otherwise, your SQL statements may be
incorrect.

The ERM Diagram of the Case
We start with an ERM diagram depicting the logical design of our case, which means that it
does not consider any physical (implementation-dependent) circumstances. A physical design
is the next stage, when the choice is made to implement the case in an RDBMS environment,
typically resulting in a table diagram or just a text file with the SQL statements to create the
tables and their constraints.

Figure 1-3 shows the ERM diagram for the example used in this book. The ERM diagram
shows seven entities, represented by their names in rounded-corner boxes. To maintain read-
ability, most attributes are omitted in the diagram; only the key attributes are displayed.

CHAPTER 1 ■ RELATIONAL DATABASE SYSTEMS AND ORACLE 19

Figure 1-3. ERM diagram of the case

We have several relationships between these entities. The ten crow’s feet connectors in
the diagram represent one-to-many relationships. Each relationship can be read in two direc-
tions. For example, the relationship between OFFERING and REGISTRATION should be
interpreted as follows:

• Each registration is always for exactly one course offering.

• A course offering may have zero, one, or more registrations.

Course offerings without registrations are allowed. All one-to-many relationships in our
case have this property, which is indicated in this type of diagram with a dotted line at the
optional side of the relationship.

Notice that we have two different relationships between EMPLOYEE and DEPARTMENT: each
employee works for precisely one department, and each employee can be the manager of
zero, one, or more departments. The EMPLOYEE entity also shows a recursive relationship (a
relationship of an entity with itself) that implements the hierarchy within the company.

Each entity in the ERM diagram has a unique identifier, allowing us to uniquely identify
all occurrences of the corresponding entities. This may be a single attribute (for example,
EMPNO for the EMPLOYEE entity) or a combination of attributes, optionally combined with rela-
tionships. Each attribute that is part of a unique identifier is preceded with a hash symbol (#);
relationships that are part of a unique identifier are denoted with a small crossbar. For exam-
ple, the unique identifier of the OFFERING entity consists of a combination of the BEGINDATE
attribute and the relationship with the COURSE entity, and the unique identifier of the entity
REGISTRATION consists of the two relationships to the EMPLOYEE and OFFERING entities. By the
way, entities like REGISTRATION are often referred to as intersection entities; REGISTRATION effec-
tively implements a many-to-many relationship between EMPLOYEE and OFFERING.

An ERM diagram can be transformed into a relational table design with the following steps:

1. Each entity becomes a table.

2. Each attribute becomes a column.

CHAPTER 1 ■ RELATIONAL DATABASE SYSTEMS AND ORACLE20

3. Each relationship is transformed into a foreign key (FK) constraint at the crow’s
foot side.

4. Each unique identifier becomes a component of the primary key (PK).

This mapping results in seven tables: EMPLOYEES, DEPARTMENTS, SALGRADES, COURSES,
OFFERINGS, REGISTRATION, and HISTORY.

Table Descriptions
Tables 1-1 through 1-7 describe the structures of the case tables.

Table 1-1. The EMPLOYEES Table

Column Description Key

EMPNO Number, unique for every employee PK

ENAME Last name

INIT Initials (without punctuation)

JOB Job description of the employee

MGR The employee number of the employee’s manager FK

BDATE Date of birth

MSAL Monthly salary (excluding bonus or commission)

COMM Commission component of the yearly salary
(only relevant for sales reps)

DEPTNO The number of the department for which the employee works FK

Table 1-2. The DEPARTMENTS Table

Column Description Key

DEPTNO Unique department number PK

DNAME Department name

LOCATION Department location (city)

MGR Employee number of the manager of the department FK

Table 1-3. The SALGRADES Table

Column Description Key

GRADE Unique salary grade number PK

LOWERLIMIT Lowest salary that belongs to the grade

UPPERLIMIT Highest salary that belongs to the grade

BONUS Optional (tax-free) bonus on top of the monthly salary

CHAPTER 1 ■ RELATIONAL DATABASE SYSTEMS AND ORACLE 21

Table 1-4. The COURSES Table

Column Description Key

CODE Course code; unique for each course PK

DESCRIPTION Short description of the course contents

CATEGORY Course type indicator (allowed values: GEN, BLD, and DSG)

DURATION Course duration, expressed in days

Table 1-5. The OFFERINGS Table

Column Description Key

COURSE Course code PK, FK

BEGINDATE Start date of the course offering PK

TRAINER Employee number of the employee teaching the course FK

LOCATION Location (city) where the course is offered

Table 1-6. The REGISTRATIONS Table

Column Description Key

ATTENDEE Employee number of the course attendee PK, FK1

COURSE Course code PK, FK2

BEGINDATE Start date of the course offering PK, FK2

EVALUATION Evaluation of the course by the attendee
(positive integer on the scale 1–5)

Table 1-7. The HISTORY Table

Column Description Key

EMPNO Employee number PK, FK1

BEGINYEAR Year component (4 digits) of BEGINDATE

BEGINDATE Begin date of the time interval PK

ENDDATE End date of the time interval

DEPTNO The number of the department worked for during the interval FK2

MSAL Monthly salary during the interval

COMMENTS Allows for free text style comments

CHAPTER 1 ■ RELATIONAL DATABASE SYSTEMS AND ORACLE22

In the description of the EMPLOYEES table, the COMM column deserves some special atten-
tion. This commission attribute is relevant only for sales representatives, and therefore
contains structurally missing information (for all other employees). We could have created a
separate SALESREPS table (with two columns: EMPNO and COMM) to avoid this problem, but for the
purpose of this book, the table structure is kept simple.

The structure of the DEPARTMENTS table is straightforward. Note the two foreign key con-
straints between this table and the EMPLOYEES table: an employee can “work for” a department
or “be the manager” of a department. Note also that we don’t insist that the manager of a
department actually works for that department, and it is not forbidden for any employee to
manage more than one department.

The salary grades in the SALGRADES table do not overlap, although in salary systems in the
real world, most grades are overlapping. In this table, simplicity rules. This way, every salary
always falls into exactly one grade. Moreover, the actual monetary unit (currency) for salaries,
commission, and bonuses is left undefined. The optional tax-free bonus is paid monthly, just
like the regular monthly salaries.

In the COURSES table, three CATEGORY values are allowed:

• GEN (general), for introductory courses

• BLD (build), for building applications

• DSG (design), for system analysis and design

This means that these three values are the only values allowed for the CATEGORY column;
this is an example of an attribute constraint. This would also have been an opportunity to
design an additional entity (and thus another relational table) to implement course types.
In that case, the CATEGORY column would have become a foreign key to this additional table.
But again, simplicity was the main goal for this set of case tables.

In all database systems, you need procedures to describe how to handle historical data
in an information system. This is a very important—and, in practice, far from trivial—
component of system design. In our case tables, it is particularly interesting to consider
course offerings and course registrations in this respect.

If a scheduled course offering is canceled at some point in time (for example, due to
lack of registrations), the course offering is not removed from the OFFERINGS table, for
statistical/historical reasons. Therefore, it is possible that the TRAINER and/or LOCATION
columns are left empty; these two attributes are (of course) relevant only as soon as a sched-
uled course is going to happen. By the way, this brings up the valid question whether
scheduled course offerings and “real” course offerings might be two different entities. Again,
an opportunity to end up with more tables; and again, simplicity was the main goal here.

Course registrations are considered synonymous with course attendance in our example
database. This becomes obvious from the EVALUATION column in the REGISTRATIONS table,
where the attendee’s appreciation of the course is stored at the end of the course, expressed
on a scale from 1 to 5; the meaning of these numbers ranges from bad (1) to excellent (5).
In case a registration is canceled before a course takes place, we remove the corresponding
row from the REGISTRATIONS table. In other words, if the BEGINDATE value of a course registra-
tion falls in the past, this means (by definition) that the corresponding course offering took
place and was attended.

CHAPTER 1 ■ RELATIONAL DATABASE SYSTEMS AND ORACLE 23

The HISTORY table maintains information about the working history of all employees.
More specifically, it holds data about the departments they have been working for and the
salaries they made over the years, starting from the day they were hired. Every change of
department and/or monthly salary is recorded in this table. The current values for DEPTNO and
MSAL can be stored in this table, too, by keeping the ENDDATE attribute empty until the next
change. The COMMENTS column offers room for free text comments, for example, to justify or
clarify certain changes.

As noted earlier, the structure and the contents of all seven tables are listed in Appendix C.

CHAPTER 1 ■ RELATIONAL DATABASE SYSTEMS AND ORACLE24

Introduction to SQL, iSQL*Plus,
and SQL*Plus

This chapter provides an introduction to the SQL language and two tools for working with it.
The first section presents a high-level overview of the SQL language, which will give you an
idea of the capabilities of this language. Then some important basic concepts of the SQL lan-
guage are introduced in the second section, such as constants, literals, variables, expressions,
conditions, functions, operators, operands, and so on. Finally, this chapter provides a tour of
SQL*Plus and iSQL*Plus, the two main tools we will use throughout this book to learn the SQL
language. In order to maximize the benefits of any tool, you first must learn how to use it and
to identify the main features available in that tool.

This is the first chapter with real SQL statement examples, although no hands-on exer-
cises are included yet. However, for this chapter, it would be beneficial for you to have access
to an Oracle database and a schema with the seven case tables introduced in Chapter 1. On
my web site (http://www.naturaljoin.nl) or the Downloads section of the Apress web site
(http://www.apress.com), you can find the scripts to create this schema, to create and popu-
late the tables in that schema, or to refresh the contents of those tables.

We assume that Oracle is running; database (instance) startup and shutdown are nor-
mally tasks of a system or database administrator. Specific startup and shutdown procedures
might be in place in your environment. However, if you are working with a stand-alone Oracle
environment, and you have enough privileges, you can try the SQL*Plus STARTUP command or
use the GUI offered by Oracle Enterprise Manager to start up the database.

2.1 Overview of SQL
SQL (the abbreviation stands for Structured Query Language) is a language you can use in
(at least) two different ways: interactively or embedded. Using SQL interactively means that
you enter SQL commands via a keyboard, and you get the command results displayed on a
terminal or computer screen. Using embedded SQL involves incorporating SQL commands
within a program in a different programming language (such as Java or C). This book deals
solely with interactive SQL usage.

25

C H A P T E R 2

■ ■ ■

Although SQL is called a query language, its possibilities go far beyond simply data
retrieval. Normally, the SQL language is divided into the following four command categories:

• Data definition (Data Definition Language, or DDL)

• Data manipulation (Data Manipulation Language, or DML)

• Retrieval

• Security and authorization

Data Definition
The SQL data definition commands allow you to create, modify, and remove components
of a database structure. Typical database structure components are tables, views, indexes,
constraints, synonyms, sequences, and so on. Chapter 1 introduced tables, columns, and con-
straints; other database object types (such as views, indexes, synonyms, and sequences) will
be introduced in later chapters.

Almost all SQL data definition commands start with one of the following three keywords:

• CREATE, to create a new database object

• ALTER, to change an aspect of the structure of an existing database object

• DROP, to drop (remove) a database object

For example, with the CREATE VIEW command, you can create views. With the ALTER TABLE
command, you can change the structure of a table (for example, by adding, renaming, or
dropping a column). With the DROP INDEX command, you can drop an index.

One of the strengths of an RDBMS is the fact that you can change the structure of a table
without needing to change anything in your existing database application programs. For
example, you can easily add a column or change its width with the ALTER TABLE command.
In modern DBMSs such as Oracle, you can even do this while other database users or applica-
tions are connected and working on the database—like changing the wheels of a train at full
speed. This property of an RDBMS is known as logical data independence (see Ted Codd’s
rule 9, discussed in Chapter 1).

Data definition is covered in more detail in Chapters 3 and 7.

Data Manipulation and Transactions
Just as SQL data definition commands allow you to change the structure of a database, SQL
data manipulation commands allow you to change the contents of your database. For this pur-
pose, SQL offers three basic data manipulation commands:

• INSERT, to add rows to a table

• UPDATE, to change column values of existing rows

• DELETE, to remove rows from a table

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS26

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS 27

You can add rows to a table with the INSERT command in two ways. One way is to add
rows one by one by specifying a list of column values in the VALUES clause of the INSERT state-
ment. The other is to add one or more rows to a table based on a selection (and manipulation)
of existing data in the database (called a subquery).

■Note You can also load data into an Oracle database with various tools specifically developed for this
purpose—such as Data Pump in Oracle Database 10g, Export and Import in previous Oracle releases, and
SQL*Loader. These tools are often used for high-volume data loads.

Data manipulation commands are always treated as being part of a transaction. This
means (among other things) that all database changes caused by SQL data manipulation
commands get a pending status, until you confirm (commit) or cancel (roll back) the transac-
tion. No one (except the transaction itself) can see the pending changes of a transaction
before it is committed. That’s why a transaction is often labeled atomic: it is impossible for
other database users to see parts of a transaction in the database. It is “all or nothing,” no
matter how many DML operations the transaction comprises.

Sometimes, transactions are committed implicitly; that is, without any explicit request
from a user. For example, every data definition command implicitly commits your current
transaction. SQL offers two commands to control your transactions explicitly:

• COMMIT, to confirm all pending changes of the current transaction

• ROLLBACK, to cancel all pending changes and restore the original situation

Note the following important differences between data manipulation and data definition:

• DELETE empties a table; DROP removes a table. TRUNCATE allows you to delete all the rows
in a table in an efficient (but irrevocable) way.

• UPDATE changes the contents of a table; ALTER changes its structure.

• You can undo the consequences of data manipulation with ROLLBACK; data definition
commands are irrevocable.

Chapter 6 will revisit data manipulation in more detail. Chapter 7 discusses the TRUNCATE
command, which is considered a data definition command.

Retrieval
The only SQL command used to query database data is SELECT. This command acts at the set
(or table) level, and always produces a set (or table) as its result. If a certain query returns
exactly one row, or no rows at all, the result is still a set: a table with one row or the empty
table, respectively.

The SELECT command (as defined in the ANSI/ISO SQL standard) has six main compo-
nents, which implement all SQL retrieval. Figure 2-1 shows a diagram with these six main
components of the SELECT command.

Figure 2-1. The six main components of the SELECT command

The lines in this diagram represent all possibilities of the SELECT command, like a railroad
map. You can deduce the following three syntax rules from Figure 2-1:

• The order of these six command components is fixed.

• The SELECT and FROM components are mandatory.

• The remaining components (WHERE, GROUP BY, HAVING, and ORDER BY) are optional.

Table 2-1 gives a high-level description of the roles of these six components of the SELECT
command.

Table 2-1. The Six Main Components of the SELECT Command

Component Description

FROM Which table(s) is (are) needed for retrieval?

WHERE What is the condition to filter the rows?

GROUP BY How should the rows be grouped/aggregated?

HAVING What is the condition to filter the aggregated groups?

SELECT Which columns do you want to see in the result?

ORDER BY In which order do you want to see the resulting rows?

■Tip The order of the SELECT command components as displayed in Table 2-1 is also a good order to
think about them when writing SQL statements. Notice that the SELECT clause is almost the last one.

Components of the SELECT command implement three of the relational operators intro-
duced in Chapter 1 (Section 1.6) as follows:

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS28

• The SELECT component acts as the projection operator.

• The FROM component implements the join operator.

• The restriction operator corresponds to the WHERE component.

Now that we are on the subject of relational operators, note that the union, intersection,
and difference (minus) operators are also implemented in SQL. You can use these three set
operators to combine the results of multiple SELECT commands into a single result table, as
illustrated in Figure 2-2. We will revisit these operators in Chapter 8.

Figure 2-2. SQL set operators syntax diagram

Security
SQL offers several commands to implement data security and to restrict data access.

First of all, access to the database must be defined. User authorization is implemented by
providing database users a login name and a password, together with some database-wide
privileges. These are the most important commands in this area:

• CREATE USER, to define new database users

• ALTER USER, to change properties (privileges and passwords) of existing database users

• DROP USER, to remove user definitions from the database

Privileges and Roles
If users are authorized to access the database, you can implement fine-grained data access by
granting specific privileges. The Oracle DBMS offers two types of privileges: system privileges
and object privileges.

System privileges pertain to the right to perform certain (nonobject-related) actions; for
example, you can have the CREATE SESSION privilege (allows you to log on to the database) and
the CREATE TABLE privilege. Oracle supports approximately 140 different system privileges.

Object privileges involve the right to access a specific database object in a specific way; for
example, the right to issue SELECT, INSERT, and UPDATE commands against the EMPLOYEES table.
Table 2-2 lists the most important Oracle object privileges.

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS 29

■Note Granting and revoking system privileges is typically a task for database administrators. See
Oracle SQL Reference for more details on both system and object privileges.

Table 2-2. Important Oracle Object Privileges

Object Privilege Allowable Action

ALTER Change the table structure (with ALTER TABLE)

DELETE Delete rows

EXECUTE Execute stored functions or procedures

FLASHBACK Go back in time (with FLASHBACK TABLE)

INDEX Create indexes on the table

INSERT Insert new rows

REFERENCES Create foreign key constraints to the table

SELECT Query the table (or view)

UPDATE Change column values of existing rows

The Oracle DBMS allows you to group privileges in roles. Roles make user management
much easier, more flexible, and also more manageable. The following are the corresponding
SQL commands used to administer these privileges and roles:

• GRANT, to grant certain privileges or roles to users or roles

• REVOKE, to revoke certain privileges or roles from users or roles

A typical scenario is the following:

CREATE ROLE <role name>
GRANT privileges TO <role name>
GRANT <role name> TO user(s)

The first step creates a new (empty) role. The second step (which can be repeated as
many times as you like) populates the role with a mix of object and system privileges.
The third step grants the role (and thereby all its privileges) to a user in a single step.

Roles have several useful and powerful properties:

• Roles are dynamic; further changes to the role contents automatically affect all users
previously granted that role.

• Roles can be enabled or disabled during a session.

• You can protect roles with a password. In that case, only users who know the role
password can enable the role.

• The most important advantage of roles is their manageability.

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS30

GRANT and REVOKE
Each table has an owner, who is the user who created the table. Table owners are able to grant
privileges on their tables to other database users using the GRANT command. As soon as you
create a table, you implicitly get all object privileges on that table, WITH GRANT OPTION, as illus-
trated in Figure 2-3, which shows the syntax of the GRANT command.

■Note System privileges and roles are not considered, so the syntax diagram in Figure 2-3 is incomplete.

Figure 2-3. The GRANT command syntax diagram

Here are some comments about the GRANT command:

• Table owners cannot grant the right to remove a table (DROP TABLE) to other database
users. Note, however, that Oracle supports a (rather dangerous) DROP ANY TABLE system
privilege.

• If you want to grant all object privileges to someone else, you can use the keyword ALL
(see Figure 2-3). (Instead of ALL PRIVILEGES, the Oracle DBMS also allows you to
specify ALL.)

• With a single GRANT command, you can grant privileges to a single user, a list of users,
a role, or all database users. You can address all database users with the pseudo-user
PUBLIC (see Figure 2-3).

• The UPDATE privilege supports an optional refinement: this privilege can also be granted
for specific columns, by specifying column names between parentheses.

• In principle, there is no difference between tables and views when granting object priv-
ileges; however, the privileges ALTER, INDEX, and REFERENCES are meaningless in the
context of views.

• The GRANT OPTION not only grants certain object privileges, but also grants the right to
the grantee to spread these privileges further.

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS 31

The counterpart of GRANT is the REVOKE command. Figure 2-4 shows the syntax diagram for
REVOKE.

Figure 2-4. The REVOKE command syntax diagram

Besides the two standard SQL commands mentioned in this section (GRANT and REVOKE),
Oracle supports several additional commands in the security and data access area; for exam-
ple, to influence the locking behavior of the DBMS, to implement auditing, and to set up more
detailed user authorization.

2.2 Basic SQL Concepts and Terminology
This section discusses the following topics:

• Constants (literals)

• Variables

• Operators, operands, conditions, and expressions

• Functions

• Database object names

• Comments

• Reserved words

Constants (Literals)
A constant (or literal) is something with a fixed value. We distinguish numbers (numeric con-
stants) and text (alphanumeric constants). In database jargon, alphanumeric constants are
also referred to as strings.

In the SQL language, alphanumeric constants (strings) must be placed between single
quotation marks (quotes). Note also that strings are case-sensitive in SQL; the difference
between lowercase and uppercase characters is significant.

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS32

Numbers are also relatively straightforward in SQL; however, don’t put them between
quotes or they will be interpreted as strings. If you like, you can explicitly indicate that you
want SQL to interpret numeric values as floating point numbers by adding the suffix f or d to
indicate single or double precision, respectively. Be careful with the decimal period and group
separators (commas) in numbers, because the correct interpretation of these characters
depends on the value of a session parameter (NLS_NUMERIC_CHARACTERS), and there are some
cultural differences in this area.

In SQL, dates and time durations (intervals) are special cases. They are typically specified
and represented as alphanumeric constants, but they need something else to distinguish
them from regular strings. In other words, you must help the DBMS to interpret the strings
correctly as date or time-interval constants. Probably the most straightforward (and elegant)
method is to prefix the strings with a keyword (DATE, TIMESTAMP, or INTERVAL) and to adhere to
a well-defined notation convention. (See the examples in Table 2-3 and the third option in the
following list.) These are the three options to specify date and time-related constants in SQL:

• Specify them as alphanumeric constants (strings) and rely on implicit interpretation
and conversion by the Oracle DBMS. This is dangerous, because things can go wrong if
the actual format parameter for that session is different from the format of the string.

• Specify them as alphanumeric constants (strings) and use a CAST or TO_DATE conversion
function to specify explicitly how the strings must be interpreted (see Chapter 5).

• Specify them as alphanumeric constants (strings), prefixed with DATE, TIMESTAMP, or
INTERVAL. If you use INTERVAL, you also need a suffix to indicate a dimension, such as
DAY, MONTH, or YEAR.

Table 2-3 shows examples of using SQL constants.

Table 2-3. Examples of SQL Constants (Literals)

Type Example

Numeric 42
8.75
8.75F
132

Alphanumeric 'JOneS'
'GEN'
'132'

Dates and intervals DATE '2004-02-09'
TIMESTAMP '2004-09-05 11.42.59.00000'
INTERVAL '2' SECOND
INTERVAL '1-3' YEAR TO MONTH

Note the subtle difference between 132 and '132'. The difference between numbers and
strings becomes apparent when considering the operators they support. For example, num-
bers can be added or multiplied, but you cannot do that with strings. The only operator you
can apply to strings is the concatenation operator.

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS 33

In general, the SQL language is case-insensitive. However, there is one important excep-
tion: alphanumeric constants (strings) are case-sensitive. For example, 'JOneS' is not equal to
'Jones'. This is sometimes the explanation of getting the message “no rows selected” in cases
where you were expecting to see rows in the result.

Variables
A variable is something that may have a varying value over time, or even an unknown value.
A variable always has a name, so you can refer to it.

SQL supports two types of variables:

• Column name variables: The name of a column stays the same, but its value typically
varies from row to row while scanning a table.

• System variables: These have nothing to do with tables; nevertheless, they can play an
important role in SQL. They are commonly referred to as pseudo columns. See Table 2-4
for some examples of Oracle system variables.

Table 2-4. Examples of Oracle System Variables (Pseudo columns)

Variable Description

SYSDATE The current system date in the database

CURRENT_DATE The current date at the client application side

SYSTIMESTAMP The system date and exact time, with time zone information

LOCALTIMESTAMP The system date and exact time, with time zone information, at the client
application side

USER The name used to connect to the database

The difference between dates (and timestamps) at the database side and the client appli-
cation side can be relevant if you are connected over a network connection with a database in
a remote location.

Users commonly make mistakes by forgetting to include quotes in SQL statements.
Consider the following SQL statement fragment:

...WHERE LOCATION = UTRECHT...

LOCATION and UTRECHT are both interpreted by Oracle as variable names (column names),
although the following was probably the real intention:

...WHERE LOCATION = 'UTRECHT'...

Operators, Operands, Conditions, and Expressions
An operator does something. Operands are the “victims” of operations; that is, operands serve
as input for operators. Sometimes, operators need only a single operand (in which case, they
are also referred to as monadic operators), but most operators need two or more operands.

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS34

The SQL operators are divided in four categories, where the differentiating factor is the
operand datatype:

• Arithmetic operators

• Alphanumeric operators

• Comparison operators

• Logical operators

Arithmetic Operators
The SQL language supports four arithmetic operators, as shown in Table 2-5.

Table 2-5. SQL Arithmetic Operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

You can apply arithmetic operators only on NUMBER values; however, there are some
exceptions:

• If you subtract two DATE values, you get the difference between those two dates,
expressed in days.

• You can add a DATE and an INTERVAL value, which results in another date.

• If you add a DATE and a NUMBER, the number is interpreted as an interval expressed
in days.

The Alphanumeric Operator: Concatenation
SQL offers only one alphanumeric operator, allowing you to concatenate string expressions: ||.
This modest number of operators is compensated for by the overwhelming number of
alphanumeric functions in SQL, which are discussed in Chapter 5. For an example of the use
of the concatenation operator, see Table 2-8, later in this chapter.

Comparison Operators
The comparison operators allow you to formulate conditions in SQL. Table 2-6 shows the
comparison operators available in SQL.

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS 35

Table 2-6. SQL Comparison Operators

Operator Description

< Less than

> Greater than

= Equal to

<= Less than or equal to

>= Greater than or equal to

<> or != Not equal to

Expressions with comparison operators are also referred to as predicates or Boolean
expressions. These expressions evaluate to TRUE or FALSE. Sometimes, the outcome is UNKNOWN,
such as when you have rows with missing information. We will revisit this topic in more detail
in Chapter 4, when we discuss null values.

Logical Operators
SQL also offers three operators whose operands are conditions: the logical (or Boolean) opera-
tors. Table 2-7 lists these operators.

Table 2-7. SQL Logical Operators

Operator Description

AND Logical AND

OR Logical OR (the inclusive OR)

NOT Logical negation

Expressions
An expression is a well-formed string containing variables, constants, operators, or functions.
Just like constants, expressions always have a certain datatype. See Table 2-8 for some examples
of expressions.

Table 2-8. SQL Expression Examples

Expression Datatype

3 + 4 Numeric

ENAME || ', ' || INIT Alphanumeric

LOCATION = 'Utrecht' Boolean

12*MSAL > 20000 AND COMM >= 100 Boolean

BDATE + INTERVAL '16' YEAR Date

999 Numeric

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS36

The last example in Table 2-8 shows that the simplest expression is just a constant.
When SQL expressions get more complex, operator precedence can become an issue; in

other words: what are the operator priority rules? Of course, SQL has some precedence rules.
For example, arithmetic operators always have precedence over comparison operators, and
comparison operators have precedence over logical operators. However, it is highly recom-
mended that you use parentheses in your complex SQL expressions to force a certain
expression evaluation order, just as you would do in regular mathematics.

Functions
Oracle has added a lot of functionality to the SQL standard in the area of functions. This is def-
initely one of the reasons why Oracle SQL is so powerful. You can recognize SQL functions by
their signature: they have a name, followed by one or more arguments (between parentheses)
in a comma-separated list. You can use functions in expressions, in the same way that you can
use operators.

These are the six SQL function categories, based on their operand types:

• Numeric functions

• Alphanumeric functions

• Group functions

• Date functions

• Conversion functions

• Other functions

Table 2-9 shows some examples of SQL functions.

Table 2-9. Examples of SQL Functions

Function Explanation

AVG(MSAL) The average monthly salary

SQRT(16) The square root of 16

LENGTH(INIT) The number of characters in the INIT column value

LOWER(ENAME) ENAME column value, in lowercase

SUBSTR(ENDDATE,4,3) Three characters of the ENDDATE column value, from the fourth position

Oracle even allows you to create your own SQL functions, by using the PL/SQL or Java
languages. Chapter 5 will show a simple example of a user-defined function.

Database Object Naming
All objects in a database need names. This applies to tables, columns, views, indexes, syn-
onyms, sequences, users, roles, constraints, functions, and so on. In general, to enhance the
readability of your SQL code, it is highly recommended that you restrict yourself to using the
characters A through Z, the digits 0 through 9, and optionally the underscore (_).

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS 37

■Note In Oracle, object names are case-insensitive; that is, internally all database object names are
converted to uppercase, regardless of how you enter those names.

You may use digits in database object names; however, database object names should
always start with a letter. Oracle object names have a maximum length of 30 characters.

Database objects need different names to be able to distinguish them, obviously. To be
more precise, database objects need unique names within their namespace. On the other
hand, different database users may use the same names for their own objects if they like,
because the owner/object name combination is used to uniquely identify an object in the
database.

If you insist on creating your own object names in Oracle SQL using any characters you
like (including, for example, spaces and other strange characters), and you also want your
object names to be case-sensitive, you can include those names within double quotes. The
only restriction that remains is the maximum name length: 30 characters. Using this “feature”
is discouraged, because you will always need to include those names in double quotes again
in every interactive SQL statement you want to execute against those objects. On the other
hand, you can use this technique in written applications to prevent conflicts with reserved
words, including reserved words of future DBMS versions not known to you at application
development time. Actually, several Oracle database utilities use this technique under the
hood for precisely this reason.

Comments
You can add comments to SQL commands in order to clarify their intent or to enhance their
maintainability. In other words, you can add text that does not formally belong to the SQL
statements themselves, and as such should be ignored by the Oracle DBMS. You can add such
comments in two ways: between /* and */ or after two consecutive minus signs. Comments
after two minus signs are implicitly ended by a newline character; comments between /* and
*/ can span multiple lines. See Listing 2-1 for two examples.

Listing 2-1. SQL Comments Examples

/* this text will be considered a comment,
so the Oracle DBMS will ignore it ... */

-- and this text too, until the end of this line.

Listing 2-1 shows how you can add comments to SQL commands. Note that you can also
add comments to database objects with the COMMENT command. See Chapter 7 for details.

Reserved Words
Just like any other language, SQL has a list of reserved words. These are words you are not
allowed to use, for example, as database object names. If you insist on using a reserved word
as an object name, you must enclose the name within double quotes, as explained earlier in
the “Database Object Naming” section.

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS38

These are some examples of SQL reserved words: AND, CREATE, DROP, FROM, GRANT, HAVING,
INDEX, INSERT, MODIFY, NOT, NULL, NUMBER, OR, ORDER, RENAME, REVOKE, SELECT, SYNONYM, SYSDATE,
TABLE, UPDATE, USER, VALUES, VIEW, and WHERE.

■Tip The Oracle data dictionary contains a V$RESERVED_WORDS view. You can check your object names
against this view to avoid using reserved words.

See Appendix A of this book and Chapter 2 of Oracle SQL Reference for more details about
naming rules for database objects and a more complete listing of SQL reserved words.

2.3 Introduction to iSQL*Plus
iSQL*Plus is a very convenient tool (or environment) with which to issue SQL commands
interactively against an Oracle database. iSQL*Plus is automatically configured during an
Oracle Database 10g software installation, and it runs completely in a browser. In other words,
iSQL*Plus does not need any Oracle software on a client machine; it needs only a standard
browser.

To run iSQL*Plus, you just launch your favorite browser and navigate to a specific URL.
In most real-world situations, this URL will point to a middle-tier application server or a data-
base server, but you can also use iSQL*Plus completely locally on your machine. In the latter
case, the URL simply points to the local machine. The exact URL for iSQL*Plus may vary in
certain environments, but the default format looks like this:

http://<name>.<domain>:<portnumber>/isqlplus/

In this URL, you should replace <name>.<domain> with a valid machine name or a correspon-
ding physical IP address, and 5560 is the default port number for the iSQL*Plus listener
process.

This listener process must be active to be able to use iSQL*Plus. Under Windows, a typical
name for the corresponding service is OracleOraDb10g_home1iSQL*Plus. Consult the Oracle
documentation for more information about configuring and troubleshooting iSQL*Plus.

In Chapter 11, we will discuss some more advanced features of the iSQL*Plus URL
address field; for the time being, you now know enough to get started.

At this point, to follow along with the discussion, you need the BOOK schema with the
seven case tables created in your database. Refer to my web site (http://www.naturaljoin.nl)
or the Apress web site (http://www.apress.com) for guidelines on how to do this.

The iSQL*Plus Login screen looks like Figure 2-5.

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS 39

Figure 2-5. Logging in to iSQL*Plus

Assuming you have created the user (or schema) BOOK in the database, and assuming you
entered the correct password, you can click the Login button. This brings you to the screen
shown in Figure 2-6.

Figure 2-6. iSQL*Plus Workspace screen

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS40

Some interesting features of the Workspace screen are the following:

• In the workspace area, you can enter and edit SQL and SQL*Plus commands. (SQL*Plus
commands are introduced in the next section.) You can use the Clear button to clear
the workspace, and you can use the Execute button to execute the contents of the
workspace.

• You can save and load SQL*Plus scripts with the Save Script and Load Script buttons.
(SQL*Plus scripts are introduced in the next section.)

• By clicking the Preferences link in the top-right corner, you can adjust several
iSQL*Plus settings to change its behavior to your personal taste.

• The History tab lists a history of the current (active) session, enabling you to reload and
reexecute certain commands in an efficient way. Note that the history is lost when you
exit the iSQL*Plus session.

• You can exit the iSQL*Plus session by clicking the Logout link.

The iSQL*Plus Preferences screen is shown in Figure 2-7. One example of a convenient
iSQL*Plus option is the Output Location setting, which allows you, for example, to save all
results in HTML format in a file. In Chapter 11, we will revisit iSQL*Plus and discuss various
ways to customize the iSQL*Plus environment.

Figure 2-7. iSQL*Plus Preferences screen

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS 41

Figure 2-8 shows the result of a simple SQL statement. To try this out, navigate back to the
Workspace tab, enter the SQL command shown in the figure, and click the Execute button.

Figure 2-8. An SQL statement and its result

If you have already entered various SQL commands during your iSQL*Plus session, the
contents of the History tab could look something like Figure 2-9. In the History screen, you
can select one or more scripts, and then delete them by clicking the Delete button. You can
also load scripts in your workspace with the Load button.

Figure 2-9. iSQL*Plus History screen

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS42

iSQL*Plus also offers extensive online help functionality. Click the Help link (the question
mark icon in the upper-right corner of the screen) to reach the screen shown in Figure 2-10.

Figure 2-10. iSQL*Plus Help screen

For the moment, you know enough about iSQL*Plus to start using it as a tool to execute
SQL commands.

2.4 Introduction to SQL*Plus
SQL*Plus is very similar to iSQL*Plus. The most important difference between them is
that SQL*Plus is a “real” client application program, whereas iSQL*Plus needs only a local
browser to do its work for you.

You can use both SQL*Plus and iSQL*Plus for almost all of the examples and exercises in
this book. The remaining sections of this chapter are devoted to SQL*Plus, so if you want to
start using iSQL*Plus, you can skip the remainder of this chapter and continue with Chapter 3.
On the other hand, you might want to get familiar with both interfaces.

If Oracle is running, you can start SQL*Plus under Microsoft Windows via the Start menu,
by double-clicking the SQL*Plus icon on your desktop, or by executing sqlplus.exe or
sqlplusw.exe from a command window. The difference between the last two executables
becomes obvious if you try them; the former is the line-mode version, and the latter offers
the GUI.

Under normal circumstances, SQL*Plus responds with a dialog box, prompting you for a
username and corresponding password, as shown in Figure 2-11. You can optionally use the
Host String field to establish a nondefault connection to a database somewhere else on the
network. If your system is correctly configured for a default local connection, you can leave
the Host String field empty.

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS 43

Figure 2-11. SQL*Plus Log On dialog box

If you are able to provide a valid username/password combination, the SQL> prompt
appears on your screen to indicate that you have successfully established a session, as shown
in Figure 2-12. Note that this figure shows that you can establish a connection to a version
10.1.0.2 database with an older version of SQL*Plus (9.2.0.2).

Figure 2-12. SQL*Plus screen after a successful connection

You can leave SQL*Plus with the command EXIT or QUIT. See Appendix A for some options
of these commands.

Entering Commands
SQL*Plus not only “understands” the SQL language, but it also supports and recognizes
several tool-specific SQL*Plus commands. You must make sure to distinguish these SQL*Plus
commands from SQL commands, because SQL*Plus treats these two command types differ-
ently, as you will see.

Let’s start by entering an arbitrary (and rather simple) SQL command in SQL*Plus, as
shown in Listing 2-2.

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS44

Listing 2-2. A Basic SQL SELECT Command

SQL> select *
2 from employees;

Notice that SQL commands are often spread over multiple lines and, by default, SQL*Plus
automatically displays line numbers during SQL command entry. If your SQL command is
fully entered and you want SQL*Plus to execute it for you, you should finish the last line with
a semicolon (;) as a delimiter. If you forget the semicolon (this will probably happen quite
often, initially), you can still enter that semicolon on the next (empty) line, as shown here:

SQL> select *
2 from employees
3 ;

Either way, the command will execute. SQL*Plus will return all columns and all rows of
the EMPLOYEES table, since the asterisk character (*) means to show all columns of this table.

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- --------- ----- ----- ------
7369 SMITH N TRAINER 7902 17-DEC-65 800 20
7499 ALLEN JAM SALESREP 7698 20-FEB-61 1600 300 30
7521 WARD TF SALESREP 7698 22-FEB-62 1250 500 30
7566 JONES JM MANAGER 7839 02-APR-67 2975 20
7654 MARTIN P SALESREP 7698 28-SEP-56 1250 1400 30
7698 BLAKE R MANAGER 7839 01-NOV-63 2850 30
7782 CLARK AB MANAGER 7839 09-JUN-65 2450 10
7788 SCOTT SCJ TRAINER 7566 26-NOV-59 3000 20
7839 KING CC DIRECTOR 17-NOV-52 5000 10
7844 TURNER JJ SALESREP 7698 28-SEP-68 1500 0 30
7876 ADAMS AA TRAINER 7788 30-DEC-66 1100 20
7900 JONES R ADMIN 7698 03-DEC-69 800 30
7902 FORD MG TRAINER 7566 13-FEB-59 3000 20
7934 MILLER TJA ADMIN 7782 23-JAN-62 1300 10

Using the SQL Buffer
SQL*Plus stores your most recent SQL command in an area called the SQL buffer. The SQL
buffer is an important SQL*Plus concept. You can display the content of the SQL buffer using a
SQL*Plus command called LIST, as shown in Listing 2-3.

Listing 2-3. The SQL*Plus LIST Command

SQL> L
1 select *
2* from employees

SQL>

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS 45

The ability to retrieve the last SQL statement from the SQL buffer is often very useful
when you need to correct errors and reexecute the SQL statement. You will see how to do this
in the subsequent sections, where we’ll also discuss some other SQL*Plus commands related
to the SQL buffer.

If you enter a second SQL command, the SQL buffer is overwritten, and you lose the pre-
vious SQL command. In the “Saving Commands” section later in this chapter, you will see an
easy method to save SQL commands for reuse in SQL*Plus.

Note from the example in Listing 2-3 that the SQL command returned from the SQL
buffer did not include a semicolon at the end of it. The semicolon is not part of the SQL com-
mand itself, and it does not end up in the SQL buffer. If you enter a SQL command (or even a
portion of a SQL command) and press the Enter key twice, without first adding a semicolon,
the command will not be executed, but it will be saved in the SQL buffer.

The SQL*Plus commands you enter are not stored in the SQL buffer. You can run as
many SQL*Plus commands as you like, but another SQL*Plus LIST command will display the
same SQL command.

From the example in Listing 2-3, you can also note several other things about SQL*Plus
commands:

• They are normally executed on a single line, unlike most SQL commands.

• You don’t need to enter a semicolon to execute SQL*Plus commands. They execute
immediately when you press the Enter key.

• SQL*Plus commands can be abbreviated (L stands for LIST), whereas SQL commands
cannot.

Rather than just see what is in the buffer, it is often useful to be able to edit its contents
and then reexecute the SQL, so let’s now move on to discuss how to do that.

Using an External Editor
You can edit the contents of the SQL buffer in two ways:

• Use an external editor of your choice

• Use the built-in SQL*Plus editor

The main advantage of the SQL*Plus editor is that its functionality is always available in
SQL*Plus, and the editor is totally independent of the underlying platform. The disadvantage
of the SQL*Plus editor is its lack of user-friendliness and its very limited capabilities. For
example, iSQL*Plus has a much more intuitive interface to change the contents of the current
workspace. This section explains how to use an external editor to edit your SQL commands.
The next section will discuss the built-in SQL*Plus editor.

The default external editor under Microsoft Windows is Notepad. SQL*Plus has an
Edit ➤ Editor ➤ Define Editor menu option to define your external editor choice, as shown
in Figure 2-13.

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS46

Figure 2-13. SQL*Plus Define Editor menu option

You can also change or display the SQL*Plus external editor preference from the com-
mand line by using the DEFINE command, as shown in Listing 2-4.

Listing 2-4. Displaying and Changing the External Editor Preference

SQL> define _editor=Notepad

SQL> define _editor
DEFINE _EDITOR = "Notepad" (CHAR)

SQL>

■Note The SQL*Plus variable that holds the name of the external editor is _editor, with a leading under-
score in its name.

You can invoke the external editor to change the contents of the SQL buffer. For this
purpose, SQL*Plus offers the menu option Invoke Editor (see Figure 2-13) or the SQL*Plus
command EDIT. You can invoke the external editor only when your SQL buffer is not empty.
An empty buffer results in the error message “nothing to save.”

Invoking the external editor starts a subprocess, which means that you cannot return to
SQL*Plus until you have closed the external editor window. Alternatively, you may want to
start a separate editor session from the operating system (that is, not from SQL*Plus) so you
can switch between two windows. In that case, you must make sure to save the changes in
your editor window before executing the changed SQL command in SQL*Plus.

Using the SQL*Plus Editor
To explore the SQL*Plus editor, we begin with the same simple SQL SELECT command in the
SQL buffer (from the “Entering Commands” section earlier in the chapter):

SQL> select *
2 from employees;

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS 47

■Note Please follow all instructions in this section verbatim, even when you think there are some
mistakes, because any mistakes are intentional.

It is important to realize that the SQL*Plus editor is line-oriented; that is, there is only one
current line at any point in time. You can make changes only to that current line. (Perhaps you
remember the good old EDLIN editor under MS-DOS?)

SQL*Plus marks the current line on screen with an asterisk (*) after the line number.
Normally, it is the line you entered last; in our example, it is the second line.

If you want to change something on the first line, you must first activate that line with the
L1 command. Let’s try to change the asterisk into two column names. C is an abbreviation for
the SQL*Plus command CHANGE. Listing 2-5 shows how to use the LIST and CHANGE commands
to make this change. SQL*Plus searches the current line for the first occurrence of an asterisk
(*) and changes that character into eename, bdate.

Listing 2-5. Using the SQL*Plus LIST and CHANGE Commands

SQL> L
1 select *
2* from employees

SQL> L1
1* select *

SQL> c/*/eename, bdate/
1* select eename, bdate

SQL> L
1 select eename, bdate
2* from employees

SQL>

Instead of slashes (/), you can use any arbitrary character for the string delimiter (separa-
tor) in the CHANGE command. Also, a space character between the C and the first separator is
not mandatory, and you can omit the last string delimiter too.

Now, let’s try to execute the SQL command in the buffer again. The SQL*Plus command to
execute the contents of the SQL buffer is RUN, abbreviated to R. Apparently we made a mistake;
we get an Oracle error message, as shown in Listing 2-6. Observe the error message. First, it
shows a line number indication (ERROR at line 1), and within that line, an asterisk (*) indi-
cates the position where the error was detected. Listing 2-6 also shows a first attempt to
correct the error and the erroneous result of our CHANGE command.

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS48

Listing 2-6. Fixing Typos with the SQL*Plus CHANGE Command

SQL> R
1 select eename, bdate
2* from employees

select eename, bdate
*

ERROR at line 1:
ORA-00904: "EENAME": invalid identifier

SQL> c/e//
1* slect eename, bdate

SQL>

We removed the first occurrence of an e on the first line, instead of the e in eename. This is
the default (and only) way the CHANGE command works. This means that you must be careful
with this command and be sure to specify appropriate search strings for replacement. In this
case, it would have been better to issue the c/ee/e/ command instead.

You can also add text at the end of the current line using the SQL*Plus APPEND command,
which is abbreviated A. Listing 2-7 shows how we can first fix the mistake, and then add one
more column to the SELECT expression.

Listing 2-7. Appending Text with the SQL*Plus APPEND Command

SQL> L1
1* slect eename, bdate

SQL> c/slect ee/select e/
1* select ename, bdate

SQL> A , deptno
1* select ename, bdate, deptno

SQL> L
1 select ename, bdate, deptno
2* from employees

SQL>

Note that the SQL*Plus APPEND command does not insert a space by default. In this case,
we don’t need a space, but otherwise you should specify a second space character after the
APPEND command.

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS 49

You can also add one or more additional lines to the SQL buffer with the SQL*Plus INPUT
command (abbreviated I), as shown in Listing 2-8. The lines you enter are added below the
current line. If the current line is the last line in the buffer, the new lines are added at the end
of the statement. This also means you need a “special trick” to add lines before the first line, as
you’ll learn in the next section. Notice the line numbering; SQL*Plus automatically generates
appropriate line numbers while entering text. You can stop entering additional lines by press-
ing the Enter key twice, or by entering a semicolon when you are adding lines at the end of the
buffer.

Listing 2-8. Inserting Text with the SQL*Plus INPUT Command

1 select ename, bdate, deptno
2* from employees

SQL> I
3 where deptno = 30;

ENAME BDATE DEPTNO
-------- ----------- --------
ALLEN 20-FEB-1961 30
WARD 22-FEB-1962 30
MARTIN 28-SEP-1956 30
BLAKE 01-NOV-1963 30
TURNER 28-SEP-1968 30
JONES 03-DEC-1969 30

SQL>

■Note The I is an abbreviation for INPUT, not for INSERT. INSERT is a SQL command (to add rows to a
table in the database).

The SQL*Plus DEL command deletes the current line from the SQL buffer. You can option-
ally specify a line number with the DEL command to remove a certain line from the SQL buffer
without making that line the current line first, or a range of line numbers to remove several
lines with a single DEL command. See Listing 2-9 for an example.

Listing 2-9. Deleting Lines with the SQL*Plus DEL Command

SQL> L
1 select ename, bdate, deptno
2 from employees
3* where deptno = 30

SQL> DEL

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS50

SQL> L
1 select ename, bdate, deptno
2* from employees

SQL>

■Note DEL is not an abbreviation for DELETE, because DELETE is a SQL command (to remove rows from a
table in the database.)

Using SQL Buffer Line Numbers
You can make any line the current one by just entering the line number, without the L (LIST)
command, as shown in Listing 2-10.

Listing 2-10. Using Line Numbers to Change the Current Line

SQL> L
1 select code, description
2 from courses
3* where category = 'DSG'

SQL> 2
2* from courses

SQL> 42
SP2-0226: Invalid line number

SQL>

Using line numbers, you can also replace any line in the SQL buffer without needing to
use the SQL*Plus DEL command followed by a SQL*Plus INPUT command. Instead, simply
enter the desired new line preceded by its line number. Listing 2-11 shows how to replace the
first line and add a line at the end of the SQL buffer. Notice that the high line number (42)
does not generate an error message, as it does in the example in Listing 2-10.

Listing 2-11. Using Line Numbers to Change the SQL Buffer

SQL> 1 select *

SQL> L
1 select *
2 from courses
3* where category = 'DSG'

SQL> 42 order by code

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS 51

SQL> L
1 select *
2 from courses
3 where category = 'DSG'
4* order by code

SQL>

As explained earlier, the SQL*Plus INPUT command always inserts lines below the current
line. The trick to insert extra lines before the first line is to “overwrite” the artificial line zero, as
demonstrated in Listing 2-12. This is a rather trivial example; however, this trick can be quite
useful when creating views. Views are discussed in Chapter 10.

Listing 2-12. Inserting Text Before the First Line of the SQL Buffer

1 select *
2 from courses
3 where category = ‘DSG’
4* order by code

SQL> 0 /* this is just a comment */

SQL> L
1 /* this is just a comment */
2 select *
3 from courses
4 where category = 'DSG'
5* order by code

SQL>

Using the Ellipsis
If you are using the SQL*Plus CHANGE command, you might benefit from using three consecu-
tive period characters, also known as the ellipsis. The examples in Listings 2-13 and 2-14
demonstrate the effect of using the ellipsis. First, we enter a new SQL command into the
buffer and deliberately make a mistake.

Listing 2-13. Entering a SQL Command with a Deliberate Error

SQL> select mgr, department_name
2 from departments
3 where location = 'SCHIERMONNIKOOG';

select mgr, department_name
*

ERROR at line 1:
ORA-00904: "DEPARTMENT_NAME": invalid identifier

SQL>

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS52

Normally, the last command line you entered into the SQL buffer is automatically the
current line. However, if an error condition occurs (such as in Listing 2-13), the line where the
error is found becomes the current line. This allows you to correct any mistakes with the
SQL*Plus CHANGE command immediately, without activating any line with the SQL*Plus LIST
command. Listing 2-14 shows this phenomenon; the asterisk in the L* command means to
show the current line.

Listing 2-14. Using the SQL*Plus L* Command and the Ellipsis (. . .)

SQL> L*
1* select mgr, department_name

SQL> c/d.../dname
1* select mgr, dname

SQL> 3
3* where location = 'SCHIERMONNIKOOG'

SQL> c/s...g/BOSTON
3* where location = 'BOSTON'

SQL>

The last example in Listing 2-14 shows that all CHANGE command searches are case-
insensitive. As you can see, the ellipsis is powerful, but it’s also dangerous. For example, the
command c/d.../dname searches for the first occurrence of a d on the first line, and then
replaces everything to the end of the line.

SQL*Plus Editor Command Review
The SQL*Plus editor is a rather simple editor; nevertheless, it makes sense to spend some time
to explore its possibilities. It might come in handy when you need to work with the Oracle
DBMS in an environment that is completely unknown to you, or where you are not allowed to
launch an external editor from the underlying operating system. The SQL*Plus editor is always
available, and it’s identical on all platforms supported by Oracle.

Table 2-10 summarizes all the SQL*Plus editor commands covered in this chapter.

Table 2-10. Some SQL*Plus Editor-Related Commands

Command Description

LIST Show the complete SQL buffer

LIST n (or just n) Make line n the current line

CHANGE/old/new/ Change the first occurrence of old into new on the current line

APPEND txt Append txt to the end of the current line

INPUT Insert line(s) below the current line

Continued

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS 53

Table 2-10. Continued

Command Description

DEL [x [y]] Without arguments: remove current line. One argument: remove that line.
Two arguments: remove range of lines (x and y can be line numbers, *,
or LAST)

RUN (or /) Execute the contents of the SQL buffer

EDIT Start an external editor on the current buffer contents

DEFINE _EDITOR Define your preferred external editor

As Table 2-10 shows, you can use the slash (/) command as an alternative for the
SQL*Plus RUN command. The difference between the two is that RUN always displays the SQL
command and the results, whereas the slash (/) command shows the results only.

Saving Commands
As explained earlier in the chapter, the SQL buffer is overwritten with every new SQL com-
mand you enter in SQL*Plus. If you want to save the contents of the SQL buffer, you can use
the SQL*Plus SAVE command. The SAVE command creates a script file containing the contents
of the SQL buffer.

If a script file already exists, you can specify (with the options APPEND or REPLACE) what you
want the SAVE command to do in that case. The APPEND option is useful if you want to save all
your SQL commands in one single file; for example, to print that file later.

Under Microsoft Windows, the options for saving the contents of the SQL buffer are also
available via the File pull-down menu of SQL*Plus, as shown in Figure 2-14.

Figure 2-14. The SQL*Plus options for saving the SQL buffer contents

As an example of saving SQL commands, enter the commands shown in Listing 2-15.

Listing 2-15. The SQL*Plus SAVE Command

SQL> save BLA

SQL> select * from departments;

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS54

DEPTNO DNAME LOCATION MGR
------ ---------- -------- -----

10 ACCOUNTING NEW YORK 7782
20 TRAINING DALLAS 7566
30 SALES CHICAGO 7698
40 HR BOSTON 7839

SQL> save BLI
Created file BLI.sql

SQL> select * from courses;

CODE DESCRIPTION CAT DURATION
---- ------------------------------ --- --------
SQL Introduction to SQL GEN 4
OAU Oracle for application users GEN 1
JAV Java for Oracle developers BLD 4
PLS Introduction to PL/SQL BLD 1
XML XML for Oracle developers BLD 2
ERM Data modeling with ERM DSG 3
PMT Process modeling techniques DSG 1
RSD Relational system design DSG 2
PRO Prototyping DSG 5
GEN System generation DSG 4

10 rows selected.

SQL> save BLA
SP2-0540: File "BLA.sql" already exists.
Use "SAVE filename[.ext] REPLACE".

SQL> save BLA replace
Created file BLA.sql

SQL>

Note the error message after the second SAVE BLA attempt; REPLACE (or APPEND) is manda-
tory if a file already exists.

We have created two script files. These script files get the extension .SQL by default. If you
prefer to use a different file name extension, you can change it with the SQL*Plus SUFFIX setting.

Running SQL*Plus Scripts
You can load script files saved with the SAVE command back into the SQL buffer with the GET
command, followed by the name of the script. For example, you might reload a script and
then edit it. If you want to load a script file and immediately execute it, you can use the START
command (to get and run the script), as shown in Listing 2-16.

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS 55

Listing 2-16. Using the SQL*Plus GET and START Commands

SQL> GET BLA
1* select * from courses

SQL> START BLI

DEPTNO DNAME LOCATION MGR
------ ---------- -------- -----

10 ACCOUNTING NEW YORK 7782
20 TRAINING DALLAS 7566
30 SALES CHICAGO 7698
40 HR BOSTON 7839

SQL>

Listing 2-17 shows that you can also use the @ shortcut for the SQL*Plus START command.

Listing 2-17. Using the SQL*Plus @ Command

SQL> L
1* select * from departments

SQL> @BLA

CODE DESCRIPTION CAT DURATION
---- ------------------------------ --- --------
SQL Introduction to SQL GEN 4
OAU Oracle for application users GEN 1
JAV Java for Oracle developers BLD 4
PLS Introduction to PL/SQL BLD 1
XML XML for Oracle developers BLD 2
ERM Data modeling with ERM DSG 3
PMT Process modeling techniques DSG 1
RSD Relational system design DSG 2
PRO Prototyping DSG 5
GEN System generation DSG 4

10 rows selected.

SQL>

Specifying Directory Path Specifications
The SQL*Plus commands SAVE, GET, and START can handle full file name specifications, with
directory paths. In the absence of a directory path, these commands default to the current
directory. In a Microsoft Windows environment, it is relatively simple to define the directory

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS56

(or folder) in which you want SQL*Plus to start. This is one of the shortcut properties, which
you can set in the Start In field of the Properties dialog box, shown in Figure 2-15. Right-click
the SQL*Plus icon and select Properties to open this dialog box.

Figure 2-15. SQL*Plus shortcut properties

Through the Properties dialog box, you can also simplify the process to start SQL*Plus by
specifying your username and password (such as book/book) in the Target field. In that case,
the standard Log On dialog box (see Figure 2-11) will be skipped. However, this is a security
risk, because anyone with access to your keyboard for more than two seconds will find out
your database name and password.

■Tip Under Microsoft Windows, you can also set the SQLPATH Registry setting to define a default search
path for all files that cannot be found in the current directory. For example, you could have this Registry
setting point to a central directory where you maintain all your generic SQL scripts. Just open the Registry
Editor with the REGEDIT command and search for SQLPATH. Under other operating systems, check out the
SQLPATH environment variable.

Adjusting SQL*Plus Settings
You can modify the behavior of SQL*Plus in numerous ways, based on SQL*Plus variables or
settings. This section provides some simple examples to give you an idea of how this works.
Chapter 11 covers the topic in more detail.

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS 57

Listing 2-18 demonstrates using the SET command to change some SQL*Plus settings.

Listing 2-18. Changing SQL*Plus Settings with the SET Command

SQL> set pagesize 22
SQL> set pause "Hit [Enter]... "
SQL> set pause on

SQL> run
1* select * from courses

Hit [Enter]...

The effect of changing the PAUSE and PAGESIZE settings as shown in Listing 2-18 is that
SQL*Plus now produces screen output per page, in this case, 22 lines at a time. The PAUSE
setting is useful if the results of your SQL commands don’t fit on your screen.

■Tip When using the PAUSE setting, don’t just switch it on or off; make sure to specify a prompt string,
too. Otherwise, SQL*Plus will just wait until you press the Enter key.

You can display the current values of SQL*Plus settings with the SHOW command, and you
can revert to the default behavior with the SET command. Listing 2-19 shows examples of
using these commands.

Listing 2-19. Displaying SQL*Plus Settings with the SHOW Command

SQL> show pages
pagesize 22

SQL> show pause
PAUSE is ON and set to "Hit [Enter]... "

SQL> set pause off

SQL> show pause
PAUSE is OFF

SQL>

Under Microsoft Windows, SQL*Plus offers an Options ➤ Environment menu option, as
shown in Figure 2-16. Choosing this option opens the Environment dialog box, where you can
view current SQL*Plus settings and modify them, if you wish, as shown in Figure 2-17.

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS58

Figure 2-16. The SQL*Plus Environment option on the Options pull-down menu

Figure 2-17. The Environment dialog box

Although we are discussing the SQL*Plus tool in this section, there is also another
(client tool-independent) way to influence your database session behavior: by using the SQL
command ALTER SESSION. With this command, you can set several NLS (National Language
Support) session parameters, a selection of which are shown in Table 2-11.

Table 2-11. Examples of NLS Session Parameters

Parameter Description

NLS_DATE_FORMAT Default format to display dates

NLS_TIME_FORMAT Default format to display timestamps

NLS_LANGUAGE The language for SQL*Plus feedback and messages

NLS_NUMERIC_CHARACTERS The decimal point and group separator characters

NLS_CURRENCY The currency symbol

The most important parameter in this list is probably NLS_DATE_FORMAT, because this
parameter influences the way date values are interpreted and displayed by your session,
which is often a source of confusion. Listing 2-20 shows an example of using the ALTER SESSION
command to set some NLS session parameters.

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS 59

Listing 2-20. Changing NLS Parameters with ALTER SESSION

SQL> alter session
2 set nls_date_format='dd-mm-yyyy'
3 nls_language=Dutch
4 nls_currency='Eur';

Sessie is gewijzigd.

SQL>

If you change settings with the ALTER SESSION command, or if you change certain
SQL*Plus settings with the SQL*Plus SET command, you lose these changes as soon as you log
off. On startup, SQL* Plus will use the default values again. If you want to avoid the hassle of
applying the same changes over and over again, you can store these SQL and SQL*Plus com-
mands in a file with the special name login.sql. This file is automatically executed when you
start SQL*Plus, or even when you change connections within a SQL*Plus session with the
CONNECT command. Note that SQL*Plus must be able to find this file in the directory it starts in
(see Figure 2-15) or via the SQLPATH Registry setting. login.sql is an example of a SQL*Plus
script. We will revisit this type of file in more detail in Chapter 11.

If the rows of a result table don’t fit on a single line on your screen (and the line wrapping
makes the result rather ugly), a solution might be to narrow the display of one or more
columns with the SQL*Plus COLUMN command. By default, SQL*Plus displays all columns on
the screen with a width derived from the corresponding column definitions found in the data
dictionary. Listing 2-21 shows how you can narrow (or widen) the display of alphanumeric
columns on your screen by using the FORMAT option of the COLUMN command.

Listing 2-21. Changing the Width of Alphanumeric Columns

SQL> select * from courses
2 where category = 'BLD';

CODE DESCRIPTION CAT DURATION
---- ------------------------------ --- --------
JAV Java for Oracle developers BLD 4
PLS Introduction to PL/SQL BLD 1
XML XML for Oracle developers BLD 2

SQL> COLUMN description FORMAT a26
SQL> /

CODE DESCRIPTION CAT DURATION
---- -------------------------- --- --------
JAV Java for Oracle developers BLD 4
PLS Introduction to PL/SQL BLD 1
XML XML for Oracle developers BLD 2

SQL>

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS60

All SQL*Plus commands (and their optional components) can be abbreviated, as long as
the abbreviation is unique. For example, the COLUMN command can be abbreviated to COL, and
FORMAT can be abbreviated to FOR (see Listing 2-22).

You can influence the width of numeric columns in a similar way, as you can see in
Listing 2-22.

Listing 2-22. Changing the Display of Numeric Columns

SQL> select * from salgrades
2 where grade > 3;

GRADE LOWERLIMIT UPPERLIMIT BONUS
----- ---------- ---------- -----

4 2001 3000 200
5 3001 9999 500

SQL> COL bonus FOR 9999.99
SQL> /

GRADE LOWERLIMIT UPPERLIMIT BONUS
----- ---------- ---------- --------

4 2001 3000 200.00
5 3001 9999 500.00

SQL>

If you want to save all your current SQL*Plus settings in a file (a SQL*Plus script file), use
the STORE SET command. See Listing 2-23 for the syntax of this command.

Listing 2-23. SQL*Plus STORE SET Command Syntax

SQL> STORE SET <filename>[.sql] [REPLACE|APPEND]

The brackets in Listing 2-23 (around .sql and REPLACE|APPEND) are part of a common syn-
tax notation convention to denote optional command clauses. This convention is also used in
Appendix A of this book. In this convention, a vertical bar (|) can be used to separate optional
choices, as in [REPLACE|APPEND]. Uppercase components such as SET and APPEND should be
entered verbatim; lowercase components (such as <filename>) should be replaced (in this
case) by a file name of your own choice. See Appendix A for more details.

If you have saved all SQL*Plus settings in a script file by using the STORE SET command,
you can restore those settings at any time using the START (or @) command. This allows you to
write SQL*Plus scripts that capture all SQL*Plus settings at the beginning, change various set-
tings during script execution, and then restore the original settings at the end of the script.

Spooling a SQL*Plus Session
You can record the complete results (as displayed on your screen) of a SQL*Plus session in an
operating system file, using the SQL*Plus SPOOL command. Listing 2-24 shows an example.

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS 61

Listing 2-24. Using the SQL*Plus SPOOL Command

SQL> spool BLA.TXT [create|replace|append]
SQL> select * from employees;
...
SQL> select * from departments;
...
SQL> spool off

The BLA.TXT file, created in the same directory or folder where the SAVE command stores
its script files, now contains a complete copy of all screen output. As Listing 2-24 shows, you
can influence the behavior of the SPOOL command by specifying one of the following key-
words: CREATE, REPLACE, or APPEND. With these three options, you can specify which behavior
you want in case the specified file already exists. Just try these options for yourself; the error
messages are self-explanatory.

The GUI of SQL*Plus under Microsoft Windows offers a File ➤ Spool menu option to
activate or deactivate the SPOOL command, as shown in Figure 2-18.

Figure 2-18. The SQL*Plus File ➤ Spool menu option

Describing Database Objects
When formulating SQL commands, it is sometimes convenient to get a quick overview of the
structure of a table; for example, to see the column names and the datatypes. In such cases,
the SQL*Plus DESCRIBE command is what you need. See Listing 2-25 for an example.

Listing 2-25. The SQL*Plus DESCRIBE Command

SQL> descr employees

Name Null? Type
----------------------------- -------- --------------------
EMPNO NOT NULL NUMBER(4)
ENAME NOT NULL VARCHAR2(8)
INIT NOT NULL VARCHAR2(5)
JOB VARCHAR2(8)
MGR NUMBER(4)
BDATE NOT NULL DATE

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS62

MSAL NOT NULL NUMBER(6,2)
COMM NUMBER(6,2)
DEPTNO NUMBER(2)

SQL>

Executing Commands from the Operating System
The HOST command (most implementations support a platform-specific shortcut, such as $
or !) allows you to execute commands at the underlying operating system; for example, on a
Microsoft Windows system, a command window is opened. Depending on the underlying
operating system, you can finish the subsession and return to your SQL*Plus session with
EXIT, LOGOUT, or a similar command.

Clearing the Buffer and the Screen
With the CLEAR BUFFER command, you can empty the SQL buffer in SQL*Plus. This is some-
thing you won’t need to do too often, because the SQL buffer is overwritten each time by
consecutive commands.

With the CLEAR SCREEN command, you can start at the top of a new, empty SQL*Plus
screen.

SQL*Plus Command Review
Table 2-12 shows an overview of all SQL*Plus commands covered in this chapter (including
the SQL*Plus editor commands already listed in Table 2-10).

Table 2-12. Some SQL*Plus Commands

Command Description

SAVE Save the SQL buffer contents in a script file

GET Read a saved script file back into the SQL buffer

START or @ Execute the contents of a script file

SPOOL Copy all screen output to a file

SET Change a SQL*Plus setting

SHOW Show the current value of SQL*Plus settings

COLUMN ... FORMAT Change screen display attributes of a column

STORE SET Save the current SQL*Plus settings in a script file

DESCRIBE Provide a description of a database object

HOST or $ Start a subsession at the operating system level

CLEAR BUFFER Empty the SQL buffer

CLEAR SCREEN Start with an empty SQL*Plus screen

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS 63

We also introduced the following SQL command in this section:

• ALTER SESSION changes various settings for your session, such as NLS settings.

In Chapter 11, we will revisit SQL*Plus and iSQL*Plus to cover some more advanced fea-
tures of these two tools. In case you are curious about more SQL*Plus features, feel free to visit
the Oracle online documentation or refer to the quick reference in Appendix A of this book.

For now, however, you know just enough about the iSQL*Plus and SQL*Plus tools to get
started with the SQL language in the chapters to follow.

CHAPTER 2 ■ INTRODUCTION TO SQL, iSQL*PLUS, AND SQL*PLUS64

Data Definition, Part I

This short chapter is the first one about data definition with SQL. It’s intended to get you
started using SQL for data retrieval as soon as possible. Therefore, this chapter covers only
the data definition basics, such as how to create simple tables using standard datatypes.
In Chapter 7, we will revisit data definition with SQL and explore topics such as indexes,
synonyms, and constraints.

This chapter is mainly theoretical in nature in that it still offers no hands-on exercises and
only a few examples. In the next chapter, you will start writing SQL commands yourself.

The first section introduces the concept of database schemas and database users. In an
Oracle database, tables always belong to a schema, and, in general, a schema has a database
user as its owner. The second section explains how you can create simple tables, and the
most common Oracle datatypes are covered in the third section. To illustrate the contents of
the first three sections, the fourth section shows the CREATE TABLE commands to create the
sample tables used in the examples in this book (introduced in the previous chapter), without
bothering about constraints yet.

The last section of this chapter covers the Oracle data dictionary. It provides a global
overview of the data dictionary, lists some typical examples of data dictionary tables, and
shows how to execute some simple queries against some of those data dictionary tables.

3.1 Schemas and Users
Before you can start creating and populating tables with SQL, you need to understand how
data stored in an Oracle database is organized internally. In the previous chapter, you learned
that you cannot do anything in an Oracle database if you do not identify yourself first by spec-
ifying a username and a password. This process identifies you as a certain database user.

In an Oracle database there is, in general, a one-to-one relationship between database
users and database schemas with the same name. Briefly, these are the differences between a
database user and a database schema:

• A database user has a password and certain database privileges.

• A database schema is a logical collection of database objects (such as tables, indexes,
views, and so on) that is usually owned by the user of the same name.

Normally, when you log on to an Oracle database, you are automatically connected with
the corresponding database schema with the same name. However, it is also possible that
certain database users don’t have their own schema; in other words, they don’t have any

65

C H A P T E R 3

■ ■ ■

database objects of their own, and they don’t have the privileges to create them either. These
“schema-less” users are, for example, authorized only to retrieve or manipulate data in a dif-
ferent database schema.

For example, in SQL*Plus, you can use the CONNECT command to establish a new connec-
tion with a different schema, provided you are able to enter a valid combination of a database
name and a corresponding password. With the ALTER SESSION SET CURRENT_SCHEMA command,
you can “visit” a different schema in SQL*Plus without changing your identity as database
user, and therefore without changing any of your privileges.

All of the examples and exercises in this book assume the presence of a database user
BOOK, with the password BOOK, and a schema BOOK that contains the seven case tables intro-
duced in the previous chapter. You can find all of the scripts to create the BOOK schema, to
create the seven tables, and to insert the rows on my web site at http://www.naturaljoin.nl
or the Downloads section of the Apress web site (http://www.apress.com).

3.2 Table Creation
The SQL command to create tables is CREATE TABLE. If you create a table, you must specify a
name for the new table, followed by a specification of all table columns. The columns must be
specified as a comma-separated list between parentheses.

■Note The right to create tables in an Oracle database is not granted to everyone; you need some addi-
tional system privileges. If you get error messages when you try to create tables, contact your database
administrator or check Oracle Database Administrator’s Guide in the online documentation.

The basic syntax of the CREATE TABLE command is shown in Figure 3-1.

Figure 3-1. CREATE TABLE basic command syntax diagram

■Note Figure 3-1 does not show the complete syntax of the CREATE TABLE command. Just for fun, check
out Oracle SQL Reference for the amount of documentation describing the CREATE TABLE command.
Chapter 7 of this book will revisit this command with the full syntax and more details.

Column specifications normally consist of several components. Figure 3-2 shows the
column specification syntax.

CHAPTER 3 ■ DATA DEFINIT ION, PART I66

CHAPTER 3 ■ DATA DEFINIT ION, PART I 67

Figure 3-2. Column specification syntax diagram

Each column specification starts with a column name, followed by the datatype (discussed
in the next section). If you add the optional expression NOT NULL to a column definition, each
future row of the table you are creating must have a value specified for this column, and you
will not be able to update future rows by removing a value for this column. In other words,
you define the column to be a mandatory attribute.

The NOT NULL addition is an example of a constraint. You can specify many additional con-
straints in the CREATE TABLE command, such as UNIQUE, CHECK, PRIMARY KEY, and FOREIGN KEY.
Chapter 7 will discuss these options of the CREATE TABLE command.

3.3 Datatypes
Oracle supports many standard datatypes, as you will see if you take a look at the Oracle docu-
mentation. Some Oracle datatypes look very similar; some are even synonyms for each other.
These datatypes are supported for compatibility purposes of Oracle with other DBMSs or with
the ANSI/ISO SQL standard. For example, INT and INTEGER are synonyms for NUMBER(38).
Some datatypes are very specific in nature, making them irrelevant for us at this point in time.
This section covers only the most common and widely used Oracle datatypes.

In general, there are three categories of column data: numbers (numeric data), text
(alphanumeric data), and time-related data. The most important corresponding Oracle
datatypes are NUMBER, VARCHAR or VARCHAR2, and DATE, respectively.

Table 3-1 shows some examples of the NUMBER datatype.

Table 3-1. NUMBER Datatype Examples

Example Description

NUMBER(4) An integer with a maximum length of four digits

NUMBER(6,2) A number with a maximum precision of six digits; at most two digits behind
the decimal point

NUMBER(7,-3) A multiple of thousand with at most seven digits

NUMBER Identical to NUMBER(38,*)

NUMBER(*,5) Identical to NUMBER(38,5)

Oracle offers a number of alphanumeric datatypes. Depending on the Oracle version you
are using, there are some differences due to the evolution of the ANSI/ISO SQL standard over
the years. For example, since Oracle7, the two datatypes VARCHAR and VARCHAR2 are identical,
but this could change in a future Oracle release. If you create a table and you use the VARCHAR
datatype, the Oracle DBMS translates VARCHAR to VARCHAR2 on the fly. Therefore, this book
refers to only the VARCHAR2 datatype. In cases where the maximum size of the VARCHAR2
datatype (4000) is insufficient for a specific column, you can use the CLOB (Character Large
OBject) datatype.

Table 3-2 shows some simple examples of character datatypes.

Table 3-2. Character Datatype Examples

Example Description

VARCHAR2(25) Alphanumeric, variable length, up to 25 characters

CHAR(4) Alphanumeric, fixed length, four characters

CLOB Alphanumeric, larger than the maximum size of the VARCHAR2 datatype

Table 3-3 lists the maximum size values for the datatypes mentioned so far.

■Note The actual units of measure used for the size of CHAR and VARCHAR2 datatypes depend on char-
acter semantics (bytes or characters). See Chapter 7 for details.

Table 3-3. Maximum Datatype Sizes

Datatype Maximum Size

NUMBER 38 digits precision

CHAR 2000

VARCHAR2 4000

CLOB 4GB

■Note The indicated maximum CLOB size (4GB) is not completely correct. Depending on some configura-
tion parameters, CLOB columns may contain much more than 4GB worth of data. Refer to Oracle SQL
Reference for details.

The basic datatype for time-related data is DATE. By default, date values are interpreted
and displayed according to a standard date format, typically showing only the day, the month,
and the last two digits of the year. You can change the default date format for your session or
use conversion functions in your SQL commands to display dates in different ways. Internally,
Oracle stores dates in such a way that DATE column values are allowed from the year 4712 BC
until the year 9999. Oracle dates are internally stored with much more precision than you
might expect on first consideration.

■Caution DATE columns also contain a time indication (hours, minutes, and seconds), which may cause
problems when comparing two dates. For example, seemingly equal dates could be different due to their
invisible time components.

CHAPTER 3 ■ DATA DEFINIT ION, PART I68

Apart from the DATE datatype, Oracle also supports the related datatypes TIMESTAMP
(with or without TIME ZONE) and INTERVAL to store other time-related data in table columns.
Chapter 7 provides more details on the time-related datatypes.

This book focuses on the usage of the three standard Oracle datatypes: NUMBER, VARCHAR2,
and DATE.

3.4 Commands for Creating the Case Tables
This section lists the SQL commands to create the seven case tables introduced in Chapter 1,
as an illustration of the concepts covered in the previous three sections, without much addi-
tional explanation. Since the BOOK schema consists of seven tables, this section also shows
seven CREATE TABLE commands, presented in Listings 3-1 through 3-7.

■Note As mentioned earlier, constraint definition (and constraint checking) is not taken into consideration
in this chapter; therefore, the following listings do not show the complete commands to create the case
tables.

Listing 3-1. The EMPLOYEES Table

SQL> create table EMPLOYEES
2 (empno number(4) not null
3 , ename varchar2(8) not null
4 , init varchar2(5) not null
5 , job varchar2(8)
6 , mgr number(4)
7 , bdate date not null
8 , msal number(6,2) not null
9 , comm number(6,2)
10 , deptno number(2));

Listing 3-2. The DEPARTMENTS Table

SQL> create table DEPARTMENTS
2 (deptno number(2) not null
3 , dname varchar2(10) not null
4 , location varchar2(8) not null
5 , mgr number(4));

CHAPTER 3 ■ DATA DEFINIT ION, PART I 69

Listing 3-3. The SALGRADES Table

SQL> create table SALGRADES
2 (grade number(2) not null
3 , lowerlimit number(6,2) not null
4 , upperlimit number(6,2) not null
5 , bonus number(6,2) not null);

Listing 3-4. The COURSES Table

SQL> create table COURSES
2 (code varchar2(6) not null
3 , description varchar2(30) not null
4 , category char(3) not null
5 , duration number(2) not null);

Listing 3-5. The OFFERINGS Table

SQL> create table OFFERINGS
2 (course varchar2(6) not null
3 , begindate date not null
4 , trainer number(4)
5 , location varchar2(8));

Listing 3-6. The REGISTRATIONS Table

SQL> create table REGISTRATIONS
2 (attendee number(4) not null
3 , course varchar2(6) not null
4 , begindate date not null
5 , evaluation number(1));

Listing 3-7. The HISTORY Table

SQL> create table HISTORY
2 (empno number(4) not null
3 , beginyear number(4) not null
4 , begindate date not null
5 , enddate date
6 , deptno number(2) not null
7 , msal number(6,2) not null
8 , comments varchar2(60));

CHAPTER 3 ■ DATA DEFINIT ION, PART I70

3.5 The Data Dictionary
If you are interested in knowing which tables are present in your database, which columns
they have, whether or not those columns are indexed, which privileges are granted to you, and
similar information, you should query the data dictionary. Another common term for data
dictionary is catalog. By the way, we already queried the data dictionary implicitly before, in
Chapter 2, when using the SQL*Plus DESCRIBE command; this command queries the data
dictionary under the hood.

The data dictionary is more or less the internal housekeeping administration of Oracle.
The data dictionary stores information about the data, also referred to as metadata. The data
dictionary is automatically maintained by Oracle; therefore, the data dictionary is always
up-to-date.

DBMSs like Oracle store data dictionary data in precisely the same way as they store
“regular” data: in tables. This is in compliance with Ted Codd’s rule 4 (see Chapter 1). The big
advantage of this approach is that you can use the SQL language to query data dictionary data
in the same way that you query ordinary data. In other words, if you master the SQL language,
you need to know only the names of the data dictionary tables and the names of their
columns.

Data dictionary access is a potential security risk. That’s why the Oracle DBMS offers
system privileges and roles to regulate and protect access to the data dictionary. For example,
there is a role SELECT_CATALOG_ROLE, which contains all privileges that you need to be able
to access the data dictionary data. Listing 3-8 demonstrates how Oracle controls data diction-
ary access.

Listing 3-8. Needing the SELECT_CATALOG_ROLE Role

SQL> describe dba_sys_privs
ERROR:
ORA-04043: object "SYS"."DBA_SYS_PRIVS" does not exist

SQL> connect / as sysdba
Connected.

SQL> grant select_catalog_role to book;
Grant succeeded.

SQL> connect book/book
Connected.

SQL> desc dba_sys_privs
Name Null? Type
----------------------------- -------- ---------------
GRANTEE NOT NULL VARCHAR2(30)
PRIVILEGE NOT NULL VARCHAR2(40)
ADMIN_OPTION VARCHAR2(3)

SQL>

CHAPTER 3 ■ DATA DEFINIT ION, PART I 71

Although the information is stored in data dictionary tables, most of the time, you access
data dictionary views instead. On the other hand, views are tables anyway. See Chapter 10 for
details about views.

You can refer to Oracle Server Reference in the Oracle documentation to get a complete
overview of the Oracle data dictionary. Fortunately, the Oracle data dictionary contains a view
that lists all Oracle data dictionary views, with a short description of their contents. This view
is called DICTIONARY; DICT is a shorter synonym for the same view. Listing 3-9 shows an abbre-
viated version of the query results. It’s abbreviated for a practical reason: the DICT view
contains more than 600 rows!

Listing 3-9. Using the DICT View

SQL> col COLUMN_NAME format a30
SQL> col COMMENTS format a40 word
SQL>
SQL> select * from dict order by table_name;

TABLE_NAME COMMENTS
-------------------- --
ALL_ALL_TABLES Description of all object and relational

tables accessible to the user
ALL_APPLY Details about each apply process that

dequeues from the queue visible to the
current user

...
USER_COL_COMMENTS Comments on columns of user's tables and

views
USER_COL_PRIVS Grants on columns for which the user is

the owner, grantor or grantee
...
V$TIMEZONE_NAMES Synonym for V_$TIMEZONE_NAMES
V$VERSION Synonym for V_$VERSION

610 rows selected.

SQL>

Data dictionary view names typically have prefixes that suggest the existence of four main
categories. In Listing 3-9, you can see the ALL, USER, and V$ prefixes. The fourth common prefix
is DBA. The idea behind this is that, most of the time, you are interested in information about a
certain subcategory of database objects. By using the appropriate views, you automatically
suppress information that is not of interest to you. Also, depending on your database privi-
leges, you will not be allowed to use certain categories of data dictionary views. Table 3-4 lists
the most common data dictionary view name prefixes. (Note that not all data dictionary views
have one of these prefixes.)

CHAPTER 3 ■ DATA DEFINIT ION, PART I72

Table 3-4. Common Data Dictionary View Prefixes

Prefix Description

USER_... Information about your own objects

ALL_... Information about all objects you can access

DBA_... All information in the database; for database administrators only

[G]V$... Dynamic performance views; for database administrators only

The dynamic performance views (those with a V$ or GV$ name prefix) are a special cate-
gory. These views are not based on database tables, but rather on information from other
sources such as internal memory structures. They are mainly relevant for, and accessible to,
database administrators.

Most data dictionary view names give a clear indication of their contents; however, as a
consequence, some of these names are very long. That’s why some of the most popular data
dictionary views also have alternative (shorter) synonyms, such as CAT, OBJ, IND, TABS, and
COLS. The CAT view is an especially useful one, because it lists the objects in the current
schema. Listing 3-10 shows an example of using the CAT view with our BOOK schema.

Listing 3-10. Using the CAT View

SQL> select * from cat;

TABLE_NAME TABLE_TYPE
------------------------------ -----------
EMPLOYEES TABLE
DEPARTMENTS TABLE
SALGRADES TABLE
COURSES TABLE
OFFERINGS TABLE
REGISTRATIONS TABLE
HISTORY TABLE

7 rows selected.

SQL>

Suppose you want to query a specific data dictionary view, and you don’t know the actual
column names of that view. In that case, you can use the SQL*Plus command DESCRIBE, just as
you would do for regular tables. As you can see in Listing 3-11, you can use the DESCRIBE com-
mand, or you can query the data dictionary view DICT_COLUMNS.

Listing 3-11. Using the DESCRIBE Command and the DICT_COLUMNS View

SQL> describe DICT_COLUMNS
Name Null? Type
------------------------- ----- --------------
TABLE_NAME VARCHAR2(30)

CHAPTER 3 ■ DATA DEFINIT ION, PART I 73

COLUMN_NAME VARCHAR2(30)
COMMENTS VARCHAR2(4000)

SQL> select column_name, comments
2 from dict_columns
3 where table_name = 'ALL_USERS';

COLUMN_NAME COMMENTS
--------------------------- -------------------------
USERNAME Name of the user
USER_ID ID number of the user
CREATED User creation date

SQL>

Listing 3-12 shows a query against the NLS_SESSION_PARAMETERS view (NLS stands for
National Language Support). The result shows, for example, the NLS_DATE_FORMAT value used
to display dates.

Listing 3-12. Using the NLS_SESSION_PARAMETERS View

SQL> select * from nls_session_parameters

PARAMETER VALUE
----------------------- -----------------------
NLS_LANGUAGE AMERICAN
NLS_TERRITORY AMERICA
NLS_CURRENCY $
NLS_ISO_CURRENCY AMERICA
NLS_NUMERIC_CHARACTERS .,
NLS_CALENDAR GREGORIAN
NLS_DATE_FORMAT DD-MON-YYYY
NLS_DATE_LANGUAGE AMERICAN
NLS_SORT BINARY
NLS_TIME_FORMAT HH.MI.SSXFF AM
NLS_TIMESTAMP_FORMAT DD-MON-RR HH.MI.SSXFF AM
NLS_TIME_TZ_FORMAT HH.MI.SSXFF AM TZR
NLS_TIMESTAMP_TZ_FORMAT DD-MON-RR HH.MI.SSXFF AM TZR
NLS_DUAL_CURRENCY $
NLS_COMP BINARY
NLS_LENGTH_SEMANTICS BYTE
NLS_NCHAR_CONV_EXCP FALSE

17 rows selected.

SQL>

The NLS features in Oracle are documented in great detail in Globalization Support Guide.

CHAPTER 3 ■ DATA DEFINIT ION, PART I74

Table 3-5 lists a selection of useful Oracle data dictionary tables.

Table 3-5. Some Useful Oracle Data Dictionary Views

View Description

DICTIONARY Description of the data dictionary itself

DICT_COLUMNS Data dictionary column descriptions

ALL_USERS Information about all database users

ALL_INDEXES1 All indexes

ALL_SEQUENCES1 All sequences

ALL_OBJECTS1 All objects

ALL_SYNONYMS1 All synonyms

ALL_TABLES1 All tables

ALL_VIEWS1 All views

USER_INDEXES2 Indexes

USER_SEQUENCES2 Sequences

USER_OBJECTS2 Objects

USER_SYNONYMS2 Synonyms

USER_TABLES2 Tables

USER_TAB_COLUMNS2 Columns

USER_VIEWS2 Views

USER_RECYCLEBIN Dropped objects

CAT Synonym for USER_CATALOG

COLS Synonym for USER_TAB_COLUMNS

DICT Synonym for DICTIONARY

DUAL Dummy table, with one row and one column

IND Synonym for USER_INDEXES

OBJ Synonym for USER_OBJECTS

SYN Synonym for USER_SYNONYMS

TABS Synonym for USER_TABLES

1Accessible to the user
2Owned by the user

Appendix B provides a more complete description of the data dictionary views, and
Oracle Server Reference provides all the details you need about the Oracle data dictionary.

CHAPTER 3 ■ DATA DEFINIT ION, PART I 75

Retrieval: The Basics

In this chapter, you will start to access the seven case tables with SQL. To be more precise,
you will learn how to retrieve data from your database. For data retrieval, the SQL language
offers the SELECT command. SELECT commands are commonly referred to as queries.

The SELECT command has six main clauses. Three of them—SELECT, WHERE, and ORDER BY—
are discussed in this chapter. Introduction of the remaining three clauses—FROM, GROUP BY, and
HAVING—is postponed until Chapter 8.

You can write queries as independent SQL statements, but queries can also occur inside
other SQL commands. These are called subqueries. This chapter introduces subqueries, and
then in Chapter 9, we will revisit subqueries to discuss some of their more advanced features.

Null values and their associated three-valued logic—SQL conditions have the three possible
outcomes of TRUE, FALSE, or UNKNOWN—are also covered in this chapter. A thorough understanding
of null values and three-valued logic is critical for anyone using the SQL language. Finally, this
chapter presents the truth tables of the AND, OR, and NOT operators, showing how these operators
handle three-valued logic.

At the end of this chapter, you will find a set of exercises, so you can practice the data-
retrieval techniques you learned in the chapter.

4.1 Overview of the SELECT Command
We start this chapter with a short recap of what we already discussed in previous chapters.
The six main clauses of the SELECT command are shown in Figure 4-1.

Figure 4-1. The six main clauses of the SELECT command

77

C H A P T E R 4

■ ■ ■

Figure 4-1 is identical to Figure 2-1, and it illustrates the following main syntax rules of
the SELECT statement:

• There is a predefined mandatory order of these six clauses.

• The SELECT and FROM clauses are mandatory.

• WHERE, GROUP BY, HAVING, and ORDER BY are optional clauses.

Table 4-1 is identical to Table 2-1, and it shows high-level descriptions of the main SELECT
command clauses.

Table 4-1. The Six Main Clauses of the SELECT Command

Component Description

FROM Which table(s) is (are) needed for retrieval?

WHERE What is the condition to filter the rows?

GROUP BY How should the rows be grouped/aggregated?

HAVING What is the condition to filter the aggregated groups?

SELECT Which columns do you want to see in the result?

ORDER BY In which order do you want to see the resulting rows?

According to the ANSI/ISO SQL standard, these six clauses must be processed in the fol-
lowing order: FROM, WHERE, GROUP BY, HAVING, SELECT, ORDER BY. Note that this is not the order in
which you must specify them in your queries.

As mentioned in the introduction to this chapter, SQL retrieval statements (SELECT
commands) are commonly referred to as queries. In this chapter, we will focus on queries
using three SELECT command clauses:

• SELECT: With the SELECT clause of the SELECT command, you specify the columns that
you want displayed in the query result and, optionally, which column headings you
prefer to see above the result table. This clause implements the relational projection
operator, explained in Chapter 1.

• WHERE: The WHERE clause allows you to formulate conditions that must be true in order
for a row to be retrieved. In other words, this clause allows you to filter rows from the
base tables; as such, it implements the relational restriction operator. You can use vari-
ous operators in your WHERE clause conditions—such as BETWEEN, LIKE, IN, CASE, NOT, AND,
and OR—and make them as complicated as you like.

• ORDER BY: With the ORDER BY clause, you specify the order in which you want to see the
rows in the result of your queries.

The FROM clause allows you to specify which tables you want to access. In this chapter, we
will work with queries that access only a single table, so the FROM clause in the examples in this
chapter simply specifies the table name. The FROM clause becomes more interesting when you
want to access multiple tables in a single query, as described in Chapter 8.

CHAPTER 4 ■ RETRIEVAL: THE BASICS78

CHAPTER 4 ■ RETRIEVAL: THE BASICS 79

4.2 The SELECT Clause
Let’s start with a straightforward example of a SELECT command, shown in Listing 4-1.

Listing 4-1. Issuing a Simple SELECT Command

SQL> select * from departments;

DEPTNO DNAME LOCATION MGR
-------- ---------- -------- --------

10 ACCOUNTING NEW YORK 7782
20 TRAINING DALLAS 7566
30 SALES CHICAGO 7698
40 HR BOSTON 7839

SQL>

The asterisk (*) means to show all columns of the DEPARTMENTS table. Listing 4-2 shows a
slightly more complicated query that selects specific columns from the EMPLOYEES table and
uses a WHERE clause to specify a condition for the rows retrieved.

Listing 4-2. Selecting Specific Columns

SQL> select ename, init, job, msal
2 from employees
3 where deptno = 30;

ENAME INIT JOB MSAL
-------- ----- -------- --------
ALLEN JAM SALESREP 1600
WARD TF SALESREP 1250
MARTIN P SALESREP 1250
BLAKE R MANAGER 2850
TURNER JJ SALESREP 1500
JONES R ADMIN 800

SQL>

Let’s look at the syntax (the statement construction rules of a language) of this statement
more closely. You have a lot of freedom in this area. For example, you can enter an entire SQL
command in a single line, spread a SQL command over several lines, and use as many spaces
and tabs as you like. New lines, spaces, and tabs are commonly referred to as white space. The
amount of white space in your SQL statements is meaningless to the Oracle DBMS.

■Tip It is a good idea to define some SQL statement layout standards and stick to them. This increases
both the readability and the maintainability of your SQL statements. At this point, our SQL statements are
short and simple, but in real production database environments, SQL statements are sometimes several
pages long.

In the SELECT clause, white space is mandatory after the keyword SELECT. The columns
(or column expressions) are separated by commas; therefore, white space is not mandatory.
However, as you can see in Listing 4-2, spaces after the commas enhance readability.

White space is also mandatory after the keywords FROM and WHERE. Again, any additional
white space is not mandatory, but it might enhance readability. For example, you can use
spaces around the equal sign in the WHERE clause.

Column Aliases
By default, the column names of the table are displayed above your query result. If you don’t
like those names—for example, because they do not adequately describe the meaning of the
column in the specific context of your query—you can specify different result column head-
ings. You include the heading you want to appear, called a column alias, in the SELECT clause
of your query, as shown in the example in Listing 4-3.

Listing 4-3. Changing Column Headings

SQL> select ename, init, msal salary
2 from employees
3 where deptno = 30;

ENAME INIT SALARY
-------- ----- --------
ALLEN JAM 1600
WARD TF 1250
MARTIN P 1250
BLAKE R 2850
TURNER JJ 1500
JONES R 800

SQL>

In this example, there is no comma between MSAL and SALARY. This small detail has a great
effect, as the result in Listing 4-3 shows: SALARY is used instead of MSAL as a column heading
(compare this with the result shown in Listing 4-2).

By the way, the ANSI/ISO SQL standard also supports the optional keyword AS between
any column name and its corresponding column heading (column alias). Using this keyword
enhances readability. In other words, you can also formulate the query in Listing 4-3 as follows:

CHAPTER 4 ■ RETRIEVAL: THE BASICS80

SQL> select ename, init, msal AS salary
2 from employees
3 where deptno = 30;

■Note Another way to change the column headings shown in the query results, without changing the SQL
command itself, is to give instructions to the tool you are using; that is, SQL*Plus. You can use the HEADING
option of the SQL*Plus COLUMN command, as discussed in Chapter 11.

The DISTINCT Keyword
Sometimes, your query results contain duplicate rows. You can eliminate such rows by adding
the keyword DISTINCT immediately after the keyword SELECT, as demonstrated in Listing 4-4.

Listing 4-4. Using DISTINCT to Eliminate Duplicate Rows

SQL> select DISTINCT job, deptno
2 from employees;

JOB DEPTNO
-------- --------
ADMIN 10
ADMIN 30
DIRECTOR 10
MANAGER 10
MANAGER 20
MANAGER 30
SALESREP 30
TRAINER 20

8 rows selected.

SQL>

Without the addition of DISTINCT, this query would produce 14 rows, because the
EMPLOYEES table contains 14 rows. Remove the keyword DISTINCT from the first line of the
query in Listing 4-4, and then execute the query again to see the difference.

■Note Using DISTINCT in the SELECT clause might incur some performance overhead, because the
Oracle DBMS must sort the result in order to eliminate the duplicate rows.

CHAPTER 4 ■ RETRIEVAL: THE BASICS 81

Column Expressions
Instead of column names, you can also specify column expressions in the SELECT clause. For
example, Listing 4-5 shows how you can derive the range of the salary grades in the SALGRADES
table, by selecting the difference between upper limits and lower limits.

Listing 4-5. Using a Simple Expression in a SELECT Clause

SQL> select grade, upperlimit - lowerlimit
2 from salgrades;

GRADE UPPERLIMIT-LOWERLIMIT
-------- ---------------------

1 500
2 199
3 599
4 999
5 6998

SQL>

In the next example, shown in Listing 4-6, we concatenate the employee names with their
initials into a single column, and also calculate the yearly salary by multiplying the monthly
salary with 12.

Listing 4-6. Another Example of Using Expressions in a SELECT Clause

SQL> select init||' '||ename name
2 , 12 * msal yearsal
3 from employees
4 where deptno = 10;

NAME YEARSAL
-------------------------------- --------
AB CLARK 29400
CC KING 60000
TJA MILLER 15600

SQL>

Now take a look at the rather odd query shown in Listing 4-7.

Listing 4-7. Selecting an Expression with Literals

SQL> select 3 + 4 from departments;

3+4

7

CHAPTER 4 ■ RETRIEVAL: THE BASICS82

7
7
7

SQL>

The query result might look strange at first; however, it makes sense when you think
about it. The outcome of the expression 3+4 is calculated for each row of the DEPARTMENTS
table. This is done four times, because there are four departments and we did not specify a
WHERE clause. Because the expression 3+4 does not contain any variables, the result (7) is
obviously the same for every department row.

The DUAL Table
It makes more sense to execute queries such as the one shown in Listing 4-7 against a dummy
table, with only one row and one column. You could create such a table yourself, but the
Oracle DBMS supplies a standard dummy table for this purpose, named DUAL, which is stored
in the data dictionary. Because the Oracle DBMS knows that the DUAL table contains only one
single row, you usually get better performance results by using the DUAL table rather than a
dummy table that you created yourself.

■Tip The Oracle DBMS also provides an X$DUAL table, giving even better performance results than the
DUAL table.

Listing 4-8 shows two examples of DUAL table usage. Note that the contents of this DUAL
table are totally irrelevant; you use only the property that the DUAL table contains a single row.

Listing 4-8. Using the DUAL Table

SQL> select 123 * 456 from dual;

123*456

56088

SQL> select sysdate from dual;

SYSDATE

05-SEP-2004

SQL>

The second query in Listing 4-8 shows an example of using the system date. You can refer
to the system date in Oracle with the keyword SYSDATE. Actually, to be more precise, SYSDATE

CHAPTER 4 ■ RETRIEVAL: THE BASICS 83

is a function that returns the system date. These functions are also referred to as pseudo
columns. See Appendix A of this book for examples of other such pseudo columns.

Listing 4-9 shows an example of using SYSDATE to derive the age of an employee, based on
the date of birth stored in the BDATE column of the EMPLOYEES table.

Listing 4-9. Using the System Date

SQL> select ename, (sysdate-bdate)/365
2 from employees
3 where empno = 7839;

ENAME (SYSDATE-BDATE)/365
-------- -------------------
KING 51.83758

SQL>

■Note The results of your queries using SYSDATE depend on the precise moment the command was run;
therefore, when you execute the examples, the results will not be the same as those shown in Listings 4-8
and 4-9.

Null Values in Expressions
You should always consider the possibility of null values occurring in expressions. In case one
or more variables in an expression evaluate to a null value, the result of the expression as a
whole becomes unknown. We will discuss this area of concern in more detail later in this
chapter, in Section 4.9. As an appetizer, look at the result of the query in Listing 4-10.

Listing 4-10. The Effect of Null Values in Expressions

SQL> select ename, msal, comm, 12*msal + comm
2 from employees
3 where empno < 7600;

ENAME MSAL COMM 12*MSAL+COMM
-------- -------- -------- ------------
SMITH 800
ALLEN 1600 300 19500
WARD 1250 500 15500
JONES 2975

SQL>

As you can see, the total yearly salary (including commission) for two out of four employ-
ees is unknown, because the commission column of those employees contains a null value.

CHAPTER 4 ■ RETRIEVAL: THE BASICS84

4.3 The WHERE Clause
With the WHERE clause, you can specify a condition to filter the rows for the result. We distinguish
simple and compound conditions.

Simple conditions typically contain one of the SQL comparison operators listed in
Table 4-2.

Table 4-2. SQL Comparison Operators

Operator Description

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

= Equal to

<> Not equal to (alternative syntax: !=)

Expressions containing comparison operators constitute statements that can evaluate to
TRUE or FALSE. At least, that’s how things are in mathematics (logic), as well as in our intuition.
(In Section 4.9, you will see that null values make things slightly more complicated in SQL, but
for the moment, we won’t worry about them.)

Listing 4-11 shows an example of a WHERE clause with a simple condition.

Listing 4-11. A WHERE Clause with a Simple Condition

SQL> select ename, init, msal
2 from employees
3 where msal >= 3000;

ENAME INIT MSAL
-------- ----- --------
SCOTT SCJ 3000
KING CC 5000
FORD MG 3000

SQL>

Listing 4-12 shows another example of a WHERE clause with a simple condition, this time
using the <> (not equal to) operator.

Listing 4-12. Another Example of a WHERE Clause with a Simple Condition

SQL> select dname, location
2 from departments
3 where location <> 'CHICAGO';

CHAPTER 4 ■ RETRIEVAL: THE BASICS 85

DNAME LOCATION
---------- --------
ACCOUNTING NEW YORK
TRAINING DALLAS
HR BOSTON

SQL>

Compound conditions consist of multiple subconditions, combined with logical operators.
In Section 4.5 of this chapter, you will see how to construct compound conditions by using the
logical operators AND, OR, and NOT.

4.4 The ORDER BY Clause
The result of a query is a table; that is, a set of rows. The order in which these rows appear in
the result typically depends on two aspects:

• The strategy chosen by the optimizer to access the data

• The operations chosen by the optimizer to produce the desired result

This means that it is sometimes difficult to predict the order of the rows in the result.
In any case, the order is not guaranteed to be the same under all circumstances.

If you insist on getting the resulting rows of your query back in a guaranteed order, you
must use the ORDER BY clause in your SELECT commands. Figure 4-2 shows the syntax of this
clause.

Figure 4-2. ORDER BY clause syntax diagram

As Figure 4-2 shows, you can specify multiple sort specifications, separated by commas.
Each sort specification consists of a column specification (or column expression), optionally
followed by keyword DESC (descending), in case you want to sort in descending order. Without
this addition, the default sorting order is ASC (ascending). ASC is underlined in Figure 4-2 to
denote that it is the default.

The column specification may consist of a single column name or a column expression.
To refer to columns in the ORDER BY clause, you can use any of the following:

CHAPTER 4 ■ RETRIEVAL: THE BASICS86

• Regular column names

• Column aliases defined in the SELECT clause (especially useful in case of complex
expressions in the SELECT clause)

• Column ordinal numbers

Column ordinal numbers in the ORDER BY clause have no relationship with the order of the
columns in the database; they are dependent on only the SELECT clause of your query. Try to
avoid using ordinal numbers in the ORDER BY clause. Using column aliases instead increases
SQL statement readability, and your ORDER BY clauses also become independent of the SELECT
clauses of your queries.

Listing 4-13 shows how you can sort query results on column combinations. As you can
see, the query result is sorted on department number, and then on employee name for each
department.

Listing 4-13. Sorting Results with ORDER BY

SQL> select deptno, ename, init, msal
2 from employees
3 where msal < 1500
4 order by deptno, ename;

DEPTNO ENAME INIT MSAL
-------- -------- ---- --------

10 MILLER TJA 1300
20 ADAMS AA 1100
20 SMITH N 800
30 JONES R 800
30 MARTIN P 1250
30 WARD TF 1250

SQL>

Listing 4-14 shows how you can reverse the default sorting order by adding the DESC key-
word to your ORDER BY clause.

Listing 4-14. Sorting in Descending Order with ORDER BY . . . DESC

SQL> select ename, 12*msal+comm as yearsal
2 from employees
3 where job = 'SALESREP'
4 order by yearsal desc;

ENAME YEARSAL
-------- --------
ALLEN 19500
TURNER 18000

CHAPTER 4 ■ RETRIEVAL: THE BASICS 87

MARTIN 16400
WARD 15500

SQL>

When sorting, null values cause trouble (when don’t they, by the way?). How should
columns with missing information be sorted? The rows need to go somewhere, so you need
to decide. You have four options as to how to treat null values when sorting:

• Always as first values (regardless of the sorting order)

• Always as last values (regardless of the sorting order)

• As low values (lower than any existing value)

• As high values (higher than any existing value)

Figure 4-2 shows how you can explicitly indicate how to treat null values in the ORDER BY
clause for each individual column expression.

Let’s try to find out Oracle’s default behavior for sorting null values. See Listing 4-15 for a
first test.

Listing 4-15. Investigating the Ordering of Null Values

SQL> select evaluation
2 from registrations
3 where attendee = 7788
4 order by evaluation;

EVALUATION

4
5

SQL>

The null value in the result is tough to see; however, it is the third row. If you change the
ORDER BY clause to specify a descending sort, the result becomes as shown in Listing 4-16.

Listing 4-16. Testing the Ordering of Null Values

SQL> select evaluation
2 from registrations
3 where attendee = 7788
4 order by evaluation DESC;

EVALUATION

CHAPTER 4 ■ RETRIEVAL: THE BASICS88

5
4

SQL>

Listings 4-15 and 4-16 show that Oracle treats null values as high values. In other words,
the default behavior is as follows:

• NULLS LAST is the default for ASC.

• NULLS FIRST is the default for DESC.

4.5 AND, OR, and NOT
You can combine simple and compound conditions into more complicated compound condi-
tions by using the logical operators AND and OR. If you use AND, you indicate that each row
should evaluate to TRUE for both conditions. If you use OR, only one of the conditions needs to
evaluate to TRUE. Sounds easy enough, doesn’t it?

Well, the fact is that we use the words and and or in a rather sloppy way in spoken lan-
guages. The listener easily understands our precise intentions from the context, intonation, or
body language. This is why there is a risk of making mistakes when translating questions from
a natural language, such as English, into queries in a formal language, such as SQL.

■Tip It is not uncommon to see discussions (mostly after the event) about misunderstandings in the
precise wording of the original question in natural language. Therefore, you should always try to sharpen
your question in English as much as possible before trying to convert those questions into SQL statements.
In cases of doubt, ask clarifying questions for this purpose.

Therefore, in SQL, the meaning of the two keywords AND and OR must be defined very pre-
cisely, without any chance for misinterpretation. You will see the formal truth tables of the AND,
OR, and NOT operators in Section 4.10 of this chapter, after the discussion of null values. First,
let’s experiment with these three operators and look at some examples.

The OR Operator
Consider the operator OR. We can make a distinction between the inclusive and the exclusive
meaning of the word. Is it okay if both conditions evaluate to TRUE, or should only one of the
two be TRUE? In natural languages, this distinction is almost always implicit. For example, sup-
pose that you want to know when someone can meet with you, and the answer you get is
“next Thursday or Friday.” In this case, you probably interpret the OR in its exclusive meaning.

What about SQL—is the OR operator inclusive or exclusive? Listing 4-17 shows the answer.

CHAPTER 4 ■ RETRIEVAL: THE BASICS 89

Listing 4-17. Combining Conditions with OR

SQL> select code, category, duration
2 from courses
3 where category = 'BLD'
4 or duration = 2;

CODE CAT DURATION
---- --- --------
JAV BLD 4
PLS BLD 1
XML BLD 2
RSD DSG 2

SQL>

In this example, you can see that the OR operator in SQL is inclusive; otherwise, the third
row wouldn’t show up in the result. The XML course belongs to the BLD course category (so the
first condition evaluates to TRUE) and its duration is two days (so the second condition also
evaluates to TRUE).

In the upcoming discussion of the NOT operator, you will see how to construct an
exclusive OR.

The AND Operator and Operator Precedence Issues
There is a possible problem if your compound conditions contain a mixture of AND and OR
operators. See Listing 4-18 for an experiment with a query against the DUAL table.

Listing 4-18. Combining Conditions with OR and AND

SQL> select 'is true ' as condition
2 from dual
3 where 1=1 or 1=0 and 0=1;

CONDITION

is true

SQL>

The compound condition in Listing 4-18 consists of three rather trivial, simple conditions,
evaluating to TRUE, FALSE, and FALSE, respectively. But what is the outcome of the compound
predicate as a whole, and why? Apparently, the compound predicate evaluates to TRUE; other-
wise, Listing 4-18 would have returned the message “no rows selected.”

In such cases, the result depends on the operator precedence rules. You can interpret the
condition of Listing 4-18 in two ways, as follows:

1=1 OR . . . If one of the operands of OR is true, the overall result is TRUE.

. . . AND 0=1 If one of the operands of AND is false, the overall result is FALSE.

CHAPTER 4 ■ RETRIEVAL: THE BASICS90

Listing 4-18 obviously shows an overall result of TRUE. This implies that the Oracle DBMS
evaluates the AND operator first, and then the OR operator:

1=1 OR 1=0 AND 0=1 <=>
TRUE OR FALSE AND FALSE <=>
TRUE OR FALSE <=>
TRUE

With compound conditions, it is always better to use parentheses to indicate the order
in which you want the operations to be performed, rather than relying on implicit language
precedence rules. Listing 4-19 shows two variants of the query from Listing 4-18, using
parentheses in the WHERE clause.

Listing 4-19. Using Parentheses to Force Operator Precedence

SQL> select 'is true ' as condition
2 from dual
3 where (1=1 or 1=0) and 0=1;

no rows selected

SQL> select 'is true ' as condition
2 from dual
3 where 1=1 or (1=0 and 0=1);

CONDITION

is true

SQL>

■Caution Remember that you can use white space to beautify your SQL commands; however, never
allow an attractive SQL command layout (for example, with suggestive indentations) to confuse you. Tabs,
spaces, and new lines may increase statement readability, but they don’t change the meaning of your SQL
statements in any way.

The NOT Operator
You can apply the NOT operator to any arbitrary condition to negate that condition. Listing 4-20
shows an example.

Listing 4-20. Using the NOT Operator to Negate Conditions

SQL> select ename, job, deptno
2 from employees
3 where NOT deptno > 10;

CHAPTER 4 ■ RETRIEVAL: THE BASICS 91

ENAME JOB DEPTNO
-------- -------- --------
CLARK MANAGER 10
KING DIRECTOR 10
MILLER ADMIN 10

SQL>

In this simple case, you could achieve the same effect by removing the NOT operator and
changing the comparison operator > into <=, as shown in Listing 4-21.

Listing 4-21. Equivalent Query Without Using the NOT Operator

SQL> select ename, job, deptno
2 from employees
3 where deptno <= 10;

ENAME JOB DEPTNO
-------- -------- --------
CLARK MANAGER 10
KING DIRECTOR 10
MILLER ADMIN 10

SQL>

The NOT operator becomes more interesting and useful in cases where you have complex
compound predicates with AND, OR, and parentheses. In such cases, the NOT operator gives you
more control over the correctness of your commands.

In general, the NOT operator should be placed in front of the condition. Listing 4-22 shows
an example of illegal syntax and a typical error message when NOT is positioned incorrectly.

Listing 4-22. Using the NOT Operator in the Wrong Place

SQL> select ename, job, deptno
2 from employees
3 where deptno NOT > 10;

where deptno NOT > 10
*

ERROR at line 3:
ORA-00920: invalid relational operator

SQL>

There are some exceptions to this rule. As you will see in Section 4.6, the SQL operators
BETWEEN, IN, and LIKE have their own built-in negation option.

CHAPTER 4 ■ RETRIEVAL: THE BASICS92

■Tip Just as you should use parentheses to avoid confusion with AND and OR operators in complex
compound conditions, it is also a good idea to use parentheses to specify the precise scope of the NOT
operator explicitly. See Listing 4-23 for an example.

By the way, do you remember the discussion about inclusive and exclusive OR? Listing 4-23
shows how you can construct the exclusive OR in SQL by explicitly excluding the possibility
that both conditions evaluate to TRUE (on the fourth line). That’s why the XML course is now
missing. Compare the result with Listing 4-17.

Listing 4-23. Constructing the Exclusive OR Operator

SQL> select code, category, duration
2 from courses
3 where (category = 'BLD' or duration = 2)
4 and not (category = 'BLD' and duration = 2);

CODE CAT DURATION
---- --- --------
JAV BLD 4
PLS BLD 1
RSD DSG 2

SQL>

Just as in mathematics, you can eliminate parentheses from SQL expressions. The follow-
ing two queries are logically equivalent:

select * from employees where NOT (ename = 'BLAKE' AND init = 'R')
select * from employees where ename <> 'BLAKE' OR init <> 'R'

In the second version, the NOT operator disappeared, the negation is applied to the two
comparison operators, and last, but not least, the AND changes into an OR. You will look at this
logical equivalence in more detail in one of the exercises at the end of this chapter.

4.6 BETWEEN, IN, and LIKE
Section 4.3 introduced the WHERE clause, and Section 4.5 explained how you can combine
simple and compound conditions in the WHERE clause into more complicated compound con-
ditions by using the logical operators AND, OR, and NOT. This section introduces three new
operators you can use in simple conditions: BETWEEN, IN, and LIKE.

The BETWEEN Operator
The BETWEEN operator does not open up new possibilities; it only allows you to formulate cer-
tain conditions a bit more easily and more readably. See Listing 4-24 for an example.

CHAPTER 4 ■ RETRIEVAL: THE BASICS 93

Listing 4-24. Using the BETWEEN Operator

SQL> select ename, init, msal
2 from employees
3 where msal between 1300 and 1600;

ENAME INIT MSAL
-------- ----- --------
ALLEN JAM 1600
TURNER JJ 1500
MILLER TJA 1300

SQL>

This example shows that the BETWEEN operator includes both border values (1300 and
1600) of the interval.

The BETWEEN operator has its own built-in negation option. Therefore, the following three
SQL expressions are logically equivalent:

where msal NOT between 1000 and 2000
where NOT msal between 1000 and 2000
where msal < 1000 OR msal > 2000

The IN Operator
With the IN operator, you can compare a column or the outcome of a column expression
against a list of values. See Listing 4-25 for an example.

Listing 4-25. Using the IN Operator

SQL> select empno, ename, init
2 from employees
3 where empno in (7499,7566,7788);

EMPNO ENAME INIT
-------- -------- -----

7499 ALLEN JAM
7566 JONES JM
7788 SCOTT SCJ

SQL>

Just like BETWEEN, the IN operator also has its own built-in negation option. The example in
Listing 4-26 produces all course registrations that do not have an evaluation value of 3, 4, or 5.

CHAPTER 4 ■ RETRIEVAL: THE BASICS94

Listing 4-26. Using the NOT IN Operator

SQL> select * from registrations
2 where evaluation NOT IN (3,4,5);

ATTENDEE COUR BEGINDATE EVALUATION
-------- ---- --------- ----------

7876 SQL 12-APR-99 2
7499 JAV 13-DEC-99 2

SQL>

Check for yourself that the following four expressions are logically equivalent:

where evaluation NOT in (3,4,5)
where NOT evaluation in (3,4,5)
where NOT (evaluation=3 OR evaluation=4 OR evaluation=5)
where evaluation<>3 AND evaluation<>4 AND evaluation<>5

A rather obvious requirement for the IN operator is that all of the values you specify
between the parentheses must have the same (relevant) datatype.

■TIP IN operators with long value lists sometimes indicate a poor underlying data model. Adding an
attribute can result in SQL code that reads better and executes faster.

The LIKE Operator
You typically use the LIKE operator in the WHERE clause of your queries in combination with a
search pattern. In the example shown in Listing 4-27, the query returns all courses that have
something to do with SQL, using the search pattern %SQL%.

Listing 4-27. Using the LIKE Operator with the Percent Character

SQL> select * from courses
2 where description LIKE '%SQL%';

CODE DESCRIPTION TYP DURATION
---- ------------------------------ --- --------
SQL Introduction to SQL GEN 4
PLS Introduction to PL/SQL BLD 1

SQL>

CHAPTER 4 ■ RETRIEVAL: THE BASICS 95

Two characters have special meaning when you use them in a string (the search pattern)
after the LIKE operator. These two characters are commonly referred to as wildcards:

• %: A percent sign after the LIKE operator means zero, one, or more arbitrary characters
(see Listing 4-27).

• _: An underscore after the LIKE operator means exactly one arbitrary character.

■Note If the LIKE operator (with its two wildcard characters) provides insufficient search possibilities, you
can use the REGEXP_LIKE function and regular expressions. See Chapter 5 for information about using
regular expressions.

The query shown in Listing 4-28 returns all employees with an uppercase A as the second
character in their name.

Listing 4-28. Using the LIKE Operator with the Percent and Underscore Characters

SQL> select empno, init, ename
2 from employees
3 where ename like '_A%';

EMPNO INIT ENAME
-------- ----- --------

7521 TF WARD
7654 P MARTIN

SQL>

Just like the BETWEEN and IN operators, the LIKE operator also features a built-in negation
option; in other words, you can use WHERE . . . NOT LIKE

The following queries show two special cases: one using LIKE without wildcards and one
using the % character without the LIKE operator.

SQL> select * from employees where ename like 'BLAKE'
SQL> select * from employees where ename = 'BL%'

Both queries will be executed by Oracle, without any complaints or error messages. How-
ever, in the first example, we could have used the equal sign (=) instead of the LIKE operator to
get the same results. In the second example, the percent sign (%) has no special meaning, since
it doesn’t follow the LIKE operator, so it is very likely we would get back the “no rows selected”
message.

If you really want to search for actual percent sign or underscore characters with the LIKE
operator, you need to suppress the special meaning of those characters. You can do this with
the ESCAPE option of the LIKE operator, as demonstrated in Listing 4-29.

CHAPTER 4 ■ RETRIEVAL: THE BASICS96

Listing 4-29. Using the ESCAPE Option of the LIKE Operator

SQL> select empno, begindate, comments
2 from history
3 where comments like '%0\%%' escape '\';

EMPNO BEGINDATE COMMENTS
-------- ----------- --

7566 01-JUN-1989 From accounting to human resources; 0% salary change
7788 15-APR-1985 Transfer to human resources; 0% salary raise

SQL>

The WHERE clause in Listing 4-29 searches for 0% in the COMMENTS column of the HISTORY
table. The backslash (\) suppresses the special meaning of the second percent sign in the
search string. Note that you can pick a character other than the backslash to use as the ESCAPE
character.

4.7 CASE Expressions
You can tackle complicated procedural problems with CASE expressions. Oracle supports two
CASE expression types: simple CASE expressions and searched CASE expressions.

Figure 4-3 illustrates the syntax of the simple CASE expression. With this type of CASE
expression, you specify an input expression to be compared with the values in the WHEN . . . THEN
loop. The implicit comparison operator is always the equal sign. The left operand is always the
input expression, and the right operand is the value from the WHEN clause.

Figure 4-3. Simple CASE expression syntax diagram

Figure 4-4 shows the syntax of the searched CASE expression. The power of this type of
CASE expression is that you don’t specify an input expression, but instead specify complete
conditions in the WHEN clause. Therefore, you have the freedom to use any logical operator in
each individual WHEN clause.

CHAPTER 4 ■ RETRIEVAL: THE BASICS 97

Figure 4-4. Searched CASE expressions syntax diagram

CASE expressions are evaluated as follows:

• Oracle evaluates the WHEN expressions in the order in which you specified them, and
returns the THEN result of the first condition evaluating to TRUE. Note that Oracle does
not evaluate the remaining WHEN clauses; therefore, the order of the WHEN expressions is
important.

• If none of the WHEN expressions evaluates to TRUE, Oracle returns the ELSE expression.

• If you didn’t specify an ELSE expression, Oracle returns a null value.

Obviously, you must handle datatypes in a consistent way. The input expressions and the
THEN results in the simple CASE expression (Figure 4-3) must have the same datatype, and in
both CASE expression types (Figures 4-3 and 4-4), the THEN results should have the same
datatype, too.

Listing 4-30 shows a straightforward example of a simple CASE expression, which doesn’t
require any explanation.

Listing 4-30. Simple CASE Expression Example

SQL> select attendee, begindate
2 , case evaluation
3 when 1 then 'bad'
4 when 2 then 'mediocre'
5 when 3 then 'ok'
6 when 4 then 'good'
7 when 5 then 'excellent'
8 else 'not filled in'
9 end
10 from registrations
11 where course = 'S02';

ATTENDEE BEGINDATE CASEEVALUATIO
-------- --------- -------------

7499 12-APR-99 good
7698 12-APR-99 good
7698 13-DEC-99 not filled in

CHAPTER 4 ■ RETRIEVAL: THE BASICS98

7788 04-OCT-99 not filled in
7839 04-OCT-99 ok
7876 12-APR-99 mediocre
7902 04-OCT-99 good
7902 13-DEC-99 not filled in
7934 12-APR-99 excellent

9 rows selected.

SQL>

Listing 4-31 shows an example of a searched CASE expression.

Listing 4-31. Searched CASE Expression Example

SQL> select ename, job
2 , case when job = 'TRAINER' then ' 10%'
3 when job = 'MANAGER' then ' 20%'
4 when ename = 'SMITH' then ' 30%'
5 else ' 0%'
6 end as raise
7 from employees
8 order by raise desc, ename;

ENAME JOB RAISE
-------- -------- -----
BLAKE MANAGER 20%
CLARK MANAGER 20%
JONES MANAGER 20%
ADAMS TRAINER 10%
FORD TRAINER 10%
SCOTT TRAINER 10%
SMITH TRAINER 10%
ALLEN SALESREP 0%
JONES ADMIN 0%
KING DIRECTOR 0%
MARTIN SALESREP 0%
MILLER ADMIN 0%
TURNER SALESREP 0%
WARD SALESREP 0%

14 rows selected.

SQL>

In Listing 4-31, note that SMITH gets only a 10% raise, despite the fourth line of the query.
This is because he is a trainer, which causes the second line to result in a match; therefore, the
remaining WHEN expressions are not considered.

CHAPTER 4 ■ RETRIEVAL: THE BASICS 99

CASE expressions are very powerful and flexible; however, they sometimes become rather
long. That’s why Oracle offers several functions that you could interpret as abbreviations (or
shorthand notations) for CASE expressions, such as COALESCE and NULLIF (both of these func-
tions are part of the ANSI/ISO SQL standard), NVL, NVL2, and DECODE. We will look at these
functions in the next chapter.

4.8 Subqueries
Section 4.6 introduced the IN operator. This section introduces the concept of subqueries by
starting with an example of the IN operator.

Suppose you want to launch a targeted e-mail campaign, because you have a brand-new
course that you want to promote. The target audience for the new course is the developer
community, so you want to know who attended one or more build (BLD category) courses in
the past. You could execute the following query to get the desired result:

select attendee
from registrations
where course in ('JAV','PLS','XML')

This solution has at least two problems. To start with, you have looked at the COURSES
table to check which courses belong to the BLD course category, apparently (evidenced by the
JAV, PLS, and XML in the WHERE clause). However, the original question was not referring to any
specific courses; it referred to BLD courses. This lookup trick is easy in our demo database,
which has a total of only ten courses, but this might be problematic, or even impossible, in
real information systems. Another problem is that the solution is rather rigid. Suppose you
want to repeat the e-mail promotion one year later for another new course. In that case, you
may need to revise the query to reflect the current set of BLD courses.

A much better solution to this problem is to use a subquery. This way, you leave it up to
the Oracle DBMS to query the COURSES table, by replacing the list of course codes between the
parentheses (JAV, PLS, and XML) with a query that retrieves the desired course codes for you.
Listing 4-32 shows the subquery for this example.

Listing 4-32. Using a Subquery to Retrieve All BLD Courses

SQL> select attendee
2 from registrations
3 where course in (select code
4 from courses
5 where category = 'BLD');

ATTENDEE

7499
7566
7698
7788
7839
7876

CHAPTER 4 ■ RETRIEVAL: THE BASICS100

7788
7782
7499
7876
7566
7499
7900

13 rows selected.

SQL>

This eliminates both objections to the initial solution with the hard-coded course codes.
Oracle first substitutes the subquery between the parentheses with its result—a number of
course codes—and then executes the main query. (Consider “first substitutes . . . and then
executes . . .” conceptually; the Oracle optimizer could actually decide to execute the SQL
statement in a different way.)

Apparently, 13 employees attended at least one build course in the past (see Listing 4-32).
Is that really true? Upon closer investigation, you can see that some employees apparently
attended several build courses, or maybe some employees even attended the same build
course twice. In other words, the conclusion about the number of employees (13) was too
hasty. To retrieve the correct number of employees, you should use SELECT DISTINCT in the
main query to eliminate duplicates.

The Joining Condition
It is always your own responsibility to formulate subqueries in such a way that you are not com-
paring apples with oranges. For example, the next variant of the query shown in Listing 4-33
does not result in an error message; however, the result is rather strange.

Listing 4-33. Comparing Apples with Oranges

SQL> select attendee
2 from registrations
3 where EVALUATION in (select DURATION
4 from courses
5 where category = 'BLD');

ATTENDEE

7900
7788
7839
7900
7521
7902
7698
7499

CHAPTER 4 ■ RETRIEVAL: THE BASICS 101

7499
7876

10 rows selected.

SQL>

This example compares evaluation numbers (from the main query) with course durations
from the subquery. Just try to translate this query into an English sentence. . .

Fortunately, the Oracle DBMS does not discriminate between meaningful and meaning-
less questions. You have only two constraints:

• The datatypes must match, or the Oracle DBMS must be able to make them match with
implicit datatype conversion.

• The subquery should not select too many column values per row.

When a Subquery Returns Too Many Values
What happens when a subquery returns too many values? Look at the query in Listing 4-34
and the resulting error message.

Listing 4-34. Error: Subquery Returns Too Many Values

SQL> select attendee
2 from registrations
3 where course in
4 (select course, begindate
5 from offerings
6 where location = 'CHICAGO');

(select course, begindate
*

ERROR at line 4:
ORA-00913: too many values

SQL>

The subquery in Listing 4-34 returns (COURSE, BEGINDATE) value pairs, which cannot be
compared with COURSE values. However, it is certainly possible to compare attribute combina-
tions with subqueries in SQL. The query in Listing 4-34 was an attempt to find all employees
who ever attended a course in Chicago.

In our data model, course offerings are uniquely identified by the combination of the
course code and the begin date. Therefore, you can correct the query as shown in Listing 4-35.

Listing 4-35. Fixing the Error in Listing 4-34

SQL> select attendee
2 from registrations
3 where (course, begindate) in

CHAPTER 4 ■ RETRIEVAL: THE BASICS102

4 (select course, begindate
5 from offerings
6 where location = 'CHICAGO');

ATTENDEE

7521
7902
7900

SQL>

■Note Subqueries may, in turn, contain other subqueries. This principle is known as subquery nesting,
and there is no practical limit to the number of subquery levels you might want to create in Oracle SQL.
But be aware that at a certain level of nesting, you will probably lose the overview.

Comparison Operators in the Joining Condition
So far, we have explored subqueries with the IN operator. However, you can also establish a
relationship between a main query and its subquery by using one of the comparison opera-
tors (=, <, >, <=, >=, <>), as demonstrated in Listing 4-36. In that case, there is one important
difference: the subquery must return precisely one row. This additional constraint makes
sense if you take into consideration how these comparison operators work: they are able to
compare only a single left operand with a single right operand.

Listing 4-36. Using a Comparison Operator in the Joining Condition

SQL> select ename, init, bdate
2 from employees
3 where bdate > (select bdate
4 from employees
5 where empno = 7876);

ENAME INIT BDATE
-------- ----- ---------
JONES JM 02-APR-67
TURNER JJ 28-SEP-68
JONES R 03-DEC-69

SQL>

The query in Listing 4-36 shows all employees who are younger than employee 7876.
The subquery will never return more than one row, because EMPNO is the primary key of the
EMPLOYEES table.

CHAPTER 4 ■ RETRIEVAL: THE BASICS 103

In case there is no employee with the employee number specified, you get the “no rows
selected” message. You might expect an error message like “single row subquery returns no
rows” (actually, this error message once existed in Oracle, many releases ago), but apparently
there is no problem. See Listing 4-37 for an example.

Listing 4-37. When the Subquery Returns No Rows

SQL> select ename, init, bdate
2 from employees
3 where bdate > (select bdate
4 from employees
5 where empno = 99999);

no rows selected

SQL>

The subquery (returning no rows, or producing an empty set) is treated like a subquery
returning one row instead, containing a null value. In other words, SQL treats this situation
as if there were an employee 99999 with an unknown date of birth. This may sound strange;
however, this behavior is fully compliant with the ANSI/ISO SQL standard.

When a Single-Row Subquery Returns More Than One Row
In case the subquery happens to produce multiple rows, the Oracle DBMS reacts with the
error message shown in Listing 4-38.

Listing 4-38. Error: Single-Row Subquery Returns More Than One Row

SQL> select ename, init, bdate
2 from employees
3 where bdate > (select bdate
4 from employees
5 where ename = 'JONES');

where bdate > (select bdate
*

ERROR at line 3:
ORA-01427: single-row subquery returns more than one row

SQL>

In this example, the problem is that we have two employees with the same name (Jones).
Note that you always risk this outcome, unless you make sure to use an equality comparison
against a unique column of the table accessed in the subquery, as in the example in Listing 4-36.

So far, we have investigated subqueries only in the WHERE clause of the SELECT statement.
Oracle SQL also supports subqueries in other SELECT statement clauses, such as the FROM
clause and the SELECT clause. Chapter 9 will revisit subqueries.

CHAPTER 4 ■ RETRIEVAL: THE BASICS104

4.9 Null Values
If a column (in a specific row of a table) contains no value, we say that such a column contains
a null value. The term null value is actually slightly misleading, because it is an indicator of
missing information. Null marker would have been a better term, because a null value is not
a value.

There can be many different reasons for missing information. Sometimes, an attribute is
inapplicable; for example, only sales representatives are eligible for commission. An attribute
value can also be unknown; for example, the person entering data did not know certain values
when the data was entered. And, sometimes, you don’t know whether an attribute is applica-
ble or inapplicable; for example, if you don’t know the job of a specific employee, you don’t
know whether a commission value is applicable. The REGISTRATIONS table provides another
good example. A null value in the EVALUATION column can mean several things: the course did
not yet take place, the attendee had no opinion, the attendee refused to provide her opinion,
the evaluation forms are not yet processed, and so on.

It would be nice if you could represent the reason why information is missing, but SQL
supports only one null value, and according to Ted Codd’s rule 3 (see Chapter 1) null values
can have only one context-independent meaning.

■Caution Don’t confuse null values with the number zero (0), a series of one or more spaces, or even an
empty string. Although an empty string ('') is formally different from a null value, Oracle sometimes inter-
prets empty strings as null values (see Chapter 6 for some examples). However, you should never rely on
this (debatable) interpretation of empty strings. You should always use the reserved word NULL to refer to
null values in your SQL commands.

Null Value Display
By default, null values are displayed on your computer screen as “nothing,” as shown earlier
in Listings 4-15 and 4-16. You can change this behavior in SQL*Plus at two levels: the session
level and the column level.

You can specify how null values appear at the session level by using the SQL*Plus NULL
environment setting, available in the Environment dialog box, shown in Figure 4-5. Select the
Options ➤ Environment menu option to open this dialog box.

Figure 4-5. The SQL*Plus Environment dialog box

CHAPTER 4 ■ RETRIEVAL: THE BASICS 105

You can also influence the way null values are displayed at the column level, by using the
SQL*Plus COLUMN command. Listing 4-39 demonstrates adjusting how SQL*Plus displays null
values only in the EVALUATION column.

Listing 4-39. Adjusting the Null Values Display with the COLUMN Command

SQL> column evaluation NULL "unknown!!!"

SQL> select * from registrations
2 where attendee = 7566;

ATTENDEE COURSE BEGINDATE EVALUATION
-------- ------ ----------- ----------

7566 JAV 01-FEB-2000 3
7566 PLS 11-SEP-2000 unknown!!!

SQL>

The Nature of Null Values
Null values sometimes behave counterintuitively. Compare the results of the two queries in
Listing 4-40.

Listing 4-40. Comparing Two “Complementary” Queries

SQL> select empno, ename, comm
2 from employees
3 where comm > 400;

EMPNO ENAME COMM
-------- -------- --------

7521 WARD 500
7654 MARTIN 1400

SQL> select empno, ename, comm
2 from employees
3 where comm <= 400;

EMPNO ENAME COMM
-------- -------- --------

7499 ALLEN 300
7844 TURNER 0

SQL>

The first query in Listing 4-40 returns 2 employees, so you might expect to see the other
12 employees in the result of the second query, because the two WHERE clauses complement
each other. However, the two query results actually are not complementary.

CHAPTER 4 ■ RETRIEVAL: THE BASICS106

If Oracle evaluates a condition, there are three possible outcomes: the result can be TRUE,
FALSE, or UNKNOWN. In other words, the SQL language is using three-valued logic.

Only those rows for which the condition evaluates to TRUE will appear in the result—no
problem. However, the EMPLOYEES table contains several rows for which both conditions in
Listing 4-40 evaluate to UNKNOWN. Therefore, these rows (ten, in this case) will not appear in
either result.

Just to stress the nonintuitive nature of null values in SQL, you could say the following:

In SQL, NOT is not “not”

The explanation of this (case-sensitive) statement is left as an exercise at the end of this chapter.

The IS NULL Operator
Suppose you are looking for all employees except the lucky ones with a commission greater
than 400. In that case, the second query in Listing 4-40 does not give you the correct answer,
because you would expect to see 12 employees instead of 2. To fix this query, you need the SQL
IS NULL operator, as shown in Listing 4-41.

Listing 4-41. Using the IS NULL Operator

SQL> select empno, ename, comm
2 from employees
3 where comm <= 400
4 or comm is null;

EMPNO ENAME COMM
-------- -------- --------

7369 SMITH
7499 ALLEN 300
7566 JONES
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER 0
7876 ADAMS
7900 JONES
7902 FORD
7934 MILLER

12 rows selected.

SQL>

CHAPTER 4 ■ RETRIEVAL: THE BASICS 107

■Note Oracle SQL provides some functions with the specific purpose of handling null values in a flexible
way (such as NVL and NVL2). These functions are covered in the next chapter.

The IS NULL operator—just like BETWEEN, IN, and LIKE—has its own built-in negation
option. See Listing 4-42 for an example.

Listing 4-42. Using the IS NOT NULL Operator

SQL> select ename, job, msal, comm
2 from employees
3 where comm is not null;

ENAME JOB MSAL COMM
-------- -------- -------- --------
ALLEN SALESREP 1600 300
WARD SALESREP 1250 500
MARTIN SALESREP 1250 1400
TURNER SALESREP 1500 0

SQL>

■Note The IS NULL operator always evaluates to TRUE or FALSE. UNKNOWN is an impossible outcome.

Null Values and the Equality Operator
The IS NULL operator has only one operand: the preceding column name (or column expres-
sion). Actually, it is a pity that this operator is not written as IS_NULL (with an underscore
instead of a space) to stress the fact that this operator has just a single operand. In contrast,
the equality operator (=) has two operands: a left operand and a right one.

Watch the rather subtle syntax difference between the following two queries:

SQL> select * from registrations where evaluation IS null
SQL> select * from registrations where evaluation = null

If you were to read both queries aloud, you might not even hear any difference. However,
the seemingly innocent syntax change has definite consequences for the query results. They
don’t produce error messages, because both queries are syntactically correct.

If one (or both) of the operands being compared by the equality comparison operator (=)
evaluates to a null value, the result is UNKNOWN. In other words, you cannot say that a null value
is equal to a null value. The following shows the conclusions:

CHAPTER 4 ■ RETRIEVAL: THE BASICS108

Expression Evaluates to

NULL = NULL UNKNOWN

NULL IS NULL TRUE

This explains why the query in Listing 4-43 doesn’t return all 14 rows of the EMPLOYEES
table.

Listing 4-43. Example of a Counterintuitive WHERE Clause

SQL> select ename, init
2 from employees
3 where comm = comm;

ENAME INIT
-------- -----
ALLEN JAM
WARD TF
MARTIN P
TURNER JJ

SQL>

In mathematical logic, we call expressions always evaluating to TRUE a tautology. The
example in Listing 4-43 shows that certain trivial tautologies from two-valued logic (such as
COMM = COMM) don’t hold true in SQL.

Null Value Pitfalls
Null values in SQL often cause trouble. You must be aware of their existence in the database
and their odds of being generated by Oracle in (intermediate) results, and you must continu-
ously ask yourself how you want them to be treated in the processing of your SQL statements.
Otherwise, the correctness of your queries will be debatable, to say the least.

You have already seen that null values in expressions generally cause those expressions to
produce a null value. In the next chapter, you will learn how the various SQL functions handle
null values.

It is obvious that there are many pitfalls in the area of missing information. It may be
possible to circumvent at least some of these problems by properly designing your databases.
In one of his books, Ted Codd, the “inventor” of the relational model, even proposed introduc-
ing two types of null values: applicable and inapplicable. This would imply the need for a
four-valued logic (see Ted Codd, 1990).

■Tip If you are interested in more details about the trouble of null values (or other theoretical information
about relational databases and pitfalls in SQL), the books written by Chris Date are the best starting point for
further exploration. In particular, his Selected Writings series is brilliant. Chris Date’s ability to write in an
understandable, entertaining, and fascinating way about these topics far exceeds others in the field.

CHAPTER 4 ■ RETRIEVAL: THE BASICS 109

Here’s a brain-twister to finish this section about null values: why does the query in
Listing 4-44 produce “no rows selected”? There are registrations with evaluation values 4
and 5, for sure. . .

Listing 4-44. A Brain-Twister

SQL> select * from registrations
2 where evaluation not in (1,2,3,NULL);

no rows selected

SQL>

This problem is left as an exercise at the end of this chapter.

4.10 Truth Tables
Section 4.5 of this chapter showed how to use the AND, OR, and NOT operators to build com-
pound conditions. In that section, we didn’t worry too much about missing information and
null values, but we are now in a position to examine the combination of three-valued logic
and compound conditions. This is often a challenging subject, because three-valued logic is
not always intuitive. The most reliable way to investigate compound conditions is to use truth
tables.

Table 4-3 shows the truth table of the NOT operator. In truth tables, UNK is commonly used
as an abbreviation for UNKNOWN.

Table 4-3. Truth Table of the NOT Operator

Op1 NOT (Op1)

TRUE FALSE

FALSE TRUE

UNK UNK

In Table 4-3, Op1 stands for the operand. Since the NOT operator works on a single
operand, the truth table needs three rows to describe all possibilities. Note that the negation
of UNK is UNK.

Table 4-4 shows the truth table of the AND and OR operators; Op1 and Op2 are the two
operands, and the truth table shows all nine possible combinations.

Table 4-4. Truth Table of the AND and OR Operators

Op1 Op2 Op1 AND Op2 Op1 OR Op2

TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE

TRUE UNK UNK TRUE

FALSE TRUE FALSE TRUE

CHAPTER 4 ■ RETRIEVAL: THE BASICS110

Op1 Op2 Op1 AND Op2 Op1 OR Op2

FALSE FALSE FALSE FALSE

FALSE UNK FALSE UNK

UNK TRUE UNK TRUE

UNK FALSE FALSE UNK

UNK UNK UNK UNK

Note that the AND and OR operators are symmetric; that is, you can swap Op1 and Op2 with-
out changing the operator outcome.

If you are facing complicated compound conditions, truth tables can be very useful to
rewrite those conditions into simpler, logically equivalent, expressions.

4.11 Exercises
These exercises assume you have access to a database schema with the seven case tables
(see Appendix C of this book). You can download the scripts to create this schema from my
web site (http://www.naturaljoin.nl) or from the Downloads section of the Apress web site
(http://www.apress.com). You may find it helpful to refer to Appendix A of this book for a quick
reference to SQL and SQL*Plus. See Appendix D for the answers to the exercise questions.

1. Provide the code and description of all courses with an exact duration of four days.

2. List all employees, sorted by job, and per job by age (from young to old).

3. Which courses have been held in Chicago and/or in Seattle?

4. Which employees attended both the Java course and the XML course? (Provide their
employee numbers.)

5. List the names and initials of all employees, except for R. Jones.

6. Find the number, job, and date of birth of all trainers and sales representatives born
before 1960.

7. List the numbers of all employees who do not work for the training department.

8. List the numbers of all employees who did not attend the Java course.

9. Which employees have subordinates? Which employees don’t have subordinates?

10. Produce an overview of all general course offerings (course category GEN) in 1999.

11. Provide the name and initials of all employees who have ever attended a course taught
by N. Smith. Hint: Use subqueries, and work “inside out” toward the result; that is,
retrieve the employee number of N. Smith, search for the codes of all courses he ever
taught, and so on.

12. How could you redesign the EMPLOYEES table to avoid the problem that the COMM col-
umn contains null values meaning not applicable?

CHAPTER 4 ■ RETRIEVAL: THE BASICS 111

13. In Section 4.9, you saw the following statement: In SQL, NOT is not “not.” What is this
statement trying to say?

14. Referring to the brain-twister at the end of Section 4.9, what is the explanation of the
result “no rows selected” in Listing 4-44?

15. At the end of Section 4.5, you saw the following statement.

The following two queries are logically equivalent:

select * from employees where NOT (ename = 'BLAKE' AND init = 'R')
select * from employees where ename <> 'BLAKE' OR init <> 'R'

Prove this, using a truth table. Hint: Use P as an abbreviation for ename = 'BLAKE', and
use Q as an abbreviation for init = 'R'.

CHAPTER 4 ■ RETRIEVAL: THE BASICS112

Retrieval: Functions

This chapter is a logical continuation of the previous chapter. The main topic is still retrieval.
It introduces functions and regular expressions, which enable you to formulate more powerful
and complicated queries in an easy way.

Oracle supports an abundance of functions. Apart from the various ANSI/ISO SQL
standard functions, many Oracle-specific functions have been added to Oracle’s SQL imple-
mentation over the years.

The chapter begins with an overview of the six categories of functions: arithmetic, text,
date, general, conversion, and group. The remaining sections discuss each type, with the
exception of group functions, which are introduced in Chapter 8. You will also learn about reg-
ular expressions, which are used with some text functions to search for certain patterns in
text. The last section of this chapter briefly explains how you can define your own SQL func-
tions in Oracle, using the PL/SQL programming language. We conclude this chapter with
some exercises.

5.1 Overview of Functions
In Chapter 2, you saw that SQL supports the following standard SQL operators:

• Arithmetic operators: +, -, *, and /

• Alphanumeric operator: || (concatenation)

Besides using these operators, you can also perform many operations on your data using
functions. You can use functions virtually anywhere within queries: in the SELECT, WHERE,
HAVING, and ORDER BY clauses.

You can recognize functions as follows: they have a name, followed by one or more argu-
ments (between parentheses). In general, function arguments can be constants, variables, or
expressions, and sometimes function arguments contain functions themselves. Functions
inside function arguments are referred to as nested functions. In some cases, function argu-
ments are optional. This means that you can omit the optional argument and allow Oracle to
use a standard (or default) value.

113

C H A P T E R 5

■ ■ ■

■Note Oracle SQL Reference uses different terms for two similar concepts: functions without arguments
and pseudo columns. For example, SYSDATE and USER are listed as functions, and ROWNUM, LEVEL, and
NEXTVAL are listed as pseudo columns. If you check older versions of the documentation, you will see that
Oracle changed terminology over the years. In version 5.1, both SYSDATE and USER were pseudo columns; in
version 6.0, SYSDATE was promoted to a function, but USER was still a pseudo column; and in version 7.3,
both SYSDATE and USER were documented as functions. You could argue that SYSDATE and USER return the
same value for every row, while ROWNUM, LEVEL, and NEXTVAL normally return different values. According to
the current Oracle SQL Reference, functions take zero or more arguments. This book sometimes refers to
items as pseudo columns where Oracle SQL Reference refers to them as functions.

Obviously, the function arguments come with some constraints. For example, the
datatype of the function arguments must make some logical sense. The Oracle DBMS always
tries to perform implicit datatype conversion, and it will generate an error message only if
such an attempt fails. In other words, if you specify a number as an argument for a function
that expects a string instead, the number will be interpreted alphanumerically. However, if
you ask for the square root of an employee name, you will get the error message “ORA-01722:
invalid number.”

■Caution It is not a good idea to rely on implicit datatype conversion in your SQL statements. You should
always use explicit conversion functions instead. This improves SQL readability, robustness, and possibly
performance.

As stated previously, Oracle supports many functions. You can categorize them based on
the datatype they expect in their arguments, as shown in Table 5-1.

Table 5-1. Function Types

Function Type Applicable To

Arithmetic functions Numerical data

Text functions Alphanumeric data

Date functions Date/time-related data

General functions Any datatype

Conversion functions Datatype conversion

Group functions Sets of values

The last category in Table 5-1, group functions, is covered in Chapter 8, where we discuss
the GROUP BY and HAVING clauses of the SELECT command, since that chapter is a more natural
place to introduce them. The other function types are discussed in the following sections.

CHAPTER 5 ■ RETRIEVAL: FUNCTIONS114

CHAPTER 5 ■ RETRIEVAL: FUNCTIONS 115

5.2 Arithmetic Functions
The most popular arithmetic functions of Oracle are listed in Table 5-2.

Table 5-2. Common Oracle Arithmetic Functions

Function Description

ROUND(n[,m]) Round n on m decimal positions

TRUNC(n[,m]) Truncate n on m decimal positions

CEIL(n) Round n upwards to an integer

FLOOR(n) Round n downwards to an integer

ABS(n) Absolute value of n

SIGN(n) –1, 0, or 1 if n is negative, zero, or positive

SQRT(n) Square root of n

EXP(n) e (= 2,7182813…) raised to the nth power

LN(n),LOG(m,n) Natural logarithm, and logarithm base m

POWER(n,m) n raised to the mth power

MOD(n,m) Remainder of n divided by m

SIN(n), COS(n), TAN(n) Sine, cosine, and tangent of n (n expressed in radians)

ASIN(n), ACOS(n), ATAN(n) Arcsine, arccosine, and arctangent of n

SINH(n), COSH(n), TANH(n) Hyperbolic sine, hyperbolic cosine, and hyperbolic tangent of n

As Table 5-2 shows, the ROUND and TRUNC functions have an optional argument m; the
default value for m is zero. Note that you can also use negative values for m, as you can see from
the second example in Listing 5-1.

Listings 5-1 through 5-4 show some self-explanatory examples of using the following
arithmetic functions: ROUND, CEIL, FLOOR, ABS, SIGN, POWER, and MOD.

Listing 5-1. Using the ROUND, CEIL, and FLOOR Functions

SQL> select round(345.678), ceil(345.678), floor(345.678)
2 from dual;

ROUND(345.678) CEIL(345.678) FLOOR(345.678)
-------------- ------------- --------------

346 346 345

SQL> select round(345.678, 2)
2 , round(345.678,-1)
3 , round(345.678,-2)
4 from dual;

ROUND(345.678,2) ROUND(345.678,-1) ROUND(345.678,-2)
---------------- ----------------- -----------------

345.68 350 300

SQL>

Listing 5-2. Using the ABS and SIGN Functions

SQL> select abs(-123), abs(0), abs(456)
2 , sign(-123), sign(0), sign(456)
3 from dual;

ABS(-123) ABS(0) ABS(456) SIGN(-123) SIGN(0) SIGN(456)
--------- -------- -------- ---------- -------- ---------

123 0 456 -1 0 1

SQL>

Listing 5-3. Using the POWER and MOD Functions

SQL> select power(2,3), power(-2,3)
2 , mod(8,3), mod(13,0)
3 from dual;

POWER(2,3) POWER(-2,3) MOD(8,3) MOD(13,0)
---------- ----------- -------- ---------

8 -8 2 13

SQL>

Listing 5-4. Using MOD in the WHERE Clause

SQL> select empno as odd_empno
2 , ename
3 from employees
4 where mod(empno,2) = 1;

ODD_EMPNO ENAME
--------- --------

7369 SMITH
7499 ALLEN
7521 WARD
7839 KING

SQL>

CHAPTER 5 ■ RETRIEVAL: FUNCTIONS116

The example in Listing 5-5 calculates the age (expressed in weeks and additional days) of
all employees working for department 10. In this example, we use the difference between the
BDATE column and the pseudo column SYSDATE. Of course, your results will be different from
the results in Listing 5-5, because they depend on the point in time that you execute the query.

Listing 5-5. Using the FLOOR and MOD Functions

SQL> select ename
2 , floor((sysdate-bdate)/7) as weeks
3 , floor(mod(sysdate-bdate,7)) as days
4 from employees
5 where deptno = 10;

ENAME WEEKS DAYS
-------- -------- --------
CLARK 2032 5
KING 2688 0
MILLER 2208 6

SQL>

Listing 5-6 shows an example using the arithmetic functions SIN, TANH, EXP, LOG, and LN.
You probably recognize the number 3.14159265 as an approximation of (pi), which is used in
the SIN function example to convert degrees into radians.

Listing 5-6. Trigonometric, Exponential, and Logarithmic Functions

SQL> select sin(30*3.14159265/180), tanh(0.5)
2 , exp(4), log(2,32), ln(32)
3 from dual;

SIN(30*3.14159265/180) TANH(0.5) EXP(4) LOG(2,32) LN(32)
---------------------- --------- -------- --------- --------

.5 .4621172 54.59815 5 3.465736

SQL>

5.3 Text Functions
The most important Oracle text functions are listed in Table 5-3.

Table 5-3. Common Oracle Text Functions

Function Description

LENGTH(t) Length (expressed in characters) of t

ASCII(t) ASCII value of first character of t

Continued

CHAPTER 5 ■ RETRIEVAL: FUNCTIONS 117

Table 5-3. Continued

Function Description

CHR(n) Character with ASCII value n

UPPER(t), LOWER(t) t in uppercase/lowercase

INITCAP(t) Each word in t with initial uppercase; remainder in lowercase

LTRIM(t[,k]) Remove characters from the left of t, until the first character not
in k

RTRIM(t[,k]) Remove characters from the right of t, after the last character
not in k

TRIM([[option][c FROM]]t) Trim character c from t; option = LEADING, TRAILING, or BOTH

LPAD(t,n[,k]) Left-pad t with sequence of characters in k to length n

RPAD(t,n[,k]) Right-pad t with k to length n (the default k is a space)

SUBSTR(t,n[,m]) Substring of t from position n, m characters long (the default for
m is until end)

INSTR(t,k) Position of the first occurrence of k in t

INSTR(t,k,n) Same as INSTR(t,k), but starting from position n in t

INSTR(t,k,n,m) Same as INSTR(t,k,n), but now the mth occurrence of k

TRANSLATE(t,v,w) Replace characters from v (occurring in t) by corresponding
character in w

REPLACE(t,v) Remove each occurrence of v from t

REPLACE(t,v,w) Replace each occurrence of v in t by w

CONCAT(t1,t2) Concatenate t1 and t2 (equivalent to the || operator)

■Note Counting positions in strings always start with one, not with zero.

Several text functions have a corresponding function with a B suffix, such as SUBSTRB,
INSTRB, and LENGTHB. These special functions express their results in bytes instead of charac-
ters. This distinction is relevant only if you are using multibyte character sets. See Oracle SQL
Reference for more details.

Listing 5-7 shows some examples of the LOWER, UPPER, INITCAP, and LENGTH text functions;
the results are self-explanatory.

Listing 5-7. Using the LOWER, UPPER, INITCAP, and LENGTH Functions

SQL> select lower(job), initcap(ename)
2 from employees
3 where upper(job) = 'SALESREP'
4 order by length(ename);

CHAPTER 5 ■ RETRIEVAL: FUNCTIONS118

LOWER(JOB) INITCAP(ENAME)
---------- --------------
salesrep Ward
salesrep Allen
salesrep Martin
salesrep Turner

SQL>

Listing 5-8 illustrates the text functions ASCII and CHR. If you compare the third and the
fifth columns of the result, you can see that the ASCII function considers only the first charac-
ter of its argument, regardless of the length of the input text (see Table 5-3 for the description
of the ASCII text function).

Listing 5-8. Using the ASCII and CHR Functions

SQL> select ascii('a'), ascii('z')
2 , ascii('A'), ascii('Z')
3 , ascii('ABC'), chr(77)
4 from dual;

ASCII('A') ASCII('Z') ASCII('A') ASCII('Z') ASCII('ABC') CHR(77)
---------- ---------- ---------- ---------- ------------ -------

97 122 65 90 65 M

SQL>

The first two column headings in Listing 5-8 are very confusing, because SQL*Plus con-
verts all SELECT clause expressions to uppercase, including your function arguments. If you
want lowercase characters in your column headings, you must add column aliases and specify
them between double quotes. For example, the first line of Listing 5-8 would look like this:

SQL> select ascii('a') as "ASCII('a')", ascii('z') as "ASCII('z')"

Listings 5-9 and 5-10 show some self-explanatory examples of using the INSTR, SUBSTR,
LTRIM, and RTRIM text functions. (The layout in Listing 5-9 is formatted to increase readability.)

Listing 5-9. Using the INSTR and SUBSTR Functions

SQL> select dname
2 , substr(dname,4) as substr1
3 , substr(dname,4,3) as substr2
4 , instr(dname,'I') as instr1
5 , instr(dname,'I',5) as instr2
6 , instr(dname,'I',3,2) as instr3
7 from departments;

CHAPTER 5 ■ RETRIEVAL: FUNCTIONS 119

DNAME SUBSTR1 SUBSTR2 INSTR1 INSTR2 INSTR3
---------- ------- ------- -------- -------- --------
ACCOUNTING OUNTING OUN 8 8 0
HR 0 0 0
SALES ES ES 0 0 0
TRAINING INING INI 4 6 6

SQL>

Listing 5-10. Using the LTRIM and RTRIM Functions

SQL> select ename
2 , ltrim(ename,'S') as ltrim_s
3 , rtrim(ename,'S') as rtrim_s
4 from employees
5 where deptno = 20;

ENAME LTRIM_S RTRIM_S
-------- -------- --------
ADAMS ADAMS ADAM
FORD FORD FORD
JONES JONES JONE
SCOTT COTT SCOTT
SMITH MITH SMITH

SQL>

Listing 5-11 demonstrates using the LPAD and RPAD functions. Note that they not only
lengthen strings, as their names suggest, but sometimes they also shorten strings; for example,
see what happens with ACCOUNTING and TRAINING in Listing 5-11.

Listing 5-11. Using the LPAD and RPAD Functions

SQL> select dname
2 , lpad(dname,9,'>')
3 , rpad(dname,6,'<')
4 from departments;

DNAME LPAD(DNAM RPAD(D
---------- --------- ------
ACCOUNTING ACCOUNTIN ACCOUN
HR >>>>>>>HR HR<<<<
SALES >>>>SALES SALES<
TRAINING >TRAINING TRAINI

SQL>

CHAPTER 5 ■ RETRIEVAL: FUNCTIONS120

You can use the LPAD and RPAD functions to produce column-value histograms by providing
variable expressions, instead of constant values, as their second argument. For an example, see
Listing 5-12, which shows how to create a salary histogram with a granularity of 100.

Listing 5-12. Producing Histograms with the LPAD and RPAD Functions

SQL> select lpad(msal,4)||' '||
2 rpad('o',msal/100,'o') as histogram
3 from employees
4 where deptno = 30;

HISTOGRAM
--
1600 oooooooooooooooo
1250 oooooooooooo
1250 oooooooooooo
2850 oooooooooooooooooooooooooooo
1500 ooooooooooooooo
800 oooooooo

SQL>

Listing 5-13 shows the difference between the functions REPLACE and TRANSLATE.
TRANSLATE replaces individual characters. REPLACE offers the option to replace words with
other words. Note also what happens if you use the REPLACE function with only two
arguments, instead of three: the function removes words instead of replacing them.

Listing 5-13. Using the TRANSLATE and REPLACE Functions

SQL> select translate('beer bucket','beer','milk') as translate
2 , replace ('beer bucket','beer','milk') as replace_1
3 , replace ('beer bucket','beer') as replace_2
4 from dual;

TRANSLATE REPLACE_1 REPLACE_2
----------- ----------- ---------
miik muckit milk bucket bucket

SQL>

5.4 Regular Expressions
The previous chapter introduced the LIKE operator, and the previous section of this chapter
introduced the INSTR, SUBSTR, and REPLACE functions. All of these SQL functions search for text.
The LIKE operator offers the two wildcard characters % and _, which allow you to perform
more advanced searches. The other three functions accept plain text searches only. This func-
tionality is sometimes insufficient for complicated search operations. Therefore, Oracle SQL

CHAPTER 5 ■ RETRIEVAL: FUNCTIONS 121

also supports four functions: REGEXP_LIKE, REGEXP_INSTR, REGEXP_SUBSTR, and REGEXP_REPLACE.
These SQL functions support, as their names suggest, so-called regular expressions. Apart
from that, they serve the same purpose as their non-REGEXP counterparts.

Regular expressions are well known in all UNIX operating system variants (such as Linux,
Solaris, and HP/UX) and are part of the international POSIX standard. They are documented
in great detail in Oracle SQL Reference, Appendix C. This section provides an introduction to
regular expressions, focusing on their use with the Oracle SQL regular expression functions.

Regular Expression Operators and Metasymbols
Table 5-4 shows the most important regular expression metasymbols and their meanings.
The Type column in Table 5-4 may contain the following:

• Postfix, which means that the operator follows its operand

• Prefix, which means that the operator precedes its operand

• Infix, which means that the operator separates its operands

• Nothing (empty), which means that the operator has no operands

Table 5-4. Common Regular Expression Operators and Metasymbols

Operator Type Description

* Postfix Zero or more occurrences

+ Postfix One or more occurrences

? Postfix Zero or one occurrence

| Infix Operator to separate alternative choices

^ Prefix Beginning of a string, or position immediately following a newline
character

$ Postfix End of the line

. Any single character

[[^]list] One character out of a list; a circumflex (^) at the beginning
works as a negation; a dash (-) between two characters works as
a range indicator

() Groups a (sub)expression, allowing you to refer to it further down
in the expression

{m} Postfix Precisely m times

{m,} Postfix At least m times

{m,n} Postfix At least m times, and at most n times

\n Refers back to the nth subexpression between parentheses (n is a
digit between 1 and 9)

CHAPTER 5 ■ RETRIEVAL: FUNCTIONS122

If the square brackets notation does not give you enough precision or flexibility, you can
use multicharacter collation elements, character classes, and equivalence classes, as follows:

• Multicharacter collation elements are relevant for certain languages. Valid values are
predefined and depend on the NLS_SORT setting. Use [. and .] to enclose collation
elements.

• Character classes give you more flexibility than the dash symbol between square
brackets; for example, you can refer to alphabetic characters, numeric digits, alphanu-
meric characters, blank spaces, punctuation, and so on. Use [: and :] to enclose
character classes.

• Equivalence classes allow you to match all accented and unaccented versions of a letter.
Use [= and =] to enclose equivalence classes.

Before we look at some examples of how these regular expression operators work with the
regular expression functions (in Listings 5-14 through 5-16), we need to discuss the syntax of
the functions.

Regular Expression Function Syntax
The four regular expression functions have the following syntax. You can specify regular
expressions in their pattern argument.

• REGEXP_LIKE(text, pattern[, options])

• REGEXP_INSTR(text, pattern[, pos[, occurrence[, return[, options]]]])

• REGEXP_SUBSTR(text, pattern[, pos[, occurrence[, options]]])

• REGEXP_REPLACE(text, pattern[, replace [, pos[, occurrence[, options]]]])

For all four functions, the first two arguments (text and pattern) are mandatory. These
arguments provide the source text and the regular expression to search for, respectively. All of
the remaining arguments are optional. However, function arguments can only be omitted
from the right to the left. For example, if you want to specify a value for the options argument
of the REGEXP_INSTR function, all six arguments are mandatory and must be specified.

In REGEXP_INSTR, REGEXP_SUBSTR, and REGEXP_REPLACE, you can use the pos argument to
specify from which position in text you want the search to start (the default value is 1), and
with occurrence, you can specify how often you want to find the search pattern (the default
value is 1). The options argument of all four of the functions and the return argument of the
REGEXP_INSTR function require a bit more explanation.

Influencing Matching Behavior
You can influence the matching behavior of the regular expression functions with their options
argument. Table 5-5 shows the values you can specify in the options function argument.

CHAPTER 5 ■ RETRIEVAL: FUNCTIONS 123

Table 5-5. Regular Expression Option Values

Option Description

i Case-insensitive search (no distinction between uppercase and lowercase)

c Case-sensitive search

n Allows the period (.) to match the newline character

m Treat text as multiple lines; ^ and $ refer to the beginning and end of any of
those lines

You can specify one or more of these values. If you specify conflicting combinations, such
as 'ic', the Oracle DBMS uses the last value (c) and ignores the first one.

■Note The default behavior for case-sensitivity depends on the NLS_SORT parameter value.

REGEXP_INSTR Return Value
The return option of the REGEXP_INSTR function allows you to influence the return value.
By default, the position where the pattern was found is returned, but sometimes you want to
know the position immediately after the found pattern. Of course, you can add the length of
the pattern to the result of the function; however, using the return option is easier in that case.
Table 5-6 shows the values you can specify in the return function argument.

Table 5-6. Regular Expression Return Values

Return Description

0 Position of the first character of the pattern found (default)

1 Position of the first character after the pattern found

REGEXP_LIKE
Let’s look at an example of the REGEXP_LIKE function, using a SQL*Plus trick that will be
explained in a later chapter. The ampersand character (&) in the WHERE clause of the query in
Listing 5-14 makes SQL*Plus prompt for a value for text; therefore, you can repeat this query
in the SQL buffer with the / command as often as you like, specifying different source text
values to explore the effect of the search pattern.

Listing 5-14. Using the REGEXP_LIKE Function

SQL> select 'found!' as result from dual
2 where regexp_like('&text', '^.a{1,2}.+$', 'i');

Enter value for text: bar

CHAPTER 5 ■ RETRIEVAL: FUNCTIONS124

RESULT

found!

SQL> /
Enter value for text: BAARF

RESULT

found!

SQL> /
Enter value for text: ba

no rows selected

SQL>

The results of Listing 5-14 show that the pattern means the following: the first character is
arbitrary, followed by at least one and at most two a characters, followed by one or more arbi-
trary characters, while ignoring the differences between uppercase and lowercase. By the way,
Listing 5-14 shows that REGEXP_LIKE is a Boolean function; its result is TRUE or FALSE.

REGEXP_INSTR
Listing 5-15 uses the REGEXP_INSTR function to search for history comments with nine or more
words. It looks for at least nine nonempty (+) substrings that do not contain spaces ([^]).

Listing 5-15. Using the REGEXP_INSTR Function

SQL> select comments
2 from history
3 where regexp_instr(comments, '[^]+', 1, 9) > 0;

COMMENTS
--
Not a great trainer; let's try the sales department!
Sales also turns out to be not a success...
Hired as the new manager for the accounting department
Junior sales rep -- has lots to learn... :-)

SQL>

Notice that the last row of the result contains only seven actual words. It is found because
the text strings -- and :-) are counted as “words.”

CHAPTER 5 ■ RETRIEVAL: FUNCTIONS 125

REGEXP_SUBSTR
Listing 5-16 demonstrates searching for comments between parentheses, using the
REGEXP_SUBSTR function. The search pattern looks for a left parenthesis, followed by at least
one character not equal to a right parenthesis, followed by a right parenthesis. Note that you
need the backslash character (\) to suppress the special meaning of the parentheses.

Listing 5-16. Using the REGEXP_SUBSTR Function

SQL> select comments
2 , regexp_substr(comments, '\([^\)]+\)') as substring
2 from history
3 where comments like '%(%';

COMMENTS
--
SUBSTRING
--
Project (half a month) for the ACCOUNTING department
(half a month)

SQL>

REGEXP_REPLACE
Listing 5-17 shows how you can use the REGEXP_REPLACE function to replace all words starting
with an f with a question mark.

Listing 5-17. Using the REGEXP_REPLACE Function

SQL> select regexp_replace(comments, ' f[a-z]* ',' ? ',1,1,'i')
2 from history
3 where regexp_like(comments, ' f[a-z]* ','i');

REGEXP_REPLACE(COMMENTS,'F[A-Z]*','?',1,1,'I')

Hired as the new manager ? the accounting department
Founder and ? employee of the company
Project (half a month) ? the ACCOUNTING department

SQL>

Notice that you must specify values for all function arguments if you want to make the
replacement case-insensitive, including default values for pos and occurrence. The WHERE
clause ensures that the query returns only the matching rows.

CHAPTER 5 ■ RETRIEVAL: FUNCTIONS126

5.5 Date Functions
Before discussing the various Oracle date functions, let’s first review the syntax to specify
date/time-related constants (or literals), using predefined ANSI/ISO SQL standard formats.
Table 5-7 shows the syntax for the literals and examples.

Table 5-7. Syntax for Date/Time-Related Constants

Literal Example

DATE 'yyyy-mm-dd' DATE '2004-09-25'

TIMESTAMP 'yyyy-mm-dd hh24:mi:ss.ffffff' TIMESTAMP '2004-09-25 23:59:59.99999'
[AT TIME ZONE '...'] AT TIME ZONE 'CET'

TIMESTAMP 'yyyy-mm-dd hh24:mi:ss.ffffff TIMESTAMP '2004-09-25 23:59:59.99 -5:00'
{+|-}hh:mi'

INTERVAL 'expr' <qualifier> INTERVAL '1' YEAR~
INTERVAL '1 2:3'
DAY TO MINUTE

You can experiment with this syntax by entering the following query, using the SQL*Plus
ampersand (&) substitution method (as in Listing 5-14):

SQL> select &<literal-expression> from dual;

If you simply enter an alphanumeric string, such as '21-JUN-04', you must rely on an
implicit conversion by Oracle. This implicit conversion succeeds or fails depending on the
NLS_DATE_FORMAT and NLS_TIMESTAMP_FORMAT parameter settings for your session. If you want to
see an overview of all current NLS parameter settings for your session, you can use the follow-
ing query:

SQL> select * from nls_session_parameters;

If you execute this query, you will see the current values for NLS_DATE_FORMAT and
NLS_TIMESTAMP_FORMAT.

Table 5-8 shows the most commonly used Oracle date functions.

Table 5-8. Common Oracle Date Functions

Function Description

ADD_MONTHS(d, n) Date d plus n months

MONTHS_BETWEEN(d, e) Months between dates d and e

LAST_DAY(d) Last day of the month containing date d

NEXT_DAY(d, weekday) The first weekday (mon, tue, etc.) after d

NEW_TIME(d, z1, z2) Convert date/time d from time zone z1 to z2

ROUND(d[, fmt]) d rounded on fmt (the default for fmt is midnight)

TRUNC(d[, fmt]) d truncated on fmt (the default for fmt is midnight)

EXTRACT(c FROM d) Extract date/time component c from expression d

We’ll start with the last function listed in Table 5-8.

CHAPTER 5 ■ RETRIEVAL: FUNCTIONS 127

EXTRACT
You can extract various components of a date or timestamp expression with the ANSI/ISO
standard EXTRACT function. Depending on the datatype of the argument d (DATE, TIMESTAMP,
or INTERVAL) the following values for c are supported: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND,
TIMEZONE_ABBR, and so on. Listing 5-18 shows an example.

Listing 5-18. Using the EXTRACT Function

SQL> select bdate
2 , extract(year from bdate) as year_of_birth
3 , extract(month from bdate) as month_of_birth
4 , extract(day from bdate) as day_of_birth
5 from employees
6 where ename = 'KING';

BDATE YEAR_OF_BIRTH MONTH_OF_BIRTH DAY_OF_BIRTH
----------- ------------- -------------- ------------
17-NOV-1952 1952 11 17

SQL>

ROUND and TRUNC
Table 5-9 lists the date formats (fmt) supported by the date functions ROUND and TRUNC.
The default format is 'DD', resulting in rounding or truncating to midnight. For example,
TRUNC(SYSDATE) truncates the current system date and time to midnight.

Table 5-9. ROUND and TRUNC Date Formats

Format Description

CC, SCC Century, with or without minus sign (BC)

[S]YYYY, [S]YEAR, YYY, YY, Y Year (in various appearances)

IYYY, IYY, IY, I ISO year

Q Quarter

MONTH, MON, MM, RM Month (full name, abbreviated name, numeric, Roman numerals)

IW, WW (ISO) week number

W Day of the week

DDD, DD, J Day (of the year/of the month/Julian day)

DAY, DY, D Closest Sunday

HH, HH12, HH24 Hours

MI Minutes

CHAPTER 5 ■ RETRIEVAL: FUNCTIONS128

MONTHS_BETWEEN and ADD_MONTHS
Listings 5-19 and 5-20 show examples of using the date functions MONTHS_BETWEEN and
ADD_MONTHS.

Listing 5-19. Using the MONTHS_BETWEEN Function

SQL> select ename, months_between(sysdate,bdate)
2 from employees
3 where deptno = 10;

ENAME MONTHS_BETWEEN(SYSDATE,BDATE)
-------- -----------------------------
CLARK 467.5042
KING 618.2461
MILLER 508.0525

SQL>

Listing 5-20. Using the ADD_MONTHS Function

SQL> select add_months('29-JAN-1996', 1) add_months_1
2 , add_months('29-JAN-1997', 1) add_months_2
3 , add_months('11-AUG-1997',-3) add_months_3
4 from dual;

ADD_MONTHS_1 ADD_MONTHS_2 ADD_MONTHS_3
------------ ------------ ------------
29-FEB-1996 28-FEB-1997 11-MAY-1997

SQL>

Notice what happens in Listing 5-20 with a non-leap year. There is something else worth
noting about the query in Listing 5-20. As explained earlier, you could get back an error mes-
sage because you rely on implicit interpretation and conversion of the three strings by Oracle.
It would have been preferable to specify the three date literals in Listing 5-20 using the key
word DATE (see the beginning of this section) or using the TO_DATE conversion function.
(See Section 5.7 later in this chapter for details about conversion functions.)

NEXT_DAY and LAST_DAY
Listing 5-21 shows examples of using the date functions NEXT_DAY, LAST_DAY, ROUND, and TRUNC.
Compare the various function results with the first column, showing the current SYSDATE value.

CHAPTER 5 ■ RETRIEVAL: FUNCTIONS 129

Listing 5-21. Using the NEXT_DAY, LAST_DAY, ROUND, and TRUNC Functions

SQL> select sysdate
2 , next_day(sysdate,'SAT') as next_sat
3 , last_day(sysdate) as last_day
4 , round(sysdate,'YY') as round_yy
5 , trunc(sysdate,'CC') as trunc_cc
6 from dual;

SYSDATE NEXT_SAT LAST_DAY ROUND_YY TRUNC_CC
----------- ----------- ----------- ----------- -----------
14-SEP-2004 18-SEP-2004 30-SEP-2004 01-JAN-2005 01-JAN-2001

SQL>

5.6 General Functions
The most important general (datatype-independent) functions are shown in Table 5-10.

Table 5-10. Common General Oracle Functions

Function Description

GREATEST(a, b, ...) Greatest value of the function arguments

LEAST(a, b, ...) Least value of the function arguments

NULLIF(a, b) NULL if a = b; otherwise a

COALESCE(a, b, ...) The first not NULL argument (and NULL if all arguments are NULL)

NVL(x, y) y if x is NULL; otherwise x

NVL2(x, y, z) y if x is not NULL; otherwise z

DECODE(x, a1, b1, b1 if x = a1,

a2, b2, b2 if x = a2, ...

..., an, bn bn if x = an,

[, y]) and otherwise y (or default: NULL)

You can express all of these functions as CASE expressions, too, since they all share a pro-
cedural nature. In other words, you don’t really need them. Nevertheless, these functions can
be useful in your SQL code because, for example, they make your code more compact. Note
also that (besides CASE expressions) only the NULLIF and COALESCE functions are part of the
ANSI/ISO standard. The remaining five functions (GREATEST, LEAST, NVL, NVL2, and DECODE) are
Oracle-specific SQL extensions. In other words, if your goal is to write portable SQL code, you
should use only CASE, NULLIF, and COALESCE.

■Note Rewriting various command examples in this section using CASE, NULLIF, and COALESCE is left as
an exercise to the reader at the end of this chapter, in Section 5.9.

CHAPTER 5 ■ RETRIEVAL: FUNCTIONS130

GREATEST and LEAST
The GREATEST and LEAST functions can be useful in certain situations. Don’t confuse them
with the MAX and MIN group functions (which are covered in detail in Chapter 8). For now,
remember the following differences:

• GREATEST and LEAST allow you to make horizontal comparisons; they operate at the row
level.

• MAX and MIN allow you to make vertical comparisons; they operate at the column level.

Listing 5-22 shows an example of the GREATEST and LEAST functions, selecting three con-
stant expressions against the DUAL table.

Listing 5-22. Using the GREATEST and LEAST Functions

SQL> select greatest(12*6,148/2,73)
2 , least (12*6,148/2,73)
3 from dual;

GREATEST(12*6,148/2,73) LEAST(12*6,148/2,73)
----------------------- --------------------

74 72

SQL>

NVL
The NVL function is useful if you want to prevent certain expressions, or expression compo-
nents, from evaluating to a null value, as you can see in Listing 5-23.

Listing 5-23. Using the NVL Function

SQL> select ename, msal, comm
2 , 12*msal+nvl(comm,0) as yearsal
3 from employees
4 where ename like '%T%';

ENAME MSAL COMM YEARSAL
-------- -------- -------- --------
SMITH 800 9600
MARTIN 1250 1400 16400
SCOTT 3000 36000
TURNER 1500 0 18000

SQL>

CHAPTER 5 ■ RETRIEVAL: FUNCTIONS 131

DECODE
The DECODE function is a typical remnant from the days that Oracle SQL did not yet support
CASE expressions. There are three good reasons not to use DECODE anymore:

• DECODE function expressions are quite difficult to read.

• DECODE is not part of the ANSI/ISO SQL standard.

• CASE expressions are much more powerful.

For completeness, and because you may encounter the DECODE function in legacy Oracle
SQL programs, Listing 5-24 shows a query where the DECODE function is used in the SELECT
clause and in the ORDER BY clause.

Listing 5-24. Using the DECODE Function

SQL> select job, ename
2 , decode(greatest(msal,2500)
3 ,2500,'cheap','expensive') as class
4 from employees
5 where bdate < date '1964-01-01'
6 order by decode(job,'DIRECTOR',1,'MANAGER',2,3);

JOB ENAME CLASS
-------- -------- ---------
DIRECTOR KING expensive
MANAGER BLAKE expensive
SALESREP ALLEN cheap
SALESREP WARD cheap
ADMIN MILLER cheap
TRAINER FORD expensive
TRAINER SCOTT expensive
SALESREP MARTIN cheap

SQL>

5.7 Conversion Functions
Conversion functions allow you to convert expressions explicitly from one datatype into
another datatype. Table 5-11 lists the most common conversion functions in Oracle SQL.
See Oracle SQL Reference for more conversion functions.

CHAPTER 5 ■ RETRIEVAL: FUNCTIONS132

Table 5-11. Common Oracle Conversion Functions

Function Description

TO_CHAR(n[,fmt]) Convert number n to a string

TO_CHAR(d[,fmt]) Convert date/time expression d to a string

TO_NUMBER(t) Convert string t to a number

TO_BINARY_FLOAT(e[,fmt]) Convert expression e to a floating-point number

TO_BINARY_DOUBLE(e[,fmt]) Convert expression e to a double-precision, floating-point number

TO_DATE(t[,fmt]) Convert string t to a date

TO_YMINTERVAL(t) Convert string t to a YEAR TO MONTH interval

TO_TIMESTAMP (t[,fmt]) Convert string t to a timestamp

CAST(e AS t) Convert expression e to datatype t

■Note The syntax in Table 5-11 is not complete. Most conversion functions allow you to specify additional
NLS parameters after the format (fmt) argument. For example, you can influence the currency symbol,
the numeric characters (period and comma), and the date language. See Oracle SQL Reference and
Globalization Support Guide for more details.

TO_NUMBER and TO_CHAR
Listing 5-25 shows how you can use the TO_NUMBER and TO_CHAR functions (with or without a
format argument) to convert strings to numbers and vice versa.

Listing 5-25. Using the TO_CHAR and TO_NUMBER Functions

SQL> select 123
2 , to_char(123)
3 , to_char(123,'$09999.99')
4 , to_number('123')
5 from dual;

123 TO_ TO_CHAR(12 TO_NUMBER('123')
-------- --- ---------- ----------------

123 123 $00123.00 123

SQL>

Listing 5-26 shows how you can nest conversion functions. On the third line, you use
the TO_DATE function to interpret the string '01/01/2006' as a date value; then, you use the
TO_CHAR function to extract the day from the date value, as you can see in the third column
of the query result.

CHAPTER 5 ■ RETRIEVAL: FUNCTIONS 133

Listing 5-26. Nesting the TO_CHAR and TO_DATE Functions

SQL> select sysdate as today
2 , to_char(sysdate,'hh24:mi:ss') as time
3 , to_char(to_date('01/01/2006','dd/mm/yyyy')
4 ,'"is on "Day') as new_year_2006
5 from dual;

TODAY TIME NEW_YEAR_2006
--------- -------- ---------------
24-MAY-04 15:05:48 is on Sunday

SQL>

In this example, the format Day results in Sunday because the default language is English.
You can set the NLS_LANGUAGE parameter to another language to influence this behavior. For
example, if you set this session (or system) parameter to DUTCH, the result becomes Zondag
(see also Listing 2-20 in Chapter 2). You could also override this default at the statement level,
by setting the NLS_DATE_LANGUAGE parameter, as shown in Listing 5-27.

Listing 5-27. Influencing the Date Language at the Statement Level

SQL> select to_char(sysdate, 'Day')
2 , to_char(sysdate, 'Day', 'nls_date_language=Dutch')
3 from dual;

TO_CHAR(S TO_CHAR(S
--------- ---------
Tuesday Dinsdag

SQL>

Conversion Function Formats
Table 5-11 showed that several Oracle conversion functions support an optional format (fmt)
argument. These format arguments allow you to deviate from the default conversion.
Table 5-12 shows most of the possibilities.

Table 5-12. Conversion Functions: Optional Format Components

Format Description

[S]CC Century; S stands for the minus sign (BC)

[S]YYYY Year, with or without minus sign

YYY, YY, Y Last 3, 2, or 1 digits of the year

[S]YEAR Year spelled out, with or without minus sign (S)

BC, AD BC/AD indicator

CHAPTER 5 ■ RETRIEVAL: FUNCTIONS134

Format Description

Q Quarter (1,2,3,4)

MM Month (01–12)

MONTH Month name, padded with spaces to length 9

MON Month name, abbreviated (three characters)

WW, IW (ISO) week number (01–53)

W Week number within the month (1–5)

DDD Day number within the year (1–366)

DD Day number within the month (1–31)

D Day number within the week (1–7)

DAY Day name, padded with spaces to length 9

DY Day name abbreviation (three characters)

J Julian date; day number since 01/01/4712 BC

AM, PM AM/PM indicator

HH[12] Hour within the day (01–12)

HH24 Hour within the day (00–23)

MI Minutes within the hour (00–59)

SS Seconds within the minute (00–59)

SSSSS Seconds after midnight (0–86399)

/., Punctuation characters; displayed verbatim (between date fields)

"..." String between double quotes displayed within the date expression

■Note You can influence several date characteristics, such as the first day of the week, with the
NLS_TERRITORY parameter.

Oracle supports some additions that you can use in conversion function format strings to
further refine the results of those functions. Table 5-13 shows these additions.

Table 5-13. Conversion Functions: Format Component Additions

Addition Description

FM Fill mode toggle

TH Ordinal number (e.g., 4th)

SP Spelled-out number (e.g., four)

THSP, SPTH Spelled-ordinal number (e.g., fourth)

CHAPTER 5 ■ RETRIEVAL: FUNCTIONS 135

In fill mode, Oracle does not perform padding with spaces, and numbers are not prefixed
with leading zeros. You can enable and disable this fill mode mechanism within the same for-
mat string as many times as you like, by repeating FM (it is a toggle). Ordinal numbers indicate
a relative position in a sequence.

The conversion function formats are case-sensitive, as demonstrated in Listing 5-28.

Listing 5-28. TO_CHAR Formats and Case-Sensitivity

SQL> select to_char(sysdate,'DAY dy Dy') as day
2 , to_char(sysdate,'MONTH mon') as month
3 from dual;

DAY MONTH
----------------- -------------
MONDAY mon Mon MAY may

SQL>

Datatype Conversion
In the area of datatype conversion, you can leave many issues up to the Oracle DBMS. How-
ever, for reasons of syntax clarity, it is better to express the datatype conversions explicitly
with the appropriate conversion functions. See the query in Listing 5-29 for an example.

Listing 5-29. Relying on Implicit Datatype Conversion

SQL> select ename, substr(bdate,8)+16
2 from employees
3 where deptno = 10;

ENAME SUBSTR(BDATE,8)+16
-------- ------------------
CLARK 81
KING 68
MILLER 78

SQL>

This query is internally interpreted and executed by the Oracle DBMS as the following:

SQL> select ename, TO_NUMBER(substr(to_char(bdate,'...'),8))+16
2 from employees
3 where deptno = 10

You should have formulated the query that way in the first place.

CHAPTER 5 ■ RETRIEVAL: FUNCTIONS136

CAST
The last function to discuss in this section about conversion functions is CAST. This function is
part of the ANSI/ISO SQL standard, as opposed to all other conversion functions discussed so
far in this section. The CAST function is a generic conversion function. It allows you to convert
any expression to any specific datatype, including the option to specify a datatype precision.
See Listing 5-30 for some examples.

Listing 5-30. CAST Function Examples

SQL> select cast(12.98 as number(2)) example1
2 , cast('oak' as char(10)) example2
3 , cast(null as date) example3
4 from dual;

EXAMPLE1 EXAMPLE2 EXAMPLE3
-------- ---------- ---------

13 oak

SQL>

5.8 Stored Functions
Although you might argue that Oracle already offers more than enough functions, you may
find that you need a specific capability that isn’t already provided. In that case, you can
develop your own functions (using PL/SQL) and add them to the SQL language.

PL/SQL is the standard procedural programming language for Oracle databases. PL/SQL
is a superset of SQL, adding several procedural capabilities to the nonprocedural SQL lan-
guage. Here, we will investigate one simple example of PL/SQL language usage in relation to
custom functions. For more information about PL/SQL, refer to Oracle PL/SQL User’s Guide
and Reference.

Listing 5-31 shows how to define a function to determine the number of employees for a
given department.

Listing 5-31. Creating a Stored Function Using PL/SQL

SQL> create or replace function emp_count(p_deptno in number)
2 return number is
3 cnt number(2) := 0;
4 begin
5 select count(*) into cnt
6 from employees e
7 where e.deptno = p_deptno;
8 return (cnt);

CHAPTER 5 ■ RETRIEVAL: FUNCTIONS 137

9 end;
10 /

Function created.

SQL>

Now it becomes relatively easy to produce an overview of all departments, with their
(correct) number of employees, as you can see in Listing 5-32. This query would be more com-
plicated without this function. In particular, department 40 (the well-known department
without employees) would not show up in your query results without some extra work. With-
out the stored function, you would need a so-called OUTER JOIN (see Chapter 8) or you would
need a subquery in the SELECT clause (see Chapter 9).

Listing 5-32. Using the Stored Function

SQL> select deptno, dname, location
2 , emp_count(deptno)
3 from departments;

DEPTNO DNAME LOCATION EMP_COUNT(DEPTNO)
-------- ---------- -------- -----------------

10 ACCOUNTING NEW YORK 3
20 TRAINING DALLAS 5
30 SALES CHICAGO 6
40 HR BOSTON 0

SQL>

Listing 5-33 shows how the SQL*Plus DESCRIBE command treats these stored functions.

Listing 5-33. Describing a Stored Function

SQL> describe emp_count

FUNCTION emp_count RETURNS NUMBER

Argument Name Type In/Out Default?
------------------------- --------------- ------ --------
P_DEPTNO NUMBER IN

SQL>

CHAPTER 5 ■ RETRIEVAL: FUNCTIONS138

5.9 Exercises
Use a database schema with the seven case tables (see Appendix C of this book) to perform
the following exercises. The answers are presented in Appendix D.

1. For all employees, provide their last name, a comma, followed by their initials.

2. For all employees, list their last name and date of birth, in a format such as April 2nd,
1967.

3. On which day are (or were) you exactly 10,000 days old?
On which day of the week is (was) this?

4. Rewrite the example in Listing 5-23 using the NVL2 function.

5. Rewrite the example in Listing 5-24 to remove the DECODE functions using CASE expres-
sions, both in the SELECT clause and in the ORDER BY clause.

6. Rewrite the example in Listing 5-20 using DATE and INTERVAL constants, in such a way
that they become independent of the NLS_DATE_FORMAT setting.

7. Investigate the difference between the date formats WW and IW (week number and ISO
week number) using an arbitrary date, and explain your findings.

8. Look at Listing 5-15, where we use the REGEXP_INSTR function to search for words.
Rewrite this query using REGEXP_LIKE. Hint: You can use {n,} to express “at least
n times.”

CHAPTER 5 ■ RETRIEVAL: FUNCTIONS 139

Data Manipulation

In this chapter, you will learn how to change the contents of an Oracle database. The SQL
commands to change the database contents are commonly referred to as Data Manipulation
Language (DML) commands.

The first four sections of this chapter cover the DML commands INSERT, UPDATE, DELETE,
and MERGE. The first three commands have names that are self-explanatory. The fourth one,
MERGE, allows you to perform a mixture of insertions, updates, and deletions in a single state-
ment, which is especially useful in data warehousing environments.

In production environments, especially when dealing with high-volume transactions,
data manipulation is mostly performed via database applications. In general, these database
applications are built (or generated) with application development tools such as Oracle Forms
and Oracle JDeveloper. Such applications offer a pleasant user-friendly interface to the data-
base; however, they still use the basic INSERT, UPDATE, and DELETE commands under the hood
to communicate with the database, so you should understand how these commands work.
Additionally, sometimes “manual” data manipulation via SQL*Plus can be very efficient. For
example, you may want to perform global updates (such as to change a certain column for all
rows of a table at the same time) or to remove all rows of a table.

Section 6.5 explains the concept of transactions and introduces three transaction-related
SQL commands: COMMIT, SAVEPOINT, and ROLLBACK.

This chapter is also the most obvious place in this book to pay some attention to read
consistency and locking. So, the last section discusses how the Oracle DBMS guarantees trans-
action isolation in a multiuser environment. It provides an introduction to the concepts
involved, without going into too many technical details.

6.1 The INSERT Command
You can use the INSERT command to add rows to a table. Along with the standard INSERT
command, Oracle SQL also supports a multitable version.

Standard INSERT Commands
The standard INSERT command supports the following two ways to insert rows:

• Use the VALUES clause, followed by a list of column values (between parentheses).
This method allows you to insert only one row at a time per execution of the INSERT
command.

• Formulate a subquery, thus using existing data to generate new rows. 141

C H A P T E R 6

■ ■ ■

Both alternatives are shown in the syntax diagram in Figure 6-1.

Figure 6-1. INSERT command syntax diagram

If you know all of the table columns, including the internal physical order in which they
are presented by the SQL*Plus DESCRIBE command, you don’t need to specify column names
after the table name in the INSERT command. If you omit column names, you must provide
precisely enough values and specify them in the correct order.

■Caution Leaving out column names is rather dangerous, because your INSERT statement may become
invalid after nondestructive table reorganizations (such as changing the column order). Column names also
improve the readability of your SQL statements.

In the VALUES clause, you can specify a comma-separated list of literals or an expression.
You can use the reserved word NULL to specify a null value for a specific column. You can also
specify the reserved word DEFAULT to instruct the Oracle DBMS to insert the default value asso-
ciated with the corresponding column. These default values are part of the table definition,
stored in the data dictionary. If you don’t specify a value for a specific column in your INSERT
statement, there are two possibilities:

• If the column has an associated DEFAULT value, the Oracle DBMS will insert that value.

• If you did not define a DEFAULT value for the column, the Oracle DBMS inserts a null
value (provided, of course, that the column allows null values).

■Note Because the Oracle DBMS will automatically insert the default value when another value isn’t
specified, the DEFAULT keyword isn’t really necessary for INSERT statements. However, the DEFAULT
keyword can be quite useful when writing UPDATE statements, which are discussed in Section 6.2.

CHAPTER 6 ■ DATA MANIPULATION142

CHAPTER 6 ■ DATA MANIPULATION 143

The second way of using the INSERT command fills a table with a subquery. There are
no special constraints for these subqueries, as long as you make sure they produce the right
number of values of the right datatype. You can even use a subquery against the table into
which you are inserting rows. This sounds like a strange approach; however, INSERT INTO X
SELECT * FROM X is one of the fastest methods to fill a table, provided you don’t have unique or
primary key constraints.

■Note The fact that you are able to query and insert into the same table at the same time is due to
Oracle’s read consistency implementation. See Section 6.6 for details.

Listing 6-1 shows four INSERT statement examples: three using the VALUES clause and one
using the subquery method.

Listing 6-1. Four INSERT Command Examples

SQL> insert into departments -- Example 1
2 values (90,'SUPPORT','SEATTLE', NULL);

1 row created.

SQL> insert into employees(empno,ename,init,bdate,msal,deptno) -- Example 2
2 values (7001,'ZOMBIE','ZZ',trunc(sysdate), 0, DEFAULT);

1 row created.

SQL> select * from employees where empno = 7001;

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- ------ ---- --- --- ----------- ---- ---- ------
7001 ZOMBIE ZZ 15-SEP-2004 0 10

SQL> insert into departments(dname,location,deptno) -- Example 3
2 values('CATERING','ORLANDO', 10);

insert into departments(dname,location,deptno)
*
ERROR at line 1:
ORA-00001: unique constraint (BOOK.D_PK) violated

SQL> insert into salgrades -- Example 4
2 select grade + 5
3 , lowerlimit + 2300
4 , least(9999, upperlimit + 2300)
5 , 500
6 from salgrades;

5 rows created.

SQL> rollback;
Rollback complete.

SQL>

The examples work as follows:

• The first example inserts a new department 90 without specifying column names.
It also shows how you can insert a null value with the reserved word NULL.

• The second example shows how you can use DEFAULT to assign the default department
number to a new employee. (Chapter 7 explains how to assign such default values).
The default value for the DEPTNO column of the EMPLOYEES table is 10, as you can see in
Listing 6-1.

• The third example shows a violation of a primary key constraint; department 10 already
exists.

• The fourth example shows how you can use a subquery to insert rows with the INSERT
command. It uses the LEAST function (introduced in Chapter 5) to avoid constraint
violations. The first argument (9999) ensures that the upper limit will never become
greater than 9999.

At the end of Listing 6-1, we use ROLLBACK to undo our changes. The ROLLBACK command is
explained in Section 6.5.

■Note After this chapter, we need all tables again in their unmodified state. Make sure to undo all changes
you apply in this chapter, or re-create the tables before proceeding with Chapter 7.

Multitable INSERT Commands
Along with the two standard ways to use the INSERT command, Oracle SQL also supports
multitable inserts. Using this method, you can specify multiple INTO clauses in a single INSERT
command, with or without corresponding conditions.

The syntax of the multitable INSERT command without conditions is shown in Figure 6-2.
The subquery retrieves a set of rows. For each row returned by the subquery, the Oracle DBMS
executes each INTO clause once.

You can also make the INTO clauses conditional, using a WHEN ... THEN ... ELSE construct,
as shown in the syntax diagram in Figure 6-3. In this case, you must choose between ALL or
FIRST. If you specify ALL, Oracle evaluates each WHEN clause for every row from the subquery. If
you specify FIRST, Oracle skips subsequent WHEN clauses after the first one that evaluates to
true. Each expression in the WHEN condition must refer to columns returned by the SELECT list
of the subquery.

CHAPTER 6 ■ DATA MANIPULATION144

Figure 6-2. Unconditional multitable INSERT command syntax diagram

Figure 6-3. Conditional multitable INSERT command syntax diagram

For further details and examples of conditional and unconditional multitable inserts,
refer to Oracle SQL Reference.

One more comment, before we move on to the UPDATE command: as you will see in
Chapter 10, you can also perform data manipulation via inline views. For example, you can
specify a subquery instead of a table name in INSERT commands.

6.2 The UPDATE Command
You can change column values of existing rows in your tables with the UPDATE command. As
shown in the syntax diagram in Figure 6-4, the UPDATE command has three main components:

• UPDATE: The table you want to update

• SET: The change you want to apply

• WHERE: The rows to which you want to apply the change

CHAPTER 6 ■ DATA MANIPULATION 145

Figure 6-4. UPDATE command syntax diagram

If you omit the optional WHERE clause, the change is applied to all rows of the table.
This illustrates the fact that the UPDATE command operates at the table level, so you need the
WHERE clause as the relational restriction operator to limit the scope of the UPDATE command to
a subset of the table.

As you can see from Figure 6-4, the SET clause offers two alternatives:

• You can specify a comma-separated list of single-column changes. With this approach,
you can use the DEFAULT keyword as an expression. This allows you to change column
default values in the data dictionary at any point in time without the need to change
the UPDATE commands in your applications.

• You can drive the change with a subquery. The subquery must provide the right num-
ber of values for the list of column names specified between the parentheses. Of course,
the datatypes should also match, or the Oracle DBMS should at least be able to convert
values to the appropriate datatypes on the fly.

The first approach is illustrated in Listing 6-2, and the second approach is shown in
Listing 6-3.

Listing 6-2. UPDATE Command Example

SQL> update employees
2 set job = 'SALESREP'
3 , msal = msal - 500
4 , comm = 0
5 , deptno = 30
6 where empno = 7876;

1 row updated.

SQL> rollback;
Rollback complete.

SQL>

CHAPTER 6 ■ DATA MANIPULATION146

Listing 6-3. UPDATE Command Example Using a Subquery

SQL> update registrations
2 set evaluation = 1
3 where (course,begindate)
4 in (select course,begindate
5 from offerings
6 where location = 'CHICAGO');

3 rows updated.

SQL> rollback;
Rollback complete.

SQL>

As with the INSERT examples in Listing 6-1, in both of these listings, we use the ROLLBACK
command to undo any changes made.

6.3 The DELETE Command
The simplest data manipulation command is DELETE, as shown in the syntax diagram in
Figure 6-5. This command also operates at the table level, and you use the WHERE clause to
restrict the set of rows you want to delete from the table. If you omit the WHERE clause, the
DELETE command results in an empty table.

Figure 6-5. DELETE command syntax diagram

Note the difference between the following two commands:

SQL> drop table departments;
SQL> delete from departments;

The DROP TABLE command not only removes the contents of the table, but also the table
itself, including all dependent objects/structures such as indexes and privileges. DROP TABLE is a
data definition (DDL) command. The DELETE command does not change the database structure,
but only the contents—it is a data manipulation (DML) command. Moreover, the effects of a
DROP TABLE command cannot be undone with a ROLLBACK command, as opposed to the effects of
a DELETE command, which can. (The ROLLBACK command is introduced in Section 6.5.)

CHAPTER 6 ■ DATA MANIPULATION 147

■Note In Chapter 7, you will see that there is a different way to get a table back after a DROP TABLE

statement.

Listing 6-4 shows how you can delete a salary grade.

Listing 6-4. Example of a DELETE Command

SQL> delete from salgrades
2 where grade = 5;

1 row deleted.

SQL> rollback;
Rollback complete.

SQL>

To illustrate the fact that you can also use subqueries in the FROM clause of the DELETE
statement, Listing 6-5 shows an alternative formulation for the same DELETE statement.
Again, we use the ROLLBACK command to undo our changes.

Listing 6-5. Alternative DELETE Command, Using a Subquery

SQL> delete from (select *
2 from salgrades
3 where grade = 5);

1 row deleted.

SQL> rollback;
Rollback complete.

SQL>

In this case, there are no obvious advantages to using a subquery over using a regular
DELETE statement. However, the subquery syntax also works (under certain conditions) with
more complicated subqueries, opening up some very interesting possibilities.

Deleting rows may seem rather straightforward, but you might encounter complications
due to constraint violations. The same is true for the UPDATE and INSERT commands, by the
way. Constraints are discussed in the next chapter.

Because this section is about deleting rows, there is another SQL command that deserves
mention here: TRUNCATE. The TRUNCATE command allows you to delete all rows of a table in a
more efficient way than with the DELETE command. The TRUNCATE command belongs to the
category of the data definition (DDL) commands, and so it is covered in the next chapter.

CHAPTER 6 ■ DATA MANIPULATION148

6.4 The MERGE Command
The MERGE command is a rather strange one. It is able to perform insertions, updates, and
deletions in a single statement. This makes the MERGE command very efficient in data
warehouse environments, where the tables are often populated/updated from external
sources. The MERGE command is able to react appropriately to the existence (or nonexistence)
of certain rows in the tables you are updating.

This book is not about data warehousing, so we will look at only a rather simple example
of the MERGE command to see how it operates. For more details, see Oracle SQL Reference and
Oracle Data Warehousing Guide.

Listing 6-6 shows the first step of our example, where we create and populate two small
tables. Both tables have three columns: a product ID, a cumulative quantity sold, and a
product status.

Listing 6-6. Preparation for the MERGE Example

SQL> create table delta_tab
2 (pid number, sales number, status varchar2(6));

Table created.

SQL> create table master_tab
2 (pid number, sales number, status varchar2(6));

Table created.

SQL> insert into master_tab values(1,12,'CURR');
1 row created.

SQL> insert into master_tab values(2,13,'NEW');
1 row created.

SQL> insert into master_tab values(3,15,'CURR');
1 row created.

SQL> insert into delta_tab values(2,24,'CURR');
1 row created.

SQL> insert into delta_tab values(3, 0,'OBS');
1 row created.

SQL> insert into delta_tab values(4,42,'CURR');
1 row created.

SQL> commit;
Commit complete.

SQL>

CHAPTER 6 ■ DATA MANIPULATION 149

Listing 6-7 shows the starting point of our example, before we execute a MERGE command.
In the master table, we have three rows, for products 1, 2, and 3. In the delta table, we also
have three rows, for products 2, 3, and 4.

Listing 6-7. Situation Before Executing the MERGE Command

SQL> select * from master_tab;

PID SALES STATUS
-------- -------- ------

1 12 CURR
2 13 NEW
3 15 CURR

SQL> select * from delta_tab;

PID SALES STATUS
-------- -------- ------

2 24 CURR
3 0 OBS
4 42 CURR

SQL>

Now we use the MERGE command, as shown in Listing 6-8.

Listing 6-8. The MERGE Command and Its Effect on the MASTER_TAB Table

SQL> merge into master_tab m
2 using delta_tab d
3 on (m.pid = d.pid)
4 when matched
5 then update set m.sales = m.sales+d.sales
6 , m.status = d.status
7 delete where m.status = 'OBS'
8 when not matched
9 then insert values (d.pid,d.sales,'NEW');

3 rows merged.

SQL> select * from master_tab;

PID SALES STATUS
-------- -------- ------

1 12 CURR
2 37 CURR
4 42 NEW

SQL>

CHAPTER 6 ■ DATA MANIPULATION150

In Listing 6-8, the first three command lines specify the roles of the two tables involved
and the joining condition between the two tables. Lines 5, 6, and 7 specify what must be done
when processing a row from the DELTA_TAB table if there is a matching row in the MASTER_TAB
table. Line 9 specifies what must be done when such a matching row does not exist.

Do you see what happened with the contents of the MASTER_TAB table?

• The first row is not touched, because the DELTA_TAB contains no row for product 1.

• The second row is updated: the SALES value is incremented with 24, and the STATUS is
set to CURR.

• The third (original) row is deleted, because after applying the UPDATE clause, the DELETE
condition became TRUE.

• The fourth row is inserted, because there was no row for product 4.

6.5 Transaction Processing
All DML changes (INSERT, UPDATE, DELETE, and MERGE) that you apply to the contents of the
database initially get a “pending” status. This means (among other things) that you can see the
changed rows, but other database users will see the original data when they query the same
table rows. Moreover, as long as your changes are in this pending state, other database users
will not be able to change those rows, until you confirm or abandon your pending changes.

The SQL command to confirm pending changes to the database is COMMIT, and the com-
mand to cancel them is ROLLBACK. This allows you to perform a number of changes, then
confirm them with a COMMIT or cancel them with ROLLBACK, then perform another number
of changes, and so on.

COMMIT and ROLLBACK close a current transaction and open a new one. A transaction is
considered to be a logical unit of work. In other words, a transaction is a set of changes that
will succeed or fail as a whole.

■Note The Oracle DBMS also allows you to define autonomous transactions using PL/SQL. These are
subtransactions that you can COMMIT or ROLLBACK independently from their main transactions. See PL/SQL
User’s Guide and Reference for details.

For example, account transfer transactions in a banking system normally consist of (at
least) two updates: a debit to account A and a credit to account B. In such situations, it makes
a lot of sense to COMMIT after each debit/credit combination, and not in between each update.
What if something went wrong (for example, the system crashed) after the debit update was
committed but the credit update had not been processed yet? You would end up with cor-
rupted administration records. Moreover, even in the absence of any disasters, a different
database user could start a reporting application precisely at the “wrong” moment in between
the two updates, which would result in inconsistent financial reports.

CHAPTER 6 ■ DATA MANIPULATION 151

On the other hand, if you wait too long before committing your changes, you risk losing
your work when the system crashes. During system recovery, all pending transactions will be
rolled back to guarantee database consistency. This may be annoying, but it’s necessary.

By the way, this illustrates the fact that not only database users are able to issue explicit
COMMIT and ROLLBACK commands. Oracle tools can also issue those commands implicitly.
For example, if you leave SQL*Plus in a normal way with the EXIT or QUIT command, or if you
create a new session with the SQL*Plus CONNECT command, SQL*Plus first sends a COMMIT com-
mand to the database.

Another consequence of a delayed committing of your changes is that you block other
database users who want to update or delete the same rows. Section 6.6 discusses this locking
behavior in a little more detail.

All DDL commands (such as CREATE, ALTER, DROP, GRANT, and REVOKE) always imply an
implicit COMMIT. To put it another way, each single DDL command is executed as a transaction
in itself, consisting of a single command, and is committed immediately.

The SQL*Plus AUTOCOMMIT Option
SQL*Plus supports an AUTOCOMMIT option. To access this option under Microsoft Windows,
select Options ➤ Environment and choose the autocommit category in the Set Options list
box, as shown in Figure 6-6. You can choose to commit DML commands immediately by
selecting the On radio button, or to commit each time after a certain number of successful
DML commands by entering a number in the Value field.

■Caution You should use the AUTOCOMMIT feature with caution and only under special conditions. First of
all, you lose the opportunity to issue the ROLLBACK command to undo your changes in case of mistakes.
Moreover, you lose the transaction principle that some mutations belong to the same logical unit of work.

Figure 6-6. The SQL*Plus AUTOCOMMIT setting in the Environment dialog box

CHAPTER 6 ■ DATA MANIPULATION152

As Listing 6-9 shows, you can also manipulate and retrieve the SQL*Plus AUTOCOMMIT set-
ting in character mode, using the SQL*Plus SET command.

Listing 6-9. The SQL*Plus AUTOCOMMIT Setting (Character Mode)

SQL> set autocommit on
SQL> show autocommit
autocommit IMMEDIATE

SQL> set autocommit 42
SQL> show autocommit
AUTOCOMMIT ON for every 42 DML statements

SQL> set autocommit off
SQL>

Transaction Design
Now that you have an idea of the transaction concept, let’s give transaction design a little
more attention. As stated previously, transactions should be considered as logical units of
work. So, you should decide which set of database changes should always succeed or fail in
its entirety. However, you should also take some physical aspects into consideration, because
your transaction design may incur undesirable side effects.

The following three transaction designs may cause performance problems or other
unnecessary overhead in high-load system environments:

• Committing too frequently

• Committing too infrequently

• Letting a lot of time elapse between DML changes and COMMIT

The last two designs (committing too infrequently and letting a lot of time elapse) force
the Oracle DBMS to keep transaction undo information available for an unnecessarily long
time, and they also block other transactions from changing the same data. The first design
(committing too frequently) could cause unnecessary contention on certain system resources.
See also Section 6.6 for more about read consistency and locking.

Savepoints
You can define “interim points,” known as savepoints, within your transactions. During a
transaction, you can roll back to such savepoints without rolling back the transaction as a
whole, thus maintaining the changes you made before the savepoint. Listing 6-10 shows an
example where we issue four DELETE commands in total, and we define a savepoint between
the second and the third DELETE command. With the ROLLBACK TO SAVEPOINT command, we
undo the last two DELETE commands, but the first two changes maintain their pending status.

CHAPTER 6 ■ DATA MANIPULATION 153

Listing 6-10. Using Savepoints Within a Transaction

SQL> delete from history where empno=7654;
2 rows deleted.

SQL> delete from employees where empno=7654;
1 row deleted.

SQL> savepoint ONE;
Savepoint created.

SQL> delete from offerings where course='ERM';
1 row deleted.

SQL> delete from courses where code ='ERM';
1 row deleted.

SQL> rollback to savepoint ONE;
Rollback complete.

SQL> select description
2 from courses
3 where code='ERM';

DESCRIPTION
--
Data modeling with ERM

SQL> rollback;
Rollback complete.

SQL>

■Note You can define as many savepoints per transaction as you like. Actually, the Oracle DBMS uses
implicit savepoints internally to implement statement-level rollback.

6.6 Locking and Read Consistency
Normally, many users and applications access database systems at the same time. This is
known as concurrency. The DBMS must make sure that concurrency is handled properly.
The most drastic approach for a DBMS would be to handle all user transactions one by one,
blocking all data exclusively until the end of each transaction. Such a transaction serialization
approach would result in unnecessary and unacceptable wait times; the overall system
throughput would be very poor.

CHAPTER 6 ■ DATA MANIPULATION154

Normally, DBMSs like Oracle control concurrent data access with locking. For example,
locking is necessary to prevent database users from updating rows with pending (uncommitted)
changes from other database users. This section gives some information about how the Oracle
DBMS handles locking and concurrency.

Locking
To understand how the Oracle DBMS handles locking, we need to identify a difference
between two categories of database users:

• Readers: Users retrieving data (issuing SELECT statements)

• Writers: Users changing data (issuing INSERT, UPDATE, DELETE, and MERGE commands)

The Oracle DBMS does not lock any data for retrieval. This means that readers never
block readers. Moreover, this also means that writers never need to wait for readers, and
vice versa.

■Note The Oracle DBMS’s handling of data locking does not mean that readers and writers do not hinder
each other in any way. Readers and writers can cause delays for each other by contending for certain
system resources.

Multiple database users trying to change the same rows need to wait for each other, so
writers may block other writers. Each attempt to change a row tries to acquire the correspon-
ding row-level lock first. If the lock cannot be acquired, you must wait until the pending
change is committed or rolled back. All row-level locks are released upon a COMMIT (explicit or
implicit) or ROLLBACK. This means that the Oracle DBMS tries to minimize locking overhead
and tries to maximize throughput and concurrency.

Read Consistency
In a database environment, read consistency is an important concept. Read consistency is a
first requirement to guarantee correct query results. Regardless of how long it runs and
regardless what else happens simultaneously in the database, the Oracle DBMS must make
sure that each SQL query maintains access to a consistent snapshot of the data at the point in
time when the query started. It needs this snapshot because a query should never see any
uncommitted changes. Moreover, a query should not see changes that were committed after
the query started. This means that the Oracle DBMS must be able to reconstruct previous ver-
sions of the data in order to process queries. We will not go into technical details here, but the
Oracle DBMS accomplishes this (without using locking) by using information stored in undo
segments.

Believe it or not, read consistency is even important in a single-user environment.
Suppose that upper management has decided to grant a salary raise of 50% to all employees
who currently earn less than the average salary of their department. You might want your
salary to be checked last by the UPDATE statement, hoping that earlier salary raises have

CHAPTER 6 ■ DATA MANIPULATION 155

influenced your department’s average salary in such a way that you became entitled to a raise,
too. In an Oracle environment, this hope is in vain, because the read consistency mechanism
will ensure that the subquery in the UPDATE statement (to derive the average salary of your
department) returns the same result, regardless of how often the subquery is reexecuted for
the same department, within the scope of that single UPDATE command.

By default, read consistency is implemented at the statement level. In case you need
read consistency at the transaction level—for example, for a report that consists of multiple
queries—you must do something to override this default behavior to guarantee consistent
report results. In such a situation, you could decide to manually lock all tables with the
LOCK TABLE command. However, locking data prevents concurrent transactions from changing
that data, resulting in wait situations and reducing throughput. Therefore, locking the data
manually is not a recommended approach.

There is a better solution in this situation, without the disadvantages of using locking: the
SQL command SET TRANSACTION. This command allows you to specify the desired transaction
isolation level (in compliance with the ANSI/ISO SQL standard). See Figure 6-7 for the
(partial) syntax of this command.

Figure 6-7. SET TRANSACTION command syntax diagram

The components of the SET TRANSACTION command work as follows:

• READ WRITE is the Oracle default, implementing statement-level read consistency.

• READ ONLY implements transaction-level read consistency.

• ISOLATION LEVEL READ COMMITTED is the Oracle default behavior.

• ISOLATION LEVEL SERIALIZABLE implies the failure of DML statements that attempt
to update rows that already had pending changes when the serializable transaction
started.

In the situation of the report consisting of multiple queries, issuing the SET TRANSACTION
READ ONLY command at the beginning of the transaction would be the right choice. But note
that because the Oracle DBMS does not use any locking or other obstructive techniques when
you do this, you incur the risk that, at a certain point in time, the Oracle DBMS will not be able
to reconstruct the desired original data anymore, especially if your read-only transaction is
running a long time. You get the following error message in such situations:

CHAPTER 6 ■ DATA MANIPULATION156

ORA-01555: Snapshot too old

See Oracle Concepts for more details about transaction isolation levels.
This completes your introduction to data manipulation commands and concepts.

You learned about the four DML commands of the SQL language: INSERT, UPDATE, DELETE, and
MERGE. Then we discussed transaction processing, using the commands COMMIT, SAVEPOINT,
and ROLLBACK. Finally, we briefly discussed read consistency and locking, and introduced the
SET TRANSACTION command, which you can use to influence the default read consistency
behavior of the Oracle DBMS.

Before continuing with Chapter 7, which returns to the topic of data definition, make
sure that all of your case tables are in their unmodified state. You should have rolled back all
of the changes you applied in this chapter. Alternatively, you can re-create the tables before
proceeding.

CHAPTER 6 ■ DATA MANIPULATION 157

Data Definition, Part II

Chapter 3 introduced just enough data definition (DDL) syntax to enable you to create the
seven case tables for this book, using simple CREATE TABLE commands without any constraint
specifications. This second DDL chapter goes into more detail about some data definition
aspects, although it is still not intended as a complete reference on the topic. (Discussion of
the CREATE TABLE command alone covers more than 100 pages in the Oracle Database 10g
documentation.)

The first two sections revisit the CREATE TABLE command and the datatypes supported by
Oracle Database 10g. Section 7.3 introduces the ALTER TABLE command, which allows you to
change the structure of an existing table (such as to add columns or change datatypes), and
the RENAME command, which allows you to rename a table or view. You will learn how to define
and handle constraints in Section 7.4.

Section 7.5 covers indexes. The main purpose of indexes is to improve performance
(response time) by providing more efficient access paths to table data. Thus, Section 7.6 pro-
vides a brief introduction to performance, mainly in the context of checking if the optimizer
is using your indexes.

The most efficient method to generate sequence numbers (for example, for order num-
bers) in an Oracle environment is by using sequences, which are introduced in Section 7.7.

We continue with synonyms, in Section 7.8. By creating synonyms you can work with
abbreviations for table names, hide the schema name prefix of table names, or even hide the
remote database where the table resides. Section 7.9 explains the CURRENT_SCHEMA session
parameter.

Section 7.10 discusses the DROP TABLE command and the recycle bin, a concept introduced
in Oracle Database 10g. By default, all dropped tables go to the recycle bin, allowing you to
recover from human errors.

The next two sections cover some other SQL commands related to data definition:
TRUNCATE and COMMENT. The final section contains some review exercises.

7.1 The CREATE TABLE Command
Chapter 3 introduced the CREATE TABLE command and showed a basic command syntax dia-
gram. This section explores the CREATE TABLE command in a little more detail. Figure 7-1 shows
a more (but still far from) complete syntax diagram.

159

C H A P T E R 7

■ ■ ■

Figure 7-1. CREATE TABLE command syntax diagram

Figure 7-1 shows that the CREATE TABLE command supports two component types: column
specifications and constraint specifications.

You can provide an optional STORAGE clause, with various physical storage specifications
for the table you are creating. This is an important means to optimize and spread the physical
storage of your data on disk. For more information about the STORAGE clause and handling
physical storage, see Oracle SQL Reference.

According to the syntax diagram in Figure 7-1, you can also create new tables based on a
subquery with the AS clause. The CREATE TABLE ... AS SELECT ... command (also known as
CTAS) is comparable to one of the possibilities of the INSERT command shown in Figure 6-1
(in Chapter 6), where you insert rows into an existing table using a subquery. The only differ-
ence is that with CTAS, you create and populate the table in a single SQL command. In this
case, you can omit the column specifications between the parentheses. If you want to use
column specifications anyway, you are not allowed to specify datatypes. In CTAS commands,
the new table always inherits the datatypes from the results of the subquery.

The syntax for column specifications in a CREATE TABLE command is detailed in Figure 7-2.

Figure 7-2. CREATE TABLE column specification syntax

Figure 7-2 shows that you can specify constraints in two ways:

• As independent (out-of-line) components of the CREATE TABLE command (see Figure 7-1)

• As inline constraints inside a column specification (see Figure 7-2)

We will discuss both types of constraints in Section 7.4.
You can use the DEFAULT option to specify a value (or an expression) to be used for INSERT

commands that don’t contain an explicit value for the corresponding column.

CHAPTER 7 ■ DATA DEFINIT ION, PART I I160

CHAPTER 7 ■ DATA DEFINIT ION, PART I I 161

7.2 More on Datatypes
Datatypes were introduced in Chapter 3. Table 7-1 provides a more complete overview of the
most important Oracle datatypes.

Table 7-1. Important Oracle Datatypes

Datatype Description

CHAR[(n)] Character string with fixed length n (default 1)

VARCHAR2(n) Variable-length string; maximum n characters

DATE Date (between 4712 BC and 9999 AD)

TIMESTAMP Timestamp, with or without time zone information

INTERVAL Date/time interval

BLOB Unstructured binary data (Binary Large Object)

CLOB Large text (Character Large Object)

RAW(n) Binary data; maximum n bytes

NUMBER Integer; maximum precision 38 digits

NUMBER(n) Integer; maximum n digits

NUMBER(n,m) Total of n digits; maximum m digits right of the decimal point

BINARY_FLOAT 32-bit floating-point number

BINARY_DOUBLE 64-bit floating-point number

■Note If you insert values into a NUMBER(n,m) column and you exceed precision n, you get an error
message. If you exceed scale m, the Oracle DBMS rounds the value.

The Oracle DBMS supports many datatype synonyms for portability with other DBMS
implementations and for compliance with the ANSI/ISO standard. For example, CHARACTER is
identical to CHAR; DECIMAL(n,m) is identical to NUMBER(n,m); and NUMBER even has multiple syn-
onyms, such as INTEGER, REAL, and SMALLINT.

Each Oracle datatype has its own precision or length limits, as shown in Table 7-2.

Table 7-2. Oracle Datatype Limits

Datatype Limit

NUMBER 38 digits

CHAR 2000

VARCHAR2 4000

RAW 2000 bytes

BLOB (4GB – 1) × (database block size)

CLOB (4GB – 1) × (database block size)

Character Datatypes
Since Oracle7 (released more than ten years ago), VARCHAR and VARCHAR2 have exactly the same
meaning. However, Oracle recommends using the VARCHAR2 datatype, because a future Oracle
release might treat those two datatypes differently.

If you go a little further back in time (Oracle version 6 and earlier), the datatypes CHAR
and VARCHAR were synonyms, both representing variable-length character strings; the Oracle
DBMS didn’t support fixed-length strings. The change in behavior in Oracle7 caused a lot of
problems, although it was announced in advance. This is one of the reasons why we now have
VARCHAR and VARCHAR2.

You may have noticed that Table 7-2 shows 2000 and 4000 for the CHAR and VARCHAR2
datatype limits, respectively. You might wonder in which unit these numbers are expressed.
That depends on the value of the NLS_LENGTH_SEMANTICS parameter. The default for the Oracle
DBMS is to use BYTE length semantics. If you want to make your SQL code independent of this
parameter, you can override its value by using explicit BYTE and CHAR suffixes in your datatype
specifications. Here are a couple examples:

• CHAR(42 BYTE): Fixed string, 42 bytes

• VARCHAR2(2000 CHAR): Variable string, maximum of 2000 characters

Comparison Semantics
If VARCHAR2 and VARCHAR do diverge in the future, the VARCHAR2 datatype will be guaranteed to
be backward-compatible. The eventual difference between these two datatypes could be the
treatment of comparisons involving strings of different lengths, or maybe the interpretation of
empty strings as null values. There are two different semantics to compare strings of different
lengths: padded comparison (padding with spaces) and nonpadded comparison.

If you compare two strings, character by character, and all of the characters are identical
until the point where the shortest string is processed, nonpadded comparison semantics
automatically “declares” the longest string as being greater than the shorter string. On the
other hand, padded comparison semantics extends the shortest string with spaces until the
length of the longest string, and continues comparing characters. This means that trailing
spaces in strings don’t influence padded comparison results. Here are examples of the com-
parison types:

• Padded comparison: 'RAID5' = 'RAID5 '

• Nonpadded comparison: ' RAID5' < ' RAID5 '

By using the VARCHAR2 datatype instead of the VARCHAR datatype, especially in all your SQL
script files, you are guaranteed to get nonpadded comparison semantics, regardless of the
development and implementation of the VARCHAR datatype in any future release of the Oracle
DBMS.

Column Data Interpretation
There is an important difference between the RAW and VARCHAR2 datatypes. RAW column data
(like BLOB data) is never interpreted by the DBMS in any way. For example, VARCHAR2 column

CHAPTER 7 ■ DATA DEFINIT ION, PART I I162

data is converted automatically during transport from an ASCII to an EBCDIC environment.
You typically use the RAW and BLOB datatypes for columns containing binary data, such as
scanned documents, sound tracks, and movie fragments.

Numbers Revisited
Before we move on to the ALTER TABLE command in the next section, let’s briefly revisit num-
bers. The Oracle DBMS has always stored NUMBER values in a proprietary internal format, to
maintain maximum portability to the impressive list of different platforms (operating systems)
that it supports. The NUMBER datatype is still the best choice for most columns containing
numeric data. However, the internal storage of this datatype implies some processing over-
head, especially when you are performing many nontrivial numerical computations in your
SQL statements.

Since Oracle Database 10g you can also store floating-point numbers in your table
columns. Floating-point numbers don’t offer the same precision as NUMBER values, but they
may result in better response times for numerical computations. You can choose between
two floating-point datatypes:

• BINARY_FLOAT: 32-bit, single precision

• BINARY_DOUBLE: 64-bit, double precision

You can also specify floating-point constants (literals) in your SQL statements with a
suffix f (single precision) or d (double precision), as shown in Listing 7-1.

Listing 7-1. Floating-Point Literals

SQL> select 5.1d, 42f from dual;

5.1D 42F
---------- ----------
5.1E+000 4.2E+001

SQL>

We won’t use these two floating-point datatypes in this book. See Oracle SQL Reference for
more details.

7.3 The ALTER TABLE and RENAME Commands
Sometimes, it is necessary to change the structure of existing tables. For example, you may
find that the maximum width of a certain column is defined too low, you might want to add
an extra column to an existing table, or you may need to modify a constraint. In these situa-
tions, you can use the ALTER TABLE command. Figure 7-3 shows the syntax diagram for this
command.

CHAPTER 7 ■ DATA DEFINIT ION, PART I I 163

Figure 7-3. ALTER TABLE command syntax diagram

■Note The ALTER TABLE command is much more complicated and extended than Figure 7-3 suggests.
See Oracle SQL Reference for more details.

You can add columns or constraint definitions to an existing table with the ADD option.
The MODIFY option allows you to change definitions of existing columns. For example, you can
widen a column, allow null values with NULL, or prohibit null values with NOT NULL.

You can drop columns from tables with the DROP COLUMN option. You can also set columns
to “unused” with the ALTER TABLE ... SET UNUSED command, and physically remove them from
the database later with the ALTER TABLE ... DROP UNUSED COLUMNS command. This may be useful
when you want to drop multiple columns in a single scan (accessing the rows only once). The
RENAME COLUMN option allows you to change the name of a column.

■Caution You should be careful with the “destructive” DROP COLUMN option. Some database applications
may depend on the existence of the column you are dropping.

With the constraint manipulation option, you can remove, enable, or disable constraints.
Figure 7-4 shows the syntax details of this ALTER TABLE command option. For more details
about constraint handling, see the next section.

CHAPTER 7 ■ DATA DEFINIT ION, PART I I164

Figure 7-4. ALTER TABLE constraint manipulation syntax

Just like the CREATE TABLE command, the ALTER TABLE command also allows you to influ-
ence various physical table storage attributes.

In general, you can apply any structure change to existing tables, even when they contain
rows. However, there are some exceptions. For example, for obvious reasons you cannot add a
NOT NULL column to a nonempty table, unless you immediately specify a DEFAULT value in the
same ALTER TABLE command. Listing 7-2 shows an example.

Listing 7-2. ALTER TABLE Command Examples

SQL> alter table registrations
2 add (entered_by number(4) default 7839 not null);

Table altered.

SQL> alter table registrations
2 drop column entered_by;

Table altered.

SQL>

■Note The ALTER TABLE statement is probably the best illustration of the power of the relational model.
Think about this: you can change a table definition while the table contains data and applications are
running.

The RENAME command is rather straightforward. It allows you to change the name of a
table or view (views are discussed in Chapter 10). Figure 7-5 shows the syntax diagram for the
RENAME command.

Figure 7-5. RENAME command syntax diagram

CHAPTER 7 ■ DATA DEFINIT ION, PART I I 165

7.4 Constraints
As you saw in the previous sections, you can specify constraint definitions in the CREATE TABLE
and ALTER TABLE commands. As noted earlier in the description of the CREATE TABLE command,
you can treat constraints as independent table components (for example, at the end of your
CREATE TABLE command after all column definitions) or as part of a column definition. A com-
mon terminology to distinguish these two ways to specify constraints is out-of-line versus
inline constraints.

For each constraint definition, you can optionally specify a constraint name. It is highly
recommended that you do so for all your constraint definitions. If you don’t specify a con-
straint name yourself, the Oracle DBMS generates a far from informative name for you:
SYS_Cnnnnn, where nnnnn is an arbitrary sequence number. Once constraints are created, you
need their names to manipulate (enable, disable, or drop) them. Moreover, constraint names
show up in constraint violation error messages. Therefore, well-chosen constraint names
make error messages more informative. See Listing 7-3 later in this section for an example,
showing a foreign key constraint violation.

Out-of-Line Constraints
Figure 7-6 shows the syntax details for out-of-line constraints. This syntax is slightly different
from the inline constraint syntax.

Figure 7-6. Out-of-line constraint syntax diagram

CHAPTER 7 ■ DATA DEFINIT ION, PART I I166

In the syntax diagram, col name list refers to a comma-separated list of one or more
column names. The type of constraint can be UNIQUE, PRIMARY KEY, FOREIGN KEY, and CHECK.
By default, constraints become active immediately, unless you specify the DISABLE option; in
other words, the default option is ENABLE.

The four types of constraints work as follows:

• UNIQUE allows you to prevent duplicate values in a column or a column combination.

• PRIMARY KEY and FOREIGN KEY allow you to implement entity integrity and referential
integrity. See Chapter 1 for a detailed discussion of these concepts.

• CHECK allows you to specify any arbitrary condition as a constraint.

Figure 7-7 shows the syntax details of a foreign key constraint reference (FK-REF in
Figure 7-6).

Figure 7-7. Foreign key reference syntax diagram

You can omit the comma-separated list of column names (col name list in Figure 7-7) in
the foreign key reference. In that case, the foreign key constraint automatically refers to the
primary key of the referenced table.

■Tip In general, it is considered good practice to have foreign keys always refer to primary keys, although
foreign keys may also reference unique keys.

To understand the ON DELETE option of the foreign key reference, consider the example of
a foreign key constraint violation shown in Listing 7-3. Normally, it is impossible to remove
parent (master) rows if the database still contains child (detail) rows. In Listing 7-3, we try to
remove the XML course while the database still apparently contains XML course offerings.

CHAPTER 7 ■ DATA DEFINIT ION, PART I I 167

Listing 7-3. Example of a Foreign Key Constraint Violation

SQL> delete from courses
2 where code = 'XML';

delete from courses
*
ERROR at line 1:
ORA-02292: integrity constraint (BOOK.O_COURSE_FK) violated -

child record found

SQL>

■Note Listing 7-10 shows the definition of the O_COURSE_FK constraint.

The ON DELETE CASCADE option (see Figure 7-7) changes the behavior in such situations.
The master/detail problems are solved by a cascading effect, in which, apart from the parent
row, all child rows are implicitly deleted, too. The ON DELETE SET NULL option solves the same
problem in a different way: the child rows are updated, rather than deleted. This approach is
applicable only if the foreign key columns involved may contain null values, of course.

Inline Constraints
The inline constraint syntax is shown in Figure 7-8. There are some subtle differences from the
syntax for out-of-line constraints:

• You don’t specify column names in inline constraints, because inline constraints always
belong to the column definition in which they are embedded.

• The foreign key constraint reference (FK-REF) is the same for both constraint types
(see Figure 7-7), but you don’t specify the keywords FOREIGN KEY for an inline
constraint—REFERENCES is enough.

• In the context of inline constraints, a NOT NULL constraint is allowed. In out-of-line
constraints, this is impossible, unless you rewrite it as a CHECK constraint.

CHAPTER 7 ■ DATA DEFINIT ION, PART I I168

Figure 7-8. Inline constraint syntax diagram

Constraint Definitions in the Data Dictionary
Constraint definitions are stored in the data dictionary. The two most important views are
USER_CONSTRAINTS and USER_CONS_COLUMNS. Listing 7-4 shows how you can produce an
overview of all referential integrity constraints for the current user.

Listing 7-4. Foreign Key Constraints in the Data Dictionary

SQL> select table_name
2 , constraint_name
3 , status
4 , r_constraint_name as references
5 from user_constraints
6 where constraint_type = 'R';

TABLE_NAME CONSTRAINT_NAME STATUS REFERENCES
-------------------- -------------------- -------- ----------
EMPLOYEES E_MGR_FK ENABLED E_PK
DEPARTMENTS D_MGR_FK ENABLED E_PK
EMPLOYEES E_DEPT_FK ENABLED D_PK
OFFERINGS O_TRAIN_FK ENABLED E_PK
OFFERINGS O_COURSE_FK ENABLED C_PK
REGISTRATIONS R_OFF_FK ENABLED O_PK
REGISTRATIONS R_ATT_FK ENABLED E_PK
HISTORY H_DEPT_FK ENABLED D_PK
HISTORY H_EMPNO_FK ENABLED E_PK

SQL>

CHAPTER 7 ■ DATA DEFINIT ION, PART I I 169

Tools like Oracle Forms and Oracle Designer can use constraint definitions from the data
dictionary; for example, to generate code for constraint checking in database applications.

Last, but not least, the Oracle optimizer uses knowledge about constraint information
from the data dictionary to decide about efficient execution plans for SQL statements. To
reiterate what we discussed in Chapter 1, constraints are very important, and they must be
defined in the database.

Case Table Definitions with Constraints
Listings 7-5 through 7-12 show the CREATE TABLE commands for the seven case tables of this
book. The constraints in these CREATE TABLE commands are meant to be self-explanatory,
showing various examples of PRIMARY KEY, FOREIGN KEY, UNIQUE, CHECK, and NOT NULL constraints.

■Note For more details about the seven case tables, refer to Appendix C of this book.

Listing 7-5. The EMPLOYEES Table

create table employees
(empno NUMBER(4) constraint E_PK primary key

constraint E_EMPNO_CHK check (empno > 7000)
, ename VARCHAR2(8) constraint E_NAME_NN not null
, init VARCHAR2(5) constraint E_INIT_NN not null
, job VARCHAR2(8)
, mgr NUMBER(4) constraint E_MGR_FK references employees
, bdate DATE constraint E_BDAT_NN not null
, msal NUMBER(6,2) constraint E_MSAL_NN not null
, comm NUMBER(6,2)
, deptno NUMBER(2) default 10
, constraint E_SALES_CHK check

(decode(job,'SALESREP',0,1)
+ nvl2(comm, 1,0) = 1)

) ;

Listing 7-6. The DEPARTMENTS Table

create table departments
(deptno NUMBER(2) constraint D_PK primary key

constraint D_DEPTNO_CHK check (mod(deptno,10) = 0)
, dname VARCHAR2(10) constraint D_DNAME_NN not null

constraint D_DNAME_UN unique
constraint D_DNAME_CHK check (dname = upper(dname))

, location VARCHAR2(8) constraint D_LOC_NN not null
constraint D_LOC_CHK check (location = upper(location))

CHAPTER 7 ■ DATA DEFINIT ION, PART I I170

, mgr NUMBER(4) constraint D_MGR_FK references employees
) ;

Listing 7-7. Adding a Foreign Key Constraint

alter table employees add
(constraint E_DEPT_FK foreign key (deptno) references departments);

Listing 7-8. The SALGRADES Table

create table salgrades
(grade NUMBER(2) constraint S_PK primary key
, lowerlimit NUMBER(6,2) constraint S_LOWER_NN not null

constraint S_LOWER_CHK check (lowerlimit >= 0)
, upperlimit NUMBER(6,2) constraint S_UPPER_NN not null
, bonus NUMBER(6,2) constraint S_BONUS_NN not null
, constraint S_LO_UP_CHK check

(lowerlimit <= upperlimit)
) ;

Listing 7-9. The COURSES Table

create table courses
(code VARCHAR2(6) constraint C_PK primary key
, description VARCHAR2(30) constraint C_DESC_NN not null
, category CHAR(3) constraint C_CAT_NN not null
, duration NUMBER(2) constraint C_DUR_NN not null
, constraint C_CODE_CHK check

(code = upper(code))
, constraint C_CAT_CHK check

(category in ('GEN','BLD','DSG'))
) ;

Listing 7-10. The OFFERINGS Table

create table offerings
(course VARCHAR2(6) constraint O_COURSE_NN not null

constraint O_COURSE_FK references courses
, begindate DATE constraint O_BEGIN_NN not null
, trainer NUMBER(4) constraint O_TRAIN_FK references employees
, location VARCHAR2(8)
, constraint O_PK primary key

(course,begindate)
) ;

CHAPTER 7 ■ DATA DEFINIT ION, PART I I 171

Listing 7-11. The REGISTRATIONS Table

create table registrations
(attendee NUMBER(4) constraint R_ATT_NN not null

constraint R_ATT_FK references employees
, course VARCHAR2(6) constraint R_COURSE_NN not null
, begindate DATE constraint R_BEGIN_NN not null
, evaluation NUMBER(1) constraint R_EVAL_CHK check (evaluation in (1,2,3,4,5))
, constraint R_PK primary key

(attendee,course,begindate)
, constraint R_OFF_FK foreign key (course,begindate)

references offerings
) ;

Listing 7-12. The HISTORY Table

create table history
(empno NUMBER(4) constraint H_EMPNO_NN not null

constraint H_EMPNO_FK references employees
on delete cascade

, beginyear NUMBER(4) constraint H_BYEAR_NN not null
, begindate DATE constraint H_BDATE_NN not null
, enddate DATE
, deptno NUMBER(2) constraint H_DEPT_NN not null

constraint H_DEPT_FK references departments
, msal NUMBER(6,2) constraint H_MSAL_NN not null
, comments VARCHAR2(60)
, constraint H_PK primary key (empno,begindate)
, constraint H_BEG_END check (begindate < enddate)
) ;

A Solution for Foreign Key References: CREATE SCHEMA
While we are on the topic of creating multiple tables, Oracle SQL also supports the ANSI/ISO
standard CREATE SCHEMA command. This command allows you to create a complete schema
(consisting of tables, views, and grants) with a single DDL command/transaction. One advan-
tage of the CREATE SCHEMA command is that it succeeds or fails as an atomic transaction. It also
solves the problem of two tables having foreign key references to each other (see Listings 7-5,
7-6, and 7-7), where you normally need at least one ALTER TABLE command, because foreign
keys can reference only existing tables.

Listing 7-13 shows how you could have created the case tables with the CREATE SCHEMA
command.

CHAPTER 7 ■ DATA DEFINIT ION, PART I I172

Listing 7-13. The CREATE SCHEMA Command

SQL> create schema authorization BOOK
2 create table employees (...)
3 create table departments (...)
4 create table salgrades (...)
5 create table courses (...)
6 create table offerings (...)
7 create table registrations (...)
8 create table history (...)
9 create view ... as select ... from ...
10 grant select on ... to public;

■Note The name of this command (as implemented by Oracle) is confusing, because it does not actually
create a schema. Oracle schemas are created with the CREATE USER command. The command succeeds
only if the schema name is the same as your Oracle database username.

You can specify the CREATE SCHEMA command components in any order. Within each com-
ponent definition, you can refer to other (earlier or later) schema components.

Deferrable Constraints
The Oracle DBMS also supports deferrable constraints, allowing you to specify when you want
the constraints to be checked. These are the two possibilities:

• IMMEDIATE checks at the statement level.

• DEFERRED checks at the end of the transaction.

Before you can use this distinction, you must first allow a constraint to be deferrable.
The default option for all constraints that you create is NOT DEFERRABLE. If you want your con-
straints to be deferrable, add the DEFERRABLE option in the constraint definition, as shown in
Figure 7-9, just before the storage clause specification (see Figures 7-6 and 7-8).

Figure 7-9. DEFERRABLE option for constraint definitions

CHAPTER 7 ■ DATA DEFINIT ION, PART I I 173

If you allow constraints to be deferrable using the DEFERRABLE option, they still have a
default behavior of INITIALLY IMMEDIATE. The INITIALLY option allows you to specify the
desired default constraint checking behavior, using IMMEDIATE or DEFERRED.

You can dynamically change or override the default behavior of deferrable constraints at
the transaction level with the SET CONSTRAINTS command, as shown in Figure 7-10.

Figure 7-10. SET CONSTRAINTS command syntax diagram

At first sight, the complexity of all this constraint-checking syntax may look overwhelming.
The following summary may help clarify how it works:

• By default, the Oracle DBMS always uses immediate constraint checking.

• You must explicitly allow a constraint to be deferrable. By default, constraints are not
deferrable.

• If constraints are deferrable, you can choose how they should be checked by default:
immediate or deferred.

• If constraints are deferrable, you can influence their behavior with the SET CONSTRAINTS
command.

7.5 Indexes
In general, rows within a regular table are unordered. Although the Oracle DBMS offers many
different ways to physically organize tables on disk (heap tables, index clusters, hash clusters,
index-organized tables, and sorted hash clusters), you should never expect the rows to be
physically stored in a certain order. Even if a particular order exists today, there is no guaran-
tee that it will be the same tomorrow. This is a fundamental property of relational databases
(see Ted Codd’s rule 8 in Chapter 1 about physical data independence).

Suppose the EMPLOYEES table contains 50,000 rows (instead of the 14 rows we have), and
suppose you want to know which employees have a name starting with a Q. Normally, the
Oracle DBMS can use only one method to produce the results for this query: by accessing all
50,000 rows (with a full table scan) and checking the name for each of those rows. This could
take quite some time, and perhaps there would be no employees at all with such a name.

An index on employee names would be very useful in this situation. When you create an
index, the Oracle DBMS creates, and starts to maintain, a separate database object containing
a sorted list of column values (or column combination values) with row identifiers referring to

CHAPTER 7 ■ DATA DEFINIT ION, PART I I174

the corresponding rows in the table. To further optimize access, indexes are internally organ-
ized in a tree structure. (See Oracle Concepts for more details on physical index structures.)
If there were such an index on employee names, the optimizer could decide to abandon the
full table scan approach and perform an index search instead. The index offers a very efficient
access path to all names, returning all row identifiers of employees with a name starting with
a Q. This probably would result in a huge performance improvement, because there are only a
few database blocks to be visited to produce the query result.

For some of your other queries, indexes on department numbers or birth dates could be
useful. You can create as many indexes per table as you like.

In summary, the performance of your SQL statements can often be improved significantly
by creating indexes. Sometimes, it is obvious that an index will help, such as when your tables
contain a lot of rows and your queries are very selective (only retrieving a few rows). On the
other hand, though, you may find that your application benefits from an index on a single-
row, single-column table.

Indexes may speed up queries, but the other side of the index picture is the maintenance
overhead. Every additional index slows down data manipulation further, because every
INSERT/UPDATE/DELETE statement against a table must immediately be processed against all
corresponding indexes to keep the indexes synchronized with the table. Also, indexes occupy
additional space in your database. This means that you should carefully consider which
columns should be indexed and which ones should not be indexed.

These are some suggestions for index candidates:

• Foreign key columns

• Columns often used in WHERE clauses

• Columns often used in ORDER BY and GROUP BY clauses

Here, we’ll look at the commands for index creation and management.

Index Creation
Figure 7-11 shows the (simplified) syntax of the CREATE INDEX command.

Figure 7-11. CREATE INDEX command syntax diagram

CHAPTER 7 ■ DATA DEFINIT ION, PART I I 175

The storage clause allows you to influence various physical index storage attributes, such
as the storage location and the space allocation behavior. See Oracle SQL Reference for more
details. If the table rows happen to be inserted and stored in index order, you can specify the
NOSORT option to speed up index creation. The Oracle DBMS will skip the sort phase (normally
needed during index creation), but if the rows turn out to be in the wrong order, the CREATE
INDEX command will fail with an error message.

Unique Indexes
Unique indexes serve two purposes: they provide additional access paths to improve response
times (like nonunique indexes), and they also prevent duplicate values. You create unique
indexes by specifying the UNIQUE option of the CREATE INDEX command (see Figure 7-11).

Note, however, that it is recommended to ensure uniqueness in your tables using the
PRIMARY KEY and UNIQUE constraints, leaving it up to the Oracle DBMS to choose an appro-
priate physical implementation of those constraints.

Bitmap Indexes
Regular indexes work the best if the corresponding columns contain many different values,
resulting in better selectivity. Unique indexes offer the best selectivity, because they contain
only different values. This means that every equality search (... WHERE COL = ...) results in at
most one row. At the other side of the spectrum, if a column contains only a few values
(typical examples are gender, status, and yes/no columns), a regular index is not very useful,
because the average selectivity of equality searches will be poor.

For such low-cardinality columns, the Oracle DBMS supports bitmap indexes. Bitmap
indexes also outperform regular indexes if your WHERE clause is complicated, using many AND,
OR, and NOT connectives. You create bitmap indexes by specifying the BITMAP option (see
Figure 7-11).

■Caution Indexes slow down data manipulation, and bitmap indexes are the most expensive index type
in terms of maintenance. Don’t create bitmap indexes on tables with a lot of DML activity.

Function-Based Indexes
As Figure 7-11 shows, you can specify an expression between the parentheses when defining the
table columns to be indexed. That means that instead of simply specifying a single column or a
comma-separated list of columns, you can choose to specify a more complicated expression in
an index definition. Indexes containing such expressions are referred to as function-based
indexes. See Listing 7-14 for an example, where we create an index on an expression for the
yearly salary.

CHAPTER 7 ■ DATA DEFINIT ION, PART I I176

Listing 7-14. Creating a Function-Based Index

SQL> create index year_sal_idx
2 on employees (12*msal + coalesce(comm,0));

Index created.

SQL>

The index we created in Listing 7-14 can provide an efficient access path for the Oracle
DBMS to produce the result of the following query:

SQL> select * from employees where 12*msal+coalesce(comm,0) > 18000;

Function-based indexes can be used in combination with various NLS features to enable
linguistic sorting and searching. See Oracle SQL Reference and Oracle Globalization Support
Guide for more details. One of the exercises at the end of this chapter will ask you to create a
function-based index for another specific purpose.

Index Management
Since indexes are maintained by the Oracle DBMS, each table change is immediately propa-
gated to the indexes. In other words, indexes are always up-to-date. However, if your tables
incur continuous and heavy DML activity, you might want to consider rebuilding your
indexes. Of course, you could simply drop them and then re-create them. However, using
the ALTER INDEX ... REBUILD or ALTER INDEX ... COALESCE command is more efficient.
Figure 7-12 shows the (partial) syntax diagram for the ALTER INDEX command.

Figure 7-12. ALTER INDEX command syntax diagram

CHAPTER 7 ■ DATA DEFINIT ION, PART I I 177

The various ALTER INDEX command options in Figure 7-12 (which is far from complete)
show that this command belongs to the purview of database administrators, so we will not
discuss them here.

■Note The ENABLE and DISABLE options of the ALTER INDEX command (see Figure 7-12) apply only to
function-based indexes. If you set indexes to UNUSABLE, you must REBUILD (or DROP and CREATE) them
before they can be used again.

You can remove indexes with the DROP INDEX command. Figure 7-13 shows the syntax dia-
gram for DROP INDEX.

Figure 7-13. DROP INDEX command syntax diagram

Here is an example of removing an index:

SQL> drop index year_sal_idx;
Index dropped.

SQL>

■Tip In periods of heavy data-manipulation activity, without a lot of reporting (retrieval) activity, you may
consider dropping indexes temporarily, and re-creating them later.

When you’re working with indexes, keep in mind that although you can decide about index
existence with the CREATE INDEX and DROP INDEX commands, the Oracle optimizer decides about
index usage. The optimizer chooses the execution plan for each SQL statement. The next sec-
tion explains how you can see if the optimizer is using your indexes.

7.6 Performance Monitoring with SQL*Plus
AUTOTRACE
This is not a book about SQL performance tuning. However, in a chapter where we talk about
creating indexes, it makes sense to at least show how you can see whether the indexes you cre-
ate are actually used. What you need for that purpose is a way to see SQL execution plans.

CHAPTER 7 ■ DATA DEFINIT ION, PART I I178

Oracle provides many diagnostic tools (such as the SQL trace facility, TKPROF, and EXPLAIN
PLAN) to help you with your performance-tuning efforts. However, discussion of these useful
Oracle tools is not appropriate here; see Oracle Performance Tuning Guide for more details.
Fortunately, SQL*Plus offers a limited but user-friendly alternative for those diagnostic tools:
the AUTOTRACE facility.

If you want to use all of the options of the AUTOTRACE setting, you may need to prepare
your Oracle environment:

• SQL*Plus assumes the existence of a PLAN_TABLE table to store execution plans. If neces-
sary, you can create a local copy in your own schema with the utlxplan.sql script.
Oracle Database 10g has a public synonym PLAN_TABLE, pointing to a global temporary
table. Creating a local PLAN_TABLE is necessary only in earlier releases.

• You must have sufficient privileges for certain AUTOTRACE features. You need the
PLUS_TRACE role, created by the plustrce.sql script. The plustrce.sql script must be
executed from the SYSTEM database user account. If you don’t have access to that privi-
leged account, contact your local database administrator.

Both the utlxplan.sql and plustrce.sql scripts are shipped with the Oracle software.
Listing 7-15 shows how you would run these scripts under Microsoft Windows. The question
marks in these commands are interpreted as the directory where the Oracle software is
installed on your machine.

Listing 7-15. Preparing for SQL*Plus AUTOTRACE Usage

SQL> connect system/manager
Connected.

SQL> @?\sqlplus\admin\plustrce
Role created.

SQL> grant plustrace to book;
Grant succeeded.

SQL> connect book/book
Connected.

SQL> @?\rdbms\admin\utlxplan
Table created.

SQL>

After you have prepared your environment, you can use AUTOTRACE. Figure 7-14 shows the
syntax diagram for using AUTOTRACE.

CHAPTER 7 ■ DATA DEFINIT ION, PART I I 179

Figure 7-14. SQL*Plus AUTOTRACE setting syntax diagram

Listing 7-16 shows an example of using the ON EXPLAIN option. SQL*Plus executes the
query, shows the query results, and displays the execution plan.

Listing 7-16. Showing Query Results and Execution Plans

SQL> set autotrace on explain
SQL> select ename from employees where empno < 7500;

ENAME

SMITH
ALLEN

Execution Plan
--
0 SELECT STATEMENT Optimizer=ALL_ROWS

(Cost=2 Card=2 Bytes=20)
1 0 TABLE ACCESS (BY INDEX ROWID) OF 'EMPLOYEES' (TABLE)

(Cost=2 Card=2 Bytes=20)
2 1 INDEX (RANGE SCAN) OF 'E_PK' (INDEX (UNIQUE))

(Cost=1 Card=2)

SQL>

From Listing 7-16, you can see that the optimizer decided to use the unique index E_PK for
a range scan, and it chose to access the EMPLOYEES table using the row identifiers resulting
from the index range scan.

Listing 7-17 shows how you can use the TRACEONLY STATISTICS option to suppress the
query results (you don’t see the rows) and how you can produce a list of performance-related
statement execution statistics. A detailed discussion of these statistics is not appropriate here,
but you can see (for example) that no sorting was needed for this query, no data was read from
disk (physical reads), and eight buffer cache block visits (consistent gets and db block gets)
were needed.

CHAPTER 7 ■ DATA DEFINIT ION, PART I I180

Listing 7-17. Showing Statistics Only

SQL> set autotrace traceonly statistics
SQL> select * from employees;

14 rows selected.

Statistics

0 recursive calls
0 db block gets
8 consistent gets
0 physical reads
0 redo size

1488 bytes sent via SQL*Net to client
508 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
14 rows processed

SQL> set autotrace off
SQL>

■Note If you use AUTOTRACE TRACEONLY EXPLAIN, the SQL statement is not executed. This is because
you ask for only an execution plan, not for statement results and not for execution statistics.

7.7 Sequences
Information systems often use monotonically increasing sequence numbers for primary key
columns, such as for orders, shipments, registrations, or invoices. You could implement this
functionality with a small secondary table to maintain the last/current value for each primary
key, but this approach is guaranteed to create performance problems in a multiuser environ-
ment. It is much better to use sequences in such cases.

Before we continue, there is one important thing you should know about sequences:
sequence values can show gaps. That means that certain sequence values may disappear and
never make it into the column they were meant for. The Oracle DBMS cannot guarantee
sequences without gaps (we won’t go into the technical details of why this is true). Normally,
this should not be a problem. Primary key values are supposed to be unique, and increasing
values are nice for sorting purposes, but there is no reason why you shouldn’t allow gaps in the
values. However, if the absence of gaps is a business requirement, you have no choice other
than using a small secondary table to maintain these values.

CHAPTER 7 ■ DATA DEFINIT ION, PART I I 181

■Note If “absence of gaps” is one of your business requirements, then you probably have a poorly
conceived business requirement. You should consider investing some time into reforming your business
requirements.

Sequences can be created, changed, and dropped with the following three SQL commands:

SQL> create sequence <sequence name> ...
SQL> alter sequence <sequence name> ...
SQL> drop sequence <sequence name>;

Figure 7-15 shows the syntax diagram of the CREATE SEQUENCE command. The ALTER
SEQUENCE command has a similar syntax.

Figure 7-15. CREATE SEQUENCE command syntax diagram

A sequence definition may consist of a start value, increment value, minimum value, and
maximum value. You can also specify whether the sequence generator should stop when
reaching a boundary value, or CYCLE the sequence numbers within the minimum/maximum
range. All sequence attributes are optional, as Figure 7-15 shows; they all have default values.

Each sequence has two pseudo columns: NEXTVAL and CURRVAL. The meaning of each of
these columns is self-explanatory. Listing 7-18 shows how you can create and use a sequence
DEPTNO_SEQ to generate department numbers, using the DUAL table. (Note that normally you
would use sequence values in INSERT statements.)

Listing 7-18. Creating and Using a Sequence

SQL> create sequence deptno_seq
2 start with 50 increment by 10;

Sequence created.

SQL> select deptno_seq.nextval, deptno_seq.currval from dual;

NEXTVAL CURRVAL
-------- --------

50 50

CHAPTER 7 ■ DATA DEFINIT ION, PART I I182

SQL> select deptno_seq.currval from dual;

CURRVAL

50

SQL> select deptno_seq.currval, deptno_seq.nextval from dual;

CURRVAL NEXTVAL
-------- --------

60 60

SQL>

You can use CURRVAL multiple times, in different SQL statements, once you have selected
NEXTVAL in an earlier statement, as shown in Listing 7-18. For example, in an order-entry sys-
tem, you might select a sequence value with NEXTVAL to insert a new order, and then use the
same value (CURRVAL) several times to insert multiple line items for that order.

Note the result of the last query in Listing 7-18. Since you select CURRVAL before NEXTVAL in
the SELECT clause, you might expect to see the current value (50), followed by the next value
(60), but apparently that is not the case. This behavior is based on the consistency principle
that it doesn’t matter in which order you specify the expressions in the SELECT clause of your
queries, because you actually select those expressions at the same time. Try selecting NEXTVAL
multiple times in the same SELECT clause and see what happens (the explanation is the same).

7.8 Synonyms
You can use the CREATE SYNONYM command to create synonyms for tables or views. Once cre-
ated, you can use synonyms in all your SQL commands instead of “real” table (and view)
names. For example, you could use synonyms for tables with very long table names.

Synonyms are especially useful if you are accessing tables from different schemas, not
owned by yourself. Without synonyms, you must explicitly prefix those object names with
the schema name and a period. The Oracle data dictionary is a perfect example of synonym
usage. You can simply specify the data dictionary view names in your queries, without any
prefix, although you obviously don’t own those data dictionary objects.

Synonyms are a “convenience” feature. They don’t provide any additional privileges, and
they don’t create security risks. They just save you some typing, and they also allow you to
make your applications schema-independent.

Schema-independence is important. By using synonyms, your applications don’t need
to contain explicit schema names. This makes your applications more flexible and easier to
maintain, because the mapping to physical schema and object names is in the synonym defi-
nitions, separated from the application code.

CHAPTER 7 ■ DATA DEFINIT ION, PART I I 183

Figure 7-16 shows the syntax diagram for the CREATE SYNONYM command.

Figure 7-16. CREATE SYNONYM command syntax diagram

Oracle supports public and private synonyms, as you can see in Figure 7-16. By default,
synonyms are private. You need to specify the PUBLIC keyword to create public synonyms.
All database users can use public synonyms, but you need DBA privileges to be able to create
them. The synonyms for the data dictionary objects are examples of public synonyms. Anyone
can create private synonyms, but only their owners can use them.

■Caution Although synonyms are useful, they can also cause performance problems. In particular,
public synonyms are known to cause such problems. For further details, go to Steve Adams’s web site
(http://www.ixora.com.au) and search for “avoiding public synonyms.”

Listing 7-19 shows how you can create a synonym, how the synonym shows up in the data
dictionary views CAT and USER_SYNONYMS, and how you can drop a synonym.

Listing 7-19. Creating and Dropping a Synonym

SQL> create synonym e for employees;
Synonym created.

SQL> describe e
Name Null? Type
------------------------ -------- ------------
EMPNO NOT NULL NUMBER(4)
ENAME NOT NULL VARCHAR2(8)
INIT NOT NULL VARCHAR2(5)
JOB VARCHAR2(8)
MGR NUMBER(4)
BDATE NOT NULL DATE
MSAL NOT NULL NUMBER(6,2)
COMM NUMBER(6,2)
DEPTNO NUMBER(2)

SQL> select * from cat;

CHAPTER 7 ■ DATA DEFINIT ION, PART I I184

TABLE_NAME TABLE_TYPE
-------------------- -----------
EMPLOYEES TABLE
DEPARTMENTS TABLE
SALGRADES TABLE
COURSES TABLE
OFFERINGS TABLE
REGISTRATIONS TABLE
HISTORY TABLE
DEPTNO_SEQ SEQUENCE
E SYNONYM

SQL> select synonym_name, table_owner, table_name
2 from user_synonyms;

SYNONYM_NAME TABLE_OWNER TABLE_NAME
-------------------- ----------- ----------------
E BOOK EMPLOYEES

SQL> drop synonym e;
Synonym dropped.

SQL>

Synonyms are often used in distributed database environments to implement full data
independence. The user (or database application) does not need to know where (in which
database) tables or views are located. Normally, you need to specify explicit database links
using the at sign (@) in the object name, but synonyms can hide those database link references.

7.9 The CURRENT_SCHEMA Setting
The ALTER SESSION command provides another convenient way to save you the effort of prefix-
ing object names with their schema name, but without using synonyms. This is another
“convenience” feature, just like synonyms.

Suppose the demo schema SCOTT (with the EMP and DEPT tables) is present in your data-
base, and suppose you are currently connected as database user BOOK. In that situation, you
can use the ALTER SESSION command as shown in Listing 7-20.

Listing 7-20. The CURRENT_SCHEMA Setting

SQL> alter session set current_schema=scott;
Session altered.

SQL> show user
USER is "BOOK"

SQL> select * from dept;

CHAPTER 7 ■ DATA DEFINIT ION, PART I I 185

DEPTNO DNAME LOC
-------- -------------- -------------

10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON

SQL> alter session set current_schema=book;
Session altered.

SQL>

You can compare the CURRENT_SCHEMA setting in the database with the change directory
(cd) command at the operating system level. In a similar way, it allows you to address all
objects locally.

Again, this does not change anything with regard to security and privileges. If you really
want to assume the identity of a schema owner, you must use the SQL*Plus CONNECT com-
mand, and provide the username/schema name and the corresponding password.

7.10 The DROP TABLE Command
You can drop your tables with the DROP TABLE command. Figure 7-17 shows the syntax diagram
for the DROP TABLE command.

Figure 7-17. DROP TABLE command syntax diagram

Unless you have specific system privileges, you cannot drop tables owned by other data-
base users. Also, you cannot roll back a DROP TABLE command. As you’ve learned in previous
chapters, this is true for all DDL statements (CREATE, ALTER, and DROP).

“Errare humanum est,” as the Romans said. Because human errors occur occasionally,
Oracle Database 10g introduced the concept of the database recycle bin. By default, all dropped
tables (and their dependent objects) initially end up in the recycle bin. You can query the recy-
cle bin using the [USER_]RECYCLEBIN view, as shown in Listing 7-21. To make sure we start with
an empty recycle bin, we begin the experiment with a PURGE command.

CHAPTER 7 ■ DATA DEFINIT ION, PART I I186

Listing 7-21. Dropping Tables and Querying the Recycle Bin

SQL> purge recyclebin;
Recyclebin purged.

SQL> drop table history;
Table dropped.

SQL> select object_name, original_name, droptime
2 from recyclebin;

OBJECT_NAME ORIGINAL_NAME DROPTIME
------------------------------ ---------------------- -------------------
BIN$mlRH1je9TBOeVEUhukIpCw==$0 H_PK 2004-07-01:20:22:23
BIN$EETkZCY0RSKCR3BhtF9cJw==$0 HISTORY 2004-07-01:20:22:23

SQL>

As you can see, the objects are renamed, but the original names are kept as well. There is
one entry for the HISTORY table and one entry for the primary key index. You can recover tables
(and optionally rename them) from the recycle bin by using the FLASHBACK TABLE command:

SQL> flashback table history to before drop
2 [rename to <new name>];

Flashback complete.

SQL>

■Caution There is no guarantee the FLASHBACK TABLE command always succeeds. The recycle bin can
be purged explicitly (by a database administrator) or implicitly (by the Oracle DBMS).

If you want to drop a table and bypass the recycle bin, you can use the PURGE option of the
DROP TABLE command, as shown in Figure 7-17.

If you drop a table, you implicitly drop certain dependent database objects, such as
indexes, triggers, and table privileges granted to other database users. You also invalidate cer-
tain other database objects, such as views and packages. Keep this in mind during database
reorganizations. To re-create a table, it is not enough to simply issue a CREATE TABLE command
after a DROP TABLE command. You need to reestablish the full environment around the dropped
table.

If you issue a DROP TABLE command, you may get the following error message if other
tables contain foreign key constraints referencing the table that you are trying to drop:

ORA-02449: unique/primary keys in table referenced by foreign keys

CHAPTER 7 ■ DATA DEFINIT ION, PART I I 187

Try to drop the EMPLOYEES table, and see what happens. You can solve this problem by
using the CASCADE CONSTRAINTS option, as shown in Figure 7-17. Note, however, that this means
that all offending foreign key constraints are dropped, too.

7.11 The TRUNCATE Command
The TRUNCATE command allows you to delete all rows from a table. Figure 7-18 shows the syn-
tax diagram for the TRUNCATE command.

Figure 7-18. TRUNCATE command syntax diagram

The default behavior is DROP STORAGE, as indicated by the underlining in Figure 7-18.
Compared with DROP TABLE (followed by a CREATE TABLE), the big advantage of TRUNCATE is

that all related indexes and privileges survive the TRUNCATE operation.
This command has two possible advantages over the DELETE command: the performance

(response time) is typically better for large tables, and you can optionally reclaim the allocated
space. However, there is a price to pay for these two advantages: you cannot perform a ROLLBACK
to undo a TRUNCATE, because TRUNCATE is a DDL command. The Oracle DBMS treats DDL com-
mands as single-statement transactions and commits them immediately.

7.12 The COMMENT Command
The COMMENT command allows you to add clarifying (semantic) explanations about tables and
table columns to the data dictionary. Figure 7-19 shows the syntax diagram for this command.

Figure 7-19. COMMENT command syntax diagram

CHAPTER 7 ■ DATA DEFINIT ION, PART I I188

Listing 7-22 shows how you can use the COMMENT command to add comments to the data
dictionary for a table (SALGRADES) and a column (EMPLOYEES.COMM), and how you can retrieve
that information from the data dictionary.

Listing 7-22. Adding Comments to Columns and Tables

SQL> comment on table salgrades
2 is 'Salary grades and net bonuses';

Comment created.

SQL> comment on column employees.comm
2 is 'For sales reps only';

Comment created.

SQL> select comments
2 from user_tab_comments
3 where table_name = 'SALGRADES';

COMMENTS

Salary grades and net bonuses

SQL> select comments
2 from user_col_comments
3 where table_name = 'EMPLOYEES'
4 and column_name = 'COMM';

COMMENTS

For sales reps only

SQL>

7.13 Exercises
The following exercises will help you to better understand the concepts described in this
chapter. The answers are presented in Appendix D.

1. Listing 7-5 defines the constraint E_SALES_CHK in a rather cryptic way. Formulate the
same constraint without using DECODE and NVL2.

2. Why do you think the constraint E_DEPT_FK (in Listing 7-7) is created with a separate
ALTER TABLE command?

CHAPTER 7 ■ DATA DEFINIT ION, PART I I 189

3. Although this is not covered in this chapter, try to come up with an explanation of the
following phenomenon: when using sequences, you cannot use the pseudo column
CURRVAL in your session without first calling the pseudo column NEXTVAL:

SQL> select deptno_seq.currval from dual;
select deptno_seq.currval from dual

*
ERROR at line 1:
ORA-08002: sequence DEPTNO_SEQ.CURRVAL is not yet defined in this session

SQL>

4. Why is it better to use sequences in a multiuser environment, as opposed to maintain-
ing a secondary table with the last/current sequence values?

5. How is it possible that the EVALUATION column of the REGISTRATIONS table accepts null
values, in spite of the constraint R_EVAL_CHK (see Listing 7-11)?

6. If you define a PRIMARY KEY or UNIQUE constraint, the Oracle DBMS normally creates a
unique index under the covers (if none of the existing indexes can be used) to check
the constraint. Investigate and explain what happens if you define such a constraint as
DEFERRABLE.

7. You can use function-based indexes to implement “conditional uniqueness” con-
straints. Create a unique function-based index on the REGISTRATIONS table to check the
following constraint: employees are allowed to attend the OAU course only once. They
may attend other courses as many times as they like. Test your solution with the fol-
lowing command (it should fail):

SQL> insert into registrations values (7900,'OAU',trunc(sysdate),null);

Hint: You can use a CASE expression in the index expression.

CHAPTER 7 ■ DATA DEFINIT ION, PART I I190

Retrieval: Multiple Tables
and Aggregation

This chapter resumes the discussion of the retrieval possibilities of the SQL language. It is a
logical continuation of Chapters 4 and 5.

The first section introduces the concept of row or tuple variables. We did not discuss
them so far, because we haven’t needed them up to now. By the way, most SQL textbooks don’t
mention tuple variables at all—at least not the way this book does. When you start specifying
multiple tables in the FROM clause of your SELECT statements, it is a good idea to start using
tuple variables (also referred to as table aliases in Oracle) in a consistent way.

Section 8.2 explains joins, which specify a comma-separated list of table names in the
FROM clause and filter the desired row combinations with the WHERE clause. Section 8.3 shows
the ANSI/ISO standard syntax to produce joins (supported since Oracle9i), and Section 8.4
goes into more details about outer joins.

In large information systems (containing huge amounts of detailed information), it is
quite common to be interested in aggregated (condensed) information. For example, you may
want to get a course overview for a specific year, showing the number of attendees per course,
with the average evaluation scores. You can formulate the underlying queries you need for
such reports by using the GROUP BY clause of the SELECT command. Group functions (such as
COUNT, AVG, MIN, and MAX) play an important role in such queries. If you have aggregated your
data with a GROUP BY clause, you can optionally use the HAVING clause to filter query results at
the group level. Topics surrounding basic aggregation are covered in Sections 8.5, 8.6, and 8.7.
Section 8.8 continues the discussion of aggregation to introduce some more advanced fea-
tures of the GROUP BY clause, such as CUBE and ROLLUP. Section 8.9 introduces the concept of
partitioned outer joins.

Section 8.10 discusses the three set operators of the SQL language: UNION, MINUS, and
INTERSECT. Finally, the chapter finishes with exercises.

191

C H A P T E R 8

■ ■ ■

8.1 Tuple Variables
Until now, we have formulated our SQL statements as follows:

SQL> select ename, init, job
2 from employees
3 where deptno = 20

Actually, this statement is rather incomplete. In this chapter, we must be a little more pre-
cise, because the SQL commands are getting slightly more complicated. To be complete and
accurate, we should have written this statement as shown in Listing 8.1.

Listing 8-1. Using Tuple Variables in a Query

SQL> select e.ename, e.init, e.job
2 from employees e
3 where e.deptno = 20

In this example, e is a tuple variable. Tuple is just a “dignified” term for row, derived from
the relational theory. In Oracle, tuple variables are referred to as table aliases (which is actually
rather confusing), and the ANSI/ISO standard talks about correlation names.

Note the syntax in Listing 8-1: you “declare” the tuple variable in the FROM clause, immedi-
ately following the table name, separated by white space only.

A tuple variable always ranges over a table, or a table expression. In other words, in the
example in Listing 8-1, e is a variable representing one row from the EMPLOYEES table at any
time. Within the context of a specific row, you can refer to specific column (or attribute) values,
as shown in the SELECT and WHERE clauses of the example in Listing 8-1. The tuple variable pre-
cedes the column name, separated by a period. Figure 8-1 shows the column reference e.JOB
and its value ADMIN for employee 7900.

Figure 8-1. The EMPLOYEES table with a tuple variable

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION192

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION 193

Do you remember those old-fashioned calendars with one page per month, with a trans-
parent strip that could move up and down to select a certain week, and a little window that
could move on that strip from the left to the right to select a specific day of the month? If not,
Figure 8-2 shows an example of such a calendar. The transparent strip would be the tuple vari-
able in that metaphor.

Figure 8-2. Calendar with sliding day indicator window

Using the concept of tuple variables, we can describe the execution of the SQL command
in Listing 8-1 as follows:

1. The tuple variable e ranges (row by row) over the EMPLOYEES table (the row order is
irrelevant).

2. Each row e is checked against the WHERE clause, and it is passed to an intermediate
result set if the WHERE clause evaluates to TRUE.

3. For each row in the intermediate result set, the expressions in the SELECT clause are
evaluated to produce the final query result.

As long as you are writing simple queries (as we have done so far in this book), you don’t
need to worry about tuple variables. The Oracle DBMS understands your SQL intentions any-
way. However, as soon as your SQL statements become more complicated, it might be wise (or
even mandatory) to start using tuple variables. Tuple variables always have at least one advan-
tage: they enhance the readability and maintainability of your SQL code.

8.2 Joins
You can specify multiple tables in the FROM component of a query. We start this section with an
intended mistake, to evoke an Oracle error message. See what happens in Listing 8-2 where
our intention is to discover which employees belong to which departments.

Listing 8-2. Ambiguously Defined Columns

SQL> select deptno, location, ename, init
2 from employees, departments;

select deptno, location, ename, init
*

ERROR at line 1:
ORA-00918: column ambiguously defined

SQL>

The message, including the asterisk (*), reveals the problem here. The Oracle DBMS can-
not figure out which DEPTNO column we are referring to. Both tables mentioned in the FROM
clause have a DEPTNO column, and that’s why we get an error message.

Cartesian Products
See Listing 8-3 for a second attempt to find which employees belong to which departments.
Because we fixed the ambiguity issue, we get query results, but these results don’t meet our
expectations. The tuple variables e and d range freely over both tables, because there is no
constraining WHERE clause; therefore, the query result we get is the Cartesian product of both
tables, resulting in 56 rows. We have 14 employees and 4 departments, and 14 times 4 results
in 56 possible combinations.

Listing 8-3. The Cartesian Product of Two Tables

SQL> select d.deptno, d.location, e.ename, e.init
2 from employees e, departments d;

DEPTNO LOCATION ENAME INIT
-------- -------- -------- -----

10 NEW YORK SMITH N
10 NEW YORK ALLEN JAM
10 NEW YORK WARD TF
10 NEW YORK JONES JM
10 NEW YORK MARTIN P
10 NEW YORK BLAKE R
10 NEW YORK CLARK AB
10 NEW YORK SCOTT SCJ

...

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION194

40 BOSTON ADAMS AA
40 BOSTON JONES R
40 BOSTON FORD MG
40 BOSTON MILLER TJA

56 rows selected.

SQL>

Equijoins
The results in Listing 8-3 reveal the remaining problem: the query lacks a WHERE clause. In
Listing 8-4, we fix the problem by adding a WHERE clause, and we also add an ORDER BY clause
to get the results ordered by department, and within each department, by employee name.

Listing 8-4. Joining Two Tables

SQL> select d.deptno, d.location, e.ename, e.init
2 from employees e, departments d
3 where e.deptno = d.deptno
4 order by d.deptno, e.ename;

DEPTNO LOCATION ENAME INIT
-------- -------- -------- -----

10 NEW YORK CLARK AB
10 NEW YORK KING CC
10 NEW YORK MILLER TJA
20 DALLAS ADAMS AA
20 DALLAS FORD MG
20 DALLAS JONES JM
20 DALLAS SCOTT SCJ
20 DALLAS SMITH N
30 CHICAGO ALLEN JAM
30 CHICAGO BLAKE R
30 CHICAGO JONES R
30 CHICAGO MARTIN P
30 CHICAGO TURNER JJ
30 CHICAGO WARD TF

14 rows selected.

SQL>

Listing 8-4 shows a join or, to be more precise, an equijoin. This is the most common join
type in SQL.

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION 195

Non-equijoins
If you use a comparison operator other than an equal sign in the WHERE clause in a join, it is
called a non-equijoin or thetajoin. For an example of a thetajoin, see Listing 8-5, which calcu-
lates the total annual salary for each employee.

Listing 8-5. Thetajoin Example

SQL> select e.ename employee
2 , 12*e.msal+s.bonus total_salary
3 from employees e
4 , salgrades s
5 where e.msal between s.lowerlimit
6 and s.upperlimit;

EMPLOYEE TOTAL_SALARY
-------- ------------
SMITH 9600
JONES 9600
ADAMS 13200
WARD 15050
MARTIN 15050
MILLER 15650
TURNER 18100

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION196

INTERMEZZO: SQL LAYOUT CONVENTIONS

Your SQL statements should be correct in the first place, of course. As soon as SQL statements get longer
and more complicated, it becomes more and more important to adopt a certain layout style. Additional white
space (spaces, tabs, and new lines) has no meaning in the SQL language, but it certainly enhances code
readability and maintainability. You could have spread the query in Listing 8-4 over multiple lines, as follows:

SQL> select d.deptno
2 , d.location
3 , e.ename
4 , e.init
5 from employees e
6 , departments d
7 where e.deptno = d.deptno
8 order by d.deptno
9 , e.ename

This SQL layout convention has proved itself to be very useful in practice. Note the placement of the commas
at the beginning of the next line as opposed to the end of the current line. This makes adding and removing
lines easier, resulting in fewer unintended errors. Any other standard is fine, too. This is mostly a matter of
taste. Just make sure to adopt a style and use it consistently.

ALLEN 19300
CLARK 29600
BLAKE 34400
JONES 35900
SCOTT 36200
FORD 36200
KING 60500

14 rows selected.

SQL>

By the way, you can choose any name you like for your tuple variables. Listing 8-5 uses e
and s, but any other names would work, including longer names consisting of any combina-
tion of letters and digits. Enhanced readability is the only reason why this book uses (as much
as possible) the first characters of table names as tuple variables in SQL statements.

Joins of Three or More Tables
Let’s try to enhance the query of Listing 8-5. In a third column, we also want to see the
name of the department that the employee works for. Department names are stored in the
DEPARTMENTS table, so we add three more lines to the query, as shown in Listing 8-6.

Listing 8-6. Joining Three Tables

SQL> select e.ename employee
2 , 12*e.msal+s.bonus total_salary
3 , d.dname department
4 from employees e
5 , salgrades s
6 , departments d
7 where e.msal between s.lowerlimit
8 and s.upperlimit
9 and e.deptno = d.deptno;

EMPLOYEE TOTAL_SALARY DEPARTMENT
-------- ------------ ----------
SMITH 9600 TRAINING
JONES 9600 SALES
ADAMS 13200 TRAINING
WARD 15050 SALES
MARTIN 15050 SALES
MILLER 15650 ACCOUNTING
TURNER 18100 SALES
ALLEN 19300 SALES
CLARK 29600 ACCOUNTING
BLAKE 34400 SALES
JONES 35900 TRAINING

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION 197

SCOTT 36200 TRAINING
FORD 36200 TRAINING
KING 60500 ACCOUNTING

14 rows selected.

SQL>

The main principle is simple. We now have three free tuple variables (e, s, and d) ranging
over three tables. Therefore, we need (at least) two conditions in the WHERE clause to get the
correct row combinations in the query result.

For the sake of completeness, you should note that the SQL language supports table
names as default tuple variables, without the need to declare them explicitly in the FROM
clause. Look at the following example:

SQL> select employees.ename, departments.location
2 from employees, departments
3 where employees.deptno = departments.deptno;

This SQL statement is syntactically correct. However, we will avoid using this SQL “feature”
in this book. It is rather confusing to refer to a table in one place and to refer to a specific row
from a table in another place with the same name, without making a clear distinction between
row and table references. Moreover, the names of the tables used in this book are long enough
to justify declaring explicit tuple variables in the FROM clause and using them everywhere else in
the SQL statement, thus reducing the number of keystrokes.

Self-Joins
In SQL, you can also join a table to itself. Although this join type is essentially the same as a
regular join, it has its own name: autojoin or self-join. In other words, autojoins contain tables
being referenced more than once in the FROM clause. This provides another good reason why
you should use explicit tuple variables (as opposed to relying on table names as implicit tuple
variables) in your SQL statements. In autojoins, the table names result in ambiguity issues.
So why not use tuple variables consistently in all your SQL statements?

Listing 8-7 shows an example of an autojoin. The query produces an overview of all
employees born after January 1, 1965, with a second column showing the name of their man-
agers. (You may want to refer to Figure C-3 in Appendix C, which shows a diagram of the
hierarchy of the EMPLOYEES table.)

Listing 8-7. Autojoin (Self-Join) Example

SQL> select e.ename as employee
2 , m.ename as manager
3 from employees m
4 , employees e
5 where e.mgr = m.empno
6 and e.bdate > date '1965-01-01';

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION198

EMPLOYEE MANAGER
-------- --------
TURNER BLAKE
JONES BLAKE
ADAMS SCOTT
JONES KING
CLARK KING
SMITH FORD

6 rows selected.

SQL>

Because we have two tuple variables e and m, both ranging freely over the same table, we
get 14 × 14 = 196 possible row combinations. The WHERE clause filters out the correct combina-
tions, where row m reflects the manager of row e.

8.3 Alternative ANSI/ISO Standard Join Syntax
The join examples shown in the previous section use the Cartesian product operator (the
comma in the FROM clause) as a starting point, and then filter the rows using an appropriate
WHERE clause. There’s absolutely nothing wrong with that approach, and the syntax is fully
compliant with the ANSI/ISO SQL standard, but the ANSI/ISO SQL standard also supports
alternative syntax to specify joins. This alternative join syntax is covered in this section.

First, let’s look again at the join statement in Listing 8-7. You could argue that the WHERE
clause of that query contains two different condition types: line 5 contains the join condition
to make sure you combine the right rows, and line 6 is a “real” (nonjoin) condition to filter the
employees based on their birth dates.

Listing 8-8 shows an equivalent query, producing the same results, using a different join
syntax. Note the keywords JOIN and ON. Also note also that this join syntax doesn’t use any
commas in the FROM clause.

Listing 8-8. JOIN . . . ON Example

SQL> select e.ename as employee
2 , m.ename as manager
3 from employees m
4 JOIN
5 employees e
6 ON e.mgr = m.empno
7 where e.bdate > date '1965-01-01'
8 order by employee;

EMPLOYEE MANAGER
-------- --------
ADAMS SCOTT
CLARK KING

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION 199

JONES BLAKE
JONES KING
SMITH FORD
TURNER BLAKE

6 rows selected.

SQL>

The syntax of Listing 8-8 is more elegant than the syntax in Listing 8-7, because the join is
fully specified in the FROM clause and the WHERE clause contains only the nonjoin condition.

Natural Joins
You can also use the NATURAL JOIN operator in the FROM clause. Listing 8-9 shows an example
that joins the EMPLOYEES table with the HISTORY table.

Question: Before reading on, how is it possible that Listing 8-9 produces 15 rows in the
result, instead of 14?

Listing 8-9. Natural Join Example

SQL> select ename, beginyear, msal, deptno
2 from employees
3 natural join
4 history;

ENAME BEGINYEAR MSAL DEPTNO
-------- --------- -------- --------
SMITH 2000 800 20
ALLEN 1999 1600 30
WARD 1992 1250 30
WARD 2000 1250 30
JONES 1999 2975 20
MARTIN 1999 1250 30
BLAKE 1989 2850 30
CLARK 1988 2450 10
SCOTT 2000 3000 20
KING 2000 5000 10
TURNER 2000 1500 30
ADAMS 2000 1100 20
JONES 2000 800 30
FORD 2000 3000 20
MILLER 2000 1300 10

15 rows selected.

SQL>

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION200

Explanation: To understand what’s happening in Listing 8-9, you must know how the
NATURAL JOIN operator is defined in the SQL language. Listing 8-9 illustrates the behavior of
the NATURAL JOIN operator:

1. The NATURAL JOIN operator determines which columns the two tables (EMPLOYEES and
HISTORY) have in common. In this case, these are the three columns EMPNO, MSAL, and
DEPTNO.

2. It joins the two tables (using an equijoin) over all columns they have in common.

3. It suppresses the duplicate columns resulting from the join operation in the previous
step. This is why you don’t get an error message about MSAL and DEPTNO in the SELECT
clause being ambiguously defined.

4. Finally, the NATURAL JOIN operator evaluates the remaining query clauses. In Listing 8-9,
the only remaining clause is the SELECT clause. The final result shows the desired four
columns.

Apparently, every employee occurs only once in the result, except WARD. This means that
this employee has been employed by the same department (30) for the same salary (1250)
during two distinct periods of his career. This is a pure coincidence. If the query had returned
14 rows instead of 15, we would probably not have been triggered to investigate the query for
correctness. Remember that some wrong queries may give “correct” results by accident.

This example shows that you should be very careful when using the NATURAL JOIN operator.
Probably the biggest danger is that a natural join may “suddenly” start producing strange and
undesirable results if you add new columns to your tables, or you rename existing columns,
thus accidentally creating matching column names.

■Caution Natural joins are safe only if you practice a very strict column-naming standard in your data-
base designs.

Equijoins on Columns with the Same Name
SQL offers an alternative way to specify equijoins, allowing you to explicitly specify the columns
you want to participate in the equijoin operation. As you saw in Listing 8-8, you can use the ON
clause followed by fully specified join predicates. You can also use the USING clause, specifying
column names instead of full predicates. See Listing 8-10 for an example.

Listing 8-10. JOIN ... USING Example

SQL> select e.ename, e.bdate
2 , h.deptno, h.msal
3 from employees e
4 join
5 history h
6 using (empno)
7 where e.job = 'ADMIN';

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION 201

ENAME BDATE DEPTNO MSAL
-------- ----------- -------- --------
JONES 03-DEC-1969 30 800
MILLER 23-JAN-1962 10 1275
MILLER 23-JAN-1962 10 1280
MILLER 23-JAN-1962 10 1290
MILLER 23-JAN-1962 10 1300

SQL>

Note that you need tuple variables again, because you join over only the EMPNO column;
the columns h.DEPTNO and e.DEPTNO are now different.

Figure 8-3 shows the syntax diagram of the ANSI/ISO join syntax, including the NATURAL
JOIN operator, the ON clause, and the USING clause.

Figure 8-3. ANSI/ISO join syntax diagram

Note that you can also use a CROSS JOIN syntax. The result is identical to the effect of the
comma operator in the FROM clause: the Cartesian product.

The examples in the remainder of this book will show a mixture of “old-fashioned” joins
(as introduced in Section 8.2) and the alternative ANSI/ISO SQL join syntax explained in this
section.

8.4 Outer Joins
Earlier in the chapter, in Listing 8-4, we executed a regular join (an equijoin) similar to the one
shown in Listing 8-11.

Listing 8-11. Regular Join

SQL> select d.deptno, d.location
2 , e.ename, e.init
3 from employees e, departments d
4 where e.deptno = d.deptno
5 order by d.deptno, e.ename;

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION202

DEPTNO LOCATION ENAME INIT
-------- -------- -------- -----

10 NEW YORK CLARK AB
10 NEW YORK KING CC
10 NEW YORK MILLER TJA
20 DALLAS ADAMS AA
20 DALLAS FORD MG
20 DALLAS JONES JM
20 DALLAS SCOTT SCJ
20 DALLAS SMITH N
30 CHICAGO ALLEN JAM
30 CHICAGO BLAKE R
30 CHICAGO JONES R
30 CHICAGO MARTIN P
30 CHICAGO TURNER JJ
30 CHICAGO WARD TF

14 rows selected.

SQL>

The result in Listing 8-11 shows no rows for department 40, for an obvious reason: that
department does exist in the DEPARTMENTS table, but it has no corresponding employees. In
other words, if tuple variable d refers to department 40, there is not a single row e in the
EMPLOYEES table to make the WHERE clause evaluate to TRUE.

If you want the fact that department 40 exists to be reflected in your join results, you can
make that happen with an outer join. For outer joins in Oracle, you can choose between two
syntax options:

• The “old” outer join syntax, supported by Oracle since many releases, and implemented
many years before the ANSI/ISO standard defined a more elegant outer join syntax

• The ANSI/ISO standard outer join syntax

We will discuss an example of both outer join syntax variants, based on the regular join in
Listing 8-11.

Old Oracle-Specific Outer Join Syntax
First, change the fourth line of the command in Listing 8-11 and add a plus sign between
parentheses, as shown in Listing 8-12.

Listing 8-12. The (+) Outer Join Syntax

SQL> select d.deptno, d.location
2 , e.ename, e.init
3 from employees e, departments d
4 where e.deptno(+) = d.deptno
5 order by d.deptno, e.ename;

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION 203

DEPTNO LOCATION ENAME INIT
-------- -------- -------- -----

10 NEW YORK CLARK AB
10 NEW YORK KING CC
10 NEW YORK MILLER TJA
20 DALLAS ADAMS AA
20 DALLAS FORD MG
20 DALLAS JONES JM
20 DALLAS SCOTT SCJ
20 DALLAS SMITH N
30 CHICAGO ALLEN JAM
30 CHICAGO BLAKE R
30 CHICAGO JONES R
30 CHICAGO MARTIN P
30 CHICAGO TURNER JJ
30 CHICAGO WARD TF
40 BOSTON

15 rows selected.

SQL>

As you can see, department 40 now also appears in the result. The effect of the addition (+)
in the WHERE clause has combined department 40 with two null values for the employee data.
The main disadvantage of this outer join syntax is that you must make sure to add the (+) oper-
ator in the right places in your SQL command. Failing to do so normally results in disabling the
outer join effect. Another disadvantage of this outer join syntax is its lack of readability.

New Outer Join Syntax
The new ANSI/ISO outer join syntax is much more elegant and readable. Listing 8-13 shows
the version to get the same results as in Listing 8-12.

Listing 8-13. ANSI/ISO Outer Join Example

SQL> select deptno, d.location
2 , e.ename, e.init
3 from employees e
4 right outer join
5 departments d
6 using (deptno)
7 order by deptno, e.ename;

DEPTNO LOCATION ENAME INIT
-------- -------- -------- -----

10 NEW YORK CLARK AB
10 NEW YORK KING CC
10 NEW YORK MILLER TJA

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION204

20 DALLAS ADAMS AA
20 DALLAS FORD MG
20 DALLAS JONES JM
20 DALLAS SCOTT SCJ
20 DALLAS SMITH N
30 CHICAGO ALLEN JAM
30 CHICAGO BLAKE R
30 CHICAGO JONES R
30 CHICAGO MARTIN P
30 CHICAGO TURNER JJ
30 CHICAGO WARD TF
40 BOSTON

15 rows selected.

SQL>

In Listing 8-13 we used a RIGHT OUTER JOIN, because we suspect the presence of rows at the
right-hand side (the DEPARTMENTS table) without corresponding rows at the left-hand side (the
EMPLOYEES table). If you switched the two table names in the FROM clause, you would need the
LEFT OUTER JOIN operator. Oracle also supports the FULL OUTER JOIN syntax, where both tables
participating in the join operation handle rows without corresponding rows on the other side
in a special way. Figure 8-4 shows all three outer join syntax possibilities.

Figure 8-4. ANSI/ISO outer join syntax diagram

The outer join operator is especially useful if you want to aggregate (summarize) data;
for example, when you want to produce a course overview showing the number of attendees
for each scheduled course. In such an overview, you obviously also want to see all scheduled
courses for which no registrations are entered yet, so you might consider canceling or post-
poning those courses. This type of query (with aggregation) is the topic of Section 8.5.

Outer Joins and Performance
Although outer joins obviously imply some additional processing for the DBMS, there is no rea-
son to avoid outer joins for performance reasons. The Oracle optimizer knows how to handle
outer joins efficiently. Moreover, given a certain data model, you sometimes need outer joins.

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION 205

Don’t try to invent your own workarounds in such cases, and don’t believe unfounded state-
ments like “outer joins are bad.”

In Section 8.9, we will revisit outer joins to discuss partitioned outer joins.

8.5 The GROUP BY Component
Until now, we have considered queries showing information about only individual rows. Each
row in our query results so far had a one-to-one correspondence with some row in the data-
base. However, in real life, you often want to produce aggregated information from a database,
where the rows in the query results represent information about a set of database rows. For
example, you might want to produce an overview showing the number of employees (the
head count) per department. For this type of query, you need the GROUP BY clause of the SELECT
command, as shown in Listing 8-14.

Listing 8-14. The GROUP BY Clause

SQL> select e.deptno as "department"
2 , count(e.empno) as "number of employees"
3 from employees e
4 group by e.deptno;

department number of employees
---------- -------------------

10 3
20 5
30 6

SQL>

Listing 8-14 shows the COUNT function at work, to count the number of employees per
department. COUNT is an example of a group function, and we’ll look at it and the other group
functions in Section 8.6.

The result of this query is a table, of course—just like any result of a query. However, there
is no one-to-one mapping anymore between the rows of the EMPLOYEES table and the three
rows of the result. Instead, you aggregate employee data per department.

To explain how the GROUP BY operator works, and how the SQL language handles aggrega-
tion, Listing 8-15 shows an imaginary representation of an intermediate result. Listing 8-15
shows a pseudo-table, with three rows and six columns. For readability, some columns of the
EMPLOYEES table are omitted. In the last column, you see the three different department num-
bers, and the other five columns show sets of attribute values. These sets are represented by
enumerating their elements in a comma-separated list between braces. Some of these sets
contain null values only, such as e.COMM for departments 10 and 20.

■Note The representation in Listing 8-15 is purely fictitious and only serves educational purposes. Data
structures as shown in Listing 8-15 do not occur in reality.

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION206

Listing 8-15. The Effect of GROUP BY e.DEPTNO

e.EMPNO e.JOB e.MGR e.MSAL e.COMM e.DEPTNO
======= ============ ====== ====== ====== ========
{7782 {'MANAGER' {7839 {2450 {NULL 10
,7839 ,'DIRECTOR' ,NULL ,5000 ,NULL
,7934} ,'ADMIN' } ,7782} ,1300} ,NULL}

{7369 {'TRAINER' {7902 { 800 {NULL 20
,7566 ,'MANAGER' ,7839 ,2975 ,NULL
,7788 ,'TRAINER' ,7566 ,3000 ,NULL
,7876 ,'TRAINER' ,7788 ,1100 ,NULL
,7902} ,'TRAINER'} ,7566} ,3000} ,NULL}

{7499 {'SALESREP' {7698 {1600 { 300 30
,7521 ,'SALESREP' ,7698 ,1250 , 500
,7654 ,'SALESREP' ,7698 ,1250 ,1400
,7698 ,'MANAGER' ,7839 ,2850 ,NULL
,7844 ,'SALESREP' ,7698 ,1500 , 0
,7900} ,'ADMIN' } ,7698} , 800} ,NULL}

Going back to Listing 8-14, it now becomes clear what the COUNT(e.EMPNO) function does:
it returns the number of elements of each e.EMPNO set.

You could argue that (as an effect of the GROUP BY e.DEPTNO clause) the last column in List-
ing 8-15 (e.DEPTNO) contains “regular” values, and the other five columns become “set-valued”
attributes. You can use only e.DEPTNO in the SELECT clause. If you want to see data from the
other columns in your query result, you must use group functions (such as COUNT) to aggregate
those sets into a single value. See the next section for a discussion of group functions.

■Note To be more precise, we should refer to multisets instead of sets in this context. Duplicate values
are maintained, as you can see in Listing 8-15. We will discuss multisets in Chapter 12.

Multiple-Column Grouping
You can also group on multiple-column expressions, separated by commas. For example, the
query in Listing 8-16 produces an overview of the number of registrations per course.

Listing 8-16. Grouping on Two Columns

SQL> select r.course, r.begindate
2 , count(r.attendee) as attendees
3 from registrations r
4 group by r.course, r.begindate;

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION 207

COURSE BEGINDATE ATTENDEES
------ ----------- ---------
JAV 13-DEC-1999 5
JAV 01-FEB-2000 3
OAU 10-AUG-1999 3
OAU 27-SEP-2000 1
PLS 11-SEP-2000 3
SQL 12-APR-1999 4
SQL 04-OCT-1999 3
SQL 13-DEC-1999 2
XML 03-FEB-2000 2

9 rows selected.

SQL>

This result shows one row for each different (COURSE, BEGINDATE) combination found in the
REGISTRATIONS table.

■Note As you can see, the rows in Listing 8-16 are ordered on the columns of the GROUP BY clause.
However, if you want a certain ordering of your query results, you should never rely on implicit DBMS
behavior and always specify an ORDER BY clause.

GROUP BY and Null Values
If a column expression on which you apply the GROUP BY clause contains null values, these null
values end up together in a separate group. See Listing 8-17 for an example.

Listing 8-17. GROUP BY and Null Values

SQL> select e.comm, count(e.empno)
2 from employees e
3 group by e.comm;

COMM COUNT(E.EMPNO)
-------- --------------

0 1
300 1
500 1
1400 1

10

SQL>

Apparently, we have ten employees without commission.

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION208

8.6 Group Functions
In the previous section, we used the COUNT function to count the number of employees per
department and the number of registrations per course. COUNT is an example of a group function.
All group functions have two important properties in common:

• They can be applied only to sets of values.

• They return a single aggregated value, derived from that set of values.

That’s why group functions often occur in combination with GROUP BY (and optionally the
HAVING clause, covered in Section 8.7) in SQL commands. The most important Oracle group
functions are listed in Table 8-1.

Table 8-1. Common Oracle Group Functions

Function Description Applicable To

COUNT() Number of values All datatypes

SUM() Sum of all values Numeric data

MIN() Minimum value All datatypes

MAX() Maximum value All datatypes

AVG() Average value Numeric data

MEDIAN() Median (middle value) Numeric or date (time) data

STATS_MODE() Modus (most frequent value) All datatypes

STDDEV() Standard deviation Numeric data

VARIANCE() Statistical variance Numeric data

The last column in Table 8-1 shows the applicable datatypes for all group functions.
The functions MIN and MAX are applicable to any datatype, including dates and alphanumeric
strings. MIN and MAX need only an ordering (sorting) criterion for the set of values. Note also
that you can apply the AVG function only to numbers, because the average is defined as the
SUM divided by the COUNT, and the SUM function accepts only numeric data.

Let’s look at some group function examples in Listing 8-18.

Listing 8-18. Some Examples of Group Functions

SQL> select e.deptno
2 , count(e.job)
3 , sum(e.comm)
4 , avg(e.msal)
5 , median(e.msal)
6 from employees e
7 group by e.deptno;

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION 209

DEPTNO COUNT(E.JOB) SUM(E.COMM) AVG(E.MSAL) MEDIAN(E.MSAL)
-------- ------------ ----------- ----------- --------------

10 3 2916.667 2450
20 5 2175 2975
30 6 2200 1541.667 1375

SQL>

Group Functions and Duplicate Values
If you apply a group function to a set of column values, that set of values may contain dupli-
cate values. By default, these duplicate values are all treated as individual values, contributing
to the end result of all group functions applied to the set of values. For example, we have five
employees in department 20, but we have only two different jobs in that department. Never-
theless, Listing 8-18 shows 5 as the result of COUNT(e.JOB) for department 20.

If you want SQL group functions to ignore duplicate values (except one, of course), you
must specify the keyword DISTINCT immediately after the first parenthesis. Although it is syn-
tactically correct, the addition of DISTINCT is meaningless for the MIN and MAX functions. Look
at Listing 8-19 for some examples.

Listing 8-19. Using the DISTINCT Option for Group Functions

SQL> select count(deptno), count(distinct deptno)
2 , avg(comm), avg(coalesce(comm,0))
3 from employees;

COUNT(DEPTNO) COUNT(DISTINCTDEPTNO) AVG(COMM) AVG(COALESCE(COMM,0))
------------- --------------------- --------- ---------------------

14 3 550 157.1429

SQL>

Note that Listing 8-19 also shows that you can use group functions in the SELECT clause of
a query without a GROUP BY clause. The absence of a GROUP BY clause in combination with the
presence of group functions in the SELECT clause always results in a single-row result. In other
words, the full table is aggregated into a single row. You can achieve precisely the same result
by grouping on a constant expression. Try this yourself; for example, see what happens if you
add GROUP BY 'x' to the query in Listing 8-19.

Group Functions and Null Values
The ANSI/ISO SQL standard postulates group functions to ignore null values completely.
There is only one exception to this rule: the COUNT(*) function. This special case is discussed
later in this section. This is a reasonable compromise. The only other consistent behavior for
group functions would be to return a null value as soon as the input contains a null value.

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION210

This would imply that all your SQL statements (containing group functions) should contain
additional code to handle null values explicitly. So, ignoring null values completely is not a
bad idea. Just make sure that you understand the consequences of this behavior. See Table 8-2
for some typical examples.

Table 8-2. Behavior of Group Functions and Null Values

Set X SUM(X) MIN(X) AVG(X) MAX(X)

{1,2,3,NULL} 6 1 2 3

{1,2,3,0} 6 0 1.5 3

{1,2,3,2} 8 1 2 3

The SUM function does not make any distinction between {1,2,3,NULL} and {1,2,3,0}.
The MIN and AVG functions don’t make any distinction between {1,2,3,NULL} and {1,2,3,2}.
The MAX function gives the same result on all three sets.

Looking back at Listing 8-19, you see an example of function nesting: the AVG function
operates on the result of the COALESCE function. This is a typical method to handle null values
explicitly. As you can see from Listing 8-19, the results of AVG(COMM) and
AVG(COALESCE(COMM,0)) are obviously different. In this case, the Oracle DBMS replaces all null
values by zeros before applying the AVG function, because the null values in the COMM column
actually mean “not applicable.”

The next query, shown in Listing 8-20, tells us how many different courses are scheduled
for each trainer and the total number of scheduled courses.

Listing 8-20. GROUP BY and DISTINCT

SQL> select trainer
2 , count(distinct course)
3 , count(*)
4 from offerings
5 group by trainer;

TRAINER COUNT(DISTINCTCOURSE) COUNT(*)
-------- --------------------- --------

7369 2 3
7566 2 2
7788 2 2
7876 1 1
7902 2 2

3 3

SQL>

Apparently, we have three course offerings without a trainer being assigned.

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION 211

Grouping the Results of a Join
The query in Listing 8-21 shows the average evaluation ratings for each trainer, over all
courses delivered.

Listing 8-21. GROUP BY on a Join

SQL> select o.trainer, avg(r.evaluation)
2 from offerings o
3 join
4 registrations r
5 using (course,begindate)
6 group by o.trainer;

TRAINER AVG(R.EVALUATION)
-------- -----------------

7369 4
7566 4.25
7788
7876 4
7902 4

SQL>

Notice the USING clause in line 5, with the COURSE and BEGINDATE columns. This USING
clause with two columns is needed to get the correct join results.

The COUNT(*) Function
As mentioned earlier, group functions operate on a set of values, with one important excep-
tion. Besides column names, you can specify the asterisk (*) as an argument to the COUNT
function. This widens the scope of the COUNT function from a specific column to the full row
level. COUNT(*) returns the number of rows in the entire group.

■Note If you think that SELECT COUNT(1) is faster than SELECT COUNT(*), try a little experiment and
prepare to be surprised—you will find out that there is no difference. Don’t trust opinions...

Listing 8-20 already showed an example of using the COUNT(*) function, to get the total
number of scheduled courses for each trainer from the OFFERINGS table. Listing 8-22 shows
another example of using the COUNT(*) function, this time applied against the EMPLOYEES table.

Listing 8-22. Count Employees Per Department (First Attempt)

SQL> select e.deptno, count(*)
2 from employees e
3 group by e.deptno;

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION212

DEPTNO COUNT(*)
-------- --------

10 3
20 5
30 6

SQL>

Obviously, department 40 is missing in this result. If you want to change the query into an
outer join in order to show department 40 as well, you must be careful. What’s wrong with the
query in Listing 8-23? Apparently, we suddenly have one employee working for department 40.

Listing 8-23. Count Employees Per Department (Second Attempt)

SQL> select deptno, count(*)
2 from employees e
3 right outer join
4 departments d
5 using (deptno)
6 group by deptno;

DEPTNO COUNT(*)
-------- --------

10 3
20 5
30 6
40 1

SQL>

Compare the results in Listing 8-23 with the results in Listing 8-24. The only difference is
the argument of the COUNT function. Listing 8-24 obviously shows the correct result, because
department 40 has no employees. By counting over the primary key e.EMPNO, you are sure that
all “real” employees are counted, while the null value introduced by the outer join is correctly
ignored. You could have used any other NOT NULL column as well.

Listing 8-24. Count Employees Per Department (Third Attempt)

SQL> select deptno, count(e.empno)
2 from employees e
3 right outer join
4 departments d
5 using (deptno)
6 group by deptno;

DEPTNO COUNT(E.EMPNO)
-------- --------------

10 3

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION 213

20 5
30 6
40 0

SQL>

At the end of Chapter 5, you saw an example of a PL/SQL stored function to count all
employees per department (Section 5.8, Listing 5-31). In that chapter, I mentioned that this
counting problem is not trivial to solve in standard SQL. In Listings 8-22, 8-23, and 8-24, you
see that you should indeed be careful. You need an outer join, and you should make sure to
specify the correct argument for the COUNT function to get correct results.

■Caution You should be careful with the COUNT function, especially if null values might cause problems
(since group functions ignore them) and you want to count row occurrences.

Valid SELECT and GROUP BY Clause Combinations
If your queries contain a GROUP BY clause, some syntax combinations are invalid and result in
Oracle error messages, such as the following:

ORA-00937: not a single-group group function.

This always means that there is a mismatch between your SELECT clause and your GROUP BY
clause.

To demonstrate valid versus invalid syntax, Table 8-3 shows one invalid and three valid
syntax examples. Table 8-3 assumes you have a table T with four columns A, B, C, and D.

Table 8-3. Valid and Invalid GROUP BY Syntax Examples

Syntax Valid?

select a, b, max(c) from t ... group by a No

select a, b, max(c) from t ... group by a,b Yes

select a, count(b), min(c) from t ... group by a Yes

select count(c) from t ... group by a Yes

The examples in Table 8-3 illustrate the following two general rules:

• You do not need to select the column expression you group on (see the last example).

• Any column expression that is not part of the GROUP BY clause can occur only in the
SELECT clause as an argument to a group function. That’s why the first example is invalid.

By the way, all GROUP BY examples so far showed only column names, but you can also
group on column expressions, such as in the example shown in Listing 8-25.

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION214

Listing 8-25. Grouping on Column Expressions

SQL> select case mod(empno,2)
2 when 0 then 'EVEN '
3 else 'ODD '
4 end as empno
5 , sum(msal)
6 from employees
7 group by mod(empno,2);

EMPNO SUM(MSAL)
----- ---------
EVEN 20225
ODD 8650

SQL>

This query shows the salary sums for employees with even and odd employee numbers.

8.7 The HAVING Clause
If you aggregate rows into groups with GROUP BY, you might also want to filter your query result
further by allowing only certain groups into the final query result. You can achieve this with
the HAVING clause. Normally, you use the HAVING clause only following a GROUP BY clause. For
example, Listing 8-26 shows information about departments with more than four employees.

Listing 8-26. HAVING Clause Example

SQL> select deptno, count(empno)
2 from employees
3 group by deptno
4 having count(*) >= 4;

DEPTNO COUNT(EMPNO)
-------- ------------

20 5
30 6

SQL>

However, the SQL language allows you to write queries with a HAVING clause without a
preceding GROUP BY clause. In that case, Oracle assumes an implicit GROUP BY on a constant
expression, just as when you use group functions in the SELECT clause without specifying a
GROUP BY clause; that is, the full table is treated as a single group.

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION 215

The Difference Between WHERE and HAVING
It is important to distinguish the WHERE clause from the HAVING clause. To illustrate this differ-
ence, Listing 8-27 shows a WHERE clause added to the previous query.

Listing 8-27. HAVING vs. WHERE

SQL> select deptno, count(empno)
2 from employees
3 where bdate > date '1960-01-01'
4 group by deptno
5 having count(*) >= 4;

DEPTNO COUNT(EMPNO)
-------- ------------

30 5

SQL>

The WHERE condition regarding the day of birth (line 3) can be checked against individual
rows of the EMPLOYEES table. On the other hand, the COUNT(*) condition (line 5) makes sense
only at the group level. That’s why group functions should never occur in a WHERE clause. They
typically result in the following Oracle error message:

ORA-00934: group function is not allowed here.

You’ll see this error message in Listing 8-29, caused by a classic SQL mistake, as discussed
shortly.

HAVING Clauses Without Group Functions
On the other hand, valid HAVING clauses without group functions are very rare, and they should
be rewritten. In Listing 8-28, the second query is much more efficient than the first one.

Listing 8-28. HAVING Clause Without a Group Function

SQL> select deptno, count(*)
2 from employees
3 group by deptno
4 having deptno <= 20;

DEPTNO COUNT(*)
-------- --------

10 3
20 5

SQL> select deptno, count(*)
2 from employees

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION216

3 where deptno <= 20
4 group by deptno;

DEPTNO COUNT(*)
-------- --------

10 3
20 5

SQL>

A Classic SQL Mistake
Take a look at the query in Listing 8-29. It looks very logical, doesn’t it? Who earns more than
the average salary?

Listing 8-29. Error Message: Group Function Is Not Allowed Here

SQL> select empno
2 from employees
3 where msal > avg(msal);

where msal > avg(msal)
*

ERROR at line 3:
ORA-00934: group function is not allowed here

SQL>

However, if you think in terms of tuple variables, the problem becomes obvious: the WHERE
clause has only a single row as its context, turning the AVG function into something impossible
to derive.

You can solve this problem in many ways. Listings 8-30 and 8-31 show two suggestions.

Listing 8-30. One Way to Find Who Earns More Than the Average Salary

SQL> select e.empno
2 from employees e
3 where e.msal > (select avg(x.msal)
4 from employees x);

EMPNO

7566
7698
7782
7788
7839

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION 217

7902

SQL>

Listing 8-31. Another Way to Find Who Earns More Than the Average Salary

SQL> select e1.empno
2 from employees e1
3 , employees e2
4 group by e1.empno
5 , e1.msal
6 having e1.msal > avg(e2.msal);

MNR

7566
7698
7782
7788
7839
7902

SQL>

The solution in Listing 8-31 would probably not win an SQL beauty contest, but it is cer-
tainly worth further examination. This solution is based on the Cartesian product of the
EMPLOYEES table with itself. Notice that it doesn’t have a WHERE clause. Notice also that you
group on e1.EMPNO and e1.MSAL, which allows you to refer to this column in the HAVING clause.

Grouping on Additional Columns
You sometimes need this (apparently) superfluous grouping on additional columns. For
example, suppose you want to see the employee number and the employee name, followed
by the total number of course registrations. The query in Listing 8-32, which could be a first
attempt to solve this problem, produces an Oracle error message.

Listing 8-32. Error Message: Not a GROUP BY Expression

SQL> select e.empno, e.ename, count(*)
2 from employees e
3 join
4 registrations r
5 on (e.empno = r.attendee)
6 group by e.empno;

select e.empno, e.ename, count(*)
*

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION218

ERROR at line 1:
ORA-00979: not a GROUP BY expression

SQL>

The pseudo-intermediate result in Listing 8-33 explains what went wrong here, and why
you must also group on e.ENAME.

Listing 8-33. Pseudo-Intermediate GROUP BY Result

GROUP BY e.EMPNO GROUP BY e.EMPNO,e.ENAME

e.EMPNO e.ENAME e.INIT ... e.EMPNO e.ENAME e.INIT ...
======= ========= ====== ======= ======== ======

7369 {'SMITH'} {'N'} 7369 'SMITH' {'N'}
7499 {'ALLEN'} {'JAM'} 7499 'ALLEN' {'JAM'}
7521 {'WARD' } ... 7521
7566

The two results look similar; however, there is an important difference between sets
consisting of a single element, such as {'SMITH'}, and a literal value, such as 'SMITH'. In
mathematics, sets with a single element are commonly referred to as singleton sets, or just
singletons.

Listing 8-34 shows another instructive mistake.

Listing 8-34. Error Message: Not a Single-Group Group Function

SQL> select deptno
2 , sum(msal)
3 from employees;

select deptno
*

ERROR at line 1:
ORA-00937: not a single-group group function

SQL>

In the absence of a GROUP BY clause, the SUM function would return a single row, while
DEPTNO would produce 14 department numbers. Two columns with different row counts can-
not be presented side-by-side in a single result. After the correction in Listing 8-35, the error
message disappears, and you get the desired results.

Listing 8-35. Correction of the Error Message in Listing 8-34

SQL> select deptno
2 , sum(msal)
3 from employees
4 group by deptno;

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION 219

DEPTNO SUM(MSAL)
-------- -------------

10 8750
20 10875
30 9250

SQL>

In summary, if your query contains a GROUP BY clause, the SELECT clause is allowed to con-
tain only group expressions. A group expression is a column name that is part of the GROUP BY
clause, or a group function applied to any other column expression. See also Table 8-3 at the
end of Section 8.6.

8.8 Advanced GROUP BY Features
The previous sections showed examples of using “standard” GROUP BY clauses. You can also use
some more advanced features of the GROUP BY clause. Here, we will look at GROUP BY CUBE and
GROUP BY ROLLUP.

Let’s start with a regular GROUP BY example, shown in Listing 8-36.

Listing 8-36. Regular GROUP BY Example

SQL> select deptno, job
2 , count(empno) headcount
3 from employees
4 group by deptno, job;

DEPTNO JOB HEADCOUNT
-------- ---------- ---------

10 MANAGER 1
10 DIRECTOR 1
10 ADMIN 1
20 MANAGER 1
20 TRAINER 4
30 MANAGER 1
30 SALESREP 4
30 ADMIN 1

8 rows selected.

SQL>

You get an overview with the number of employees per department, and within each
department per job. To keep things simple, let’s forget about department 40, the department
without employees.

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION220

GROUP BY ROLLUP
Notice what happens if you change the GROUP BY clause and add the keyword ROLLUP, as shown
in Listing 8-37.

Listing 8-37. GROUP BY ROLLUP Example

SQL> select deptno, job
2 , count(empno) headcount
3 from employees
4 group by ROLLUP(deptno, job);

DEPTNO JOB HEADCOUNT
-------- -------- ---------

10 ADMIN 1
10 MANAGER 1
10 DIRECTOR 1

>>> 10 3 <<<
20 MANAGER 1
20 TRAINER 4

>>> 20 5 <<<
30 ADMIN 1
30 MANAGER 1
30 SALESREP 4

>>> 30 6 <<<
>>> 14 <<<

12 rows selected.

SQL>

The ROLLUP addition results in four additional rows, marked with >>> and <<< in Listing 8-37
for readability. Three of these four additional rows show the head count per department over all
jobs, and the last row shows the total number of employees.

GROUP BY CUBE
You can also use the CUBE keyword in the GROUP BY clause. Listing 8-38 shows an example.

Listing 8-38. GROUP BY CUBE Example

SQL> select deptno, job
2 , count(empno) headcount
3 from employees
4 group by CUBE(deptno, job);

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION 221

DEPTNO JOB HEADCOUNT
-------- -------- ---------

14
>>> ADMIN 2 <<<
>>> MANAGER 3 <<<
>>> TRAINER 4 <<<
>>> DIRECTOR 1 <<<
>>> SALESREP 4 <<<

10 3
10 MANAGER 1
10 DIRECTOR 1
10 ADMIN 1
20 5
20 MANAGER 1
20 TRAINER 4
30 6
30 MANAGER 1
30 SALESREP 4
30 ADMIN 1

17 rows selected.

SQL>

This time, you get five more rows in the query result, marked in the same way with >>>
and <<<, showing the number of employees per job, regardless of which department employs
them.

■Tip Both GROUP BY CUBE and GROUP BY ROLLUP are two special cases of the GROUP BY GROUPING SETS

syntax, offering more flexibility. You can also merge the results of different grouping operations into a single
GROUP BY clause by specifying them in a comma-separated list. For more details, see Oracle SQL
Reference.

CUBE, ROLLUP, and Null Values
The CUBE and ROLLUP keywords generate many null values in query results, as you can see in
Listings 8-37 and 8-38. You can distinguish these system-generated null values from other null
values; for example, to replace them with some explanatory text. You can use the GROUPING and
GROUPING_ID functions for that purpose.

The GROUPING Function
Listing 8-39 shows an example of the GROUPING function.

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION222

Listing 8-39. GROUPING Function Example

SQL> select deptno
2 , case GROUPING(job)
3 when 0 then job
4 when 1 then '**total**'
5 end job
6 , count(empno) headcount
7 from employees
8 group by rollup(deptno, job);

DEPTNO JOB HEADCOUNT
-------- --------- ---------

10 ADMIN 1
10 MANAGER 1
10 DIRECTOR 1
10 **total** 3
20 MANAGER 1
20 TRAINER 4
20 **total** 5
30 ADMIN 1
30 MANAGER 1
30 SALESREP 4
30 **total** 6

total 14

12 rows selected.

SQL>

Unfortunately, the GROUPING function can return only two results: 0 or 1. That’s why the
last two lines both show '**total**'.

The GROUPING_ID Function
The GROUPING_ID function is more flexible that the GROUPING function, because it can return
several different results, as you can see in Listing 8-40.

Listing 8-40. GROUPING_ID Function Example with ROLLUP

SQL> select deptno
2 , case GROUPING_ID(deptno, job)
3 when 0 then job
4 when 1 then '**dept **'
5 when 3 then '**total**'
6 end job
7 , count(empno) headcount
8 from employees
9 group by rollup(deptno, job);

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION 223

DEPTNO JOB HEADCOUNT
-------- --------- ---------

10 ADMIN 1
10 MANAGER 1
10 DIRECTOR 1
10 **dept ** 3
20 MANAGER 1
20 TRAINER 4
20 **dept ** 5
30 ADMIN 1
30 MANAGER 1
30 SALESREP 4
30 **dept ** 6

total 14

12 rows selected.

SQL>

You may be puzzled by the value 3 being used on the fifth line in Listing 8-40. Things
become clear when you convert 3 to a binary representation, which results in the binary num-
ber 11. The two ones in this number act as a flag to trap the situation in which both columns
contain a null value. GROUP BY ROLLUP can produce only 1 (binary 01) and 3 (binary 11), but
GROUP BY CUBE can also generate 2 (binary 10). Look at the results in Listing 8-41. Obviously,
GROUPING_ID produces a 0 (zero) for all “regular” rows in the result.

Listing 8-41. GROUPING_ID Function Example with CUBE

SQL> select deptno, job
2 , GROUPING_ID(deptno, job) gid
3 from employees
4 group by cube(deptno, job);

DEPTNO JOB GID
-------- -------- --------

3
ADMIN 2
MANAGER 2
TRAINER 2
DIRECTOR 2
SALESREP 2

10 1
10 ADMIN 0
10 MANAGER 0
10 DIRECTOR 0
20 1

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION224

20 MANAGER 0
20 TRAINER 0
30 1
30 ADMIN 0
30 MANAGER 0
30 SALESREP 0

17 rows selected.

SQL>

8.9 Partitioned Outer Joins
We discussed outer joins in Section 8.4. This section introduces partitioned outer joins.
To explain what partitioned outer joins are, let’s start with a regular (right) outer join in
Listing 8-42.

Listing 8-42. Regular Right Outer Join Example

SQL> break on department skip 1 on job

SQL> select d.dname as department
2 , e.job as job
3 , e.ename as employee
4 from employees e
5 right outer join
6 departments d
7 using (deptno)
8 order by department, job;

DEPARTMENT JOB EMPLOYEE
---------- -------- --------
ACCOUNTING ADMIN MILLER

DIRECTOR KING
MANAGER CLARK

HR <<<

SALES ADMIN JONES
MANAGER BLAKE
SALESREP ALLEN

WARD
TURNER
MARTIN

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION 225

TRAINING MANAGER JONES
TRAINER SMITH

FORD
ADAMS
SCOTT

15 rows selected.

SQL>

The SQL*Plus BREAK command allows you to enhance the readability of query results. In
Listing 8-42, we use the BREAK command to suppress repeating values in the DEPARTMENT and
JOB columns, and to insert an empty line between the departments. (See Chapter 11 for details
about BREAK.) The result shows 15 rows, as expected. We have 14 employees, and the additional
row (marked with <<<) is added by the outer join for the HR department without employees.

Look at Listing 8-43 to see what happens if we add one extra clause, just before the
RIGHT OUTER JOIN operator.

Listing 8-43. Partitioned Outer Join Example

SQL> select d.dname as department
2 , e.job as job
3 , e.ename as employee
4 from employees e
5 PARTITION BY (JOB)
6 right outer join
7 departments d
8 using (deptno)
9 order by department, job;

DEPARTMENT JOB EMPLOYEE
---------- -------- --------
ACCOUNTING ADMIN MILLER

DIRECTOR KING
MANAGER CLARK
SALESREP <<<
TRAINER <<<

HR ADMIN <<<
DIRECTOR <<<
MANAGER <<<
SALESREP <<<
TRAINER <<<

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION226

SALES ADMIN JONES
DIRECTOR <<<
MANAGER BLAKE
SALESREP ALLEN

WARD
TURNER
MARTIN

TRAINER <<<

TRAINING ADMIN <<<
DIRECTOR <<<
MANAGER JONES
SALESREP <<<
TRAINER SMITH

FORD
ADAMS
SCOTT

26 rows selected.

SQL>

Listing 8-43 shows at least one row for each combination of a department and a job. Com-
pared with Listing 8-42, the single row for the HR department is replaced with 12 additional
rows, highlighting all nonexisting department/job combinations. A regular outer join consid-
ers full tables when searching for matching rows in the other table. The partitioned outer join
works as follows:

1. Split the driving table in partitions based on a column expression (in Listing 8-43, this
column expression is JOB).

2. Produce separate outer join results for each partition with the other table.

3. Merge the results of the previous step into a single result.

Partitioned outer joins are especially useful when you want to aggregate information
over the time dimension, a typical requirement for data warehouse reporting. See Oracle SQL
Reference for more details and examples.

8.10 Set Operators
You can use the SQL set operators UNION, MINUS, and INTERSECT to combine the results of two
independent query blocks into a single result. As you saw in Chapter 2, the set operators have
the syntax shown in Figure 8-5.

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION 227

Figure 8-5. Set operators syntax diagram

These SQL operators correspond with the union, minus, and intersect operators you
know from mathematics. Don’t we all have fond memories of our teachers drawing those Venn
diagrams on the whiteboard (or blackboard, for you older readers)? See also Figure 1-1. The
meanings of these set operators in SQL are listed in Table 8-4.

Table 8-4. Set Operators

Operator Result

Q1 UNION Q2 All rows occurring in Q1 or in Q2 (or in both)

Q1 UNION ALL Q2 As UNION, retaining duplicate rows

Q1 MINUS Q2 The rows from Q1, without the rows from Q2

Q1 INTERSECT Q2 The rows occurring in Q1 and in Q2

By default, all three set operators suppress duplicate rows in the query result. The only
exception to this rule is the UNION ALL operator, which does not eliminate duplicate rows. One
important advantage of the UNION ALL operator is that the Oracle DBMS does not need to sort
the rows. Sorting is needed for all other set operators to trace duplicate rows.

The UNION, MINUS, and INTERSECT operators cannot be applied to any arbitrary set of two
queries. The intermediate (separate) results of queries Q1 and Q2 must be “compatible” in
order to use them as arguments to a set operator. In this context, compatibility means the
following:

• Q1 and Q2 must select the same number of column expressions.

• The datatypes of those column expressions must match.

Some other rules and guidelines for SQL set operators are the following:

• The result table inherits the column names (or aliases) from Q1.

• Q1 cannot contain an ORDER BY clause.

• If you specify an ORDER BY clause at the end of the query, it doesn’t refer to Q2, but rather
to the total result of the set operator.

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION228

Set operators are very convenient when building new queries by combining the multiple
query blocks you wrote (and tested) before, without writing completely new SQL code. This
simplifies testing, because you have more control over correctness.

Listing 8-44 answers the following question: “Which locations host course offerings with-
out having a department?”

Listing 8-44. MINUS Set Operator Example

SQL> select o.location from offerings o
2 MINUS
3 select d.location from departments d;

LOCATION

SEATTLE

SQL>

You can also try to solve this problem without using the MINUS operator. See Listing 8-45
for a suggestion.

Listing 8-45. Alternative Solution Without Using the MINUS Operator

SQL> select DISTINCT o.location
2 from offerings o
3 where o.location not in
4 (select d.location
5 from departments d)

Note that you must add a DISTINCT operator, to handle situations where you have multiple
course offerings in the same location. As explained before, the MINUS operator automatically
removes duplicate rows.

Are the two queries in Listing 8-44 and 8-45 logically equivalent? Further investigations
are left to the readers in one of the exercises at the end of this chapter.

You can also produce outer join results by using the UNION operator. You will see how to do
this in Listings 8-46 and 8-47.

We start with a regular join in Listing 8-46. In Listing 8-47 you add the additional depart-
ment(s) needed for the outer join with a UNION operator, while assigning the right number of
employees for those departments: zero.

Listing 8-46. Regular Join

SQL> select d.deptno
2 , d.dname
3 , count(e.empno) as headcount
4 from employees e
5 , departments d
6 where e.deptno = d.deptno

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION 229

7 group by d.deptno
8 , d.dname;

DEPTNO DNAME HEADCOUNT
-------- ---------- ---------

10 ACCOUNTING 3
20 TRAINING 5
30 SALES 6

SQL>

Listing 8-47. Expansion to an Outer Join with a UNION Operator

SQL> select d.deptno
2 , d.dname
3 , count(e.empno) as headcount
4 from employees e
5 , departments d
6 where e.deptno = d.deptno
7 group by d.deptno
8 , d.dname
9 union
10 select x.deptno
11 , x.dname
12 , 0 as headcount
13 from departments x
14 where x.deptno not in (select y.deptno
15 from employees y);

DEPTNO DNAME HEADCOUNT
-------- ---------- ---------

10 ACCOUNTING 3
20 TRAINING 5
30 SALES 6
40 HR 0

SQL>

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION230

8.11 Exercises
The following exercises will help you to better understand the topics covered in this chapter.
The answers are presented in Appendix D.

1. Produce an overview of all course offerings. Provide the course code, begin date,
course duration, and name of the trainer.

2. Provide an overview, in two columns, showing the names of all employees who ever
attended an SQL course, with the name of the trainer.

3. For all employees, list their name, initials, and yearly salary (including bonus and
commission).

4. For all course offerings, list the course code, begin date, and number of registrations.
Sort your results on the number of registrations, from high to low.

5. List the course code, begin date, and number of registrations for all course offerings in
1999 with at least three registrations.

6. Provide the employee numbers of all employees who ever taught a course as a trainer,
but never attended a course as an attendee.

7. Which employees attended a specific course more than once?

8. For all trainers, provide their name and initials, the number of courses they taught, the
total number of students they had in their classes, and the average evaluation rating.
Round the evaluation ratings to one decimal.

9. List the name and initials of all trainers who ever had their own manager as a student
in a general course (category GEN).

10. Did we ever use two classrooms at the same time in the same course location?

11. Produce a matrix report (one column per department, one row for each job) where
each cell shows the number of employees for a specific department and a specific
job. In a single SQL statement, it is impossible to dynamically derive the number of
columns needed, so you may assume you have three departments only: 10, 20, and 30.

12. Listing 8-26 produces information about all departments with more than four
employees. How can you change the query to show information about all departments
with fewer than four employees?

13. Look at Listings 8-44 and 8-45. Are those two queries logically equivalent? Investigate
the two queries and explain the differences, if any.

CHAPTER 8 ■ RETRIEVAL: MULTIPLE TABLES AND AGGREGATION 231

Retrieval: Some Advanced
Features

This is the fourth chapter in a series about retrieval features of SQL. It is a logical continua-
tion of Chapters 4, 5, and 8.

First, we revisit subqueries, beginning with an introduction to the three operators ANY, ALL,
and EXISTS. These operators allow you to create a special relationship between main queries
and subqueries, as opposed to using the IN operator or standard comparison operators. You
will also learn about correlated subqueries, which are subqueries where some subquery clauses
refer to column expressions from the main query.

In Sections 9.2 and 9.3, we will look at subqueries in query components other than the
WHERE clause: the SELECT and the FROM clauses. One special case of using subqueries in the FROM
clause is the Top-N SQL feature. In Section 9.4 we will discuss the WITH clause, also referred to
as subquery factoring, which allows you to define one or more subqueries in the beginning
of your SQL commands, and then to reference them by name in the remainder of your SQL
command.

We continue with hierarchical queries. Relational tables are essentially flat structures, but
they can represent hierarchical data structures; for example, by using foreign key constraints
referring to the primary key of the same table. The MGR column of the EMPLOYEES table is a clas-
sic example of such a hierarchical relationship. Oracle SQL supports explicit syntax to simplify
retrieval of hierarchical data structures.

The next subject we investigate is windowing. Within the context of a single row (or tuple
variable), you can define a dependent window of rows, with an optional ordering within that
window. Once you have defined such windows, you can apply various powerful analytical
functions to derive aggregate information about the rows in that window.

Finally, this chapter discusses a helpful Oracle SQL feature allowing you to travel back in
time: flashback queries. The chapter ends with some exercises.

9.1 Subqueries Continued
Chapter 4 discussed various examples of subqueries, using the IN operator or standard logical
comparison operators. As a refresher, let’s start with two standard subquery examples.

The subquery in Listing 9-1 shows all 13 registrations we have for build courses; that is,
for course category 'BLD'.

233

C H A P T E R 9

■ ■ ■

Listing 9-1. Subquery Using the IN Operator

SQL> select r.attendee, r.course, r.begindate
2 from registrations r
3 where r.course in (select c.code
4 from courses c
5 where c.category = 'BLD');

ATTENDEE COURSE BEGINDATE
-------- ------ -----------

7499 JAV 13-DEC-1999
7566 JAV 01-FEB-2000
7698 JAV 01-FEB-2000
7788 JAV 13-DEC-1999
7839 JAV 13-DEC-1999
7876 JAV 13-DEC-1999
7788 JAV 01-FEB-2000
7782 JAV 13-DEC-1999
7499 PLS 11-SEP-2000
7876 PLS 11-SEP-2000
7566 PLS 11-SEP-2000
7499 XML 03-FEB-2000
7900 XML 03-FEB-2000

13 rows selected.

SQL>

Listing 9-2 shows how you can retrieve all employees who are younger than colleague
7566.

Listing 9-2. Single-Row Subquery Using a Comparison Operator

SQL> select e.empno, e.ename, e.init, e.bdate
2 from employees e
3 where e.bdate > (select x.bdate
4 from employees x
5 where x.empno = 7566);

EMPNO ENAME INIT BDATE
-------- -------- ----- -----------

7844 TURNER JJ 28-SEP-1968
7900 JONES R 03-DEC-1969

SQL>

Listing 9-2 shows an example of a single-row subquery. The subquery must return a single
row, because the comparison operator (>) in the third line would fail otherwise. If subqueries

CHAPTER 9 ■ RETRIEVAL: SOME ADVANCED FEATURES234

CHAPTER 9 ■ RETRIEVAL: SOME ADVANCED FEATURES 235

of this type nevertheless return more than a single row, you get an Oracle error message, as
you discovered in Chapter 4 (see Listing 4-38).

This section continues the discussion of subqueries by explaining the possibilities of the
ANY, ALL, and EXISTS operators. You’ll also learn about correlated subqueries.

The ANY and ALL Operators
SQL allows you to combine standard comparison operators (<, >, =, and so on) with subqueries
returning any number of rows. You can do that by specifying ANY or ALL between the compari-
son operator and the subquery. Listing 9-3 shows an example of using the ANY operator.

Listing 9-3. ANY Operator Example

SQL> select e.empno, e.ename, e.job, e.msal
2 from employees e
3 where e.msal > ANY (select x.msal
4 from employees x
5 where x.job = 'MANAGER');

EMPNO ENAME JOB MSAL
-------- -------- -------- --------

7839 KING DIRECTOR 5000
7788 SCOTT TRAINER 3000
7902 FORD TRAINER 3000
7566 JONES MANAGER 2975
7698 BLAKE MANAGER 2850

SQL>

Listing 9-3 shows all employees with a monthly salary that is higher than at least one
manager. Listing 9-4 shows the “happy few” with a higher salary than all managers.

Listing 9-4. ALL Operator Example

SQL> select e.empno, e.ename, e.job, e.msal
2 from employees e
3 where e.msal > ALL (select x.msal
4 from employees x
5 where x.job = 'MANAGER');

EMPNO ENAME JOB MSAL
-------- -------- -------- --------

7788 SCOTT TRAINER 3000
7839 KING DIRECTOR 5000
7902 FORD TRAINER 3000

SQL>

Defining ANY and ALL
As the examples illustrate, the ANY and ALL operators work as follows:

• ANY ... means the result is true for at least one value returned by the subquery.

• ALL ... means the result is true for all values returned by the subquery.

Table 9-1 formulates the definitions of ANY and ALL a bit more formally, using iterated OR
and AND constructs. In the table, # represents any standard comparison operator: <, >, =, >=, <=,
or <>. Also, V1, V2, V3, and so on represent the values returned by the subquery.

Table 9-1. Definition of ANY and ALL

X # ANY(subquery) X # ALL(subquery)

(X # V1) OR (X # V1) AND

(X # V2) OR (X # V2) AND

(X # V3) OR ... (X # V3) AND ...

Rewriting SQL Statements Containing ANY and ALL
In most cases, you can rewrite your SQL statements in such a way that you don’t need the ANY
and ALL operators. For example, we could have used a group function in Listing 9-4 to rebuild
the subquery into a single-row subquery, as shown in Listing 9-5.

Listing 9-5. Using the MAX Function in the Subquery, Instead of ALL

SQL> select e.ename, e.job, e.msal
2 from employees e
3 where e.msal > (select max(x.msal)
4 from employees x
5 where x.job = 'MANAGER');

ENAME JOB MSAL
-------- -------- --------
SCOTT TRAINER 3000
KING DIRECTOR 5000
FORD TRAINER 3000

SQL>

In Exercise 6 of Section 9.8 we will look at the queries of Listings 9-4 and 9-5 in more
detail. Note that the following SQL constructs are logically equivalent:

• X = ANY(subquery) <=> X IN (subquery)

• X <> ALL(subquery) <=> X NOT IN (subquery)

CHAPTER 9 ■ RETRIEVAL: SOME ADVANCED FEATURES236

Look at the following two rather special cases of ANY and ALL:

• X = ALL(subquery)

• X <> ANY(subquery)

If the subquery returns two or more different values, the first expression is always FALSE,
because X can never be equal to two different values at the same time. Likewise, if the subquery
returns two or more different values, the second expression is always TRUE, because any X will
be different from at least one of those two values from the subquery.

Before we go on with the next topic, consider the case with ANY and ALL when the sub-
query returns no rows at all. What do you think happens? We’ll investigate this as one of the
exercises at the end of this chapter.

Correlated Subqueries
SQL also supports correlated subqueries. Look at the example in Listing 9-6, and you will find
out why these subqueries are referred to as being correlated.

Listing 9-6. Correlated Subquery Example

SQL> select e.ename, e.init, e.msal
2 from employees e
3 where e.msal > (select avg(x.msal)
4 from employees x
5 where x.deptno = e.deptno -- Note the reference to e
6);

ENAME INIT MSAL
-------- ----- --------
ALLEN JAM 1600
JONES JM 2975
BLAKE R 2850
SCOTT SCJ 3000
KING CC 5000
FORD MG 3000

SQL>

You might want to compare this query with Listing 8-30 in the previous chapter, because
they are similar. This query shows all employees who earn a higher salary than the average
salary of their own department. There is one thing that makes this subquery special: it con-
tains a reference to the tuple variable e (see e.DEPTNO in the fifth line) from the main query.
This means that you cannot execute this subquery independently, in isolation, because that
would result in an Oracle error message. You must interpret this subquery within the context
of a specific row from the main query.

CHAPTER 9 ■ RETRIEVAL: SOME ADVANCED FEATURES 237

The Oracle DBMS processes the query in Listing 9-6 as follows:

• The tuple variable e ranges over the EMPLOYEES table, thus assuming 14 different values.

• For each row e, the subquery is executed after replacing e.DEPTNO by the literal depart-
ment value of row e.

■Caution Reexecuting a subquery for every single row of the main query may have a significant perform-
ance impact. The Oracle optimizer will try to produce an efficient execution plan, and there are some smart
optimization algorithms for correlated subqueries; nevertheless, it is always a good idea to consider (and
test) performance while writing SQL statements for production systems.

In mathematics, a distinction is made between free and bound variables. In the subquery
of Listing 9-6, x is the free variable and e is bound by the main query.

Let’s look at another example in Listing 9-7. This query provides the fourth youngest
employee of the company or, to be more precise, all employees for which there are three
younger colleagues. Note that the result isn’t necessarily a set containing a single employee.

Listing 9-7. Another Example of a Correlated Subquery

SQL> select e.*
2 from employees e
3 where (select count(*)
4 from employees x
5 where x.bdate > e.bdate) = 3;

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
------ -------- ----- -------- ------ ----------- ------ ------ ------
7876 ADAMS AA TRAINER 7788 30-DEC-1966 1100 20

SQL>

You can also formulate these types of queries using windows and analytical functions, as
described in Section 9.6 of this chapter.

The EXISTS Operator
Correlated subqueries often occur in combination with the EXISTS operator. Again, let’s start
with an example. The query in Listing 9-8 shows all course offerings without registrations.

Listing 9-8. Correlated Subquery with EXISTS Operator

SQL> select o.*
2 from offerings o
3 where not exists
4 (select r.*

CHAPTER 9 ■ RETRIEVAL: SOME ADVANCED FEATURES238

5 from registrations r
6 where r.course = o.course
7 and r.begindate = o.begindate);

COURSE BEGINDATE TRAINER LOCATION
------ ----------- -------- --------
ERM 15-JAN-2001
PRO 19-FEB-2001 DALLAS
RSD 24-FEB-2001 7788 CHICAGO
XML 18-SEP-2000 BOSTON

SQL>

The EXISTS operator is not interested in the actual rows (and column values) resulting
from the subquery, if any. This operator checks for only the existence of subquery results. If the
subquery returns at least one resulting row, the EXISTS operator evaluates to TRUE. If the sub-
query returns no rows at all, the result is FALSE.

Subqueries Following an EXISTS Operator
You could say that the EXISTS and NOT EXISTS operators are kind of empty set checkers. This
implies that it doesn’t matter which expressions you specify in the SELECT clause of the sub-
query. For example, you could also have written the query of Listing 9-8 as follows:

SQL> select o.*
2 from offerings o
3 where not exists
4 (select 'x'
5 from registrations r ...

■Note The ANSI/ISO SQL standard defines * as being an arbitrary literal in this case.

Subqueries that follow an EXISTS operator are often correlated. Think about this for a
moment. If they are uncorrelated, their result is precisely the same for each row from the main
query. There are only two possible outcomes: the EXISTS operator results in TRUE for all rows or
FALSE for all rows. In other words, EXISTS followed by an uncorrelated subquery becomes an
“all or nothing” operator.

■Caution A subquery returning a null value (that is, a single row) is not the same as a subquery returning
nothing (that is, the empty set).

CHAPTER 9 ■ RETRIEVAL: SOME ADVANCED FEATURES 239

EXISTS, IN, and Three-Valued Logic
Another important point is that the result of the EXISTS operator is always TRUE or FALSE, and
never UNKNOWN. Especially in queries where null values and negations are involved, this may
lead to counterintuitive and surprising results.

See Listing 9-9 for another EXISTS example, to finish this section. The query is intended to
provide the personal details of all employees who ever taught an SQL course.

Listing 9-9. Another Correlated Subquery with EXISTS Operator

SQL> select e.*
2 from employees e
3 where exists (select o.*
4 from offerings o
5 where o.course = 'SQL'
6 and o.trainer = e.empno);

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
------ -------- ----- -------- ------ ----------- -------- ------ ------
7369 SMITH N TRAINER 7902 17-DEC-1965 800 20
7902 FORD MG TRAINER 7566 13-FEB-1959 3000 20

SQL>

This problem can also be solved with an IN operator, as shown in Listing 9-10. The query
results are omitted.

Listing 9-10. Alternative Formulation for Listing 9-9

SQL> select e.*
2 from employees e
3 where e.empno in (select o.trainer
4 from offerings o
5 where o.course = 'SQL')

You can also use a join to solve the problem, as shown in Listing 9-11. This is probably the
most obvious approach, although the choice between writing joins or subqueries is highly
subjective. Some people think “bottom up” and prefer subqueries; others think “top down”
and prefer to write joins.

Listing 9-11. Another Alternative Formulation for Listing 9-9

SQL> select DISTINCT e.*
2 from employees e
3 join
4 offerings o
5 on e.empno = o.trainer
6 where o.course = 'SQL'

CHAPTER 9 ■ RETRIEVAL: SOME ADVANCED FEATURES240

Notice the DISTINCT option in the SELECT clause. Investigate what happens if you remove
the DISTINCT option in Listing 9-11. You’ll find that the query result will consist of three rows,
instead of two.

So far, we have considered only subqueries in the WHERE clause. However, you can use sub-
queries in other SQL statement components, such as the SELECT and FROM clauses. In the next
sections, we will look at subqueries in these other clauses.

9.2 Subqueries in the SELECT Clause
Check out Listings 5-31 and 5-32 in Chapter 5, which demonstrate determining the number of
employees in each department. The ANSI/ISO SQL standard offers an alternative approach for
that problem, using a subquery in the SELECT clause, as shown in Listing 9-12.

Listing 9-12. Example of a Subquery in the SELECT Clause

SQL> select d.deptno, d.dname, d.location
2 , (select count(*)
3 from employees e
4 where e.deptno = d.deptno) as emp_count
5 from departments d;

DEPTNO DNAME LOCATION EMP_COUNT
-------- ---------- -------- ---------

10 ACCOUNTING NEW YORK 3
20 TRAINING DALLAS 5
30 SALES CHICAGO 6
40 HR BOSTON 0

SQL>

You could argue that this is not only a correct solution, but it also is a very elegant solution.
It’s elegant, because the driving table for this query (see the FROM clause) is the DEPARTMENTS
table. After all, we are looking for information about departments, so the DEPARTMENTS table is
the most intuitive and obvious table to start our search for the result. The first three attributes
(DEPTNO, DNAME, and LOCATION) are “regular” attributes that can be found from the corresponding
columns of the DEPARTMENTS table; however, the fourth attribute (the number of employees) is
not stored as a column value in the database. See Chapter 1 for a discussion of database design
and normalization as a technique to reduce redundancy.

Because the department head count is not physically stored in a column of the DEPARTMENTS
table, we derive it by using a subquery in the SELECT clause. This is precisely how you can read
this query: in the FROM clause, you visit the DEPARTMENTS table, and in the SELECT clause you select
four expressions. Without using an outer join, regular join, or GROUP BY, you still get the correct
number of employees (zero) for department 40.

CHAPTER 9 ■ RETRIEVAL: SOME ADVANCED FEATURES 241

■Note You could argue that the GROUP BY clause of the SQL language is redundant. You can solve most
(if not all) aggregation problems using a correlated subquery in the SELECT clause, without using GROUP BY

at all.

As noted, the subquery in Listing 9-12 is correlated. d.DEPTNO has a different value for
each row d of the DEPARTMENTS table, and the subquery is executed four times for those differ-
ent values: 10, 20, 30, and 40. Although it is not strictly necessary, it is a good idea to assign a
column alias (EMP_COUNT in Listing 9-12) to the subquery expression, because it enhances the
readability for both the query itself and for its results.

So far, we have distinguished only single-row queries and subqueries returning any num-
ber of rows. At this point, it makes sense to identify a third subquery type, which is a subtype of
the single-row subquery type: scalar subqueries. The name indicates an important property of
this type of subqueries: the result not only consists of precisely one row, but also with precisely
one column value. You can use scalar subqueries almost everywhere in your SQL commands in
places where a column expression or literal value is allowed and makes sense. The scalar sub-
query generates the literal value.

In summary, you can say that SQL supports the following subquery hierarchy:

• Multirow subqueries: No restrictions

• Single-row subqueries: Result must contain a single row

• Scalar subqueries: Result must be a single row and a single column

9.3 Subqueries in the FROM Clause
The next clause we investigate is the FROM clause. Actually, the FROM clause is one of the most
obvious places to allow subqueries in SQL. Instead of specifying “real” table names, you simply
provide subqueries (or table expressions) to take their place as a derived table.

Inline Views
Listing 9-13 shows an example of a subquery in the FROM clause. The Oracle documentation
refers to these subqueries as inline views, as does this book; however, this is not a commonly
accepted term. The name inline view will become clearer in Chapter 10, when we discuss
views in general.

Listing 9-13. Inline View Example

SQL> select e.ename, e.init, e.msal
2 from employees e
3 join
4 (select x.deptno
5 , avg(x.msal) avg_sal
6 from employees x
7 group by x.deptno) g

CHAPTER 9 ■ RETRIEVAL: SOME ADVANCED FEATURES242

8 using (deptno)
9 where e.msal > g.avg_sal;

ENAME INIT MSAL
-------- ----- --------
ALLEN JAM 1600
JONES JM 2975
BLAKE R 2850
SCOTT SCJ 3000
KING CC 5000
FORD MG 3000

SQL>

A big difference between a “real” table and a subquery is that the real table has a name.
Therefore, if you use subqueries in the FROM clause, you must define a tuple variable (or table
alias, in Oracle terminology) over the result of the subquery. At the end of line 7 in Listing 9-13,
we define tuple variable g.This tuple variable allows us to refer to column expressions from the
subquery, as shown by g.AVG_SAL in the last line of the example. By the way, the query in Listing
9-13 is an alternative solution for the query in Listing 9-6.

ROWNUM and Top-N SQL
Suppose you just want to know the three top salaries of the HISTORY table. You can solve this
problem with a complicated query, using GROUP BY and HAVING, but there is a simpler solution.
Oracle SQL offers a nice feature for this type of problem, called Top-N SQL. Top-N SQL is based
on using a subquery in the FROM clause, and offers very good performance and a syntax that is
more readable than equivalent alternative solutions.

You can imagine that sorting all employee history rows, just to retrieve the three highest
salary values, is a rather expensive operation, especially if the HISTORY table contains many
rows. You might as well use three placeholders, and scan all rows (without sorting them), while
maintaining the highest three values in those placeholders. That’s exactly what Top-N SQL
does. See Listing 9-14 for an example.

Listing 9-14. Top-N SQL Example

SQL> select *
2 from (select empno, msal
3 from history
4 order by msal desc)
5 where rownum <= 3;

EMPNO MSAL
-------- --------

7839 5000
7839 4900
7839 4800

SQL>

CHAPTER 9 ■ RETRIEVAL: SOME ADVANCED FEATURES 243

Notice that Listing 9-14 uses the ROWNUM pseudo column. You can use this pseudo column in
every query. It represents the order in which the rows arrived in the query result. In Exercise 12,
Section 9.8, we will look at the ROWNUM pseudo column in more detail.

■Caution You should be careful with the ROWNUM pseudo column, because its value depends on the
actual execution plan chosen by the optimizer.

In Listing 9-14, the subquery contains an ORDER BY clause. That is rather unusual for a sub-
query. Normally, you always sort your results in the main query; you never specify an ORDER BY
clause in subqueries. However, the Top-N SQL feature is relying on the fact that the subquery
is sorted. You could argue that the ROWNUM <= 3 condition is merged into the subquery.

Note that the following SQL statement will not give you the same performance as the
query in Listing 9-14, because it performs a full sort before even looking at the WHERE clause:

SQL> select empno, sal
2 from history
3 where rownum <= 3
4 order by msal desc;

For further details about the ROWNUM pseudo column and the Top-N SQL feature, refer to
Oracle SQL Reference.

So far, this chapter expanded your knowledge about subqueries with the ANY, ALL, and
EXISTS operators. Moreover, we looked at correlated subqueries and subqueries in other
places than the WHERE clause. The next section about subqueries introduces the WITH clause.

9.4 The WITH Clause
Listing 9-13 showed an example of using a subquery in a FROM clause. We could have written
the same query with a slightly different syntax, as shown in Listing 9-15.

Listing 9-15. WITH Clause Example

SQL> WITH g AS
2 (select x.deptno
3 , avg(x.msal) avg_sal
4 from employees x
5 group by x.deptno)
6 select e.ename, e.init, e.msal
7 from employees e
8 join g
9 using (deptno)
10 where e.msal > g.avg_sal;

CHAPTER 9 ■ RETRIEVAL: SOME ADVANCED FEATURES244

ENAME INIT MSAL
-------- ----- --------
ALLEN JAM 1600
JONES JM 2975
BLAKE R 2850
SCOTT SCJ 3000
KING CC 5000
FORD MG 3000

SQL>

As you can see, we have isolated the subquery definition, in lines 1 through 5, from the
actual query, in lines 6 through 10. This makes the structure of the main query clearer. Using
the WITH clause syntax becomes even more attractive if you refer multiple times to the same
subquery from the main query. You can define as many subqueries as you like in a single WITH
clause, separated by commas.

SQL> WITH v1 AS (select ... from ...)
2 , v2 AS (select ... from ...)
3 , v3 AS ...
4 select ...
5 from ...

If you define multiple subqueries in the WITH clause, you are allowed to refer to any sub-
query name that you defined earlier in the same WITH clause; that is, the definition of subquery
V2 can refer to V1 in its FROM clause, and the definition of V3 can refer to both V1 and V2.

Under the hood, the Oracle DBMS has two ways to execute queries with a WITH clause:

• Merge the subquery definitions into the main query. This makes the subqueries behave
just like inline views.

• Execute the subqueries, store the results in a temporary table, and access the temporary
tables from the main query.

See Oracle SQL Reference for more details and examples. The common name for the WITH
clause syntax is subquery factoring.

9.5 Hierarchical Queries
Relational tables are flat structures. All rows of a table are equally important, and the order in
which the rows are stored is irrelevant. However, some data structures have hierarchical rela-
tionships. A famous example in most books about relational database design is the “bill of
materials (BOM)” problem, where you are supposed to design an efficient relational database
structure to store facts about which (sub)components are needed to build more complicated
components, up to highly complicated objects such as cars and airplanes. Figure 9-1 shows
an ERM diagram with a typical solution. On the left, you see the most generic solution with a
many-to-many relationship, and on the right you see a typical solution using two entities.

CHAPTER 9 ■ RETRIEVAL: SOME ADVANCED FEATURES 245

Figure 9-1. A solution for the “bill of materials” problem

Notice that for the solution on the left-hand side, if you replaced the entity name PART
with THING, and you replaced the two relationship descriptions with “related to,” then you
would you have the ultimate in generic data models! Although this book is not about database
design, consider this joke as a serious warning: don’t make your data models overly generic.

Even if hierarchical data structures are correctly translated into relational tables, the
retrieval of such structures can still be quite challenging. We have an example of a simple hier-
archical relationship in our sample tables: the management structure in the EMPLOYEES table
is implemented with the MGR column and its foreign key constraint to the EMPNO column of the
same table.

■Note In hierarchical structures, it is common practice to refer to parent rows and children rows. Another
common (and self-explanatory) terminology is using a tree metaphor by referring to root, branch, and leaf rows.

START WITH and CONNECT BY
Oracle SQL supports a number of operators—and pseudo columns populated by those opera-
tors—to facilitate queries against hierarchical data. Let’s look at a simple example first, shown
in Listing 9-16.

Listing 9-16. Hierarchical Query Example

SQL> select ename, LEVEL
2 from employees
3 START WITH mgr is null
4 CONNECT BY NOCYCLE PRIOR empno = mgr;

ENAME LEVEL
-------- --------
KING 1
JONES 2
SCOTT 3
ADAMS 4
FORD 3

CHAPTER 9 ■ RETRIEVAL: SOME ADVANCED FEATURES246

SMITH 4
BLAKE 2
ALLEN 3
WARD 3
MARTIN 3
TURNER 3
JONES 3
CLARK 2
MILLER 3

14 rows selected.

SQL>

The START WITH and CONNECT BY clauses allow you to do the following:

• Identify a starting point (root) for the tree structure.

• Specify how you can walk up or down the tree structure from any row.

The START WITH and CONNECT BY clauses must be specified after the WHERE clause (if any)
and before the GROUP BY clause (if any).

■Note It is your own responsibility to indicate the correct starting point (or root) for the hierarchy.
Listing 9-16 uses MGR IS NULL as a condition, because we know that the null value in the MGR column has a
special meaning. The Oracle DBMS treats each row for which the START WITH condition evaluates to TRUE
as root for a separate tree structure; that is, you can define multiple tree structures within the context of a
single query.

The NOCYCLE keyword in the CONNECT BY clause is optional; however, if you omit NOCYCLE,
you risk ending up in a loop. If that happens, the Oracle DBMS returns the following error
message:

ORA-01436: CONNECT BY loop in user data

Our EMPLOYEES table doesn’t contain any cyclic references, but specifying NOCYCLE never hurts.
Pay special attention to the placement of the PRIOR operator. The PRIOR operator always

points to the parent row. In Listing 9-16, PRIOR is placed before EMPNO, so we are able to find par-
ent rows by starting from the MGR column value of the current row and then searching the EMPNO
column values in all other rows for a match. If you put PRIOR in the wrong place, you define
hierarchical relationships in the opposite direction. Just see what happens in Listing 9-16 if you
change the fourth line to CONNECT BY PRIOR MGR = EMPNO or to CONNECT BY EMPNO = PRIOR MGR.

At first sight, the result in Listing 9-16 is not very impressive, since you just get a list of
employee names, followed by a number. And if we had omitted LEVEL from the SELECT clause,
the result would have been completely trivial. However, many things happened behind the
scenes. We just have not exploited the full benefits yet.

CHAPTER 9 ■ RETRIEVAL: SOME ADVANCED FEATURES 247

LEVEL, CONNECT_BY_ISCYCLE, and CONNECT_BY_ISLEAF
As a consequence of using START WITH and CONNECT BY, the Oracle DBMS assigns several pseudo
column values to every row. Listing 9-16 showed a first example of such a pseudo column:
LEVEL. You can use these pseudo column values for many purposes; for example, to filter spe-
cific rows in the WHERE clause or to enhance the readability of your results in the SELECT clause.

The following are the hierarchical pseudo columns:

• LEVEL: The level of the row in the tree structure.

• CONNECT_BY_ISCYCLE: The value is 1 for each row with a child that is also a parent of the
same row (that is, you have a cyclic reference); otherwise, the value is 0.

• CONNECT_BY_ISLEAF: The value is 1 if the row is a leaf; otherwise, the value is 0.

Listing 9-17 shows an example using the LEVEL pseudo column combined with the LPAD
function, adding indentation to highlight the hierarchical query results.

Listing 9-17. Enhancing Readability with the LPAD Function

SQL> select lpad(' ',2*level-1)||ename as ename
2 from employees
3 start with mgr is null
4 connect by nocycle prior empno = mgr;

ENAME

KING
JONES
SCOTT
ADAMS

FORD
SMITH

BLAKE
ALLEN
WARD
MARTIN
TURNER
JONES

CLARK
MILLER

14 rows selected.

SQL>

CHAPTER 9 ■ RETRIEVAL: SOME ADVANCED FEATURES248

CONNECT_BY_ROOT and SYS_CONNECT_BY_PATH
If you use START WITH and CONNECT BY to define a hierarchical query, you can use two interesting
hierarchical operators in the SELECT clause:

• CONNECT_BY_ROOT: This operator allows you to connect each row (regardless of its level in
the tree structure) with its own root.

• SYS_CONNECT_BY_PATH: This function allows you to display the full path from the current
row to its root.

See Listing 9-18 for an example of using both operators. Note that the START WITH clause in
Listing 9-18 creates three separate tree structures: one for each manager.

Listing 9-18. Using CONNECT_BY_ROOT and SYS_CONNECT_BY_PATH

SQL> select ename
2 , connect_by_root ename as manager
3 , sys_connect_by_path(ename,' > ') as full_path
4 from employees
5 start with job = 'MANAGER'
6 connect by prior empno = mgr;

ENAME MANAGER FULL_PATH
-------- -------- -------------------------
JONES JONES > JONES
SCOTT JONES > JONES > SCOTT
ADAMS JONES > JONES > SCOTT > ADAMS
FORD JONES > JONES > FORD
SMITH JONES > JONES > FORD > SMITH
BLAKE BLAKE > BLAKE
ALLEN BLAKE > BLAKE > ALLEN
WARD BLAKE > BLAKE > WARD
MARTIN BLAKE > BLAKE > MARTIN
TURNER BLAKE > BLAKE > TURNER
JONES BLAKE > BLAKE > JONES
CLARK CLARK > CLARK
MILLER CLARK > CLARK > MILLER

13 rows selected.

SQL>

You can specify additional conditions in the CONNECT BY clause, thus eliminating entire
subtree structures. Note the important difference with conditions in the WHERE clause: those
conditions filter only individual rows. See Oracle SQL Reference for more details and examples.

CHAPTER 9 ■ RETRIEVAL: SOME ADVANCED FEATURES 249

Hierarchical Query Result Sorting
If you want to sort the results of hierarchical queries, and you use a regular ORDER BY clause,
the carefully constructed hierarchical tree gets disturbed in most cases. In such cases, you can
use the SIBLINGS option of the ORDER BY clause. This option doesn’t destroy the hierarchy of the
rows in the result. See Listing 9-19 for an example, and watch what happens with the query
result if we remove the SIBLINGS option.

Listing 9-19. ORDER SIBLINGS BY Example

SQL> select ename
2 , sys_connect_by_path(ename,'|') as path
3 from employees
4 start with mgr is null
5 connect by prior empno = mgr
6 order SIBLINGS by ename;

ENAME PATH
-------- -----------------------------
KING |KING
BLAKE |KING|BLAKE
ALLEN |KING|BLAKE|ALLEN
JONES |KING|BLAKE|JONES
MARTIN |KING|BLAKE|MARTIN
TURNER |KING|BLAKE|TURNER
WARD |KING|BLAKE|WARD
CLARK |KING|CLARK
MILLER |KING|CLARK|MILLER
JONES |KING|JONES
FORD |KING|JONES|FORD
SMITH |KING|JONES|FORD|SMITH
SCOTT |KING|JONES|SCOTT
ADAMS |KING|JONES|SCOTT|ADAMS

14 rows selected.

SQL> c/siblings//
6* order by ename

SQL> /

ENAME PATH
-------- ------------------------------
ADAMS |KING|JONES|SCOTT|ADAMS
ALLEN |KING|BLAKE|ALLEN
BLAKE |KING|BLAKE
CLARK |KING|CLARK
FORD |KING|JONES|FORD

CHAPTER 9 ■ RETRIEVAL: SOME ADVANCED FEATURES250

JONES |KING|JONES
JONES |KING|BLAKE|JONES
KING |KING
MARTIN |KING|BLAKE|MARTIN
MILLER |KING|CLARK|MILLER
SCOTT |KING|JONES|SCOTT
SMITH |KING|JONES|FORD|SMITH
TURNER |KING|BLAKE|TURNER
WARD |KING|BLAKE|WARD

14 rows selected.

SQL>

9.6 Analytical Functions and Windows
This section introduces the concept of analytical functions and windows, which make up a
very powerful part of the ANSI/ISO SQL standard syntax. Analytical functions enable you to
produce derived attributes that would otherwise be very complicated to achieve in SQL.

Earlier in this chapter, in Section 9.2, you saw how subqueries in the SELECT clause allow
you to add derived attributes to the SELECT clause of your queries. Analytical functions and
windows provide similar functionality.

Figure 9-2 illustrates the concept of a window and its corresponding (current) row. Analyti-
cal functions allow you to derive aggregated information about the window corresponding to
the current row.

Figure 9-2. Table, window, and current row

CHAPTER 9 ■ RETRIEVAL: SOME ADVANCED FEATURES 251

You specify windows in the SELECT clause of your queries, as a component of an analytical
function. The (simplified) syntax of analytical functions looks like the following:

SQL> select analytical-function(col-expr) OVER (window-spec) [AS col-alias]
2 , ...
3 from ...

Analytical Window Specification
You specify windows with the OVER clause of analytical functions. Figure 9-3 shows the syntax
details of a window specification, to be entered between parentheses.

Figure 9-3. Window specification syntax diagram

Note that the syntax in Figure 9-3 allows for an empty window specification—all compo-
nents are optional. The default window is the entire (nonpartitioned and unordered) table.
The details about the PARTITION BY and ORDER BY components of a window specification will be
discussed soon. First, let’s drill down a little further into how you can specify a range of rows
for your analytical window. The corresponding syntax is shown in Figure 9-4.

Figure 9-4. Range specification syntax diagram

You can choose between RANGE and ROWS; they are synonyms. If you don’t use the BETWEEN
... AND ... syntax and you specify only one point, the Oracle DBMS considers it the starting
point, and the ending point defaults to the current row.

CHAPTER 9 ■ RETRIEVAL: SOME ADVANCED FEATURES252

Figure 9-5 shows the BETWEEN ... AND ... syntax details. Note that UNBOUNDED FOLLOWING is
invalid as a starting point, and UNBOUNDED PRECEDING is invalid as an ending point.

Figure 9-5. BETWEEN ... AND ... Syntax Diagram

Here are some typical examples of valid range specifications:

• ROWS UNBOUNDED PRECEDING

• ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING

• RANGE BETWEEN 3 PRECEDING AND 3 FOLLOWING

Analytical Window Ordering
The Oracle DBMS applies the analytical function to the window rows. Some analytical function
expressions don’t need any ordering, but they are the exceptions. For example, as soon as you
use keywords like PRECEDING and FOLLOWING, you need to specify a certain row ordering within
your window, to give those keywords their meaning. If you make a mistake and forget to specify
an ORDER [SIBLINGS] BY window component, the Oracle error message is self-explanatory.
SIBLINGS is valid only in hierarchical queries, as explained in the previous section.

If you want predictable query results, you should choose the correct window ordering.
More specifically, if you sort on a column (or column combination) that isn’t unique within
your window, concepts like “previous row” and “following row” become rather slippery. Let’s
look at the example in Listing 9-20.

Listing 9-20. Nondeterministic Window Sorting

SQL> select mgr, ename, msal
2 , sum(msal) over
3 (order by mgr, msal
4 range unbounded preceding
5) as cumulative
6 from employees
7 order by mgr, msal;

CHAPTER 9 ■ RETRIEVAL: SOME ADVANCED FEATURES 253

MGR ENAME MSAL CUMULATIVE
-------- -------- -------- ----------

7566 SCOTT 3000 6000 <<<
7566 FORD 3000 6000 <<<
7698 JONES 800 6800
7698 WARD 1250 9300 <<<
7698 MARTIN 1250 9300 <<<
7698 TURNER 1500 10800
7698 ALLEN 1600 12400
7782 MILLER 1300 13700
7788 ADAMS 1100 14800
7839 CLARK 2450 17250
7839 BLAKE 2850 20100
7839 JONES 2975 23075
7902 SMITH 800 23875

KING 5000 28875

14 rows selected.

SQL>

As you can see in Listing 9-20, the fourth column shows a cumulative monthly salary,
because we define a window per employee from the beginning of the table (UNBOUNDED
PRECEDING) until the current row. The current row is (in this case) the default upper boundary
of the window, so you don’t need to specify this explicitly.

As you can also see in Listing 9-20, the cumulative salary doesn’t “behave” properly. Look
at the four highlighted rows (<<<). This is not a bug; there is something wrong with the query.
The window sorting specification (MGR, MSAL) is not precise enough. Employees SCOTT and FORD
happen to have the same manager and the same monthly salary, and the same is true for WARD
and MARTIN. You can solve this problem by changing the ORDER BY clause in line 3, to make it
deterministic, as shown in Listing 9-21.

Listing 9-21. Deterministic Window Sorting

SQL> select mgr, ename, msal
2 , sum(msal) over
3 (order by mgr, msal, EMPNO
4 range unbounded preceding
5) as cumulative
6 from employees
7 order by mgr, msal;

MGR ENAME MSAL CUMULATIVE
-------- -------- -------- ----------

7566 SCOTT 3000 3000
7566 FORD 3000 6000
7698 JONES 800 6800
7698 WARD 1250 8050

CHAPTER 9 ■ RETRIEVAL: SOME ADVANCED FEATURES254

7698 MARTIN 1250 9300
7698 TURNER 1500 10800
7698 ALLEN 1600 12400
7782 MILLER 1300 13700
7788 ADAMS 1100 14800
7839 CLARK 2450 17250
7839 BLAKE 2850 20100
7839 JONES 2975 23075
7902 SMITH 800 23875

KING 5000 28875

14 rows selected.

SQL>

By adding EMPNO (which is the primary key), you ensure that the window ordering is
deterministic.

Partitioned Analytical Windows
Now let’s enhance this example a little further. As shown in Figure 9-3, you can optionally par-
tition analytical windows, just as you can partition outer joins (as discussed in Section 8.9 of
the previous chapter). This makes the analytical functions start again for each partition. If you
look at the results in Listing 9-21, you can see that the cumulative salary increases with every
row, up to 28875.

In Listing 9-22, we add a PARTITION BY clause to the window specification, before the
ORDER BY clause. This makes the cumulative salary start again from zero for every manager.

Listing 9-22. PARTITION BY Example

SQL> break on MGR

SQL> select mgr, ename, msal
2 , sum(msal) over
3 (PARTITION BY mgr
4 order by mgr, msal, empno
5 range unbounded preceding
6) as cumulative
7 from employees
8 order by mgr, msal;

MGR ENAME MSAL CUMULATIVE
-------- -------- -------- ----------

7566 SCOTT 3000 3000
FORD 3000 6000

7698 JONES 800 800
WARD 1250 2050
MARTIN 1250 3300

CHAPTER 9 ■ RETRIEVAL: SOME ADVANCED FEATURES 255

TURNER 1500 4800
ALLEN 1600 6400

7782 MILLER 1300 1300
7788 ADAMS 1100 1100
7839 CLARK 2450 2450

BLAKE 2850 5300
JONES 2975 8275

7902 SMITH 800 800
KING 5000 5000

14 rows selected.

SQL>

Analytical Functions
For analytical functions, you can use all of the regular group functions, such as SUM, MAX, MIN,
AVG, and COUNT (see Section 8.6 of Chapter 8). On top of that, Oracle SQL offers an impressive
list of additional analytical functions that can be used only for window queries. Two of these
are LAG and LEAD, which are demonstrated in Listing 9-23.

Listing 9-23. LAG and LEAD Analytical Functions

SQL> break on empno

SQL> select empno, begindate, msal
2 , LAG(msal) over
3 (partition by empno
4 order by empno, begindate
5) as prev_sal
6 , LEAD(msal) over
7 (partition by empno
8 order by empno, begindate
9) as next_sal
10 from history
11 order by empno, begindate;

EMPNO BEGINDATE MSAL PREV_SAL NEXT_SAL
-------- ----------- -------- -------- --------

7369 01-JAN-2000 950 800
01-FEB-2000 800 950

7499 01-JUN-1988 1000 1300
01-JUL-1989 1300 1000 1500
01-DEC-1993 1500 1300 1700
01-OCT-1995 1700 1500 1600
01-NOV-1999 1600 1700

CHAPTER 9 ■ RETRIEVAL: SOME ADVANCED FEATURES256

...
7902 01-SEP-1998 1400 1650

01-OCT-1998 1650 1400 2500
15-MAR-1999 2500 1650 3000
01-JAN-2000 3000 2500 3000
01-AUG-2000 3000 3000

7934 01-FEB-1998 1275 1280
01-MAY-1998 1280 1275 1290
01-FEB-1999 1290 1280 1300
01-JAN-2000 1300 1290

79 rows selected.

SQL>

Applying these analytical functions to the HISTORY table, we get an historic overview per
employee/begin date period, showing the monthly salary, the previous monthly salary, and
the next monthly salary. If a previous or next value for the salary is inapplicable or unavailable,
you get a null value instead.

See Oracle SQL Reference for more details and examples of analytical functions. To begin
with, along with LAG and LEAD, check out RANK and DENSE_RANK.

9.7 Flashback Features
This section covers some Oracle-specific extensions of the SQL language. Although they might
appear slightly off topic, the flashback features are simply too valuable to remain uncovered in
this book.

In Chapter 6, we talked about the concept of read consistency. Read consistency means
that your SQL statements always get a consistent view of the data, regardless of what other
database users or applications do with the same data at the same time. The Oracle DBMS pro-
vides a snapshot of the data at the point in time when the statement execution started. In the
same chapter, you also saw that you can change your session to be READ ONLY, so that your
query results depend on the data as it was at the beginning of your session.

The Oracle DBMS has its methods to achieve this, without using any locking techniques
affecting other database users or applications. How this is done is irrelevant for this book. This
section shows some interesting ways to use the same technique, by stating explicitly in your
queries that you want to go back in time.

■Note The flashback query feature may need some configuration efforts before you can use it. This is the
task of a database administrator. Therefore, it is not covered in this book. See the Oracle documentation for
more details.

Before we start our flashback query experiments, we first create a temporary copy of the
EMPLOYEES table, as shown in Listing 9-24. This allows us to perform various experiments without

CHAPTER 9 ■ RETRIEVAL: SOME ADVANCED FEATURES 257

destroying the contents of the real EMPLOYEES table. We also change the NLS_TIMESTAMP_FORMAT
parameter with the ALTER SESSION command, to influence how timestamp values are displayed
on the screen.

Listing 9-24. Preparing for the Flashback Examples
SQL> create table e as select * from employees;
Table created.

SQL> alter session set nls_timestamp_format='DD-MON-YYYY HH24:MI:SS.FF3';
Session altered.

SQL> select localtimestamp as table_created from dual;
TABLE_CREATED
--
01-OCT-2004 10:53:42.746

SQL> update e set msal = msal + 10;
14 rows updated.
SQL> commit;
Commit complete.

SQL> select localtimestamp as after_update_1 from dual;
AFTER_UPDATE_1

01-OCT-2004 10:54:26.138

SQL> update e set msal = msal - 20 where deptno = 10;
3 rows updated.
SQL> commit;
Commit complete.

SQL> select localtimestamp as after_update_2 from dual;
AFTER_UPDATE_2

01-OCT-2004 10:54:42.602

SQL> delete from e where deptno <= 20;
8 rows deleted.
SQL> commit;
Commit complete.

SQL> select localtimestamp as now from dual;
NOW

01-OCT-2004 10:55:25.623

SQL>

CHAPTER 9 ■ RETRIEVAL: SOME ADVANCED FEATURES258

■Tip Don’t execute these four steps too quickly in a row. You should take some time in between the steps.
This makes it much easier during your experiments to go back to a specific point in time.

AS OF
Listing 9-25 shows a first example of a flashback query. First, we select the current situation
with a regular query. Then we use the AS OF TIMESTAMP option in the FROM clause to go back in
time. As in examples in earlier chapters, we use the SQL*Plus ampersand (&) substitution trick,
which allows us to repeat the query conveniently with different timestamp values.

Listing 9-25. Flashback Example: AS OF Syntax

SQL> select empno, ename, deptno, msal
2 from e;

EMPNO ENAME DEPTNO MSAL
-------- -------- -------- --------

7499 ALLEN 30 1610
7521 WARD 30 1260
7654 MARTIN 30 1260
7698 BLAKE 30 2860
7844 TURNER 30 1510
7900 JONES 30 810

SQL> select empno, ename, deptno, msal
2 from e
3 AS OF TIMESTAMP to_timestamp('×tamp');

Enter value for timestamp: 01-OCT-2004 10:53:47.000

EMPNO ENAME DEPTNO MSAL
-------- -------- -------- --------

7369 SMITH 20 800
7499 ALLEN 30 1600
7521 WARD 30 1250
7566 JONES 20 2975
7654 MARTIN 30 1250
7698 BLAKE 30 2850
7782 CLARK 10 2450
7788 SCOTT 20 3000
7839 KING 10 5000
7844 TURNER 30 1500
7876 ADAMS 20 1100
7900 JONES 30 800
7902 FORD 20 3000
7934 MILLER 10 1300

CHAPTER 9 ■ RETRIEVAL: SOME ADVANCED FEATURES 259

14 rows selected.

SQL> /
Enter value for timestamp: 01-OCT-2004 10:53:42.000
from e

*
ERROR at line 2:
ORA-01466: unable to read data - table definition has changed

SQL>

Of course, the timestamps to be used in Listing 9-25 depend on the timing of your experi-
ments. Choose appropriate timestamps if you want to test these statements yourself. If you
executed the steps of Listing 9-24 with some decent time intervals (as suggested), you have
enough appropriate candidate values to play with.

The Oracle error message at the bottom of Listing 9-25 indicates that this query is trying
to go back too far in time. In this case, table E didn’t even exist. Data definition changes (ALTER
TABLE E ...) may also prohibit flashback queries, as suggested by the error message text.

VERSIONS BETWEEN
In Listing 9-26, we go one step further, using the VERSIONS BETWEEN operator. Now we get the
complete history of the rows—that is, as far as the Oracle DBMS is able reconstruct them.

Listing 9-26. Flashback Example: VERSIONS BETWEEN Syntax

SQL> break on empno

SQL> select empno, msal
2 , versions_starttime
3 , versions_endtime
4 from e
5 versions between timestamp minvalue and maxvalue
6 where deptno = 10
7 order by empno, versions_starttime nulls first;

EMPNO MSAL VERSIONS_STARTTIME VERSIONS_ENDTIME
-------- -------- ------------------------- -------------------------

7782 2450 01-OCT-2004 10:54:23.000
2460 01-OCT-2004 10:54:23.000 01-OCT-2004 10:54:41.000
2440 01-OCT-2004 10:54:41.000 01-OCT-2004 10:55:24.000
2440 01-OCT-2004 10:55:24.000

7839 5000 01-OCT-2004 10:54:23.000
5010 01-OCT-2004 10:54:23.000 01-OCT-2004 10:54:41.000
4990 01-OCT-2004 10:54:41.000 01-OCT-2004 10:55:24.000
4990 01-OCT-2004 10:55:24.000

7934 1300 01-OCT-2004 10:54:23.000
1310 01-OCT-2004 10:54:23.000 01-OCT-2004 10:54:41.000

CHAPTER 9 ■ RETRIEVAL: SOME ADVANCED FEATURES260

1290 01-OCT-2004 10:54:41.000 01-OCT-2004 10:55:24.000
1290 01-OCT-2004 10:55:24.000

12 rows selected.

SQL>

By using the VERSIONS BETWEEN operator in the FROM clause, you introduce several addi-
tional pseudo columns, such as VERSIONS_STARTTIME and VERSIONS_ENDTIME. You can use these
pseudo columns in your queries.

By using the correct ORDER BY clause (watch the NULLS FIRST clause in Listing 9-26), you get a
complete historical overview. You don’t see a start time for the three oldest salary values because
you created the rows too long ago, and you don’t see an end time for the last value because it is
the current salary value.

FLASHBACK TABLE
In Chapter 7, you learned that you can rescue an inadvertently dropped table from the recycle
bin with the FLASHBACK TABLE command. Listing 9-27 shows another example of this usage.

Listing 9-27. Using FLASHBACK TABLE ... TO BEFORE DROP

SQL> drop table e;
Table dropped.

SQL> flashback table e to before drop;
Flashback complete.

SQL> select * from e;

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
------ -------- ----- -------- ------ ----------- ------ ------ ------
7499 ALLEN JAM SALESREP 7698 20-FEB-1961 1610 300 30
7521 WARD TF SALESREP 7698 22-FEB-1962 1260 500 30
7654 MARTIN P SALESREP 7698 28-SEP-1956 1260 1400 30
7698 BLAKE R MANAGER 7839 01-NOV-1963 2860 30
7844 TURNER JJ SALESREP 7698 28-SEP-1968 1510 0 30
7900 JONES R ADMIN 7698 03-DEC-1969 810 30

SQL>

You can go back to any point in time with the FLASHBACK TABLE command, as you can see
in Listing 9-28. Note the following important difference: Listings 9-25 and 9-26 show queries
against table E where you go back in time, but the FLASHBACK TABLE example in Listing 9-28
changes the database and restores table E to a given point in time.

CHAPTER 9 ■ RETRIEVAL: SOME ADVANCED FEATURES 261

Listing 9-28. Another FLASHBACK TABLE Example

SQL> select count(*) from e;

COUNT(*)

6

SQL> flashback table e to timestamp to_timestamp('×tamp');
Enter value for timestamp: 01-OCT-2004 10:54:00.000

Flashback complete.

SQL> select count(*) from e;

COUNT(*)

14

SQL>

It is not always possible to go back in time with one table using the FLASHBACK TABLE com-
mand. For example, you could have constraints referring to other tables prohibiting such a
change. See Oracle SQL Reference for more details about the FLASHBACK TABLE command.

9.8 Exercises
You can practice applying the advanced retrieval functions covered in this chapter in the
following exercises. The answers are presented in Appendix D.

1. It is normal practice that (junior) trainers always attend a course taught by a senior
colleague before teaching that course themselves. For which trainer/course combina-
tions did this happen?

2. Actually, if the junior trainer teaches a course for the first time, that senior colleague
(see the previous exercise) sits in the back of the classroom in a supporting role. Try to
find these course/junior/senior combinations.

3. Which employees never taught a course?

4. Which employees attended all build courses (category BLD)?
They are entitled to get a discount on the next course they attend.

5. Provide a list of all employees having the same monthly salary and commission as
(at least) one employee of department 30. You are interested in only employees from
other departments.

6. Look again at Listings 9-4 and 9-5. Are they really logically equivalent? Just for testing
purposes, search on a nonexisting job and execute both queries again. Explain the
results.

CHAPTER 9 ■ RETRIEVAL: SOME ADVANCED FEATURES262

7. You saw a series of examples in this chapter about all employees that ever taught an SQL
course (in Listings 9-9 through 9-11). How can you adapt these queries in such a way
that they answer the negation of the same question (… all employees that never …)?

8. Check out your solution for exercise 4 in Chapter 8: “For all course offerings, list the
course code, begin date, and number of registrations. Sort your results on the number
of registrations, from high to low.” Can you come up with a more elegant solution now,
without using an outer join?

9. Who attended (at least) the same courses as employee 7788?

10. Give the name and initials of all employees at the bottom of the management hierarchy,
with a third column showing the number of management levels above them.

11. Look at the query result in Listing 9-22. The last two rows are:

7902 SMITH 800 800
KING 5000 5000

Looking at the other rows in Listing 9-22, you might expect the following results
instead:

7902 SMITH 800 800
KING 5000 5800

What is the correct result, and why?

12. Why don’t you get any result from the following query?

SQL> select * from employees where rownum = 2;

no rows selected

SQL>

CHAPTER 9 ■ RETRIEVAL: SOME ADVANCED FEATURES 263

Views

This chapter covers views, a very important component of the relational model (see Ted
Codd’s rule 6, in Chapter 1). The first section explains the concept of views. The second sec-
tion discusses how to use the CREATE VIEW command to create views. In the next section, you’ll
learn about the various ways you can use views in SQL, in the areas of retrieval, logical data
independency, and security.

Then we explore the (im)possibilities of data manipulation via views. How does it work,
which are the constraints, and what should we consider? You’ll learn about updatable views,
nonupdatable views, and the WITH CHECK OPTION clause of the CREATE VIEW command.

Section 10.5 discusses data manipulation via inline views. This name is slightly confusing,
because inline views are not “real” views. Rather, they are subqueries in the FROM clause, as
discussed in the previous chapter. Data manipulation via inline views allows you to perform
various complicated and creative data manipulation operations, which would otherwise be
very complex (or impossible) via the underlying base tables.

Section 10.6 covers views and performance. Following that is a section about materialized
views. Materialized views are very popular in data warehousing environments, which have
relatively high data volumes with mainly read-only access. Materialized views allow you to
improve query response times with some form of controlled redundancy. The chapter ends
with some exercises.

10.1 What Are Views?
The result of a query is always a table, or more precisely, a derived table. Compared with “real”
tables in the database, the result of a query is volatile, but nevertheless, the result is a table.
The only thing that is missing for the query result is a name. Essentially, a view is nothing
more than a query with a given name. A more precise definition is as follows:

■DEFINITION A view is a virtual table with the result of a stored query as its “contents,” which are
derived each time you access the view.

265

C H A P T E R 1 0

■ ■ ■

The first part of this definition states two things:

• A view is a virtual table: That is, you can treat a view (in almost all circumstances) as
a table in your SQL statements. Every view has a name, and that’s why views are also
referred to as named queries. Views have columns, each with a name and a datatype, so
you can execute queries against views, and you can manipulate the “contents” of views
(with some restrictions) with INSERT, UPDATE, DELETE, and MERGE commands.

• A view is a virtual table: In reality, when you access a view, it only behaves like a table.
Views don’t have any rows; that’s why the view definition says “contents” (within quota-
tion marks). You define views as named queries, which are stored in the data dictionary;
that’s why another common term for views is stored queries. Each time you access the
“contents” of a view, the Oracle DBMS retrieves the view query from the data dictionary
and uses that query to produce the virtual table.

Data manipulation on a view sounds counterintuitive; after all, views don’t have any rows.
Nevertheless, views are supposed to behave like tables as much as possible. If you issue data
manipulation commands against a view, the DBMS is supposed to translate those commands
into corresponding actions against the underlying base tables. Note that some views are not
updatable; that’s why Ted Codd’s rule 6 (see Chapter 1) explicitly refers to views being theoreti-
cally updatable. We’ll discuss data manipulation via views in Section 10.4 of this chapter.

Views are not only dependent on changes in the contents of the underlying base tables,
but also on certain changes in the structure of those tables. For example, a view doesn’t work
anymore if you drop or rename columns of the underlying tables that are referenced in the
view definition.

10.2 View Creation
You can create views with the CREATE VIEW command. Figure 10-1 shows the corresponding
syntax diagram.

Figure 10-1. CREATE VIEW syntax diagram

CHAPTER 10 ■ VIEWS266

CHAPTER 10 ■ VIEWS 267

The OR REPLACE option allows you to replace an existing view definition. This is especially
useful if you have granted various privileges on your views. View privileges are not retained
when you use the DROP VIEW / CREATE VIEW command sequence (as explained later in this sec-
tion), but a CREATE OR REPLACE VIEW command does preserve them. The FORCE option doesn’t
check whether the underlying base tables (used in the view definition) exist or whether you
have sufficient privileges to access those base tables. Obviously, these conditions must even-
tually be met at the time you start using your view definition.

Normally, views inherit their column names from the defining query. However, you
should be aware of some possible complications. For example, you might have a query result
on your screen showing multiple columns with the same name, and you may have column
headings showing functions or other arbitrary column expressions. Obviously, you cannot use
query results with these problems as the basis for a view definition. Views have the same col-
umn naming rules and constraints as regular tables: column names must be different, and
they cannot contain characters such as brackets and arithmetic operators. You can solve such
problems in two ways:

• You can specify column aliases in the SELECT clause of the defining query, in such a way
that the column headings adhere to all column naming rules and conventions. In this
book’s examples, we use this method as much as possible.

• You can specify explicit column aliases in the CREATE VIEW command between the view
name and the AS clause (see Figure 10-1).

The WITH CHECK OPTION and WITH READ ONLY options influence view behavior under data
manipulation activity, as described later in this chapter, in Section 10.4.

Listing 10-1 shows two very similar SQL statements. However, note the main difference;
the first statement creates a view, and the second statement creates a table.

Listing 10-1. Views vs. Tables

SQL> create view dept20_v as
2 select * from employees where deptno = 20;

View created.

SQL> create table dept20_t as
2 select * from employees where deptno = 20;

Table created.

SQL>

The “contents” of the view DEPT20_V will always be fully dependent on the EMPLOYEES table.
The table DEPT20_T uses the current EMPLOYEES table as only a starting point. Once created, it is
a fully independent table with its own contents.

Creating a View from a Query
Listing 10-2 shows an example of a regular query with its result. The query is a join over three
tables, providing information about all employees and their departments. Note that we use an
alias in the SELECT clause (see line 6) to make sure that all columns in the query result have
different names. See line 2, where you select the ENAME column, too.

Listing 10-2. A Regular Query, Joining Three Tables

SQL> select e.empno
2 , e.ENAME
3 , e.init
4 , d.dname
5 , d.location
6 , m.ENAME as MANAGER
7 from employees e
8 join
9 departments d using (deptno)
10 join
11 employees m on (e.empno = d.mgr);

EMPNO ENAME INIT DNAME LOCATION MANAGER
-------- -------- ----- ---------- -------- -------

7369 SMITH N TRAINING DALLAS JONES
7499 ALLEN JAM SALES CHICAGO BLAKE
7521 WARD TF SALES CHICAGO BLAKE
7566 JONES JM TRAINING DALLAS JONES
7654 MARTIN P SALES CHICAGO BLAKE
7698 BLAKE R SALES CHICAGO BLAKE
7782 CLARK AB ACCOUNTING NEW YORK CLARK
7788 SCOTT SCJ TRAINING DALLAS JONES
7839 KING CC ACCOUNTING NEW YORK CLARK
7844 TURNER JJ SALES CHICAGO BLAKE
7876 ADAMS AA TRAINING DALLAS JONES
7900 JONES R SALES CHICAGO BLAKE
7902 FORD MG TRAINING DALLAS JONES
7934 MILLER TJA ACCOUNTING NEW YORK CLARK

14 rows selected.

SQL>

Listing 10-3 shows how you can transform this query into a view definition, by inserting
one additional line at the beginning of the command.

CHAPTER 10 ■ VIEWS268

Listing 10-3. Creating a View from the Query in Listing 10-2

SQL> create view empdept_v as -- This line is added
2 select e.empno
3 , e.ENAME
4 , e.init
5 , d.dname
6 , d.location
7 , m.ENAME as MANAGER
8 from employees e
9 join
10 departments d using (deptno)
11 join
12 employees m on (m.empno = d.mgr);

View created.

SQL>

This view is now a permanent part of your collection of database objects. However, note
that if we had not used an alias for m.ENAME, Listing 10-3 would give the following Oracle error
message:

ORA-00957: duplicate column name

Getting Information About Views from the Data Dictionary
Listing 10-4 queries the OBJ data dictionary view. As you can see, you now have two views in
your schema: DEPT20_V and EMPDEPT_V.

Listing 10-4. Querying the Data Dictionary to See Your Views

SQL> select object_name, object_type
2 from obj
3 where object_type in ('TABLE','VIEW')
4 order by object_type, object_name;

OBJECT_NAME OBJECT_TYPE
------------------------------ -----------
COURSES TABLE
DEPARTMENTS TABLE
DEPT20_T TABLE
E TABLE
EMPLOYEES TABLE
HISTORY TABLE
OFFERINGS TABLE
REGISTRATIONS TABLE
SALGRADES TABLE

CHAPTER 10 ■ VIEWS 269

DEPT20_V VIEW
EMPDEPT_V VIEW

11 rows selected.

SQL>

Listing 10-5 shows that you can use the SQL*Plus DESCRIBE command on a view, just as
you can on regular tables, and it also shows an example of a query against a view.

Listing 10-5. Using DESCRIBE and Writing Queries Against Views

SQL> describe empdept_v
Name Null? Type
----------------------------- -------- -------------
EMPNO NOT NULL NUMBER(4)
ENAME NOT NULL VARCHAR2(8)
INIT NOT NULL VARCHAR2(5)
DNAME NOT NULL VARCHAR2(10)
LOCATION NOT NULL VARCHAR2(8)
MANAGER NOT NULL VARCHAR2(8)

SQL> select * from empdept_v where manager = 'CLARK';

EMPNO ENAME INIT DNAME LOCATION MANAGER
-------- -------- ----- ---------- -------- --------

7934 MILLER TJA ACCOUNTING NEW YORK CLARK
7839 KING CC ACCOUNTING NEW YORK CLARK
7782 CLARK AB ACCOUNTING NEW YORK CLARK

SQL>

You can query the USER_VIEWS data dictionary view to retrieve your view definitions, as
shown in Listing 10-6.

■Note The two leading SQL*Plus commands in Listing 10-6 are used only to make the results more read-
able. Chapter 11 discusses these (and many other) SQL*Plus commands in more detail.

Listing 10-6. Retrieving View Definitions from the Data Dictionary

SQL> set long 999
SQL> column text format a42 word wrapped

SQL> select view_name, text
2 from user_views;

CHAPTER 10 ■ VIEWS270

VIEW_NAME TEXT
------------------------------ --
DEPT20_V select "EMPNO","ENAME","INIT","JOB",

"MGR","BDATE","MSAL","COMM","DEPTNO"
from employees where deptno=20

EMPDEPT_V select e.empno
, e.ENAME
, e.init
, d.dname
, d.location
, m.ENAME as MANAGER
from employees e

join
departments d using (deptno)
join
employees m on (m.empno = d.mgr)

SQL>

Apparently, if you define a view with a query starting with SELECT * FROM ..., the asterisk
(*) gets expanded (and stored) as a comma-separated list of column names. Compare the
query in Listing 10-1, where you created the DEPT20_V view, with the TEXT column contents in
Listing 10-6.

Replacing and Dropping Views
You cannot change the definition of an existing view. Oracle SQL offers an ALTER VIEW command,
but you can use that command only to recompile views that became invalid. You can drop a
view definition only, with the DROP VIEW command.

The DROP VIEW command is very straightforward, and doesn’t need additional explanation:

SQL> drop view <view_name>;

Alternatively, you can replace the definition of an existing view with the CREATE OR REPLACE
VIEW command, as described earlier in this section.

10.3 What Can You Do with Views?
You can use views for many different purposes. This section lists and explains the most important
ones: to simplify database retrieval, to maintain logical data independence, and to implement
data security.

Simplifying Data Retrieval
Views can simplify database retrieval significantly. You can build up (and test) complex queries
step by step, for more control over the correctness of your queries. In other words, you will be
more confident that your queries return the right results.

CHAPTER 10 ■ VIEWS 271

You can also store (hide) frequently recurring standard queries in a view definition, thus
reducing the number of unnecessary mistakes. For example, you might define views based on
frequently joined tables, UNION constructs, or complex GROUP BY statements.

Suppose we are interested in an overview showing all employees who have attended more
course days than the average employee. This is not a trivial query, so let’s tackle it in multiple
phases. As a first step toward the final solution, we ask the question, “How many course days
did everyone attend?” The query in Listing 10-7 provides the answer.

Listing 10-7. Working Toward a Solution: Step 1

SQL> select e.empno
2 , e.ename
3 , sum(c.duration) as days
4 from registrations r
5 join courses c on (c.code = r.course)
6 join employees e on (e.empno = r.attendee)
7 group by e.empno
8 , e.ename;

EMPNO ENAME DAYS
-------- -------- --------

7900 JONES 3
7499 ALLEN 11
7521 WARD 1
7566 JONES 5
7698 BLAKE 12
7782 CLARK 4
7788 SCOTT 12
7839 KING 8
7844 TURNER 1
7876 ADAMS 9
7902 FORD 9
7934 MILLER 4

12 rows selected.

SQL>

This is not the solution to our problem yet, but it is already quite complicated. We have a
join and a GROUP BY clause over a combination of two columns. If the result in Listing 10-7 were
a real table, our original problem would be much easier to solve. Well, we can simulate that
situation by defining a view. So we add one extra line to the query in Listing 10-7, as shown in
Listing 10-8.

CHAPTER 10 ■ VIEWS272

Listing 10-8. Working Toward a Solution: Step 2

SQL> create or replace view course_days as
2 select e.empno
3 , e.ename
4 , sum(c.duration) as days
5 from registrations r
6 join courses c on (c.code = r.course)
7 join employees e on (e.empno = r.attendee)
8 group by e.empno
9 , e.ename;

View created.

SQL> select *
2 from course_days
3 where days > 10;

EMPNO ENAME DAYS
-------- -------- --------

7499 ALLEN 11
7698 BLAKE 12
7788 SCOTT 12

SQL>

Now, the original problem is rather easy to solve. Listing 10-9 shows the solution.

Listing 10-9. Working Toward a Solution: The Final Step

SQL> select *
2 from course_days
3 where days > (select avg(days)
4 from course_days);

EMPNO ENAME DAYS
-------- -------- --------

7499 ALLEN 11
7698 BLAKE 12
7788 SCOTT 12
7839 KING 8
7876 ADAMS 9
7902 FORD 9

SQL>

CHAPTER 10 ■ VIEWS 273

Of course, you could argue that you could solve this query directly against the two base
tables, but it is easy to make a little mistake. Moreover, your solution will probably be difficult
to interpret. We could have used an inline view as well, or we could have separated the query
in Listing 10-7 into a WITH clause, as described in Section 9.4 of Chapter 9. Inline views and
subquery factoring (using the WITH clause) are good alternatives if you don’t have the right sys-
tem privileges to create views. A big advantage of using views, compared with inline views and
subquery factoring, is the fact that view definitions are persistent; that is, you might benefit
from the same view for more than one problem. Views occupy very little space (the DBMS
stores the query text only), and there is no redundancy at all.

Maintaining Logical Data Independence
You can use views to change the (logical) external interface of the database, as exposed to
database users and applications, without the need to change the underlying database struc-
tures themselves. In other words, you can use views to implement logical data independency.
For example, different database users can have different views on the same base tables. You
can rearrange columns, filter on rows, change table and column names, and so on.

Distributed databases often use views (or synonyms) to implement logical data independ-
ency and hide complexity. For example, you can define (and store) a view as a “local” database
object. Behind the scenes, the view query accesses data from other databases on the network,
but this is completely transparent to database users and applications.

You can also provide derivable information via views; that is, you implement redundancy
at the logical level. The COURSE_DAYS view we created in Listing 10-8 is an example, because
that view derives the number of course days.

Implementing Data Security
Last, but not least, views are a powerful means to implement data security. Views allow you to
hide certain data from database users and applications. The view query precisely determines
which rows and columns are exposed via the view. By using the GRANT and REVOKE commands
on your views, you specify in detail which actions against the view data are allowed. In this
approach, you don’t grant any privileges at all on the underlying base tables, since you obvi-
ously don’t want database users or applications to bypass the views and access the base tables
directly.

10.4 Data Manipulation via Views
As you’ve learned in this chapter, views are virtual tables, and they are supposed to behave like
tables as much as possible. For retrieval, that’s no problem. However, data manipulation via
views is not always possible. A view is theoretically updatable if the DML command against
the view can be unambiguously decomposed into corresponding DML commands against
rows and columns of the underlying base tables.

Let’s consider the three views created in Listings 10-10 and 10-11.

CHAPTER 10 ■ VIEWS274

Listing 10-10. CRS_OFFERINGS View, Based on a Join

SQL> create or replace view crs_offerings as
2 select o.course as course_code, c.description, o.begindate
3 from offerings o
4 join
5 courses c
6 on (o.course = c.code);

View created.

SQL>

Listing 10-11. Simple EMP View and Aggregate AVG_EVALUATIONS View

SQL> create or replace view emp as
2 select empno, ename, init
3 from employees;

View created.

SQL> create or replace view avg_evaluations as
2 select course
3 , avg(evaluation) as avg_eval
4 from registrations
5 group by course;

View created.

SQL>

First, let’s look at the most simple view: the EMP view. The Oracle DBMS should be able to
delete rows from the EMPLOYEES table via this view, or to change any of the three column values
exposed by the view. However, inserting new rows via this view is impossible, because the
EMPLOYEES table has NOT NULL columns without a default value (such as the date of birth) outside
the scope of the EMP view. See Listing 10-12 for some DML experiments against the EMP view.

Listing 10-12. Testing DML Commands Against the EMP View

SQL> delete from emp
2 where empno = 7654;

1 row deleted.

SQL> update emp
2 set ename = 'BLACK'
3 where empno = 7698;

CHAPTER 10 ■ VIEWS 275

1 row updated.

SQL> insert into emp
2 values (7999,'NEWGUY','NN');

insert into e
*
ERROR at line 1:
ORA-01400: cannot insert NULL into ("BOOK"."EMPLOYEES"."BDATE")

SQL> rollback;
Rollback complete.

SQL>

Note that the ORA-01400 error message in Listing 10-12 actually reveals several facts
about the underlying (and supposedly hidden) table:

• The schema name (BOOK)

• The table name (EMPLOYEES)

• The presence of a mandatory BDATE column

Before you think you’ve discovered a security breach in the Oracle DBMS, I should
explain that you get this informative error message only because you are testing the EMP view
while connected as BOOK. If you are connected as a different database user with INSERT privi-
lege against the EMP view only, the error message becomes as follows:

ORA-01400: cannot insert NULL into (???)

Updatable Join Views
The CRS_OFFERINGS view (see Listing 10-10) is based on a join of two tables: OFFERINGS and
COURSES. Nevertheless, you are able to perform some data manipulation via this view, as long
as the data manipulation can be translated into corresponding actions against the two under-
lying base tables. CRS_OFFERINGS is an example of an updatable join view. The Oracle DBMS
is getting closer and closer to the full implementation of Ted Codd’s rule 6 (see Chapter 1).
Listing 10-13 demonstrates testing some DML commands against this view.

Listing 10-13. Testing DML Commands Against the CRS_OFFERINGS View

SQL> delete from crs_offerings where course_code = 'ERM';

1 row deleted.

SQL> insert into crs_offerings (course_code, begindate)
2 values ('OAU' , trunc(sysdate));

CHAPTER 10 ■ VIEWS276

1 row created.

SQL> rollback;
Rollback complete.

SQL>

There are some rules and restrictions that apply to updatable join views. Also, the concept of
key-preserved tables plays an important role in this area. As the name indicates, a key-preserved
table is an underlying base table with a one-to-one row relationship with the rows in the view, via
the primary key or a unique key.

These are some examples of updatable join view restrictions:

• You are allowed to issue DML commands against updatable join views only if you
change a single underlying base table.

• For INSERT statements, all columns into which values are inserted must belong to a key-
preserved table.

• For UPDATE statements, all columns updated must belong to a key-preserved table.

• For DELETE statements, if the join results in more than one key-preserved table, the
Oracle DBMS deletes from the first table named in the FROM clause.

• If you created the view using WITH CHECK OPTION, some additional DML restrictions
apply, as explained a little later in this section.

As you can see in Listing 10-13, the DELETE and INSERT statements against the CRS_OFFERINGS
updatable join view succeed. Feel free to experiment with other data manipulation commands.
The Oracle error messages are self-explanatory if you hit one of the restrictions:

ORA-01732: data manipulation operation not legal on this view
ORA-01752: cannot delete from view without exactly one key-preserved table
ORA-01779: cannot modify a column which maps to a non key-preserved table

Nonupdatable Views
First of all, if you create a view with the WITH READ ONLY option (see Figure 10-1), data manipu-
lation via that view is impossible by definition, regardless of how you defined the view.

The AVG_EVALUATIONS view definition (see Listing 10-11) contains a GROUP BY clause. This
implies that there is no longer a one-to-one relationship between the rows of the view and the
rows of the underlying base table. Therefore, data manipulation via the AVG_EVALUATIONS view
is impossible.

If you use SELECT DISTINCT in your view definition, this has the same effect: it makes your
view nonupdatable. You should try to avoid using SELECT DISTINCT in view definitions, because
it has additional disadvantages; for example, each view access will force a sort to take place,
whether or not you need it.

CHAPTER 10 ■ VIEWS 277

The set operators UNION, MINUS, and INTERSECT also result in nonupdatable views. For
example, imagine that you are trying to insert a row via a view based on a UNION—in which
underlying base table should the DBMS insert that row?

The Oracle documentation provides all of the details and rules with regard to view
updatability. Most rules and exceptions are rather straightforward, and as noted earlier, most
Oracle error messages clearly indicate the reason why certain data manipulation commands
are forbidden.

The data dictionary offers a helpful view to find out which of your view columns are
updatable: the USER_UPDATABLE_COLUMNS view. For example, Listing 10-14 shows that you can-
not do much with the DESCRIPTION column of the CRS_OFFERINGS view. This is because it is
based on a column from the COURSES table, which is a not a key-preserved table in this view.

Listing 10-14. View Column Updatability Information from the Data Dictionary

SQL> select column_name
2 , updatable, insertable, deletable
3 from user_updatable_columns
4 where table_name = 'CRS_OFFERINGS';

COLUMN_NAME UPD INS DEL
-------------------- --- --- ---
COURSE_CODE YES YES YES
DESCRIPTION NO NO NO
BEGINDATE YES YES YES

SQL>

MAKING A VIEW UPDATABLE WITH INSTEAD-OF TRIGGERS

In a chapter about views, it’s worth mentioning that PL/SQL (the standard procedural programming language
for Oracle databases) provides a way to make any view updatable. With PL/SQL, you can define instead-of
triggers on your views. These triggers take over control as soon as any data manipulation commands are
executed against the view.

This means that you can make any view updatable, if you choose, by writing some procedural PL/SQL
code. Obviously, it is your sole responsibility to make sure that those instead-of triggers do the “right things”
to your database to maintain data consistency and integrity. Instead-of triggers should not be your first
thought to solve data manipulation issues with views. However, they may solve your problems in some spe-
cial cases, or they may allow you to implement a very specific application behavior.

CHAPTER 10 ■ VIEWS278

The WITH CHECK OPTION Clause
If data manipulation is allowed via a certain view, there are two rather curious situations that
deserve attention:

• You change rows with an UPDATE command against the view, and then the rows don’t
show up in the view anymore.

• You add rows with an INSERT command against the view; however, the rows don’t show
up when you query the view.

Disappearing Updated Rows
Do you still have the DEPT20_V view, created in Listing 10-1? Check out what happens in Listing
10-15: by updating four rows, they disappear from the view.

Listing 10-15. UPDATE Makes Rows Disappear

SQL> select * from dept20_v;

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- ----------- ----- ----- ------
7369 SMITH N TRAINER 7902 17-DEC-1965 800 20
7566 JONES JM MANAGER 7839 02-APR-1967 2975 20
7788 SCOTT SCJ TRAINER 7566 26-NOV-1959 3000 20
7876 ADAMS AA TRAINER 7788 30-DEC-1966 1100 20
7902 FORD MG TRAINER 7566 13-FEB-1959 3000 20

SQL> update dept20_v
2 set deptno = 30
3 where job ='TRAINER';

4 rows updated.

SQL> select * from dept20_v;

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- ----------- ----- ----- ------
7566 JONES JM MANAGER 7839 02-APR-1967 2975 20

SQL> rollback;
Rollback complete.

SQL>

CHAPTER 10 ■ VIEWS 279

Apparently, the updates in Listing 10-15 are propagated to the underlying EMPLOYEES table.
All trainers from department 20 don’t show up anymore in the DEPT20_V view, because their
DEPTNO column value is changed from 20 to 30.

Inserting Invisible Rows
The second curious scenario is shown in Listing 10-16. You insert a new row for employee
9999, and you get the message “1 row created.” However, the new employee does not show up
in the query.

Listing 10-16. INSERT Rows Without Seeing Them in the View

SQL> insert into dept20_v
2 values (9999,'BOS','D', null, null
3 , date '1939-01-01'
4 , '10', null, 30);

1 row created.

SQL> select * from dept20_v;

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- ----------- ----- ----- ------
7369 SMITH N TRAINER 7902 17-DEC-1965 800 20
7566 JONES JM MANAGER 7839 02-APR-1967 2975 20
7788 SCOTT SCJ TRAINER 7566 26-NOV-1959 3000 20
7876 ADAMS AA TRAINER 7788 30-DEC-1966 1100 20
7902 FORD MG TRAINER 7566 13-FEB-1959 3000 20

5 rows selected.

SQL> rollback;
Rollback complete.

SQL>

Listing 10-16 shows that you can insert a new employee via the DEPT20_V view into the
underlying EMPLOYEES table, without the new row showing up in the view itself.

Preventing These Two Scenarios
If the view behavior just described is undesirable, you can create your views with the WITH
CHECK OPTION clause (see Figure 10-1). Actually, the syntax diagram in Figure 10-1 is not com-
plete. You can assign a name to WITH CHECK OPTION constraints, as follows:

SQL> create [or replace] view ... with check option constraint <cons-name>;

If you don’t provide a constraint name, the Oracle DBMS generates a rather cryptic one
for you.

CHAPTER 10 ■ VIEWS280

Listing 10-17 replaces the DEPT20_V view, using WITH CHECK OPTION, and shows that the
INSERT statement that succeeded in Listing 10-16 now fails with an Oracle error message.

Listing 10-17. Creating Views WITH CHECK OPTION

SQL> create or replace view dept20_v as
2 select * from employees where deptno = 20
3 with check option constraint dept20_v_check;

View created.

SQL> insert into dept20_v
2 values (9999,'BOS','D', null, null
3 , date '1939-01-01'
4 , '10', null, 30);

, '10', null, 30)
*

ERROR at line 4:
ORA-01402: view WITH CHECK OPTION where-clause violation

SQL>

Constraint Checking
In the old days, when the Oracle DBMS didn’t yet support referential integrity constraints
(which is a long time ago, before Oracle7), you were still able to implement certain integrity
constraints by using WITH CHECK OPTION when creating views. For example, you could use sub-
queries in the view definition to check for row existence in other tables. Listing 10-18 gives an
example of such a view. Nowadays, you don’t need this technique anymore, of course.

Listing 10-18. WITH CHECK OPTION and Constraint Checking

SQL> create or replace view reg_view as
2 select r.*
3 from registrations r
4 where r.attendee in (select empno
5 from employees)
6 and r.course in (select code
7 from courses)
8 and r.evaluation in (1,2,3,4,5)
9 with check option;

View created.

SQL> select constraint_name, table_name
2 from user_constraints
3 where constraint_type = 'V';

CHAPTER 10 ■ VIEWS 281

CONSTRAINT_NAME TABLE_NAME
-------------------- --------------------
SYS_C005979 REG_VIEW
DEPT20_V_CHECK DEPT20_V

SQL>

Via the REG_VIEW view, you can insert registrations only for an existing employee and an
existing course. Moreover, the EVALUATION value must be an integer between 1 and 5, or a null
value. Any data manipulation command against the REG_VIEW view that violates one of the
above three checks will result in an Oracle error message. CHECK OPTION constraints show up in
the data dictionary with a CONSTRAINT_TYPE value V; notice the system-generated constraint
name for the REG_VIEW view.

10.5 Data Manipulation via Inline Views
Inline views are subqueries assuming the role of a table expression in SQL commands. In other
words, you specify a subquery (between parentheses) in places where you would normally
specify a table or view name. We already discussed inline views in the previous chapter, but
we considered inline views only in the FROM component of queries.

You can also use inline views for data manipulation purposes. Data manipulation via
inline views is especially interesting in combination with updatable join views. Listing 10-19
shows an example of an UPDATE command against an inline updatable join view.

Listing 10-19. UPDATE via an Inline Updatable Join View

SQL> update (select e.msal
2 from employees e join
3 departments d using (deptno)
4 where location = 'DALLAS')
5 set msal = msal + 1;

5 rows updated.

SQL> rollback;
Rollback complete.

SQL>

Listing 10-19 shows that you can execute UPDATE commands via an inline join view, giving
all employees in Dallas a symbolic salary raise. Note that the UPDATE command does not con-
tain a WHERE clause at all; the inline view filters the rows to be updated. This filtering would be
rather complicated to achieve in a regular UPDATE command against the EMPLOYEES table. For
that, you probably would need a correlated subquery in the WHERE clause.

At first sight, it may seem strange to perform data manipulation via inline views (or
subqueries), but the number of possibilities is almost unlimited. The syntax is elegant and

CHAPTER 10 ■ VIEWS282

readable, and the response time is at least the same (if not better) compared with the corre-
sponding commands against the underlying base tables. Obviously, all restrictions regarding
data manipulation via updatable join views (as discussed earlier in this section) still apply.

10.6 Views and Performance
Normally, the Oracle DBMS processes queries against views in the following way:

1. The DBMS notices that views are involved in the query entered.

2. The DBMS retrieves the view definition from the data dictionary.

3. The DBMS merges the view definition with the query entered.

4. The optimizer chooses an appropriate execution plan for the result of the previous
step: a command against base tables.

5. The DBMS executes the plan from the previous step.

In exceptional cases, the Oracle DBMS may decide to execute the view query from the
data dictionary, populate a temporary table with the results, and then use the temporary table
as a base table for the query entered. This happens only if the Oracle DBMS is not able to
merge the view definition with the query entered, or if the Oracle optimizer determines that
using a temporary table is a good idea.

In the regular approach, as outlined in the preceding five steps, steps 2 and 3 are the only
additional overhead. One of the main advantages of this approach is that you can benefit opti-
mally from indexes on the underlying base tables.

For example, suppose you enter the following query against the AVG_EVALUATIONS view:

SQL> select *
2 from avg_evaluations
3 where avg_eval >= 4

This query is transformed internally into the statement shown in Listing 10-20. Notice
that the WHERE clause is translated into a HAVING clause, and the asterisk (*) in the SELECT clause
is expanded to the appropriate list of column expressions.

Listing 10-20. Rewritten Query Against the REGISTRATIONS Table

SQL> select r.course
2 , avg(r.evaluation) as avg_eval
3 from registrations r
4 group by r.course
5 having avg(r.evaluation) >= 4;

COURSE AVG_EVAL
------ --------
JAV 4.125
OAU 4.5

CHAPTER 10 ■ VIEWS 283

XML 4.5

SQL>

Especially when dealing with larger tables, the performance overhead of using views is
normally negligible. If you start defining views on views on views, the performance overhead
may become more significant. And, in case you don’t trust the performance overhead, you can
always use diagnostic tools such as SQL*Plus AUTOTRACE (see Chapter 7, Section 7.6) to check
execution plans and statistics.

10.7 Materialized Views
A brief introduction of materialized views makes sense in this chapter about views. The intent
of this section is to illustrate the concept of materialized views, using a simple example.

Normally, materialized views are mainly used in complex data warehousing environ-
ments, where the tables grow so big that the data volume causes unacceptable performance
problems. An important property of data warehousing environments is that you don’t change
the data very often. Typically, there is a separate Extraction, Transformation, Loading (ETL)
process that updates the data warehouse contents.

Materialized views are also often used with distributed databases. In such environments,
accessing data over the network can become a performance bottleneck. You can use material-
ized views to replicate data in a distributed database.

To explore materialized views, let’s revisit Listing 10-1 and add a third DDL command, as
shown in Listing 10-21.

Listing 10-21. Comparing Views, Tables, and Materialized Views

SQL> create or replace VIEW dept20_v as
2 select * from employees where deptno = 20;

View created.

SQL> create TABLE dept20_t as
2 select * from employees where deptno = 20;

Table created.

SQL> create MATERIALIZED VIEW dept20_mv as
2 select * from employees where deptno = 20;

Materialized view created.

SQL>

You already know the difference between a table and a view, but what is a materialized
view? Well, as the name suggests, it’s a view for which you store both its definition and the
query results. In other words, a materialized view has its own rows. Materialized views imply
redundant data storage.

CHAPTER 10 ■ VIEWS284

The materialized view DEPT20_MV now contains all employees of department 20, and you
can execute queries directly against DEPT20_MV, if you like. However, that’s not the main pur-
pose of creating materialized views, as you will learn from the remainder of this section.

Properties of Materialized Views
Materialized views have two important properties, in the areas of maintenance and usage:

• Maintenance: Materialized views are “snapshots.” That is, they have a certain content
at any point in time, based on “refreshment” from the underlying base tables. This
implies that the contents of materialized views are not necessarily up-to-date all the
time, because the underlying base tables can change. Fortunately, the Oracle DBMS
offers various features to automate the refreshment of your materialized views com-
pletely, in an efficient way. In other words, yes, you have redundancy, but you can easily
set up appropriate redundancy control.

• Usage: The Oracle optimizer (the component of the Oracle DBMS deciding about exe-
cution plans for SQL commands) is aware of the existence of materialized views. The
optimizer also knows whether materialized views are up-to-date or stale. The optimizer
can use this knowledge to replace queries written against regular base tables with cor-
responding queries against materialized views, if the optimizer thinks that approach
may result in better response times. This is referred to as the query rewrite feature,
which is explained in the next section.

■Note When you create materialized views, you normally specify whether you want to enable query
rewrite, and how you want the Oracle DBMS to handle the refreshing of the materialized view. Those syntax
details are omitted here. See Oracle SQL Reference for more information.

Query Rewrite
Let’s continue with our simple materialized view, created in Listing 10-21. Assume you enter
the following query, selecting all trainers from department 20:

SQL> select * from employees where deptno = 20 and job = 'TRAINER'

For this query, the optimizer may decide to execute the following query instead:

SQL> select * from dept20_mv where job = 'TRAINER'

In other words, the original query against the EMPLOYEES table is rewritten against the
DEPT20_MV materialized view. Because the materialized view contains fewer rows than the
EMPLOYEES table (and therefore fewer rows need to be scanned), the optimizer thinks it is a
better starting point to produce the desired end result. Listing 10-22 shows query rewrite at
work, using the SQL*Plus AUTOTRACE feature.

CHAPTER 10 ■ VIEWS 285

Listing 10-22. Materialized Views and Query Rewrite at Work

SQL> set autotrace on explain
SQL> select * from employees where deptno = 20 and job = 'TRAINER';

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
------ -------- ----- -------- ----- ----------- ----- ----- ------
7369 SMITH N TRAINER 7902 17-DEC-1965 800 20
7788 SCOTT SCJ TRAINER 7566 26-NOV-1959 3000 20
7876 ADAMS AA TRAINER 7788 30-DEC-1966 1100 20
7902 FORD MG TRAINER 7566 13-FEB-1959 3000 20

Execution Plan

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=3 Card=4 Bytes=360)
1 0 MAT_VIEW REWRITE ACCESS (FULL) OF 'DEPT20_MV' (MAT_VIEW REWRITE)

(Cost=3 Card=4 Bytes=360)

SQL>

Although it is obvious from Listing 10-22 that you write a query against the EMPLOYEES
table, the execution plan (produced with AUTOTRACE ON EXPLAIN) shows that the materialized
view DEPT20_MV is accessed instead.

Materialized views normally provide better response times; however, there is a risk that
the results are based on stale data because the materialized views are out of sync with the
underlying base tables. You can specify whether you tolerate query rewrites in such cases, thus
controlling the behavior of the optimizer. If you want precise results, the optimizer considers
query rewrite only when the materialized views are guaranteed to be up-to-date.

Obviously, the materialized view example we used in this section is much too simple.
Normally, you create materialized views with relatively “expensive” operations, such as
aggregation (GROUP BY), joins over multiple tables, and set operators (UNION, MINUS, and
INTERSECT)—operations that are too time-consuming to be repeated over and over again.
For more details and examples of materialized views, see Data Warehousing Guide.

10.8 Exercises
As in the previous chapters, we end this chapter with some practical exercises. See Appendix
D for the answers.

1. Look at the example discussed in Listings 10-7, 10-8, and 10-9. Rewrite the query in
Listing 10-9 without using a view, by using the WITH operator.

2. Look at Listing 10-12. How is it possible that you can delete employee 7654 via this EMP
view? There are rows in the HISTORY table, referring to that employee via a foreign key
constraint.

CHAPTER 10 ■ VIEWS286

3. Look at the view definition in Listing 10-18. Does this view implement the foreign key
constraints from the REGISTRATIONS table to the EMPLOYEES and COURSES tables? Explain
your answer.

4. Create a SAL_HISTORY view providing the following overview for all employees, based
on the HISTORY table: For each employee, show the hire date, the review dates, and the
salary changes as a consequence of those reviews.

Check your view against the following result:

SQL> select * from sal_history;

EMPNO HIREDATE REVIEWDATE SALARY_RAISE
----- ----------- ----------- ------------
7369 01-JAN-2000 01-JAN-2000
7369 01-JAN-2000 01-FEB-2000 -150
7499 01-JUN-1988 01-JUN-1988
7499 01-JUN-1988 01-JUL-1989 300
7499 01-JUN-1988 01-DEC-1993 200
7499 01-JUN-1988 01-OCT-1995 200
7499 01-JUN-1988 01-NOV-1999 -100
...
7934 01-FEB-1998 01-FEB-1998
7934 01-FEB-1998 01-MAY-1998 5
7934 01-FEB-1998 01-FEB-1999 10
7934 01-FEB-1998 01-JAN-2000 10

79 rows selected.

SQL>

CHAPTER 10 ■ VIEWS 287

SQL*Plus and iSQL*Plus

Chapter 2 introduced SQL*Plus and iSQL*Plus. In that chapter, we focused on the most
essential commands required to get started with SQL, such as the SQL*Plus editor commands
(LIST, INPUT, CHANGE, APPEND, DEL, and EDIT), file management (SAVE, GET, START, and SPOOL), and
other commands (HOST, DESCRIBE, and HELP).

■Note SQL*Plus is the oldest Oracle tool still available. It was renamed from UFI (User Friendly Interface) in
version 4 to SQL*Plus in Version 5.

This chapter covers some more advanced features of SQL*Plus and iSQL*Plus. Knowing
how to use these features will enhance your skills in using these tools, thus increasing your
satisfaction and productivity.

The first section introduces the various variable types supported by SQL*Plus: substitution
variables, user variables, and system variables. When dealing with SQL*Plus variables, the most
important commands are SET, SHOW, DEFINE, and ACCEPT.

The second section explains SQL bind variables. These bind variables are crucial when
developing mission-critical database applications, if high performance and scalability are
important goals.

In the previous chapters, you have used SQL*Plus in an interactive way—you enter the
commands, hit the Enter key, and wait for the results to appear on your screen. Section 11.3
shows that you can also use SQL*Plus by using script files.

In Section 11.4, you will see how you can use SQL*Plus as a reporting tool, by enhancing
the layout of the results with SQL*Plus commands such as the TTITLE, BTITLE, COLUMN, BREAK,
and COMPUTE commands.

Section 11.5 focuses on various ways you can use SQL*Plus and iSQL*Plus as database
tools in an HTML (browser) environment. The final section contains exercises.

289

C H A P T E R 1 1

■ ■ ■

11.1 SQL*Plus Variables
SQL*Plus supports the following three variable types:

• Substitution variables

• User-defined variables

• System variables

SQL*Plus Substitution Variables
Substitution variables appear in SQL or SQL*Plus commands. SQL*Plus prompts for a value
when you execute those commands. We have used substitution variables in earlier examples
in this book (Listing 5-14 and Listing 9-25), to test certain commands multiple times with dif-
ferent literal values.

Substitution variable values are volatile; that is, SQL*Plus doesn’t remember them and
doesn’t store them anywhere. This is what distinguishes substitution variables from the other
two types. If you execute the same SQL or SQL*Plus command again, SQL*Plus prompts for
a value again. The default character that makes SQL*Plus prompt for a substitution variable
value is the ampersand (&), also known as the DEFINE character. Check out what happens in
Listing 11-1.

Listing 11-1. Using the DEFINE Character (&)

SQL> select * from departments
2 where dname like upper('%&letter%');

Enter value for letter: a
old 2: where dname like upper('%&letter%')
new 2: where dname like upper('%a%')

DEPTNO DNAME LOCATION MGR
-------- ---------- -------- --------

10 ACCOUNTING NEW YORK 7782
20 TRAINING DALLAS 7566
30 SALES CHICAGO 7698

SQL>

Actually, if a substitution variable occurs twice within a single command, SQL*Plus also
prompts twice for a value, as demonstrated in Listing 11-2.

Listing 11-2. Prompting Twice for the Same Variable

SQL> select ename from employees
2 where empno between &x and &x+100;

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS290

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS 291

Enter value for x: 7500
Enter value for x: 7500
old 2: where empno between &x and &x+100
new 2: where empno between 7500 and 7500+100

ENAME

WARD
JONES

SQL>

You can use the period character (.) to mark the end of the name of a substitution variable,
as shown in Listing 11-3. The period (.) is also known as the CONCAT character in SQL*Plus.

Normally, you don’t need the CONCAT character very often, because white space is good
enough to delimit variable names; however, white space in strings can sometimes be undesir-
able. See Listing 11-3 for an example.

Listing 11-3. Using the DEFINE and CONCAT Characters

SQL> select '&drink.glass' as result from dual;

Enter value for drink: beer
old 1: select '&drink.glass' as result from dual
new 1: select 'beerglass' as result from dual

RESULT

beerglass

SQL>

Note that you can display the current settings of the DEFINE and CONCAT characters with
the SQL*Plus SHOW command, and you can change these settings with the SQL*Plus SET com-
mand, as shown in Listing 11-4. If you are using the GUI of SQL*Plus, you can also use the
Options ➤ Environment menu option to display or manipulate these SQL*Plus settings.

Listing 11-4. Displaying the DEFINE and CONCAT Character Settings

SQL> show define
define "&" (hex 26)

SQL> show concat
concat "." (hex 2e)

SQL>

If you don’t want SQL*Plus to display the explicit replacement of substitution variables
by the values you entered (as in Listings 11-1, 11-2, and 11-3), you can suppress that with the
SQL*Plus VERIFY setting, as shown in Listing 11-5.

Listing 11-5. Switching the VERIFY Setting ON and OFF

SQL> set verify on
SQL> set verify off
SQL> show verify
verify OFF

SQL>

For the SQL*Plus VERIFY setting, you can use the Options ➤ Environment menu option,
just as you can for the DEFINE and CONCAT character settings.

If you change the VERIFY setting to OFF, as shown in Listing 11-5, and you execute the SQL
command (still in the SQL buffer) with the SQL*Plus RUN command, you don’t see the “old:
...” and “new: ...” lines anymore, as shown in Listing 11-6.

Listing 11-6. The Effect of VERIFY OFF

SQL> select ename from employees
2 where empno between &x and &x+100;

Enter value for x: 7500
Enter value for x: 7500

ENAME

WARD
JONES

SQL>

SQL*Plus User-Defined Variables
If you want to store the value of a SQL*Plus variable (at least temporarily) so you can use it
multiple times, you need the next category of SQL*Plus variables: user-defined variables.

You can use the SQL*Plus DEFINE command to declare user-defined variables and to
assign values to them, as shown in Listing 11-7.

Listing 11-7. Assigning Values to User-Defined Variables with DEFINE

SQL> define x=7500

SQL> select ename from employees
2 where empno between &x and &x+100;

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS292

ENAME

WARD
JONES

SQL>

The DEFINE command in Listing 11-7 stores the user-defined variable X with its value 7500.
That’s why SQL*Plus doesn’t prompt for a value for X anymore in Listing 11-7.

The SQL*Plus DEFINE command not only allows you to assign values to user-defined vari-
ables, but also to display current values. You can ask for the current value of a specific (named)
variable, or you can display a full overview of all user-defined variables by entering the DEFINE
command without any arguments. The SQL*Plus UNDEFINE command allows you to remove a
user-defined variable. Listing 11-8 shows examples of DEFINE and UNDEFINE.

Listing 11-8. DEFINE and UNDEFINE Examples

SQL> def x
DEFINE X = "7500" (CHAR)

SQL> def
DEFINE _DATE = "25-SEP-2004" (CHAR)
DEFINE _CONNECT_IDENTIFIER = "orcl" (CHAR)
DEFINE _USER = "BOOK" (CHAR)
DEFINE _PRIVILEGE = "" (CHAR)
DEFINE _SQLPLUS_RELEASE = "1001000200" (CHAR)
DEFINE _EDITOR = "vim" (CHAR)
DEFINE _O_VERSION = "Oracle Database 10g Enterprise Edition
Release 10.1.0.2.0 - Production
With the Partitioning, OLAP and Data Mining options" (CHAR)
DEFINE _O_RELEASE = "1001000200" (CHAR)
DEFINE X = "7500" (CHAR)

SQL> undefine x
SQL>

Implicit SQL*Plus User-Defined Variables
SQL*Plus also supports syntax allowing you to define variables implicitly. With this method,
you start with substitution variables in your SQL and SQL*Plus commands, and you end up
with user-defined variables; SQL*Plus prompts for a value only once. You can implement this
behavior by using double ampersands (&&). Look at the experiments in Listing 11-9, showing
that you start out without an ENR variable, you are prompted for a value only once, and then
an implicit DEFINE is executed.

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS 293

Listing 11-9. Using Double Ampersands (&&)

SQL> define enr
SP2-0135: symbol enr is UNDEFINED

SQL> select * from employees
2 where empno between &&enr and &enr+100;

Enter value for enr: 7500

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- ----------- ----- ----- ------
7521 WARD TF SALESREP 7698 22-FEB-1962 1250 500 30
7566 JONES JM MANAGER 7839 02-APR-1967 2975 20

SQL> define enr
DEFINE ENR = "7500" (CHAR)
SQL>

If you now reexecute the contents of the SQL buffer (with / or RUN), there is no prompting
at all; the stored ENR value (7500) is used. So if you use this technique, make sure to end (or
start) your scripts with the appropriate UNDEFINE commands.

User-Friendly Prompting
SQL*Plus provides a more user-friendly method to create user-defined variables and prompt
for values, while offering some more control over the values as well. This method is especially
useful with SQL*Plus scripts (discussed in Section 11.3). User-friendly prompting uses a com-
bination of the three SQL*Plus commands: PROMPT, PAUSE, and ACCEPT. Listing 11-10 shows an
example.

Listing 11-10. Using PROMPT, PAUSE, and ACCEPT

SQL> prompt This is a demonstration.
This is a demonstration.

SQL> pause Hit the [Enter] key...
Hit the [Enter] key...

SQL> accept x number -
> prompt "Enter a value for x: "
Enter a value for x: 42

SQL> define x
DEFINE X = 42 (NUMBER)
SQL>

The PROMPT command allows you to write text to the screen, the PAUSE command allows
you to suspend script execution, and the ACCEPT command gives you full control over the

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS294

datatype of the user-defined variable and the screen text prompting for a value. Just try to
enter a nonnumeric value for variable X in Listing 11-10. You will get the following SQL*Plus
error message:

Enter a value for x: monkey
SP2-0425: "monkey" is not a valid NUMBER

By the way, note that you can split a SQL*Plus command over multiple lines, as shown in
Listing 11-10 in the ACCEPT command example. Normally, the newline character is a SQL*Plus
command delimiter, but you can “escape” from that special meaning of the newline character
by ending your command lines with a minus sign (-).

■Caution Splitting commands over multiple lines by using the minus sign as an escape character is rele-
vant only for SQL*Plus commands, not for SQL commands.

SQL*Plus System Variables
The third category of SQL*Plus variables is system variables. The values of these system-
defined SQL*Plus variables control the overall behavior of SQL*Plus. You already saw various
examples of these system variables, such as PAGESIZE and PAUSE, in Chapter 2.

In the previous section, you learned that you need the SQL*Plus commands DEFINE and
UNDEFINE to manage user-defined variables. For system variables, you need the SQL*Plus com-
mands SET and SHOW to assign or retrieve values, respectively. You can also manage SQL*Plus
system variables via the Options ➤ Environment menu option.

Listing 11-11 shows some examples of system variables.

Listing 11-11. Some SQL*Plus System Variable Examples

SQL> show pagesize
pagesize 36

SQL> show pause
PAUSE is OFF

SQL> set pause '[Enter]... '
SQL> set pause on
SQL> set pagesize 10

SQL> select * from employees;
[Enter]...

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- ----------- ----- ----- ------
7369 SMITH N TRAINER 7902 17-DEC-1965 800 20
7499 ALLEN JAM SALESREP 7698 20-FEB-1961 1600 300 30
7521 WARD TF SALESREP 7698 22-FEB-1962 1250 500 30

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS 295

7566 JONES JM MANAGER 7839 02-APR-1967 2975 20
7654 MARTIN P SALESREP 7698 28-SEP-1956 1250 1400 30
7698 BLAKE R MANAGER 7839 01-NOV-1963 2850 30
7782 CLARK AB MANAGER 7839 09-JUN-1965 2450 10
[Enter]...

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- ----------- ----- ----- ------
7788 SCOTT SCJ TRAINER 7566 26-NOV-1959 3000 20
7839 KING CC DIRECTOR 17-NOV-1952 5000 10
7844 TURNER JJ SALESREP 7698 28-SEP-1968 1500 0 30
7876 ADAMS AA TRAINER 7788 30-DEC-1966 1100 20
7900 JONES R ADMIN 7698 03-DEC-1969 800 30
7902 FORD MG TRAINER 7566 13-FEB-1959 3000 20
7934 MILLER TJA ADMIN 7782 23-JAN-1962 1300 10

14 rows selected.

SQL> set pause off pagesize 42
SQL> show all
...
SQL>

If you execute the last command of Listing 11-11 (SHOW ALL), you will see that the number of
SQL*Plus system variables is impressive. That’s why the output in Listing 11-11 is suppressed.

Table 11-1 shows an overview of the SQL*Plus system variables, listing only the most
commonly used SQL*Plus system variables. Where applicable, the third column shows the
default values. In the first column, the brackets indicate abbreviations you may want to use.

Table 11-1. Some Common SQL*Plus System Variables

Variable Description Default

COLSEP String to display between result columns " " (space)

CON[CAT] Character to mark the end of a variable name . (period)

DEF[INE] Character to refer to variable values & (ampersand)

ECHO Display or suppress commands (relevant only for scripts) OFF

FEED[BACK] Display “... rows selected” from a certain minimum 6
result size

HEA[DING] Display column names above results ON

HEADS[EP] Divide column headers over multiple lines | (vertical bar)

LIN[ESIZE] Line or screen width, in characters 80

LONG Default width for LONG columns 80

NEWP[AGE] Number of empty lines after every page break 1

NULL Display of null values in the results

NUMF[ORMAT] Default format to display numbers

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS296

Variable Description Default

NUM[WIDTH] Default width for numeric columns 10

PAGES[IZE] Number of lines per page 14

PAU[SE] Display results per page OFF

SQLP[ROMPT] SQL*Plus prompt string SQL>

SQLT[ERMINATOR] SQL command delimiter (execute the command) ; (semicolon)

TIMI[NG] Show elapsed time after each command OFF

TRIMS[POOL] Suppress trailing spaces in spool files OFF

USER Username for the current SQL*Plus session (cannot be set)

VER[IFY] Show command lines before/after variable substitution ON

Let’s look at some experiments with SQL*Plus system variables, beginning with the
FEEDBACK variable. This variable is a switch (you can set it to ON or OFF) and also a threshold
value, as shown in Listing 11-12 where we set it to 4.

■Note In order to save some trees, the listings don’t repeat the query results each time. You can easily see
the effects of the various system variable values yourself.

Listing 11-12. Using the FEEDBACK System Variable

SQL> select * from departments;

DEPTNO DNAME LOCATION MGR
-------- ---------- -------- --------

10 ACCOUNTING NEW YORK 7782
20 TRAINING DALLAS 7566
30 SALES CHICAGO 7698
40 HR BOSTON 7839

SQL> set feedback 4
SQL> /

DEPTNO DNAME LOCATION MGR
-------- ---------- -------- --------

10 ACCOUNTING NEW YORK 7782
20 TRAINING DALLAS 7566
30 SALES CHICAGO 7698
40 HR BOSTON 7839

4 rows selected. <<<

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS 297

SQL> select * from employees;
...
SQL> set feedback off
SQL> show feedback
feedback OFF
SQL> /
...
SQL> set feedback 10
SQL>

Using COLSEP and NUMWIDTH, as shown in Listing 11-13, the default space separating
the result columns is replaced by a vertical line, and the GRADE and BONUS columns are now
10 columns wide.

Listing 11-13. Using the COLSEP and NUMWIDTH System Variables

SQL> select * from salgrades;

GRADE LOWERLIMIT UPPERLIMIT BONUS
------ ---------- ---------- ------

1 700 1200 0
2 1201 1400 50
3 1401 2000 100
4 2001 3000 200
5 3001 9999 500

SQL> set colsep " | "
SQL> set numwidth 10
SQL> /

GRADE	LOWERLIMIT	UPPERLIMIT	BONUS

1 | 700 | 1200 | 0
2 | 1201 | 1400 | 50
3 | 1401 | 2000 | 100
4 | 2001 | 3000 | 200
5 | 3001 | 9999 | 500

SQL>

Listing 11-14 shows examples of using NULL and NUMFORMAT. The NULL system variable
makes all null values more visible. The NUMFORMAT variable allows you to influence the layout
of all numeric columns. It supports the same formats as the SQL*Plus COLUMN command (see
Appendix A of this book or SQL*Plus User’s Guide and Reference for details).

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS298

Listing 11-14. Using the NULL and NUMFORMAT System Variables

SQL> set numwidth 5
SQL> set null " [N/A]"

SQL> select ename, mgr, comm
2 from employees
3 where deptno = 10;

ENAME MGR COMM
-------- ------ ------
CLARK 7839 [N/A]
KING [N/A] [N/A]
MILLER 7782 [N/A]

SQL> set numformat 09999.99
SQL> select * from salgrades;

GRADE LOWERLIMIT UPPERLIMIT BONUS
--------- ---------- ---------- ---------
00001.00 00700.00 01200.00 00000.00
00002.00 01201.00 01400.00 00050.00
00003.00 01401.00 02000.00 00100.00
00004.00 02001.00 03000.00 00200.00
00005.00 03001.00 09999.00 00500.00

SQL>

As Listing 11-15 shows, you can use the DEFINE system variable as a switch (ON or OFF) and
you can also change the DEFINE character, if you need the ampersand character (&) without its
special meaning.

Listing 11-15. Using the DEFINE System Variable

SQL> select 'Miracle&Co' as result from dual;
Enter value for co: Breweries

RESULT

MiracleBreweries

SQL> set define off
SQL> run
1* select 'Miracle&Co' as result from dual

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS 299

RESULT

Miracle&Co

SQL> set define !
SQL> select 'Miracle&Co' as result from !table;
Enter value for table: dual

RESULT

Miracle&Co

SQL> set define &
SQL>

■Tip You have changed a lot of SQL*Plus settings in this section. In order to make a “clean” start, it is a good
idea to exit SQL*Plus and to start a new session. This will reset all SQL*Plus variables to their default values.

11.2 Bind Variables
The previous section discussed SQL*Plus variables, which are variables maintained by the tool
SQL*Plus. The SQL*Plus client-side program replaces all variables with actual values before
the SQL commands are sent to the Oracle DBMS.

This section discusses bind variables, an important component of the SQL language. To be
more precise, bind variables are a component of dynamic SQL, a PL/SQL interface that allows
you to build and process SQL statements at runtime. Bind variables are tool-independent.

Bind variables are extremely important if you want to develop database applications for
critical information systems. Suppose you have a database application to retrieve employee
details. Application users just enter an employee number in a field on their screen, and then
click the Execute button. For example, these SQL statements could be generated for two dif-
ferent database users, or for the same user using the same application twice:

SQL> select * from employees where empno = 7566;
SQL> select * from employees where empno = 7900;

These two SQL statements are obviously different, and the Oracle DBMS will also treat
them as such. The optimizer will optimize them separately, and they will occupy their own
memory structures (cursors). This approach can easily flood your internal memory, and it also
forces the optimizer to produce execution plans over and over again. A much better approach
would be to use a bind variable in the SQL command, instead of the literal employee number,
and to provide values for the bind variable separately. In other words, all SQL commands
coming from the application look like the following:

SQL> select * from employees where empno = :x;

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS300

Now, the Oracle DBMS is able to use cursor sharing, the optimizer can produce a single
execution plan, and the SQL command can be executed many times for different values of the
bind variable.

SQL*Plus offers support for bind variables with the VARIABLE and PRINT commands. You will
also use the SQL*Plus EXECUTE command, allowing you to execute a single PL/SQL statement.

Bind Variable Declaration
You can declare bind variables with the SQL*Plus VARIABLE command, and you can display
bind variable values with the SQL*Plus PRINT command. Because SQL doesn’t support any
syntax to assign values to bind variables, we use the SQL*Plus EXECUTE command to execute
a single PL/SQL command from SQL*Plus. Listing 11-16 shows examples of using these
commands.

Listing 11-16. Declaring Bind Variables and Assigning Values

SQL> variable x number
SQL> variable y varchar2(8)

SQL> execute :x := 7566
PL/SQL procedure successfully completed.

SQL> execute :y := 'ADMIN'
PL/SQL procedure successfully completed.

SQL> print x y

X

7566

Y

ADMIN

SQL> variable
variable x
datatype NUMBER

variable y
datatype VARCHAR2(8)
SQL>

As you can see, we have created two variables, we have assigned values to them, and we
can display those values. Note that := is the assignment operator in PL/SQL.

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS 301

Bind Variables in SQL Statements
Now let’s see whether we can retrieve the same two employees (7566 and 7900) using a bind
variable. See Listing 11-17.

Listing 11-17. Using Bind Variables in SQL Commands

SQL> select * from employees where empno = :x;

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
------ -------- ----- -------- ----- ----------- ------ ----- ------
7566 JONES JM MANAGER 7839 02-APR-1967 2975 20

SQL> execute :x := 7900
PL/SQL procedure successfully completed.

SQL> run
1* select * from employees where empno = :x

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
------ -------- ----- -------- ----- ----------- ------ ----- ------
7900 JONES R ADMIN 7698 03-DEC-1969 800 30

SQL>

Because EXECUTE is a SQL*Plus command, which means it is not stored in the SQL buffer,
you can assign a new value and reexecute the query from the SQL buffer with the RUN com-
mand. If you want to see some evidence of the behavior of the Oracle DBMS, take a look at
Listing 11-18.

Listing 11-18. Querying V$SQLAREA to See the Differences

SQL> select executions, sql_text
2 from v$sqlarea
3 where sql_text like 'select * from employees %';

EXECUTIONS SQL_TEXT
---------- --

2 select * from employees where empno = :x
1 select * from employees where empno = 7566
1 select * from employees where empno = 7900

SQL>

For more details about bind variables, refer to PL/SQL User’s Guide and Reference.

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS302

11.3 SQL*Plus Scripts
In Chapter 2, you learned that you can save SQL commands with the SQL*Plus SAVE command.
Until now, we have written only single SQL commands from the SQL buffer to a file. However,
you can also create files with multiple SQL commands, optionally intermixed with SQL*Plus
commands. This type of file is referred to as a SQL*Plus script.

Script Execution
You can execute SQL*Plus scripts with the SQL*Plus START command, or with its shortcut @.
Listings 11-19 and 11-20 show examples of executing scripts.

Listing 11-19. Creating and Running SQL*Plus Scripts

SQL> select *
2 from employees
3 where deptno = &&dept_number
4 and job = upper('&&job');

Enter value for dept_number: 10
Enter value for job: admin

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- ----------- ----- ----- ------
7934 MILLER TJA ADMIN 7782 23-JAN-1962 1300 10

SQL> save testscript replace
Wrote file testscript.sql

SQL> clear buffer
SQL> start testscript
...
SQL> @testscript
...
SQL>

Listing 11-20. Appending Commands to SQL*Plus Scripts

SQL> select *
2 from departments
3 where deptno = &dept_number;

DEPTNO DNAME LOCATION MGR
-------- ---------- -------- --------

10 ACCOUNTING NEW YORK 7782

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS 303

SQL> save testscript append
Appended file to testscript.sql

SQL> @testscript
...
SQL>

Listing 11-21 shows what happens if you use the GET command and you try to execute the
script from the SQL buffer. You get an Oracle error message, because the SQL buffer now con-
tains multiple SQL commands (as a consequence of your GET command), which is a situation
SQL*Plus cannot handle.

Listing 11-21. What Happens If You Execute Scripts from the SQL Buffer

SQL> get testscript
1 select *
2 from employees
3 where deptno = &&dept_number
4 and job = upper('&&job')
5 /
6 select *
7 from departments
8* where deptno = &dept_number

SQL> /
select *
*
ERROR at line 6:
ORA-00936: missing expression

SQL>

The SQL*Plus START command (or @) actually reads a script file line by line, as if those
lines were entered interactively. At the end of the execution of a SQL*Plus script, you will see
that only the SQL statement executed last is still in the SQL buffer.

This is also the reason why the SQL*Plus SAVE command always adds a slash (/) after the
end of the contents of the SQL buffer. Check out what happens if you manually remove that
slash, with an editor like Notepad. The script will wait for further input from the keyboard, as
if the command were not finished yet.

By the way, you can also execute SQL*Plus scripts with a double at sign (@@) command.
There is a subtle difference between the @ and @@ commands, which is relevant only if you
invoke SQL*Plus scripts from other scripts. In such situations, @@ always searches for the
(sub)script in the same folder (or directory) where the main (or calling) script is stored. This
makes the syntax to call subscripts fully independent of any local environment settings, with-
out the risk of launching wrong subscripts (with the same name, from other locations) by
accident.

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS304

Script Parameters
The next feature to explore is the ability to specify parameters (values for variables) when call-
ing scripts. You can specify up to nine command-line parameter values immediately after the
SQL*Plus script name, and you can refer to these values in your script with &1, &2, ..., &9. To test
this feature, open testscript.sql (the script you just generated in Listings 11-19 and 11-20)
and make the changes shown in Listing 11-22.

Listing 11-22. Contents of the Changed testscript.sql Script

select *
from employees
where deptno = &&1 -- this was &&dept_number
and job = upper('&2') -- this was &&job
/
select *
from departments
where deptno = &1 -- this was &dept_number
/
undefine 1 -- this line is added

Now you can call the script in two ways: with or without command-line arguments, as
shown in Listings 11-23 and 11-24.

Listing 11-23. Calling a Script Without Command-Line Arguments

SQL> @testscript
Enter value for 1: 10
Enter value for 2: manager

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- ----------- ----- ----- ------
7782 CLARK AB MANAGER 7839 09-JUN-1965 2450 10

DEPTNO DNAME LOCATION MGR
------ ---------- -------- -----

10 ACCOUNTING NEW YORK 7782

SQL>

As you can see in Listing 11-23, if you call the script without any arguments, SQL*Plus
treats &1 and $2 just like any other substitution or user-defined variables, and prompts for
their values—as long as earlier script executions didn’t leave any variables defined. That’s
why we have added an UNDEFINE command to the end of our script, in Listing 11-22.

Listing 11-24 shows what happens if you specify two appropriate values (30 and salesrep)
on the command line calling the script.

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS 305

Listing 11-24. Calling a Script with Command-Line Arguments

SQL> @testscript 30 salesrep

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- ----------- ----- ----- ------
7499 ALLEN JAM SALESREP 7698 20-FEB-1961 1600 300 30
7521 WARD TF SALESREP 7698 22-FEB-1962 1250 500 30
7654 MARTIN P SALESREP 7698 28-SEP-1956 1250 1400 30
7844 TURNER JJ SALESREP 7698 28-SEP-1968 1500 0 30

DEPTNO DNAME LOCATION MGR
------ ---------- -------- -----

30 SALES CHICAGO 7698

SQL>

SQL*Plus Commands in Scripts
SQL*Plus scripts may contain a mixture of SQL commands and SQL*Plus commands. This
combination makes SQL*Plus a nice report-generating tool, as you will see in the next section
of this chapter. One small problem is that SQL*Plus commands (entered interactively) don’t go
into the SQL buffer. Normally this is helpful, because it allows you to repeat your most recent
SQL command from the SQL buffer, while executing SQL*Plus commands in between. How-
ever, this implies that you cannot add any SQL*Plus commands to your scripts with the SAVE ...
APPEND command.

To get SQL*Plus commands into your scripts, you can use one of the following:

• An external editor

• A separate SQL*Plus buffer

Using an external editor is the most straightforward approach, in most cases. For example,
you can use Notepad in a Microsoft Windows environment to maintain your SQL*Plus scripts.
The charm of using a separate SQL*Plus buffer is that it is completely platform- and operating
system-independent, and it is fully driven from the interactive SQL*Plus prompt. That’s why we
discuss using a separate buffer here.

Listing 11-25 shows an example of using a separate SQL*Plus buffer to generate scripts.
To try this out, execute the CLEAR BUFFER and SET BUFFER BLAHBLAH commands, followed by the
INPUT command, and enter the following 14 lines verbatim. Exit SQL*Plus input mode by
entering another newline, so that you return to the SQL*Plus prompt.

Listing 11-25. Using a Separate SQL*Plus Buffer to Generate Scripts

SQL> clear buffer
SQL> set buffer blahblah
SQL> input
1 clear screen
2 set verify off

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS306

3 set pause off
4 accept dept number -
5 prompt "Enter a department number: "
6 select *
7 from departments
8 where deptno = &dept;
9 select ename, job, msal
10 from employees
11 where deptno = &dept;
12 undefine dept
13 set pause on
14 set verify on
15
SQL>

Now you can save the script and test it, as follows:

SQL> save testscript2
Created file testscript2.sql

SQL> @testscript2
Enter a department number: 20
...

The SET BUFFER command (choose any buffer name you like) creates a nondefault SQL*Plus
buffer.

■Note According to the SQL*Plus documentation, using additional buffers is a deprecated feature since
the early 1990s, from SQL*Plus version 3.0 onward. However, it seems to be the only way to prevent the
SQL*Plus SAVE command from appending a slash (/) at the end of the script, which would execute the
last SQL command twice if you have a SQL*Plus command at the end, as in Listing 11-25.

You can only manipulate the contents of nondefault SQL*Plus buffers with the SQL*Plus
editor commands, and use SAVE and GET for file manipulation. You cannot execute the contents
of those buffers with the START or @ command, because these commands operate only on the
SQL buffer. That’s why you must save the script with the SAVE command before you can use it.

SQL*Plus commands are normally entered on a single line. If that is impossible, or if you
want to make your scripts more readable, you must explicitly “escape” the newline character
with a minus sign (-), as we did before with the ACCEPT command in Listing 11-10, and again in
Listing 11-25.

■Note The examples in the remainder of this chapter show only the contents of the SQL*Plus scripts. It is
up to you to decide which method you want to use to create and maintain those scripts.

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS 307

The login.sql Script
One special SQL*Plus script must be mentioned here: login.sql. SQL*Plus automatically exe-
cutes this script when you start a SQL*Plus session, as long as the login.sql script is located
in the folder (or directory) from where you start SQL*Plus, or if that script can be found via the
SQLPATH environment variable (under Linux) or Registry setting (under Microsoft Windows).

Note that there is also a global SQL*Plus glogin.sql script. This script is executed for every
user, and it allows you to have a mixture of global settings and personal settings in a multiuser
environment. In a single-user Oracle environment, using both scripts is useless and can be
confusing. The glogin.sql script is normally located in the sqlplus/admin directory under the
Oracle installation directory.

■Caution In Oracle Database 10g, SQL*Plus also executes the glogin.sql and login.sql scripts if
you execute a CONNECT command, without leaving SQL*Plus. This didn’t happen with earlier releases of
SQL*Plus.

You can use the glogin.sql and login.sql scripts to set various SQL*Plus system vari-
ables, user-defined variables, and column definitions. Listing 11-26 shows an example of a
login.sql script, demonstrating that you can also execute SQL commands from this script.
You can test it by saving this file to the right place and restarting SQL*Plus.

Listing 11-26. Example of a login.sql Script

-- ===
-- LOGIN.SQL
-- ===
set pause "Enter... "
set pause on
set numwidth 6
set pagesize 24
alter session set nls_date_format='dd-mm-yyyy';
-- define_editor=Notepad /* for Windows */
-- define_editor=vi /* for UNIX */
clear screen

11.4 Report Generation with SQL*Plus
As you’ve learned in previous chapters, the SQL language enables you to write queries.
Queries produce result tables. However, the default layout of those query results is often
visually unappealing.

SQL*Plus offers many commands and features to enhance your query results into more
readable reports. SQL*Plus is definitely the oldest “quick-and-dirty” Oracle report generator;
the original name in the 1980s was UFI (User Friendly Interface), before they renamed it as

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS308

SQL*Plus. Several other Oracle reporting tools were developed and discarded over the years,
but SQL*Plus is still here. Table 11-2 lists some of the SQL*Plus features you can use for
enhancing your reports.

Table 11-2. SQL*Plus Features to Enhance Reports

Feature Description

SET {LINESIZE|PAGESIZE|NEWPAGE} Adjust the page setup

SET TRIMSPOOL ON Suppress trailing spaces in SPOOL output

COLUMN Adjust column layouts (header and contents)

TTITLE, BTITLE Define top and bottom page titles

REPHEADER, REPFOOTER Define report headers and footers

BREAK Group rows (make sure the result is ordered appropriately)

COMPUTE Add aggregate computations on BREAK definitions

SPOOL Spool SQL*Plus output to a file

The SQL*Plus SET command was introduced in Section 11.1, in the discussion of SQL*Plus
system variables. Now we’ll look at the other SQL*Plus commands that are useful for producing
reports.

The SQL*Plus COLUMN Command
You also already saw some examples of the COLUMN command. However, the SQL*Plus COLUMN
command has many additional features, as you will learn in this section.

The general syntax of the SQL*Plus COLUMN command is as follows:

SQL> column [<col-name>|<expression>] [<option>...]

If you don’t specify any arguments at all, the COLUMN command produces a complete
overview of all current column settings. If you specify <col-name>, you get only the settings of
that column. Note that <col-name> is mapped with column aliases in the SELECT clause; that
is, with the column headings of the final query result. You can use <expression> to influence
SELECT clause expressions; make sure to copy the expression verbatim from the query. For
<option>, you can specify various ways to handle the column. Table 11-3 shows a selection of
the valid options for the COLUMN command.

Table 11-3. Some SQL*Plus COLUMN Command Options

Option Description

ALI[AS] Column alias; useful in BREAK and COMPUTE commands

CLE[AR] Reset all column settings

FOLD_A[FTER] Insert a carriage return after the column

FOR[MAT] Format display of column values

HEA[DING] Define (different) column title

JUS[TIFY] Justify column header: LEFT, CENTER or CENTRE, RIGHT

Continued

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS 309

Table 11-3. Continued

Option Description

LIKE Copy settings over from another column

NEWL[INE] Force a new line before this column

NEW_V[ALUE] Variable to retain the last column value

NOPRI[NT] Suppress display of specific columns

NUL[L] Display of null values in specific columns

ON | OFF Toggle to activate/deactivate column settings

WRA[PPED] Wrap too-long column values to the following line

WOR[D_WRAPPED] Wrap too-long column values to the following line, splitting the column
value between words

TRU[NCATED] Truncate too-long column values

The last three COLUMN options are mutually exclusive. In Table 11-3, the brackets indicate
the abbreviations you can use. For example, you can abbreviate the first SQL*Plus command
in Listing 11-27 as COL ENAME FOR A20 HEA LAST_NAME JUS C, if you like. If you do not specify a
JUSTIFY value for a column, SQL*Plus uses the following alignment defaults:

• NUMBER column headings default to RIGHT.

• Other column headings default to LEFT.

Listings 11-27 through 11-29 show some examples of the SQL*Plus COLUMN command.

Listing 11-27. Using COLUMN FORMAT, HEADING, JUSTIFY, and LIKE

SQL> select empno, ename, bdate
2 , msal as salary
3 , comm as commission
4 from employees;

EMPNO ENAME BDATE SALARY COMMISSION
------ -------- ----------- -------- ----------
7369 SMITH 17-DEC-1965 800
7499 ALLEN 20-FEB-1961 1600 300
7521 WARD 22-FEB-1962 1250 500

...
14 rows selected.

SQL> col ename format a20 heading last_name justify center
SQL> col salary format $9999.99
SQL> col commission like salary
SQL> col salary heading month|salary
SQL> /

month

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS310

EMPNO last_name BDATE salary COMMISSION
------ -------------------- ----------- --------- ----------
7369 SMITH 17-DEC-1965 $800.00
7499 ALLEN 20-FEB-1961 $1600.00 $300.00
7521 WARD 22-FEB-1962 $1250.00 $500.00

...
14 rows selected.

SQL>

Note the effects of the vertical bar (|) in the COL SALARY command and the LIKE option for
the COMMISSION column.

Listings 11-27 and 11-28 illustrate an important property of the COLUMN command: you
must always specify the column alias, not the original column name, as its argument.

Listing 11-28. Using COLUMN NOPRINT, ON, OFF

SQL> col COMM NOPRINT -- Note the column name
SQL> select empno, ename, bdate
2 , msal as salary
3 , comm as commission -- and the column alias
4 from employees;

month
EMPNO last_name BDATE salary COMMISSION
------ -------------------- ----------- --------- ----------
7369 SMITH 17-DEC-1965 $800.00
7499 ALLEN 20-FEB-1961 $1600.00 $300.00
7521 WARD 22-FEB-1962 $1250.00 $500.00

...
14 rows selected.

SQL> col COMMISSION NOPRINT -- Now you use the column alias instead
SQL> /

month
EMPNO last_name BDATE salary
------ -------------------- ----------- ---------
7369 SMITH 17-DEC-1965 $800.00
7499 ALLEN 20-FEB-1961 $1600.00
7521 WARD 22-FEB-1962 $1250.00

...
14 rows selected.

SQL> col commission off
SQL> /

month
EMPNO last_name BDATE salary COMMISSION
------ -------------------- ----------- --------- ----------
7369 SMITH 17-DEC-1965 $800.00

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS 311

7499 ALLEN 20-FEB-1961 $1600.00 300
7521 WARD 22-FEB-1962 $1250.00 500

...
SQL> col commission
COLUMN commission OFF
FORMAT $9999.99
NOPRINT
SQL> col commission on
SQL>

The NEW_VALUE feature of the COLUMN command is very nice, and you can use it for various
tricks in SQL*Plus scripts. As you can see in Listing 11-29, the user-defined BLAH variable
remembers the last EMPNO value for you.

Listing 11-29. Using COLUMN NEW_VALUE

SQL> col empno new_value BLAH
SQL> /

month
EMPNO last_name BDATE salary
------ -------------------- ----------- ---------
7369 SMITH 17-DEC-1965 $800.00
7499 ALLEN 20-FEB-1961 $1600.00
...
7934 MILLER 23-JAN-1962 $1300.00

14 rows selected.

SQL> def BLAH
DEFINE BLAH = 7934 (NUMBER)

SQL> I
5 where deptno = 30;

month
EMPNO last_name BDATE salary
------ -------------------- ----------- ---------
7499 ALLEN 20-FEB-1961 $1600.00
7521 WARD 22-FEB-1962 $1250.00
7654 MARTIN 28-SEP-1956 $1250.00
7698 BLAKE 01-NOV-1963 $2850.00
7844 TURNER 28-SEP-1968 $1500.00
7900 JONES 03-DEC-1969 $800.00

SQL> define BLAH
DEFINE BLAH = 7900 (NUMBER)

SQL> undefine BLAH
SQL>

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS312

The SQL*Plus TTITLE and BTITLE Commands
As you have seen so far, the SQL*Plus COLUMN command allows you to influence the report
layout at the column level, and you can influence the overall page layout with the SQL*Plus
SET PAGESIZE and SET LINESIZE commands. You can further enhance your SQL*Plus reports
with the SQL*Plus TTITLE and BTITLE commands, which allow you to add page headers and
page footers to your report. The syntax is as follows:

SQL> ttitle [<print-spec> {<text>|<variable>}...] | [OFF|ON]
SQL> btitle [<print-spec> {<text>|<variable>}...] | [OFF|ON]

As Listing 11-30 shows, you can also use these commands to display their current settings
(by specifying no arguments) or to enable/disable their behavior with ON and OFF.

Listing 11-30. Using TTITLE and BTITLE

SQL> set pagesize 22
SQL> set linesize 80
SQL> ttitle left 'SQL*Plus report' -

> right 'Page: ' format 99 SQL.PNO -
> skip center 'OVERVIEW' -
> skip center 'employees department 30' -
> skip 2

SQL> btitle col 20 'Confidential' tab 8 -
> 'Created by: ' SQL.USER

SQL> /
SQL*Plus report Page: 1

OVERVIEW
employees department 30

month
EMPNO last_name BDATE salary
------ -------------------- ----------- ---------
7499 ALLEN 20-FEB-1961 $1600.00
7521 WARD 22-FEB-1962 $1250.00
7654 MARTIN 28-SEP-1956 $1250.00
7698 BLAKE 01-NOV-1963 $2850.00
7844 TURNER 28-SEP-1968 $1500.00
7900 JONES 03-DEC-1969 $800.00

Confidential Created by: BOOK
SQL> btitle off
SQL> btitle
btitle OFF and is the following 66 characters:
col 20 'Confidential' tab 8 'Created by: ' SQL.USER
SQL> ttitle off
SQL>

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS 313

The output in Listing 11-30 shows the effects of the TTITLE and BTITLE commands. Note
that we use two predefined variables: SQL.PNO for the page number and SQL.USER for the cur-
rent username.

The TTITLE and BTITLE commands have several additional features. SQL*Plus also sup-
ports the REPHEADER and REPFOOTER commands, which allow you to add headers and footers
at the report level, as opposed to the page level. See SQL*Plus User’s Guide and Reference for
more information about these commands.

The SQL*Plus BREAK Command
You can add “breaks” to the result of your reports with the SQL*Plus BREAK command. Breaks
are locations in your report: between certain rows, between all rows, or at the end of the report.
You can highlight breaks in your reports by suppressing repeating column values, by inserting
additional lines, or by forcing a new page.

Breaks are also the positions within your reports where you can add subtotals or other
data aggregations. You can use the SQL*Plus COMPUTE command for that purpose. Let’s investi-
gate the possibilities of the BREAK command first.

The syntax of the SQL*Plus BREAK command is shown in Figure 11-1.

Figure 11-1. BREAK command syntax diagram

For element, you can specify a column name or a column expression, or a special report
element, as discussed at the end of this section. The action values are listed in Table 11-4.

Table 11-4. SQL*Plus BREAK Command Actions

Action Description

SKIP n Skip n lines

SKIP PAGE Insert a page break

[NO]DUPLICATES Suppress or show duplicate values; NODUPLICATES is the default

Listing 11-31 shows an example of a BREAK command.

Listing 11-31. Using the BREAK Command

SQL> clear columns

SQL> select deptno, job, empno, ename, msal, comm
2 from employees

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS314

3 order by deptno, job;

DEPTNO JOB EMPNO ENAME MSAL COMM
-------- -------- -------- -------- -------- --------

10 ADMIN 7934 MILLER 1300
10 DIRECTOR 7839 KING 5000
10 MANAGER 7782 CLARK 2450
20 MANAGER 7566 JONES 2975
20 TRAINER 7369 SMITH 800

...
14 rows selected.

SQL> break on deptno skip 2
SQL> /
DEPTNO JOB EMPNO ENAME MSAL COMM

-------- -------- -------- -------- -------- --------
10 ADMIN 7934 MILLER 1300

DIRECTOR 7839 KING 5000
MANAGER 7782 CLARK 2450

20 MANAGER 7566 JONES 2975
TRAINER 7369 SMITH 800

...
14 rows selected.

SQL> break
break on deptno skip 2 nodup

SQL> break on deptno page
SQL> set pause on
SQL> /
[Enter]...

DEPTNO JOB EMPNO ENAME MSAL COMM
-------- -------- -------- -------- -------- --------

10 ADMIN 7934 MILLER 1300
DIRECTOR 7839 KING 5000
MANAGER 7782 CLARK 2450

[Enter]...

DEPTNO JOB EMPNO ENAME MSAL COMM
-------- -------- -------- -------- -------- --------

20 MANAGER 7566 JONES 2975
TRAINER 7369 SMITH 800

...
14 rows selected.
SQL>

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS 315

Note the ORDER BY clause in the query in Listing 11-31. You need this clause for the BREAK
command to work properly. The BREAK command itself does not sort anything; it just processes
the rows, one by one, as they appear in the result.

Note also that you can have only one break definition at any time. Each break definition
implicitly overwrites any current break definition. This implies that if you want two breaks for
your report, at different levels, you must define them in a single BREAK command; for example,
see Listing 11-32.

Listing 11-32. Multiple Breaks in a Single BREAK Command

SQL> break on deptno skip page -
> on job skip 1

SQL> /
[Enter]...

DEPTNO JOB EMPNO ENAME MSAL COMM
-------- -------- -------- -------- -------- --------

10 ADMIN 7934 MILLER 1300

DIRECTOR 7839 KING 5000

MANAGER 7782 CLARK 2450

[Enter]...

DEPTNO JOB EMPNO ENAME MSAL COMM
-------- -------- -------- -------- -------- --------

20 MANAGER 7566 JONES 2975

TRAINER 7369 SMITH 800
7902 FORD 3000
7788 SCOTT 3000
7876 ADAMS 1100

...
14 rows selected.

SQL> break
break on deptno page nodup

on job skip 1 nodup
SQL>

Note that you don’t use any commas as break definition delimiters.
As you have seen so far, you can define breaks on columns or column expressions.

However, you can also define breaks on two special report elements:

• ROW forces breaks on every row of the result.

• REPORT forces a break at the end of your report.

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS316

The SQL*Plus COMPUTE Command
The SQL*Plus COMPUTE command allows you to add aggregating computations on your break
definitions. The syntax of the COMPUTE command is shown in Figure 11-2.

Figure 11-2. COMPUTE command syntax diagram

Table 11-5 lists the various functions supported by the SQL*Plus COMPUTE command.

Table 11-5. SQL*Plus COMPUTE Functions

Function Description

AVG The average

COUNT The number of NOT NULL column values

MAX The maximum

MIN The minimum

NUMBER The number of rows

STD The standard deviation

SUM The sum

VAR The variance

The expr indicates on which column you want the function to be applied. The break spec
indicates at which points in the report you want this computation to happen. The break spec
must be a column, column expression, or a report element (ROW or REPORT) on which you pre-
viously defined a BREAK.

Listing 11-33 shows an example of using COMPUTE.

Listing 11-33. Using COMPUTE for Aggregation

SQL> set pause off
SQL> break on deptno skip page on job
SQL> compute sum label total of msal on deptno
SQL> compute count number of comm on deptno

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS 317

SQL> /
DEPTNO JOB EMPNO ENAME MSAL COMM

-------- -------- -------- -------- -------- --------
10 ADMIN 7934 MILLER 1300

DIRECTOR 7839 KING 5000
MANAGER 7782 CLARK 2450

******** ******** -------- --------
count 0
number 3
total 8750

DEPTNO JOB EMPNO ENAME MSAL COMM
-------- -------- -------- -------- -------- --------

20 MANAGER 7566 JONES 2975
TRAINER 7369 SMITH 800

7902 FORD 3000
7788 SCOTT 3000
7876 ADAMS 1100

******** ******** -------- --------
count 0
number 5
total 10875

DEPTNO JOB EMPNO ENAME MSAL COMM
-------- -------- -------- -------- -------- --------

30 ADMIN 7900 JONES 800
MANAGER 7698 BLAKE 2850
SALESREP 7499 ALLEN 1600 300

7654 MARTIN 1250 1400
7844 TURNER 1500 0
7521 WARD 1250 500

******** ******** -------- --------
count 4
number 6
total 9250

14 rows selected.

SQL> compute
COMPUTE sum LABEL 'total' OF msal ON deptno
COMPUTE count LABEL 'count' number LABEL 'number' OF comm ON deptno
SQL> clear computes
SQL> clear breaks
SQL>

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS318

As Listing 11-33 shows, you can issue multiple COMPUTE commands, and you can have
multiple COMPUTE definitions active at the same time. The CLEAR COMPUTES command erases all
compute definitions, and the CLEAR BREAKS command clears the current break definition.

If you are happy with the final report results on screen, you can store all SQL and SQL*Plus
commands in a script, and add commands to spool the output to a text file, as described in the
next section.

The Finishing Touch: SPOOL
If you look at the results in Listing 11-33, you see that this mixture of SQL and SQL*Plus com-
mands produces a rather complete report. Now you can use the SQL*Plus SPOOL command to
save the report into a file; for example, to allow for printing. The syntax is as follows:

SQL> spool [<file-name>[.<ext>] [CREATE|REPLACE|APPEND] | OFF | OUT]

If you specify no arguments, the SPOOL command reports its current status. The default
file name extension <ext> is LST or LIS on most platforms. SPOOL OFF stops the spooling. SPOOL
OUT stops the spooling and sends the result to your default printer.

Suppose you have saved the example of Listing 11-33 in a script, containing all SQL*Plus
commands and the SQL query. You can turn this script into a complete report by changing the
contents as indicated in Listing 11-34. For readability, the three lines to be added are high-
lighted. The TRIMSPOOL setting suppresses trailing spaces in the result, and the REPLACE option
of the SPOOL command ensures that an existing file (if any) will be overwritten.

Listing 11-34. Using the SPOOL Command to Generate SQL*Plus Reports

set pause off
break on deptno skip page on job
compute sum label total of msal on deptno
compute count number of comm on deptno

>>> set trimspool on <<< added line
>>> spool report.txt replace <<< added line

-- The query
select deptno, job, empno, ename, msal, comm
from employees
order by deptno, job;

>>> spool off <<< added line
-- Cleanup section
undefine dept
clear computes
clear breaks
set pause on

If you execute this script, it generates a text file named report.txt in the current
folder/directory.

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS 319

11.5 HTML in SQL*Plus and iSQL*Plus
Both SQL*Plus and iSQL*Plus are perfect tools to generate reports in HTML format, allowing
you to display the report results in a browser environment. iSQL*Plus has more features than
SQL*Plus in this area, because it runs in a browser environment itself. Let’s look at SQL*Plus
first.

HTML in SQL*Plus
The SQL*Plus MARKUP setting is very important if you want to work with HTML. Listing 11-35
shows why this is so.

Listing 11-35. The SQL*Plus MARKUP Setting

SQL> show markup
markup HTML OFF HEAD "<style type='text/css'> body
{font:10pt Arial,Helvetica,sans-serif; color:black; background:White;} p {font:1F

SQL> set markup
SP2-0281: markup missing set option
Usage: SET MARKUP HTML [ON|OFF] [HEAD text] [BODY text]
[TABLE text] [ENTMAP {ON|OFF}] [SPOOL {ON|OFF}] [PRE[FORMAT] {ON|OFF}]
SQL>

The SQL*Plus error message in Listing 11-35 (followed by the “Usage:” text) precisely indi-
cates what you can do to fix the problem with the incomplete SET MARKUP command:

• SET MARKUP HTML is mandatory, followed by ON or OFF.

• HEAD allows you to specify text for the HTML <header> tag, BODY for the <body> tag, and
TABLE for the <table> tag, respectively.

• ENTMAP allows you to indicate whether SQL*Plus should replace some special HTML
characters (such as <, >, ', and &) by their corresponding HTML representations (<,
>, ", and &).

• SPOOL lets you spool output to a file, without needing to use an additional SQL*Plus
SPOOL command.

• PREFORMAT allows you to write output to a <pre> tag. The default value is OFF.

The HEADER option of the SET MARKUP command is particularly interesting, because it
allows you to specify a cascading style sheet. Let’s perform some experiments, as shown in
Listing 11-36.

Listing 11-36. Using the SQL*Plus SET MARKUP Command

SQL> set markup html on head "<title>SQL*Plus demo</title>"
SQL> select ename,init from employees where deptno = 10;

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS320

<p>
<table border='1' width='90%' align='center' summary='Script output'>
<tr>
<th scope="col">
last_name
</th>
<th scope="col">
INIT
</th>
</tr>
<tr>
<td>
CLARK
</td>
<td>
AB
</td>
</tr>
<tr>
<td>
KING
</td>
<td>
CC
</td>
</tr>
<tr>
<td>
MILLER
</td>
<td>
TJA
</td>
</tr>
</table>
<p>

SQL> set markup html off

SQL>

As you can see in Listing 11-36, the screen output is in HTML format. Obviously, the
MARKUP setting becomes truly useful in combination with the SQL*Plus SPOOL command, allow-
ing you to open the result in a browser. The combination of the SQL*Plus MARKUP and SPOOL
commands is so obvious that you are able to specify SPOOL ON as an option in the MARKUP set-
ting (see Listing 11-35).

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS 321

■Tip You can also specify the MARKUP setting as a command-line argument when you launch SQL*Plus.
This is useful for certain reports, because SQL*Plus then processes the <html> and <body> tags before the
first command is executed.

If you execute the SQL*Plus script in Listing 11-37, you will note what happens as a con-
sequence of the SET ECHO OFF TERMOUT OFF command: the SQL*Plus screen remains empty.
SQL*Plus only writes the results to a file.

Listing 11-37. Contents of the htmldemoscript.sql Script

-- ================================
-- htmldemoscript.sql
-- ================================
SET ECHO off TERMOUT OFF
set markup html on spool on -

preformat off entmap on -
head "<title>HTML Demo Report</title> -

<link rel='stylesheet' href='x.css'>"

spool htmldemo.htm replace

select empno, ename, init, msal
from employees
where deptno = 20;

spool off
set markup html off
set echo on

Figure 11-3 shows what happens if you open the result in a browser. The example assumes
that you have an x.css cascading style sheet document in the current folder/directory.

Figure 11-3. Result of htmldemoscript.sql in a browser

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS322

One more tip, before we continue with iSQL*Plus: you can achieve various “special
effects” by selecting HTML fragments as alphanumerical literals in your queries. Listing 11-38
shows what happens if you add the following fragment to the htmldemoscript.sql script, just
before the SPOOL OFF command.

Listing 11-38. Addition to the htmldemoscript.sql Script

set markup html entmap off preformat on
set heading off

select ' Visit this web site'
from dual;

HTML in iSQL*Plus
In iSQL*Plus, the possibilities of working with HTML are even more powerful than in SQL*Plus.
This makes sense, since iSQL*Plus itself executes in a browser environment. For example, all
iSQL*Plus results are by default in HTML format, based on a standard iSQL*Plus style sheet.

If you execute the query of Listing 11-37 in iSQL*Plus, you don’t need to specify any
SQL*Plus HTML settings (such as MARKUP or SPOOL), and you don’t need to open the results
in a browser, because this now happens implicitly.

Check out the HTML possibilities available through iSQL*Plus Preferences. To access the
iSQL*Plus Preferences screen, click the Preferences link in the top-right corner of the Work-
space screen. Then click the Script Formatting link under System Configuration (see Figure 2-7
in Chapter 2). See Figure 11-4 for a small sample of the options.

If you want to execute scripts in iSQL*Plus, you can do that in various ways. First of all,
you can enter the script manually (or with copy and paste) into the Workspace area. However,
if you click the Load Script button, you’re offered two further possibilities, as shown in Figure
11-5. You can specify a local script in the File field, optionally using the Browse… button, or
you can use the URL field to specify a script from the Internet. Then you can click the Load
button, followed by the Execute button to run the script.

Just as you can start SQL*Plus with a single command line, including the SQL*Plus script
that you want to execute, you can also use the iSQL*Plus address toolbar in several ways to
specify additional information.

You must add the keyword dynamic if you want to specify additional information in the
iSQL*Plus URL. For example, you can specify a name and a password, allowing you to skip the
login dialog box, as shown here:

http://<IP address>:<port>/isqlplus/dynamic?userid=book/book

This example shows how you can specify a script to be executed:

http://<IP address>:<port>/isqlplus/dynamic?script=http://...

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS 323

Figure 11-4. iSQL*Plus Script Formatting Preferences

Figure 11-5. Loading iSQL*Plus Scripts

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS324

The following example is a combination of the first two examples. Note that the parame-
ter section always starts with a question mark (?) and the individual parameters are separated
using an ampersand (&).

http://<IP address>:<port>/isqlplus/dynamic?userid=book/book
&script=http://...

Your URL can also contain an SQL command to be executed, including all other informa-
tion needed to connect to the database. The following example loads the SQL command into
the iSQL*Plus workspace and then waits for further commands.

http://<IP address>:<port>/isqlplus/dynamic?userid=book/book
&script=select%20*%20from%20departments;
&type=text
&action=load

This example executes the SQL command and displays the results:

http://<IP address>:<port>/isqlplus/dynamic?userid=book/book
&script=select%20*%20from%20departments;
&type=text
&action=execute

In this example (with action=execute), the browser displays only the results and suppresses
the regular iSQL*Plus screen layout, just as in Figure 11-3.

Also, note that we replaced all spaces in the last two URL examples by %20, which is a com-
monly accepted browser standard. This is done because iSQL*Plus doesn’t support spaces.

11.6 Exercises
The following exercises allow you to practice using the commands covered in this chapter.
See Appendix D for the answers.

1. Look at Listings 11-26 and 11-37. Apart from aesthetics, there is another important
reason why the lines surrounding the script headers in those two listings switch from
minus signs to equal signs. Obviously, the first two minus signs are mandatory to turn
the lines into comments. What would be wrong with using only minus signs?

2. Create a SQL*Plus script to create indexes. The script should prompt for a table name
and a column name (or list of column names), and then generate the index name
according to the following standard: i_<tab-id>_<col-id>.

3. Create a SQL*Plus script to produce an index overview. The script should prompt for a
table name, allowing you to specify any leading part of a table name. That is, the script
should automatically append a % wildcard to the value entered. Then it should produce
a report of all indexes, showing the table name, index name, index type, and number
of columns on which the index is based.

4. Create a script that disables all constraints in your schema.

CHAPTER 11 ■ SQL*PLUS AND iSQL*PLUS 325

Object-Relational Features

As promised in the introduction of this book, this final chapter discusses some object-
relational features of the Oracle DBMS. For a proper understanding and appreciation of
object-relational database features in general, you should consider those features in the con-
text of an object-oriented development environment. Because this book is devoted to Oracle
SQL, this chapter focuses on the consequences of these object-relational features for the SQL
language.

The first step in setting up an object-relational environment is the definition of the appro-
priate collection of object types and methods. Once you have defined your object types, you can
use them to create object tables, thus creating a truly object-relational environment. You can
also use object views to create an object-relational layer on top of standard relational environ-
ments. This chapter mainly uses object types as a starting point for creating user-defined
datatypes, and then using those datatypes in relational table structures.

Along with “regular” user-defined datatypes, there are two special user-defined datatypes,
also referred to as collection types, because they are multivalued: variable arrays and nested
tables. The first four sections of this chapter cover collection types and user-defined datatypes.

Section 12.5 introduces the ANSI/ISO standard multiset operators, which allow you to
perform various sophisticated operations with nested tables. The chapter ends with some
exercises.

Note that the PL/SQL language normally plays an important role in creating an object-
relational environment. PL/SQL is the programming language you need in the definition
phase of such an environment. Because PL/SQL is not covered in this book, I assume some
basic knowledge of this language.

■Note Instead of PL/SQL, you can also use the Java language to create an object-relational environment.

12.1 More Datatypes
So far in this book, we have used only the standard, built-in datatypes supported by Oracle,
such as NUMBER, BINARY_FLOAT, BINARY_DOUBLE, DATE, TIMESTAMP [WITH [LOCAL] TIMEZONE],
INTERVAL, [N]CHAR, and [N]VARCHAR2. This means that we haven’t discussed the following
two Oracle datatype categories:

327

C H A P T E R 1 2

■ ■ ■

• Collection datatypes: These are variable arrays (varrays) and nested tables. You are
probably familiar with the concept of arrays from other programming languages, and
nested tables are tables within a table.

• User-defined datatypes: These allow you (as the name indicates) to define your own
complex datatypes.

Collection Datatypes
Collection datatypes are a special case of user-defined datatypes. Collection datatypes support
attributes that can have multiple values. For example, you can store a list of phone numbers for
each employee in a single column, or you can add a set of errata entries to every row in the
COURSES table.

The first example (adding a list of phone numbers) is an obvious candidate for using a
varray, because, in general, you know the maximum length of such a list of phone numbers in
advance. Also, you probably want to assign some meaning to the order of the phone numbers
in the list (office extension, home, mobile, fax, and so on).

It is probably better to implement the second example (maintaining course errata) with a
nested table, because you don’t have an idea beforehand about how many errata entries to
expect. Also, the physical order of those errata is irrelevant, as long as you store enough errata
attributes.

■Note As you will see soon, you cannot create nested tables without using user-defined datatypes.

As a user-defined datatype, you might, for example, create an ADDRESS type, with STREET,
NUMBER, POSTALCODE, and CITY components. You can create arrays of user-defined datatypes.
For example, you could use the ADDRESS type to add an array of addresses to the OFFERINGS
table. That would allow you to store multiple alternative location addresses for course offer-
ings. If you want to store only a single location address, you obviously don’t need an array—a
regular user-defined address type would be sufficient.

Methods
You can add methods to user-defined datatypes. Methods are operations specifically developed
to work with your user-defined datatypes; for example, to specify how you want to compare two
address type values, or how you want to sort address values.

Methods add a lot of semantic power to your user-defined datatypes. Unfortunately we
can’t spend much time on methods in this book, because you need a great deal of PL/SQL
programming to create methods. If you want to see some method examples, check out the
CUSTOMERS table of the OE schema, one of the standard sample schemas that ships with the
Oracle software.

As you will see in the next section, as soon as you create a user-defined datatype in Oracle,
you implicitly get one method “for free”—a method with the same name as the datatype itself.
That method is the constructor method, which allows you to create occurrences of the datatype.

CHAPTER 12 ■ OBJECT-RELATIONAL FEATURES328

CHAPTER 12 ■ OBJECT-RELATIONAL FEATURES 329

12.2 Varrays
We will begin to explore varrays by implementing the phone list example introduced in the
previous section. To keep our EMPLOYEES table unimpaired, we create a copy of the EMPLOYEES
table for our experiments in this final chapter of the book. We also leave out some of the
columns of the original EMPLOYEES table. See Listing 12-1.

Listing 12-1. Creating a Copy of the EMPLOYEES Table

SQL> create table e
2 as
3 select empno, ename, init, mgr, deptno
4 from employees;

Table created.
SQL>

Creating the Array
Before we can add a list of phone numbers for every employee in the E table, we must create a
corresponding type first, as shown in Listing 12-2.

OBJECT-RELATIONAL VS. STANDARD RELATIONAL TECHNIQUES

For the examples mentioned so far in this chapter, you could argue that you could implement them very well
with standard relational techniques, as discussed in previous chapters of this book. You could separate vari-
ous phone numbers into separate columns, you could create a separate ERRATA table with a foreign key
constraint referring to the COURSES table, and so on.

So when should you choose an object-relational approach rather than a pure relational approach?
It might be a matter of taste, and discussions about taste are probably a waste of time in a technical book
like this one. As the Romans said, “De gustibus non disputandum est...”1

It might be the case that you have a powerful object-oriented design and development environment.
You may find that Oracle’s object-relational features enable you to maintain an intuitive and straightforward
mapping between that development environment and the Oracle database structures.

In any case, this book does not speculate about when one approach is better than the other. The exam-
ples in this chapter have a single purpose: to illustrate the object-relational features of the Oracle DBMS.

As you read about the techniques described in this chapter, you may wonder whether they violate the
first normal form as one of the foundations of the relational model. That is not the case. The relational model
does not forbid in any way storing complex or set-valued attributes in your rows. Data “atomicity” is a rather
slippery concept. For example, if you consider DATE values, aren’t you looking at a compound datatype? A
DATE value has meaningful subcomponents, such as year, month, and day. For a thorough treatment of this
subject, see An Introduction to Database Systems (8th Edition), by Chris Date.

1. There is no disputing about tastes.

Listing 12-2. Creating and Describing a Type

SQL> create or replace type numberlist_t
2 as varray(4) of varchar2(20);
3 /

Type created.

SQL> describe numberlist_t
numberlist_t VARRAY(4) OF VARCHAR2(20)

SQL> select type_name, typecode
2 from user_types;

TYPE_NAME TYPECODE
------------------------ ------------------------------
NUMBERLIST_T COLLECTION

SQL>

Note that you must end the CREATE TYPE command in Listing 12-2 with a slash (/) in the
third line, although you ended the second line with a semicolon. The reason is that you are not
entering an SQL or an SQL*Plus command; you’re entering a PL/SQL command.

Note also that from now on, you can use this NUMBERLIST_T type as often as you like. It is
known to the database, and its definition is stored in the data dictionary. You can query the
USER_TYPES data dictionary view to see your own type definitions.

■Note To allow other database users to use your type definitions, you must grant them the EXECUTE
privilege on those types.

In Listing 12-3, we add a column to the E table, using the NUMBERLIST_T type we created in
Listing 12-2. Then, we execute a query.

Listing 12-3. Adding a Column Based on the NUMBERLIST_T Type

SQL> alter table e add (numlist numberlist_t);

Table altered.

SQL> describe e
Name Null? Type
------------------------- -------- ---------------
EMPNO NUMBER(4)
ENAME NOT NULL VARCHAR2(8)
INIT NOT NULL VARCHAR2(5)

CHAPTER 12 ■ OBJECT-RELATIONAL FEATURES330

MGR NUMBER(4)
DEPTNO NUMBER(2)
NUMLIST NUMBERLIST_T

SQL> select empno, numlist from e;

EMPNO NUMLIST
------- --

7369
7499
7521
7566
7654
7698
7782
7788
7839
7844
7876
7900
7902
7934

14 rows selected.

SQL>

The query results are not impressive. Obviously, the new NUMLIST column is still empty.
So we have the following two problems to solve:

• How can we populate the NUMLIST column with phone numbers?

• After the column has these phone numbers, how can we retrieve them?

Populating the Array with Values
As mentioned earlier in the chapter, each user-defined object type implicitly has a function of
the same name, allowing you to generate or construct values of that object type. This function
is normally referred to as the constructor method. In other words, if you create a user-defined
object type, you get a constructor method for free, with the same name as the object type.

Listing 12-4 shows how you can assign phone number lists to five employees in the E table.
Note that you can skip elements, if you like, and you can also assign empty number lists.

Listing 12-4. Assigning Values to the NUMLIST Column

SQL> update e
2 set numlist = numberlist_t('1234','06-78765432','029-8765432')
3 where empno = 7839;

CHAPTER 12 ■ OBJECT-RELATIONAL FEATURES 331

1 row updated.

SQL> update e
2 set numlist = numberlist_t('4231','06-12345678')
3 where empno = 7782;

1 row updated.

SQL> update e
2 set numlist = numberlist_t('2345')
3 where empno = 7934;

1 row updated.

SQL> update e
2 set numlist = numberlist_t('','06-23456789')
3 where empno = 7698;

1 row updated.

SQL> update e
2 set numlist = numberlist_t()
3 where empno in (7566,7844);

2 rows updated.

SQL>

Querying Array Columns
Now let’s see what happens if we select the NUMLIST column, without applying any functions or
operators to that column. In that case, we simply get the values back the same way we inserted
them, including the constructor method, as shown in Listing 12-5.

Listing 12-5. Querying the NUMLIST Column

SQL> select empno, numlist
2 from e
3 where empno in (7566,7698,77832,7839,7934);

EMPNO NUMLIST
-------- --

7566 NUMBERLIST_T()
7698 NUMBERLIST_T(NULL, '06-23456789')
7839 NUMBERLIST_T('1234', '06-78765432', '029-8765432')
7934 NUMBERLIST_T('2345')

SQL>

If you want to select individual phone numbers from the NUMLIST array, you need to
“unnest” the phone numbers first. You can unnest arrays with the TABLE function. Listing 12-6

CHAPTER 12 ■ OBJECT-RELATIONAL FEATURES332

shows how you can use the TABLE function for that purpose. (For further details about the
TABLE function, see Oracle SQL Reference.)

Listing 12-6. Using the TABLE Function to Unnest the NUMLIST Array

SQL> break on empno

SQL> select e.empno, n.*
2 from e
3 , TABLE(e.numlist) n;

EMPNO COLUMN_VALUE
-------- ------------------

7698
06-23456789

7782 4231
06-12345678

7839 1234
06-78765432
029-8765432

7934 2345

SQL>

Suppose that we want to go one step further and be able to select specific phone numbers
from the array (for example, the second one). In that case, we need PL/SQL again, because the
SQL language does not support a direct way to access array elements by their index value. It is
not difficult to build a PL/SQL function to return a certain element from an array. Chapter 5
showed an example of a PL/SQL stored function to count the number of employees per depart-
ment (Listing 5-31). Listing 12-7 shows how you can create a PL/SQL stored function to return
the first phone number from the NUMLIST array, assuming that number represents the internal
extension number.

Listing 12-7. Creating a PL/SQL Function to Return Array Elements

SQL> create or replace function ext
2 (p_varray_in numberlist_t)
3 return varchar2
4 is
5 v_ext varchar2(20);
6 begin
7 v_ext := p_varray_in(1);
8 return v_ext;
9 end;
10 /
Function created.

SQL> select ename, init, ext(numlist)

CHAPTER 12 ■ OBJECT-RELATIONAL FEATURES 333

2 from e
3 where deptno = 10;

ENAME INIT EXT(NUMLIST)
-------- ----- ------------
CLARK AB 4231
KING CC 1234
MILLER TJA 2345

SQL>

The DEPTNO value (10) in the WHERE clause of this query is carefully chosen, in order to
avoid error messages. Just change the DEPTNO value in Listing 12-7, and you will see the corre-
sponding Oracle error messages.

■Note The EXT stored function is kept as simple as possible. For example, there is no code to handle situ-
ations where employees have no phone number list or an empty phone number list. It is relatively easy to
enhance the EXT function definition with some proper exception handling. However, this is not a PL/SQL
book, and the EXT function is meant only to illustrate the concept.

It is impossible to update specific elements of an array. You can only replace an entire
array value by a new one.

12.3 Nested Tables
Nested tables offer you more flexibility than arrays. There are many similarities between
arrays and nested tables. However, an important difference is that nested tables require one
extra step. In the previous section, you saw that you create a type, and then use it to define
arrays. For nested tables, you first create a type, then you create a table type based on that
type, and then you create a nested table based on that table type.

Creating Table Types
To demonstrate how to use nested tables, we will implement the example of maintaining
course errata, introduced in Section 12.1. Listing 12-8 shows how to create the two types we
need for implementing the errata example as a nested table.

Listing 12-8. Creating a Table Type for a Nested Table

SQL> create or replace type erratum_t as object
2 (code varchar2(4)
3 , ch number(2)
3 , pg number(3)
4 , txt varchar2(40)

CHAPTER 12 ■ OBJECT-RELATIONAL FEATURES334

5) ;
6 /

Type created.

SQL> create or replace type errata_tab_t as table of erratum_t;
2 /

Type created.

SQL> describe errata_tab_t
errata_tab_t TABLE OF ERRATUM_T
Name Null? Type
------------------------------- -------- ---------------
CODE VARCHAR2(4)
CH NUMBER(2)
PG NUMBER(3)
TXT VARCHAR2(40)

SQL>

Creating the Nested Table
Listing 12-9 shows the next step of creating the nested table based on the ERRATA_TAB_T type.
Just as we did in the previous section with the EMPLOYEES table, we first create a copy C of the
COURSES table, to keep that table unimpaired.

Listing 12-9. Creating a Table with a Nested Table Column

SQL> create table c
2 as
3 select * from courses;

Table created.

SQL> alter table c
2 add (errata errata_tab_t)
3 nested table errata store as errata_tab;

Table altered.

SQL> update c
2 set errata = errata_tab_t();

10 rows updated.

SQL>

CHAPTER 12 ■ OBJECT-RELATIONAL FEATURES 335

In Listing 12-9, the ALTER TABLE command adds an ERRATA nested table column to the C
table, and the UPDATE command assigns an empty nested table to the ERRATA column for every
row. Note that we use the ERRATA_TAB_T table type constructor method for that purpose.

Populating the Nested Table
Now we can add rows to the nested table, as shown in Listing 12-10. Note that you can access
nested tables only within the context of the table they are part of; it is impossible to access
them as independent tables. Listing 12-10 uses the TABLE function again, just as we did before
in Listing 12-6, to unnest the nested table.

Listing 12-10. Inserting Rows into the Nested Table

SQL> insert into table (select errata
2 from c
3 where code = 'SQL')
4 values ('SQL'
5 , 3
6 , 45
7 , 'Typo in last line.');

1 row created.

SQL>

We inserted an erratum entry for the SQL course, Chapter 3, page 45. In a similar way, you
can also delete rows from a nested table. As stated in the introduction to this section, nested
tables offer more flexibility than arrays. For example, you can update individual column val-
ues of a nested table, whereas you can only replace arrays in their entirety.

Suppose we made a typo in Listing 12-10 while entering the chapter number: the erratum
was not in Chapter 3, but rather in Chapter 7. Listing 12-11 shows how we can correct this
mistake with an UPDATE command. Note that line 3 introduces tuple variable e ranging over
the result of the TABLE function, allowing us to use that tuple variable on the fourth line to
refer to its chapter (CH) column value.

Listing 12-11. Updating Individual Columns of Nested Tables

SQL> update table (select errata
2 from c
3 where code = 'SQL') e
4 set e.ch = 7;

1 row updated.

SQL>

CHAPTER 12 ■ OBJECT-RELATIONAL FEATURES336

Querying the Nested Table
If you want to retrieve all errata entries for the SQL course, you can join the courses table (C)
with its nested table, as shown in Listing 12-12.

Listing 12-12. Selecting Errata for the SQL Course

SQL> select code
2 , c.description
3 , e.ch, e.pg, e.txt
4 from c
5 join
6 table(c.errata) e
7 using (code);

CODE DESCRIPTION
------- ------------------------------
CH PG TXT
--- --- ------------------------------
SQL Introduction to SQL
7 45 Typo in last line.

SQL>

As Listing 12-12 shows, this nested table join syntax is very similar to the syntax you use
for regular joins (discussed in Chapter 8). The TABLE function unnests its column-valued argu-
ment (c.ERRATA) into a table.

Note that you can only refer to c.ERRATA because you specify the C table first in the FROM
clause. The FROM clause order is important in this case. If you swap the two table expressions,
you get the following Oracle error message:

SQL> select code
2 , c.description
3 , e.ch, e.pg, e.txt
4 from table(c.errata) e
5 join
6 c
7 using (code);

from table(c.errata) e
*

ERROR at line 4:
ORA-00904: "C"."ERRATA": invalid identifier

SQL>

Listing 12-12 shows only a single row, because we inserted only a single erratum into the
nested table. The last section of this chapter revisits nested tables, showing how you can use
multiset operators on nested tables. These multiset operators could be a reason to consider

CHAPTER 12 ■ OBJECT-RELATIONAL FEATURES 337

using nested tables instead of regular (relational) tables with primary key and foreign key con-
straints. The multiset operators allow you to write elegant SQL statements that would need
quite complicated syntax without them.

12.4 User-Defined Types
Your application may require a special, complex datatype. In that case, you would create a
user-defined type.

Creating User-Defined Types
The third example mentioned in Section 12.1 was the compound ADDRESS type, used to store
addresses with meaningful subcomponents into a single column. Listing 12-13 shows how
you can create such a type.

Listing 12-13. Creating and Using User-Defined Types

SQL> create type address_t as object
2 (street varchar2(20)
3 , nr varchar2(5)
4 , pcode varchar2(6)
5 , city varchar2(20)
6) ;
7 /

Type created.

SQL> describe address_t
Name Null? Type
---------------------------------- -------- --------------
STEET VARCHAR2(20)
NR VARCHAR2(5)
PCODE VARCHAR2(6)
CITY VARCHAR2(20)

SQL> select type_name, typecode
2 from user_types;

TYPE_NAME TYPECODE
------------------------------ ------------------
NUMBERLIST_T COLLECTION
ERRATUM_T OBJECT
ERRATA_TAB_T COLLECTION
ADDRESS_T OBJECT

SQL> create table o
2 as

CHAPTER 12 ■ OBJECT-RELATIONAL FEATURES338

3 select course, begindate, trainer
4 from offerings;

Table created.

SQL> alter table o add (address address_t);

Table altered.

SQL> update o
2 set o.address =
3 address_t('','','',
4 (select initcap(x.location)
5 from offerings x
6 where x.course = o.course
7 and x.begindate = o.begindate)
8)
9 ;

13 rows updated.

SQL>

Note that we now have four user-defined types, as shown by the query against the
USER_TYPES data dictionary view. Then we create a copy O of the OFFERINGS table (again, to keep
the original table unimpaired) and add an ADDRESS column to the O table. As a last step, Listing
12-13 updates the O table with some address values. The last command uses the ADDRESS_T
function to generate address values, leaving the first three address fields empty and selecting
the city name from the original OFFERINGS table with a subquery.

Showing More Information with DESCRIBE
If you use user-defined datatypes, you can change the behavior of the SQL*Plus DESCRIBE
command to show more information, by setting its DEPTH attribute to a value higher than 1 or
to ALL. See Listing 12-14 for an example.

Listing 12-14. Setting the DEPTH Attribute of the DESCRIBE Command

SQL> describe o
Name Null? Type
----------------- -------- ------------
COURSE NOT NULL VARCHAR2(4)
BEGINDATE NOT NULL DATE
TRAINER NUMBER(4)
ADDRESS ADDRESS_T

SQL> set describe depth 2
SQL> describe o

CHAPTER 12 ■ OBJECT-RELATIONAL FEATURES 339

Name Null? Type
----------------- -------- ----------------
COURSE NOT NULL VARCHAR2(4)
BEGINDATE NOT NULL DATE
TRAINER NUMBER(4)
ADDRESS ADDRESS_T
STREET VARCHAR2(20)
NR VARCHAR2(5)
PCODE VARCHAR2(6)
CITY VARCHAR2(20)

SQL>

The DESCRIBE command now also shows the subcomponents of your user-defined types.
If your object-relational tables have additional method functions, they are shown as well.

12.5 Multiset Operators
This section discusses the ANSI/ISO standard multiset operators of the SQL language. We will
first look at a complete list of all SQL multiset operators with a brief description. You can use
these operators only on nested tables. Therefore, to allow for some multiset operator examples
in this section, we will enter some more nested table entries in the ERRATA nested table. You
will also see how you can convert arrays into nested tables “on the fly,” using the CAST and
COLLECT functions.

Which SQL Multiset Operators Are Available?
If you are using nested tables in your table design, you can apply various SQL multiset operators
against those tables. Multiset operators allow you to compare nested tables, check certain
nested table properties, or derive new nested tables from existing ones.

■Note The SQL language refers to multisets to indicate a rather important difference between these sets
and “regular” sets. In mathematics, duplicate elements in sets are meaningless. In SQL, multisets may have
meaningful duplicates; that is, you cannot ignore duplicates in multisets.

Table 12-1 shows an overview of the Oracle multiset operators. Note that these multiset
operators are also part of the ANSI/ISO SQL standard. For completeness, Table 12-1 not only
shows the SQL multiset operators, but also some other operations you can apply to nested
tables.

CHAPTER 12 ■ OBJECT-RELATIONAL FEATURES340

Table 12-1. SQL Multiset Operators and Functions

Multiset Operator or Function Description

nt1 MULTISET EXCEPT [DISTINCT] nt2 The difference of nt1 and nt2 (equivalent with the MINUS
set operator)

nt1 MULTISET INTERSECT [DISTINCT] nt2 The intersection of nt1 and nt2

nt1 MULTISET UNION [DISTINCT] nt2 The union of nt1 and nt2

CARDINALITY(nt) The number of rows in nt

nt IS [NOT] EMPTY Boolean function to check whether nt is empty

nt IS [NOT] A SET Boolean function to check whether nt contains
duplicates

SET(nt) Remove duplicates from nt

nt1 = nt2 Check whether nt1 and nt2 are equal

nt1 IN (nt2, nt3, ...) Check whether nt1 occurs in a list of nested tables

nt1 [NOT] SUBMULTISET OF nt2 Is nt1 a subset of nt2?

r [NOT] MEMBER OF nt Does row r occur in table nt?

CAST(COLLECT(col)) Produce a nested table based on column col

POWERMULTISET(nt) The set of all nonempty subsets of nt

POWERMULTISET_BY_CARDINALITY(nt,c) The set of all nonempty subsets of nt with cardinality c

The following sections show a few typical examples of using multiset operators and func-
tions. See the Oracle SQL Reference documentation for examples of all these operators and
functions.

Preparing for the Examples
In Section 12.3 of this chapter, you learned how you can store errata entries for courses in a
nested table. In Listing 12-10, we inserted only a single erratum. In Listing 12-15, we insert
some more rows into the ERRATA nested table.

Listing 12-15. Inserting Some More Errata Rows

SQL> insert into table (select errata
2 from c
3 where code = 'SQL')
4 values ('SQL'
5 , 3
6 , 46
7 ,'Layout illustration');

1 row created.

SQL> insert into table (select errata
2 from c
3 where code = 'SQL')
4 values ('SQL'

CHAPTER 12 ■ OBJECT-RELATIONAL FEATURES 341

5 , 5
6 , 1
7 ,'Introduction missing.');

1 row created.

SQL> insert into table (select errata
2 from c
3 where code = 'XML')
4 values ('XML'
5 , 5
6 , 1
7 , 'Introduction missing.');

1 row created.

SQL> insert into table (select errata
2 from c
3 where code = 'XML')
4 values ('XML'
5 , 7
6 , 3
7 ,’Line 5: "succeeds" should read "fails"');

1 row created.

SQL>

Now we have five errata entries in total: three for the SQL course and two for the XML course.
If you execute a “regular” query against the C table and select its ERRATA column without using
any modifying functions, the structure of the ERRATA column (with the nested table) becomes
clear from the query result, as shown in Listing 12-16.

Listing 12-16. Querying a Nested Table Without Using Modifying Functions

SQL> col errata format a80 word

SQL> select errata
2 from c
3 where code = 'SQL';

ERRATA(CODE, CH, PG, TXT)
--
ERRATA_TAB_T(ERRATUM_T('SQL', 7, 45, 'Typo in last line.'),

ERRATUM_T('SQL', 3, 46, 'Layout illustration'),
ERRATUM_T('SQL', 5, 1, 'Introduction missing.'))

SQL>

CHAPTER 12 ■ OBJECT-RELATIONAL FEATURES342

■Note The query output in Listing 12-16 is formatted for readability.

The query result in Listing 12-16 consists of only a single row with a single column. In
other words, you are looking at a complicated but single value. If you interpret that single
value “inside out,” you see that the ERRATUM_T constructor function (or method) appears three
times to build individual erratum entries. These three erratum entries, in turn, are elements in
a comma-separated list. The ERRATA_TAB_T constructor function takes that comma-separated
errata list as an argument to convert it into a nested table.

Using IS NOT EMPTY and CARDINALITY
Listing 12-17 uses the IS NOT EMPTY operator to select only those courses that have at least one
erratum entry, and it uses the CARDINALITY function to show the number of errata for those
courses.

Listing 12-17. IS NOT EMPTY and CARDINALITY Example

SQL> select code, cardinality(errata)
2 from c
3 where errata is not empty;

CODE CARDINALITY(ERRATA)
------- -------------------
SQL 3
XML 2

SQL>

A corresponding query against a “regular” relational errata table would need a COUNT(*), a
GROUP BY, and a HAVING clause.

Using POWERMULTISET
Listing 12-18 shows how you can produce the powermultiset of the ERRATA column for the SQL
course. To increase the readability of the results in Listing 12-18, we issue a SQL*Plus BREAK
command, which highlights the fact that the query result contains seven rows. Every row is a
subset of the ERRATA nested table for the SQL course.

■Note In mathematics, the powerset of a set X is the set consisting of all possible subsets of X.

CHAPTER 12 ■ OBJECT-RELATIONAL FEATURES 343

Listing 12-18. POWERMULTISET Example

SQL> break on row page

SQL> select *
2 from table (select powermultiset(errata)
3 from c
4 where code = 'SQL');

COLUMN_VALUE(CODE, CH, PG, TXT)
--
ERRATA_TAB_T(ERRATUM_T('SQL', 7, 45, 'Typo in last line.'))

COLUMN_VALUE(CODE, CH, PG, TXT)
--
ERRATA_TAB_T(ERRATUM_T('SQL', 3, 46, 'Layout illustration'))

COLUMN_VALUE(CODE, CH, PG, TXT)
--
ERRATA_TAB_T(ERRATUM_T('SQL', 7, 45, 'Typo in last line.'),

ERRATUM_T('SQL', 3, 46, 'Layout illustration'))

COLUMN_VALUE(CODE, CH, PG, TXT)
--
ERRATA_TAB_T(ERRATUM_T('SQL', 5, 1, 'Introduction missing.'))

COLUMN_VALUE(CODE, CH, PG, TXT)
--
ERRATA_TAB_T(ERRATUM_T('SQL', 7, 45, 'Typo in last line.'),

ERRATUM_T('SQL', 5, 1, 'Introduction missing.'))

COLUMN_VALUE(CODE, CH, PG, TXT)
--
ERRATA_TAB_T(ERRATUM_T('SQL', 3, 46, 'Layout illustration'),

ERRATUM_T('SQL', 5, 1, 'Introduction missing.'))

COLUMN_VALUE(CODE, CH, PG, TXT)
--
ERRATA_TAB_T(ERRATUM_T('SQL', 7, 45, 'Typo in last line.'),

ERRATUM_T('SQL', 3, 46, 'Layout illustration'),
ERRATUM_T('SQL', 5, 1, 'Introduction missing.'))

7 rows selected.

SQL>

CHAPTER 12 ■ OBJECT-RELATIONAL FEATURES344

The result contains seven rows because we have three SQL errata; see also Listing 12-17.
Why seven rows for three errata? Well, there are the following possible subsets:

• Three possible subsets with cardinality 1 (rows 1, 2, and 4)

• Three possible subsets with cardinality 2 (rows 3, 5, and 6)

• One possible subset with cardinality 3 (row 7; that is, the nested table itself)

In mathematics, we would also expect the empty set to show up as an element of the
powerset. However, the definition of the POWERMULTISET operator (see Table 12-1) explicitly
excludes that subset, by stating that only nonempty subsets are considered.

Using MULTISET UNION
Listing 12-19 shows how you can use the MULTISET UNION operator to merge two nested tables
into a single one. The query result is manually formatted to enhance readability, allowing you
to see that the result is a single nested table, containing five errata entries. Without manual
formatting, the query result will show up as one unstructured string.

Listing 12-19. MULTISET UNION Example

SQL> select c1.errata
2 MULTISET UNION
3 c2.errata
4 as result
5 from c c1,
6 c c2
7 where c1.code = 'SQL'
8 and c2.code = 'XML';

RESULT(CODE, CH, PG, TXT)
--
ERRATA_TAB_T(ERRATUM_T('SQL', 7, 45, 'Typo in last line.')

, ERRATUM_T('SQL', 3, 46, 'Layout illustration')
, ERRATUM_T('SQL', 5, 1, 'Introduction missing.')
, ERRATUM_T('XML', 5, 1, 'Introduction missing.')
, ERRATUM_T('XML', 7, 3, 'Line 5: "succeeds" should read "fails"')
)

SQL>

Converting Arrays into Nested Tables
For the last example, we revisit the E table with the phone number array (see Listings 12-1
through 12-6). Listing 12-20 shows how you can use the COLLECT and CAST operators to convert
an array into a nested table. To be able to capture the result, we first create a new NUMBER_TAB_T
type using the existing NUMBERLIST_T type.

CHAPTER 12 ■ OBJECT-RELATIONAL FEATURES 345

Listing 12-20. CAST and COLLECT Example to Convert an Array into a Nested Table

SQL> create type number_tab_t
2 as table of numberlist_t;
3 /

Type created.

SQL> select cast(collect(numlist) as number_tab_t) as result
2 from e
3 where empno in (7839, 7782);

RESULT
--
NUMBER_TAB_T(NUMBERLIST_T('4231', '06-12345678'),

NUMBERLIST_T('1234', '06-78765432', '029-8765432'))

SQL>

This final chapter gave you a high-level introduction to the object-relational features of
the Oracle DBMS, focusing on the way you can use those features in SQL. You learned how
you can create object types, and how you can use those types as user-defined datatypes. You
also learned about the Oracle collection types: variable arrays and nested tables. If your tables
contain nested tables, you can use SQL multiset operators on those tables.

If you want to learn more about the object-relational features of Oracle, refer to the Oracle
documentation. Application Developer’s Guide: Object-Relational Features is an excellent start-
ing point for further study in this area.

12.6 Exercises
You can do the following exercises to practice using the object-relational techniques covered
in this chapter. The answers are in Appendix D.

1. The SALGRADES table has two columns to indicate salary ranges: LOWERLIMIT and
UPPERLIMIT. Define your own SALRANGE_T type, based on a varray of two NUMBER(6,2)
values, and use it to create an alternative SALGRADES2 table.

2. Fill the new SALGRADES2 table with a single INSERT statement, using the existing
SALGRADES table.

3. Create a table TESTNEST with two columns: column X and column MX. Column X is
NUMBER(1,0) with values 2, 3, 4, ..., 9. Column MX is a nested table, based on a MX_TAB_T
type, containing all multiples of X less than or equal to 20.

CHAPTER 12 ■ OBJECT-RELATIONAL FEATURES346

4. Use multiset operators to solve the following problems, using the TESTNEST table you
created and populated in the previous exercise:

a. Which rows have a nested table containing value 12?

b. Which nested tables are not a subset of any other subset?

c. Which nested tables have more than 42 different nonempty subsets?

CHAPTER 12 ■ OBJECT-RELATIONAL FEATURES 347

Quick Reference to SQL and
SQL*Plus

This appendix offers quick references for SQL*Plus and the SQL language. It is far from a com-
plete reference, but it should still prove useful. The Oracle documentation contains (besides
the comprehensive and complete references) an SQL Quick Reference and a SQL*Plus Quick
Reference, but this appendix is much more concise than those two Oracle quick references.

You may abbreviate most SQL*Plus commands and their components, as long as you
don’t introduce ambiguity. This appendix does not show all SQL*Plus command abbreviation
possibilities explicitly, in order to enhance its readability. For example, where this appendix
lists the COMPUTE command, it should show it as COMP[UTE], because you can abbreviate the
SQL*Plus COMPUTE command to COMP. Abbreviation is available only for SQL*Plus commands;
you must always enter SQL commands completely. Refer to SQL*Plus User’s Guide and
Reference for all of the abbreviations for SQL*Plus commands and their components.

■Tip When writing SQL*Plus scripts, use the full SQL*Plus commands and the full command component
names instead of their abbreviations. This will enhance the readability of your scripts. When you are using
SQL*Plus interactively, you may want to use the abbreviations.

There are some differences between SQL*Plus and iSQL*Plus; however, this appendix
does not list those differences. Refer to SQL*Plus User’s Guide and Reference for more details.
The Oracle documentation also explicitly shows all abbreviations for SQL*Plus commands
and their components.

After a section about the syntax conventions used in this appendix, the commands are
organized as follows:

• Starting and stopping; entering and executing commands

• Working with the SQL*Plus editor, manipulating SQL*Plus scripts, and SQL*Plus inter-
activity commands

• Variables and parameters

• Formatting query results

349

A P P E N D I X A

■ ■ ■

• SQL: data manipulation (DML), transactions, and queries

• SQL: data definition (DDL)

• SQL: other commands

• SQL: operators, functions, and regular expressions

• Rules for naming Oracle database objects; SQL reserved words

Note that this appendix also shows constructs, operators, and commands that are not
covered in the chapters of this book.

Syntax Conventions Used in This Appendix
Table A-1 shows the general syntax conventions used in this appendix. Table A-2 identifies the
characters and formatting that have special meaning in this appendix.

Table A-1. General Syntax Conventions

Element Meaning

CREATE Command name or keyword, to be entered exactly as spelled (not necessarily in
uppercase)

str Alphanumeric literal between quotes (string)

cond Boolean expression (condition)

d, d1, d2 Expressions of datatype DATE

expr, e1, e2 Arbitrary expressions

m, n Numeric expressions

query Query embedded within a command (subquery)

txt Alphanumeric expression (with or without quotes)

Table A-2. Characters and Formatting with Special Meaning

Element Example Meaning

[] [NOWAIT] Brackets enclose one or more optional items. Options are
separated by vertical bars.

Underlining [ASC|DESC] Underscored value is the default used if you don’t make a
choice yourself.

{ } {expr1|expr2} Braces enclose two or more items, separated by vertical bars.
Choose precisely one of them.

... expr[,...] Horizontal ellipsis indicates that you may repeat the preced-
ing item as many times as you like, or that irrelevant parts of
the code are omitted.

You should not enter the characters of Table A-2 with a special meaning (square brackets,
braces, vertical lines, and ellipsis) themselves. Regular parentheses (like the ones surrounding
this text), commas, periods, single and double quotation marks (' and "), at signs (@),

APPENDIX A ■ QUICK REFERENCE TO SQL AND SQL*PLUS 350

APPENDIX A ■ QUICK REFERENCE TO SQL AND SQL*PLUS 351

ampersands (&), and any other “exotic” characters have no special meaning in the syntax
descriptions in this appendix; therefore, you should enter them verbatim.

Starting and Stopping
SQLPLUS {-HELP|-VERSION}
SQLPLUS [-COMPATIBILITY x.y.z] [/NOLOG|name[/passwd]] [@script]
[-MARKUP "options"] [-RESTRICT {1|2|3}] [-SILENT]

script ::= {file[.ext]|url} [arg1 arg2 ...]}

Start a SQL*Plus session or display help/version information.

CONNECT name[/passwd][@database-spec]

Create a new SQL*Plus session from the SQL*Plus prompt with the given name/password.

DISCONNECT

Commit transaction and close database session, but do not exit SQL*Plus.

{EXIT|QUIT} [SUCCESS|FAILURE|WARNING|n|var] [COMMIT|ROLLBACK]

Close database session and leave SQL*Plus; by default, with a COMMIT and a SUCCESS exit
code for the calling environment.

PASSWORD [user]

Change your password (screen echo suppressed) or change the password for a specific user.

SHUTDOWN [ABORT|IMMEDIATE|NORMAL|TRANSACTIONAL [LOCAL]]

Shut down the Oracle instance.

STARTUP [FORCE] [RESTRICT] [QUIET] [OPEN [READ ONLY]] ...

Start up the Oracle instance. There are several additional options for this command.

Entering and Executing Commands
/

Entering a forward slash executes the SQL command in the SQL buffer, without listing the
command.

DESCRIBE [schema.]obj-name

Display the definition/structure of the specified object. Use the SET DESCRIBE command to
influence the DESCRIBE command.

EXECUTE plsql-statement

Execute a single PL/SQL statement.

HOST [os-command]

Execute a single operating system command and return to the SQL*Plus prompt. Without
an argument, the HOST command starts a subsession at the operating system level.

RUN

Display and execute the SQL command in the SQL buffer.

TIMING [START txt|SHOW|STOP]

Record timing data, list current timer’s name and timing data, or list the number of active
timers.

Working With the SQL*Plus Editor
These commands are not available in iSQL*Plus. Note that this section explicitly shows the
SQL*Plus command abbreviations (as opposed to the other sections of this appendix) because
these commands are used often.

A[PPEND] txt

Add txt at the end of the current line in the buffer. Use two spaces to enter a space
before txt.

C[HANGE] /old[/[new[/]]]

Change old on the current line into new. Any nonalphanumeric character is allowed as the
separator instead of the slash (/). The third separator is optional; you need it only when new
ends with one or more spaces.

DEL [n [m]]

Delete one or more lines from the buffer. The default is to delete only the current line.
Instead of line numbers (n, m), you can also use the following expressions: LAST (last line) or *
(current line).

I[NPUT] [txt]

Add lines to the SQL buffer under the current line.

L[IST] [n [m]]

Display one or more buffer lines. Without arguments, LIST displays all lines in the buffer.
Instead of line numbers, you can use the same special expressions as with the DEL command:
* and LAST.

APPENDIX A ■ QUICK REFERENCE TO SQL AND SQL*PLUS 352

Manipulating SQL*Plus Scripts
Note that most commands listed in this section are not available in iSQL*Plus.

EDIT [file[.ext]]

Start an external editor and open file.ext. Without an argument, EDIT edits the SQL
buffer.

GET file[.ext] [LIST|NOLIST]

Load the contents of a file into the SQL buffer.

REMARK [txt]

Enter comments. Oracle ignores txt until the end of the current line.

SAVE file[.ext] [CREATE|REPLACE|APPEND]

Save the content of the SQL buffer in file.ext.

STORE SET file[.ext] [CREATE|REPLACE|APPEND]

Save the current SQL*Plus settings in file.ext.

{START|@|@@} {url|script[.ext]} [arg1 arg2 ...]

Execute script (default file extension SQL). Oracle substitutes arguments for variables &1,
&2, and so on.

WHENEVER OSERROR
{EXIT [SUCCESS|FAILURE|n] [COMMIT|ROLLBACK]
|CONTINUE [COMMIT|ROLLBACK|NONE]}

Indicate what SQL*Plus should do in case of operating system error conditions.

WHENEVER SQLERROR
{EXIT [SUCCESS|FAILURE|WARNING|n] [COMMIT|ROLLBACK]
|CONTINUE [COMMIT|ROLLBACK|NONE]}

Indicate what SQL*Plus should do when SQL commands create error situations.

SQL*Plus Interactivity Commands
ACCEPT var [NUMBER|CHAR|DATE|BINARY_FLOAT|BINARY_DOUBLE]
[FORMAT fmt] [DEFAULT dflt] [PROMPT txt|NOPROMPT] [HIDE]

Prompt with txt and assign entered value to variable var.

DEFINE [x[=txt]]

APPENDIX A ■ QUICK REFERENCE TO SQL AND SQL*PLUS 353

Assign value txt to variable x; show current value for x, or show all defined variables.

PAUSE [txt]

Display txt (or an empty line) and wait for an Enter keypress.

PROMPT [txt]

Write txt (or an empty line) to the screen.

UNDEFINE x

Undefine variable x.

Variables and Parameters
&n

Refer to a command-line parameter in a SQL*Plus script: &1 for the first argument, &2
for the second, and so on. Actually, the ampersand (&) is the default setting for the DEFINE
character. See the SQL*Plus SET command.

&var, &&var

Refer to the value of variable var. If var is undefined, SQL*Plus prompts for a value; with &
this happens each time, and with && only once (&& is an implicit DEFINE).

.

A period is the separator between variable names and following text (the CONCAT character).

PRINT [var]

Display the value of bind variable var, or all current bind variable values.

SET sys-var value

Assign values to SQL*Plus system variables. The following are common SQL*Plus system
variables:

APPINFO {ON|OFF|txt] PAGESIZE {14|n}

ARRAYSIZE {15|n} PAUSE {ON|OFF|txt}

AUTOCOMMIT {ON|OFF|IMMEDIATE|n} RECSEP {WRAPPED|EACH|OFF}

AUTOTRACE {ON|OFF|TRACEONLY} [EXPLAIN] RECSEPCHAR { |c}
[STATISTICS]

CMDSEP {;|c|ON|OFF} SERVEROUTPUT {ON|OFF} [SIZE n]
[FORMAT {WRAPPED|WORD_WRAPPED|TRUNC}]

COLSEP { |txt} SHOWMODE {ON|OFF}

APPENDIX A ■ QUICK REFERENCE TO SQL AND SQL*PLUS 354

CONCAT {.|c|ON|OFF} SQLBLANKLINES {ON|OFF}

DEFINE {&|c|ON|OFF} SQLCASE {MIXED|LOWER|UPPER}

DESCRIBE [DEPTH{1|n|ALL}] SQLCONTINUE {>|txt}
[LINENUM {ON|OFF}] [INDENT {ON|OFF}]

ECHO {ON|OFF} SQLNUMBER {ON|OFF}

EDITFILE name[.ext] SQLPREFIX {#|c}

ESCAPE {\|c|ON|OFF} SQLPROMPT {SQL>|txt}

FEEDBACK {6|n|ON|OFF} SQLTERMINATOR {;|c|ON|OFF}

HEADING {ON|OFF} SUFFIX {SQL|txt}

HEADSEP {||c|ON|OFF} TAB {ON|OFF}

INSTANCE [path|LOCAL] TERMOUT {ON|OFF}

LINESIZE {80|n} TIME {ON|OFF}

LONG {80|n} TIMING {ON|OFF}

MARKUP HTML [ON|OFF] [HEAD txt] TRIMOUT {ON|OFF}
[BODY txt] [TABLE txt] [ENTMAP {ON|OFF}]
[SPOOL {ON|OFF}] [PREFORMAT {ON|OFF}]

NEWPAGE {1|n|NONE} TRIMSPOOL {ON|OFF}

NULL txt UNDERLINE {-|c|ON|OFF}

NUMFORMAT fmt VERIFY {ON|OFF}

NUMWIDTH {10|n} WRAP {ON|OFF}

SHOW [sys-var|USER|TTITLE|BTITLE|ERRORS|SPOOL|ALL]

Display the specified value/setting, or display all settings (ALL).

VARIABLE [var {NUMBER|CHAR[(n)]|VARCHAR2(n)| ...}

Declare bind variable var, or display all declared bind variables. You can specify many
more Oracle datatypes.

Formatting Query Results
BREAK [ON element [action [action]]] ...

element ::= {col-name|expr|ROW|REPORT}
action ::= [SKIP n|PAGE] [NODUPLICATES|DUPLICATES]

APPENDIX A ■ QUICK REFERENCE TO SQL AND SQL*PLUS 355

Specify where and how you want to change query result formatting; for example, skip
lines when column values change. BREAK without arguments shows the current break defini-
tion. The BREAK command always overwrites the current break definition.

BTITLE [print-spec [txt|var] ...] | [OFF|ON]

Define a footer (bottom title) for each page, or show the current BTITLE setting. See TTITLE
for more details.

CLEAR {BREAKS|BUFFER|COLUMNS|COMPUTES|SCREEN|SQL|TIMING}

Reset the corresponding option.

COLUMN [{col-name|expr} [option ...]]

Display or change column display settings. COLUMN without arguments shows all current
column settings. col-name (or expr) shows settings for that column. option ... changes col-
umn settings. The following are common COLUMN command options:

ENTMAP {ON|OFF} LIKE {expr|alias} NULL str

FOLD_AFTER NEWLINE OLD_VALUE var

ALIAS alias HEADING txt {ON|OFF}

CLEAR JUSTIFY {L|C|R} {WRAP|WORD_WRAP|TRUNC}

FOLD_BEFORE NEW_VALUE var

FORMAT fmt (see Table A-3) {NOPRINT|PRINT}

Table A-3. Common FORMAT Formatting Elements

Element Example Description

An A10 Display alphanumeric column with width n

9 9999 Number width without leading zeros

0 0999 Number width with leading zeros

9990 Replace spaces with zeros

$ $9999 Prefix numbers with dollar signs

B B9999 Display zero with a space

MI 9999MI Minus sign following negative numbers

PR 9999PR Negative numbers between <brackets>

S S9999 + for positive, - for negative numbers

D 99D99 Position for decimal character

G 9G999 Position for number separator

C C999 ISO currency symbol

L L999 Local currency symbol (NLS)

, 9,999 Position for decimal comma

. 99.99 Position for decimal period

APPENDIX A ■ QUICK REFERENCE TO SQL AND SQL*PLUS 356

Element Example Description

V 999V99 Multiply number with 10n; exponent n is the number of nines after
the V

EEEE 9.999EEEE Scientific notation

RN,rn RN Roman numbers (uppercase or lowercase)

DATE DATE Date in MM/DD/YY format

COMPUTE [function [LABEL txt] ... OF col-spec [...] ON location [...]]

col-spec ::= {expr|col-name|c-alias}
location ::= {break-spec|REPORT|ROW}

Add aggregated computations, or display current COMPUTE settings. All functions (except
NUMBER) ignore null values. Table A-4 shows COMPUTE functions.

Table A-4. COMPUTE Functions

Function Computes Supported Datatypes

AVG Average value Numeric

COUNT Number of values All types

MAXIMUM Maximum value Numeric, alphanumeric

MINIMUM Minimum value Numeric, alphanumeric

NUMBER Number of rows All types

STD Standard deviation Numeric

SUM Sum of all values Numeric

VARIANCE Statistical variance Numeric

REPFOOTER [PAGE] [print-spec [txt|var]...]|[OFF|ON]
REPHEADER [PAGE] [print-spec [txt|var]...]|[OFF|ON]

print-spec ::= {COL n|SKIP [n]|TAB n|FORMAT txt|BOLD|LEFT|CENTER|RIGHT}

Add a footer or a header to your report, or list the current definitions. PAGE begins a new
page after printing the specified header or before printing the specified footer.

SPOOL [file[.ext][CREATE|REPLACE|APPEND]|OFF|OUT]

Save screen output to a file. SPOOL without arguments shows the current status. OFF means
stop spooling. OUT means stop spooling and print the file to default printer.

TTITLE [spec [txt|var]...] | [OFF|ON]

spec ::= {COL n|BOLD|TAB n|SKIP [n]|LEFT|RIGHT|CENTER|FORMAT txt}

Specify a page header (top title) or show current setting.

APPENDIX A ■ QUICK REFERENCE TO SQL AND SQL*PLUS 357

SQL: Data Manipulation (DML), Transactions,
and Queries
COMMIT [WORK]

Confirm pending changes and close current transaction.

DELETE FROM {tab-name|(tab-expr)} [WHERE cond]

Delete rows for which cond evaluates to TRUE. Delete all rows if there is no WHERE clause.

INSERT INTO {tab-name|(tab-expr)}[(col-name, ...)] {VALUES(expr, ...)|query}

Insert new rows, using literal expressions or a subquery.

MERGE INTO destination USING delta-source ON (cond)
WHEN MATCHED THEN UPDATE SET col=...[,...]

[WHERE ...] [DELETE WHERE ...]
WHEN NOT MATCHED THEN INSERT [(col-name-list)] VALUES (...)

[WHERE ...]

Perform a mixture of inserts, updates, and deletes on a destination table based on a
delta-source. This can be a table, view, or the result of a subquery.

ROLLBACK [TO SAVEPOINT sp-name]

Cancel all pending changes made since savepoint sp-name, or cancel all pending changes
and close current transaction.

SAVEPOINT sp-name

Mark savepoints in a transaction. You can use savepoints in ROLLBACK commands.

[WITH name AS subquery [, name AS subquery] ...]
SELECT [DISTINCT] sel-expr[, ...]
FROM tab-expr [AS OF {SCN|TIMESTAMP}...|VERSIONS BETWEEN ... AND ...][, ...]
[WHERE cond]
[[START WITH cond] CONNECT BY [NOCYCLE] cond
[GROUP BY [CUBE|ROLLUP|GROUPING SETS] expr[, ...]]
[HAVING cond]
[{UNION [ALL]|INTERSECT|MINUS} query]
[ORDER [SIBLINGS] BY sort-expr[, ...]]

sel-expr ::= {*|t-alias.*|expr|scalar-subquery [[AS] c-alias]}
tab-expr ::= {[schema.]table|(subquery)|join-expr} [t-alias]
join-expr ::= [t1 JOIN t2 {USING (col-list)|ON (cond)}

|t1 {NATURAL|CROSS} JOIN t2
|t1 [LEFT|FULL|RIGHT] OUTER JOIN t2 {USING...|ON...}
]

sort-expr ::= {expr|c-alias} [ASC|DESC] [NULLS {FIRST|LAST}]

APPENDIX A ■ QUICK REFERENCE TO SQL AND SQL*PLUS 358

Query one or more tables or views; returns rows and columns. Can be used as subquery
within other SQL commands, where appropriate.

UPDATE {tab-name|(tab-expr)} [t-alias]
SET {col-name = expr[, ...] | (col-name[, ...]) = (subquery)}

[WHERE cond]

Change column values in rows for which cond evaluates to TRUE. Changes all rows if you
have no WHERE clause.

SQL: Data Definition (DDL)
ALTER SEQUENCE seq-name [INCREMENT BY n]
[MAXVALUE n|NOMAXVALUE] [MINVALUE n|NOMINVALUE]
[ORDER|NOORDER] [CYCLE|NOCYCLE]

Change the definition of an existing sequence.

ALTER TABLE [schema.]tab-name
[RENAME TO new-name]
[RENAME COLUMN old-name TO new-name]
[ADD ({col-def|ool-constr}[, ...])]
[MODIFY (col-def[, ...])]
[DROP COLUMN col-name [CASCADE CONSTRAINTS]]
[{DROP|DISABLE|ENABLE} constr] ...
[SHRINK SPACE [CASCADE]]

Change the structure of an existing table. See CREATE TABLE for more details.

COMMENT ON {TABLE tab-name|COLUMN col-name} IS 'txt'

Add clarifying text about tables, views, and columns to the data dictionary.

CREATE [UNIQUE|BITMAP] INDEX idx-name
ON tab-name(col-expr {ASC|DESC}[, ...]) [NOSORT]

Create an index on the specified column(s) of a table. There are several different index
types; this syntax is far from complete.

CREATE [PUBLIC] SYNONYM syn-name FOR [schema.]obj-name[@db-link]

Create a synonym for a table or a view. Public synonyms are available for all database users.

CREATE SEQUENCE seq-name [START WITH n] [INCREMENT BY n]
[MAXVALUE n|NOMAXVALUE] [MINVALUE n|NOMINVALUE]
[ORDER|NOORDER] [CYCLE|NOCYCLE]

Create a sequence to generate sequence numbers.

CREATE TABLE tab-name ({col-def|ool-constr}[,...])[AS query]

col-def ::= col-name datatype [DEFAULT expr] [inl-constr]

APPENDIX A ■ QUICK REFERENCE TO SQL AND SQL*PLUS 359

Create a table; define columns and constraints. inl-constr stands for inline constraints,
ool-constr stands for out-of-line constraints, and DEFAULT specifies the default value for a
column. See Table A-5 for Oracle datatypes.

Table A-5. Oracle Datatypes

Datatype Description

CHAR[(n)] Fixed-length string (max n=2000; default n = 1)

VARCHAR[2](n[BYTE|CHAR]) Variable-length string (max n = 4000), expressed in
bytes or in characters

CLOB Character large object; max (4GB - 1) * database
block size

BLOB Binary large object; max (4GB - 1) * database
block size

BFILE Locator to external binary file; max 4GB

DATE Date between 01-JAN-4712 BC and 31-DEC-9999 AD

TIMESTAMP(sp) [WITH [LOCAL] TIMEZONE] Timestamp with sp fractional digits for the seconds

INTERVAL YEAR(jp) TO MONTH Time interval; jp digits for the years

INTERVAL DAY(dp) TO SECOND(sp) Time interval; dp digits for the days and sp fractional
digits for the seconds

LONG Variable-length string (max 2GB) (deprecated
datatype; don’t use it)

RAW(n) Binary data up to n bytes (max n = 2000)

LONG RAW Binary LONG data (deprecated datatype)

NUMBER(p[,s]) Number with max p digits in total, max s of them to
the right of the decimal period

(max p = 38; -84 <= s <= 127; default s = 0)

NUMBER(*,s) Same as NUMBER(38,s)

BINARY_FLOAT 32-bit floating-point number

BINARY_DOUBLE 64-bit floating-point number

CREATE [OR REPLACE] [FORCE] VIEW v-name [(c-alias[, ...])]
AS query [WITH CHECK OPTION [CONSTRAINT cons-name]|WITH READ ONLY]

Create or replace a view. FORCE creates the view regardless of whether the referenced data-
base objects exist or you have enough privileges.

DROP INDEX idx-name

DROP SEQUENCE seq-name

DROP [PUBLIC] SYNONYM syn-name

DROP TABLE tab-name [PURGE] [CASCADE CONSTRAINTS]

APPENDIX A ■ QUICK REFERENCE TO SQL AND SQL*PLUS 360

DROP VIEW v-name

GRANT {obj-priv[, ...]|ALL [PRIVILEGES]} ON obj-name
TO {user[, ...]|role[, ...]|PUBLIC}
[WITH GRANT OPTION]

Grant object privileges to database users or roles.

PURGE {{TABLE|INDEX} obj-name|{[DBA_]RECYCLEBIN}|TABLESPACE ts [USER user]}

Purge objects from the recycle bin.

RENAME old TO new

Rename tables, views, or synonyms.

REVOKE {obj-priv[, ...]|ALL [PRIVILEGES]}
ON obj-name
FROM {user[, ...]|role[, ...]|PUBLIC}

Revoke object privileges from database users or roles.

TRUNCATE TABLE tab-name [{DROP|REUSE} STORAGE]

Efficiently empty a table, and optionally keep or reclaim table storage.

SQL: Other Commands
ALTER SESSION SET parameter=value

Change session-level parameters, such as NLS (National Language Support) settings.

ALTER SYSTEM SET parameter=value

Change parameters, such as NLS settings, for all sessions.

SET CONSTRAINTS {ALL|constr-name[, …]} {IMMEDIATE|DEFERRED}

Indicate when deferrable constraints should be checked.

SET TRANSACTION {READ ONLY|READ WRITE|
ISOLATION LEVEL {SERIALIZABLE|READ COMMITTED}}

Specify the desired level of read consistency and transaction isolation.

/* free text */
-- free text

Comment; you can use this anywhere in your SQL commands. -- works until the end of
the line.

APPENDIX A ■ QUICK REFERENCE TO SQL AND SQL*PLUS 361

SQL: Operators
Tables A-6 through A-11 list the Oracle SQL operators in decreasing precedence. Use paren-
theses, (), in expressions to influence operator precedence.

Table A-6. Arithmetic Operators

Operator Description

+ - Prefix positive/negative expression (unary operators)

* / Multiplication and division

+ - Addition and subtraction

Table A-7. Alphanumeric Operators

Operator Description

|| Concatenate strings

Table A-8. Comparison Operators

Operator Description

= Equal to

!= ^= <> Not equal to

> >= Greater than; greater than or equal to]

< <= Less than; less than or equal to

IN Equals a value from a set (or subquery)

NOT IN Equals no value from a set (or subquery)

ANY For at least one value from ...

ALL For all values from ...

BETWEEN x AND y Between x and y, including boundaries

EXISTS True if the subquery returns at least one row

LIKE [ESCAPE 'x'] Check alphanumeric values using wildcards; % represents 0, 1, or more
arbitrary characters; _ represents precisely one arbitrary character; x
disables wildcard character meanings

IS NULL Contains a null value

Table A-9. Logical Operators (in Precedence Order)

Operator Description

NOT Negation of a logical expression

AND Returns TRUE if both operands return TRUE

OR Returns TRUE if at least one operand returns TRUE

APPENDIX A ■ QUICK REFERENCE TO SQL AND SQL*PLUS 362

Table A-10. Set Operators (Combining Two Query Expressions)

Operator Description

UNION [ALL] Merges rows from both query results; ALL keeps duplicate rows

INTERSECT Rows that occur in both query results

MINUS Rows from the first query result that don’t occur in the second query result

Table A-11. Other SQL Operators

Operator Description

(+) Indicator for outer join columns (deprecated syntax)

* Select all columns of a table or view

DISTINCT Eliminate duplicate rows from a query result

CASE expr Simple CASE expression; if expr = v1 then return r1, ...; otherwise rn
WHEN v1 THEN r1 (or a null value)
WHEN v2 THEN r2 ...
[ELSE rn] END

CASE Searched CASE expression; if c1 is TRUE then return r1, ...; otherwise rn
WHEN c1 THEN r1 (or a null value)
WHEN c2 THEN r2 ...
[ELSE rn] END

SQL: Functions
Tables A-12 through A-19 list the Oracle SQL functions.

Table A-12. Numeric Functions

Numeric Function Description

ABS(n) Absolute value of n

BITAND(n,m) Logical AND over binary representations of n and m

CEIL(n) Smallest integer greater than or equal to n

COS(n), COSH(n), ACOS(n) Cosine, hyperbolic cosine, arccosine

EXP(n) e (2.71828183...) raised to the nth power

FLOOR(n) Largest integer less than or equal to n

LN(n), LOG(m,n) Natural logarithm of n, or logarithm base m

MOD(m,n) Remainder of m divided by n (returns m if n is 0;
result rounded with FLOOR)

POWER(m,n) m raised to the nth power

REMAINDER(m,n) Remainder of m divided by n (n = 0 returns an error;
result rounded with ROUND)

ROUND(n[,m]) n rounded to m positions (default m = 0)

SIGN(n) If n < 0, n = 0, n > 0: respectively, -1, 0, and 1

Continued

APPENDIX A ■ QUICK REFERENCE TO SQL AND SQL*PLUS 363

Table A-12. Continued

Numeric Function Description

SIN(n), SINH(n), ASIN(n) Sine, hyperbolic sine, arcsine

SQRT(n) Square root of n (n < 0 returns a null value)

TAN(n), TANH(n), ATAN(n), ATAN2(n,m) Tangent, hyperbolic tangent, arctangent

TRUNC(n[,m]) n truncated to m positions (default m = 0)

WIDTH_BUCKET(e,min,max,nb) Histogram; bucket to which e belongs if you divide the
interval from min to max into nb buckets

Table A-13. Alphanumeric Functions Returning Alphanumeric Results

Alphanumeric Function Description

CHR(n) Character with ASCII value n

CONCAT(c1,c2) Concatenate c1 and c2

INITCAP(txt) Each word in txt starts uppercase; remainder lowercase

LOWER(txt) All characters in txt converted to lowercase

LPAD(c1,n,c2) c1 left-padded to length n with characters from c2 (default c2 is a
space)

LTRIM(txt[,set]) Trim characters from the left of txt until the first character not in
set (default set is a space)

REGEXP_REPLACE(c1,p[,...]) Search c1 for regular expression p; return the position

REGEXP_SUBSTR(c1,p[,...]) Search c1 for regular expression p; return substring

REPLACE(txt,s,r) Replace all occurrences of s in txt with r; without r, remove all
occurrences

RPAD(c1,n,c2) c1 right-padded to length n with characters from c2 (default c2 is
a space)

RTRIM(txt[,set]) Trim characters from the right of txt until the first character not
in set (default set is a space)

SUBSTR(txt,m,n) Substring of txt from position m, length n (without n: until the
end of txt)

TRANSLATE(txt,from,to) txt, translated from character set from to to

TRIM([... FROM] txt) Trim characters from the left and/or right of txt

UPPER(txt) txt converted to uppercase

Table A-14. Alphanumeric Functions Returning Numeric Values

Alphanumeric Function Description

ASCII(txt) ASCII value first character of txt

INSTR(c1,c2,[,n[,m]]) Position mth occurrence of c2 in c1; search from position n
(defaults: m = 1, n = 1)

LENGTH(txt) Length of txt (expressed in characters)

REGEXP_INSTR(txt,p,[,...]) Position of regular expression p in txt

APPENDIX A ■ QUICK REFERENCE TO SQL AND SQL*PLUS 364

Table A-15. Group Functions

Group Function Description

AVG(n) Average value

CORR(expr1,expr2) Correlation coefficient

COUNT({*|expr}) Number of rows where expr is not NULL (* counts all rows)

MAX(expr) Maximum value

MEDIAN(expr) Middle value

MIN(expr) Minimum value

SUM(n) Sum of all values

STATS_MODE(expr) Most frequent value (mode)

STDDEV(n) Standard deviation

VARIANCE(n) Variance

[DISTINCT] All group functions support this option; count different values only once

Table A-16. Date Functions

Date Function Description

ADD_MONTHS(d,n) Date d plus n months

CURRENT_DATE Current date with time zone information

CURRENT_TIMESTAMP[(p)] Current timestamp (precision p) with time zone information

EXTRACT(c FROM d) Extract component c from date or interval d

LAST_DAY(d) The last day of the month containing d

LOCALTIMESTAMP[(p)] Current timestamp (precision p) without time zone information

MONTHS_BETWEEN(d1,d2) Difference in months between dates d1 and d2

NEXT_DAY(d,str) The first weekday named by str, later than date d

NUMTODSINTERVAL(n,unit) Convert n to INTERVAL DAY TO SECOND

ROUND(d[,fmt]) Date d, rounded on unit fmt (default fmt = 'DD')

SESSIONTIMEZONE Time zone current session

SYS_EXTRACT_UTC(dwtz) Convert date and time with time zone dwtz to UTC

SYSDATE Current system date and time

SYSTIMESTAMP Current system timestamp with time zone

TRUNC(d[,fmt]) Date d truncated on unit fmt (default fmt = 'DD')

APPENDIX A ■ QUICK REFERENCE TO SQL AND SQL*PLUS 365

Table A-17. Conversion Functions

Conversion Function Description

ASCIISTR(txt) Convert non-ASCII characters in txt to \XXXX format

BIN_TO_NUM(e1[,e2,...]) Convert expressions from binary to decimal

CAST(expr AS type) Convert expr to datatype type

COMPOSE('txt') Convert txt to Unicode to produce composite characters

CONVERT(txt,dks[,bks]) Convert txt from character set bks to dks

DECOMPOSE(str) Convert str (in Unicode) to decompose composite characters

TO_BINARY_DOUBLE(e[,fmt]) Convert e to double-precision, floating-point number

TO_BINARY_FLOAT(e[,fmt]) Convert e to floating-point number

TO_CHAR(expr[,fmt]) Convert expr to CHAR using format fmt (there is a default date
format, and by default, numbers are displayed wide enough to
show all significant digits; see Tables A-20 and A-22)

TO_CLOB(txt) Convert txt to CLOB (Character Large Object)

TO_DATE(str[,fmt]) Convert str to DATE using format fmt (fmt is optional if str is
specified in default date format); see Table A-20

TO_DSINTERVAL(str) Convert str to INTERVAL DAY TO SECOND

TO_LOB(lc) Convert lc from LONG [RAW] to a LOB type

TO_NUMBER(txt) Convert txt to NUMBER

TO_TIMESTAMP(str[,fmt]) Convert str to TIMESTAMP

TO_TIMESTAMP_TZ(str[,fmt]) Convert str to TIMESTAMP WITH TIME ZONE

TO_YMINTERVAL(str) Convert str to INTERVAL YEAR TO MONTH

Table A-18. Collection Functions

Collection Function Description

CARDINALITY(nt) Return the number of elements in a nested table nt

COLLECT(col) Create a nested table out of col values from the rows
selected

POWERMULTISET(nt) Return a nested table containing all nonempty subsets
of a nested table nt

POWERMULTISET_BY_CARDINALITY(nt,n) Return a nested table containing all subsets of a nested
table nt with cardinality n

SET(nt) Convert a nested table into a set by eliminating duplicates

Table A-19. Other SQL Functions and Pseudo Columns

Function Description

COALESCE(a,b,c,...) Return the first not-null argument

DECODE(x,s1,r1[,s2,r2,]... [dflt]) Return r1 if x = s1, r2 if x = s2, ...; otherwise dflt

DUMP(expr[,fmt[,startpos[,len]]]) Dump datatype code, length in bytes, and internal rep-
resentation of expr

APPENDIX A ■ QUICK REFERENCE TO SQL AND SQL*PLUS 366

Function Description

GREATEST(expr[,...]) Return expr with the largest value

LEAST(expr[,...]) Return expr with the smallest value

LEVEL Level in the tree (for hierarchical queries only)

LNNVL(cond) Return TRUE if cond returns FALSE or UNKNOWN; otherwise
FALSE

NULLIF(expr1,expr2) Return NULL if expr1 = expr2; otherwise expr1

NVL(expr1,expr2) Return expr2 if expr1 is NULL; otherwise expr1

NVL2(expr1,expr2,expr3) Return expr2 if expr1 is not NULL; otherwise expr3

ORA_HASH(expr[,nb[,s]]) Hash value for expr, using nb buckets and seed value s

SYS_CONNECT_BY_PATH(...) Path to the root value (for hierarchical queries only)

SYS_CONTEXT('ns','sp') Value of system parameter sp of the ns (namespace)
context (a common namespace is USERENV with 42 pre-
defined parameters; see Oracle SQL Reference for details)

UID Number of the current database user

USER Name of the current database user

VSIZE(expr) Number of bytes occupied by expr

Date Format Models
You can use any combination of the elements listed in Table A-20 as the fmt argument for the
TO_CHAR and TO_DATE functions. Table A-21 lists optional date format modifiers.

Table A-20. TO_CHAR and TO_DATE Format Elements

Format Element Description

[S]CC Century; S displays BC dates with a minus sign

[S]YYYY Year; S as in SCC

YYY, YY, Y Last three, two, or one digits of the year

RR Last two digits of the year (with interpretation for 20th century)

IYYY, IYY, IY, I ISO year; last three, two, or one digits of the ISO year

[S]YEAR Year, spelled out; S as in SCC

BC, AD BC/AD indicator (B.C. and A.D. also allowed)

Q Quarter number (1, 2, 3, 4)

MM Month number (01–12)

MONTH Month name; padded with spaces to length 9

MON Month name; three-character abbreviation

RM Month in Roman numerals

WW, IW (ISO) week number (01–53)

Continued

APPENDIX A ■ QUICK REFERENCE TO SQL AND SQL*PLUS 367

Table A-20. Continued

Format Element Description

W Week number within the month (1–5)

DDD, DD, D Day number within the year (1–366), month (1–31), and week (1–7)

DAY Day name, padded with spaces to length 9

DY Day name abbreviation (three characters)

DS, DL Date in short (S) or long (L) representation; reacts on NLS_TERRITORY and
NLS_LANGUAGE settings

J Julian date; day number since 01-JAN-4712 BC

TS Time of the day; reacts NLS_TERRITORY and NLS_LANGUAGE settings

AM, PM AM/PM indicator (A.M. and P.M. also allowed)

HH[12], HH24 Hour of the day (1–12 or 0–23)

MI Minutes (0–59)

SS,SSSSS Seconds (0–59); seconds since midnight (0–86399)

FF[n] Fractional seconds; n digits behind the decimal point

TZD,TZH,TZM,TZR Time zone information: daylight saving time, hours, minutes, and
time zone

- / . , ; : Display characters as specified

"text" Display text as specified

Table A-21. Optional Date Format Modifiers

Element Type Description

FM Prefix Fill mode toggle to suppress padding with spaces

FX Prefix The input argument and format model must match exactly

TH Suffix Ordinal number (e.g., 4th)

SP Suffix Spelled-out number (e.g., four)

SPTH, THSP Suffix Spelled-ordinal number (e.g., fourth)

Number Format Models
You can use any combination of the elements listed in Table A-22 as fmt argument for the
TO_CHAR function.

Table A-22. TO_CHAR Number Format Elements

Element Examples Description

, '9,999' Display group separator comma in this position

. '99.99' Display decimal point in this position

9 '9999' Control number display length

APPENDIX A ■ QUICK REFERENCE TO SQL AND SQL*PLUS 368

Element Examples Description

0 '0999', '9990' Display numbers with leading or trailing zeros

$ '$9999' Display dollar sign before a number

B 'B9999' Display zero with spaces

C 'C9999' Display ISO currency symbol before a number

D '99D99' Display decimal character in this position (depends on
NLS_NUMERIC_CHARACTER setting)

EEEE '9.99EEEE' Scientific notation

G '9G999' Display group separator in this position (depends on
NLS_NUMERIC_CHARACTER setting)

L 'L9999' Display local currency symbol before a number

MI '9999MI' Display minus sign after negative values

PR '9999PR' Display negative values between brackets (< and >)

RN, rn 'RN' Roman numerals (uppercase or lowercase)

S 'S999', '999S' Display plus/minus sign before or after a number (only
allowed at the beginning or end of a number)

TM 'TM' Shortest notation; switches to scientific notation with 64
characters

U 'U9999' Display euro (or other dual currency) symbol before a
number

V '999V99' Multiply with 10n; n is the number of nines after the V

X 'XXXX' Hexadecimal representation

DATE 'DATE' Convert Julian day number to MM/DD/YY

SQL: Regular Expressions
Table A-23 lists common SQL regular expression operators and metasymbols. Table A-24 lists
regular expression character classes.

Table A-23. Common Regular Expression Operators and Metasymbols

Operator Description

* Matches zero or more occurrences

+ Matches one or more occurrences

? Matches zero or one occurrence

| Alternation operator for specifying alternative matches

^ Matches the beginning-of-line character

$ Matches the end-of-line character

. Matches any character in the supported character set except NULL

Continued

APPENDIX A ■ QUICK REFERENCE TO SQL AND SQL*PLUS 369

Table A-23. Continued

Operator Description

[] Bracket expression for specifying a matching list that should match any one of
the expressions represented in the list; a leading circumflex (^) specifies a list
that matches any character except for the expressions represented in the list

() Grouping expression, treated as a single subexpression

{m} Matches exactly m times

{m,} Matches at least m times

{m,n} Matches at least m times but no more than n times

\n Back reference (n is a digit between 1 and 9) matching the nth subexpression
enclosed between (and) preceding the \n

[. .] Collation element; can be a multicharacter element (e.g., [.ch.] in Spanish)

[: :] Matches any character within a character class; see Table A-24

[= =] Matches all characters having the same equivalence class. For example, [=a=]
matches all characters having base letter a.

Table A-24. Regular Expression Character Classes

Class Meaning

[:alnum:] Alphanumeric character

[:alpha:] Alphabetic character

[:blank:] Blank space character

[:cntrl:] Control character (nonprinting)

[:digit:] Numeric digit

[:graph:] [:punct:], [:upper:], [:lower:], or [:digit:] character

[:lower:] Lowercase alphabetic character

[:print:] Printable character

[:punct:] Punctuation character

[:space:] Space character (nonprinting)

[:upper:] Uppercase alphabetic character

[:xdigit:] Hexadecimal character

Rules for Naming Oracle Database Objects
Names for database objects (such as tables, views, indexes, synonyms, and columns) must
obey the following rules:

• Names cannot exceed a maximum length of 30 characters.

• Names cannot contain quotation marks.

APPENDIX A ■ QUICK REFERENCE TO SQL AND SQL*PLUS 370

• Names must be unique in their namespace; normally within a schema, sometimes
within the entire database.

• Names must start with a letter (A through Z).

• There is no distinction between uppercase and lowercase characters.

• You can use the characters A through Z, 0 through 9, $, #, and _ (underscore); however,
Oracle discourages the use of the $ and # characters.

• Reserved words (see the next section) are not allowed.

If you put object names between double quotation marks, the fourth and remaining items
listed no longer apply. For example, within double quotation marks, uppercase and lowercase
characters make a difference, and you can use spaces if you like. Note, however, that this is not
a recommended practice.

SQL: Reserved Words
The words listed in Table A-25 have special meanings in the SQL language. Therefore, you can-
not use them as names for database objects.

■Note In addition to the reserved words listed in Table A-25, Oracle uses system-generated names begin-
ning with “SYS_” for implicitly generated schema objects and subobjects. Don’t use this prefix in your object
names.

Table A-25. SQL Reserved Words

ACCESS ADD* ALL* ALTER* AND* ANY* AS* ASC* AUDIT BETWEEN* BY* CHAR* CHECK* CLUSTER
COLUMN COMMENT COMPRESS CONNECT* CREATE* CURRENT* DATE* DECIMAL* DEFAULT* DELETE*
DESC* DISTINCT* DROP* ELSE* EXCLUSIVE EXISTS* FILE FLOAT* FOR* FROM* GRANT* GROUP*
HAVING* IDENTIFIED IF* IMMEDIATE* IN* INCREMENT INDEX INITIAL INSERT* INTEGER*
INTERSECT* INTO* IS* LEVEL* LIKE* LOCK LONG MAXEXTENTS MINUS MLSLABEL MODE MODIFY
NOAUDIT NOCOMPRESS NOT* NOWAIT NULL* NUMBER OF* OFFLINE ON* ONLINE OPTION* OR*
ORDER* PCTFREE PRIOR* PRIVILEGES* PUBLIC* RAW RENAME RESOURCE REVOKE* ROW ROWID
ROWLABEL ROWNUM ROWS* SELECT* SESSION* SET* SHARE SIZE* SMALLINT* START SUCCESSFUL
SYNONYM SYSDATE TABLE* THEN* TO* TRIGGER UID UNION* UNIQUE* UPDATE* USER* VALIDATE
VALUES* VARCHAR* VARCHAR2 VIEW* WHENEVER* WHERE* WITH*

*Also ANSI/ISO SQL reserved words.

APPENDIX A ■ QUICK REFERENCE TO SQL AND SQL*PLUS 371

Data Dictionary Overview

This appendix provides a concise overview of the Oracle data dictionary. In order to reduce
its size and increase its usefulness, it is far from complete.

The base tables of the Oracle data dictionary are stored in the SYS schema; in other words,
user SYS is owner of the data dictionary. When you create a new database (with the CREATE
DATABASE command) the Oracle DBMS creates and populates the SYS schema automatically.
You should never directly manipulate the tables of the SYS schema. These tables are main-
tained by the Oracle DBMS.

■Note Although the Oracle data dictionary consists of public synonyms, based on views, based on under-
lying (undocumented) tables, we sometimes just refer to data dictionary tables for convenience.

This appendix starts with some commonly used data dictionary views, and then lists
views organized by the four separate view categories, which you can recognize by their prefix:

• ALL views have information about all accessible data. Regular database users have
access to these views.

• USER views have information about your own data. Regular database users have access
to these views.

• DBA views have database-wide information. You need DBA privileges (or some specific
system privileges) to access these views.

• V$ views are dynamic performance views. You need DBA privileges (or some specific
system privileges) to access these views.

The first three categories are commonly referred to as “static” to distinguish them from
the fourth category, the dynamic performance views.

This appendix lists the names of the data dictionary views, without any column descriptions.
For column details, you can use the SQL*Plus DESCRIBE command or query the DICT_COLUMNS data
dictionary view (see Listing 3-11 in Chapter 3 of this book). The view descriptions themselves are
also very concise, and they may refer to concepts or terms not covered anywhere in this book. See
Oracle Reference for further data dictionary details and explanations.

373

A P P E N D I X B

■ ■ ■

General Data Dictionary Views
Table B-1 lists some commonly used data dictionary views.

Table B-1. Commonly Used Data Dictionary Views

View Name Description

DICTIONARY (or DICT) Description of all data dictionary tables

DICT_COLUMNS Description of all data dictionary table columns

DUAL Dummy table with a single row and a single column

FLASHBACK_TRANSACTION_QUERY All flashback transaction queries in the database

NLS_DATABASE_PARAMETERS NLS (National Language Support) parameter settings for the
database

NLS_INSTANCE_PARAMETERS NLS parameter settings for the instance

NLS_SESSION_PARAMETERS NLS parameter settings for your current session

PUBLICSYN All public synonyms in the database

ROLE_ROLE_PRIVS Roles granted to roles

ROLE_SYS_PRIVS System privileges granted to roles

ROLE_TAB_PRIVS Table privileges granted to roles

SESSION_PRIVS Active session privileges

SESSION_ROLES Active session roles

ALL Views: Information About Accessible Objects
Table B-2 lists views that have information about all accessible data and can be used by regu-
lar database users.

Table B-2. ALL Data Dictionary Views

View Name Description

ALL_CATALOG All accessible database objects (three columns)

ALL_COL_COMMENTS Comments for all accessible columns

ALL_COL_PRIVS Column privileges where you are involved

ALL_COL_PRIVS_MADE Column privileges where you are the grantor

ALL_COL_PRIVS_RECD Column privileges where you are the grantee

ALL_CONS_COLUMNS All accessible constraint columns

ALL_CONSTRAINTS All accessible constraint definitions

ALL_INDEXES Descriptions of all accessible indexes

APPENDIX B ■ DATA DICTIONARY OVERVIEW374

APPENDIX B ■ DATA DICTIONARY OVERVIEW 375

View Name Description

ALL_IND_COLUMNS Column descriptions of all accessible indexes

ALL_IND_EXPRESSIONS Expressions of all accessible function-based indexes

ALL_MVIEWS Descriptions for all accessible materialized views

ALL_NESTED_TABLE_COLS All accessible columns of nested tables

ALL_NESTED_TABLES All accessible nested tables

ALL_OBJECTS All accessible database objects (13 columns)

ALL_SEQUENCES All accessible sequences

ALL_SYNONYMS Synonyms you can use

ALL_TABLES All accessible tables

ALL_TAB_COLS Column descriptions for all accessible tables

ALL_TAB_COLUMNS Column descriptions for all accessible tables, without hidden columns

ALL_TAB_COMMENTS All comments for accessible tables

ALL_TAB_PRIVS Table privileges where you are involved

ALL_TAB_PRIVS_MADE Table privileges where you are object owner or grantor

ALL_TAB_PRIVS_RECD Table privileges where you are the privilege grantee

ALL_UPDATABLE_COLUMNS Accessible updatable join view columns

ALL_USERS Information about all database users (no full details)

ALL_VIEWS Information about all accessible views

USER Views: Information About Your Own Data
The USER views have information about your own data and are accessible to regular database
users. First, Table B-3 shows some useful shorthand names for these views. Table B-4 lists the
USER views.

Table B-3. Some Useful Shorthand Names for USER Views

View Name Synonym For

CAT USER_CATALOG

COLS USER_TAB_COLUMNS

IND USER_INDEXES

OBJ USER_OBJECTS

RECYCLEBIN USER_RECYCLEBIN

SEQ USER_SEQUENCES

SYN USER_SYNONYMS

TABS USER_TABLES

Table B-4. USER Data Dictionary Views

View Name Description

USER_AUDIT_TRAIL Audit trail entries where you are involved

USER_CATALOG Indexes, tables, views, clusters, synonyms, and sequences

USER_COL_COMMENTS Comments on your columns

USER_COL_PRIVS Column privileges where you are involved

USER_COL_PRIVS_MADE Column privileges where you are the object owner or grantor

USER_COL_PRIVS_RECD Column privileges where you are the grantee

USER_CONS_COLUMNS Columns involved in constraints

USER_CONSTRAINTS All your constraints

USER_EXTENTS All extents (allocation units for database objects)

USER_FREE_SPACE Available free space for creating objects

USER_INDEXES Description of all your indexes

USER_IND_COLUMNS Description of all your index columns

USER_IND_EXPRESSIONS Description of all your function-based index expressions

USER_MVIEWS All your materialized views

USER_NESTED_TABLE_COLS All columns of your nested tables

USER_NESTED_TABLES All your nested tables

USER_OBJECTS All your object descriptions

USER_RECYCLEBIN Your recycle bin

USER_ROLE_PRIVS Roles granted to you

USER_SEGMENTS Storage-related information about your objects

USER_SEQUENCES All your sequences

USER_SYNONYMS All your synonym definitions

USER_SYS_PRIVS System privileges granted to you

USER_TABLES Description of your tables

USER_TAB_COLS Description of your table columns

USER_TAB_COLUMNS Description of your table columns, without hidden columns

USER_TAB_COMMENTS Comments on your tables

USER_TAB_PRIVS Table privileges where you are involved

USER_TAB_PRIVS_MADE Table privileges where you are the object owner or grantor

USER_TAB_PRIVS_RECD Table privileges where you are the grantee

USER_TABLESPACES Accessible tablespaces

USER_TS_QUOTAS Quota for accessible tablespaces

USER_UPDATABLE_COLUMNS Columns of updatable join views

USER_USERS Information about yourself

USER_VIEWS Description of all your views

APPENDIX B ■ DATA DICTIONARY OVERVIEW376

DBA Views: Full Database Information
The views listed in Table B-5 have database-wide information and are accessible only to those
with DBA privileges.

Table B-5. DBA Data Dictionary Views

View Name Description

DBA_AUDIT_TRAIL All entries of the audit trail

DBA_CATALOG All indexes, tables, views, clusters, synonyms, and sequences

DBA_COL_COMMENTS All column comments in the database

DBA_COL_PRIVS All column privileges in the database

DBA_CONSTRAINTS All constraints in the database

DBA_DATA_FILES All data files belonging to the database

DBA_DB_LINKS All database links

DBA_EXTENTS All extents (allocation units for database objects)

DBA_FREE_SPACE Summary of all free space in the database

DBA_INDEXES Description of all indexes

DBA_IND_COLUMNS Description of all index columns

DBA_IND_EXPRESSIONS Expressions of all function-based indexes

DBA_LOCKS All locks (and latches) in the database

DBA_MVIEWS All materialized views

DBA_NESTED_TABLE_COLS All columns of nested tables

DBA_NESTED_TABLES All nested tables

DBA_OBJECTS All database objects

DBA_RECYCLEBIN All dropped objects in the recycle bin

DBA_ROLE_PRIVS All roles, granted to users or other roles

DBA_ROLES All roles in the database

DBA_SEGMENTS All segments (e.g., tables and indexes) in the database

DBA_SEQUENCES All sequences in the database

DBA_SYNONYMS All synonyms in the database

DBA_SYS_PRIVS All system privileges granted to users or roles

DBA_TABLES Description of all tables

DBA_TABLESPACES All tablespaces in the database

DBA_TAB_COLS Description of all columns

DBA_TAB_COLUMNS Description of all columns, without hidden columns

DBA_TAB_COMMENTS All table comments in the database

DBA_TAB_PRIVS All table privileges in the database

DBA_TS_QUOTAS All user quota, per tablespace

Continued

APPENDIX B ■ DATA DICTIONARY OVERVIEW 377

Table B-5. Continued

View Name Description

DBA_UPDATABLE_COLUMNS All columns of updatable join views

DBA_USERS Information about all users

DBA_VIEWS Description of all views

DBA_WAITERS All sessions waiting for something (locks)

V$ Views: Dynamic Performance Views
Table B-6 lists the dynamic performance views. You need DBA privileges (or some specific sys-
tem privileges) to access these views.

Table B-6. V$ Data Dictionary Views

View Name Description

V$BGPROCESS The Oracle background processes

V$CONTROLFILE The names of the control files

V$DATABASE Information about the database from the control file

V$DATAFILE Information about the data files from the control file

V$ENABLEDPRIVS Enabled privileges

V$FILESTAT I/O activity per data file

V$FIXED_TABLE Displays all dynamic performance tables, views, and derived tables

V$FIXED_VIEW_DEFINITION Displays the definitions of all the fixed views

V$INSTANCE Status information about the instance

V$LICENSE Information about license limits

V$LOCK Information about active locks

V$MYSTAT Statistics for the current session

V$NLS_PARAMETERS Current NLS parameter values

V$NLS_VALID_VALUES All valid values for NLS parameters

V$OPTION The installed Oracle options

V$PARAMETER Current initialization parameter values for the session

V$PROCESS Information about all active processes

V$RESERVED_WORDS All keywords used by the PL/SQL compiler (a superset of the SQL
reserved words)

V$SESS_IO I/O statistics for all active sessions

V$SESSION Information about all active sessions

V$SESSION_EVENT Information about waits for an event by a session

V$SESSION_LONGOPS Status of operations that run for longer than 6 seconds

V$SESSION_WAIT Resources or events for which active sessions are waiting

APPENDIX B ■ DATA DICTIONARY OVERVIEW378

View Name Description

V$SESSTAT User session statistics

V$SGA Information about the shared global area (SGA)

V$SGASTAT Detailed information about the SGA components

V$SPPARAMETER Information about the contents of the server parameter file

V$SQL Detailed information about SQL statements in memory

V$SQLAREA Aggregated information about SQL statements in memory

V$SQL_PLAN Execution plan information for SQL statements in memory

V$SQL_PLAN_STATISTICS Execution statistics of SQL statements in memory

V$SQLTEXT The text of SQL statements in memory

V$SQLTEXT_WITH_NEWLINES Same as V$SQLTEXT, with improved legibility

V$SYSSTAT All system statistics

V$SYSTEM_PARAMETER Information about the initialization parameters in effect

V$TABLESPACE Information about all tablespaces

V$TIMER Internal clock, in hundredths of a second

V$TIMEZONE_NAMES List of names and abbreviations of time zones

V$TRANSACTION Information about all active transactions

V$VERSION Version information about installed Oracle products

V$WAITSTAT Block contention statistics

APPENDIX B ■ DATA DICTIONARY OVERVIEW 379

The Seven Case Tables

This appendix offers an overview of the seven case tables used throughout this book, in
various formats. Its main purpose is to help you in writing SQL commands and checking your
results.

The first section shows an Entity Relationship Modeling (ERM) diagram, indicating the
entities of the underlying data model, including their unique identifiers and their relation-
ships. Then you can find descriptions of the seven case tables, with names and datatypes of all
their columns and short explanations, when necessary. The next section shows a table dia-
gram, focusing on all primary key and foreign key constraints. This diagram may be especially
helpful when you are writing joins.

The biggest component of this appendix (with the highest level of detail) is a complete
listing of the seven case tables with all their rows. This overview may be useful to check your
query results for correctness.

At the end of this appendix, you will find two alternative representations of the case
table data, showing the table rows in a compact format. The first diagram shows an overview
of the 14 employees. It clearly shows the department populations and the hierarchical
(manager/subordinate) relationships. The second illustration shows a matrix overview of
all course offerings, with starting dates, locations, attendees (A), and trainers (T). Again,
these representations may be useful to check your query results for correctness.

You can also find information about the case tables within this book, as follows:

Location Comments

1.9 Case Tables First introduction

3.4 Creating the Case Tables Simple CREATE TABLE commands (without constraints)

7.4 Constraints Full CREATE TABLE commands (with constraints)

381

A P P E N D I X C

■ ■ ■

ERM Diagram
The ERM diagram, shown in Figure C-1, shows the seven entities (the rounded-corner boxes)
with their unique identifiers and their mutual relationships.

The ten crow’s feet indicate one-to-many relationships. The diagram shows two types of
one-to-many relationships: three relationships are completely optional (indicated by all
dashed lines) and the remaining ones are mandatory in one direction (indicated by the solid
part of the line).

Figure C-1. ERM diagram of the case entities

Hash signs (#) in front of an attribute mean that the attribute is part of the unique identi-
fier; relationship cross-lines indicate that the relationship is part of the unique identifier.
Note that the diagram shows only attributes that are part of unique identifiers, for enhanced
readability.

You can interpret the relationships in this diagram as follows:

• Every employee has at most one manager (and employees may have multiple subordi-
nates).

• Every employee belongs to precisely one salary grade and is employed by at most one
department (employees without a department are allowed).

• Each department has precisely one manager (and employees may be manager of multiple
departments).

• Each course offering refers to precisely one existing course, with at most one employee
as trainer.

• Each registration is for precisely one employee and for precisely one course offering.

• Each history record refers to precisely one employee and precisely one department.

APPENDIX C ■ THE SEVEN CASE TABLES382

APPENDIX C ■ THE SEVEN CASE TABLES 383

Table Structure Descriptions
This section presents descriptions of the table structures. In the listings, * means NOT NULL
and P means primary key.

EMPLOYEES: EMPNO N(4) P Unique employee number
ENAME VC(8) * Last name
INIT VC(5) * Initials (without punctuation)
JOB VC(8) Job description
MGR N(4) Manager (references EMPLOYEES)
BDATE DATE * Date of birth
MSAL N(6,2) * Monthly salary (excluding net bonus)
COMM N(6,2) Commission (per year, for sales reps)
DEPTNO N(2) Department (references DEPARTMENTS)

DEPARTMENTS: DEPTNO N(2) P Unique department number
DNAME VC(10) * Name of the department
LOCATION VC(8) * Location (city)
MGR N(4) Manager (references EMPLOYEES)

SALGRADES: GRADE N(2) P Unique salary grade number
LOWERLIMIT N(6,2) * Minimum salary for this grade
UPPERLIMIT N(6,2) * Maximum salary for this grade
BONUS N(6,2) * Net bonus on top of monthly salary

COURSES: CODE VC(6) P Unique course code
DESCRIPTION VC(30) * Course description (title)
CATEGORY C(3) * Course category (GEN,BLD, or DSG)
DURATION N(2) * Course duration (in days)

OFFERINGS: COURSE VC(6) P Course code (references COURSES)
BEGINDATE DATE P First course day
TRAINER N(4) Instructor (references EMPLOYEES)
LOCATION VC(8) Location of the course offering

REGISTRATIONS: ATTENDEE N(4) P Attendee (references EMPLOYEES)
COURSE VC(6) P Course code (references OFFERINGS)
BEGINDATE DATE P First course day (references OFFERINGS)
EVALUATION N(1) Attendee's opinion (scale 1 - 5)

HISTORY: EMPNO N(4) P Employee (references EMPLOYEES)
BEGINYEAR N(4) * Year component of BEGINDATE
BEGINDATE DATE P Begin date interval
ENDDATE DATE End date interval
DEPTNO N(2) * Department (references DEPARTMENTS)
MSAL N(6,2) * Monthly salary during the interval
COMMENTS VC(60) Free text space

Columns and Foreign Key Constraints
Figure C-2 shows the columns and foreign key constraints in the case tables. The primary key
components have a dark-gray background, and all arrows point from the foreign keys to the
corresponding primary keys. Boxes surrounding multiple columns indicate composite keys.

Figure C-2. Columns and foreign key constraints

APPENDIX C ■ THE SEVEN CASE TABLES384

Contents of the Seven Tables
This section lists the contents of each of the seven case tables.

EMPLOYEES

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- ---------- ------ ------ ------
7369 SMITH N TRAINER 7902 17-12-1965 800 20
7499 ALLEN JAM SALESREP 7698 20-02-1961 1600 300 30
7521 WARD TF SALESREP 7698 22-02-1962 1250 500 30
7566 JONES JM MANAGER 7839 02-04-1967 2975 20
7654 MARTIN P SALESREP 7698 28-09-1956 1250 1400 30
7698 BLAKE R MANAGER 7839 01-11-1963 2850 30
7782 CLARK AB MANAGER 7839 09-06-1965 2450 10
7788 SCOTT SCJ TRAINER 7566 26-11-1959 3000 20
7839 KING CC DIRECTOR 17-11-1952 5000 10
7844 TURNER JJ SALESREP 7698 28-09-1968 1500 0 30
7876 ADAMS AA TRAINER 7788 30-12-1966 1100 20
7900 JONES R ADMIN 7698 03-12-1969 800 30
7902 FORD MG TRAINER 7566 13-02-1959 3000 20
7934 MILLER TJA ADMIN 7782 23-01-1962 1300 10

14 rows selected.

DEPARTMENTS
DEPTNO DNAME LOCATION MGR
------ ---------- -------- -----

10 ACCOUNTING NEW YORK 7782
20 TRAINING DALLAS 7566
30 SALES CHICAGO 7698
40 HR BOSTON 7839

SALGRADES

GRADE LOWERLIMIT UPPERLIMIT BONUS
----- ---------- ---------- ------

1 700 1200 0
2 1201 1400 50
3 1401 2000 100
4 2001 3000 200
5 3001 9999 500

APPENDIX C ■ THE SEVEN CASE TABLES 385

COURSES

CODE DESCRIPTION CATEGORY DURATION
------ ---------------------------- -------- --------
JAV Java for Oracle developers BLD 4
PLS Introduction to PL/SQL BLD 1
XML XML for Oracle developers BLD 2
ERM Data modeling with ERM DSG 3
GEN System generation DSG 4
PMT Process modeling techniques DSG 1
PRO Prototyping DSG 5
RSD Relational system design DSG 2
OAU Oracle for application users GEN 1
SQL Introduction to SQL GEN 4

10 rows selected.

OFFERINGS

COURSE BEGINDATE TRAINER LOCATION
------ ---------- ------- --------
SQL 12-04-1999 7902 DALLAS
OAU 10-08-1999 7566 CHICAGO
SQL 04-10-1999 7369 SEATTLE
SQL 13-12-1999 7369 DALLAS
JAV 13-12-1999 7566 SEATTLE
JAV 01-02-2000 7876 DALLAS
XML 03-02-2000 7369 DALLAS
PLS 11-09-2000 7788 DALLAS
XML 18-09-2000 SEATTLE
OAU 27-09-2000 7902 DALLAS
ERM 15-01-2001
PRO 19-02-2001 DALLAS
RSD 24-02-2001 7788 CHICAGO

13 rows selected.

REGISTRATIONS

ATTENDEE COURSE BEGINDATE EVALUATION
-------- ------ ---------- ----------

7499 SQL 12-04-1999 4
JAV 13-12-1999 2
XML 03-02-2000 5
PLS 11-09-2000

7521 OAU 10-08-1999 4
7566 JAV 01-02-2000 3

APPENDIX C ■ THE SEVEN CASE TABLES386

PLS 11-09-2000
7698 SQL 12-04-1999 4

SQL 13-12-1999
JAV 01-02-2000 5

7782 JAV 13-12-1999 5
7788 SQL 04-10-1999

JAV 13-12-1999 5
JAV 01-02-2000 4

7839 SQL 04-10-1999 3
JAV 13-12-1999 4

7844 OAU 27-09-2000 5
7876 SQL 12-04-1999 2

JAV 13-12-1999 5
PLS 11-09-2000

7900 OAU 10-08-1999 4
XML 03-02-2000 4

7902 OAU 10-08-1999 5
SQL 04-10-1999 4
SQL 13-12-1999

7934 SQL 12-04-1999 5

26 rows selected.

HISTORY (formatted, and without COMMENTS column values)

EMPNO BEGINYEAR BEGINDATE ENDDATE DEPTNO MSAL
----- --------- ---------- ---------- ------ ------
7369 2000 01-01-2000 01-02-2000 40 950

2000 01-02-2000 20 800

7499 1988 01-06-1988 01-07-1989 30 1000
1989 01-07-1989 01-12-1993 30 1300
1993 01-12-1993 01-10-1995 30 1500
1995 01-10-1995 01-11-1999 30 1700
1999 01-11-1999 30 1600

7521 1986 01-10-1986 01-08-1987 20 1000
1987 01-08-1987 01-01-1989 30 1000
1989 01-01-1989 15-12-1992 30 1150
1992 15-12-1992 01-10-1994 30 1250
1994 01-10-1994 01-10-1997 20 1250
1997 01-10-1997 01-02-2000 30 1300
2000 01-02-2000 30 1250

7566 1982 01-01-1982 01-12-1982 20 900
1982 01-12-1982 15-08-1984 20 950
1984 15-08-1984 01-01-1986 30 1000

APPENDIX C ■ THE SEVEN CASE TABLES 387

1986 01-01-1986 01-07-1986 30 1175
1986 01-07-1986 15-03-1987 10 1175
1987 15-03-1987 01-04-1987 10 2200
1987 01-04-1987 01-06-1989 10 2300
1989 01-06-1989 01-07-1992 40 2300
1992 01-07-1992 01-11-1992 40 2450
1992 01-11-1992 01-09-1994 20 2600
1994 01-09-1994 01-03-1995 20 2550
1995 01-03-1995 15-10-1999 20 2750
1999 15-10-1999 20 2975

7654 1999 01-01-1999 15-10-1999 30 1100
1999 15-10-1999 30 1250

7698 1982 01-06-1982 01-01-1983 30 900
1983 01-01-1983 01-01-1984 30 1275
1984 01-01-1984 15-04-1985 30 1500
1985 15-04-1985 01-01-1986 30 2100
1986 01-01-1986 15-10-1989 30 2200
1989 15-10-1989 30 2850

7782 1988 01-07-1988 10 2450

7788 1982 01-07-1982 01-01-1983 20 900
1983 01-01-1983 15-04-1985 20 950
1985 15-04-1985 01-06-1985 40 950
1985 01-06-1985 15-04-1986 40 1100
1986 15-04-1986 01-05-1986 20 1100
1986 01-05-1986 15-02-1987 20 1800
1987 15-02-1987 01-12-1989 20 1250
1989 01-12-1989 15-10-1992 20 1350
1992 15-10-1992 01-01-1998 20 1400
1998 01-01-1998 01-01-1999 20 1700
1999 01-01-1999 01-07-1999 20 1800
1999 01-07-1999 01-06-2000 20 1800
2000 01-06-2000 20 3000

7839 1982 01-01-1982 01-08-1982 30 1000
1982 01-08-1982 15-05-1984 30 1200
1984 15-05-1984 01-01-1985 30 1500
1985 01-01-1985 01-07-1985 30 1750
1985 01-07-1985 01-11-1985 10 2000
1985 01-11-1985 01-02-1986 10 2200
1986 01-02-1986 15-06-1989 10 2500
1989 15-06-1989 01-12-1993 10 2900
1993 01-12-1993 01-09-1995 10 3400
1995 01-09-1995 01-10-1997 10 4200

APPENDIX C ■ THE SEVEN CASE TABLES388

1997 01-10-1997 01-10-1998 10 4500
1998 01-10-1998 01-11-1999 10 4800
1999 01-11-1999 15-02-2000 10 4900
2000 15-02-2000 10 5000

7844 1995 01-05-1995 01-01-1997 30 900
1998 15-10-1998 01-11-1998 10 1200
1998 01-11-1998 01-01-2000 30 1400
2000 01-01-2000 30 1500

7876 2000 01-01-2000 01-02-2000 20 950
2000 01-02-2000 20 1100

7900 2000 01-07-2000 30 800

7902 1998 01-09-1998 01-10-1998 40 1400
1998 01-10-1998 15-03-1999 30 1650
1999 15-03-1999 01-01-2000 30 2500
2000 01-01-2000 01-08-2000 30 3000
2000 01-08-2000 20 3000

7934 1998 01-02-1998 01-05-1998 10 1275
1998 01-05-1998 01-02-1999 10 1280
1999 01-02-1999 01-01-2000 10 1290
2000 01-01-2000 10 1300

79 rows selected.

APPENDIX C ■ THE SEVEN CASE TABLES 389

Hierarchical Employees Overview
Figure C-3 illustrates an overview of the employees and management structure. Note that
department 40 has no employees.

Figure C-3. Employee overview with management structure

APPENDIX C ■ THE SEVEN CASE TABLES390

Course Offerings Overview
This section shows an overview of the course offerings. In the listing A stands for Attendee and
T stands for Trainer.

Course code: SQL OAU SQL JAV SQL JAV
Begindate: 12/04/99 10/08/99 04/10/99 13/12/99 13/12/99 01/02/00
Location: Dallas Chicago Seattle Seattle Dallas Dallas

Smith, N 7369 . . T . T .
Allen, JAM 7499 A . . A . .
Ward, TF 7521 . A
Jones, JM 7566 . T . T . A
Martin, P 7654
Blake, R 7698 A . . . A A
Clark, AB 7782 . . . A . .
Scott, SCJ 7788 . . A A . A
King, CC 7839 . . A A . .
Turner, JJ 7844
Adams, AA 7876 A . . A . T
Jones, R 7900 . A
Ford, MG 7902 T A A . A .
Miller, TJA 7934 A

Course code: XML PLS ... OAU ... RSD
Begindate: 03/02/00 11/09/00 ... 27/09/00 ... 24/02/01
Location: Dallas Dallas ... Dallas ... Chicago

Smith, N 7369 T
Allen, JAM 7499 A A
Ward, TF 7521
Jones, JM 7566 . A
Martin, P 7654
Blake, R 7698
Clark, AB 7782
Scott, SCJ 7788 . T T
King, CC 7839
Turner, JJ 7844 A
Adams, AA 7876 . A
Jones, R 7900 A
Ford, MG 7902 T
Miller, TJA 7934

Course code: XML ERM PRO Scheduled; however:
Begindate: 18/09/00 15/01/01 19/02/01 - No trainer assigned
Location: Seattle Dallas - No registrations yet

APPENDIX C ■ THE SEVEN CASE TABLES 391

Answers to the Exercises

This appendix provides answers and solutions to the exercises in Chapters 4, 5, 7, 8, 9, 10, 11,
and 12. In some cases, I have presented multiple (alternative) solutions for a single exercise.
Sometimes you will see warnings for possible incorrect solutions, in case of known pitfalls.

Of course, it is impossible to list all correct solutions for each exercise; the SQL language
is too rich (or redundant?) for such an attempt. This implies that it is perfectly possible for you
to approach and solve certain exercises in a completely different way. In that case, you can
compare your results with the results listed in this appendix. However, always keep the follow-
ing warning in mind.

■Caution Although a query may produce the correct result, this doesn’t imply that you wrote the right
query. Incorrect SQL statements sometimes produce the correct results by accident. These are the most
treacherous queries, because they can start producing wrong results at any point in the future, based on
the actual contents of the tables involved.

Some exercises in this book are quite tough. For some of them, it may be challenging to
fully appreciate and understand the given solutions. The reasoning behind including such
exercises is the following: to test your SQL knowledge, you can look at the abundance of rela-
tively simple examples in Oracle SQL Reference, and you can easily come up with simple SQL
experiments yourself.

393

A P P E N D I X D

■ ■ ■

Chapter 4 Exercises
1. Provide the code and description of all courses with an exact duration of four days.

Solution 4-1.

SQL> select code, description
2 from courses
3 where duration = 4;

CODE DESCRIPTION
---- ------------------------------
SQL Introduction to SQL
JAV Java for Oracle developers
GEN System generation

SQL>

2. List all employees, sorted by job, and per job by age (from young to old).

Solution 4-2.

SQL> select *
2 from employees
3 order by job, bdate desc;

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- ----------- ----- ----- -------
7900 JONES R ADMIN 7698 03-DEC-1969 800 30
7934 MILLER TJA ADMIN 7782 23-JAN-1962 1300 10
7839 KING CC DIRECTOR 17-NOV-1952 5000 10
7566 JONES JM MANAGER 7839 02-APR-1967 2975 20
7782 CLARK AB MANAGER 7839 09-JUN-1965 2450 10
7698 BLAKE R MANAGER 7839 01-NOV-1963 2850 30
7844 TURNER JJ SALESREP 7698 28-SEP-1968 1500 0 30
7521 WARD TF SALESREP 7698 22-FEB-1962 1250 500 30
7499 ALLEN JAM SALESREP 7698 20-FEB-1961 1600 300 30
7654 MARTIN P SALESREP 7698 28-SEP-1956 1250 1400 30
7876 ADAMS AA TRAINER 7788 30-DEC-1966 1100 20
7369 SMITH N TRAINER 7902 17-DEC-1965 800 20
7788 SCOTT SCJ TRAINER 7566 26-NOV-1959 3000 20
7902 FORD MG TRAINER 7566 13-FEB-1959 3000 20

14 rows selected.

SQL>

APPENDIX D ■ ANSWERS TO THE EXERCISES394

APPENDIX D ■ ANSWERS TO THE EXERCISES 395

3. Which courses have been held in Chicago and/or in Seattle?

Solution 4-3.

SQL> select distinct course
2 from offerings
3 where location in ('CHICAGO','SEATTLE');

COURSE

JAV
OAU
RSD
SQL
XML

SQL>

Notice the DISTINCT keyword in the SELECT clause, to ensure that a course code doesn’t
show up more than once. This way, you get the correct answer to the question.

4. Which employees attended both the Java course and the XML course? (Provide their
employee numbers.)

Solution 4-4.

SQL> select attendee
2 from registrations
3 where course = 'JAV'
4 and attendee in (select attendee
5 from registrations
6 where course = 'XML');

ATTENDEE

7499

SQL>

You might want to add the DISTINCT keyword to the SELECT clause here, too, just as you
did in the previous exercise; otherwise, what happens if someone attends the XML
course once and attends the Java course twice?

This fourth exercise has many different solutions. For example, you can also use two
subqueries instead of one. Obviously, the following solutions with AND or OR at the row
level are wrong:

where course = 'JAV' and course = 'XML' -- Wrong: Gives "no rows selected."
where course = 'JAV' or course = 'XML' -- Wrong: Gives too many results.

5. List the names and initials of all employees, except for R. Jones.

Solution 4-5a. Using Parentheses

SQL> select ename, init
2 from employees
3 where not (ename = 'JONES' and init = 'R');

ENAME INIT
-------- -----
SMITH N
ALLEN JAM
WARD TF
JONES JM
MARTIN P
BLAKE R
CLARK AB
SCOTT SCJ
KING CC
TURNER JJ
ADAMS AA
FORD MG
MILLER TJA

13 rows selected.

SQL>

Solution 4-5b. Without Parentheses (Note the OR)

SQL> select ename, init
2 from employees
3 where ename <> 'JONES' OR init <> 'R';

6. Find the number, job, and date of birth of all trainers and sales representatives born
before 1960.

Solution 4-6a. First Solution

SQL> select empno, job, bdate
2 from employees
3 where bdate < date '1960-01-01'
4 and job in ('TRAINER','SALESREP');

APPENDIX D ■ ANSWERS TO THE EXERCISES396

EMPNO JOB BDATE
-------- -------- -----------

7654 SALESREP 28-SEP-1956
7788 TRAINER 26-NOV-1959
7902 TRAINER 13-FEB-1959

SQL>

Here is an alternative solution; note the parentheses to force operator precedence.

Solution 4-6b. Second Solution

SQL> select empno, job, bdate
2 from employees
3 where bdate < date '1960-01-01'
4 and (job = 'TRAINER' or job = 'SALESREP');

7. List the numbers of all employees who do not work for the training department.

Solution 4-7.

SQL> select empno
2 from employees
3 where deptno <> (select deptno
4 from departments
5 where dname = 'TRAINING');

EMPNO

7499
7521
7654
7698
7782
7839
7844
7900
7934

SQL>

■Note This solution assumes that there is only one training department. You could also use
NOT IN instead of <>.

APPENDIX D ■ ANSWERS TO THE EXERCISES 397

8. List the numbers of all employees who did not attend the Java course.

Solution 4-8a. Correct Solution

SQL> select empno
2 from employees
3 where empno not in (select attendee
4 from registrations
5 where course = 'JAV');

EMPNO

7369
7521
7654
7844
7900
7902
7934

SQL>

The following two solutions are wrong.

Solution 4-8b. Wrong Solution 1

SQL> select distinct attendee
2 from registrations
3 where attendee not in (select attendee
4 from registrations
5 where course = 'JAV');

ATTENDEE

7521
7844
7900
7902
7934

SQL>

This result shows only five employees because employees 7369 and 7654 never
attended any course; therefore, their employee numbers do not occur in the
REGISTRATIONS table.

APPENDIX D ■ ANSWERS TO THE EXERCISES398

Solution 4-8c. Wrong Solution 2

SQL> select distinct attendee attendee
2 from registrations
3 where course <> 'JAV';

ATTENDEE

7499
7521
7566
7698
7788
7839
7844
7876
7900
7902
7934

11 rows selected.

SQL>

This result shows too many results, because it also shows employees who attended the
Java course and at least one non-Java course; for example, employee 7566 attended the
Java and the PL/SQL courses.

9a. Which employees have subordinates?

Solution 4-9a. Employees with Subordinates

SQL> select empno, ename, init
2 from employees
3 where empno in (select mgr
4 from employees);

EMPNO ENAME INIT
-------- -------- -----

7566 JONES JM
7698 BLAKE R
7782 CLARK AB
7788 SCOTT SCJ
7839 KING CC
7902 FORD MG

SQL>

APPENDIX D ■ ANSWERS TO THE EXERCISES 399

9b. Which employees don’t have subordinates?

Solution 4-9b. Employees Without Subordinates

SQL> select empno, ename, init
2 from employees
3 where empno not in (select mgr
4 from employees
5 where mgr is not null);

EMPNO ENAME INIT
-------- -------- -----

7369 SMITH N
7499 ALLEN JAM
7521 WARD TF
7654 MARTIN P
7844 TURNER JJ
7876 ADAMS AA
7900 JONES R
7934 MILLER TJA

SQL>

■Note The WHERE clause on the fifth line of Solution 4-9b is necessary for a correct result,
assuming that null values in the MGR column always mean "not applicable." See also Solution 4-12.

10. Produce an overview of all general course offerings (course category GEN) in 1999.

Solution 4-10.

SQL> select *
2 from offerings
3 where begindate between date '1999-01-01'
4 and date '1999-12-31'
5 and course in (select code
6 from courses
7 where category = 'GEN');

COURSE BEGINDATE TRAINER LOCATION
------ ----------- -------- --------
OAU 10-AUG-1999 7566 CHICAGO
SQL 12-APR-1999 7902 DALLAS
SQL 04-OCT-1999 7369 SEATTLE
SQL 13-DEC-1999 7369 DALLAS

SQL>

APPENDIX D ■ ANSWERS TO THE EXERCISES400

You can solve the “1999 condition” in many ways by using SQL functions (see Chapter 5).
Here are three valid alternatives for lines 3 and 4:

where to_char(begindate,'YYYY') = '1999'
where extract(year from begindate) = 1999
where begindate between to_date('01-JAN-1999','DD-MON-YYYY')

and to_date('31-DEC-1999','DD-MON-YYYY')

■Caution Avoid using column names as function arguments if it is possible to express the same
functional result without having to do that, because it may have a negative impact on performance. In
this case, Solution 4-10 and the last alternative are fine; the first two alternatives should be avoided.

11. Provide the name and initials of all employees who have ever attended a course taught
by N. Smith. Hint: Use subqueries, and work “inside out” toward the result; that is,
retrieve the employee number of N. Smith, search for the codes of all courses he ever
taught, and so on.

Solution 4-11.

SQL> select ename, init
2 from employees
3 where empno in
4 (select attendee
5 from registrations
6 where (course, begindate) in
7 (select course, begindate
8 from offerings
9 where trainer =
10 (select empno
11 from employees
12 where ename = 'SMITH'
13 and init = 'N'
14)
15)
16);

ENAME INIT
-------- -----
ALLEN JAM
BLAKE R
SCOTT SCJ
KING CC
JONES R
FORD MG

SQL>

APPENDIX D ■ ANSWERS TO THE EXERCISES 401

12. How could you redesign the EMPLOYEES table to avoid the problem that the COMM column
contains null values meaning not applicable?

Answer: By dropping that column from the EMPLOYEES table and by creating a separate
SALESREPS table, with the following rows:

EMPNO COMM
-------- --------

7499 300
7521 500
7654 1400
7844 0

In this table, the EMPNO column is not only the primary key, but it is also a foreign key
referring to the EMPLOYEES table.

13. In Section 4.9, you saw the following statement: In SQL, NOT is not “not.” What is this
statement trying to say?

Answer: In three-valued logic, the NOT operator is not the complement operator anymore:

NOT TRUE is equivalent with FALSE
not TRUE is equivalent with FALSE OR UNKNOWN

14. Referring to the brain-twister at the end of Section 4.9, what is the explanation of the
result “no rows selected” in Listing 4-44?

Answer: The following WHERE clause:

2 where evaluation not in (1,2,3,NULL)

is logically equivalent with the following “iterated AND” condition:

2 where evaluation <> 1
3 AND evaluation <> 2
4 AND evaluation <> 3
5 AND evaluation <> NULL

If you consider a row with an EVALUATION value of 1, 2, or 3, it is obvious that out of the
first three conditions, one of them returns FALSE and the other two return TRUE. There-
fore, the complete WHERE clause returns FALSE.

If the EVALUATION value is NULL, all four conditions return UNKNOWN. Therefore, the end
result is also UNKNOWN. So far, there are no surprises.

If the EVALUATION value is 4 or 5 (the remaining two allowed values), the first three con-
ditions all return TRUE, but the last condition returns UNKNOWN. So you have the
following expression:

(TRUE) and (TRUE) and (TRUE) and (UNKNOWN)

This is logically equivalent with UNKNOWN, so the complete WHERE clause returns UNKNOWN.

APPENDIX D ■ ANSWERS TO THE EXERCISES402

15. At the end of Section 4.5, you saw the following statement.

The following two queries are logically equivalent:

select * from employees where NOT (ename = 'BLAKE' AND init = 'R')
select * from employees where ename <> 'BLAKE' OR init <> 'R'

Prove this, using a truth table.

Answer: First, we assign names to the two WHERE clause components.

• Let’s represent ename = 'BLAKE' with P.

• Let’s represent init = 'R' with Q.

Then we must show that NOT(P AND Q) and NOT(P) OR NOT(Q) are logically equivalent.
The truth tables for both expressions look as follows:

P Q P AND Q NOT(P AND Q)

TRUE TRUE TRUE FALSE

TRUE FALSE FALSE TRUE

TRUE UNK UNK UNK

FALSE TRUE FALSE TRUE

FALSE FALSE FALSE TRUE

FALSE UNK FALSE TRUE

UNK TRUE UNK UNK

UNK FALSE FALSE TRUE

UNK UNK UNK UNK

P Q NOT(P) NOT(Q) NOT(P) OR NOT(Q)

TRUE TRUE FALSE FALSE FALSE

TRUE FALSE FALSE TRUE TRUE

TRUE UNK FALSE UNK UNK

FALSE TRUE TRUE FALSE TRUE

FALSE FALSE TRUE TRUE TRUE

FALSE UNK TRUE UNK TRUE

UNK TRUE UNK FALSE UNK

UNK FALSE UNK TRUE TRUE

UNK UNK UNK UNK UNK

As you can see, the last columns in the two truth tables are identical. This proves that
the two expressions are logically equivalent.

APPENDIX D ■ ANSWERS TO THE EXERCISES 403

Chapter 5 Exercises
1. For all employees, provide their last name, a comma, followed by their initials.

Solution 5-1.

SQL> select ename ||', '||init
2 as full_name
3 from employees;

FULL_NAME

SMITH, N
ALLEN, JAM
WARD, TF
JONES, JM
MARTIN, P
BLAKE, R
CLARK, AB
SCOTT, SCJ
KING, CC
TURNER, JJ
ADAMS, AA
JONES, R
FORD, MG
MILLER, TJA

14 rows selected.

SQL>

2. For all employees, list their last name and date of birth, in a format such as April 2nd,
1967.

Solution 5-2.

SQL> select ename
2 , to_char(bdate,'fmMonth ddth, yyyy')
3 from employees;

ENAME TO_CHAR(BDATE,'FMMON
-------- --------------------
SMITH December 17th, 1965
ALLEN February 20th, 1961
WARD February 22nd, 1962
JONES April 2nd, 1967
MARTIN September 28th, 1956

APPENDIX D ■ ANSWERS TO THE EXERCISES404

BLAKE November 1st, 1963
CLARK June 9th, 1965
SCOTT November 26th, 1959
KING November 17th, 1952
TURNER September 28th, 1968
ADAMS December 30th, 1966
JONES December 3rd, 1969
FORD February 13th, 1959
MILLER January 23rd, 1962

14 rows selected.

SQL>

■Note You can change the language to display the month names in this result with the
NLS_LANGUAGE parameter setting, as in this example:

SQL> alter session set nls_language=dutch;
Sessie is gewijzigd.

SQL>

3a. On which day are (or were) you exactly 10,000 days old?

Solution 5-3a.

SQL> select date '1954-08-11' + 10000
2 as "10,000 days"
3 from dual;

10,000 days

27-DEC-1981

SQL>

3b. On which day of the week is (was) this?

Solution 5-3b.

SQL> select to_char(date '1954-08-11' + 10000,'Day')
2 as "On a:"
3 from dual;

APPENDIX D ■ ANSWERS TO THE EXERCISES 405

On a:

Sunday

SQL>

4. Rewrite the example in Listing 5-23 using the NVL2 function.

Solution 5-4.

SQL> select ename, msal, comm
2 , nvl2(comm,12*msal+comm,12*msal) as yearsal
3 from employees
4 where ename like '%T%';

ENAME MSAL COMM YEARSAL
-------- -------- -------- --------
SMITH 800 9600
MARTIN 1250 1400 16400
SCOTT 3000 36000
TURNER 1500 0 18000

SQL>

5. Rewrite the example in Listing 5-24 to remove the DECODE functions using CASE expres-
sions, both in the SELECT clause and in the ORDER BY clause.

Solution 5-5.

SQL> select job, ename
2 , case
3 when msal <= 2500
4 then 'cheap'
5 else 'expensive'
6 end as class
7 from employees
8 where bdate < date '1964-01-01'
9 order by case job
10 when 'DIRECTOR' then 1
11 when 'MANAGER' then 2
12 else 3
13 end;

APPENDIX D ■ ANSWERS TO THE EXERCISES406

JOB ENAME CLASS
-------- -------- ---------
DIRECTOR KING expensive
MANAGER BLAKE expensive
SALESREP ALLEN cheap
SALESREP WARD cheap
ADMIN MILLER cheap
TRAINER FORD expensive
TRAINER SCOTT expensive
SALESREP MARTIN cheap

SQL>

■Note The TO_DATE function expression is also replaced by a DATE literal.

6. Rewrite the example in Listing 5-20 using DATE and INTERVAL constants, in such a way
that they become independent of the NLS_DATE_FORMAT setting.

Solution 5-6.

SQL> select date '1996-01-29' + interval '1' month as col_1
2 , date '1997-01-29' + interval '1' month as col_2
3 , date '1997-08-11' - interval '3' month as col_3
4 from dual;

, date '1997-01-29' + interval '1' month as col_2
*

ERROR at line 2:
ORA-01839: date not valid for month specified

SQL> select date '1996-01-29' + interval '1' month as col_1
2 , date '1997-01-28' + interval '1' month as col_2
3 , date '1997-08-11' - interval '3' month as col_3
4 from dual;

COL_1 COL_2 COL_3
----------- ----------- ---------
29-FEB-1996 28-FEB-1997 11-MAY-1997

SQL>

APPENDIX D ■ ANSWERS TO THE EXERCISES 407

As you can see, January 29 plus a month causes problems for 1997, which is not a leap
year. If you change 1997-01-29 to 1997-01-28 on the second line, there is no longer a
problem.

7. Investigate the difference between the date formats WW and IW (week number and ISO
week number) using an arbitrary date, and explain your findings.

Solution 5-7.

SQL> 1 select date '2005-01-01' as input_date
2 , to_char(date '2005-01-01', 'ww') as ww
3 , to_char(date '2005-01-01', 'iw') as iw
4* from dual

INPUT_DATE WW IW
----------- -- --
01-JAN-2005 06 07

SQL>

If you don’t get different results, try different dates within the same week. The difference
between WW and IW has to do with the different definitions of week numbers. The WW for-
mat starts week number 1 on January 1, regardless of which day of the week that is. The
ISO standard uses different rules: an ISO week always starts on a Monday. The rules
around the new year are as follows: if January 1 is a Friday, a Saturday, or a Sunday, the
week belongs to the previous year; otherwise, the week fully belongs to the new year.
Similar rules apply for the ISO year numbering.

8. Look at Listing 5-15, where we use the REGEXP_INSTR function to search for words.
Rewrite this query using REGEXP_LIKE. Hint: You can use {n,} to express “at least
n times.”

Solution 5-8a. First Solution

SQL> select comments
2 from history
3 where regexp_like(comments, '([^]+){8,}');

COMMENTS
--
Not a great trainer; let's try the sales department!
Sales also turns out to be not a success...
Hired as the new manager for the accounting department
Junior sales rep -- has lots to learn... :-)

SQL>

You could make your solution more readable by using character classes.

APPENDIX D ■ ANSWERS TO THE EXERCISES408

Solution 5-8b. Second Solution, Using Character Classes

SQL> select comments
2 from history
3 where regexp_like(comments, '([[:alnum:]+[:punct:]]+[[:space:]]+){8,}');

COMMENTS
--
Not a great trainer; let's try the sales department!
Sales also turns out to be not a success...
Hired as the new manager for the accounting department
Junior sales rep -- has lots to learn... :-)

SQL>

■Note See Appendix C or Oracle SQL Reference for more details about character classes.

Chapter 7 Exercises
1. Listing 7-5 defines the constraint E_SALES_CHK in a rather cryptic way. Formulate the

same constraint without using DECODE and NVL2.

Solution 7-1a. Solution 1

check ((job = 'SALESREP' and comm is not null) or
(job <>'SALESREP' and comm is null))

Solution 7-1b. Solution 2

check ((job = 'SALESREP' or comm is null) and not
(job = 'SALESREP' and comm is null))

2. Why do you think the constraint E_DEPT_FK (in Listing 7-7) is created with a separate
ALTER TABLE command?

Answer: You must define this constraint with an ALTER TABLE command because you
have a “chicken/egg” problem. A foreign key constraint can refer to only an existing
table, and you have two tables (EMPLOYEES and DEPARTMENTS) referring to each other.

3. Although this is not covered in this chapter, try to come up with an explanation of the
following phenomenon: when using sequences, you cannot use the pseudo column
CURRVAL in your session without first calling the pseudo column NEXTVAL.

APPENDIX D ■ ANSWERS TO THE EXERCISES 409

Answer: In a multiuser environment, multiple database users can use the same
sequence generator at the same time. Therefore, they will be using different CURRVAL
values at the same time; that is, there is no database-wide “current” CURRVAL value. On
the other hand, NEXTVAL is always defined as the next available sequence value.

4. Why is it better to use sequences in a multiuser environment, as opposed to maintain-
ing a secondary table with the last/current sequence values?

Answer: A secondary table will become a performance bottleneck. Each update to a
sequence value will lock the corresponding row. The next update can take place only
after the first transaction has committed. In other words, all transactions needing a
sequence value will be serialized. Sequences are better because they don’t have this
problem. With sequences, multiple transactions can be served simultaneously and
independently.

5. How is it possible that the EVALUATION column of the REGISTRATIONS table accepts null
values, in spite of the constraint R_EVAL_CHK (see Listing 7-11)?

Answer: This is caused by three-valued logic. A CHECK constraint condition can result in
TRUE, FALSE, or UNKNOWN. Moreover, a CHECK constraint reports a violation only if its cor-
responding condition returns FALSE.

■Note This implies that you always need an explicit NOT NULL constraint if you want your
columns to be mandatory; a CHECK constraint as shown in Listing 7-11 is not enough.

6. If you define a PRIMARY KEY or UNIQUE constraint, the Oracle DBMS normally creates a
unique index under the covers (if none of the existing indexes can be used) to check
the constraint. Investigate and explain what happens if you define such a constraint
as DEFERRABLE.

Answer: If you define PRIMARY KEY or UNIQUE constraints as DEFERRABLE, the Oracle
DBMS creates nonunique indexes. This is because indexes must be maintained imme-
diately. Therefore, indexes for deferrable constraints must allow for temporary
duplicate values until the end of your transactions.

7. You can use function-based indexes to implement “conditional uniqueness” constraints.
Create a unique function-based index on the REGISTRATIONS table to check the following
constraint: employees are allowed to attend the OAU course only once. They may attend
other courses as many times as they like. Test your solution with the following command
(it should fail):

SQL> insert into registrations values (7900,'OAU',trunc(sysdate),null);

Hint: You can use a CASE expression in the index expression.

APPENDIX D ■ ANSWERS TO THE EXERCISES410

Solution 7-7.

SQL> create unique index oau_reg on registrations
2 (case course when 'OAU' then attendee else null end
3 , case course when 'OAU' then course else null end);

Index created.

SQL>

The trick is to create a function-based index on (ATTENDEE, COURSE) combinations, while
ignoring all non-OAU course registrations.

Here’s the test:

SQL> insert into registrations values (7900,'OAU',sysdate,null);
insert into registrations values (7900,'OAU',sysdate,null)
*
ERROR at line 1:
ORA-00001: unique constraint (BOOK.OAU_REG) violated

SQL>

■Note Notice the Oracle error message number for the unique constraint violation: 00001. This
must have been one of the first error messages implemented in Oracle!

Chapter 8 Exercises
1. Produce an overview of all course offerings. Provide the course code, begin date,

course duration, and name of the trainer.

Solution 8-1a. First Solution

SQL> select c.code
2 , o.begindate
3 , c.duration
4 , e.ename as trainer
5 from employees e
6 , courses c
7 , offerings o
8 where o.trainer = e.empno
9 and o.course = c.code;

APPENDIX D ■ ANSWERS TO THE EXERCISES 411

CODE BEGINDATE DURATION TRAINER
---- ----------- -------- --------
XML 03-FEB-2000 2 SMITH
SQL 13-DEC-1999 4 SMITH
SQL 04-OCT-1999 4 SMITH
OAU 10-AUG-1999 1 JONES
JAV 13-DEC-1999 4 JONES
RSD 24-FEB-2001 2 SCOTT
PLS 11-SEP-2000 1 SCOTT
JAV 01-FEB-2000 4 ADAMS
SQL 12-APR-1999 4 FORD
OAU 27-SEP-2000 1 FORD

10 rows selected.

SQL>

If you also want to see all course offerings with an unknown trainer, you can change
the solution as follows:

Solution 8-1b. Second Solution, Also Showing Course Offerings with Unknown Trainers

SQL> select DISTINCT c.code
2 , o.begindate
3 , c.duration
4 , case when o.trainer is not null
5 then e.ename
6 else null
7 end as trainer
8 from employees e
9 , courses c
10 , offerings o
11 where coalesce(o.trainer,-1) in (e.empno,-1)
12 and o.course = c.code;

CODE BEGINDATE DURATION TRAINER
---- ----------- -------- --------
ERM 15-JAN-2001 3
JAV 13-DEC-1999 4 JONES
JAV 01-FEB-2000 4 ADAMS
OAU 10-AUG-1999 1 JONES
OAU 27-SEP-2000 1 FORD
PLS 11-SEP-2000 1 SCOTT
PRO 19-FEB-2001 5
RSD 24-FEB-2001 2 SCOTT
SQL 12-APR-1999 4 FORD
SQL 04-OCT-1999 4 SMITH

APPENDIX D ■ ANSWERS TO THE EXERCISES412

SQL 13-DEC-1999 4 SMITH
XML 03-FEB-2000 2 SMITH
XML 18-SEP-2000 2

13 rows selected.

SQL>

Line 11 might look curious at first sight. It “relaxes” the join between OFFERINGS and
EMPLOYEES a bit. Instead of –1, you can use any other arbitrary numeric value, as long as
it could not be an existing employee number. Note also that this trick makes the addi-
tion of DISTINCT necessary.

2. Provide an overview, in two columns, showing the names of all employees who ever
attended an SQL course, with the name of the trainer.

Solution 8-2.

SQL> select a.ename as attendee
2 , t.ename as trainer
3 from employees t
4 join
5 offerings o on (o.trainer = t.empno)
6 join
7 registrations r using (course, begindate)
8 join
9 employees a on (r.attendee = a.empno)
10 where course = 'SQL';

ATTENDEE TRAINER
-------- --------
ALLEN FORD
BLAKE FORD
ADAMS FORD
MILLER FORD
SCOTT SMITH
KING SMITH
FORD SMITH
BLAKE SMITH
FORD SMITH

SQL>

This solution uses the new ANSI/ISO join syntax, just for a change.

3. For all employees, list their name, initials, and yearly salary (including bonus and
commission).

APPENDIX D ■ ANSWERS TO THE EXERCISES 413

Solution 8-3.

SQL> select e.ename, e.init
2 , 12 * (e.msal + s.bonus)
3 + nvl(e.comm,0) as yearsal
4 from employees e
5 join
6 salgrades s
7 on (e.msal between s.lowerlimit
8 and s.upperlimit);

ENAME INIT YEARSAL
-------- ----- --------
SMITH N 9600
JONES R 9600
ADAMS AA 13200
WARD TF 16100
MARTIN P 17000
MILLER TJA 16200
TURNER JJ 19200
ALLEN JAM 20700
CLARK AB 31800
BLAKE R 36600
JONES JM 38100
SCOTT SCJ 38400
FORD MG 38400
KING CC 66000

14 rows selected.

SQL>

4. For all course offerings, list the course code, begin date, and number of registrations.
Sort your results on the number of registrations, from high to low.

Solution 8-4.

SQL> select course
2 , begindate
3 , count(r.attendee) as reg_count
4 from offerings o
5 left outer join
6 registrations r
7 using (course, begindate)
8 group by course
9 , begindate
10 order by reg_count desc;

APPENDIX D ■ ANSWERS TO THE EXERCISES414

COURSE BEGINDATE REG_COUNT
------ ----------- ---------
JAV 13-DEC-1999 5
SQL 12-APR-1999 4
JAV 01-FEB-2000 3
OAU 10-AUG-1999 3
PLS 11-SEP-2000 3
SQL 04-OCT-1999 3
SQL 13-DEC-1999 2
XML 03-FEB-2000 2
OAU 27-SEP-2000 1
ERM 15-JAN-2001 0
XML 18-SEP-2000 0
PRO 19-FEB-2001 0
RSD 24-FEB-2001 0

13 rows selected.

SQL>

You need an outer join here, to see all courses without registrations in the result as
well. Note also that COUNT(*) in the third line would give you wrong results.

5. List the course code, begin date, and the number of registrations for all course offerings
in 1999 with at least three registrations.

Solution 8-5.

SQL> select course
2 , begindate
3 , count(*)
4 from registrations
5 where extract(year from begindate) = 1999
6 group by course
7 , begindate
8 having count(*) >= 3;

COURSE BEGINDATE COUNT(*)
------ ----------- --------
JAV 13-DEC-1999 5
OAU 10-AUG-1999 3
SQL 12-APR-1999 4
SQL 04-OCT-1999 3

SQL>

APPENDIX D ■ ANSWERS TO THE EXERCISES 415

In this case, accessing the REGISTRATIONS table is enough, because you are not inter-
ested in offerings without registrations. The solution would have been more
complicated if the question were “... with fewer than three registrations,” because zero
is also less than three.

6. Provide the employee numbers of all employees who ever taught a course as a trainer,
but never attended a course as an attendee.

Solution 8-6a. First Solution

SQL> select trainer from offerings
2 minus
3 select attendee from registrations;

TRAINER

7369

SQL>

This solution looks good; however, if you look very carefully, the solution is suspect.
You don’t see it immediately, but this result doesn’t contain a single row, but two rows,
as becomes apparent if you set FEEDBACK to 1:

SQL> set feedback 1
SQL> /

TRAINER

7369

2 rows selected.

SQL>

Because a null value obviously doesn’t represent a valid trainer, you need to exclude
null values in the TRAINER column explicitly.

Solution 8-6b. Second Solution, Excluding Null Values

SQL> select trainer from offerings
2 where trainer is not null
3 minus
4 select attendee from registrations;

APPENDIX D ■ ANSWERS TO THE EXERCISES416

TRAINER

7369

1 row selected.

SQL>

7. Which employees attended a specific course more than once?

Solution 8-7.

SQL> select attendee,course
2 from registrations
3 group by attendee,course
4 having count(*) > 1 ;

ATTENDEE COURSE
-------- ------

7698 SQL
7788 JAV
7902 SQL

SQL>

8. For all trainers, provide their name and initials, the number of courses they taught, the
total number of students they had in their classes, and the average evaluation rating.
Round the evaluation ratings to one decimal.

Solution 8-8.

SQL> select t.init, t.ename
2 , count(distinct begindate) courses
3 , count(*) attendees
4 , round(avg(evaluation),1) evaluation
5 from employees t
6 , registrations r
7 join
8 offerings o
9 using (course, begindate)
10 where t.empno = o.trainer
11 group by t.init, t.ename;

APPENDIX D ■ ANSWERS TO THE EXERCISES 417

INIT ENAME COURSES ATTENDEES EVALUATION
----- -------- -------- --------- ----------
N SMITH 3 7 4
AA ADAMS 1 3 4
JM JONES 2 8 4.3
MG FORD 2 5 4
SCJ SCOTT 1 3

SQL>

■Note While counting courses, this solution assumes that trainers cannot teach more than one
course on the same day.

9. List the name and initials of all trainers who ever had their own manager as a student
in a general course (category GEN).

Solution 8-9.

SQL> select distinct e.ename, e.init
2 from employees e
3 , courses c
4 , offerings o
5 , registrations r
6 where e.empno = o.trainer
7 and e.mgr = r.attendee
8 and c.code = o.course
9 and o.course = r.course
10 and o.begindate = r.begindate
11 and c.category = 'GEN';

ENAME INIT
-------- -----
SMITH N

SQL>

10. Did we ever use two classrooms at the same time in the same course location?

Solution 8-10.

SQL> select o1.location
2 , o1.begindate, o1.course, c1.duration
3 , o2.begindate, o2.course

APPENDIX D ■ ANSWERS TO THE EXERCISES418

4 from offerings o1
5 , offerings o2
6 , courses c1
7 where o1.location = o2.location
8 and (o1.begindate < o2.begindate or
9 o1.course <> o2.course)
10 and o1.course = c1.code
11 and o2.begindate between o1.begindate
12 and o1.begindate + c1.duration;

LOCATION BEGINDATE COUR DURATION BEGINDATE COURSE
-------- ----------- ---- -------- ----------- ------
DALLAS 01-FEB-2000 JAV 4 03-FEB-2000 XML

SQL>

The solution searches for two different course offerings (see lines 8 and 9) at the same
location (see line 7) overlapping each other (see lines 11 and 12). Apparently, the Java
course starting February 1, 2000, in Dallas overlaps with the XML course starting two
days later (note that the Java course takes four days).

11. Produce a matrix report (one column per department, one row for each job) where
each cell shows the number of employees for a specific department and a specific
job. In a single SQL statement, it is impossible to dynamically derive the number of
columns needed, so you may assume you have three departments only: 10, 20, and 30.

Solution 8-11.

SQL> select job
2 , count(case
3 when deptno <> 10
4 then null
5 else deptno
6 end) as dept_10
7 , sum(case deptno
8 when 20
9 then 1
10 else 0
11 end) as dept_20
12 , sum(decode(deptno,30,1,0)) as dept_30
13 from employees
14 group by job;

JOB DEPT_10 DEPT_20 DEPT_30
-------- -------- -------- --------
ADMIN 1 0 1
DIRECTOR 1 0 0

APPENDIX D ■ ANSWERS TO THE EXERCISES 419

MANAGER 1 1 1
SALESREP 0 0 4
TRAINER 0 4 0

SQL>

This solution shows three different valid methods to count the employees: for depart-
ment 10, it uses a searched CASE expression; for department 20, it uses a simple CASE
expression and a SUM function; and for department 30, it uses the Oracle DECODE func-
tion, which is essentially the same solution as for department 20.

12. Listing 8-26 produces information about all departments with more than four
employees. How can you change the query to show information about all departments
with fewer than four employees?

Solution 8-12a. Incorrect Solution

SQL> select deptno, count(empno)
2 from employees
3 group by deptno
4 having count(*) < 4;

DEPTNO COUNT(EMPNO)
-------- ------------

10 3

SQL>

This solution is not correct, because it does not show departments with zero employees.
You can fix this in several ways; for example, by using an outer join.

Solution 8-12b. Correct Solution

SQL> select deptno, count(empno)
2 from departments
3 left outer join
4 employees
5 using (deptno)
6 group by deptno
7 having count(*) < 4;

DEPTNO COUNT(EMPNO)
-------- ------------

10 3
40 0

SQL>

APPENDIX D ■ ANSWERS TO THE EXERCISES420

13. Look at Listings 8-44 and 8-45. Are those two queries logically equivalent? Investigate
the two queries and explain the differences, if any.

Solution 8-13. Making the Difference Visible with FEEDBACK

SQL> set feedback 1

SQL> select o.location from offerings o
2 MINUS
3 select d.location from departments d;

LOCATION

SEATTLE

2 rows selected.

SQL> select DISTINCT o.location
2 from offerings o
3 where o.location not in
4 (select d.location
5 from departments d);

LOCATION

SEATTLE

1 row selected.

SQL>

If you change the SQL*Plus FEEDBACK setting to 1, the difference becomes apparent.

We have one course offering with unknown location, and (as you know by now) you
cannot be too careful with null values. The first query produces two rows. The null
value appears in the result because the MINUS operator does not remove the null value.
However, if the second query checks the ERM course offering (with the null value) the
WHERE clause becomes

... where NULL not in ('NEW YORK','DALLAS','CHICAGO','BOSTON');

This WHERE clause returns UNKNOWN. Therefore, the row does not pass the WHERE clause
filter, and as a consequence the result contains only one row.

APPENDIX D ■ ANSWERS TO THE EXERCISES 421

Chapter 9 Exercises
1. It is normal practice that (junior) trainers always attend a course taught by a senior

colleague before teaching that course themselves. For which trainer/course combina-
tions did this happen?

Solution 9-1.

SQL> select o.course, o.trainer
2 from offerings o
3 where exists
4 (select r.*
5 from registrations r
6 where r.attendee = o.trainer
7 and r.course = o.course
8 and r.begindate < o.begindate)
9 and not exists
10 (select fo.*
11 from offerings fo
12 where fo.course = o.course
13 and fo.trainer = o.trainer
14 and fo.begindate < o.begindate);

COURSE TRAINER
------ --------
JAV 7876
OAU 7902

SQL>

This exercise is not an easy one. You can solve it in many ways. The solution shown
here uses the EXISTS and the NOT EXISTS operators. You can read it as follows:

“Search course offerings for which (1) the trainer attended an earlier offering of the
same course as a student, and for which (2) the trainer is teaching that course for the
first time.”

■Note The second condition is necessary, because otherwise you would also get
“teach/attend/teach” combinations.

2. Actually, if the junior trainer teaches a course for the first time, that senior colleague
(see the previous exercise) sits in the back of the classroom in a supporting role. Try to
find these course/junior/senior combinations.

APPENDIX D ■ ANSWERS TO THE EXERCISES422

Solution 9-2.

SQL> select o1.course
2 , o1.trainer as senior
3 , o2.trainer as junior
4 from offerings o1
5 , registrations r1
6 , offerings o2
7 , registrations r2
8 where o1.course = r1.course -- join r1 with o1
9 and o1.begindate = r1.begindate
10 and o2.course = r2.course -- join r2 with o2
11 and o2.begindate = r2.begindate
12 and o1.course = o2.course -- o1 and o2 same course
13 and o1.begindate < o2.begindate -- o1 earlier than o2
14 and o1.trainer = r2.attendee -- trainer o1 attends o2
15 and o2.trainer = r1.attendee -- trainer o2 attends o1
16 ;

COURSE SENIOR JUNIOR
------ -------- --------
JAV 7566 7876

SQL>

This solution uses a join, for a change.

3. Which employees never taught a course?

Solution 9-3a. Using NOT IN

SQL> select e.*
2 from employees e
3 where e.empno not in (select o.trainer
4 from offerings o);

no rows selected

SQL>

Solution 9-3b. Using NOT EXISTS

SQL> select e.*
2 from employees e
3 where not exists (select o.trainer
4 from offerings o
5 where o.trainer = e.empno);

APPENDIX D ■ ANSWERS TO THE EXERCISES 423

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- ----------- ----- ----- ------
7499 ALLEN JAM SALESREP 7698 20-FEB-1961 1600 300 30
7521 WARD TF SALESREP 7698 22-FEB-1962 1250 500 30
7654 MARTIN P SALESREP 7698 28-SEP-1956 1250 1400 30
7698 BLAKE R MANAGER 7839 01-NOV-1963 2850 30
7782 CLARK AB MANAGER 7839 09-JUN-1965 2450 10
7839 KING CC DIRECTOR 17-NOV-1952 5000 10
7844 TURNER JJ SALESREP 7698 28-SEP-1968 1500 0 30
7900 JONES R ADMIN 7698 03-DEC-1969 800 30
7934 MILLER TJA ADMIN 7782 23-JAN-1962 1300 10

9 rows selected.

SQL>

At first sight, you might think that both of these solutions are correct. However, the
results are different. Now, which one is the correct solution?

You can come up with convincing arguments for both solutions. Note that you have
three course offerings with a null value in the TRAINER column.

• If you interpret these null values as “trainer unknown,” you can never say with
certainty that an employee never taught a course.

• The second query obviously treats the null values differently. Its result (with nine
employees) is what you probably expected.

The different results are not caused by an SQL bug. You simply have two SQL state-
ments with different results, so they must have a different meaning. In such cases, you
must revisit the query in natural language and try to formulate it more precisely in
order to eliminate any ambiguities.

Last but not least, our OFFERINGS table happens to contain only data from the past.
If you want a correct answer to this exercise under all circumstances, you should also
add a condition to check the course dates against SYSDATE.

4. Which employees attended all build courses (category BLD)? They are entitled to get a
discount on the next course they attend.

Solution 9-4a. Using NOT EXISTS Twice

SQL> select e.empno, e.ename, e.init
2 from employees e
3 where not exists
4 (select c.*
5 from courses c
6 where c.category = 'BLD'
7 and not exists
8 (select r.*

APPENDIX D ■ ANSWERS TO THE EXERCISES424

9 from registrations r
10 where r.course = c.code
11 and r.attendee = e.empno
12)
13);

EMPNO ENAME INIT
-------- -------- -----

7499 ALLEN JAM

SQL>

Solution 9-4b. Using GROUP BY

SQL> select e.empno, e.ename, e.init
2 from registrations r
3 join
4 courses c on (r.course = c.code)
5 join
6 employees e on (r.attendee = e.empno)
7 where c.category = 'BLD'
8 group by e.empno, e.ename, e.init
9 having count(distinct r.course)
10 = (select count(*)
11 from courses
12 where category = 'BLD');

EMPNO ENAME INIT
-------- -------- -----

7499 ALLEN JAM

SQL>

This is not an easy exercise. Both of these solutions are correct.

5. Provide a list of all employees having the same monthly salary and commission as (at
least) one employee of department 30. You are interested in only employees from other
departments.

Solution 9-5.

SQL> select e.ename
2 , e.msal
3 , e.comm
4 from employees e
5 where e.deptno <> 30
6 and (e.msal,coalesce(e.comm,-1)) in
7 (select x.msal,coalesce(x.comm,-1)

APPENDIX D ■ ANSWERS TO THE EXERCISES 425

8 from employees x
9 where x.deptno = 30);

ENAME MSAL COMM
-------- -------- --------
SMITH 800

SQL>

Note that this solution uses the COALESCE function, which you need to make comparisons
with null values evaluate to true, in this case. The solution uses the value –1 based on the
reasonable assumption that the commission column never contains negative values.
However, if you check the definition of the EMPLOYEES table, you will see that there actu-
ally is no constraint to allow only nonnegative commission values. It looks like you found
a possible data model enhancement here. Such a constraint would make your solution—
using the negative value in the COALESCE function—correct under all circumstances.

6. Look again at Listings 9-4 and 9-5. Are they really logically equivalent? Just for testing
purposes, search on a nonexisting job and execute both queries again. Explain the
results.

Solution 9-6.

SQL> select e.empno, e.ename, e.job, e.msal
2 from employees e
3 where e.msal > ALL (select b.msal
4 from employees b
5 where b.job = 'BARTENDER');

EMPNO ENAME JOB MSAL
-------- -------- -------- --------

7369 SMITH TRAINER 800
7499 ALLEN SALESREP 1600
7521 WARD SALESREP 1250
7566 JONES MANAGER 2975
7654 MARTIN SALESREP 1250
7698 BLAKE MANAGER 2850
7782 CLARK MANAGER 2450
7788 SCOTT TRAINER 3000
7839 KING DIRECTOR 5000
7844 TURNER SALESREP 1500
7876 ADAMS TRAINER 1100
7900 JONES ADMIN 800
7902 FORD TRAINER 3000
7934 MILLER ADMIN 1300

14 rows selected.

APPENDIX D ■ ANSWERS TO THE EXERCISES426

SQL> select e.empno, e.ename, e.job, e.msal
2 from employees e
3 where e.msal > (select MAX(b.msal)
4 from employees b
5 where b.job = 'BARTENDER');

no rows selected

SQL>

This example searches for BARTENDER. The subquery returns an empty set, because
the EMPLOYEES table contains no bartenders. Therefore, the > ALL condition of the first
query is true for every row of the EMPLOYEES table. This outcome complies with an
important law derived from mathematical logic. The following statement is always
true, regardless of the expression you specify following the colon:

• For all elements x of the empty set: …

This explains why you see all 14 employees in the result of the first query.

The second query uses a different approach, using the MAX function in the subquery.
The maximum of an empty set results in a null value, so the WHERE clause becomes WHERE
E.MSAL > NULL, which returns unknown for every row. This explains why the second query
returns no rows.

7. You saw a series of examples in this chapter about all employees that ever taught an
SQL course (in Listings 9-9 through 9-11). How can you adapt these queries in such
a way that they answer the negation of the same question (… all employees that
never …)?

Solution 9-7a. Negation of Listing 9-9

SQL> select e.*
2 from employees e
3 where NOT exists (select o.*
4 from offerings o
5 where o.course = 'SQL'
6 and o.trainer = e.empno);

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- ----------- ----- ----- ------
7499 ALLEN JAM SALESREP 7698 20-FEB-1961 1600 300 30
7521 WARD TF SALESREP 7698 22-FEB-1962 1250 500 30
7566 JONES JM MANAGER 7839 02-APR-1967 2975 20
7654 MARTIN P SALESREP 7698 28-SEP-1956 1250 1400 30
7698 BLAKE R MANAGER 7839 01-NOV-1963 2850 30
7782 CLARK AB MANAGER 7839 09-JUN-1965 2450 10
7788 SCOTT SCJ TRAINER 7566 26-NOV-1959 3000 20
7839 KING CC DIRECTOR 17-NOV-1952 5000 10

APPENDIX D ■ ANSWERS TO THE EXERCISES 427

7844 TURNER JJ SALESREP 7698 28-SEP-1968 1500 0 30
7876 ADAMS AA TRAINER 7788 30-DEC-1966 1100 20
7900 JONES R ADMIN 7698 03-DEC-1969 800 30
7934 MILLER TJA ADMIN 7782 23-JAN-1962 1300 10

12 rows selected.

SQL>

Solution 9-7b. Negation of Listing 9-10

SQL> select e.*
2 from employees e
3 where e.empno NOT in (select o.trainer
4 from offerings o
5 where o.course = 'SQL');

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- ----------- ----- ----- ------
7499 ALLEN JAM SALESREP 7698 20-FEB-1961 1600 300 30
7521 WARD TF SALESREP 7698 22-FEB-1962 1250 500 30
...
7934 MILLER TJA ADMIN 7782 23-JAN-1962 1300 10

12 rows selected.

SQL>

This looks good—you get back the same 12 employees. However, you were lucky,
because all SQL course offerings happen to have a trainer assigned. If you use the
NOT IN and NOT EXISTS operators, you should always investigate whether your
subquery could possibly produce null values and how they are handled.

The following negation for Listing 9-11 is wrong.

Solution 9-7c. Wrong Negation for Listing 9-11

SQL> select DISTINCT e.*
2 from employees e
3 join
4 offerings o
5 on e.empno = o.trainer
6 where o.course <> 'SQL';

EMPNO ENAME INIT JOB MGR BDATE MSAL COMM DEPTNO
----- -------- ----- -------- ----- ----------- ----- ----- ------
7369 SMITH N TRAINER 7902 17-DEC-1965 800 20
7566 JONES JM MANAGER 7839 02-APR-1967 2975 20

APPENDIX D ■ ANSWERS TO THE EXERCISES428

7788 SCOTT SCJ TRAINER 7566 26-NOV-1959 3000 20
7876 ADAMS AA TRAINER 7788 30-DEC-1966 1100 20
7902 FORD MG TRAINER 7566 13-FEB-1959 3000 20

SQL>

It is not an easy task to transform this join solution into its negation.

8. Check out your solution for exercise 4 in Chapter 8: “For all course offerings, list the
course code, begin date, and number of registrations. Sort your results on the number
of registrations, from high to low.” Can you come up with a more elegant solution now,
without using an outer join?

Solution 9-8. A More Elegant Solution for Exercise 4 in Chapter 8

SQL> select course
2 , begindate
3 , (select count(*)
4 from registrations r
5 where r.course = o.course
6 and r.begindate = o.begindate)
7 as registrations
8 from offerings o
9 order by registrations;

COURSE BEGINDATE REGISTRATIONS
------ ----------- -------------
ERM 15-JAN-2001 0
PRO 19-FEB-2001 0
XML 18-SEP-2000 0
RSD 24-FEB-2001 0
OAU 27-SEP-2000 1
SQL 13-DEC-1999 2
XML 03-FEB-2000 2
JAV 01-FEB-2000 3
SQL 04-OCT-1999 3
PLS 11-SEP-2000 3
OAU 10-AUG-1999 3
SQL 12-APR-1999 4
JAV 13-DEC-1999 5

13 rows selected.

SQL>

APPENDIX D ■ ANSWERS TO THE EXERCISES 429

9. Who attended (at least) the same courses as employee 7788?

Solution 9-9.

SQL> select e.ename, e.init
2 from employees e
3 where e.empno <> 7788
4 and not exists
5 (select r1.course
6 from registrations r1
7 where r1.attendee = 7788
8 MINUS
9 select r2.course
10 from registrations r2
11 where r2.attendee = e.empno);

ENAME INIT
-------- -----
ALLEN JAM
BLAKE R
KING CC
ADAMS AA

SQL>

This is not an easy exercise. The elegant solution shown here uses the MINUS set opera-
tor and a correlated subquery. Note the correct position of the negation on the fourth
line. You can read the solution as follows:

“List all employees (except employee 7788 himself/herself) for which you cannot find
a course attended by employee 7788 and not attended by those employees.”

The first subquery (see lines 5 through 7) is not correlated, and it results in all courses
attended by employee 7788. The second subquery (see lines 9 through 11) is corre-
lated, and it produces all courses attended by employee e.

■Note This exercise is similar to exercise 4 in this chapter. Both exercises belong to the same
category of “subset problems.” This means that the solutions of Chapter 9’s exercises 4 and 9 are
interchangeable (not verbatim, of course, because the exercises are different; however, they can be
solved with the same approach).

10. Give the name and initials of all employees at the bottom of the management hierar-
chy, with a third column showing the number of management levels above them.

APPENDIX D ■ ANSWERS TO THE EXERCISES430

Solution 9-10.

SQL> select ename, init
2 , (level - 1) as levels_above
3 from employees
4 where connect_by_isleaf = 1
5 start with mgr is null
6 connect by prior empno = mgr;

ENAME INIT LEVELS_ABOVE
-------- ----- ------------
ADAMS AA 3
SMITH N 3
ALLEN JAM 2
WARD TF 2
MARTIN P 2
TURNER JJ 2
JONES R 2
MILLER TJA 2

8 rows selected.

SQL>

11. Look at the query result in Listing 9-22. The last two rows are:

7902 SMITH 800 800
KING 5000 5000

Looking at the other rows in Listing 9-22, you might expect the following results
instead:

7902 SMITH 800 800
KING 5000 5800

What is the correct result, and why?

Answer: The SQL*Plus BREAK setting is confusing in this result. The empty space under
7902 is not caused by the BREAK setting suppressing a repeating column value; instead,
it is a null value. Therefore, the PARTITION BY MGR clause starts a new group for all
employees with a null value in the MGR column, and starts from zero again to sum the
salaries in that group. By coincidence, this group contains only a single employee.

12. Why don’t you get any result from the following query?

SQL> select * from employees where rownum = 2;

no rows selected

SQL>

APPENDIX D ■ ANSWERS TO THE EXERCISES 431

Answer: The ROWNUM pseudo column value gets its values when rows arrive in the result
set. The first candidate row is rejected by the WHERE clause, because it is not the second
one; therefore, the query result stays empty. This means that you should always use the
ROWNUM pseudo column with the comparison operator < or <= to get results.

Chapter 10 Exercises
1. Look at the example discussed in Listings 10-7, 10-8, and 10-9. Rewrite the query in

Listing 10-9 without using a view, by using the WITH operator.

Solution 10-1. Listing 10-9 Rewritten to Use the WITH Operator

SQL> with course_days as
2 (select e.empno, e.ename
3 , sum(c.duration) as days
4 from registrations r
5 , courses c
6 , employees e
7 where e.empno = r.attendee
8 and c.code = r.course
9 group by e.empno, e.ename)
10 select *
11 from course_days
12 where days > (select avg(days)
13 from course_days);

EMPNO ENAME DAYS
-------- -------- --------

7499 ALLEN 11
7698 BLAKE 12
7788 SCOTT 12
7839 KING 8
7876 ADAMS 9
7902 FORD 9

SQL>

2. Look at Listing 10-12. How is it possible that you can delete employee 7654 via this EMP
view? There are rows in the HISTORY table, referring to that employee via a foreign key
constraint.

Answer: You can delete that employee because you created the foreign key constraint
with the CASCADE DELETE option, so all corresponding HISTORY rows are deleted
implicitly.

APPENDIX D ■ ANSWERS TO THE EXERCISES432

3. Look at the view definition in Listing 10-18. Does this view implement the foreign key
constraints from the REGISTRATIONS table to the EMPLOYEES and COURSES tables? Explain
your answer.

Answer: No, it doesn’t. The view checks insertions and updates, but it doesn’t prevent
you from deleting any rows from the EMPLOYEES and COURSES tables; that is, the view
implements only one side of those foreign key constraints.

■Tip Don’t try to program your own referential integrity constraint checking. Your solution will
probably overlook something, and it will always be less efficient than the declarative constraints of
the Oracle DBMS.

4. Create a SAL_HISTORY view providing the following overview for all employees, based
on the HISTORY table: For each employee, show the hire date, the review dates, and the
salary changes as a consequence of those reviews.

Solution 10-4. The SAL_HISTORY View

SQL> create or replace view sal_history as
2 select empno
3 , min(begindate) over
4 (partition by empno)
5 as hiredate
6 , begindate as reviewdate
7 , msal - lag(msal) over
8 (partition by empno
9 order by empno, begindate)
10 as salary_raise
11 from history;

View created.

SQL> break on empno on hiredate
SQL> select * from sal_history;

EMPNO HIREDATE REVIEWDATE SALARY_RAISE
----- ----------- ----------- ------------
7369 01-JAN-2000 01-JAN-2000

01-FEB-2000 -150
7499 01-JUN-1988 01-JUN-1988

01-JUL-1989 300
01-DEC-1993 200

APPENDIX D ■ ANSWERS TO THE EXERCISES 433

01-OCT-1995 200
01-NOV-1999 -100

7521 01-OCT-1986 01-OCT-1986
...
7934 01-FEB-1998 01-FEB-1998

01-MAY-1998 5
01-FEB-1999 10
01-JAN-2000 10

79 rows selected.

SQL>

Chapter 11 Exercises
1. Look at Listings 11-26 and 11-37. Apart from aesthetics, there is another important

reason why the lines surrounding the script headers in those two listings switch from
minus signs to equal signs. Obviously, the first two minus signs are mandatory to turn
the lines into comments. What would be wrong with using only minus signs?

Answer: It is the last minus sign that causes trouble. It will make SQL*Plus interpret
the next line as a continuation of the current line. Since the current line is a comment,
the next line will be considered a continuation of that comment. Therefore, the SQL or
SQL*Plus command on the next line will be ignored by SQL*Plus.

2. Create a SQL*Plus script to create indexes. The script should prompt for a table name
and a column name (or list of column names), and then generate the index name
according to the following standard: i_<tab-id>_<col-id>.

Solution 11-2. SQL*Plus Script to Create Indexes

accept table_name -
default &&table_name -
prompt 'Create index on table [&table_name]: '

accept column_name -
default &&column_name -
prompt 'on column(s) [&column_name]: '

set termout off
store set sqlplus_settings replace
save buffer.sql replace
column dummy new_value index_name
set heading off feedback off verify off
set termout on

select 'Creating index'
, upper(substr('i_' ||

APPENDIX D ■ ANSWERS TO THE EXERCISES434

substr('&table_name',1,3) ||
'_' ||
translate
(replace
('&column_name'
, ' ', '')

, ',', '_')
, 1, 30)

) as dummy
, '...'
from dual;

create index &index_name
on &table_name(&column_name);

get buffer.sql nolist
@sqlplus_settings
set termout on

The following are some comments on this solution:

• The script “remembers” table names and column names, and offers them as
default values on consecutive executions. This may save you some time when cre-
ating multiple indexes.

• The script saves all current SQL*Plus settings before changing the SQL*Plus envi-
ronment. This enables the script to restore the original SQL*Plus environment at
the end of the script.

• The script saves the current contents of the SQL buffer, and then restores the con-
tents at the end with the GET ... NOLIST command. This way, you can resume
working on that SQL statement.

• The COLUMN DUMMY NEW_VALUE INDEX_NAME command captures the result of the query
against the DUAL table, which generates the index name.

• The index name generation contains many SQL functions. It takes the first three
characters of the table name as the table identifier. The script removes all spaces
from the column name list, and then replaces the commas with underscores. To
avoid error messages for too-long index names, the script truncates the result to a
maximum length of 30.

3. Create a SQL*Plus script to produce an index overview. The script should prompt for a
table name, allowing you to specify any leading part of a table name. That is, the script
should automatically append a % wildcard to the value entered. Then it should produce
a report of all indexes, showing the table name, index name, index type, and number
of columns on which the index is based.

APPENDIX D ■ ANSWERS TO THE EXERCISES 435

Solution 11-3. SQL*Plus Script to Produce an Index Overview

set termout off
store set sqlplus_settings.sql replace
save buffer.sql replace
set verify off feedback off
set termout on
break on table_name skip 1 on index_type

accept table_name default &&table_name -
prompt 'List indexes on table [&table_name.%]: '

select ui.table_name
, decode(ui.index_type

,'NORMAL', ui.uniqueness
,ui.index_type) as index_type

, ui.index_name
, (select count(*)

from user_ind_columns uic
where uic.table_name = ui.table_name
and uic.index_name = ui.index_name) as col_count

from user_indexes ui
where ui.table_name like upper('&table_name.%')
order by ui.table_name
, ui.uniqueness desc;

get buffer.sql nolist
@sqlplus_settings
set termout on

Many SQL*Plus tricks in this script are similar to the ones used in the script for the pre-
vious exercise. Here are some additional comments on this solution:

• The BREAK command enhances the readability.

• You use the same default value trick for the table name.

• You need the period character in the ACCEPT command as a separator between the
TABLE_NAME variable and the percent sign.

4. Create a script that disables all constraints in your schema.

Answer: First, you must find out which SQL statement allows you to disable con-
straints, because your script is going to generate that statement. The following SQL
command is the most obvious choice:

SQL> ALTER TABLE <table-name> DISABLE CONSTRAINT <constraint-name> [CASCADE]

As the next step, you must figure out how to retrieve relevant information about your
constraints. The SQL*Plus DESCRIBE command is useful:

APPENDIX D ■ ANSWERS TO THE EXERCISES436

SQL> describe user_constraints
Name Null? Type
--------------------------------- -------- ------------
OWNER NOT NULL VARCHAR2(30)
CONSTRAINT_NAME NOT NULL VARCHAR2(30)
CONSTRAINT_TYPE VARCHAR2(1)
TABLE_NAME NOT NULL VARCHAR2(30)
SEARCH_CONDITION LONG
R_OWNER VARCHAR2(30)
R_CONSTRAINT_NAME VARCHAR2(30)
DELETE_RULE VARCHAR2(9)
STATUS VARCHAR2(8)
DEFERRABLE VARCHAR2(14)
DEFERRED VARCHAR2(9)
VALIDATED VARCHAR2(13)
GENERATED VARCHAR2(14)
BAD VARCHAR2(3)
RELY VARCHAR2(4)
LAST_CHANGE DATE
INDEX_OWNER VARCHAR2(30)
INDEX_NAME VARCHAR2(30)
INVALID VARCHAR2(7)
VIEW_RELATED VARCHAR2(14)

SQL>

By executing some test queries, it becomes apparent which columns of the
USER_CONSTRAINTS view you need. Let’s look at a first attempt to generate the
ALTER TABLE commands.

Solution 11-4a. First Attempt to Generate the Correct SQL

SQL> select 'ALTER TABLE '||table_name||' DISABLE CONSTRAINT
2 '||constraint_name||';'
3 from user_constraints;

However, if you capture the output from this query in a script file and execute it, you
will discover that there is room for improvement. Some ALTER TABLE commands may
fail with the following message:

ORA-02297: cannot disable constraint (BOOK.xxx) - dependencies exist

You can fix this problem in two ways:

• Add the CASCADE keyword to the generated ALTER TABLE commands.

• Sort the ALTER TABLE commands in such a way that all primary keys are disabled
before the foreign key constraints.

APPENDIX D ■ ANSWERS TO THE EXERCISES 437

Let’s implement both fixes. Also, let’s add a WHERE clause to the query to avoid generat-
ing ALTER TABLE commands for constraints that are disabled already.

Solution 11-4b. Second Attempt to Generate the Correct SQL

SQL> select 'ALTER TABLE '||table_name
2 ||' DISABLE CONSTRAINT '||constraint_name
3 ||' CASCADE;'
4 from user_constraints
5 where status <> 'DISABLED'
6 order by case constraint_type
7 when 'P' then 1 else 2 end;

Finally, now that you are satisfied with the result of the query, you add the appropriate
SQL*Plus commands to capture and execute the query result. The final script looks like
the following.

Solution 11-4c. SQL*Plus Script to Disable All Constraints of a Schema

set pagesize 0 verify off feedback off trimspool on
spool doit.sql replace
select 'ALTER TABLE '||table_name||

' DISABLE CONSTRAINT '||constraint_name||' CASCADE;'
from user_constraints
where status <> 'DISABLED'
order by case constraint_type when 'P' then 1 else 2 end;
spool off
@doit
exit

You can build many useful SQL*Plus scripts, once you have discovered how you can
use SQL*Plus as a command generator.

Chapter 12 Exercises
1. The SALGRADES table has two columns to indicate salary ranges: LOWERLIMIT and

UPPERLIMIT. Define your own SALRANGE_T type, based on a varray of two NUMBER(6,2)
values, and use it to create an alternative SALGRADES2 table.

Solution 12-1.

SQL> create or replace type salrange_t
2 as varray(2) of number(6,2);
3 /

Type created.

APPENDIX D ■ ANSWERS TO THE EXERCISES438

SQL> create table salgrades2
2 (grade number(2) constraint S2_PK
3 primary key
4 , salrange salrange_t constraint S2_RANGE_NN
5 not null
6 , bonus NUMBER(6,2) constraint S2_BONUS_NN
7 not null
8) ;

Table created.

SQL>

2. Fill the new SALGRADES2 table with a single INSERT statement, using the existing
SALGRADES table.

Solution 12-2.

SQL> insert into salgrades2
2 select grade
3 , salrange_t(lowerlimit,upperlimit)
4 , bonus
5 from salgrades;

5 rows created.

SQL> col salrange format a25
SQL> select * from salgrades2;

GRADE SALRANGE BONUS
-------- ------------------------- --------

1 SALRANGE_T(700, 1200) 0
2 SALRANGE_T(1201, 1400) 50
3 SALRANGE_T(1401, 2000) 100
4 SALRANGE_T(2001, 3000) 200
5 SALRANGE_T(3001, 9999) 500

5 rows selected.

SQL>

3. Create a table TESTNEST with two columns: column X and column MX. Column X is
NUMBER(1,0) with values 2, 3, 4, ..., 9. Column MX is a nested table, based on a MX_TAB_T
type, containing all multiples of X less than or equal to 20.

APPENDIX D ■ ANSWERS TO THE EXERCISES 439

Solution 12-3a. Table TESTNEST Creation

SQL> create or replace type mx_tab_t
2 as table of number(2);
3 /

Type created.

SQL> create table testnest
2 (x number(1,0)
3 , mx mx_tab_t
4) nested table mx store as mx_tab;

Table created.

SQL>

You can use pure INSERT statements to populate the TESTNEST table. The following
solution uses PL/SQL to insert all rows in an efficient way. The PL/SQL syntax is
straightforward.

Solution 12-3b. Table TESTNEST Population

SQL> declare
2 i number;
3 j number;
4 begin
5 for i in 2..9 loop
6 insert into testnest (x, mx)
7 values (i, mx_tab_t());
8 for j in 1..20 loop
9 exit when i*j > 20;
10 insert into table (select mx from testnest where x=i)
11 values (i*j);
12 end loop;
13 end loop;
14 end;
15 /

PL/SQL procedure successfully completed.

SQL>

Now, let’s check the contents of the TESTNEST table.

APPENDIX D ■ ANSWERS TO THE EXERCISES440

Solution 12-3c. Table TESTNEST Query

SQL> col x format 9
SQL> col mx format a80
SQL> select * from testnest;

X MX
-- --
2 MX_TAB_T(2, 4, 6, 8, 10 ,12, 14, 16, 18, 20)
3 MX_TAB_T(3, 6, 9, 12, 15, 18)
4 MX_TAB_T(4, 8, 12, 16, 20)
5 MX_TAB_T(5, 10, 15, 20)
6 MX_TAB_T(6, 12, 18)
7 MX_TAB_T(7, 14)
8 MX_TAB_T(8, 16)
9 MX_TAB_T(9, 18)

8 rows selected.

SQL>

4. Use multiset operators to solve the following problems, using the TESTNEST table you
created and populated in the previous exercise:

a. Which rows have a nested table containing value 12?

Answer: 2, 3, 4, 6

Solution 12-4a.

SQL> select *
2 from testnest
3 where 12 member of mx;

X MX
-- --
2 MX_TAB_T(2, 4, 6, 8, 10, 12, 14, 16, 18, 20)
3 MX_TAB_T(3, 6, 9, 12, 15, 18)
4 MX_TAB_T(4, 8, 12, 16, 20)
6 MX_TAB_T(6, 12, 18)

SQL>

b. Which nested tables are not a subset of any other subset?

Answer: 2, 3, 5, 7

APPENDIX D ■ ANSWERS TO THE EXERCISES 441

Solution 12-4b.

SQL> select t1.*
2 from testnest t1
3 where not exists
4 (select t2.*
5 from testnest t2
6 where t2.x <> t1.x
7 and t1.mx submultiset of t2.mx);

X MX
-- --
2 MX_TAB_T(2, 4, 6, 8, 10, 12, 14, 16, 18, 20)
3 MX_TAB_T(3, 6, 9, 12, 15, 18)
5 MX_TAB_T(5, 10, 15, 20)
7 MX_TAB_T(7, 14)

SQL>

c. Which nested tables have more than 42 different nonempty subsets?

Answer: 2, 3

Solution 12-4c.

SQL> select x
2 , cardinality(powermultiset(mx))
3 from testnest
4 where cardinality(powermultiset(mx)) > 42;

X CARDINALITY(POWERMULTISET(MX))
-- ------------------------------
2 1023
3 63

SQL>

APPENDIX D ■ ANSWERS TO THE EXERCISES442

Oracle Documentation,
Web Sites, and Bibliography

As the title indicates, this appendix offers an overview of the Oracle documentation, a list of
useful web sites, and a short bibliography.

Oracle Documentation
The complete Oracle documentation is accessible online, both in PDF and HTML format, via
Oracle Technology Network (OTN). Scroll down to the Resources section and select "Data-
base" from the "Select Documentation" dropdown list. This brings you to the page shown in
Figure E-1.

Figure E-1. OTN Documentation home page 443

A P P E N D I X E

■ ■ ■

The Oracle documentation consists of two title types: generic documentation and
platform-specific documentation. You can navigate to the platform-specific documentation
from the OTN Documentation home page (Figure E-1). At the bottom of the screen shown in
the figure, you can see the link to the documentation for 64-bit Windows. If you scroll down
further, you will see links for all other operating systems.

To navigate to the generic (platform-independent) Oracle Database 10g documentation
from the OTN Documentation home page, click the View Library link next to B14117-01. If
you like, you can also download the complete generic documentation by clicking the Down-
load link next to B14117-01. If you click the View Library link, you’ll see the screen shown in
Figure E-2.

Figure E-2. Oracle Database 10g Release 1 Documentation Library

APPENDIX E ■ ORACLE DOCUMENTATION, WEB SITES, AND BIBLIOGRAPHY444

APPENDIX E ■ ORACLE DOCUMENTATION, WEB SITES, AND BIBLIOGRAPHY 445

Figure E-2 shows a useful portal to the most popular documentation titles. As you can
see, there are various tabs allowing you to drill down into specific areas of interest, such as
administration, application development, or data warehousing. Via the Books tab, you can
navigate to a complete overview of all documentation titles, as shown in Figure E-3.

Figure E-3. List of shortcuts to all book titles

If you know the documentation title abbreviations, you can navigate quickly within this
screen by clicking the appropriate shortcut at the top of the screen. For example, click the SQL
shortcut to navigate to the point where all book titles start with “SQL.”

If you are working with previous releases of the Oracle DBMS, you can search the corre-
sponding documentation as well, as shown in Figure E-4. You can navigate to this page by
selecting SERVICES ➤ Documentation ➤ More. . . in the navigation pane on the left side of
Figure E-1.

Figure E-4. Previously released Oracle documentation

Oracle Web Sites
The Internet is a very dynamic medium, by nature. Therefore, it’s possible that some of these
URLs and web pages are no longer valid.

URL Description

http://www.naturaljoin.nl Web site of the author

http://www.oracle.com Oracle home page

http://www.oracle.com/database Oracle database home page

http://metalink.oracle.com Information about bugs, patches, etc.

http://www.oracle.com/technology/obe/start Oracle By Example series

http://www.oracle.com/oramag Oracle Magazines

http://shop.osborne.com/cgi-bin/oraclepress Oracle Press series

http://www.dbazine.com/oracle.shtml Various Oracle articles

http://www.orablogs.com Blogs for Oracle developers

http://www.dbdebunk.com Fabian Pascal, Chris Date

http://www.oracle-home.com Online Oracle bibliography

http://www.ioug.org International Oracle Users Group

APPENDIX E ■ ORACLE DOCUMENTATION, WEB SITES, AND BIBLIOGRAPHY446

URL Description

http://www.oaktable.net Oak Table Network

http://asktom.oracle.com Tom Kyte’s Q&A web site

http://www.hotsos.com Hotsos (Cary Millsap et al.)

http://www.ixora.com.au Ixora (Steve Adams)

http://www.jlcomp.demon.co.uk JL Computer Consultancy (Jonathan Lewis)

http://www.scaleabilities.com Scale Abilities (James Morle, Jeff Needham)

Bibliography
The references are listed in order of publication date.

E.F. Codd: Derivability, Redundancy, and Consistency of Relations Stored in Large Data Banks
(IBM Research Report RJ599, August 1969)

E.F. Codd: A Relational Model of Data for Large Shared Data Banks (CACM 13, No. 6, June 1970)

E.F. Codd: The Relational Model for Database Management Version 2 (Addison-Wesley, 1990)

C.J. Date: Relational Database Writings 1985-1989 (Addison-Wesley, 1990)

C.J. Date, Hugh Darwen: Relational Database Writings 1989-1991 (Addison-Wesley, 1992)

C.J. Date: Relational Database Writings 1991-1994 (Addison-Wesley, 1995)

C.J. Date, Hugh Darwen: A Guide to the SQL Standard (Addison-Wesley, 1997)

C.J. Date (et al.): Relational Database Writings 1994-1997 (Addison-Wesley, 1998)

C.J. Date, Hugh Darwen: The Third Manifesto: Foundation for Future Database Systems
(Addison-Wesley, 2000)

Thomas Kyte: Expert One-on-One Oracle (Apress, 2001)

C.J. Date: The Database Relational Model: A Retrospective Review and Analysis (Addison-Wesley,
2001)

J. Melton and A.R. Simon: SQL:1999 – Understanding Relational Language Components
(Morgan Kaufmann Publishers, 2002)

J. Melton: Advanced SQL:1999 – Understanding Object-Relational and Other Advanced Features
(Morgan Kaufmann Publishers, 2003)

C.J. Date, Hugh Darwen, Nikos A. Lorentzos: Temporal Data and the Relational Model (Morgan
Kaufmann Publishers, 2003)

Thomas Kyte: Effective Oracle by Design (Oracle Press/Osborne, 2003)

C.J. Date: An Introduction to Database Systems (8th edition) (Addison-Wesley, 2004)

Connor McDonald (et al.): Mastering Oracle PL/SQL (Apress, 2004)

Kevin Loney: Oracle Database 10g The Complete Reference (Oracle Press/Osborne, 2004)

Mogens Nørgaard (et al.): Oracle Insights: Tales of the Oak Table (Apress, 2004)

APPENDIX E ■ ORACLE DOCUMENTATION, WEB SITES, AND BIBLIOGRAPHY 447

Symbols
; delimiter 45, 297
! shortcut 63
character 20, 371
$ operator in regular expressions 122

as shortcut 63
% percent character

LIKE operator 96, 362
%20, replacing spaces by 325
& ampersand character 127, 300, 325, 354

substitution variables 290
&& ampersand characters 303

example of using 293
() operator in regular expressions 122
* 45, 79, 122, 212, 352
+ operator 122, 204
- minus sign 307

ending command lines with 295
. operator in regular expressions 122
/ command 54, 351

using as alternative to RUN command 54
SAVE command adds 304

\ backslash character 126
? operator 122, 325
@ command 307, 353

shortcut for START command 56, 303
@@ command 353

executing SQL*Plus scripts 304
[[^]list] operator 122
\n operator in regular expressions 122
^ operator in regular expressions 122
_ character

LIKE operator 96, 362
{m,n} operator in regular expressions 122
{m,} operator in regular expressions 122
{m} operator in regular expressions 122
| operator in regular expressions 122

A
ABORT clause

SHUTDOWN command 351
ABS function 115, 363
ACCEPT command 294–295, 307, 353
access rights 9
accessibility 2
ACOS function 115
ADD option 359

ALTER TABLE command 164

addition operator + 35, 362
ADD_MONTHS function 127, 365

example 129
aggregation 206
ALIAS option 356

COLUMN command 309
ALL object privilege 31, 361
ALL operator 362

defining 236
example 235
SQL statements and 236

ALL_ data dictionary views 374
ALL_INDEXES view 75
ALL_OBJECTS view 75
ALL_SEQUENCES view 75
ALL_SYNONYMS view 75
ALL_TABLES view 75
ALL_USERS view 75
ALL_VIEWS view 75
alphanumeric constants 32

See also strings
alphanumeric functions 35, 362

returning alphanumeric results 364
returning numeric values 364

ALTER command 27, 359
ALTER INDEX command 177

COALESCE option 177
REBUILD option 177

ALTER object privilege 30
ALTER SEQUENCE command 182, 359
ALTER SESSION command 258, 361

CURRENT_SCHEMA setting 185
setting NLS session parameters 59

ALTER SYSTEM command 361
ALTER TABLE command 26

ADD clause 164
constraint manipulation syntax 165
DROP COLUMN clause 164
DROP UNUSED COLUMNS clause 164
MODIFY clause 164
NOT NULL clause 164
NULL clause 164
SET UNUSED clause 164
syntax 163

ALTER USER command 29
ampersand character (&) 325

substitution variables 290
WHERE clause 124

Index

449

analysis
data modeling approach 7
Oracle support for system development 7

analytical functions 256
analytical window ordering

deterministic window sorting 254
nondeterministic window sorting 253–254
partitioned analytical windows 255

AND operator 36, 89, 362
operator precedence issues 90
SQL statements and 236

ANSI/ISO SQL standard 130, 137, 156, 340
alternative join syntax 199
correlation names 192
definition of SELECT command 28

ANY operator 362
defining 236
example 235

APPEND command 49, 53–55, 352
APPEND option 61–62, 319, 353, 357
APPINFO system variable 354
applicable null values 109
arithmetic functions 115

ABS and SIGN functions 116
POWER and MOD functions 116
ROUND, CEIL, and FLOOR functions 115
Trigonometric functions, logarithmic

functions 117
arithmetic operators 35, 362
arrays, converting into nested tables 345
ARRAYSIZE system variable 354
AS keyword, 80, 358

CREATE TABLE command 160
AS OF SCN option 358
AS OF TIMESTAMP option

FROM clause 259, 358
ASC option 86, 358–359
ASCII function 117, 364
ASCII values, characters with 364
ASCIISTR function 366
ASIN function 115
ATAN function 115
attribute constraints 6, 23
attribute values 12
attributes 12

database design and 3
terminology conventions 4

auditing 32
authorization 29

commands 26
AUTOCOMMIT setting 354–355

transaction processing 152
autojoins 198

See also self-joins
example 198

automation of information systems 1

autonomous transactions 151
AUTOTRACE setting 179, 285, 354

checking execution plans and
statistics 284

ON EXPLAIN option 180
performance monitoring 178
preparing to use 179
syntax 180
TRACEONLY STATISTICS option 180

AVG function 209, 211, 256, 317, 357, 365

B
backslash character \ 126
backup 19
base data 4
BETWEEN operator 92–93, 362

negation option 94
BFILE datatype 360
bibliography 447
binary representation 363
BINARY_DOUBLE datatype 161, 360
BINARY_FLOAT datatype 161, 360
bind variables 300

declaration 301
declaring and assigning values 301
SQL statements 302

BIN_TO_NUM function 366
BITAND function 363
BITMAP option 359
bitmap indexes 176
BLOB datatype 161
BODY option, MARKUP setting 320
<body> tag 320
BOLD option 357
Boolean expressions 36
bound variables 238
BREAK command 309, 314, 355

example 314, 316
multiple breaks in single command 316
ORDER BY clause 316
syntax 314

browser, iSQL*Plus runs in 39
BTITLE command 309, 313, 356

example with ON/OFF options 313
build phase, data modeling approach 7
BYTE qualifier 360

C
C programming language 2
calculations using column expressions 82
candidate keys 13
cardinality 176
CARDINALITY function 341, 343, 366
Cartesian product 16, 194, 202, 218

■INDEX450

CASCADE CONSTRAINTS option 188,
359–360

cascading style sheets 320
CASE expressions 130, 132

simple vs. searched 97
case insensitive searches 124
CASE operator 363
case sensitive searches 124
case tables 19

course offerings overview 391
columns and foreign key constraints 384
commands for creating 69
contents of the seven tables 385
CREATE TABLE commands with

constraints 170
ERM diagram of case 19, 382
example of creating with CREATE

SCHEMA command 172
hierarchical employees overview 390
structures 21
Table structure descriptions 383

CASE tools 7
CAST function 133, 366, 341, 345

example 137
CAT view 73, 75, 375
catalog

See also data dictionary
dynamic online 17
storing integrity constraints 17

CEIL function 115, 363
CENTER option 309, 357
CHANGE command 48, 53, 352

using ellipses 52
CHAR datatype 68, 161, 360

limits 161
character classes 123, 370, 409

comparison semantics 162
examples 68

character set, translating from 364
CHECK constraint 67, 167
CHECK OPTION clause 360
children 246
CHR function 118, 364
CLEAR command 356

BREAKS option 319, 356
BUFFER option 63, 306, 356
COLUMN command 309
COMPUTES option 319, 356
SCREEN option 63, 356

CLOB datatype 68, 161
limits 161

closed operators 15
closure, as operator property 15
COALESCE function 130, 211, 366

ALTER INDEX command 177
COBOL programming language 2

Codd, Ted 10, 71, 109, 174, 266, 276, 447
relational rules 16

COLLECT function 341, 345, 366
collection datatypes 328

See also varrays and nested tables
collection functions 366
COLS view 73, 75, 375
COLSEP system variable 296, 354

example 298
column aliases 87, 267

ORDER BY clause 87
specifying 80

COLUMN command 60, 106, 309, 356
examples showing options 310, 312
HEADING option 81
NEW_VALUE option 312
options 309

column expressions 82
column names 34, 67
column specification 66

CREATE TABLE command 160
diagram 67

COMMENT command 188, 359, 361
syntax 189

comments, adding to SQL commands 38
COMMIT command 27, 151, 351, 353, 358

transaction processing 151
comparison operators 35, 85, 362

combining with subqueries 235
joining condition 103
using instead of NOT operator 92

COMPATIBILITY option 351
compatibility of datatypes 67
complexity 2
COMPOSE function 366
COMPUTE command 309, 314, 317, 357

syntax 317
using for aggregation 317

compute functions 357
Computer-Aided Systems Engineering.

See CASE
CONCAT character 291

example of using with DEFINE
character 291

CONCAT function 118, 364
CONCAT system variable 296, 355
concatenate operator || 33, 362
concurrency 154–155
conditional uniqueness 190
conditions, specifying with WHERE clause 85
CONNECT BY clause 246–247, 358
CONNECT command 60, 66, 308, 351
CONNECT_BY_ISCYCLE pseudo column 248
CONNECT_BY_ISLEAF pseudo column 248
CONNECT_BY_ROOT operator 249
consistency 5

transaction processing 152

■INDEX 451

constants 32
See also alphanumeric constants; numeric

constants
constraint checking 14

data manipulation via views 281
constraints 6, 8–9, 67, 144, 166

case table definitions with constraints 170
constraint definitions in a data

dictionary 169
CREATE SCHEMA command 172
deferrable constraints 173
DEFERRABLE option 173
deleting rows 148
inline constraints 168
out-of-line constraints 166

constructor methods
user-defined datatypes 328, 331

CONTINUE option
WHENEVER command 353

conversion functions 132, 366
datatype conversion 136
formats 134

CONVERT function 366
CORR group function 365
correctness

of queries 109
use of NOT operator 92

correlated subqueries 237
example 237–238
EXISTS operator 238
WHERE clause 282

correlation coefficient 365
correlation names 192
COS function 115, 363
COSH function 115
cosine 363
COUNT function 206, 209, 256, 317, 357, 365
COUNT(*) function 212
COURSES Table 70

CREATE TABLE command 171
CREATE option 353, 359
CREATE INDEX command

syntax 175
UNIQUE option 176

CREATE SCHEMA command 172
example of creating case tables 172

CREATE SEQUENCE command 182
CREATE SYNONYM command 183, 359

example of creating and dropping
synonym 184

syntax 184
CREATE TABLE command 66, 159

AS clause 160
AS SELECT ... clause 160
case table definitions with constraints 170
column specifications 160

STORAGE clause 160
syntax 66, 160

CREATE TYPE command
ending with (/) slash 330

CREATE USER command 29
CREATE VIEW command 26, 28, 266

OR REPLACE option 267
specifying column aliases 267
view creation 267

CROSS join option 358
CROSS JOIN statement 202
crow foot 20
CTAS command 160
CUBE option, GROUP BY clause 221, 358
cumulative results 254
current line command 352
CURRENT_DATE 34, 365
CURRENT_SCHEMA 66

ALTER SESSION command 185
CURRENT_TIMESTAMP 365
CURRVAL pseudo column 182
cursors 300
CYCLE option 359
cyclic references 247

D
Darwen, Hugh 14, 447
data definition

ALTER TABLE and RENAME
commands 163

commands 26
creating case tables 69

COMMENT command 189
constraints 166
CREATE TABLE command 159
CURRENT_SCHEMA setting 185
data dictionary 71
datatypes 67, 161
DROP TABLE command 186
indexes 174
keywords 26
schemas and users 65
sequences 181
synonyms 183
table creation 66
TRUNCATE command 188

data dictionary 7, 71
See also catalog
common view prefixes 73
constraint definitions 169
getting information about views from 269
introduction 9
overview 373

ALL data dictionary views 374
common data dictionary views 374
DBA data dictionary views 377

■INDEX452

USER views 375
V$ data dictionary views 378

retrieving view definitions 270
view column updatability information 278

data manipulation 17, 141, 277
commands 26
DELETE command 147
indexes and performance 175
inline views 282
INSERT command 141

multitable commands 144
standard commands 141

locking 155
MERGE command 149
read consistency 155
transactions 26, 151
UPDATE command 145

data manipulation via views
WITH CHECK OPTION clause 279–280

constraint checking 281
disappearing updated rows 279
inserting invisible rows 280

data modeling
methods and techniques 6
semantics of 7

Data Pump 27
data warehouses 284
databases

constraints 6
definition 8
design 2

consistency, integrity and constraints 5
data modeling approach 6
entities and attributes 3
generic compared to specific 4
information systems terminology 7
maintenance costs 2
redundancy 4

links 185
object naming 37
schema description 65
technology, benefits of 2
users privileges 65

Database Management System. See DBMS
datatypes 12, 360

character datatypes 162
column data interpretation 162
comparison semantics 162

collection datatypes 328
column specification 67
conversion 136
important Oracle datatypes 161
maximum sizes 68
numbers 163
Oracle support 67
user-defined datatypes 328

DATE datatype 69, 127, 161
date formats 128, 367
date functions 127, 365

example using NEXT_DAY, LAST_DAY,
ROUND, and TRUNC functions 130

DATE keyword 33
Date, Chris 14, 109, 329, 446, 447
dates 68

specifying in SQL 33
day 128

formatting 368
specifying in SQL 33

DAY TO MINUTE 127
DBA data dictionary views 377
DBMS (Database Management System) 8, 154

components 9
data dictionary 9
kernel 9
query languages 9
tools 9

database applications 10
terminology 10

decimal point 368
Decision Support Systems. See DSS
DECODE function 130, 132, 366

example 132
DECOMPOSE function 366
DEFAULT option 353, 359
DEFAULT reserved word 142
deferrable constraints 173
DEFERRABLE option, constraints 173
DEFERRED option 361

deferrable constraints 173
DEFINE command 353

declaring user-defined variables 292
example 290
example of using with CONCAT

character 291
Define Editor menu option 46
DEFINE system variable 296, 355

example 299
DEFINE _EDITOR command 54
DEL command 50, 54, 352
DELETE command 26–27, 147, 358

DEL not abbreviation for 51
example 148
restrictions on updatable join views 277
transaction processing 153

DELETE object privilege 30
DENSE_RANK function 257
DEPARTMENTS Table

CREATE TABLE command 170
DEPARTMENTS Table 69
DEPTH attribute, DESCRIBE command 339,

355
derivable data 4

■INDEX 453

DESC option 86, 358–359
ORDER BY clause 87

DESCRIBE command 62, 73, 142, 351, 355
DEPTH attribute 339
stored commands and 138
writing queries against views 270

Designer 10
deterministic window sorting 254
Developer 10
diagnostic tools 179
diagram techniques 7
DICT view 72, 75
DICTIONARY view 72, 75, 374
DICT_COLUMNS view 75, 374

querying 73
difference operator 15
DISABLE option 359

constraints 167
DISCONNECT command 351
DISTINCT keyword 81, 101, 358, 363, 365

GROUP BY clause 211
group functions and 210
SELECT command 277
using with MINUS operator 229

distributed databases 185
views and 274

distribution independence 17
division operator 35, 362
DML commands

updatable join views 276–277
domain 12
DROP ANY TABLE system privilege 31
DROP COLUMN clause 359

ALTER TABLE command 27, 164
DROP INDEX command 26, 360

syntax 178
DROP SEQUENCE command 360
DROP STORAGE option

TRUNCATE command 188
DROP SYNONYM command 360
DROP TABLE command 147, 186, 360

PURGE option 187
syntax 186

DROP UNUSED COLUMNS clause
ALTER TABLE command 164

DROP USER command 29
DROP VIEW command 271, 361

view creation 267
DSS (Decision Support Systems) 5
dual currency symbol 369
DUAL table 75, 83, 374

examples of usage 83
operator precedence issues 90

dummy table 83
duplicate rows 81, 228

eliminating 363

duplicate values 176
and group functions 210

duplicates, SQL multisets 340
DUPLICATES option 314, 355
durations, specifying in SQL 33
DYNAMIC keyword 323
dynamic performance views 73, 378
dynamic SQL

binding variables as component 300

E
ECHO system variable 296, 355
EDIT command 47, 54, 353
EDITFILE system variable 355
editors, using with SQL*Plus 46
ellipsis 52
ELSE clause 98, 144, 363, 371
embedded use of SQL 25
EMPLOYEES table 69

CREATE TABLE command 170
tuple variable 193

EMPTY clause 341
empty set 239
empty strings compared to null values 105
ENABLE option 167, 178, 359

constraints 167
END clause 363
entities 12

database design and 3
integrity 6, 13
separation between generic and specific

level 4
terminology conventions 4

Entity Relationship Modeling. See ERM
ENTMAP option 320, 356
Environment dialog box, SQL*Plus 59
environment variables 308
equal to operator = 36, 85, 362

and null values 108
equijoins 195

on columns with same name 201
equivalence classes 123
ERM (Entity Relationship Modeling) 7

diagrams 7, 19, 382
ERRORS option, SHOW command 355
ESCAPE operator 355, 362
EXECUTE command 30, 301, 351
execution plans 300
exercises

answers to chapter 4 394–403
answers to chapter 5 404–409
answers to chapter 7 409–411
answers to chapter 8 411–421
answers to chapter 9 422–432
answers to chapter 10 432–434

■INDEX454

answers to chapter 11 434–438
answers to chapter 12 438–442

EXISTS operator 238, 362
correlated subqueries 238–240
three-valued logic 240

EXIT command 44, 351, 353
transaction processing 152

EXP function 115, 363
EXPLAIN PLAN command 179
EXPLAIN option, AUTOTRACE setting 354
explicit 152
Export 27
expressions 36
external editor 47
EXTRACT function 127–128, 365

F
FAILURE option, WHENEVER command 351,

353
FEEDBACK system variable 296, 355

example 297
file specifications 56
fill mode 135, 368
FIRST option, ORDER BY clause 358
flashback 257

examples 258
FLASHBACK TABLE . . . TO BEFORE

DROP 261
VERSIONS BETWEEN operator 260
FLASHBACK object privilege 30
FLASHBACK TABLE command 187
FLASHBACK_TRANSACTION_QUERY

view 374
floating point numbers 33, 161, 163, 360
FLOOR function 115, 363

example using with MOD function 117
FOLD_AFTER option 356

COLUMN command 309
FOLD_BEFORE option 356
FOLLOWING keyword

analytical window ordering 253
FORCE option 351, 360

view creation 267
FOREIGN KEY constraint 67, 167

ON DELETE CASCADE option 168
ON DELETE option 167
ON DELETE SET NULL option 168
syntax 167

foreign keys 13
See also referential integrity

FORMAT option 60, 353, 356, 357
COLUMN command 309

format strings 135
Fortran programming language 2
four-valued logic 109
fractional seconds, formatting 368

free variables 238
FROM clause 78

AS OF TIMESTAMP option 259
declaring tuple variables 192
specifying multiple tables 194
subqueries 242

inline views 242
ROWNUM and Top-N SQL 243

table names 198
FROM clause 28, 358

join operator 29
FULL join option 358
FULL OUTER JOIN statement 205
function nesting 211
function-based indexes 176
functions 37

See also pseudo columns
arithmetic functions 115
conversion functions 132
definition in Oracle 114
example using FLOOR and MOD

functions 117
function types 114
general functions 130
group functions 209–214
overview 113
pseudo columns 366
stored functions 137
text functions 117

G
general functions 130
generic database design 4
GET command 55–56, 304, 307, 353
glogin.sql 308
GRANT command 30–31, 361

syntax and comments 31
views and 274

GRANT OPTION clause 31, 361
greater than operator > 36, 85, 362
greater than or equal to operator >= 36, 85,

362
GREATEST function 130–131, 367
GROUP BY clause 28, 78, 358

DISTINCT keyword 211
effect of 207
example 206
group expressions 219–220
grouping on additional columns 218
grouping results of a join 212
multiple-column grouping 207–208
nonupdatable views 277
Null values 208
regular example 220
valid SELECT combinations 214

GROUP BY CUBE clause 221

■INDEX 455

GROUP BY ROLLUP clause 221
group expressions 220
group functions 209, 365

classic SQL mistake 217–218
COUNT function 212
duplicate values and 210
examples 209
grouping results of a join 212
Null values 210–211
SELECT clause 210
support for DISTINCT option 365
valid SELECT and GROUP BY clause

combinations 214
GROUPING function 222

example 223
limitations 223

GROUPING SETS option 222, 358
GROUPING_ID function 222

example using ROLLUP keyword 223
guaranteed access rule 17

H
hashing 367
HAVING clause 28, 78, 215, 358

classic SQL mistake 217–218
compared to WHERE clause 216
using functions 113
without group functions 216

HEAD option, MARKUP setting 320
<header> tag 320
HEADING option 296, 355–356

COLUMN command 81, 309
HEADSEP system variable 296, 355
hexadecimal representation 369
HIDE option, ACCEPT command 353
hierarchical queries 245–246, 367

bill of materials solution 246
CONNECT_BY_ROOT and

SYS_CONNECT_BY_PATH
operators 249

example 246
LEVEL, CONNECT_BY_ISCYCLE, and

CONNECT_BY_ISLEAF pseudo
columns 248

result sorting 250
histograms 364

creating with RPAD and LPAD
functions 121

History tab, workspace screen, iSQL*Plus 41
HISTORY Table 70

CREATE TABLE command 172
HOST command 352
Host String field 43
HOUR 128

HTML 320
iSQL*Plus 323
saving iSQL*Plus results in 41
SQL*Plus 320

I
IMMEDIATE option 351, 361

deferrable constraints 173
implicit commands, transactions 152
implicit datatype conversion 114
implicit user-defined variables 293
import 27
IN operator 92, 94, 341, 362

example 234
negation option 94
subqueries 100
three-valued logic 240

inapplicable null values 109
inconsistency 5
INCREMENT option 359
IND view 73, 75, 375
index management 177
INDEX object privilege 30
indexes 174

bitmap indexes 176
function-based indexes 176
index creation 175
index management 177
performance considerations 175
unique indexes 176

information principle 12
information rule 17
information systems

as model of real world 1
reasons to automate 1
terminology 7

INITCAP function 118, 364
INITIALLY IMMEDIATE option

DEFERRABLE option 174
inline constraints 160, 166, 168
inline views 242, 245, 282

data manipulation 282
INPUT command 50, 53, 352

I as abbreviation for 50
INSERT command 26, 358

adding rows to table 27
examples 143
multitable insert commands 144–145
restrictions on updatable join views 277
standard commands 141
syntax 142

INSERT object privilege 30
INSTANCE system variable 355
instead-of triggers 278

■INDEX456

INSTR function 118, 364
INSTRB function 118
integrity constraints, defining 17
integrity independence 17
interactive SQL commands, issuing with

iSQL*Plus 39
interactive use of SQL 25
INTERSECT operator 227–228, 278, 358, 363
intersection entity 20
intersection operator 15
INTERVAL 33, 69, 161, 127, 161, 360
INTO clause

INSERT command 144
IP address 39
IS NOT EMPTY operator 343
IS NULL operator 107, 362

example 108
negation option 108

ISO currency symbol 369
ISO year, formatting 367
ISOLATION LEVEL option 361
iSQL*Plus

Help screen 43
History screen 43
HTML 323

MARKUP setting 320
introduction 39

compared to SQL*Plus 43
logging in to 40
workspace screen 41

Preferences screen 42
HTML possibilities 323

J
JOIN . . . ON statement

example 199
JOIN . . . USING statement

example 201
JOIN command 199, 358

See also NATURAL JOIN operator
FROM component 29

joining condition 101
comparison operators 103

joins 194–195, 358
alternative ANSI/ISO standard syntax 199
Cartesian products 194
CROSS JOIN statement 202
equijoins 195

on columns with same name 201
grouping results with GROUP BY

clause 212
natural joins 200
non-equijoins 196
outer joins 202
self-joins 198

SQL layout conventions 196
three or more tables 197–198

Julian date
converting 369
formatting 368

JUSTIFY option 356
COLUMN command 309

K
kernel 9, 18
key preserved tables

updatable join views 277
keys. See candidate keys; primary keys;

surrogate keys; foreign keys

L
L* command

using ellipses 53
L1 command 48
LABEL option, COMPUTE command 357
LAG function 256
LAST option, NULLS clause 352, 358
LAST_DAY function 127, 365

example using NEXT_DAY, ROUND, and
TRUNC functions 130

LEAD function 256
leap year 129
LEAST function 130–131, 367
LEFT option 357, 358
LEFT OUTER JOIN command 205
LENGTH function 117, 364
LENGTHB function 118
less than operator < 36, 85, 362
less than or equal to operator <= 36, 85, 362
LEVEL pseudo column 247–248
LIKE operator 92, 95, 362, 356

COLUMN command 310
ESCAPE option 96
negation option 96
using with percent and underscore

character 96
using with percent character 95

line numbering 50
LINESIZE system variable 296, 355
LIST command 45, 48, 53, 352–353
listener 39
literals. See constants
LN function 115, 363
LNNVL function 367
local currency symbol 369
LOCAL datatype 360
LOCALTIMESTAMP function 34, 365
locking 32, 155–156
LOG function 115, 363

■INDEX 457

logarithm functions 363
logical data independence 17, 26, 274
logical design 19

data modeling approach 7
logical level, modeling information needs 2
logical operators 36, 89, 362

AND operator 90
NOT operator 91
OR operator 89
truth tables 110

login.sql 60, 308
example 308

LONG datatype 296, 355, 360
loop 247
LOWER function 118, 355, 364
lowercase 34
LPAD function 118, 121, 364

enhancing readability 248
LTRIM function 118, 364

M
maintenance 19

database design and 2
manageability 2
many-to-many relationships 20
MARKUP setting 320, 355
Massive Parallel Processing, See MPP
MATCHED option, MERGE command 358
matching behavior 123
materialized views 284

properties of 285
query rewrite 285

MAX function 131, 209, 256, 317, 365
using instead of ALL operator 236

MAXIMUM function 357
MAXVALUE sequence option 359
MEDIAN function 209, 365
MEMBER operator 341
MERGE command 149, 358

example 149
metadata 9, 71
metasymbols 122
methods, user-defined datatypes 328
MIN function 131, 209, 256, 317, 365
MINIMUM function 357
MINUS operator 16, 227–228, 278, 295, 307,

358, 363
example 229
using with DISTINCT keyword 229

MINUTE 128
minutes, formatting 368
MINVALUE sequence option 359
missing information 23

treatment by RDBMS 13, 17
MIXED option, SQLCASE setting 355

MOD function 115, 363
example using with FLOOR function 117

modeling
information needs 2
information systems 1

MODIFY clause 359
ALTER TABLE command 164

MONTH 128
formatting 367
specifying in SQL 33

MONTHS_BETWEEN function 127, 365
example 129

MPP (Massive Parallel Processing) 18
multicharacter collation elements 123
multiplication operator * 35, 362
MULTISET DISTINCT operator 341
MULTISET EXCEPT operator 341
MULTISET INTERSECT operator 341
multiset operators 340

converting arrays into nested tables 345
examples 341–342
IS NOT EMPTY and CARDINALITY

example 343
MULTISET UNION operator 341, 345
POWERMULTISET operator 343, 345

N
named query 266
names for database objects 370
National Language Support. See NLS
NATURAL join option 358
NATURAL JOIN operator 16, 200

See also joins
behavior of 201
example 200–201

negation option
BETWEEN operator 94
IN operator 94
IS NULL operator 108
LIKE operator 96

nested functions 113
nested tables 334

as collection datatypes 328
converting from arrays 345
creating table types 334
creating the nested table 335
populating the nested table 336
querying the nested table 337

nesting
functions 133, 211
subqueries 103

newline character searches
matching behavior and 124

NEWLINE setting 356
COLUMN command 310

■INDEX458

NEWPAGE system variable 296, 355
NEW_TIME function 127
NEW_VALUE setting 356

COLUMN command 310, 312
NEXTVAL pseudo column 182
NEXT_DAY function 127, 365

example using LAST_DAY, ROUND, and
TRUNC functions 130

NLS session parameters 59
NLS_CURRENCY parameter 59
NLS_DATABASE_PARAMETERS view 374
NLS_DATE_FORMAT parameter 59, 127
NLS_DATE_LANGUAGE parameter 134
NLS_INSTANCE_PARAMETERS view 374
NLS_LANGUAGE parameter 59, 134
NLS_LENGTH_SEMANTICS parameter 162
NLS_NUMERIC_CHARACTERS parameter

33, 59
NLS_SESSION_PARAMETERS view 74, 127,

374
NLS_SORT parameter value

default behavior for case-sensitivity 124
NLS_TERRITORY parameter 135
NLS_TIMESTAMP_FORMAT parameter 127,

258
NLS_TIME_FORMAT parameter 59
NOCYCLE option 247, 358–359
NODUPLICATES option 314, 355
NOLIST option 353
NOLOG option 351
NOMAXVALUE sequence option 359
NOMINVALUE sequence option 359
non-equijoins 196

See also thetajoins
nondeterministic window sorting 253–254
NONE option 353
nonpadded comparison 162
nonsubversion 17
nonupdatable views 277
NOORDER option 359
NOPRINT setting 356

COLUMN command 310
NOPROMPT option 353
normal forms 329
normalization 7
NOSORT option 176, 359
not equal to operator <> 36, 85, 362
NOT EXISTS operator

correlated subqueries 239
NOT IN operator 362
NOT logical operator 36
NOT NULL clause 67

ALTER TABLE command 164
NOT operator 89, 91, 362

using comparison operators 92
Notepad

default external editor 46

NULL setting 142, 296, 355, 356
ALTER TABLE command 164
COLUMN command 310
example 299

null values 13, 84, 105, 210, 222, 240
and equality operator 108
and three-valued logic 107
compared to empty strings 105
CUBE and ROLLUP keywords 222
displaying 105

COLUMN command 106
IS NULL operator 107
nature of 106
pitfalls 109
problems with sorting 88

NULLIF function 130, 367
NULLS option 358
NULLS FIRST option 261

values 89
NULLS LAST option 89
NUMBER datatype 161, 360

best for columns containing numeric
data 163

limits 161
NUMBER datatypes, examples 67
number format models 368
NUMBER function 317, 357
number functions

example using TO_NUMBER and
TO_CHAR functions 133

numeric constants 32
numeric functions 363–364
NUMFORMAT system variable 296, 355

example 299
NUMTODSINTERVAL function 365
NUMWIDTH system variable 297, 355

example 298
NVL function 108, 130, 367

example 131
NVL2 function 108, 130, 367

O
OBJ view 73, 75, 375
object privileges 29
object-relational features

compared to standard relational
techniques 329

datatypes 327–329
multiset operators 340–342, 345
nested tables 334–337
user-defined types 338–339
varrays 329, 331–334

occurrences 12, 20
OFFERINGS Table 70

CREATE TABLE command 171
OLD_VALUE setting 356

■INDEX 459

OLTP (Online Transaction Processing) 5
ON option 199, 201, 358
ON DELETE CASCADE option

FOREIGN KEY constraint 168
ON DELETE option

FOREIGN KEY constraint 167
ON DELETE SET NULL option

FOREIGN KEY constraint 168
ON EXPLAIN option

AUTOTRACE setting 180
ON | OFF settings

COLUMN command 310
one-to-many relationships 20
online help, iSQL*Plus 43
Online Transaction Processing. See OLTP
operands defined 34
operators 28

See also relational operators
alphanumeric operator 35
arithmetic operators 35
comparison operators 35
defined 34
logical operators 36, 90
precedence 37

forcing 91
rules for logical operators 90

optimizer 175, 178, 180, 285
as component of kernel 18
strategy of accessing data 86

OR operator 36, 89, 362
exclusive or inclusive 89

OR REPLACE option
CREATE VIEW command 267

Oracle
Collaboration Suite 19
Data Dictionary 75
datatypes 360
Designer

enforcing constraints 14
support for system development 7

documentation 443
eBusiness Suite 19
Enterprise Manager 19, 25
integral support for system development 7
JDeveloper 19
object-relational features 327

datatypes 327–329
multiset operators 340–343, 345–346
nested tables 334–337
user-defined types 338–339
varrays 329, 331–334

Optimizer 285
producing execution plans 300

software environment, introduction 18
tools, SQL and Oracle database 18
web sites 446
writing SQL in 1

Oracle SQL as implementation of SQL:2003
standard 18

ORA_HASH function 367
ORDER BY clause 78

ASC keyword 86
BREAK command 316
column aliases 87
DESC keyword 86–87
equijoins 195
example using DECODE function 132
set operators and 228
sorting results 87
subqueries 244
syntax 86
using functions 113
window specification 252

ORDER BY clause 28, 358
ORDER clause 359
ORDER SIBLINGS BY clause 250

example 250
ordered pairs 12
ordinal number 135
OSERROR option 353
out-of-line constraints 166
OUTER JOIN command 138, 358
outer joins 202–203

See also partitioned outer joins
creating with UNION operator 229
new syntax 204–205
old Oracle specific syntax 203
performance 205

outerjoin operator (+) 363
Output Location setting, iSQL*Plus

saving results in HTML 41

P
padding 136, 162
PAGE command 355
PAGESIZE setting, SQL*Plus 58
PAGESIZE system variable 297, 354
parameters, SQL*Plus scripts 305
parentheses 91, 362

use of in expressions 37
parents 246
PARTITION BY clause 252, 255

window specification 252
partitioned analytical windows 255
partitioned outer joins 225

example 226–227
Pascal programming language 2
PASSWORD command 65, 351
PAUSE command 294, 297, 354
PAUSE setting, SQL*Plus 58
performance 19, 284

indexes on SQL statements 175

■INDEX460

performance monitoring
AUTOTRACE setting 178

physical data independence 17
physical design 19

data modeling approach 7
physical level

modeling information needs 2
PL/SQL 137, 278
port number 39
POSIX standard 122
POWER function 115, 363
POWERMULTISET operator 341, 343, 345, 366
POWERMULTISET_BY_CARDINALITY

function 366
<pre> tag 320
precedence, SQL operators 362
PRECEDING keyword

analytical window ordering 253
precision 33, 161
predicates 14, 36
Preferences screen, iSQL*Plus 41
PREFORMAT option 320
PRIMARY KEY constraint 67, 167
primary keys 13, 17

See also entities
PRINT command 301, 354
PRIOR operator 247
priority rules 37
private synonyms 184
privileges 29, 267

database users 65
projection operator 16

SELECT component 29
PROMPT command 294, 353–354
propositions 14
prototyping 7
pseudo columns 34, 84, 366

See also functions
definition in Oracle 114

PUBLIC option 361
public synonyms 184
PUBLICSYN view 374
PURGE command 360

DROP TABLE command 187
emptying the recycle bin 186

Q
quarter, formatting 367
queries,

creating views from 268–269
languages 9
rewrites 285

QUIET option, STARTUP command 351
QUIT command 44, 351

transaction processing 152

R
R command

abbreviated from RUN 48
RAD (Rapid Application Development) 7
range specifications 253
RANK function 257
Rapid Application Development. See RAD
RAW datatype 161, 360

limits 161
RDBMS (Relational Database Management

System)
introduction 10
operators 15
relational degree of implementation 16

READ COMMITTED option, SET
TRANSACTION command 361

read consistency 155, 257
READ ONLY option 257, 351, 360–361
READ WRITE option 361
REBUILD option

ALTER INDEX command 177
recovery 19
RECSEP system variable 354
RECSEPCHAR system variable 354
recursive relationships 20
recycle bin, emptying and querying 186
RECYCLEBIN view 375

querying the recycle bin 186
redundancy 4, 274, 285
REFERENCES object privilege 30
referential integrity 6, 13
refreshment 285
REGEDIT command 57
REGEXP_INSTR function 122, 364

example 125
influencing return value 124
syntax 123

REGEXP_LIKE function 96, 122
example 124
syntax 123

REGEXP_REPLACE function 122, 364
example 126
syntax 123

REGEXP_SUBSTR function 122, 364
example 126
syntax 123

REGISTRATIONS Table, 70
CREATE TABLE command 172
rewritten query 283

registry 308
regular expressions 121

character classes 370
function syntax 123
influencing matching behavior 123
operators and metasymbols 122, 369
positioning in text 364
Unix operating systems 122

■INDEX 461

relational algebra 10
relational calculus 10
relational data structures 11

constraint checking 14
datatypes 12
information principle 12
keys 13
missing information and null values 13
predicates and propositions 14
tables, columns, and rows 11
terminology 14

Relational Database Management System.
See RDBMS

relational model 11
relational data structures 11
relational operators 15
relational rules 16

REMAINDER function 363
REMARK command 353
RENAME command 163, 359, 361

syntax 165
REPFOOTER command 314
REPFOOTER function 357
REPHEADER command 314, 357
REPLACE command 54–55, 118, 121, 353,

360, 364
REPLACE VIEW command 271
REPORT command 355, 357
report generation

BREAK command 314
example 314
multiple breaks in single command 316
syntax 314

COLUMN command 309
examples 310–311
NEW_VALUE option 312
options 309

COMPUTE command 317
aggregation 317
functions 317

SPOOL command 319
SQL*Plus features 308
TTITLE and BTITLE commands 313

reserved words 38, 371
response time 4
RESTRICT option, STARTUP command 351
restriction operator 16

See also selection operator
retrieval

analytic functions and windows 251
window ordering 253
window specification 252

BETWEEN, IN, and LIKE operators 93
CASE expressions 97
commands 26–27
correlated subqueries 237–238

exercises 111
flashback features 257

AS OF syntax 259
FLASHBACK TABLE 261
VERSIONS BETWEEN operator 260

functions 113
hierarchical queries 245

CONNECT_BY_ROOT and
SYS_CONNECT_BY_PATH
operators 249

LEVEL, CONNECT_BY_ISCYCLE, and
CONNECT_BY_ISLEAF 248

result sorting 250
START WITH and CONNECT BY

operators 246
logical operators 89
multiple tables and aggregation 191

alternative ANSI/ISO standard join
syntax 199

COUNT(*) function 212
equijoins on columns with same

name 201
GROUP BY clause 206–208, 220
GROUP BY CUBE option 221–222
GROUP BY ROLLUP option 221
group functions 209–211, 213
GROUPING function 222–223
GROUPING_ID function 223–224
HAVING clause 215–219
joins 194–198
natural joins 200
partitioned outer joins 225–227
SELECT and GROUP BY

combinations 214
set operators 227, 229
tuple variables 192

null values 105
regular expressions 121
SELECT command 77
subqueries 100, 233

ANY and ALL operators 235–237
EXISTS operator 238–240
FROM clause 242–243
SELECT clause 241–242
WITH clause 244–245

window specification
range specification 252

return value
regular expressions and 124

REVOKE command 30, 361
syntax 32
views and 274

RIGHT option 357–358
RIGHT OUTER JOIN statement 205, 226

examples 225–226
roles 30

■INDEX462

ROLE_ROLE_PRIVS view 374
ROLE_SYS_PRIVS view 374
ROLE_TAB_PRIVS view 374
ROLLBACK command 27, 147, 351, 353, 358

transaction processing 151
ROLLBACK TO SAVEPOINT command

transaction processing 154
ROLLUP option 221, 358

example with GROUPING_ID
function 223–224

ROUND function 115, 127, 363, 365
date formats 128

ROW option 355, 357
row constraints 6
ROW report element

defining breaks on 316
ROWNUM pseudo column 244
rows 11
RPAD function 118, 121, 364
RTRIM function 118, 364
RUN command 54, 352

abbreviated to R 48

S
SALGRADES Table 70

CREATE TABLE command 171
SAVE ... APPEND command

SQL buffer and 306
SAVE command 54, 56, 303, 307, 353

adds / 304
example 54

SAVEPOINT command 153, 358
scalar subquery expressions 242
scientific notation 369
script 60
search pattern

specifying occurrences 123
using with LIKE operator 95

searched CASE expression 98
SECOND 128
seconds, formatting 368
security 2

commands 26, 29
GRANT and REVOKE commands 31
privileges and roles 29

select all columns operator * 363
SELECT clause 28, 78–79

* character 79
column aliases 80
column expressions 82

using a dummy table 83
CONNECT_BY_ROOT and

SYS_CONNECT_BY_PATH
operators 249

DISTINCT keyword 81
example using DECODE function 132

null values in expressions 84
projection operator 29
using an alias 268

SELECT command 27, 358
components 28
DISTINCT keyword 277
GROUP BY clause 206
group functions 210
object privilege 30
ORDER BY clause 86
overview 77

six main clauses 77
subqueries 241

example 241–242
syntax 79
using functions 113
valid GROUP BY combinations 214
WHERE clause 79, 85

example with simple condition 85
selection operator 16
selectivity 176
SELECT_CATALOG_ROLE role 71
self-joins 198

See also autojoins
semantics 7
SEQ view 375
sequences 181

ALTER SEQUENCE command 182
CREATE SEQUENCE command 182

SERIALIZABLE option 361
SERVEROUTPUT system variable 354
SESSIONTIMEZONE function 365
SESSION_PRIVS view 374
SESSION_ROLES view 374
SET BUFFER command 306–307
SET command 227, 291, 295, 341, 353, 359,

366
adjusting SQL*Plus settings 58
UPDATE command 145

SET CONSTRAINTS command 361
deferrable constraints 174

SET ECHO OFF TERMOUT OFF
command 322

SET LINESIZE command 309, 313
SET MARKUP command 320

example 320
HEAD option 320
using SPOOL commands 321

SET NEWPAGE command 309
set operators 227
SET PAGESIZE command 309, 313
set theory 10
SET TRANSACTION command 156
SET TRIMSPOOL command 309
SET UNUSED clause

ALTER TABLE command 164

■INDEX 463

settings 57
SHOW ALL command 296
SHOW command 291, 295, 355

SQL*Plus settings 58
SHOWMODE system variable 354
SHRINK SPACE option 359
SHUTDOWN command 351
SIBLINGS option 250
SIGN function 115, 363
SILENT option, SQLPLUS command 351
simple CASE expression

example 98
syntax 97

SIN function 115, 364
sine function 364
single row subquery 234
singletons 219
SINH function 115
SKIP option 314, 355
SKIP PAGE option 314
slash operator 54
snapshots 155, 257

materialized views as 285
sorting null values 88
SPACE system variable 355
specific database design 4
SPOOL command 61, 309, 319–320, 357

report generation 319
using with SET MARKUP command 321

SPOOL OFF command 323
SQL

concepts and terminology 32
comments 38
constants 32
database object naming 37
expressions 36
functions 37
operators 34
reserved words 38
variables 34

data definition 359
data manipulation commands 358
layout conventions 196
Oracle SQL as implementation of 2003

standard 18
overview 25

data definition commands 26
data manipulation commands 26
retrieval commands 27
security commands 29

transactions 358
writing in Oracle 1

SQL buffer 45, 353
caution 306
inserting text before first line of 52
using line numbers 51

SQL functions
alphanumeric functions

returning alphanumeric results 364
returning numeric values 364

collection functions 366
conversion functions 366
date format models 367
date format modifiers 368
date functions 365
functions and pseudo columns 366
group functions 365
number format models 368
numeric functions 363–364

SQL operators
See also operators
alphanumeric operators 362
arithmetic operators 362
comparison operators 362
logical operators 362
other operators 363

SQL regular expressions
character classes 370
operators and symbols 369

SQL reserved words 371
SQL statements

bind variables 302
indexes increase performance on 175
rewriting without ANY or ALL

operators 236
SQL*Loader 27
SQL*Plus 19

AUTOTRACE setting 179
bind variables 300

declaration 301
SQL statements 302

compute functions 357
formatting query results 356
HTML 320
interactivity commands 353
introduction 43

adjusting settings 57
command review 63
compared to iSQL*Plus 43
describing database objects 62
entering commands 44
executing commands from operating

system 63
Log On dialog box 44
running SQL*Plus scripts 55
saving commands 54
specifying directory path

specifications 56
spooling a session 61
SQL buffer 45
using an external editor 46
using ellipses 52

■INDEX464

using SQL buffer line numbers 51
using SQL*Plus editor 47

report generation 308
BREAK command 314
COLUMN command 309
COMPUTE command 317
SPOOL command 319
TTITLE and BTITLE commands 313

scripts 303
substitution variables 290
system variables 295
user-defined variables 292

implicit user-defined variables 293
user-friendly prompting 294

variables and parameters 354
SQL*Plus buffer

generating scripts 306
SQL*Plus editor

commands 53, 352
using 47

SQL*Plus scripts 303
commands for manipulating 353
commands in scripts 306
execution 303
login.sql script 308
parameters 305

SQL.PNO predefined variable 314
SQL.USER predefined variable 314
SQLBLANKLINES system variable 355
SQLCASE system variable 355
SQLCONTINUE system variable 355
SQLERROR option 353
SQLNUMBER system variable 355
SQLPATH Registry 57
SQLPREFIX system variable 355
SQLPROMPT system variable 297, 355
SQLTERMINATOR system variable 297, 355
SQRT function 115, 364
stale data 286
standard deviation 357, 365
START command 55–56, 303–304, 307, 353

@ shortcut 56
START WITH option 246–247, 358
STARTUP command 351
STATISTICS system variable 354
STATS_MODE function 209, 365
STD function 317, 357
STDDEV function 209, 365
STORAGE clause

CREATE TABLE command 160
STORE command 353
STORE SET command 61
stored functions 137, 333

creating using PL/SQL 137
example 138

stored query 266

strings 32
See also alphanumeric constants
case sensitivity 32

Structured Query Language. See SQL
style sheets 323
sub-process, starting by external editor 47
SUBMULTISET operator 341
subqueries 27, 100, 143, 233, 241

ALL operator 235
ANY operator 235
correlated subqueries 237
example 100

using a comparison operator 234–235
EXISTS operator 238
factoring 245
FROM clause 242

inline views 242
ROWNUM and Top-N SQL 243

IN operator 100, 234
joining condition 101
nesting 103
ORDER BY clause 244
returning too many values 102
SELECT command 241
single-row subquery returning more than

one row 104
using comparison operators 234–235
WITH clause 244–245

substitution 127
substitution variables 290

prompting twice for a value 290
SUBSTR function 118, 364
SUBSTRB function 118
subtraction operator - 35, 362
subtrees 249
SUCCESS option 351, 353
SUFFIX option 55, 355
SUM function 209, 256, 317, 357, 365
surrogate keys 13
SYN view 75, 375
synonyms 183

CREATE SYNONYM command 183
views and 274

SYSDATE function 34, 83, 365
SYSDATE pseudo column 117
system generation

Oracle support for system development 7
system parameters 367
system privileges 29
system variables 34, 295

common variables 296
examples 295–299

SYSTIMESTAMP function 34, 365
SYS_CONNECT_BY_PATH function 249, 367
SYS_CONTEXT function 367
SYS_EXTRACT_UTC function 365

■INDEX 465

T
TAB system variable 355
table aliases 192
table constraints 6
TABLE function 332, 336–337
table names, tuple variables as 198
<table> tag 320
tables 11

compared to views 267
TABS view 75, 375
TAN function 115, 364
TANH function 115
tautology 109
temporary tables 245
TERMOUT system variable 355
text 32

See also alphanumeric constants
text functions 117

corresponding functions with B suffix 118
creating histograms using LPAD and RPAD

functions 121
example using ASCII and CHR

functions 119
example using INSTR and SUBSTR

functions 119
example using LOWER, UPPER, INITCAP,

and LENGTH functions 118
example using LPAD and RPAD

functions 120
example using LTRIM, and RTRIM

functions 120
example using TRANSLATE and REPLACE

functions 121
THEN clause 363
thetajoins 196

See also non-equijoins
three-valued logic 13

EXISTS operator 240
IN operator 240
null values and 107

throughput 154
TIME system variable 355
TIME ZONE 127
time zone, formatting 368
TIME ZONE datatype 69
time zone information

TIMESTAMP datatype 161
TIMESTAMP 33, 69, 127, 161, 260, 360
TIMEZONE_ABBR 128
TIMING command 297, 352, 355
TKPROF tool 179
tools for DBMS 9
Top-N SQL 243
TO_BINARY_DOUBLE function 366
TO_BINARY_FLOAT function 366
TO_CHAR function 133, 366

TO_CLOB function 366
TO_DATE function 33, 133, 366
TO_DSINTERVAL function 366
TO_LOB function 366
TO_NUMBER function 133, 366
TO_TIMESTAMP function 133, 366
TO_TIMESTAMP_TZ function 366
TO_YMINTERVAL function 133, 366
TRACE option 179
TRACEONLY STATISTICS option

AUTOTRACE setting 180
TRACEONLY system variable 354
TRANSACTIONAL option 351
transactions 27, 151

AUTOCOMMIT command 152
definition 17
design 153
savepoints 153

TRANSLATE function 118, 121, 364
tree structures 247
TRIM function 364
TRIMOUT system variable 355
TRIMSPOOL system variable 297, 355
TRUNC function 115, 127, 364–365

date formats 128
TRUNCATE command 27, 148, 361

DROP STORAGE option 188
syntax 188

TRUNCATED option
COLUMN command 310

truth tables, logical operators 110
TTITLE command 309, 313, 357

example with ON/OFF options 313
tuple variables 192, 237

defined 192
table names as 198
using in a query 192

tuples 11
two-valued logic 109

U
UFI 308
UID function 367
UML (Unified Modeling Language) 7
UNBOUNDED PRECEDING clause 254
UNDEFINE command 305, 354

removing a user-defined variable 293
UNDERLINE system variable 355
underscore, use in database object names 37
Unified Modeling Language. See UML
UNION ALL operator 228
UNION operator 15–16, 227–228, 278, 358,

363
creating regular joins 229
expanding an outer join example 230

UNIQUE option 359

■INDEX466

UNIQUE constraint 67, 167
unique identifiers 20

case entities 382
unique indexes 176
UNIQUE option

CREATE INDEX command 176
unnesting 332, 336–337
updatable join views 276

rules and restrictions 277
updatable views 17
UPDATE command 26–27, 337, 359

components 145
example 146
example using a subquery 147
read consistency 156
restrictions on updatable join views 277
via an inline updatable join 282

UPDATE object privilege 30–31
UPPER function 118, 355, 364
USER function 34, 297, 367
user-defined types 338

adding methods 328
constructor methods 328
creating 338–339
setting DEPTH attribute of DESCRIBE

command 339
user-defined variables, SQL*Plus 290, 292

declaring with DEFINE command 292
implicit user-defined variables 293
user-friendly prompting 294

example 294
USER_ data dictionary views 375
USER_CONSTRAINTS view 169
USER_CONS_COLUMNS view 169
USER_INDEXES view 75
USER_OBJECTS view 75
USER_RECYCLEBIN view 75
USER_SEQUENCES view 75
USER_SYNONYMS view 75
USER_TABLES view 75
USER_TAB_COLUMNS view 75
USER_TYPES data dictionary view

querying to view type definitions 330
USER_UPDATABLE_COLUMNS view 278
USER_VIEWS data dictionary view 75

querying 270
USING command 358
USING keyword 201

V
V$ data dictionary views 378
VALUES clause 358

INSERT command 27, 141
VAR function 317
VARCHAR datatype 67, 360

VARCHAR2 recommended 162

VARCHAR2 datatype 67–68
limits 161
recommends use of 162

VARIABLE command 301, 355
variables 34
variables, SQL*Plus 290
VARIANCE function 209, 357, 365
varrays 329

as collection datatypes 328
creating the array 329
populating the array with values 331
querying array columns 332, 334

VERIFY system variable 297, 355
suppressing setting 292

VERSIONS BETWEEN option 261, 358
flashback features 260

VERSIONS_ENDTIME pseudo column 261
VERSIONS_STARTTIME pseudo column 261
VIEW command 360
views

compared to tables 267
creating from queries 268
creation 266
data manipulation 274–275

inline views 282
updatable join views 276
WITH CHECK OPTION clause 279–281

DESCRIBE command 270
getting information about views from data

dictionary 269
introduction 265
joining three tables 268
materialized views 284

properties of 285
query rewrite 285

nonupdatable views 277
performance 283
replacing and dropping views 271
retrieving view definitions from data

dictionary 270
uses

maintaining logical data
independence 274

simplifying data retrieval 271–272, 274
virtual tables, views as 266
volume 2
VSIZE function 367

W
WARNING option 351, 353
waterfall methods 6
WHEN ... THEN ... ELSE construct

INTO clause 144
WHEN operator 363
WHENEVER command 353

■INDEX 467

WHERE clause 78
+ operator 204
ampersand (&) character 124
bitmap indexes and performance 176
compared to HAVING clause 216
correlated subqueries 282
equijoins 195
example 79
example of using with MOD function 116
example with simple condition 85
specifying conditions 85
UPDATE command 145
using functions 113
using parentheses 91

WHERE clause 28, 358
white space 79, 91
WIDTH_BUCKET function 364
wildcards 96, 362
windows 251
WITH CHECK OPTION clause

creating views 267, 280
restrictions on updatable join views 277

WITH clause 274, 358
subqueries 244–245

WITH GRANT OPTION 361
WITH READ ONLY option

creating views 267
nonupdatable views 277

WORD_WRAP setting 356
WORD_WRAPPED option

COLUMN command 310
workspace screen, iSQL*Plus 41
WRAP option 355, 356
WRAPPED option

COLUMN command 310
WRAPPED system variable 354

Y
YEAR 127–128
year

formatting 367
specifying in SQL 33

■INDEX468

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

